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ABSTRACT

The first focus of this thesis is to solve a stochastic convex minimization problem over an arbitrary fam-

ily of nonempty, closed and convex sets. The problem has random features. Gradient or subgradient of

objective function carries stochastic errors. Number of constraint sets can be extensive or infinitely many.

Constraint sets might not be known apriori yet revealed through random realizations or randomly chosen

from a collection of constraint sets throughout the horizon as in online learning concept.

The traditional projection algorithms for solving minimization problems require projecting over complete

collection of constraints at once or over a subset of them based on a predefined selection rule. But in practi-

cal applications either all of the constraints might not be known apriori or even if they are known projecting

on the intersection set might be computationally prohibitive. We propose a two step gradient/subgradient

iterative method with random projections. As the first step, a random gradient /subgradient projection is

performed before observing the random constraint set realization. After taking random gradient /subgra-

dient projection step we reach an intermittent point, which we obtained without considering the feasibility

violation. Once the set realization is revealed or chosen within collection of constraint sets, the feasibility

violation of intermittent point is corrected. We showed that projecting onto a random subcollection of them

using our algorithm with diminishing stepsize is sufficient to converge to the solution set almost surely.

Also the convergence of the algorithm for constant and nondiminishing nonsummable stepsizes are proved

within an error bound. As the first set of experiments we tested the performance of the algorithm over a

dynamic control system. We study three versions of the problem with correlated unknown-but-bounded ad-

ditive noise, uncorrelated unknown-but-bounded additive noise and uncorrelated bounded output and peak

input additive noise under fully known system description cases. It is essentially a robust least squares esti-

mation problem where we recover state parameters from corrupted input and output data. We reformulated

the linear least squares estimation problem as a stochastic convex minimization problem and then used the

two step random projection algorithm to solve it. Although the problem has infinite number of constraints

due to each realization of error term within bounded set, the algorithm goes through a finite subset of them
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and converges to the solution set. We also prove the existence of solution and provide equivalent minimiza-

tion formulations or upper bound for these three types of robust least squares problems. We used standard

subgradient algorithm to gauge the performance of our method. The implementation results are comparable

to the ones found in literature.

Our next focus is to solve a stochastic convex feasibility problem. We explored an algorithmic approach

to solve both consistent and inconsistent convex feasibility problems for closed convex uncertain sets. We

concentrated our attention on uncertain nature of sets and finding a feasible point using a random subcollec-

tion of them. The sets we consider might carry uncertainty due to inaccurate or imprecise spatial, spectral,

stochastic information and confidence levels. For this objective we consider a stochastic optimization prob-

lem of minimizing an expected weighted proximity function over a collection of closed, convex sets. We

show that the proposed algorithm converges to a point in the solution set when solution set is nonempty. In

case of inconsistent feasibility problem i.e. the intersection of closed convex constraint sets being empty the

algorithm minimizes the proximity function. The projection onto a subcollection of sets approach can be

viewed as somewhere between random implementation of alternating projection method and parallel pro-

jection method. But our method is not deterministic. It uses random projections onto sets that carry additive

bounded noise. Each realization within the bounded disturbances has equal chance of occurence. The con-

ventional approach of set theoretic estimation problems provide solution that confirm with constraint sets

known a priori or observed. But it fails to take into account that sets built on a priori or observed data may

carry disturbances or have erroneously predicted statistical information, which may result in inconsistent

sets. The attributes of original signal such as amplitude bound, region of support, band-limitedness that are

used to built sets in estimation problems may not be accurate. Additionally sets that are built using moments,

spectral properties, distribution and bounds information are based on predicted stochastic estimations. The

overly conservative confidence bounds or statistical assumptions may cause inconsistencies. Also noise

pertubations in measurements or random variations in the impulse response of a system can cause incon-

sistencies. Our algorithm projects onto a subcollection of sets some of which carry a random realization of

noise on it. The implementation results show that the algorithm converges to the solution asymptotically

even if the algorithm projects onto a random subcollection of sets at each iteration.

All in all this thesis work presents iterative methods to solve stochastic convex minimization problems

and stochastic convex set intersection problems. The almost sure convergence of algorithms are proven.

And the performance of them are shown on numerical experiments.
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Chapter 1

INTRODUCTION

This thesis study is focused on one main technique, ”Random Projection Algorithm under Noise”. The

proposed algorithms are built upon random projection method to solve convex stochastic smooth/nonsmooth

minimization problems and stochastic convex feasibility problem.

In this chapter we are going to present the motivation that led us to study this method as well as a summary

of our contributions to the field.

1.1 Motivation

The essence of algorithms that are proposed in this work is iterative random projection method to solve

stochastic convex optimization/feasibility problems. Random projection is the technique of projecting a

set of points to a randomly chosen low-dimensional space. It has been extensively investigated in the-

ory of learning after Johnson and Lindenstrauss (1984) who proved that random projection approximately

preserves key properties of solution sets.

The fundamental idea in this work is analogous to robust concept learning, asserting that a relatively

small number of set revelations are sufficient to converge to the optimum/feasible solution set. Robust con-

cept learning aims for finding intersections of examples by reducing the dimensionality of examples, while

preserving concepts using random projection, which is essentially a feasibility problem as in Arriaga and

Vempala (2006). Convex feasibility problem, which has been surveyed in detail by Bauschke and Borwein

(1996), is a special case of the convex stochastic smooth/nonsmooth minimization problem that we focus on.

The determination of a common point of convex sets by the method of successive projection first proposed

by Bregman (1965) and Gubin et al. (1967). The projection algorithms for convex feasibility problems have

broad applicability in many areas of mathematics and physical sciences such as computerized tomography,

signal and image processing as in studies by Aharoni and Censor (1989), and Combettes (1996). We ex-
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plored an algorithmic approach to solve both consistent and inconsistent convex feasibility problems for

closed convex uncertain sets.

One of the employed algorithmic approaches for solving convex feasibility problems is subgradient pro-

jection algorithm. It can be either “cyclic” or “weighted” controlled. The classical cyclic subgradient

projection method has somewhat similar essence to this work in chapter 3. But classical cyclic subgradi-

ent projection method requires sparse set functions depending on very few variables as in Censor and Lent

(1982). But our algorithm with random feasibility updates can handle convex feasibility problems as well

as convex optimality problems without any provision on the constraint set. When the number of sets is too

large to handle, projecting onto intersection of sets is computationally formidable. Whereas our algorithm

allows us to project onto a randomly chosen constraint set at each step and is proven that it is converging to

the solution set within finite steps.

The robust optimization approach which is extensively covered in Ben-Tal et al. (2009) introduces the

robust counterparts concept of uncertain problems that requires semi-infinite programming techniques and

thus can be intractable even when all instances of the uncertain problem are easy to solve. Yet projection on

one combination of uncertainity set that defines a certain constraint set within all possibilities allows us to

formulate and solve the problem with less computational effort. We tested our random projection algorithm

under noise on a system identification problem with bounded noise and known system description. The same

least squares problem where input matrix and output vector carry unknown but bounded noise was studied

by Ghaoui and Lebret (1997). They minimize the worst-case residual error using semidefinite programming

input matrix with additive perturbations has lower-triangular toeplitz structure. Based on the implementation

results our algorithm has application potential in control problems with uncertain system description and/or

system identification with noise which were studied by quite a few researhers and so far where only solution

boundaries are achieved as in Bertsekas and Rhodes (1971) and in robust optimization context El Ghaoui

and Calafiore (2002).

1.2 Contribution

The contribution of this work is using random gradient/subgradient projection method for stochastic op-

timization/feasibility problems that utilize random projections even if when gradient/subgradient noise is

present. The closest works are Polyak (2001) that uses random gradient projections for the special class
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of convex feasibility problems and Bertsekas and Tsitsiklis (2000) that investigates the unconstrained mini-

mization problem with error. The distinction of our method lies in the fact that it handles uncertain objective

with constrained case with either large number of constraints or not completely known collection of con-

straint sets. Another advantage of our method is that gradient/subgradient or gradient/subgradient-analog

methods that are based on some type of deterministic or stochastic descent argument assumes that f is

bounded below. Yet in our case to establish the almost sure convergence of the proposed algorithms with

random projections, we only require Lipschitz continous gradient for differentiable case and uniformly

bounded subgradient norm over the universal set that we project.

We also focused on solving the same stochastic problem for nonsmooth objective case. The well-studied

subgradient method is very much like the ordinary gradient method with a few differences. It is applicable

to nondifferentiable f with step lengths usually fixed ahead of time that does not necessarily decrease f

monotonically. Problem scaling and conditioning affect the performance closely. The idea of applying

gradient methods with constant step-length for unsmooth functions was first suggested by Shor (1964) in

his PhD dissertation for finite dimensional unconstrained problems. Later the convergence of the same case

for diminishing stepsize was proved by Ermol’ev (1966) and convergence by geometric progression rate for

not summable diminishing step length was proved by Polyak (1967). But the algorithm we propose uses

the uncertain subgradient projection direction to minimize the given objective initially, while second level

of projection after the constraint set is revealed decreases the feasibility violation. Therefore one of the

main contributions of this work is that projection on sets are not limited to projection onto certain super

half-spaces, which contain the convex sets.

Notation: A vector is a column vector. We use xT to denote the transpose of a vector x, and ‖x‖ to denote

the standard Euclidean norm. Minimum distance of a vector x̄ to a closed convex set X is dist(x̄,X) . The

projection of a vector x̄ on a closed convex set X is represented as Π [x̄] = argminx∈X ‖x− x̄‖2 . Probability

distribution of a random variable Z and expectation of a random variable Z are indicated by Pr [Z] and E [Z]

respectively.
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Chapter 2

SMOOTH STOCHASTIC CONVEX MINIMIZATION:
RANDOM PROJECTION ALGORITHM UNDER NOISE

2.1 Introduction

The focus of this chapter is a smooth stochastic convex minimization problem over an arbitrary (possibly

infinite) collection of nonempty, closed and convex sets {Xi, i ∈M } in Rn. Our objective is to solve the

problem by using a two step random projection algorithm.

Stochastic optimization problems have random variables in objective functions. And/or they have random

constraints. Firstly the proposed algorithm takes a gradient projection step reaching an intermittent point.

The calculated gradient is uncertain carrying a stochastic error term. Just before the second step of the algo-

rithm one of the constraint set is revealed or chosen randomly. Then the feasibility violation of intermittent

point is remedied using a subgradient projection onto the revealed/chosen set. The proposed algorithm is in

essence generating a random path through a subcollection of constraint sets. So our algorithm is suitable to

solve stochastic convex optimization problems with random objective and constraints.

The error/noise term accompanying the gradient can originate from computing, measurement, Monte

Carlo sampling error, etc. It is typical for problems for which the gradient is obtained using measurements

of extramal control and experimental design systems. It is also common for mean risk type functions for

problems of adaptation, learning, pattern recognition. Measurement errors are typically random. But the

information about the bound of errors is usually available. In problems of adaptation, online learning,

pattern recognition, it is required to minimize mean risk type functions that usually contain an error term.

The distribution of error is not specified but rather a sample of it is given. Then the exact computation of

gradient is, in principle, impossible. So approximate gradient, which is calculated based on a sample is used

instead. The stochastic error term we have is random, independent and centered with bounded deterministic

variance.

The feasibility set of the problem is specified as the intersection of possibly infinitely many constraint
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sets that are not known in advance. At each algorithm iteration one of them is revealed or chosen. Neither

projection on more than one constraint set at a time is needed nor knowledge of complete collection of

constraint sets is required. The proposed algorithm is particularly advantageous when the projection on

each individual constraint set is easy, on the contrary to the projection on complete collection of constraint

sets at once being computationally prohibitive. Especially robust optimization problems that calls for Semi-

Definite Programming techniques, with infinite number of set possibilities can be solved with finite number

of iterations using this algorithm setup. The algorithm is applicable to online learning problems where the

gradient is not defined exactly and constraint sets are revealed through the horizon. In additon to learning

problems the algorithm is a viable option when projecting on intersection of a vast number or infinite number

of constraint sets is required.

We present the convergence results of algorithm for diminishing square summable, constant and nondi-

minishing nonsummable stepsizes. It is proved that the algorithm is converging to a random point in optimal

set for diminishing square summable stepsize. We have discovered that for constant stepsize error bounds

are proportional to gradient and subgradient norm bounds, the set regularity constant, stepsize as well as the

variance of noise. In addition we have provided per-iteration and asymptotic error bounds on the expected

performance of the algorithm along the averages of the iterates for nondiminishing nonsummable stepsize.

Although we have established almost sure convergence properties of the algorithm for constraint sets de-

fined by the convex inequalities, we have also established that when projection on each set is easy in the

sense that we have a closed form expression for the projection operation i.e. the constraint sets are defined

by convex equalities, the convergence results are also applicable.

In the next section we present the problem formulation and algorithm description as well as the assump-

tions used throughout this chapter. Section 2.3 is devoted to investigate the convergence properties of the

method for differentiable objective function, f with Lipschitz gradients. Implementation details and results

for this algorithm are demonstrated for a linear control system with bounded input and output noises in

Chapter 4.
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2.2 Problem Formulation and Algorithm Description

We consider the following convex constrained minimization problem,

minimize f (x)

subject to x ∈ X , X , X0∩ (∩i∈M Xi) ,

with Xi = {x ∈ Rn | gi (x)≤ 0} ∀i ∈M .

(2.1)

where f is convex and each set Xi ⊆ Rn is nonempty, closed and convex.

The first step of the algorithm that we propose takes a gradient step and reaches an intermittent point

υk. Then we observe a realization of random variable ωk, which is a random sample of ω at time k

drawn from an arbitrary set of ω ∈M . And we calculate next iterate value xk using a subgradient step of

g+ωk
(x) at x = υk. The subgradient step minimizes randomly chosen ”feasibility violation” function g+i (x),

where g+i (x) = max{gi (x) ,0}. Computing both the intermittent point υk and the new iterate xk involve a

projection operation onto the set X0.

The iterate process is given by

υk = ΠX0 [xk−1−αk (∇ f (xk−1)+ εk)]

xk = ΠX0

[
υk−β

g+ωk
(υk)

‖dk‖2 dk

]
for all k ≥ 1,

(2.2)

where dk ∈ ∂g+ωk
(υk) , αk > 0 is a deterministic stepsize, and β is also a deterministic parameter with

0 < β < 2. The initial point x0 ∈ X0 is selected randomly with an arbitrary distribution. The absolute

random noise, εk can be interpreted as the stochastic error associated with the evaluation of the gradient

∇ f (x) at x = xk−1. Stochastic error affecting objective function is common for wide array of applications

such as in robust predictive filters for dynamic systems as in Bertsekas and Rhodes (1971).

We let f ∗ and X∗ denote the optimal value and optimal set of problem (2.1) respectively,

f ∗ = inf
x∈X

f (x), X∗ = {x ∈ X | f (x) = f ∗}. (2.3)

The assumptions that are used throughout the chapter for random projection algorithm under noise for

smooth objective function (2.2) are introduced below.
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Assumption 1. The functions f and every gi are defined and convex over some open set that contains the

set X0. The subgradients sgi are uniformly bounded over the set X0,

‖sgi (x)‖ ≤Cg for all x ∈ X0 and ∀i ∈M ,

where Cg is a positive scalar.

The following assumption relates the distance from a point x to the set X with expected feasibility viola-

tion for inequality constraint g+ωk
(x).

Assumption 2. The global error bound on the distance between an arbitrary point in set X0 and its pro-

jection on a nonempty convex set determined by convex inequality ωk, is measured in terms of a residual

g+ωk
(x) := max{0,gωk (x)} as follows

dist2 (x,X)≤ cE
[(

g+ωk
(x)
)2
]

for all x ∈ X0,

where c≥ 0 is some scalar.

This Assumption 2 is related to metric regularity, specifically a finite collection of sets

Xi = {x ∈ Rn | gi (x)≤ 0} is linearly metrically regular with respect to their representations if there exists a

constant γ > 0 such that dist(x,X)≤ γ max
i∈M

g+i (x) for all x in Rn as it is stated in Facchinei and Pang (2003),

Vol. I, Section 6.8. The Assumption 2 is satisfied when there is a scalar γ such that the following global

error bound holds

dist(x,X)≤ γ max
{

dist(x,X0) , max
i∈M

g+i (x)
}

for all x ∈ Rn.

A global error bound on the distance between an arbitrary point in the n-dimensional real space Rn and its

projection on a nonempty convex set determined by m convex inequalities is measured in terms of a residual

as in Mangasarian (1996) where residual g+ωk
(x) := max{0,gωk (x)} is an indication of violations of the

inequalities.

We let Fk denote the history of the method run up to time k,

Fk = {x0, (εt , 1≤ t ≤ k), (ωt , 1≤ t ≤ k)} for k ≥ 1,

7



with F0= {x0}. Using this notation, we now specify our assumption on the stochastic errors εk.

Assumption 3. The stochastic errors εk are random, independent, centered and have bounded variance

E [εk |Fk-1] = 0, E
[
‖εk‖2 |Fk-1

]
≤ νk for all k ≥ 1,

where the scalars νk are deterministic and the sequence {εk} is independent of {ωk} and x0.

This concludes the assumptions further used in the text for the proposed algorithm for the optimization

problem (2.1) with convex inequality constraint sets.

Next we will introduce a few well-known lemmas for Euclidean projection operation.

Lemma 1. The non-expansive property of Euclidean projection operation on a closed convex set Y ⊆Rn is

given as

‖ΠY [x]− z‖ ≤ ‖x− z‖ for all z ∈ Y, and x ∈ Rn. (2.4)

The proof of this result is presented in the book by Facchinei and Pang (2003) (Vol. I, page 77). Another

variation of the non-expansive property of Euclidean projection operation is presented in the book by Polyak

(1987) (page 121).

Lemma 2. For a closed convex set Y ⊆ Rn

‖ΠY [x]−ΠY [z]‖ ≤ ‖x− z‖ for any x,z ∈ Rn. (2.5)

The strictly non-expansive property of Euclidean projection operation is as follows.

Lemma 3. For a nonempty closed convex set Y ⊆ Rn

‖ΠY [x]− z‖2 ≤ ‖x− z‖2−‖x−ΠY [x]‖2 for all z ∈ Y, x ∈ Rn. (2.6)

The proof of this result can be found in Facchinei and Pang (2003) (Vol. II, 12.1.13 Lemma, page 1120).

In order to investigate the random characteristics of sequences, the following supermartingale conver-

gence result due to Robbins and Siegmund (1971) (see also Polyak (1987), Lemma 11, page 50) is used.
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Theorem 1. Let vk, uk, ak, bk be sequences of nonnegative random variables that may be dependent and let

E [vk+1 |Fk]≤ (1+ak)vk−uk +bk a.s. for all k ≥ 0,
∞

∑
k=0

ak < ∞ a.s. ,
∞

∑
k=0

bk < ∞ a.s.,

where Fk denotes the collection v0, ...,vk, u0, ...,uk, a0, ...,ak, b0, ...,bk. Then

limvk→ v a.s. ,
∞

∑
k=0

uk < ∞ a.s.,

where v≥ 0 is some random variable.

The next theorem is Danskin’s Theorem from Bertsekas et al. (2003) (Proposition 4.5.1, page 245), which

relates the subdifferential set to convex hull of a “max” function.

Theorem 2. If φ (x,z) is differentiable with respect to x for all the points of the maximizing set z∈ Z0, where

Z0 (x) =
{

z̄ : φ (x, z̄) = max
z∈Z

φ (x,z)
}
,

then the subdifferential of f (x) is given by

∂ f (x) = conv{∇xφ (x,z) : z ∈ Z0 (x)} .

Consequently the subdifferential of feasibility violation function is

∂g+ (x) = {α∂g(x) | α ∈ [0,1]} .

Hence the direction to decrease the feasibility violation at kth intermittent point υk is chosen as dk ∈ ∂g+ (υk)

where convex hull containing

∂g+ (υk) =


∂gi (υk) if g(υk)> 0,

α∂gi (υk) | α ∈ [0,1] if g(υk)≤ 0.
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2.2.1 Algorithm Modification when Projection on Individual Sets, Xi are available in
closed-form

Constrained minimization problem that we aim to solve can also be modified to cover constraint functions

having convex level sets, when the projection on each set Xi has a closed form expression for the projection

operation. Thus the targeted minimization problem takes the form

minimize f (x)

subject to x ∈ X , X , ∩i∈M Xi,

where each set Xi ⊆ Rn is nonempty, closed and convex, while the function f is defined and convex over

an open set that contains the set ∪i∈M Xi. Degree of infeasibility indicator defined previously for algorithm

(2.2), g+i (x) = max{d (x,Xi)} , takes nonnegative values. Based on definition for a closed convex set, C ⊂

Rn, d (x) = min{‖y− x‖ | y ∈C}= ‖ΠC (x)− x‖, 〈x−ΠC (x) ,y−ΠC (x)〉 ≤ 0 ∀y ∈C and subdifferential

of distance function to the set C evaluated at x = x0 is

∂d
(
x0)={ x0−ΠC

(
x0
)

‖x0−ΠC (x0)‖

}
if x0 6∈C,

so we have

dk ∈ ∂g+ωk
(υk) =

 υk−ΠXωk
[υk]∥∥∥υk−ΠXωk
[υk]
∥∥∥
 if υk 6∈ Xωk .

In case of υk 6∈ Xωk and β = 1 the algorithm takes the form

xk = [υk]−β

∥∥∥υk−ΠXωk
[υk]
∥∥∥
[
υk−ΠXωk

[υk]
]

∥∥∥υk−ΠXωk
[υk]
∥∥∥[

υk−ΠXωk
[υk]
]T [

υk−ΠXωk
[υk]
]

∥∥∥υk−ΠXωk
[υk]
∥∥∥2

= ΠXωk
[υk] .

Therefore the modified algorithm is

xk = ΠXωk
[xk−1−αk (5 f (xk−1)+ εk)] for all k ≥ 1,
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where

Xi = {x ∈ Rn | gi (x) = d (x,Xi) = inf{‖x− x0‖ | x0 ∈ Xi} ≤ 0} for any i ∈M .

2.3 Convergence Results for Differentiable Objective Function

In this section, we show convergence behavior of method (2.2) for differentiable objective function f with

various stepsizes. For upcoming convergence results, we assume f has Lipschitz continuous gradients with

constant L over the set X0, i.e.,

‖∇ f (x)−∇ f (y)‖ ≤ L ||x− y|| f or all x,y ∈ X0. (2.7)

Throughout this section we assume that Assumptions 1-3 hold.

2.3.1 Preliminary Results

Firstly we are going to establish preliminary results to be used in convergence analysis of method (2.2). The

first result relates the distance between an iterate point and any point in set X .

Lemma 4. Let X be a closed convex set and y be defined as follows

y = ΠX0

[
υ−β

g+ (υ)

‖d‖2 d

]
,

where d ∈ ∂g+ (υ) and υ = ΠX0 [x−α (∇ f (x)+ ε)]. Then, we have

‖y− x̄‖2 ≤ ‖x− x̄‖2 +2α ( f (x̄)− f (x))+2αε
T (x̄− x)−‖x−υ‖2 +2α∇ f (x)T (x−υ)

+2αε
T (x−υ)+

(
β

2−2β
) g+ (υ)

‖d‖2

2

for all x̄ ∈ X .

Proof. We use strictly non-expansive property of the projection operation (2.6), in order to establish the

distance between y = ΠX0

[
υ−β

g+ (υ)

‖d‖2 d

]
and a point x̄ ∈ X . Then we get

∥∥∥∥∥ΠX0

[
υ−β

g+ (υ)

‖d‖2 d

]
− x̄

∥∥∥∥∥
2

≤

∥∥∥∥∥
[

υ−β
g+ (υ)

‖d‖2 d

]
− x̄

∥∥∥∥∥
2

−

∥∥∥∥∥
[

υ−β
g+ (υ)

‖d‖2 d

]
−ΠX0

[
υ−β

g+ (υ)

‖d‖2 d

]∥∥∥∥∥
2

(2.8)
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for all x̄ ∈ X , where υ = ΠX0 [x−α (∇ f (x)+ ε)].

By using subgradient property and the subdifferential of feasibility violation function g+ (υ) being able

to be presented as a convex hull, the relation (x̄−υ)T d ≤ g+ (x̄)− g+ (υ) holds. Therefore the first right

hand side term of the inequality above is

∥∥∥∥∥(υ− x̄)−β
g+ (υ)

‖d‖2 d

∥∥∥∥∥
2

≤ ‖υ− x̄‖2 +2β
(
g+ (x̄)−g+ (υ)

) g+ (υ)

‖d‖2 +β
2 g+ (υ)

‖d‖2

2

.

Then we use strict non-expansive property of the projection operation (2.6) to estimate the term ‖υ− x̄‖2

above

‖υ− x̄‖2 = ‖ΠX0 [ϑ ]− x̄‖2 ≤ ‖ϑ − x̄‖2−‖ϑ −ΠX0 [ϑ ]‖2 for all x̄ ∈ X ,

where ϑ = x−α (∇ f (x)+ ε) .

Thus the estimated bound for inequality (2.8) is

‖y− x̄‖2 ≤ ‖ϑ − x̄‖2−‖ϑ −ΠX0 [ϑ ]‖2 +2β
(
g+ (x̄)−g+ (υ)

) g+ (υ)

‖d‖2 +β
2 g+ (υ)

‖d‖2

2

−

∥∥∥∥∥
[

υ−β
g+ (υ)

‖d‖2 d

]
−ΠX0

[
υ−β

g+ (υ)

‖d‖2 d

]∥∥∥∥∥
2

for all x̄ ∈ X .

Although the last term is tightening the bound on the estimation, it is going to be dropped from this

point forward. For a feasible point x̄ ∈ X the feasibility violation g+ (x̄) vanishes. Therefore the preceding

inequality above yields

‖y− x̄‖2 ≤ ‖x−α (∇ f (x)+ ε)− x̄‖2−‖x−α (∇ f (x)+ ε)−υ‖2 +
(
β

2−2β
) g+ (υ)

‖d‖2

2

, (2.9)

where υ = ΠX0 [x−α (∇ f (x)+ ε)].

The terms ‖x−α (∇ f (x)+ ε)− x̄‖2 and ‖x−α (∇ f (x)+ ε)−υ‖2 can be bounded using convexity of f

as follows:

‖x−α (∇ f (x)+ ε)− x̄‖2 ≤ ‖x− x̄‖2 +2α ( f (x̄)− f (x))+2αε
T (x̄− x)+α

2 ‖∇ f (x)+ ε‖2 , (2.10)

‖x−α (∇ f (x)+ ε)−υ‖2 = ‖x−υ‖2 +2α∇ f (x)T (υ− x)+2αε
T (υ− x)+α

2 ‖∇ f (x)+ ε‖2 . (2.11)
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We plug-in the equalities (2.10) and (2.11) into (2.9) and we get

‖y− x̄‖2 ≤ ‖x− x̄‖2 +2α ( f (x̄)− f (x))+2αε
T (x̄− x)−‖x−υ‖2 +2α∇ f (x)T (x−υ)

+2αε
T (x−υ)+

(
β

2−2β
) g+ (υ)

‖d‖2

2

for all x̄ ∈ X .

The term β
g+ (υ)

‖d‖2 in Lemma 4 can be interpreted as Polyak’s stepsize as it is proposed in Polyak (1987)

(chapter 5, page 142) for pure feasibility problems with the minimal value of the function known that is

g+ (υ∗) being zero. Polyak’s stepsize in general form is given by

γk = β
f (xk)− f ∗

‖∂ f (xk)‖2

where β is bounded away from zero and 2, which ensures convergence with the rate of geometric progres-

sion for classical gradient/subgradient method. Even if f ∗ = 0 is not known an estimate of it can be used

and updated at each iteration point.

Possible function with known optimal value of f ∗ = 0 can be a minimization of the function

f (x) =
n

∑
i=1

∣∣(ai,x)−bi
∣∣

for the system of compatible linear equations (ai,x) = bi, i = 1, . . . ,n, x ∈ Rn.

But it is important to note that ratio of progression gets close to linear rate if the problem is ill-posed.

Next lemma provides another auxiliary relation for further use. It is built for the iterate obtained after one

step of the algorithm and two arbitrary points.

Lemma 5. Let the function f be differentiable over the set X0 with Lipschitz continous gradients with con-

stant L. Then, we have almost surely

E
[
‖xk− x̄‖2 |Fk−1

]
≤ Aη ,k ‖xk−1− x̄‖2 +Bη ,k ‖xk−1− zk−1‖2 +2αk ( f (x̄)− f (zk−1))−‖xk−1−υk‖2

+(8+8η)α
2
k ‖∇ f (x̄)‖2 +4α

2
k νk +

(
β 2−2β

)
C2

g
E
[
g+ωk

(υk)
2 |Fk−1

]

for all x̄ ∈ X and k ≥ 1, where Aη ,k = 1+8α2
k L2 (1+η), Bη ,k = αkL+

1
4η

and η > 0 is arbitrary.
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Proof. We start with the result that we had in Lemma 4 for differentiable functions,

‖y− x̄‖2 ≤ ‖x− x̄‖2 +2α ( f (x̄)− f (x))+2αε
T (x̄− x)−‖x−υ‖2 +2α∇ f (x)T (x−υ)

+2αε
T (x−υ)+

(
β

2−2β
) g+ (υ)

‖d‖2

2

for all x̄ ∈ X ,
(2.12)

where υ = ΠX0 [x−α (∇ f (x)+ ε)].

In order to estimate f (x̄)− f (x) we represent the term as shown below

f (x̄)− f (x) = f (x̄)− f (z)+ f (z)− f (x) for all z ∈ X0.

If x̄ is the optimal solution and z = ΠX0 [x] is any feasible solution of the problem then

f (z)≤ f (x)+∇ f (x)T (z− x)+
L
2
‖x− z‖2 = f (x)+(∇ f (x)−∇ f (x̄)+∇ f (x̄))T (z− x)+

L
2
‖x− z‖2 .

Using Cauchy–Schwarz and triangle inequalities we get

f (z)≤ f (x)+‖∇ f (x)−∇ f (x̄)‖‖x− z‖+‖∇ f (x̄)‖‖x− z‖+ L
2
‖x− z‖2 .

Then using Lipschitz condition 2α ( f (x̄)− f (x)) can be estimated as

2α ( f (x̄)− f (x))≤ 2αL‖x− x̄‖‖x− z‖+2α ‖∇ f (x̄)‖‖x− z‖+αL‖x− z‖2 +2α ( f (x̄)− f (z)) . (2.13)

For the first and second terms of inequality (2.13) we use the relation 2|a||b| ≤ β |a|2 + 1
β
|b|2, where

β = 8η and η > 0 is arbitrary, then we get

2αL‖x− x̄‖‖x− z‖ ≤ 8ηα
2L2‖x− x̄‖2 +

1
8η
‖x− z‖2, (2.14)

2α‖∇ f (x̄)‖‖x− z‖ ≤ 8ηα
2‖∇ f (x̄)‖2 +

1
8η
‖x− z‖2. (2.15)
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The term 2α∇ f (x)T (x−υ) of (2.12) can also be estimated as

2α∇ f (x)T (x−υ)≤ 2α ‖∇ f (x)‖‖x−υ‖ ≤ 2α ‖∇ f (x)‖‖ϑ − x‖= 2α
2 ‖∇ f (x)‖‖∇ f (x)+ ε‖

≤ 2α
2 ‖∇ f (x)‖2 +2α

2 ‖∇ f (x)‖‖ε‖ ≤ 3α
2 ‖∇ f (x)‖2 +α

2 ‖ε‖2 ,

(2.16)

where we use 2|a||b| ≤ |a|2 + |b|2 and ϑ = x−α (∇ f (x)+ ε) .

The term ‖∇ f (x)‖2 can be estimated using Lipschitz property and Minkowski inequality

‖ f +g‖p ≤ 2p−1 (‖ f‖p +‖g‖p) for 1≤ p≤ ∞ as follows

‖∇ f (x)‖2 = ‖∇ f (x)−∇ f (x̄)+∇ f (x̄)‖2 ≤ 2L‖x− x̄‖2 +2‖∇ f (x̄)‖2 . (2.17)

The term 2αεT (x−υ) with ϑ = x−α (∇ f (x)+ ε) and υ = ΠX0 [x−α (∇ f (x)+ ε)] of (2.12) can also

be estimated as

2αε
T (x−υ)≤ 2α ‖ε‖‖υ− x‖ ≤ 2α ‖ε‖‖ϑ − x‖= 2α

2 ‖ε‖‖∇ f (x)+ ε‖

≤ 2α
2 ‖ε‖‖∇ f (x)‖+2α

2 ‖ε‖2 ≤ 3α
2 ‖ε‖2 +α

2 ‖∇ f (x)‖2

≤ 3α
2 ‖ε‖2 +2α

2L‖x− x̄‖2 +2α
2 ‖∇ f (x̄)‖2 ,

(2.18)

where we use relation 2|a||b| ≤ |a|2 + |b|2 .

We use above bounds while arranging the terms within (2.12) and we get

‖y− x̄‖2 ≤ Aη‖x− x̄‖2 +Bη‖x− z‖2 +2α ( f (x̄)− f (z))+2αε
T (x̄− x)−‖x−υ‖2

+(8+8η)α
2 ‖∇ f (x̄)‖2 +4α

2 ‖ε‖2 +
(
β

2−2β
) g+ (υ)

‖d‖2

2

for all x̄ ∈ X ,

where Aη = 1+8ηα2L2 +8α2L, Bη = αL+
1

4η
and υ = ΠX0 [x−α (∇ f (x)+ ε)].

We use the definition of the iterate {xk} in (2.2) and the following identifications: y= xk, υ = υk, x= xk−1,

ε = εk, α = αk, z = Πωk [xk−1], g+ (υ) = g+ωk
(υ) , and dk ∈ ∂g+ωk

(υk) and we get

‖xk− x̄‖2 ≤ Aη ‖xk−1− x̄‖2 +Bη ‖xk−1− zk−1‖2 +2αk ( f (x̄)− f (zk−1))+2αkε
T
k (x̄− xk−1)−‖xk−1−υk‖2

+(8+8η)α
2
k ‖∇ f (x̄)‖2 +4α

2
k ‖εk‖2 +

(
β

2−2β
) g+ωk

(υk)
2

C2
g

for all x̄ ∈ X and k ≥ 1.
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where we also use ‖dk‖2 ≤C2
g .

The constraint sample path until time k− 1 was revealed, therefore taking expectation conditioned on

Fk−1 requires only to find expectation of terms that belong to time k, since xk−1 and zk−1 are fully deter-

mined. Hence we have almost surely

E
[
‖xk− x̄‖2 |Fk−1

]
≤ Aη ‖xk−1− x̄‖2 +Bη ‖xk−1− zk−1‖2 +2αk ( f (x̄)− f (zk−1))

+2αkE [εk |Fk−1]
T (x̄− xk−1)−‖xk−1−υk‖2 +(8+8η)α

2
k ‖∇ f (x̄)‖2

+4α
2
kE
[
‖εk‖2 |Fk−1

]
+

(
β 2−2β

)
C2

g
E
[
g+ωk

(υk)
2 |Fk−1

]
.

For the terms that are related to noise we take into account Assumption 3 and the above relation reduces

into following inequality,

E
[
‖xk− x̄‖2 |Fk−1

]
≤ Aη ‖xk−1− x̄‖2 +Bη ‖xk−1− zk−1‖2 +2αk ( f (x̄)− f (zk−1))−‖xk−1−υk‖2

+(8+8η)α
2
k ‖∇ f (x̄)‖2 +4α

2
k νk +

(
β 2−2β

)
C2

g
E
[
g+ωk

(υk)
2 |Fk−1

]
.

for all x̄ ∈ X and k ≥ 1, where Aη ,k = 1+8α2
k L2 (1+η), Bη ,k = αkL+

1
4η

and η > 0 is arbitrary.

The following proposition is an auxiliary result to be used for the convergence analysis of algorithm with

various types of stepsizes and differentiable objective function.

Proposition 3. Let the function f have Lipschitz gradients over the set X0. Assume that problem (2.1) has

a nonempty optimal set X∗. Then, the iterates {xk} and any point x∗ in the optimal set X∗ generated by

method (2.2) satisfy the following relation almost surely

E
[
‖xk− x∗‖2 |Fk−1

]
≤
(
1+α

2
k L2Aτ,η

)
‖xk−1− x∗‖2 +

(
β 2−2β

)
2cC2

g
‖xk−1− zk−1‖2 +2αk ( f (x∗)− f (zk−1))

−‖xk−1−υk‖2 +Aτ,ηα
2
k ‖∇ f (x∗)‖2 +Dτα

2
k νk for all k ≥ k̃,

where αk̃L≤ 1
4η

, zk−1 = ΠX [xk−1], Aη ,τ = 8+8η−8
(
β 2−2β

)
, Dτ = 4−4

(
β 2−2β

)
, τ = 4 and

η =
2cC2

g

(2β −β 2)
.
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Proof. The relation that is proposed in Lemma 5 constitutes the origin of this propositon,

E
[
‖xk− x̄‖2 |Fk−1

]
≤ Aη ,k ‖xk−1− x̄‖2 +Bη ,k ‖xk−1− zk−1‖2 +2αk ( f (x̄)− f (zk−1))−‖xk−1−υk‖2

+(8+8η)α
2
k ‖∇ f (x̄)‖2 +4α

2
k νk +

(
β 2−2β

)
C2

g
E
[
g+ωk

(υk)
2 |Fk−1

]
(2.19)

for all x̄ ∈ X and k ≥ 1, where Aη ,k = 1+8α2
k L2 (1+η), Bη ,k = αkL+

1
4η

and η > 0 is arbitrary.

We are going to start by relating the residual of intermittent point of kth iterate to the residual of (k−1)th

iterate as follows

(
g+ωk

(υk)
)2

=
((

g+ωk
(υk)−g+ωk

(xk−1)
)
+g+ωk

(xk−1)
)2

≥ 2
(
g+ωk

(υk)−g+ωk
(xk−1)

)
g+ωk

(xk−1)+
(
g+ωk

(xk−1)
)2

≥−2
∣∣g+ωk

(υk)−g+ωk
(xk−1)

∣∣g+ωk
(xk−1)+

(
g+ωk

(xk−1)
)2
.

Based on the subgradient boundedness assumption, and due to the fact that xk−1,υk ∈ X0 we have

2
∣∣g+ωk

(υk)−g+ωk
(xk−1)

∣∣g+ωk
(xk−1)≤ 2Cg ‖υk− xk−1‖g+ωk

(xk−1)≤ 2Cgαk ‖∇ f (xk−1)+ εk‖g+ωk
(xk−1)

≤ τC2
gα

2
k ‖∇ f (xk−1)+ εk‖2 +

1
τ

(
g+ωk

(xk−1)
)2
,

where we use 2 |a| |b| ≤ τ|a|2 + 1
τ
|b|2 and τ ≥ 1 is arbitrary.

By using triangle inequality ‖a+b‖2 ≤ (‖a‖+‖b‖)2 the relation above can be represented as follows:

2
∣∣g+ωk

(υk)−g+ωk
(xk−1)

∣∣g+ωk
(xk−1)≤ τC2

gα
2
k ‖(∇ f (xk−1)+ εk)‖2 +

1
τ

(
g+ωk

(xk−1)
)2

≤ τC2
gα

2
k ‖∇ f (xk−1)‖2 + τC2

gα
2
k ‖εk‖2 +

1
τ

(
g+ωk

(xk−1)
)2
.

(2.20)

By using the relation ‖a±b‖2 ≤ 2‖a‖2 +2‖b‖2 and Lipschitz gradient property we get

‖∇ f (xk−1)‖2 ≤ 2‖∇ f (xk−1)−∇ f (x̄)‖2 +2‖∇ f (x̄)‖2 2L2 ‖xk−1− x̄‖2 +2‖∇ f (x̄)‖2 . (2.21)
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By combining the preceding inequalities (2.20) and (2.21), we have

(
g+ωk

(υk)
)2 ≥−2

∣∣g+ωk
(υk)−g+ωk

(xk−1)
∣∣g+ωk

(xk−1)+
(
g+ωk

(xk−1)
)2
.

≥−2τC2
gα

2
k

(
L2 ‖xk−1− x̄‖2 +‖∇ f (x̄)‖2

)
− τC2

gα
2
k ‖εk‖2 +

τ−1
τ

(
g+ωk

(xk−1)
)2
.

Due to β having values between 0 < β < 2, the deterministic coefficient β 2− 2β has a negative value

and we have almost surely

(
β 2−2β

)
C2

g
E
[
g+ωk

(υk)
2 |Fk−1

]
≤−2τα

2
k
(
β

2−2β
)(

L2 ‖xk−1− x̄‖2 +‖∇ f (x̄)‖2
)
− τα

2
k νk
(
β

2−2β
)

+
τ−1

τ

(
β 2−2β

)
C2

g
E
[(

g+ωk
(xk−1)

)2 |Fk−1

]
.

Therefore we can use the relation above within inequality (2.19) to obtain almost surely

E
[
‖xk− x̄‖2 |Fk−1

]
≤
(
1+α

2
k L2 (8+8η−2τ

(
β

2−2β
)))
‖xk−1− x̄‖2 +

(
αkL+

1
4η

)
‖xk−1− zk−1‖2

+2αk ( f (x̄)− f (zk−1))−‖xk−1−υk‖2 +
(
8+8η−2τ

(
β

2−2β
))

α
2
k ‖∇ f (x̄)‖2

+
(
4− τ

(
β

2−2β
))

α
2
k νk +

(
β 2−2β

)
C2

g

τ−1
τ

E
[(

g+ωk
(xk−1)

)2 |Fk−1

]
for all x̄ ∈ X and k ≥ 1.

Since zk−1 = ΠX [xk−1], it follows that ‖xk−1− zk−1‖= dist (xk−1,X). Based on Assumption 2

dist 2 (xk−1,X)≤ cE
[(

g+ωk
(xk−1)

)2
]
, so we obtain for all x̄ ∈ X and k ≥ 1,

E
[
‖xk− x̄‖2 |Fk−1

]
≤
(
1+α

2
k L2Aη ,τ

)
‖xk−1− x̄‖2 +Bη ,τdist2 (xk−1,X)+2αk ( f (x̄)− f (zk−1))

−‖xk−1−υk‖2 +Aη ,τα
2
k ‖∇ f (x̄)‖2 +Dτα

2
k νk,

where Aη ,τ = 8+8η−2τ
(
β 2−2β

)
, Bη ,τ = αkL+

1
4η

+

(
β 2−2β

)
cC2

g

τ−1
τ

, and Dτ = 4− τ
(
β 2−2β

)
.

Since αk→ 0, by choosing k large enough so that αkL≤ 1
4η

, we have αkL+
1

4η
≤ 1

2η
. Therefore

αkL+
1

4η
+

(
β 2−2β

)
cC2

g

τ−1
τ
≤ 1

2η
+

(
β 2−2β

)
cC2

g

τ−1
τ

.
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Since τ ≥ 1 and η > 0 are arbitrary, choosing τ = 4 and η =−2

((
β 2−2β

)
cC2

g

)−1

yields

1
2η

+

(
β 2−2β

)
cC2

g

τ−1
τ

=
1
2

(
β 2−2β

)
cC2

g
.

Therefore, we have almost surely for all x̄ ∈ X and k ≥ k̃, where k̃ is large enough,

E
[
‖xk− x̄‖2 |Fk−1

]
≤
(
1+α

2
k L2Aτ,η

)
‖xk−1− x̄‖2 +

(
β 2−2β

)
2cC2

g
dist 2(xk−1,X)+2αk ( f (x̄)− f (zk−1))

−‖xk−1−υk‖2 +Aτ,ηα
2
k ‖∇ f (x̄)‖2 +Dτα

2
k νk,

where τ = 4, and η =−2

((
β 2−2β

)
cC2

g

)−1

.

Then once we let x̄ = x∗ with x∗ ∈ X∗ and dist 2(xk−1,X) = ‖xk−1− zk−1‖2 we obtain almost surely

E
[
‖xk− x∗‖2 |Fk−1

]
≤
(
1+α

2
k L2Aτ,η

)
‖xk−1− x∗‖2 +

(
β 2−2β

)
2cC2

g
‖xk−1− zk−1‖2 +2αk ( f (x∗)− f (zk−1))

−‖xk−1−υk‖2 +Aτ,ηα
2
k ‖∇ f (x∗)‖2 +Dτα

2
k νk for all k ≥ k̃.

2.3.2 Almost Sure Convergence Results

In this section, we would like to show that the proposed algorithm converges to the solution set almost surely

for not summable but square summable stepsize. The convergence of the method (2.2) for a deterministic

diminishing stepsize αk is established in the next proposition. As it is indicated in the next proposition, the

algorithm has almost sure convergence.

Proposition 4. Let the function f have Lipschitz gradients over the set X0. Let the stepsize be not summable

but square summable such that ∑
∞
k=1 αk = ∞, ∑

∞
k=1 α2

k < ∞ and ∑
∞
k=1 α2

k νk < ∞. Assume that problem (2.1)

has a nonempty optimal set X∗. Then the iterates {xk} generated by method (2.2) converge almost surely to

some random point in the optimal set X∗.

19



Proof. We start with the result of Proposition 3

E
[
‖xk− x∗‖2 |Fk−1

]
≤
(
1+α

2
k L2A1

)
‖xk−1− x∗‖2 +

(
β 2−2β

)
2cC2

g
‖xk−1− zk−1‖2 +2αk ( f (x∗)− f (zk−1))

−‖xk−1−υk‖2 +A1α
2
k ‖∇ f (x∗)‖2 +D1α

2
k νk for all k ≥ k̃,

(2.22)

where A1 = 8+8η−8
(
β 2−2β

)
, D1 = 4−4

(
β 2−2β

)
, τ = 4 and η =−2

cC2
g

(β 2−2β )
.

The problem (2.1) is convex, therefore the gradient mapping ∇ f (x∗) is singleton over the optimal set that

is closed and convex due to Assumption 1, (see Facchinei and Pang (2003), Volume I, Corollary 2.3.7 ).

Additionally, since zk−1 ∈ X , we have f (x∗)− f (zk−1)≤ 0. Under the assumption ∑
∞
k=1 α2

k < ∞, the relation

(2.22) satisfies the conditions of Theorem 13. As a result the sequence {‖xk− x∗‖} is convergent almost

surely for every x∗ ∈ X∗, and

∞

∑
k=1

2αk( f (zk−1)− f (x∗))< ∞,
∞

∑
k=1
‖xk−1− zk−1‖2 < ∞ a.s.

The preceding relations and the condition ∑
∞
k=1 αk = ∞ imply that

liminf
k→∞

( f (zk−1)− f (x∗)) = 0 a.s.,

lim
k→∞

‖xk−1− zk−1‖= 0 a.s.

We have already concluded that {‖xk− x∗‖} is convergent a.s. for every x∗ ∈X∗ . We can further conclude

that {‖zk− x∗‖} is also convergent a.s. for every x∗ ∈ X∗ as well. This inherently implies that the sequence

{zk} is a.s. bounded and has accumulation points. Additionally taking into account the continuity of f the

sequence {zk} has an accumulation point in the set X∗ a.s. Besides {‖zk− x∗‖} converges a.s. for every

x∗ ∈ X∗. Therefore {zk} converges almost surely to a random point in set X∗. In view of relation (2.22) we

reach the conclusion that {xk} converges a.s. to a random point in X∗.

The feasibility step of the method (2.2) includes a stepsize parameter β that was chosen to be constant.

We would like to note that one may use a time-varying parameter βk only if ∑
∞
k=1 βk (2−βk)≤∞. In case of

time-varying parameter βk is introduced then A1,k = 8+
16cC2

g

2βk−β 2
k
+8
(
2βk−β 2

k

)
and D1,k = 4+4(2βk−β 2

k )
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terms are prone pushing the terms ∑
∞
k=0 ak and ∑

∞
k=0 bk to infinity. When we apply the Supermartingale

Convergence Theorem (Theorem 13) to the result of Proposition 3 with time-varying parameter βk , then we

get

E
[
‖xk− x∗‖2 |Fk−1

]
≤
(
1+α

2
k L2A1,k

)
‖xk−1− x∗‖2 +

(
β 2

k −2βk
)

2cC2
g
‖xk−1− zk−1‖2 +2αk ( f (x∗)− f (zk−1))

−‖xk−1−υk‖2 +A1α
2
k ‖∇ f (x∗)‖2 +D1,kα

2
k νk for all k ≥ k̃,

(2.23)

where A1,k = 8 +
16cC2

g

2βk−β 2
k
+ 8
(
2βk−β 2

k

)
and D1,k = 4 + 4(2βk − β 2

k ) τ = 4 and η =
2cC2

g(
2βk−β 2

k

) . If

we impose the requirement of βk being such that ∑
∞
k=1 βk (2−βk) ≤ ∞ in addition to the stepsize be not

summable but square summable such that ∑
∞
k=1 αk = ∞, ∑

∞
k=1 α2

k < ∞ and ∑
∞
k=1 α2

k νk < ∞ we can conclude

that {‖xk− x∗‖} is convergent a.s. for every x∗ ∈ X∗ .
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2.3.3 Convergence Analysis and Error Bound

The error bound of the sequence generated by the method (2.2) for a constant stepsize, ᾱ is established in

this section. We are going to start by constructing an auxiliary Lemma.

Lemma 6. Let the stepsize be such that 0 < αk ≤ ᾱ for some scalar ᾱ > 0 with ᾱL ≤ 1
4η

. Assume that

problem (2.1) has a nonempty optimal set X∗. Let {xk} be the iterate sequence generated by the method

(2.2), and define the weighted averages

x̂t =
1
St

t

∑
k=1

αkxk−1 and ẑt =
1
St

t

∑
k=1

αkzk−1 with St =
t

∑
k=1

αk for any t ≥ 1.

Then the bound is

E [ f (ẑt)]− f ∗+
β (2−β )

4ᾱcC2
g

E
[
‖x̂t − ẑt‖2

]
≤ 1

2St
E
[
dist2 (x0,X∗)

]
+L2

t

∑
k=1

Aα2
k

2St
E
[
‖xk−1− x∗‖2]

− 1
2St

t

∑
k=1

E
[
‖xk−1−υk‖2]+ (2−2

(
β 2−2β

))
St

t

∑
k=1

α
2
k νk

+
1

2St
‖∇ f (x∗)‖2

t

∑
k=1

Aα
2
k .

where A = 8
(
1+η−β 2 +2β

)
, and η =−2

(
β 2−2β

cC2
g

)−1

.

Proof. When we take the total expectation of Proposition 3 with x = x∗ ∈ X∗, we get

E
[
‖xk− x∗‖2

]
≤
(
1+α

2
k L2A

)
E
[
‖xk−1− x∗‖2

]
+

(
β 2−2β

)
2cC2

g
E
[
‖xk−1− zk−1‖2

]
+2αk ( f (x∗)−E [ f (zk−1)])−E

[
‖xk−1−υk‖2

]
+Aα

2
k ‖∇ f (x∗)‖2

+
(
4−4

(
β

2−2β
))

α
2
k νk for all k ≥ 1,

where A = 8
(
1+η +2β −β 2

)
, η =−2

(
β 2−2β

cC2
g

)−1

.

For αk ≤ ᾱ, we transform above inequality into

2αk (E [ f (zk−1)]− f ∗)+
β (2−β )

4ᾱcC2
g

E
[
‖xk−1− zk−1‖2

]
≤
(
1+α

2
k L2A

)
E
[
‖xk−1− x∗‖2]−E

[
‖xk− x∗‖2

]
−E

[
‖xk−1−υk‖2]+ (4−4

(
β

2−2β
))

α
2
k νk +Aα

2
k ‖∇ f (x∗)‖2 .
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As we sum the preceding inequality from k = 1 to k = t we obtain

2
t

∑
k=1

αk (E [ f (zk−1)]− f ∗)+
1

2ᾱ

β (2−β )

cC2
g

t

∑
k=1

αkE
[
‖xk−1− zk−1‖2

]
≤

t

∑
k=1

(
1+α

2
k L2A

)
E
[
‖xk−1− x∗‖2]

−
t

∑
k=1

E
[
‖xk− x∗‖2

]
−

t

∑
k=1

E
[
‖xk−1−υk‖2]+ (4−4

(
β

2−2β
)) t

∑
k=1

α
2
k νk +‖∇ f (x∗)‖2 A

t

∑
k=1

α
2
k .

Some of the terms cancel out and we get

2
t

∑
k=1

αk (E [ f (zk−1)]− f ∗)+
1

2ᾱ

β (2−β )

cC2
g

t

∑
k=1

αkE
[
‖xk−1− zk−1‖2

]
≤ E

[
‖x0− x∗‖2]−E

[
‖xt − x∗‖2

]
+L2A

t

∑
k=1

α
2
kE
[
‖xk−1− x∗‖2]− t

∑
k=1

E
[
‖xk−1−υk‖2]+ (4−4

(
β

2−2β
)) t

∑
k=1

α
2
k νk +‖∇ f (x∗)‖2 A

t

∑
k=1

α
2
k .

The term ‖xk−1− x∗‖ is dist(xk−1,X∗). For t → ∞ the distance between xt and x∗ are small enough that

we can assume ‖xt − x∗‖→ 0.

The term ∑
t
k=1E

[
‖xk−1− x∗‖2

]
is tightening the bound but it is going to be dropped from this point

forward. For St = ∑
t
k=1 αk and dividing the preceding inequality by 2St , we further reach

t

∑
k=1

αk

St
(E [ f (zk−1)]− f ∗)+

β (2−β )

4ᾱcC2
g

t

∑
k=1

αk

St
E
[
‖xk−1− zk−1‖2

]
≤ 1

2St
E
[
dist2 (x0,X∗)

]
+L2

t

∑
k=1

Aα2
k

2St
E
[
‖xk−1− x∗‖2]− 1

2St

t

∑
k=1

E
[
‖xk−1−υk‖2]+ (4−4

(
β 2−2β

))
2St

t

∑
k=1

α
2
k νk

+
1

2St
‖∇ f (x∗)‖2

t

∑
k=1

Aα
2
k .

As it can be observed that the terms
αk

∑
t
k=1 αk

, k = 1, . . . , t are convex weights while f and squared norm

are convex functions. If we use average values of ẑ =
1
St

∑
t
k=1 αkzk−1 and x̂t =

1
St

∑
t
k=1 αkxk−1 then for any

t ≥ 1,

E [ f (ẑt)]− f ∗+
β (2−β )

4ᾱcC2
g

E
[
‖x̂t − ẑt‖2

]
≤ 1

2St
E
[
dist2 (x0,X∗)

]
+AL2

t

∑
k=1

α2
k

2St
E
[
‖xk−1− x∗‖2]

− 1
2St

t

∑
k=1

E
[
‖xk−1−υk‖2]+ (2−2

(
β 2−2β

))
St

t

∑
k=1

α
2
k νk +

1
2St
‖∇ f (x∗)‖2 1

2St

t

∑
k=1

Aα
2
k .
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2.3.3.1 Constant Stepsize

The next proposition is going to provide error bounds on the performance of the algorithm (2.2) for a

constant stepsize using Lemma 6.

Proposition 5. Assume that problem (2.1) has a nonempty optimal set X∗. Let {xk} be the iterate sequence

generated by the method (2.2). Also let x̂t =
1
St

∑
t
k=1 αkxk−1 with St = ∑

t
k=1 αk for t ≥ 1. If the stepsize is

constant, i.e., αk = ᾱ with ᾱL ≤ 1
4η

, and the stochastic errors εk have constant variance, i.e., νk = ν̄ for

all k, then we have the following error bound for all t ≥ 1,where ẑt =
1
St

∑
t
k=1 αkzk−1 with zk−1 = ΠX [xk−1] .

0≤ E
[
‖x̂t − ẑt‖2

]
≤

2cC2
g

tβ (2−β )
E
[
dist2 (x0,X∗)

]
+

8tᾱ2ν̄cC2
g

β (2−β )
(1+β (2−β ))+

16ᾱ2cC2
g ‖∇ f (x∗)‖2

β (2−β )

+
32ᾱ2c2C4

g ‖∇ f (x∗)‖2

(β (2−β ))2 +16ᾱ
2cC2

g ‖∇ f (x∗)‖2

and

|E [ f (x̂t)]− f ∗| ≤ ‖∇ f (x∗)‖
√

E
[
‖x̂t − ẑt‖2

]
+

1
2tᾱ

E
[
dist2 (x0,X∗)

]
+2ᾱν̄ (1+β (2−β ))

+4ᾱ ‖∇ f (x∗)‖2 D

where D = 1+β (2−β )+
2cC2

g

β (2−β )
.

Proof. Let αk = ᾱ and νk = ν̄ in Lemma 6 for all t ≥ 1, St = tᾱ and using Assumption 1, we get

E [ f (ẑt)]− f ∗+
β (2−β )

4ᾱcC2
g

E
[
‖x̂t − ẑt‖2

]
≤ 1

2tᾱ
E
[
dist2 (x0,X∗)

]
+

AL2ᾱ

2

t

∑
k=1

E
[
‖xk−1− x∗‖2]

− 1
2tᾱ

t

∑
k=1

E
[
‖xk−1−υk‖2]+ (2−2

(
β

2−2β
))

ᾱν̄

+
Aᾱ

2
‖∇ f (x∗)‖2 ,

where A = 8
(
1+η−β 2 +2β

)
, η =−2

(
β 2−2β

cC2
g

)−1

, ẑt = ∑
t
k=1 zk−1 and zk−1 = ΠX [xk−1].

The terms
AL2ᾱ

2
∑

t
k=1E

[
‖xk−1− x∗‖2

]
and − 1

2tᾱ
∑

t
k=1E

[
‖xk−1−υk‖2

]
cancel each other as number of

iterations increases. Since set X is convex and ẑt is convex combination of zk−1 ∈ X , it follows that ẑt ∈ X .
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Therefore E [ f (ẑt)]− f ∗ ≥ 0 which leads to

0≤ E [ f (ẑt)]− f ∗ ≤ 1
2tᾱ

E
[
dist2 (x0,X∗)

]
+2ᾱν̄ (1+β (2−β ))

+4ᾱ ‖∇ f (x∗)‖2

(
1+β (2−β )+

2cC2
g

β (2−β )

)
.

(2.24)

Also
β (2−β )

4ᾱcC2
g

E
[∥∥x̂t −ˆ̂zt

∥∥2
]
≥ 0 therefore

0≤ E
[
‖x̂t − ẑt‖2

]
≤

2cC2
g

tβ (2−β )
E
[
dist2 (x0,X∗)

]
+

8ᾱ2ν̄cC2
g

β (2−β )
(1+β (2−β ))+

16ᾱ2cC2
g ‖∇ f (x∗)‖2

β (2−β )

+
32ᾱ2c2C4

g ‖∇ f (x∗)‖2

(β (2−β ))2 +16ᾱ
2cC2

g ‖∇ f (x∗)‖2 .

Now we are going to prove the second part of proposition |E [ f (x̂t)]− f ∗| . We can express |E [ f (x̂t)]− f ∗|

using Jensen’s inequality as follows

|E [ f (x̂t)]− f ∗| ≤ |E [ f (x̂t)]−E [ f (ẑt)]|+E [ f (ẑt)]− f ∗ ≤ |E [ f (x̂t)− f (ẑt)]|+E [ f (ẑt)]− f ∗.

Since x̂t , ẑt ∈ X0 for all t ≥ 1, we have

|E [ f (x̂t)− f (ẑt)]| ≤ ‖∇ f (x∗)‖E [‖x̂t − ẑt‖] for all t ≥ 0.

When we combine the last two inequalities, they yield

|E [ f (x̂t)]− f ∗| ≤ ‖∇ f (x∗)‖E [‖x̂t − ẑt‖]+E [ f (ẑt)]− f ∗ for all t ≥ 0. (2.25)

Once more we use Jensen’s Inequality and we get

√
(E [‖x̂t − ẑt‖])2 ≤

√
E
[
‖x̂t − ẑt‖2

]
.

Then we use the preceding relation within inequality (2.25) and we obtain

|E [ f (x̂t)]− f ∗| ≤ ‖∇ f (x∗)‖
√
E
[
‖x̂t − ẑt‖2

]
+E [ f (ẑt)]− f ∗ for all t ≥ 0. (2.26)
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When we combine (2.24) and (2.26) we get

|E [ f (x̂t)]− f ∗| ≤ ‖∇ f (x∗)‖
√
E
[
‖x̂t − ẑt‖2

]
+

1
2tᾱ

E
[
dist2 (x0,X∗)

]
+2ᾱν̄ (1+β (2−β ))+4ᾱ ‖∇ f (x∗)‖2 D

(2.27)

where D = 1+β (2−β )+
2cC2

g

β (2−β )
.

For a fixed stepsize it can be seen that the expected proximity of average iterate to the solution set de-

pends on regularity constant of Assumption 2. Also the initial point affects the bound on the function values

of expected average iterate and optimal set, as the number of iterations increases its contribution dimin-

ishes.The relation between expected distance between weighted average of iterates, x̂t =
1
St

∑
t
k=1 αkxk−1

and set X is equal or less than projection of weighted averages of ẑt =
1
St

∑
t
k=1 αkzk−1, i.e. E

[
dist2 (x̂t ,X)

]
≤

E
[
‖x̂t − ẑt‖2

]
. Thus, Proposition 5 provides error bounds for expected distance between average of iter-

ates and set X with a multiple of constant step size since as number of iterations, t → ∞ than the term
2cC2

g

tβ (2−β )
E
[
dist2 (x0,X∗)

]
vanishes.
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2.3.3.2 Nondiminishing Nonsummable Stepsize

Proposition 6. Assume that problem (2.1) has a nonempty optimal set X∗. Let {xk} be the iterate sequence

generated by the method (2.2). Also define the weighted averages x̂t =
1
St

∑
t
k=1 αkxk−1, ẑt =

1
St

∑
t
k=1 αkzk−1

with St = ∑
t
k=1 αk for t ≥ 1. If the stepsize satisfies lim

k→∞

αk = α̂ ≥ 0 and ∑
∞
k=1 αk = ∞, then we have the

following asymptotic error bounds;

limsup
t→∞

E
[
‖x̂t − ẑt‖2

]
≤

8Bᾱν̄α̂cC2
g

β (2−β )
+

16ᾱα̂cD‖∇ f (x∗)‖2C2
g

β (2−β )

limsup
t→∞

|E [ f (x̂t)]− f ∗| ≤ ‖∇ f (x∗)‖Cg

√
8Bᾱν̄α̂cC2

g

β (2−β )
+

16ᾱα̂cD‖∇ f (x∗)‖2C2
g

β (2−β )
+2Bν̄α̂ +2D‖∇ f (x∗)‖2

α̂

where ᾱ = maxk αk and ν̄ ≥maxk νk.

Proof. E [ f (ẑt)]− f ∗ ≥ 0 for all t ≥ 1 using Lemma (6)

0≤ E [ f (ẑt)]− f ∗ ≤ 1
2St

E
[
dist2 (x0,X∗)

]
+

2B
St

t

∑
k=1

α
2
k νk +

4D‖∇ f (x∗)‖2

St

t

∑
k=1

α
2
k ,

β (2−β )

4ᾱcC2
g

E
[
‖x̂t − ẑt‖2

]
≤ 1

2St
E
[
dist2 (x0,X∗)

]
+

2B
St

t

∑
k=1

α
2
k νk +

4D‖∇ f (x∗)‖2

St

t

∑
k=1

α
2
k ,

where B = 1+β (2−β ) , D = 1+β (2−β )+
2cC2

g

β (2−β )
, ᾱ = maxk αk and ν̄ ≥maxk νk.

Since limt→∞ St = ∞, limt→∞

∑
t
k=1 α2

k
St

= α̂, and limsupt→∞

∑
t
k=1 νkα2

k

∑
t
k=1 αk

≤ ν̄α̂ by letting t→∞ and noting

that z̄t ∈ X , we attain

0≤ limsup
t→∞

E [ f (ẑt)]− f ∗ ≤ 2Bν̄α̂ +4D‖∇ f (x∗)‖2
α̂

limsup
t→∞

E
[
‖x̂t − ẑt‖2

]
≤

8Bᾱν̄α̂cC2
g

β (2−β )
+

16ᾱα̂cD‖∇ f (x∗)‖2C2
g

β (2−β )

As it was shown in Proposition 5 we can express |E [ f (x̂t)]− f ∗| as in (2.26)

|E [ f (x̂t)]− f ∗| ≤ ‖∇ f (x∗)‖
√

E
[
‖x̂t − ẑt‖2

]
+E [ f (ẑt)]− f ∗ for all t ≥ 1.
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For t→ ∞ above inequality can be expressed as

limsup
t→∞

|E [ f (x̂t)]− f ∗| ≤ ‖∇ f (x∗)‖ limsup
t→∞

√
E
[
‖x̂t − ẑt‖2

]
+ limsup

t→∞

E [ f (ẑt)]− f ∗.

We combine two inequalities above, using (2.27) and we get

limsup
t→∞

|E [ f (x̂t)]− f ∗| ≤ ‖∇ f (x∗)‖ lim sup
t→∞

√
E
[
‖x̂t − ẑt‖2

]
+ lim sup

t→∞

E [ f (ẑt)]− f ∗

≤ ‖∇ f (x∗)‖Cg

√
8Bᾱν̄α̂cC2

g

β (2−β )
+

16ᾱα̂cD‖∇ f (x∗)‖2C2
g

β (2−β )
+2Bν̄α̂ +4D‖∇ f (x∗)‖2

α̂

Expected distance between weighted average of iterates, x̂t =
1
St

∑
t
k=1 αkxk−1 and set X is equal or less

than projection of weighted averages of ẑt =
1
St

∑
t
k=1 αkzk−1, i.e. E

[
dist2 (x̂t ,X)

]
≤ E

[
‖x̂t − ẑt‖2

]
. Thus,

Proposition 5 provides error bounds for expected distance between average of iterates and set X with a

multiple of constant step size since as number of iterations, t→∞ than the term
2cC2

g

tβ (2−β )
E
[
dist2 (x0,X∗)

]
vanishes. That is an indication of irrelevance of initial point. Accordingly the asymptotic difference between

the expected function value at averaged iterates, and the optimal value is also multiple of the stepsize.

Another key point to notice is that for the case of constant stepsize and the stochastic errors εk with constant

variance, as t → ∞ contribution of error term for the bound asymptotic difference between the expected

function value at averaged iterates, and the optimal value is insignificant.

When the set X0 is bounded in Proposition 6 , by substituting D value and using E
[
dist2 (x̂t ,X)

]
≤

E
[
‖x̂t − ẑt‖2

]
we obtain

E
[
dist2 (x̂t ,X)

]
≤

2cC2
gD2

tβ (2−β )
+

8ᾱ2ν̄cC2
g

β (2−β )
+8cᾱ

2 ‖∇ f (x∗)‖2C2
g

(
1+

1
β (2−β )

+
cC2

g

β 2 (2−β )2

)

for all t ≥ 1, where D = maxx,y∈X0 ‖x− y‖. When β = 1 the error bound has its optimal value in terms of β

that yields

E
[
dist2 (x̂t ,X)

]
≤

2cC2
gD2

t
+8ᾱ

2
ν̄cC2

g +8cᾱ
2 ‖∇ f (x∗)‖2C2

g
(
2+ cC2

g
)
.
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Therefore, for all t ≥ 1,

E [dist(x̂t ,X)]≤
√

2cCgD√
t

+2ᾱCg

(√
2ν̄c+‖∇ f (x∗)‖

√
2c
(
2+ cC2

g
))

.

As number of iterations increases the first term diminishes and asymptotic error bound becomes a multiple

of stepsize. When β = 1 asymptotic difference between the expected function value at averaged iterates,

and the optimal value is also multiple of the stepsize value ᾱ.

|E [ f (x̂t)]− f ∗| ≤
√

2c‖∇ f (x∗)‖CgD√
t

+
D2

2tᾱ
+

2ᾱν̄

t

+2ᾱ ‖∇ f (x∗)‖Cg

(√
2ν̄c+‖∇ f (x∗)‖

√
2c
(
2+ cC2

g
))

+ ᾱ ‖∇ f (x∗)‖2

(
2+

2cC2
g

β (2−β )
+2β (2−β )

)
.
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Chapter 3

NONSMOOTH STOCHASTIC CONVEX MINIMIZATION:
RANDOM PROJECTION ALGORITHM UNDER NOISE

3.1 Introduction

The focus of this chapter is a nonsmooth stochastic convex minimization problem over an arbitrary (possibly

infinite) collection of nonempty, closed and convex sets {Xi, i ∈M } in Rn. Our objective is to solve the

problem by using a two step random subgradient projection algorithm. The stochastic subgradient methods

are used to handle the problems as defined above and a variety of robust design or decision problems

with uncertain data as in Shor (1998), Polyak (1987). The algorithm we propose is an alternative solution

technique for these type of problems.

Stochastic subgradient method is essentialy the ordinary subgradient method with noisy subgradients and

constraints. The noise can be due to computation and/or measurement error and error that arises in Monte

Carlo evaluation of a function that is defined as an expected value. But the ordinary stochastic subgradient

method is prone to the problems of slow convergence. And it requires keeping track of best point among

stochastic processes of sequences {xk}, and the associated function value f k
best since the ordinary stochastic

subgradient method is not monotonically decreasing.

Our algorithm firstly takes a subgradient projection step reaching an intermittent point. The calculated

subgradient is uncertain carrying a stochastic error term. Just before the second step of the algorithm one

of the constraint set is revealed or chosen randomly. Then the feasibility violation of intermittent point is

remedied using a subgradient projection onto the revealed/chosen set. The proposed algorithm is in essence

generating a random path through a subcollection of constraint sets. So our algorithm is suitable to solve

nonsmooth convex stochastic optimization problems with random objective and constraints.

This chapter is dedicated to show the details of the proposed stochastic random projection subgradient

algorithm and its convergence properties.
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3.2 Nonsmooth Problem Formulation and Algorithm Description

We would like to focus on the following convex constrained nonsmooth minimization problem for an arbi-

trary collection {Xi, i ∈M } of nonempty, closed and convex sets in Rn,

minimize f (x)

subject to x ∈ X , X , X0∩ (∩i∈M Xi) ,

with Xi = {x ∈ Rn | gi (x)≤ 0} ∀i ∈M .

(3.1)

The algorithm is essentially same as (2.2) presented in section 2.2 except we calculate next iterate value,

xk using subgradient projection of xk−1 firstly and then the feasibility violation of υk is corrected at the next

step. Computing both the intermittent point υk and the new iterate xk involve the projection on the set X0.

The iterate process is given by

υk = ΠX0 [xk−1−αk (s f (xk−1)+ εk)]

xk = ΠX0

[
υk−β

g+ωk
(υk)

‖dk‖2 dk

]
for all k ≥ 1,

(3.2)

where s f (xk−1) ∈ ∂ f (xk−1) and dk ∈ ∂g+ωk
(υk). The scalar αk > 0 is a deterministic stepsize and β is also

a deterministic parameter with 0 < β < 2. The initial point x0 ∈ X0 is selected randomly with an arbitrary

distribution. The absolute random noise εk can be interpreted as the stochastic error associated with the

evaluation of the subgradient ∂ f (x) at x = xk−1.

A subgradient s f (x) of a convex function f at x = x̂ ∈ dom f satisfies the following relation as it is shown

in Polyak (1987) (page 127)

f (x̂)≥ f (x)+ s f (x)
T (x̂− x) for all x ∈ dom f . (3.3)

The assumptions for global error bound Assumption, 2, and stochastic errors, Assumption 3, that are

used throughout this chapter are same as in section 2.2. But uniformly bounded subgradients assumption

for random projection algorithm under noise for nonsmooth objective functions is different than the one in

section 2.2 and it is presented below.
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Assumption 4. The functions f and every gi are defined and convex over some open set that contains the

set X0. The subgradients s f (x) and sgi (x) are uniformly bounded over the set X0,

∥∥s f (x))
∥∥≤C f , ‖sgi (x)‖ ≤Cg for all x ∈ X0 and ∀i ∈M , (3.4)

where C f and Cg are positive scalars.

The function f is defined and convex over an open set that contains set X0, therefore the subdifferential

set ∂ f (x) is nonempty for all x ∈ X0, hence the method is well defined. We assume the subgradient norms

of f are uniformly bounded over X0 for some positive scalar C f , which is equivalent to f being Lipschitz

continuous with constant C f , as follows

| f (x)− f (y)| ≤C f ‖x− y‖ for all x,y,∥∥s f (x)
∥∥≤C f for all s f (x) ∈ ∂ f (x) and x ∈ X0.

(3.5)

The Lipschitz continuity is essentially asserting that the function in question has a bounded slope which

in consequentially leads to subdifferentials of Lipschitz continuous functions being bounded sets as it is

proved in Vinter (2010) (proposition 4.7.1, page154) and which is presented below.

Proposition 7. For a lower semicontinuous function f : Rn→ R∪{+∞}, and a point x ∈ Rn, assume that

f is Lipschitz continuous on a neighborhood of x with Lipschitz constant L. Then

• ∂ f (x) is nonempty and ∂ f (x)⊂ LB,

• ∂ ∞ f (x) = 0

This concludes the assumptions further used in this chapter for the proposed algorithm to solve the opti-

mization problem (3.1).

Algorithm can be modified when projections on individual sets, Xi are available in closed form. We let

s f (x) to denote a subgradient of f at x, and ∂ f (x) to denote the set of all subgradients of f at x. Then the

algorithm takes the form below,

xk = ΠX0

[
ΠXωk

[xk−1−αk (s f (xk−1)+ εk)]
]

for all k ≥ 1.
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where

Xi = {x ∈ Rn | gi (x) = d (x,Xi) = inf{‖x− x0‖ | x0 ∈ Xi} ≤ 0} for any i ∈M .

3.3 Convergence Results for Nonsmooth Objective Function

In this section, we show convergence behavior of method (3.2) for nonsmooth objective function f with

various stepsizes.

3.3.1 Preliminary Results

In this subsection, preliminary results to be used in convergence analysis of method (3.2) are presented.

The first result relates the distance between an iterate point and any point in set X .

Lemma 7. Let X0 be a closed convex set and y is obtained using algorithm (3.2) as follows

y = ΠX0

[
ΠX0 [x−α (s f (x)+ ε)]−β

g+ (υ)

‖d‖2 d

]
,

where s f (x) ∈ ∂ f (x) and d ∈ ∂g+ (υ). We have

‖y− x̄‖2 ≤ ‖x− x̄‖2 +2α ( f (x̄)− f (x))+2αε
T (x̄− x)−‖x−υ‖2 +2αs f (x)T (x−υ)

+2αε
T (x−υ)+

(
β

2−2β
) g+ (υ)2

‖d‖2 for all x̄ ∈ X ,

where ϑ = x−α (s f (x)+ ε) and υ = ΠX0 [x−α (s f (x)+ ε)].

Proof. The proof procedure for Lemma 7 follows a similar track of Proof for Lemma 4 except objective

function being nonsmooth. Therefore the details of proof is not presented in detail.

Next lemma is an intermediate step to be used for the convergence analysis. It shows a snapshot of

algorithm at a point in time that we have an iterate point and expect to move to the next iterate, which is

moving towards an arbitrary point x̄ for all x̄ ∈ X .

Lemma 8. Let y be obtained using algorithm (3.2) as follows

y = ΠX0

[
ΠX0 [x−α (s f (x)+ ε)]−β

g+ω (υ)

‖d‖2 d

]
,
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where ϑ = x−α (s f (x)+ ε), υ = ΠX0 [x−α (s f (x)+ ε)] and s f ∈ ∂ f . Then,

‖y− x̄‖2 ≤ ‖x− x̄‖2 +Aη‖x− z‖2 +2αε
T (x̄− x)−‖x−υ‖2 +α

2 ‖ε‖2 +2α( f (x̄)− f (z))

+2αε
T (x̄−υ)+α

2C2
f (40η +3)+

(
β

2−2β
) g+ (υ)

‖d‖2 for all x̄ ∈ X ,

where z = ΠX [x], Aη =
1

4η
+αC f and η > 0 is arbitrary.

Proof. The proof follows a similar path as proof of Lemma 5. Therefore it is going to be explained briefly.

We start with the result that we had in Lemma 7.

‖y− x̄‖2 ≤ ‖x− x̄‖2 +2α ( f (x̄)− f (x))+2αε
T (x̄− x)−‖x−υ‖2 +2αs f (x)T (x−υ)

+2αε
T (x−υ)+

(
β

2−2β
) g+ (υ)2

‖d‖2 for all x̄ ∈ X .
(3.6)

First term to estimate is ( f (x̄)− f (x)) . If x̄ is the optimal solution and z = ΠX [x] is any feasible solution

of the problem and using Cauchy-Schwarz and triangle inequalities we have

f (x̄)− f (x) = f (x̄)− f (z)+ f (z)− f (x)≤ f (x̄)− f (z)+(s f (x)− s f (x̄)+ s f (x̄))
T (z− x)

≤ f (x̄)− f (z)+
∥∥s f (x)− s f (x̄)

∥∥‖z− x‖+
∥∥s f (x̄)

∥∥‖z− x‖ .

Then the term 2α ( f (x̄)− f (x)) can be denoted as

2α ( f (x̄)− f (x))≤ 2α ( f (x̄)− f (z))+2α
∥∥s f (x)− s f (x̄)

∥∥‖x− z‖+2α
∥∥s f (x̄)

∥∥‖x− z‖

≤ 2α ( f (x̄)− f (z))+40ηα
2C2

f +
1

4η
‖x− z‖2 ,

where 2 |a| |b| ≤ β |a|2 + 1
β
|b|2, β = 8η and η > 0 is arbitrary.

The term 2αs f (x)
T (x−υ) of (7) can be estimated due to Cauchy-Schwarz inequality, nonexpansiveness

property of projection operation and Minkowski inequality as follows

2αs f (x)
T (x−υ)≤ 2α

∥∥s f (x)
∥∥‖x−υ‖ ≤ 2α

∥∥s f (x)
∥∥‖ϑ − x‖= 2α

2∥∥s f (x)
∥∥∥∥s f (x)+ ε

∥∥
≤ 3α

2∥∥s f (x)
∥∥2

+2α
2 ‖ε‖2 ≤ 3α

2C2
f +α

2 ‖ε‖2 .
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Thus we get the final form as

‖y− x̄‖2 ≤ ‖x− x̄‖2 +Aη‖x− z‖2 +2αε
T (x̄− x)−‖x−υ‖2 +α

2 ‖ε‖2 +2α( f (x̄)− f (z))

+2αε
T (x̄−υ)+α

2C2
f (40η +3)+

(
β

2−2β
) g+ (υ)

‖d‖2 for all x̄ ∈ X ,

where Aη =
1

4η
+αC f .

Next Lemma provides a bound on the expected distance between a point in the solution set and any iterate

point of the algorithm run along the path.

Lemma 9. Let y obtained using algorithm (3.2) as follows

y = ΠX0

[
ΠX0 [x−α (s f (x)+ ε)]−β

g+ω (υ)

‖d‖2 d

]
.

Then, for zk−1 = ΠX0 [xk−1]

E
[
‖xk− x̄‖2 |Fk−1

]
≤ ‖xk−1− x̄‖2 +Aη ‖xk−1− zk−1‖2−‖xk−1−υk‖2 +α

2
k υk +2αk( f (x̄)− f (zk−1))

+α
2
k C2

f (40η +3)+

(
β 2−2β

)
C2

g
E
[
g+ωk

(υk)
2 |Fk−1

]
for all x̄ ∈ X , and k ≥ 1,

where υk = ΠX0 [xk−1−αk (s f (xk−1)+ εk)], Aη =
1

4η
+αC f and η > 0 is arbitrary.

Proof. We start with the result that we had in Lemma 8

‖y− x̄‖2 ≤ ‖x− x̄‖2 +Aη‖x− z‖2 +2αε
T (x̄− x)−‖x−υ‖2 +α

2 ‖ε‖2 +2α( f (x̄)− f (z))

+2αε
T (x̄−υ)+α

2C2
f (40η +3)+

(
β

2−2β
) g+ (υ)

‖d‖2 for all x̄ ∈ X ,

where Aη =
1

4η
+αC f .

By the uniform boundedness of subgradient d ∈ ∂g+(υ) and we have ‖d‖2 ≤C2
g for all x ∈ X0 and i ∈

M. It transforms above inequality into

‖y− x̄‖2 ≤ ‖x− x̄‖2 +Aη‖x− z‖2 +2αε
T (x̄− x)−‖x−υ‖2 +α

2 ‖ε‖2 +2α( f (x̄)− f (z))

+2αε
T (x̄−υ)+α

2C2
f (40η +3)+

(
β

2−2β
) g+ (υ)

2

C2
g

for all x̄ ∈ X and k ≥ 1.
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Let y = xk, υ = υk, x = xk−1, ε = εk, α = αk, zk−1 = ΠX0 [xk−1], g+ (υ) = g+ωk
(υk) , and dk ∈ ∂g+ωk

(υk).

We take into account Assumption 3 and then expected bound on how far current iterate is away from x̄, the

optimal solution based on path until time k−1 is as follows

E
[
‖xk− x̄‖2 |Fk−1

]
≤ ‖xk−1− x̄‖2 +Aη ‖xk−1− zk−1‖2−‖xk−1−υk‖2 +α

2
k νk +2αk( f (x̄)− f (zk−1))

+α
2
k C2

f (40η +3)+

(
β 2−2β

)
C2

g
E
[
g+ωk

(υk)
2 |Fk−1

]
for all x̄ ∈ X , and k ≥ 1.

where E
[
‖εk‖2 |Fk-1

]
≤ νk and the scalar νk is a deterministic constant.

The result stated in Lemma 9 is going to be used as basis for the following proposition.

Proposition 8. Let y be given by

y = ΠX0

[
ΠX0 [x−α (s f (x)+ ε)]−β

g+ (υ)

‖d‖2 d

]
,

where s f (x) ∈ ∂ f (x) and d ∈ ∂g+ (υ). Let Assumptions 2, 3, and 4 hold. Then, for the iterates of the

subgradient method (3.2) we have for all x̄ ∈ X, x̄ = x∗ with x∗ ∈ X∗ and dist2 (xk−1,X) = ‖xk−1− zk−1‖2,

E
[
‖xk− x∗‖2 |Fk−1

]
≤ ‖xk−1− x∗‖2−‖xk−1−υk‖2 +

(
1+8β −4β

2)
α

2
k νk−2αk ( f (zk−1)− f (x∗))

+α
2
k C2

f
(
40η +3+8β −4β

2)+ (β 2−2β
)

2cC2
g
‖xk−1− zk−1‖2 for all k ≥ k̃.

where τ = 4 and η =
2cC2

g

β (2−β )
.

Proof. We start with the result that we had in Lemma 9 for non-differentiable functions, f

E
[
‖xk− x̄‖2 |Fk−1

]
≤ ‖xk−1− x̄‖2 +Aη ‖xk−1− zk−1‖2−‖xk−1−υk‖2 +α

2
k νk +2αk( f (x̄)− f (zk−1))

+α
2
k C2

f (40η +3)+

(
β 2−2β

)
C2

g
E
[
g+ωk

(υk)
2 |Fk−1

]
for all x̄ ∈ X , and k ≥ 1.
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To relate residual of (k−1)th iterate and residual of intermittent point of kth iterate, we use

(
g+ωk

(υk)
)2

=
((

g+ωk
(υk)−g+ωk

(xk−1)
)
+g+ωk

(xk−1)
)2

≥ 2
(
g+ωk

(υk)−g+ωk
(xk−1)

)
g+ωk

(xk−1)+
(
g+ωk

(xk−1)
)2

≥−2
∣∣g+ωk

(υk)−g+ωk
(xk−1)

∣∣g+ωk
(xk−1)+

(
g+ωk

(xk−1)
)2

≥−2Cgαk
∥∥s f (xk−1)+ εk

∥∥g+ωk
(xk−1)+

(
g+ωk

(xk−1)
)2

≥−τC2
gα

2
k

∥∥s f (xk−1)+ εk
∥∥2− 1

τ

(
g+ωk

(xk−1)
)2

+
(
g+ωk

(xk−1)
)2

≥−τC2
gα

2
k C2

f − τC2
gα

2
k ‖εk‖2 +

τ−1
τ

(
g+ωk

(xk−1)
)2
.

For each path of constraint realizations the relation above is expected to be

E
[
g+ωk

(υk)
2 |Fk−1

]
≥−τC2

gα
2
k C2

f − τC2
gα

2
k νk +

τ−1
τ

E
[(

g+ωk
(xk−1)

)2 |Fk−1

]
.

Deterministic coefficient (β 2−2β ) has a negative value therefore

(β 2−2β )

C2
g

E
[
g+ωk

(υk)
2 |Fk−1

]
≤−(β 2−2β )τα

2
k C2

f − (β 2−2β )τα
2
k νk

+
β 2−2β

C2
g

τ−1
τ

E
[(

g+ωk
(xk−1)

)2 |Fk−1

]
.

Therefore we can use the relation above within Lemma 9

E
[
‖xk− x̄‖2 |Fk−1

]
≤ ‖xk−1− x̄‖2 +Aη ‖xk−1− zk−1‖2−‖xk−1−υk‖2 +

(
1+(2β −β

2)τ
)

α
2
k νk

+2αk( f (x̄)− f (zk−1))+α
2
k C2

f
(
40η +3+(2β −β

2)
τ)

+
β 2−2β

C2
g

τ−1
τ

E
[(

g+ωk
(xk−1)

)2 |Fk−1

]
.

The distance between the current iterate and set X is ‖xk−1− zk−1‖= dist(xk−1,X), since zk−1 =ΠX [xk−1].

And due to Assumption 2, we have dist2 (xk−1,X)≤ cE
[(

g+ωk
(xk−1)

)2 |Fk−1

]

E
[
‖xk− x̄‖2 |Fk−1

]
≤ ‖xk−1− x̄‖2−‖xk−1−υk‖2 +

(
1+(2β −β

2)τ
)

α
2
k νk +2αk ( f (x̄)− f (zk−1))

+α
2
k C2

f
(
40η +3+(2β −β

2)
τ)+

(
αkC f +

1
4η

+
β 2−2β

cC2
g

τ−1
τ

)
dist2 (xk−1,X) .
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Since αk → 0, by choosing k large enough so that αkC f ≤
1

4η
, we have αkC f +

1
4η
≤ 1

2η
. Choosing

τ = 4 and η =−2

(
β 2−2β

cC2
g

)−1

we have

αkC f +
1

4η
+

β 2−2β

cC2
g

τ−1
τ
≤ 1

2η
+

(β 2−2β )

cC2
g

τ−1
τ

=

(
β 2−2β

)
2cC2

g
.

We let x̄ = x∗ with x∗ ∈ X∗ and dist2 (xk−1,X) = ‖xk−1− zk−1‖2,

E
[
‖xk− x∗‖2 |Fk−1

]
≤ ‖xk−1− x∗‖2−‖xk−1−υk‖2 +

(
1+8β −4β

2)
α

2
k νk−2αk ( f (zk−1)− f (x∗))

+α
2
k C2

f
(
40η +3+8β −4β

2)+ (β 2−2β
)

2cC2
g
‖xk−1− zk−1‖2 for all k ≥ k̃.

3.3.2 Almost Sure Convergence Results for Nonsmooth Case

In this section, we would like to show that the proposed algorithm converges to the solution set almost surely

for not summable but square summable stepsize. The convergence of the method (3.2) for a deterministic

diminishing stepsize αk is established in the next proposition. As it is indicated in the next proposition, the

algorithm has almost sure convergence.

Proposition 9. Let the function f is nonsmooth and convex. Let the stepsize be not summable but square

summable such that ∑
∞
k=1 αk = ∞, ∑

∞
k=1 α2

k < ∞ and ∑
∞
k=1 α2

k νk < ∞. Assume that problem (3.1) has a

nonempty optimal set X∗. Then the iterates {xk} generated by method (3.2) converge almost surely to some

random point in the optimal set X∗

Proof. We start with the result of Proposition 8

E
[
‖xk− x∗‖2 |Fk−1

]
≤ ‖xk−1− x∗‖2−‖xk−1−υk‖2 +

(
1+8β −4β

2)
α

2
k νk−2αk ( f (zk−1)− f (x∗))

+α
2
k C2

f
(
40η +3+8β −4β

2)+ (β 2−2β
)

2cC2
g
‖xk−1− zk−1‖2 for all k ≥ k̃.

where τ = 4 and η =
2cC2

g

β (2−β )
.

38



Since zk−1 ∈ X , we have f (zk−1)− f (x∗) ≥ 0. Under the assumption ∑
∞
k=1 α2

k < ∞, the inequality above

satisfies the conditions of Theorem 1. As a result the sequence {‖xk− x∗‖} is convergent almost surely for

every x∗ ∈ X∗, and

∞

∑
k=1

2αk( f (zk−1)− f (x∗))< ∞,
∞

∑
k=1
‖xk−1− zk−1‖2 < ∞ a.s.

The preceding relations and the condition ∑
∞
k=1 αk = ∞ imply that

liminf
k→∞

( f (zk−1)− f (x∗)) = 0 a.s., (3.7)

lim
k→∞

‖xk−1− zk−1‖= 0 a.s. (3.8)

We have already concluded that {‖xk− x∗‖} is convergent a.s. for every x∗ ∈ X∗ . When we take into

account equation (3.8), we can further conclude that {‖zk− x∗‖} is also convergent a.s. for every x∗ ∈ X∗ as

well. This inherently implies that the sequence {zk} is a.s. bounded and has accumulation points. Addition-

ally taking into account the continuity of f and relation (3.7), the sequence {zk} has an accumulation point

in the set X∗ a.s. Besides {‖zk− x∗‖} converges a.s. for every x∗ ∈ X∗. Therefore {zk} converges almost

surely to a random point in set X∗. All in all in view of relation (3.8) we reach the conclusion that {xk}

converges a.s. to a random point in X∗.

3.3.3 Convergence Analysis and Error Bound for Nonsmooth Case

Next auxiliary lemma is constructed in order to establish error bounds on the performance of the subgradient

algorithm (3.2) for constant and nondiminishing stepsizes.

Lemma 10. Let Assumptions 2, 3 and 4 hold. Let the stepsize be such that 0 < αk ≤ ᾱ for some scalar

ᾱ > 0 and all ᾱL≤ 1
4η

. Assume that problem (3.1) has a nonempty optimal set X∗. Let {xk} be the iterate

sequence generated by the method (3.2), and define the weighted averages

x̂t =
1
St

t

∑
k=1

αkxk−1 and ẑt=
1
St

t

∑
k=1

αkzk−1 with St =
t

∑
k=1

αk,
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Then, we have for all t ≥ k̃,

E [ f (ẑt)]− f ∗+
2β −β 2

4ᾱcC2
g
E
[
‖x̂t − ẑt‖2

]
≤ 1

2St
E
[
dist2

(
xk̃−1,X

∗)]− 1
2St

t

∑
k=1

E
[
‖xk−1−υk‖2]

+
A

2St

t

∑
k=1

α
2
k νk +

C2
f B

2St

t

∑
k=1

α
2
k ,

where A =
(
1+8β −4β 2

)
, B =

(
40η +3+8β −4β 2

)
, and η =

2cC2
g

β (2−β )
.

Proof. The proof procedure of Lemma 10 follows similar steps of Lemma 6. Therefore the details are not

provided.

3.3.3.1 Constant Stepsize

The error bound of the sequence generated by the method (3.2) for a constant stepsize, ᾱ is established in

this section. The next proposition is going to provide error bounds on the performance of the subgradient

algorithm (3.2) by using Lemma 10.

Proposition 10. Let Assumptions 2, 3 and 4 hold. Let {xk} be the iterate sequence generated by the method

(3.2) and define the weighted averages

x̂t =
1
St

t

∑
k=1

αkxk−1 and ẑt=
1
St

t

∑
k=1

αkzk−1 with St =
t

∑
k=1

αk,

If the stepsize is constant, i.e., αk = ᾱ for all k ≥ 1, and the stochastic errors εk has constant variance, i.e.,

νk = ν̄ for all k then we have the following error bound for all t ≥ 1,

E
[
‖x̂t − ẑt‖2

]
≤

2cC2
g

tβ (2−β )
E
[
dist2 (x0,X∗)

]
+

2Aᾱ2ν̄cC2
g

β (2−β )
+

2Bᾱ2cC2
fC

2
g

β (2−β )
,

|E [ f (x̂t)]− f ∗| ≤C f

√
E
[
‖x̂t − ẑt‖2

]
+

1
2tᾱ

E
[
dist2 (x0,X∗)

]
+

Aᾱν̄

2
+

BᾱC2
f

2
,

where A =
(
1+8β −4β 2

)
, B =

(
40η +3+8β −4β 2

)
, and η =

cC2
g

β (2−β )

Proof. The proof procedure of Proposition 10 follows a similar track as Proposition 5.
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3.3.3.2 Nondiminishing Nonsummable Stepsize

Proposition 11. Let Assumptions 2, 3 and 4 hold. Assume that problem (3.1) has a nonempty optimal set

X∗. Let {xk} be the iterate sequence generated by the method (3.2), and define the weighted averages

x̂t =
1
St

t

∑
k=k̃

αkxk−1 and ẑt=
1
St

t

∑
k=k̃

αkzk−1 with St =
t

∑
k=k̃

αk,

If the stepsize satisfies limk→∞αk = α̂ ≥ 0 and ∑
∞
k=1 αk = ∞, then we have the following asymptotic error

bounds;

lim sup
t→∞

E
[
‖x̂t − ẑt‖2

]
≤

2Aν̄α̂cC2
g

β (2−β )
+

2Bα̂cC2
fC

2
g

β (2−β )
,

lim sup
t→∞

|E [ f (x̂t)]− f ∗| ≤C fCg

√
2Aν̄α̂c

β (2−β )
+

2Bα̂cC2
f

β (2−β )
+

Aν̄α̂

2
+

Bα̂C2
f

2
,

where ᾱ = maxkαk and ν̄ ≥ maxkνk, A =
(
1+8β −4β 2

)
, B =

(
40η +3+8β −4β 2

)
, and η =

cC2
g

β (2−β )
.

Proof. The proof procedure of Proposition11 follows a similar track as Propostion 6.
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Chapter 4

STOCHASTIC RANDOM PROJECTION ALGORITHM:
PARAMETER ESTIMATION UNDER BOUNDED DATA
UNCERTAINITIES

4.1 Introduction

The algorithm (2.2) is tested on a dynamic control system problem. We study three versions of the problem

with correlated unknown-but-bounded additive noise, uncorrelated unknown-but-bounded additive noise

and uncorrelated bounded output and peak input additive noise under fully known system description cases.

It is essentially a linear least squares estimation problem where we recover state parameters from corrupted

input and output data. More specifically, assume U ∈ Rm×n is a given full rank input matrix with m ≥ n

and y ∈ Rm is a given output vector. The ψ ∈ Rm×n input noise and ϕ ∈ Rm output noise terms are additive

and belong to bounded sets. The input and output are linearly related via an unknown vector of parameters

h∈Rn. Due to noise affecting input and output, a residual, U(ψ)h−y(ϕ) emerges. Our aim is to minimize

the worst case residual. The problem we solve is

φ (U(ψ) ,y(ϕ) ,ρ), minmax‖U(ψ)h−y(ϕ)‖ , (4.1)

where error terms belong to one of the following bounded sets;

• Correlated additive input-output

‖ψ,ϕ‖ ≤ ρ for ρ ≥ 0, (4.2)

• Uncorrelated additive input-output

‖ψ‖ ≤ ρ ‖ϕ‖ ≤ ρ for ρ ≥ 0, (4.3)
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• Uncorrelated additive output-peak input

‖ψ‖
∞
≤ ρ,‖ϕ‖ ≤ ρ for ρ ≥ 0. (4.4)

We reformulated the linear least squares estimation problem as a stochastic convex minimization problem

and then used a two step random projection algorithm to solve it. Although the problem has infinite number

of constraints due to each realization of error term within bounded set, the algorithm goes through a finite

subset of them and converges to the solution set.

There are alternative optimization criteria such as regularized least squares, ridge regression, total least

squares and robust estimation that have been proposed to solve least squares estimation problem with errors

in data matrix. Regularized least squares and ridge regression methods require to know apriori statistical

properties of unobservable random error variables, which is not a viable requirement for practical applica-

tions. Total least-squares (TLS) method also known as orthogonal regression or errors-in-variables method

allows for data errors besides observation errors on the contrary to standard least-squares (LS) method,

Golub and Van Loan (1980). TLS approach produces reasonable solutions only when independent and

equally sized errors exist in all data, Van Huffel and Vandewalle (1987). If this prerequisite does not hold

for error set, it overemphasize the effect of noise leading to conservative results. On the other hand our

projection algorithm randomly chooses a finite number of disturbances and does not require any statistical

prior condition or information.

Robust estimation method treats uncertainty as deterministic and describes it in terms of bounded sets.

The robust optimization approach which is extensively covered in Ben-Tal et al. (2009) introduces the robust

counterparts concept of uncertain problems that requires semi-infinite programming techniques and thus can

be intractable even when all instances of the uncertain problem are easy to solve.

The authors of El Ghaoui and Lebret (1997) have formulated and solved a similar estimation problem.

The problem (4.12) is referred as structured robust least squares (SRLS) formulation by El Ghaoui and

Lebret (1997). They assume that the noise sets are bounded by ρ = 1 and (SRLS) problem is defined as

follows.

φS (A,b,ρ), min
x

max
‖δ‖=1

‖A(δ )x−b(δ )‖ , (4.5)
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where

A(δ ), A0 +
p

∑
i=1

δiAi b(δ ), b0 +
p

∑
i=1

δibi.

Initially they solve a one-dimensional convex differentiable function in order to calculate the squared worst-

case residual for ρ = 1. Then they formulate and solve a semidefinite programming (SDP) problem instead

of (4.5). The computational complexity of the approach they used is O
(
nm2 +m3.5

)
But it is only applicable

for correlated input-output noise case where ρ = 1. But in the case of uncorrelated output-peak input noise

they present only upper and lower bounds for worst-case residual.

The distinction of our algorithm is that we were able to solve system estimation problem (4.1) for varia-

tions of bounded sets (4.2), (4.3), (4.4) with less computational effort. Projecting on only one combination of

uncertainity within all possibilities of error set at each iteration provides us the computational convenience.

4.2 Problem Description

In this section we explain the min-max problems ; (4.1)-(4.2), (4.1)-(4.3), (4.1)-(4.4); that we solve using

the algorithm (2.2). We also present equivalent minimization formulations or upper bound for these three

types of robust least squares problems. Subgradient algorithm solutions are used to gauge the performance

of our method. Equivalent formulations are needed for standard subgradient algorithm implementation.

Let input matrix U ∈ Rm×n, input noise ψ ∈ Rm×n with m ≥ n, output matrix y ∈ Rm, output noise

ϕ ∈ Rmand ρ ≥ 0. The input and output are linearly related via an unknown vector of parameters h ∈ Rn.

Due to noise affecting input and output, a residual, U(ψ)h− y(ϕ) emerges. Our aim is to minimize the

worst case residual.

Problem 1 Correlated Bounded Additive Noise

φ (U(ψ) ,y(ϕ) ,ρ), min
h

max
‖ψ,ϕ‖≤ρ

‖U(ψ)h−y(ϕ)‖ . (4.6)

Problem can be represented as a minimization problem using the operator norm definition as follows

‖(U+ψ)h− (y+ϕ)‖= max
‖x‖≤1

xT (Uh−y)+ xT (ψh−ϕ) .
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Therefore

max
‖ψ,ϕ‖≤ρ

‖(U+ψ)h− (y+ϕ)‖= ‖Uh−y‖+ρ

∥∥∥∥∥∥∥
 x

1


∥∥∥∥∥∥∥ .

So the problem (4.6) in minimization form is

min
h
‖Uh−y‖+ρ

∥∥∥∥∥∥∥
 x

1


∥∥∥∥∥∥∥ . (4.7)

Problem 2 Uncorrelated Bounded Additive Noise

φ (U(ψ) ,y(ϕ) ,ρ), min
h

max
‖ψ‖≤ρ,‖ϕ‖≤ρ

‖U(ψ)h−y(ϕ)‖ . (4.8)

Equivalent minimization problem formulation for the minimization of worst case problem can be achieved

as follows

‖(U+ψ)h− (y+ϕ)‖ ≤ ‖Uh−y‖+‖ψ‖‖h‖+‖ϕ‖

≤ ‖Uh−y‖+ρ ‖h‖+ρ.

The upper bound is achieved when the disturbances are

ψm =
(Uh−y)
‖Uh−y‖

h
‖h‖

ρ, ϕm =− (Uh−y)
‖Uh−y‖

ρ.

Therefore we can claim that the problem (4.8) in minimization form is as follows

min
h
‖Uh−y‖+ρ ‖h‖+ρ. (4.9)

Problem 3 Uncorrelated Peak Input and Output Bounded Additive Noise

The third case is for uncorrelated bounded output and peak input. The peak disturbance over matrix U is

bounded so the set for noise is modified as ‖ψ‖
∞
≤ ρ,‖ϕ‖ ≤ ρ

φ (U(ψ) ,y(ϕ) ,ρ), min
h

max
‖ψ‖

∞
≤ρ,‖ϕ‖≤ρ

‖U(ψ)h−y(ϕ)‖ . (4.10)
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The norm equivalence relation for matrix ψ ∈ Rm×n, with m≥ n is

1√
n
‖ψ‖

∞
≤ ‖ψ‖ ≤

√
m‖ψ‖

∞
.

Therefore we can get an upper bound for the problem (4.10) as follows

min
h

max
‖ψ‖

∞
≤ρ,‖ϕ‖≤ρ

‖U(ψ)h−y(ϕ)‖

≤min
h
‖Uh−y‖+

√
mρ ‖h‖+ρ.

(4.11)

4.3 System Estimation Problem for Discrete-Time Systems with Bounded
Noise and Known System Description

4.3.1 Problem Definition

The input/output characteristics of a dynamic system describes how an external input, affects the system

output. For linear time-invariant, LTI systems a complete response characterization of the relaxed linear

system to any input signal is defined by impulse response. The concept of the impulse response, is a basic

time domain characterization of a linear time-invariant system. We seek to estimate the impulse response

h, of an LTI system assuming the system is single input, U and single output, y through the convolution

equation

Uh = y,

where

h =



h1

h2

...

...

hn


, y =



y1

y2

...

...

yn


, Un×n =



u1 0 0 . . . 0

u2 u1 0 . . . 0

u3 u2 u1 . . .
...

...
...

...
. . .

...

un un−1 un−2 . . . u1


.

U is a lower-triangular Toeplitz matrix (Ui, j = Ui−1, j−1) whose first column is nominal input vector, u.

Assuming U and y are known exactly leads to a linear equation in h, which can be computed with standard

least squares methods. In practice, however, both y and U may be subject to measurement and/or process
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noise that is deterministic. The actual value of y is y+ ϕ and that of U is U +ψ , where ϕ and ψ are

unknown-but-bounded perturbations with ϕ,ψ ∈ Rn. The perturbed matrices for input and output are

U(ψ) =U +
n

∑
i=1

ψiUi, y(ϕ) = y+
n

∑
i=1

ϕiei,

where ei is the ith column of the n× n identity matrix and Ui are lower-triangular Toeplitz matrices with

first column equal to ei. We are going to estimate the state of a linear dynamic system with noise-corrupted

observations, when input disturbances and observation errors are unknown except for the fact that they

belong to given bounded sets.

In signal processing and control theory, Bounded-Input Bounded-Output (BIBO) stability is a form of sta-

bility for linear signals and systems that have bounded output for every input to the system that is bounded.

BIBO stability is equivalent to p-stability for finite-dimensional LTI state-space systems. A p-stable system

is characterized by the requirement that every input of finite p-norm gives rise to an output of finite l-norm.

This stability criterion is the basis to the assumption that input and output energies are bounded.

(4.6) and (4.10) versions of robust least squares estimation problem are investigated by El Ghaoui and

Lebret (1997) using semidefinite programming (SDP). We use the same nominal values that they used.

Ghaoui and Lebret (1997) addresses the first version of the problem (4.6) using a Structured Robust Least

Squares, (SRLS) approach that minimizes worst-case residual r (U(ψ) ,y(ϕ) ,ρ,h) . For ρ ≥ 0 and h ∈ Rn

the square of structured worst-case residual is defined as

r2 (U(ψ) ,y(ϕ) ,ρ,h), max
‖ψ,ϕ‖≤ρ

‖U(ψ)h−y(ϕ)‖2 .

Minimizing the square of worst case residual is formulated as

φS (U(ψ) ,y(ϕ) ,ρ), min
h

max
‖ψ,ϕ‖≤ρ

‖U(ψ)h−y(ϕ)‖2 . (4.12)

Although this problem was solved by El Ghaoui and Lebret (1997) using general purpose SDP solvers, it

was mentioned that more efficient special interior-point methods are called for and this direction of research

is left as future work. One of the advantages of the proposed algorithm (2.2) is that it is not reliant upon a

solver or special interior-point methods.
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4.3.2 Existence of Solution and Strongly Convex Nature of Robust System Estimation Problem

The general form of the original least squares problem with bounded noise is

Pζ min
h∈Rn

f (h,ζ )

subject to ‖ζ‖ ≤ ρ,

(4.13)

where ζ = (ψ,ϕ) ∈ Rn is the data matrix that belongs to set

U =

{
ζ = (ψ,ϕ) |

∥∥∥∥[ ψ, ϕ

]∥∥∥∥≤ ρ, ρ ≥ 0
}
.

The vector h is feasible solution to P =
{

Pζ

}
ζ∈U , if it satisfies all possible realizations of perturbation set,

Zhou et al. (1995). The robust counterpart problem that minimizes the worst case residual as defined in

Ben-Tal et al. (2009) is

P∗ min
h∈Rn
{sup f (h,ζ ) : ∀ζ ∈U } .

Before presenting our approach we would like to investigate the existence of solution to robust counterpart

problem defined as above. Based on Weierstrass Theorem Bertsekas et al. (2003) if a closed proper function

f : Rn→ (−∞,∞] coercive then the set of minima of f over Rn is nonempty and compact. The sufficiency

conditions for existence of solution to robust counterpart problem, P∗ is presented as follows. The open

form square of f (h,ζ ) i.e. least squares objective is

f̃ (h,ζ ) =
[

h
]T [

U (ζ )T U (ζ )
][

h
]
−
[
2y(ζ )T U (ζ )

][
h
]
+ y(ζ )T y(ζ ) ∀ζ ∈U ,

where the Hessian is
[
∇2 f̃ (h,ζ )

]
=
[
U (ζ )T U (ζ )

]
� 0 for all h ∈ Rn for each ζ ∈ U remembering ad-

ditive nature of perturbations to lower-triangular Toeplitz matrix U (ζ ). f̃ (h,ζ ) function is defined by a

unique lower triangular matrix U (ζ ), with strictly positive diagonal elements, that allows the Cholesky

decomposition of M (ζ ) = U (ζ )T U (ζ ). The matrix U and vector y are input and output of the system

originating from nominal values that are positive for a working relaxed system with linearly added bounded

perturbations. Impulse response of an LTI system is defined for zero stored energy case. A linear dynamic

system is relaxed if it has no stored energy, so that its response to a zero input is a zero output. Implied

in the above is the fact that a system will always exhibit the same response to any given input signal when
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the stored energy is zero. Since the relaxed physical LTI system can not have negative or zero input when

there exists a positive output vector, lower triangular toeplitz matrix U whose first column is nominal input

vector u or perturbations added nominal input has always strictly positive diagonal elements that leads to

conclusion of M =UTU and perturbed matrix M (ζ ) =U (ζ )T U (ζ ) being symmetric positive definite ma-

trices. Thus f̃ (h,ζ )→ ∞ if and only if we have a case of infinite impulse response (IIR) filters, which have

internal feedback and may continue to respond indefinitely which is out of scope of the system defined here.

Consequently f̃ (h,ζ )< ∞ for at least one h ∈ Rn. Hence f̃ (h,ζ ) is a proper function.

The supremum function over the set U , sup
ζ∈U

f (h,ζ ) is convex since the intersection operation preseves

convexity then every f̃ (h,ζ ) which are the outcome of perturbations set U is convex. Due to a convex

function implying continuity over Rn and quadratic functions being closed, we can conclude that sup
ζ∈U

f̃ (h,ζ )

is convex and closed Boyd and Vandenberghe (2004), §4.4. f̃ is strongly convex if and only if there exist

α > 0 such that

(∇ f (x)−∇ f (y))T (x− y)≥ α ‖x− y‖2 ∀x,y ∈ Rn,

Bertsekas et al. (2003). Therefore

(
2
[
U (ζ )T U (ζ )

][
x
]
−2
[
U (ζ )T U (ζ )

][
y
])T ([

x
]
−
[

y
])
≥ α ‖x− y‖2

leads to the conclusion that if the minimum eigenvalue of
[
U (ζ )T U (ζ )

]
matrix is greater than or equal

to any
α

2
value that is positive then f̃ (h) is a strongly convex function. Ostrowski-Elsner theorem Stew-

art and Sun (1990), Theorem 1.1 states that λ be an eigenvalue of any matrix A of algebraic multiplicity

m then for any norm ‖.‖ and all sufficiently small ε > 0 there is a δ > 0 such that ‖E‖ < δ , the disk

D (λ ,ε) = {ζ ∈ C : |ζ −λ | ≤ ε} contains exactly m eigenvalues of perturbed matrix Ã. The intutiton of

Elsner’s theorem is that if any m disks are isolated from the others, and then their union contains exactly m

eigenvalues of Ã i.e. eigenvalues of A and Ã can be grouped into nearby pairs. The Elsner’s theorem is for

general case. Yet the distance between eigenvalues greatly varies based on the structure of matrices. That is

why there are individual results for different classes of matrices one of them is for normal and diagonalizable

matrices in Stewart and Sun (1990), §3.1. A normal matrix is any matrix satisfying AT A = AAT . Any nor-

mal matrix can be diagonalized by a unitary transformation, therefore the normal matrices are also included

in the category of diagonalizable matrices. Therefore symmetric positive definite matrices M =
[
UTU

]
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and M (ζ ) =
[
U (ζ )T U (ζ )

]
in our system identification problem comply with Hoffman-Wielandt theorem

in Stewart and Sun (1990), Theorem 3.1. Mand M (ζ ) are normal matrices. Then the 2-norm matching

distance between eigenvalues of unperturbed matrix M and perturbed matrix M (ζ ) is bounded as

md2 (M,M (ζ ))≤ ‖M (ζ )−M‖F .

The 2-norm matching distance is defined as md2 (M,M (ζ )) = min
π

∑i

√∣∣λπ(i) (ζ )−λi
∣∣2 where π ranges

over all permutations of the integers 1,2, . . . ,n. Since the perturbation set is compact, we can conclude that

there exist
α

2
> 0 smaller than the minimum eigenvalue of any perturbed matrix M (ζ ) . At any point on the

boundary of a strongly convex set one can associate an enclosing ball with fixed radius R such that x is on

the boundary of the ball as well Vial (1982). Therefore
{

sup f̃ (h,ζ ) : ∀ζ ∈U
}

is strongly convex and as

a consequence coercive due to the result stated in Aubin (1998), f̃ is strongly convex then it is coercive.

Hence we can conclude that P∗ is convex in lieu of the fact that for a convex function f : Rn×Rp → R

over nonempty convex set C ⊆ Rn×Rp the g(x) = inf
z∈C

f (x,z) is convex and the set of minima of f over Rn

is nonempty and compact. As a result we proved that M is strongly convex and according to results above

M (ζ ) has eigenvalues including the minimum one are within neighborhood of eigenvalues of unperturbed

matrix. The disks defined by Elsner theorem contain one eigenvalue each. Since M is real the eigenvalues in

the disks must be real and are contained in the intersection of the disks with the real line. Additonally M (ζ )

being symmetric positive definite ensures that in the interval containing minimum eigenvalue is going to be

on positive real line whatever the perturbation level is. This ensures strong convexity. Hence, there exist

x0 = [h0,ζ0] ∈ Rn×U such that

f (x0) = min
h∈Rn
{sup f (h,ζ ) : ∀ζ ∈U } .

50



4.3.3 Convergence of Algorithm for Strongly Convex Objective Function

We already showed that the problem (4.13) is strongly convex. As a special case we would like to present

the following proposition to prove that the algorithm (2.2) converges almost surely to the solution set for

strongly convex problems.

Proposition 12. Let the function f have uniformly bounded gradients over the set X0 with a scalar C f and is

assumed to be strongly convex with constant l. Let the stepsize be not summable but square summable such

that ∑
∞
k=1 αk = ∞, ∑

∞
k=1 α2

k < ∞ and ∑
∞
k=1 α2

k νk < ∞. Assume that problem (2.1) has a nonempty optimal set

X∗. Then the iterates {xk} generated by method (2.2) converge almost surely to some random point in the

optimal set X∗.

Proof. We start with the result of Proposition 3

E
[
‖xk− x∗‖2 | Fk−1

]
≤
(
1+α

2
k L2Aτ,η

)
‖xk−1− x∗‖2 +

(
β 2−2β

)
2cC2

g
‖xk−1− zk−1‖2

+2αk ( f (x∗)− f (zk−1))−‖xk−1−υk‖2 +Bτ,ηα
2
k ‖∇ f (x∗)‖2 +

(
4−4

(
β

2−2β
))

α
2
k νk

(4.14)

for all k ≥ k̃, where Aτ,η = Bτ,η =
(
8+8η−2τ

(
β 2−2β

))
, τ = 4 and η =−2

((
β 2−2β

)
cC2

g

)−1

.

As the first step we can drop the terms

(
β 2−2β

)
2cC2

g
‖xk−1− zk−1‖2 and −‖xk−1−υk‖2 although both of

which are tightening the bound on the algorithm convergence.

For a point in optimal set X∗ the relation f (x)− f (x∗) ≥ l
2
‖x− x∗‖2 holds for a differentiable strongly

convex function with constant l, Polyak (1987)(Page 11). Therefore

2αk ( f (zk−1)− f (x∗))≥ αkl ‖zk−1− x∗‖2 .

The relation (4.14) satisfies the conditions of Theorem 1 for the following nonnegative random variables

ak = α
2
k L2A1, vk = ‖xk−1− x∗‖2, uk = αkl ‖zk−1− x∗‖2 ,

bk = B1α
2
k C2

f +4α
2
k νk
(
1+2β −β

2) .

51



Due to diminishing nature of the stepsize αk we have

(
B1C2

f +4νk
(
1+2β −β

2)) ∞

∑
k=0

α
2
k ≤ ∞ a.s.

and

L2A1

∞

∑
k=0

α
2
k ≤ ∞ a.s.,

where A1 = B1 = 8

(
1+

2cC2
g

2β −β 2 +2β −β 2

)
and 0 < β < 2.

As a result the sequence {‖xk− x∗‖} is convergent almost surely for every x∗ ∈ X∗ to υ ≥ 0, which is

some nonnegative random variable.

lim{‖xk− x∗‖}→ υ

We can further conclude that {‖zk− x∗‖} is also convergent a.s. for every x∗ ∈ X∗ as well.

l
∞

∑
k=1

αk ‖zk−1− x∗‖2 < ∞ a.s.

This implies that the sequence {zk} is a.s. bounded and has accumulation points. Besides {‖zk− x∗‖}

converges a.s. for every x∗ ∈ X∗. Therefore {zk} converges almost surely to a random point in set X∗. We

reach the conclusion that {xk} converges a.s. to a random point in the solution set, X∗.
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4.3.4 Problem Reformulation and Implementation

We formulated the problem (4.6) in the context of convex optimization with a linear objective and quadratic

constraints as follows:

min
h∈Rn,ϑ∈R+

ϑ

subject to ‖U (ψ)h− y(ϕ)‖2 ≤ ϑ such that

√
n

∑
i=1

ψ2
i +

n

∑
j=1

ϕ2
j ≤ ρ for every (ψ,ϕ) ,

(4.15)

where the variable of the model is defined as xT =

[
h1 h2 . . . hn ϑ

]
with h ∈ Rn and ϑ ∈ R+. The

constraint functions gψ,ϕ (h,ϑ) = ‖U (ψ)h− y(ϕ)‖2−ϑ are convex quadratic functions that are defined

over Rn×R as

gψ,ϕ (x) = gψ,ϕ (h,ϑ) =

 h

ϑ


T  U(ψ)T U(ψ) 0

0 0


 h

ϑ


−
[

2y(ϕ)T U (ψ) 1

] h

ϑ

+ y(ϕ)T y(ϕ) .

The algorithm projects onto Rn×R+ as below

υk = ΠRn×R+ [xk−1−αk (5 f (xk−1)+ εk)]

xk = ΠRn×R+

[
υk−β

g+ψk,ϕk
(υk)

‖dk‖2 dk

]
for all k ≥ 1,

(4.16)

where deterministic parameter β being 0 < β < 2.

For algorithm (2.2) we have already showed that the initial point, x0 does not affect the convergence

properties. But for implementation purposes x0 ∈ Rn+1 is selected randomly with an arbitrary distribution.

For this application we do not take into account noise accompanying the gradient of f since the objective

function has a simple linear form. Hereby the gradient vector is5 f (x) =
[

0 . . . 0 1

]T

for all x.

The first step of the iteration, k is taking a gradient step using the objective function and reaching an

intermittent point υT
k =

[
υk,h υ

+
k,ϑ

]
where υ

+
k,ϑ = max{υk,ϑ ,0} . Then the feasibility violation function
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is calculated using intermittent point as follows; g+ψk,ϕk
(υk) = max

{
gψk,ϕk (υk) ,0

}
. Therefore the feasibility

violation function has the form of f (x) = max
z∈Z

φ (x,z) that arises in a variety of contexts in optimization

applications with Z being a compact subset of Rmand φ : Rn × Z 7→ R being continuous and such that

φ (x,z) : Rn 7→ R is convex for each z ∈ Z. Danskin’s Theorem (Proposition 4.5.1, Bertsekas et al. (2003))

provides information about the derivatives of a function in preceding stated form. According to Danskin’s

Theorem if φ (x,z) is differentiable with respect to x for all the points of the maximizing set z∈ Z0(x), where

Z0 (x) =
{

z̄ : φ (x, z̄) = max
z∈Z

φ (x,z)
}
,

then the subdifferential of f (x) is given by

∂ f (x) = conv{∇xφ (x,z) : z ∈ Z0 (x)} .

And consequently the subdifferential of feasibility violation function is

∂g+ψ,ϕ (x) =
{

α∂gψ,ϕ (x) | α ∈ [0,1] , i = 1, . . . ,n+1
}
.

Hence the direction to decrease the feasibility violation at kth intermittent point υT
k =

[
υk,h υ

+
k,ϑ

]
is

chosen as dk ∈ ∂g+ψk,ϕk
(υk) where convex hull containing

∂g+ψk,ϕk
(υk) =



 2U(ψk)
T U(ψk) 0

0 0


 υk,h

υ
+
k,ϑ

−
 2U(ψk)y(ϕk)

1


if gψk,ϕk (υk)> 0,

α


 2U(ψk)

T U(ψk) 0

0 0


 υk,h

υ
+
k,ϑ

−
 2U(ψk)y(ϕk)

1




α ∈ [0,1] , if gψk,ϕk (υk)≤ 0.

We consider the following nominal values for y and u that are also used in §7.5 Robust Identification
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example of Ghaoui and Lebret (1997):

u =

[
1 2 3

]T

, y =
[

4 5 6

]T

For all three version of the problem each realization of perturbation leads to a specific quadratic con-

straint gψ,ϕ (h,ϑ) . Therefore the elements of bounded disturbance sets defined by {
∥∥∥∥[ ψ,ϕ

]∥∥∥∥ ≤ ρ},

{‖ψ‖ ≤ ρ,‖ϕ‖ ≤ ρ}, {‖ψ‖
∞
≤ ρ,‖ϕ‖ ≤ ρ}, where ρ ≥ 0 generate an infinite collection of constraints. We

generated the random noise accompanying the input and output within the bounded sets as defined above.

Computational algorithms that rely on repeated random sampling to obtain numerical results should have

enough samples to inspect the performance of the method. Therefore for the sake of having enough path to

represent the performance of the algorithm we ran Monte Carlo simulation of algorithm for 95% confidence

interval. We created in total of 101 paths for each ρ value.

For comparison purposes we solved the problems by implementing ordinary subgradient method onto

the equivalent formulations (4.7), (4.9), and the upper bound formulation (4.11). Additionally the algorithm

results are compared with respect to ordinary subgradient algorithm and related comparisons and statististics

are presented in Table 4.1 and Table 4.2 1 . Subgradient algorithm solutions are used as benchmarks.

Subgradient algorithm took the average solution vector of MonteCarlo runs and used it as initial point.

Although subgradient algorithm generally stabilized after about 800 iterations, we ran a constant iteration

cycle of 5000. And we kept track of the function values as well as the solution points. And we used the

best function value to compare it with random projection algorithm’s converged function value. The error is

calculated as function value difference between algorithm solution and subgradient algorithm. 2. Stepsize

of the algorithm is defined as αk = a/kb, k being the number of iteration of algorithm which is increased

as the bound on the perturbations is increased by 100×ρ2. Although the input norm intervals were chosen

densely due to representation purposes we only present the integer values of ρ .

The performance of proposed random projection algorithm (RPA) (2.2) for problems (4.6), (4.8) and

(4.10) using stepsize αk = 1/k0.75 with respect to subgradient algorithm (SA) are presented in figures 4.1,

4.2, 4.3 for ρ ≤ 5.

The Random Projection Algorithm performance for stepsize αk = 1/k0.95 is also presented for ρ ≤ 10

1Residual = ‖Uh− y‖+ρ

∥∥∥∥[ h
1

]∥∥∥∥
2Error Residual = Frandom projection algorithm−Fsubgradient algorithm
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below. As it can be seen the algorithm function values are closely follow the Subgradient Algorithm function

values. And for 95% confidence interval the converged function values of RPA do not vary much although

for each Monte Carlo run a different initial point and a random constraint path were chosen.

4.3.5 Figures and Tables
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Figure 4.1: RPA vs. SA
αk = 1/k0.75

‖ψ,ϕ‖ ≤ ρ
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Figure 4.2: RPA vs. SA
αk = 1/k0.75

‖ψ‖ ≤ ρ,‖ϕ‖ ≤ ρ
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Figure 4.3: RPA vs. SA
αk = 1/k0.75

‖ψ‖
∞
≤ ρ,‖ϕ‖ ≤ ρ
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Figure 4.4: RPA vs. SA
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Table 4.1: Function Value Comparison

αk = a/kb ρ 1 2 3 4 5 6 7 8 9 10
αk = 1/k0.75 falg

a 5.588 8.498 10.561 12.122 15.385 15.415 16.671 19.089 20.925 22.398
fsg

b 4.33 7.028 9.375 11.104 11.979 13.814 15.246 16.312 17.364 18.406
αk = 1/k0.95 falg 5.423 7.969 10.097 12.536 14.523 15.651 16.829 18.713 20.102 21.236

fsg 4.329 7.092 9.577 10.792 12.384 13.52 15.245 16.313 17.364 18.405
αk = 10/k0.75 falg 6.449 10.587 12.208 13.537 16.58 18.418 21.887 21.415 22.793 26.347

fsg 4.329 7.14 9.577 11.128 12.309 13.242 15.246 16.313 16.998 18.120
αk = 10/k0.95 falg 5.809 8.596 11.137 13.319 15.504 16.081 17.366 19.114 21.048 22.167

fsg 4.329 6.99 9.578 10.358 12.069 14.156 15.239 16.313 17.364 18.406
αk = 100/k0.75 falg 6.164 10.714 15.355 17.403 23.241 25.295 28.05 26.689 30.846 39.559

fsg 4.329 7.0129 9.319 10.353 13.028 13.526 15.246 16.105 17.364 18.405
αk = 100/k0.95 falg 6.077 10.921 13.953 17.203 20.215 20.19 22.242 22.965 25.254 26.331

fsg 4.329 7.084 9.318 10.343 12.356 14.155 15.245 15.824 17.364 18.406

aAverage function value based on 101 simulation paths.
bOrdinary subgradient algorithm function value for problem, 5000 iterations
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Table 4.2: Algorithm Deviation Statistics from Subgradient Algorithm

αk = a/kb ρ 1 2 3 4 5 6 7 8 9 10
αk = 1/k0.75 Errave

a 1.258 1.471 1.186 1.018 3.379 1.6 1.426 2.77 3.56 3.98
StdDevb 1.783 2.43 2.72 2.106 5.514 2.449 1.936 4.626 6.065 7.363

αk = 1/k0.95 Errave 1.094 0.876 0.519 1.744 2.138 2.1309 1.584 2.399 2.737 2.83
StdDev 2.135 1.684 2.055 2.833 2.707 3.847 2.181 3.687 3.962 3.717

αk = 10/k0.75 Errave 2.119 3.446 2.631 2.409 4.269 5.176 6.641 5.103 5.795 8.227
StdDev 2.186 6.46 4.726 3.769 6.675 7.511 11.128 7.388 8.469 28.155

αk = 10/k0.95 Errave 1.48 1.605 1.559 2.962 3.434 1.926 2.126 2.801 3.684 3.761
StdDev 2.071 2.077 4.007 7.585 5.952 3.354 3.769 3.508 5.644 4.8

αk = 100/k0.75 Errave 1.834 3.588 6.036 7.049 10.213 11.769 12.804 12.584 13.482 21.253
StdDev 2.378 4.308 9.558 7.174 13.94 15.449 24.743 15.856 16.21 24.033

αk = 100/k0.95 Errave 1.748 3.837 4.634 6.86 7.859 6.034 6.996 7.141 7.889 7.926
StdDev 1.782 4.817 7.267 9.942 17.269 9.312 9.205 9.08 12.508 9.836

aError Average is defined as average function value difference between random projection algorithm and subgradient algo-
rithm

bStandard Deviation of Error
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Chapter 5

STOCHASTIC CONVEX SET INTERSECTION PROBLEM:
RANDOM FEASIBILITY PROJECTION ALGORITHM

5.1 Introduction

Convex feasibility problem has broad applicability in diverse areas of mathematics and physical sciences.

The mathematical formulation of the convex feasibility problem in N-dimensional euclidean space is as

follows.

Find any x ∈ X such that,

X = ∩M
i=1Xi for all Xi ∈ Rn.

This problem originally emerged with finding a starting feasible point in simplex algorithm for linear

programming problems but we can trace back the roots of the problem even earlier than that. Cimmino’s

famous algorithm, Cimmino (1938), is considered to be the ancestor of feasibility problem. He considers

a system of linear algebraic equations Ax = b where A is a nonsingular real n× n matrix and b ∈ Rn. If

aT
i = [ai1,ai2 . . . ,ain] denotes the ith row of A, the solution point x∗ is the unique intersection point of the n

hyperplanes defined as

〈ai,x〉= bi, i = 1,2, . . . ,n.

The algorithm takes a step by reflecting the iterate with respect to the hyperplanes

x(k+1)
i = x(k)+2

bi−〈ai,x(k)〉
‖ai‖2 ai.

The next iterate is constructed by convex weights m1, . . . ,mn multiplied by each reflection point, x(k+1)
i .

Cimmino showed that the iterates {x(k)} converges to a solution even in the case of a singular but consistent

system provided that rank(A) ≥ 2. In the singular case, Cimmino obtains a bound on the relative error in
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the Euclidean norm, showing the linear rate of convergence of his method. One important aspect of Cim-

mino’s algorithm is that even if the linear system is inconsistent the sequence {x(k)} converge to a weighted

least-squares solution. Polish mathematician Kaczmarz (1993) published a similar approach a year before

Cimmino. In his method, the current approximation x(k) is orthogonally projected onto the hyperplanes

sequentially. The projection onto the nth hyperplane is taken as the new iteration x(k+1). The sequence gen-

erated by this method converges to the solution of Ax= b as k→∞. The methods of Cimmino and Kaczmarz

are closely related. Then the progress by Cimmino and Kaczmarz is further improved to find a point which

satisfies a finite number of halfspaces defined by linear inequalities. The ”feasible point” is used as initial

iteration point for Simplex algorithm. Solving the linear feasibility problem in this context was given by

Agmon (1954) and Motzkin and Schoenberg (1954). The projection algorithms, which were referred as

relaxation algorithms by Agmon (1954) and Motzkin and Schoenberg (1954) were used to find a starting

feasible point for system of linear inequalities in order to initialize the simplex algorithm. Generalizations

for feasibility problem onto convex sets in real n-dimensional spaces were first given in Eremin (1969) and

Jakubowich (1966). The classical projection method for the case of finite intersecting closed convex sets in

a real Hilbert space was first introduced in Bregman (1965) and Bregman (1967). He showed that, given an

arbitrary starting point x0, the sequence generated by the projection algorithm converges weakly to a point in

nonempty feasible set. The scheme that uses varying weighted averages of relaxed projections onto approx-

imating halfspaces by Flåm and Zowe (1990) is worth mentioning too. A complete and exhaustive survey

work on algorithms for solving convex feasibility problem is given by Bauschke and Borwein (1996).

The most frequently used technique to solve convex feasibility problem is algorithmic projection to gen-

erate a sequence converging to the any point of solution set. Projection operation onto the sets is the key

element of the algorithms defined. The sets can be simple so that the projection onto set Xi can be calculated

explicitly. In case projecting onto set Xi is not possible then an approximating superset of Xi usually in the

form of lower level set of the original set is used. Some of the application fields are as follows.

• Approximation theory where usually sets are closed subspaces with applications in linear prediction

theory, partial differential equations (Dirichlet problem), complex analysis (Bergman kernels, confor-

mal mappings), Deutsch (1992).

• Discrete image reconstruction and signal restoration models where sets are halfspaces or hyperplanes

with applications in medical imaging, radiation therapy treatment planning, electron microscopy, Cen-
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sor (1988), Trussell and Civanlar (1984), Censor and Herman (1987) .

• Continuous image reconstruction models where the approximating superset is usually an infinite-

dimensional Hilbert space with applications in signal processing, computerized tomography, Her-

mann (1980), Herman (1995), Youla and Webb (1982), Censor and Herman (1987) Oskoui-Fard and

Stark (1988), Eggermont et al. (1981).

• Subgradient algorithms where some of the sets are approximated through a superset with applications

in solution of convex inequalities, minimization of convex nonsmooth functions, Censor and Lent

(1982), Shor et al. (1985), Dem’Yanov et al. (1985).

We explored an algorithmic approach to solve both consistent and inconsistent convex feasibility prob-

lems for closed convex uncertain sets. We got inspiration from Nedić (2010). But our focus is on uncertain

nature of sets and finding a feasible point using a random subcollection of closed, convex uncertain sets. For

this objective we consider a stochastic optimization problem of minimizing an expected proximity function

over a collection of closed, convex sets. We would like to show that the proposed algorithm converge to

a point in the solution set when solution set is nonempty. In case of inconsistent feasibility problem i.e.

the intersection of closed convex constraint sets being empty the algorithm minimizes a weighted proxim-

ity function. The projection onto a subcollection of sets approach can be viewed as somewhere between

random implementation of alternating projection method and parallel projection method. But our method is

not deterministic, the algorithm that we propose utilizes random projections. In general sense, our work in

this chapter is related to convex feasibility problems resulting from random sampling Alamo et al. (2009),

Calafiore (2010).

For numerical example we solved a signal deconvolution problem, which is an estimation problem. It is

mainly implemented for recovery of original images, which has been passed through a gaussian blur and

further corrupted by additive noise. Image/signal recovery problem is to recover input vector h from the

observation of data signals, x. It is fundamentally an inverse problem in which an original signal is inferred

from the observed signal. It has wide spectrum of applications such as ultrasonic imaging, nondestructive

testing, digital radiology. There is extensive amount of literature on image recovery applications Andrews

and Hunt (1977), Capricelli and Combettes (2007), Combettes (1997), Combettes (1996).

The earlier versions of image recovery algorithms share the common objective of producing a solution
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consistent with a collection of affine or affine inequality constraints. But many useful constraints encoun-

tered in practice are nonaffine. Therefore the extension from affine sets to convex set formulations broadened

the applicability of feasibility algorithms. The serial projections onto convex sets (PCOS) became popular

and had been introduced in image reconstruction and image recovery by Lent and Tuy (1981) and Youla

and Webb (1982). The convex feasibility problem is a central problem in applied mathematics as finding

a common point of closed and convex sets or solving a system of convex inequalities as in Bauschke and

Borwein (1996), Censor (1984) and Combettes (1993). The fundamental concepts of Fejeŕ-monotocity, ad-

missibility, nonexpansive mapping, and bounded regularity were introduced to the field of convex feasibility

by the pioneer works of Gubin et al. (1967) and Browder (1967). Gubin et al. (1967) have established the

first convergence rate result assuming that the intersection set has nonempty interior. In image recovery

problems spatial and spectral information can be incorporated in the form of convex sets but usually car-

ries uncertainty that are characterized by estimated statistical values. Therefore in most cases even the sets

are uncertain. Our method is a novel approach where randomly chosen batches of an arbitrary collection

{Xi, i ∈M } of nonempty, closed, convex uncertain sets in Rn are to be activated at each iteration as opposed

to being activated in periodic order as in Browders admissable control. Sets that we define are not estimated

using statistical models.

The sets we consider might carry uncertainty due to inaccurate or imprecise spatial and spectral infor-

mation. For example the sets that were used in image restoration work by Youla and Webb (1982) mostly

depend on the attributes of the original signal. The sets used in Youla and Webb (1982) are amplitude

bounds, region of support, band-limitedness, energy that are not known exactly. The attributes of the noise

associated with sets in Combettes and Trussell (1991) are also based on predicted stochastic information

and confidence levels. If the stochastic information carries errors then the sets assumed would not represent

the real sets. So you might get inconsistent sets although in reality the intersection set is nonempty. Or

due to conservative estimation of confidence intervals the sets may not intersect. But in our formulation we

have only a bound on the uncertainty parameter. Each realization within the bounded disturbances has equal

chance of occurence.

Notation: A vector is a column vector. We use xT to denote the transpose of a vector x, and ‖x‖ to denote

the standard Euclidean norm. Minimum distance of a vector x̄ to a closed convex set X is dist(x̄,X) . The

projection of a vector x̄ on a closed convex set X is represented as Π [x̄] = argminx∈X ‖x− x̄‖2 . Probability
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distribution of a random variable Z and expectation of a random variable Z are indicated by Pr [Z] and E [Z]

respectively. We often abbreviate almost surely by a.s..

5.2 Problem Formulation and Algorithm Description

We consider the following convex constrained minimization problem for a collection {Xi, i ∈M } of

nonempty, closed, convex and possibly uncertain sets in Rn. We would like to use an iterative algorithm to

find a common point for the sets when such a point exists. Also, we would like to determine if a solution

does not exist based on the behavior of the algorithm.

determine a point such that x ∈ X , X , (∩i∈M Xi) ,

with Xi = {x ∈ Rn,ω ∈ Rn,‖ωi‖ ≤ ρi | gi (x,ωi)≤ 0} ∀i ∈M ,

where ω is a bounded random variable. This problem is related to the following stochastic optimization

problem of expected average residual of x with respect to sets Xi. It is called the expected weighted proximity

function, R : Rn→ R+

minimize R(x) =
1
2 ∑

i∈M
wiE

[
‖x−ΠXi [x]‖

2
]

subject to x ∈ Rn,

(5.1)

where wi is the weight of a particular set Xi, within the collection of nonempty, closed and convex sets,

M = {1, . . . ,m, . . .M}. Weights, wi are chosen to be strictly convex such that

∑
i

wi = 1 and wi > 0 ∀i ∈M .

The number of sets are finite but sets might carry uncertainty due to inaccurate or imprecise spatial and

spectral information, stochastic perdiction etc.

The smaller the value R (x) is, the closer the point x is satisfying all the properties in weighted least-

squares sense. In other words the function R (x) measures the degree of unfeasibility.

We assume that the projection on each set Xi is available in a closed form. Such sets are hyperplanes,
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balls and the sets given by linear inequalities.

Let X∗ and R∗ denote the optimal set and the optimal value of problem (5.1). So X∗ is the set of

minimizers of R. X∗ is the set of weighted least squares feasible points in consistent case. The solution set is

defined as X∗=∩M
i=1Xi for the consistent case where R(x∗)= 0 for all x∗ ∈X∗. And for the inconsistent case

X∗ is the set of minimizers where R∗ 6= 0. We do not necessarily require ∩M
i=1Xi, 6= /0. When incompatible

constraints are present then X∗ = ∩M
i=1Xi = /0 or it coincides with the set of stationary points of R(x). Then

the weighted average of the squares of distances to constraint sets does not take the value of zero. The

proximity function is defined as weighted least squares feasibility problem, which indicates the degree of

unfeasibility of a signal, x. When consistency is not certain then the goal is to find the minimum of expected

proximity function (5.1) where

X∗ = {x |R (x∗)≤R (x)} ∀x ∈ Rn.

We consider a stochastic random projection algorithm. At time k, we have an iterate xk−1 and a random

subcollection of m sets are either observed or chosen. The uncertain sets within the batch of m sets may

carry additive noise realizations of random variables, ωik . The iterate process is given by

xk = xk−1−αk

(
xk−1−

m

∑
i=1

wiΠXωik
[xk−1]

)
for all k ≥ 1, (5.2)

where αk > 0 is a deterministic stepsize. Unless information about solution x∗ being closer to a certain set is

available, we suggest using equal weights for each set. The initial point x0 ∈ Rn is selected randomly. The

random variables ωik are random samples of ωi that are drawn from bounded noise sets defined by ‖ωi‖≤ ρi

at iteration k.

We would like to point out some features of the expected weighted proximity function (5.1). Firstly, we

define a determinate function. If we knew exactly which realizations of random variables, ωi are going to

be revealed, the function R(x,ωi) is defined as follows

R(x,ωi) =
1
2

m

∑
i=1

wi

∥∥∥x−ΠXωi
[x]
∥∥∥2

for all x ∈ Rn, ‖ωi‖ ≤ ρi, (5.3)

where ∑
m
i wi = 1 and wi > 0. R(x,ωi) is convex and differentiable in x for every realization of ωi.
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The proximity function for every batch of closed, convex sets, we define one R(x,ωi) where ‖ωi‖ ≤ ρi.

Therefore we can claim the following relation between functions (5.1) and (5.3)

R (x) = E [R(x,ωi)] . (5.4)

The gradient of R(x,ωi) is

∇xR(x,ωi) =
m

∑
i=1

wi

(
x−ΠXωi

[x]
)

for x ∈ Rn. (5.5)

The gradient of R (x) is

∇R (x) = E [∇xR(x,ωi)] =
m

∑
i=1

wi (x−E [ΠXi [x]]) for x ∈ Rn. (5.6)

Now we would like to introduce the assumptions that are used throughout the chapter for random feasi-

bility projection algorithm.

We assume the following for the sets Xi.

Assumption 5. The sets defined as

Xi = {x ∈ Rn,ω ∈ Rn,‖ωi‖ ≤ ρi | gi (x,ωi)≤ 0}

are closed and convex for every realization of bounded noise ωi and for each i ∈M .

For the random sequence of sets chosen and noise realizations we assume the following.

Assumption 6. At each iteration a random subcollection of m sets is either chosen or revealed out of M

sets. For the sets that carry uncertain additive noise, disturbance realizations of ωit are going to be revealed

at each step. Both the chosen sets mt and revealed noise component ωit are independent of past as well as

the initial point x0. We let Fk denote the history of the method run up to time k,

Fk = {x0, (mt , 1≤ t ≤ k), (ωit , 1≤ t ≤ k)} for k ≥ 1,

with F0= {x0}.
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This concludes the assumptions further used in the text for the proposed algorithm for the optimization

problem (2.1) with convex inequality constraint sets.

Next we will introduce a few well-known lemmas for Euclidean projection operation.

Lemma 11. The non-expansive property of Euclidean projection operation on a closed convex set Y ⊆ Rn

can be shown as

‖ΠY [x]− z‖ ≤ ‖x− z‖ for all z ∈ Y, and x ∈ Rn (5.7)

and

(ΠY [x]−ΠY [z])
T (x− z)≥ ‖ΠY [x]−ΠY [z]‖2 for any x, z ∈ Rn. (5.8)

The proofs of these results are presented in the book by Facchinei and Pang (2003) (Vol. I, page 77).

Another variation of the non-expansive property of Euclidean projection operation is presented in the book

by Polyak (1987) (page 121).

Lemma 12. For a closed convex set Y ⊆ Rn

‖ΠY [x]−ΠY [z]‖ ≤ ‖x− z‖ for any x,z ∈ Rn. (5.9)

The strictly non-expansive property of Euclidean projection operation is as follows.

Lemma 13. For a nonempty closed convex set Y ⊆ Rn

‖ΠY [x]− z‖2 ≤ ‖x− z‖2−‖x−ΠY [x]‖2 for all z ∈ Y, x ∈ Rn. (5.10)

The proof of this result can be found in Facchinei and Pang (2003) (Vol. II, 12.1.13 Lemma, page 1120).

Since the projection operation is a nonexpansive mapping, the set of all fixed points, which is defined by

FixT = {x ∈ Rn : x = Π[x]}, (5.11)

is always closed and convex. The proof of this result can be found in Goebel and Kirk (1990) (Lemma 3.4).

In order to investigate the random characteristics of sequences, the following supermartingale conver-

gence result due to Robbins and Siegmund (1971) (see also Polyak (1987), Lemma 11, page 50) is used.
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Theorem 13. Let vk, uk, ak, bk be sequences of nonnegative random variables that may be dependent and

let

E [vk+1 |Fk]≤ (1+ak)vk−uk +bk a.s. for all k ≥ 0,
∞

∑
k=0

ak < ∞ a.s. ,
∞

∑
k=0

bk < ∞ a.s.,

where Fk denotes the collection v0, ...,vk, u0, ...,uk, a0, ...,ak, b0, ...,bk. Then

lim
k→∞

vk→ v a.s. ,
∞

∑
k=0

uk < ∞ a.s.,

where v≥ 0 is some random variable.

Both R (x) and R(x) have Lipschitz gradients with constant L = 1 such that

‖∇R(x)−∇R(y)‖ ≤ ‖x− y‖ for all x,y ∈ Rn.

‖∇R (x)−∇R (y)‖ ≤ ‖x− y‖ for all x,y ∈ Rn. (5.12)

Based on relations presented in Polyak (1987) (section 1.1.3, page 7 ) we can claim that

R (x)≤R (y)+∇R (y)T (x− y)+
1
2
‖x− y‖2 ,

R (x)≥R (y)+∇R (y)T (x− y)− 1
2
‖∇R (x)−∇R (y)‖2 ,

(y− x)T (∇R (y)−∇R (x))≤ ‖y− x‖2 ,

(y− x)T (∇R (y)−∇R (x))≥ ‖∇R (y)−∇R (x)‖2 for all x,y ∈ Rn.

(5.13)

We concluded presenting the relations that are going to be used to show the convergence properties of

algorithm (5.2).
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5.3 Convergence Results for Random Convex Feasibility Algorithm

In this section we would like to show that the iterate sequences {xk} obtained by proposed algorithm (5.2)

is converging to the solution of problem (5.1) almost surely for a diminishing stepsize αk > 0 such that

∞

∑
k=1

αk = ∞ and
∞

∑
k=1

α
2
k < ∞.

And we are going to investigate existence of solution set.

5.3.1 Preliminary Results

We start with proving the converging behavior of R (xk) and boundedness of ‖∇R (xk−1)‖.

Proposition 14. Let Assumptions 5 -6 hold. The stepsize is not summable but square summable such that

∑
∞
k=1 αk = ∞ and ∑

∞
k=1 α2

k < ∞. Then, for the iterates {xk} generated by method (5.2), we have almost surely

lim
k→∞

R (xk) = r for a random scalar r ≥R∗ a.s.

liminf
k→0

‖∇R (xk−1)‖= 0 a.s.

Proof. We are going to start with relating two consecutive iterates using relation (5.13) as follows

R (xk)≤R (xk−1)+∇R (xk−1)
T (xk− xk−1)+

1
2
‖xk− xk−1‖2 for all k. (5.14)

And when we use the algorithm (5.2) the difference between two iterations using a random batch of m

sets each time is

xk− xk−1 =−αk

(
xk−1−

m

∑
i=1

wiΠXωik

)
. (5.15)

The gradient of R(x,ωi) for randomly chosen sets of m is

∇xR(x,ωi) = x−
m

∑
i=1

wiΠXωi
[x] for x ∈ Rn

and for R (x) is

∇R (x) = E [∇xR(x,ωi)] = x−
m

∑
i=1

wiE
[
ΠXωi

[x]
]

for x ∈ Rn,
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where
m

∑
i=1

wi = 1.

Therefore the iterate relation (5.15) for (xk− xk−1) can be written as

xk− xk−1 =−αk (∇xR(x,ωik)) for all k ≥ 1. (5.16)

For randomly chosen m sets we can write relation (5.14) as follows

R (xk)≤R (xk−1)−αk∇R (xk−1)
T

∇xR(xk−1,ωik)+
αk

2

2
‖∇xR(xk−1,ωik)‖

2

We would like to remind that m sets chosen within M of them and the realizations of disturbances ωi

of uncertain sets at iteration k are independent of the past path followed. We take expectation based on

algorithm path up until iteration k and we get

E [R (xk) |Fk−1]≤R (xk−1)−αk∇R (xk−1)
T E [∇xR(xk−1,ωik) |Fk−1]

+
α2

k
2
E
[
‖∇xR(xk−1,ωik)‖

2 |Fk−1

]
.

(5.17)

From the definitions of R (x) and R(x,ωi) we have the relations below

E [∇xR(xk−1ωk) |Fk−1] = ∇R (xk−1) ,

E
[
‖∇xR(xk−1ωk)‖2 |Fk−1

]
= 2R (xk−1) for any x ∈ Rn.

Using relations above in inequality (5.17), we get

E [R (xk) |Fk−1]≤
(
1+αk

2)R (xk−1)−αk ‖∇R (xk−1)‖2 .

The supermartingale convergence result due to Robbins and Siegmund (1971) is applicable to the in-

equality above since R (xk) ≥ 0 for all x. Recall that the stepsize is square summable, ∑
∞
k=1 α2

k < ∞. Then

we can claim that R (xk)→ r for random variable r ≥ 0 almost surely. Also ∑
∞
k=1{αk ‖∇R (xk−1)‖2}< ∞.

Since the stepsize we choose is not summable, ∑
∞
k=1 αk = ∞, we have liminfk→0 ‖∇R (xk−1)‖ = 0 almost

surely.
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5.3.2 Almost Sure Convergence Result

In this section, we would like to show that the proposed algorithm converges to the solution set almost surely

for not summable but square summable stepsize. As it is indicated in the next proposition, the algorithm has

almost sure convergence.

Proposition 15. In addition to Assumptions above, lets assume that the optimal set X∗ is nonempty. Then,

the seqeunce {xk} generated by method (5.2), converges almost surely to a random point in the set X∗ .

Proof. Let z be any point in X∗. We are going to start by writing the distance between any iterate point

xk fork ≥ 1 and a random point z in the solution set using the definition of algorithm (5.2).

‖xk− z‖2 =

∥∥∥∥∥xk−1− z−αk

(
xk−1−

m

∑
i=1

wiΠXωik
[xk−1]

)∥∥∥∥∥
2

= ‖xk−1− z‖2 +α
2
k

∥∥∥∥∥xk−1−
m

∑
i=1

wiΠXωik
[xk−1]

∥∥∥∥∥
2

−2αk

(
xk−1−

m

∑
i=1

wiΠXωik
[xk−1]

)T

(xk−1− z) .

(5.18)

Since ∇xR(xk−1,ωik) = xk−1−∑
m
i=1 wiΠXωik

[xk−1] where ∑
m
i=1 wi = 1, equality (5.18) can be written as

‖xk− z‖2 = ‖xk−1− z‖2 +α
2
k ‖∇xR(xk−1,ωik)‖

2−2αk (∇xR(xk−1,ωik))
T (xk−1− z) . (5.19)

We already showed that E [∇xR(xk−1ωk) |Fk−1] = ∇R (xk−1) and E
[
‖∇xR(xk−1ωk)‖2 |Fk−1

]
=

2R (xk−1) .

When we take the expectation of inequality (5.19) conditioned on the past path until Fk−1, we get

E
[
‖xk− z‖2 |Fk−1

]
= ‖xk−1− z‖2 +2α

2
k R (xk−1)−2αk∇R (xk−1)

T (xk−1− z) . (5.20)

Since R (xk) is convex, we have

∇R (xk−1)
T (xk−1− z)≥R (xk−1)−R (z) .
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We can use above inequality in (5.20) and we get

E
[
‖xk− z‖2 |Fk−1

]
≤ ‖xk−1− z‖2 +2α

2
k R (xk−1)−2αk (R (xk−1)−R (z)) . (5.21)

In Proposition 14 we showed that R (xk)→ r for random variable r ≥ 0 almost surely. Therefore R (xk)

is bounded a.s. And the stepsize we choose is square summable so ∑
∞
k=1 α2

k < ∞.

Therefore ∑
∞
k=1 α2

k R (xk−1) < ∞ almost surely. Since z be any point in X∗, R (xk−1)−R (z) ≥ 0. The

inequality (5.21) satisfies the requirements of Supermartingale Convergence Theorem 13. Therefore the

nonnegative random sequence of {‖xk− z‖} converges almost surely to a random variable v ≥ 0 for any

z ∈ X∗. In other words the sequence created by the algorithm (5.2) converges to a point z ∈ X∗. As a result

of the supermartingale convergence theorem

∞

∑
k=1

αk (R (xk−1)−R (z))< ∞ a.s.,

meaning liminfk→∞ (R (xk−1)−R (z)) = 0 almost surely since the stepsize we choose is not summable,

∑
∞
k=1 αk = ∞. Since z is any point in the solution set R (z) = R∗. The function R (x) is a continous

function. Since the sequence {‖xk− z‖} is convergent almost surely, the sequence created by the algorithm

(5.2) {xk} is bounded. Therefore we can claim that lim
k→∞

{xk}→ z and z is a random point in the set X∗. As a

result, the sequence generated by (5.2) {xk} converges and its limit point lies in X∗ almost surely.

5.3.3 Optimal One-Step Stepsize

In this section we want to find an optimal relaxation parameter at iteration k in order to bring xk closer to

any point z ∈ X∗. The stepsize αk in algorithm (5.2) can be chosen in the interval of [ε,2− ε]

‖xk− z‖2 = ‖(xk− xk−1)+(xk−1− z)‖2 = ‖xk− xk−1‖2 +‖xk−1− z‖2 +(xk− xk−1)
T (xk−1− z)

= α
2
k

∥∥∥∥∥−xk−1 +
m

∑
i=1

wiΠXωik
[xk−1]

∥∥∥∥∥
2

+‖xk−1− z‖2−2αk

(
xk−1−

m

∑
i=1

wiΠXωik
[xk−1]

)T

(xk−1− z) .

(5.22)

The equation above is quadratic in αk. If any point z ∈ X∗ was known in advance we would be able to find

an optimal stepsize. Since the target of convex feasibility algorithm (5.2) is to find the elements of X∗ if it

73



is nonempty, the best possible option for stepsize can not be pinpointed. But we are going to try to find a

range in ε ≤ αk ≤ 2− ε for ε > 0.

Proposition 16. The optimal stepsize for Algorithm (5.2) is α∗k ≥ 1.

Proof. The equality in (5.22) is minimized for

α
∗
k =

(
xk−1−∑

m
i=1 wiΠXωik

[xk−1]
)T

(xk−1− z)∥∥∥−xk−1 +∑
m
i=1 wiΠXωik

[xk−1]
∥∥∥2 . (5.23)

We can write the numerator term of above equality as follows

(
xk−1−

m

∑
i=1

wiΠXωik
[xk−1]

)T

(xk−1− z) =(
xk−1−

m

∑
i=1

wiΠXωik
[xk−1]

)T (
xk−1−

m

∑
i=1

wiΠXωik
[xk−1]+

m

∑
i=1

wiΠXωik
[xk−1]− z

)
=∥∥∥∥∥xk−1−

m

∑
i=1

wiΠXωik
[xk−1]

∥∥∥∥∥
2

+

(
xk−1−

m

∑
i=1

wiΠXωik
[xk−1]

)T ( m

∑
i=1

wiΠXωik
[xk−1]− z

)
.

Therefore the optimal stepsize is

α
∗
k = 1+

(
xk−1−∑

m
i=1 wiΠXωik

[xk−1]
)T (

∑
m
i=1 wiΠXωik

[xk−1]− z
)

∥∥∥−xk−1 +∑
m
i=1 wiΠXωik

[xk−1]
∥∥∥2 .

Due to non-expansive property of Euclidean projection operation (5.8) and convexity of euclidean norm

we have (
m

∑
i=1

wiΠXωik
[xk−1]− z

)T

(xk−1− z)≥

∥∥∥∥∥ m

∑
i=1

wiΠXωik
[xk−1]− z

∥∥∥∥∥
2

.

When we open up the inequality above we get

(
m

∑
i=1

wiΠXωik
[xk−1]− z

)T

(xk−1− z)

∥∥∥∥∥ m

∑
i=1

wiΠXωik
[xk−1]− z

∥∥∥∥∥
2

=(
xk−1−

m

∑
i=1

wiΠXωik
[xk−1]

)T ( m

∑
i=1

wiΠXωik
[xk−1]− z

)
≥ 0.
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Therefore the optimal stepsize for a single iteration is

α
∗
k ≥ 1.

We have shown that the algorithm converges to the solution set if we use not summable but square

summable stepsize. Based on result above the best stepsize option to ensure bringing a single iteration xk

point closest to any point z in the solution set X∗ needs to be greater than 1.

5.3.4 Convergence Rate for Constant Stepsize

In this subsection we are going to explore the convergence rate of the algorithm for constant stepsize. We are

going to start by building an auxiliary result that shows a bound on the function value of weighted averages.

Lemma 14. Assume that the solution set X∗ is nonempty. Let the sequence {xk} generated by the algorithm

(5.2). Lets define the weighted average as

x̂t =
1
St

t

∑
k=1

αkxk−1 with St =
t

∑
k=1

αk for any t ≥ 1.

Then the bound is

E [R (x̂t)]≤
1
St
E
[
dist2 (x0,X)

]
+

t

∑
k=1

α2
k

St
E [R (xk−1)] .

Proof. We assumed that the solution set X is nonempty. So for any z ∈ X and R (z) = 0. We start by taking

expectation of relation (5.20) conditioned on initial iteration. Then we obtain almost surely for any z ∈ X

and k ≥ 1,

E
[
‖xk− z‖2 |F0

]
≤ E

[
‖xk−1− z‖2 |F0

]
+2
(
α

2
k −αk

)
E [R (xk−1) |F0] .

We rearrange the terms and sum it from k = 1 to k = t for some t ≥ 1. So we have for all z ∈ X and t ≥ 1,

2
t

∑
k=1

(
αk−α

2
k
)
E [R (xk−1) |F0]≤ ‖x0− z‖2−E

[
‖xt − z‖2 |F0

]
.

We already showed in Proposition 15 that for not summable but square summable stepsize the algorithm

(5.2) converges to a point in solution set. Therefore if we choose t large enough xt converges to a point
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z ∈ X . And we can discard the last term in the preceding inequality. Then we take total expectation and we

get

2
t

∑
k=1

(
αk−α

2
k
)
E [R (xk−1)]≤ E

[
dist2 (x0,X)

]
for all t ≥ 1.

For St = ∑
t
k=1 αk and dividing the preceding inequality by 2St , we further reach

t

∑
k=1

αk

St
E [R (xk−1)]−

t

∑
k=1

α2
k

St
E [R (xk−1)]≤

1
St
E
[
dist2 (x0,X)

]
for all t ≥ 1.

As it can be observed that the terms
αk

∑
t
k=1 αk

, k = 1, . . . , t are convex weights while R (x) is convex. If

we use average value x̂ =
1
St

∑
t
k=1 αkxk−1 then for any t ≥ 1,

E [R (x̂t)]≤
1
St
E
[
dist2 (x0,X)

]
+

t

∑
k=1

α2
k

St
E [R (xk−1)] .

The next proposition is going to provide error bounds on the performance of the algorithm (5.2) for a

constant stepsize using Lemma 14.

Proposition 17. Assume that problem (5.1) has a nonempty optimal set X∗. Let {xk} be the iterate sequence

generated by the algorithm (5.2). Also let average of iterates to be x̄t =
1
t

∑
t
k=1 xk−1 and the average of

weighted iterates to be x̂t =
1
St

∑
t
k=1 αkxk−1. If the stepsize is constant, i.e., αk = ᾱ and z ∈ X∗ the we have

the following error bound for all t ≥ 1

E [R (x̄t)]≤
1

(1− ᾱ + ᾱt)
E
[
dist2 (x0,X)

]
.

Proof. Firstly we should note that for constant ᾱ the weighted average and average of iterates are equal,

x̂t = x̄t with St = ᾱt for t ≥ 1. Let αk = ᾱ in Lemma 14 for all t ≥ 1, and we get

E [R (x̄t)]≤
1

ᾱt
E
[
dist2 (x0,X)

]
+

ᾱ

t

t

∑
k=1

E [R (xk−1)] . (5.24)
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From the convexity of the function R we have

E

[
R

(
1
t

t

∑
k=1

(xk−1)

)]
≤ 1

t

t

∑
k=1

E [R (xk−1)] .

Therefore

E [R (x̄t)]≤
1

(1− ᾱ + ᾱt)
E
[
dist2 (x0,X)

] 1
(1− ᾱ + ᾱt)

E
[
dist2 (x0,X)

]
.

From Proposition 17, for a fixed stepsize it can be deduced that the expected average iterate does not

scatter away from the solution set. Although it looks like initial point affects the bound on the function value

of expected average iterate and solution, as the number of iterations increases its contribution diminishes.

Using Proposition 17, we can provide a bound on the sum of the distances from the averages to the sets

Xωi . The expected proximity function can be written as

R (x) =
1
2

M

∑
i=1

wiPr{ω = ωi}dist2 (x,Xωi) .

Lets define the minimum possibility of choosing a set i as follows

pmin = min
1≤i≤m

Pr{ω = ωi}.

For any x ∈ Rn we have

max
1≤i≤m

dist2 (x,Xi)≤
M

∑
i=1

wi dist2 (x,Xi)≤
2

pmin
R (x) .

Due to Markov’s inequality we have

Pr{ max
i∈M

dist2 (x̂t ,Xi)≥ ε} ≤ 1
ε
E

[
max

i
dist2 (x̂t ,Xi)

]

and

Pr{ max
i∈M

dist2 (x̂t ,Xi)≥ ε} ≤ 1
ε

2
pmin

1
(1− ᾱ + ᾱt)

E
[
dist2 (x0,X)

]
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For t ≥ 1 and x = x̂, we get

E

[
max
i∈M

dist2 (x̂t ,Xi)

]
≤ 2

pmin
R (x̂t) .

We showed that when solution set X∗ is nonempty the function value monotically decreases and converges

to zero. In most basic sense maximum expected distance of average iterate to set i is bounded.
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Chapter 6

RANDOM FEASIBILITY PROJECTION ALGORITHM:
SIGNAL FEASIBILITY PROBLEM

We demonstrate the numerical behavior of our algorithm on a signal deconvolution problem, which is a

signal estimation problem. Convolution is a mathematical operation on two functions f and g, producing a

third function that is typically viewed as a modified version of one of the original functions, giving the area

overlap between the two functions as a function of the amount that one of the original functions is translated.

Computing the inverse of the convolution operation is called deconvolution.

6.1 Signal Deconvolution

The goal of this section is to find least-squares solution to a consistent/inconsistent convex set theoretic sig-

nal estimation problem. Signal estimation is to find a signal a∗ that is feasible for a collection of (Si)1≤i≤M

of sets such that

Find a∗ ∈ ∩M
i=1Si a∗ ∈ Rn, (6.1)

where Sis are closed and convex.

Convex feasibility representation has been applied to a wide range of signal processing problems such as

image enhancement Oh et al. (1993), image restoration Trussell and Civanlar (1984), image reconstruction

Herman (1979), signal deconvolution Combettes (1994) and signal recovery from bispectrum information

Cetin (1991). The survey work by Combettes (1993) presents an overview of theory and applications in this

field.

The conventional approach of set theoretic estimation problems provide solution that confirm with con-

straint sets known a priori or observed. But it fails to take into account that sets built on a priori or observed

data may carry disturbances or have erroneously predicted statistical information, which may result in incon-

sistent sets, where ∩M
i=1Si = /0. The attributes of original signal such as amplitude bound, region of support,
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band-limitedness that are used to built sets in estimation problems may not be accurate. Additionally sets

that are built using moments, spectral properties, distribution and bounds information are based on predicted

stochastic estimations. The overly conservative confidence bounds or statistical assumptions may cause in-

consistencies. Also noise pertubations in measurements or random variations in the impulse response of a

system can cause inconsistencies. For signal design problems such as Goldburg et al. (1985) the definitions

of constraint sets are left to users and this makes signal design problems more prone to inconsistent sets.

Although the algorithm we propose (5.2) looks like it is based on finite number of sets, actually when you

take into account the additive noise, u, accompanying the sets you have infinitely many options to choose

from for each set.

We solve a signal deconvolution problem, which is set theoretic signal estimation to produce a signal

h∗ that satisfies a collection of constraints. We restore blurred and noise corrupted one dimesional discrete

signal of N = 64. Essentially it is finding a signal that minimizes a weighted average of squares of the

distances to constraint sets. This problem arises in a wide range of applications in medical imaging field.

The set of signals consistent with a particular piece of information is called a property set. The set of feasible

signals is the intersection of all property sets. In some cases there is no signal h∗ that satisfies all the sets.

Then we are looking for best possible signal that minimizes the expected proximity function (5.1). When a

probabilistic description of uncertainty is not available but only the bounds on them are available then our

framework for deconvolution is useful.

The model of an linear-shift invariant (LSI) imaging system can be defined as

x = T (h)+u, (6.2)

where T is the blurring process and u is an additive noise component. This basic representation is suitable

for most of the practical applications such as low-passed Fourier transform in band-limited extrapolation and

Radon transform in tomography. A Gaussian blur is convolving an image/signal by a Gaussian function.

Gaussian blur reduces the image’s high frequency components hence it is a low pass filter. For a linear-shift

invariant (LSI) system transfer function/system response function completely describes system behavior.

Systems are linear if superposition holds and shift invariant if an input is delayed τ seconds then the output

is delayed τ seconds, but the shape of the output depends only on the shape of the input and does not change

with time.
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We solve the discrete signal deconvolution/estimation problem of a noisy discrete-time N = 64 point

signal. We estimate the original form of the input signal, h∈∩m
i Xi, {Xi | i ∈M }, which was passed through

a linear shift-invariant system and further degraded by addition of noise. We do not have a single estimate

but rather a set of possible inputs which are consistent with all the information available if such a solution set

is nonempty. Output carries noise component. The additive measurement noise is bounded. The convolution

kernel has unknown variations. No statistical apriori is needed for noise sets. The problem is

x = L∗h+u, (6.3)

where L is N×N matrix models a shift-invariant linear blur and u is a vector of bounded noise samples

with |ui| ≤ 0.15. h is the input signal and x is the output signal. There is uncertainity in the kernel of the

linear system. And there is additive measurement noise. The noise signal is bounded by a known function.

The blurring kernel is a Gaussian function with a variance of 2 samples2. We do not necessarily require

∩m
i=1Xi, 6= /0. When incompatible constraints are present then ∩m

i=1Xi,= /0. Then the weighted average of the

squares of distances to constraint sets does not take the value of zero. The expected proximity function is

defined as weighted least squares feasibility problem, which indicates the degree of unfeasibility of a signal,

a. The solution set is defined as X0 = ∩m
i=1Xi.

The pixel size of a typical digital radiography or X-ray image is 2048×2048×12, digital mammography

is 4000×5000×12 that require in the order of 200 million sets. Therefore projecting on complete collec-

tion of constraint set cyclicly or simultanously over and over again might be computationaly overwhelming.

But projecting on a random subset of constraints and estimating the close enough signal might be a fa-

vorable approach. Even if the signal feasibility problem is consistent, minimizing the proximity function

closely enough to zero function value is adequate in most cases. Randomly choosing a subcollection of sets

and projecting on them for convex feasibility problems eases the high dimensionality of data that leads to

burdensome computations. That is why we would like to test our algorithm against a noisy image/signal

recovery problem.

The nth sample of the degraded signal is given by

xn =
l

∑
k=−l

k ∗hn−k +un, (6.4)
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where original signal h = (hl, . . . ,hq) with some blurring kernel h = (t−l, . . . , tl)

A discrete-time signal may be a finitelength or an infinite-length sequence. The length of the signal is

N = 64 as in Combettes (1994).

The problem consists of m = 66 closed and convex sets, which have been used in various theoretic signal

processing applications by Combettes and Trussell (1991), Youla and Webb (1982), Levi and Stark (1983),

Trussell and Civanlar (1984). The first 64 of them, (Si)1≤i≤N are constructed based on the knowledge of

the blurring operator, L and the information that the components of the noise vector u are bounded by

|ui| ≤ 0.15. They are hyperslabs defined as

Si = {a ∈ RN | xi−ui ≤ 〈Li | a〉 ≤ xi +ui} 1≤ i≤ N, (6.5)

where Li is the ith row of L.

The projection of a signal a onto Si is given by Trussell and Civanlar (1984)

Πi =


a+
[
(xi +ui−〈Li | a〉)/‖Li‖2

]
Li

T , if 〈Li | a〉> xi +ui

a+
[
(xi−ui−〈Li | a〉)/‖Li‖2

]
Li

T , if 〈Li | a〉< xi−ui

a, otherwise.

(6.6)

The next set is constructed by using the phase angle information of original signal, h. In practical appli-

cations phase information of h is not known but it is assumed. If A denotes the discrete Fourier transform of

the signal a, the set number i = 65 is

Sm−1 = {a ∈ RN | (∀k ∈ {1, . . . ,N}) ∠A(k) = ∠H(k)} (6.7)

The projection Πm−1(a) = b of a signal a onto Sm−1 for every k in {1, . . . ,N} is as follows

B(k) =


|B(k)|cos(∠A(k)−∠H(k))exp(i∠H(k)), if cos(∠A(k)−∠H(k))> 0

0, otherwise.
(6.8)

This closed-form projection operation was given in Youla and Webb (1982).

The last set, i = 66 depends on amplitude information of original signal, h. The components of h are
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nonnegative and bounded by 12. This leads to the bounded set

Sm = {a ∈ RN | (∀k ∈ {1, . . . ,N}) 0≤ ai ≤ 12}. (6.9)

The projection of a signal a onto Sm is given by Πm(a) = b where for every i in {1, . . . ,N}

bi =


0, if ai < 0

12, if ai > 0

ai otherwise.

(6.10)

We concluded introducing the problem and the sets. Hereafter we are going to explain the details of

implementation.
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6.2 Random Projection Feasibility Algorithm Implementation

1. Initialization

(a) Read original N = 64 point discrete signal, h which is shown in Figure 6.1.

(b) Create the degraded signal by first blurring the original signal. The first step is constructing a

N = 64 point Gaussian window in the column vector w. The coefficients of a Gaussian window

are computed from the following equation.

w(n) = e
−

1
2

(
α

n
N/2

)2

where −N−1
2
≤ n ≤ N−1

2
. α is inversely proportional to the standard deviation, σ of a

Gaussian random variable where

α =
N
2σ

.

The Gaussian window vector, w is normalized and then the resulting vector is convolved with

the original signal, h. When you slide the window along the original signal, the resulting vector

is longer than the original signal by the length of the sliding window. This is called the ”edge

effect”. The center N elements are the blurred vector. Edges are discarded.

The same blurred vector can be calculated by using convolution kernel built with the gaussian

function with N = 64 discrete points and a variance of 2 samples2. We need to build the N×N

matrix L because the first i = 64 sets are based on information about this shift-invariant linear

blur matrix and bounded noise. At this point we would like to remind the definition of shift-

invariance and explain how we built the L matrix.

The Kronecker delta function is defined as follows

δ (i) =


1 if i = 0

0 otherwise.

And a shift matrix is defined as Sk = δ (i− j− k mod N). If for matrices, A and B it is the case

that AB = BA then we say that the matrix product commutes.

84



Any N×N circulant matrix product with each Sn for 1 ≤ n ≤ N commutes. A circulant matrix

is defined as A(i, j) = A(i+n mod N, j+n mod N). A circulant matrix, N×N is



a0 a1 . . . aN−1

aN−1 a0 . . . aN−2

...
...

. . .
...

a1 a2 . . . a0


When n =− j a circulant matrix is A(i, j) = A(i− j+ mod N,0). Therefore the discrete convo-

lution y = Ax can be written as

yi =
N−1

∑
j=0

A(i, j)x j =
N−1

∑
j=0

A(i− j mod N,0)x j.

Then let

h(i− j mod N) = A(i− j mod N,0).

and

yi =
N−1

∑
j=0

h(i− j mod N)x j.

We say that y is the discrete periodic convolution of h and x;

y = h∗ x.

For example the weight matrix for a 1D artificial retina filter is



1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 1 −1 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

−1 0 0 0 0 1


.

The convolution kernel is the first column of the weight matrix. The convolution/blurring kernel
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of L matrix is gaussian function with N = 64 discrete points and a variance of 2 samples2. And

by circularly shifting one element for each column we created the L64×64 matrix. By multiplying

h by L you can also get the blurred vector.

The blurred vector is further degraded by additon of random bounded noise of |ui| ≤ 0.15. The

resulting degraded signal is shown in Figure 6.2.

2. Monte Carlo Simulations

Computational algorithms that rely on repeated random sampling to obtain numerical results should

have enough samples to inspect the performance of the method. The algorithm we propose has also

two random sampling in two segments of the process. First the sets Xi, i = 1, . . . ,64 contain random

noise elements. While projecting on them at each iteration there is going to be one random realization

of ui for each set. Second source of randomness is choosing a random subcollection of m sets at each

iteration. We want to mention that for comparison purposes we also project on entire collection of

sets as if it is like a parallel projection method, PPM. We gradually decreased the number of sets

chosen. Our goal is to measure the trade off between iteration number and convergence rate while

we decrease the number of chosen sets. In order to have 95% confidence interval on our results we

followed a Monte-Carlo approach. And for each scenario we rely 101 different convergence paths on

repeated random sampling.

3. Algorithm Convergence Process

For each Monte-Carlo iteration the algorithm runs its course until there is negligible improvement in

the decrease of R is observed, i.e. whenever the stopping criterion is met.

(a) Convex feasibility algorithm (5.2) loop is initialized with the degraded signal, a0 = x.

(b) Strictly convex equal weights (wi) for 1 ≤ i ≤ m are chosen. Initially projection on complete

collection of sets are done. For further simulation cases the number of sets chosen is decreased.

Weights (wi) are calculated accordingly.

(c) Various different stepsize options are tested for the algorithm convergence loop. We started with

diminishing stepsizes, αk = a/kb. Later we used stepsize, which is used by Combettes (1994)

in order to roughly compare his Parallel Projection Algorithm (PPM) results with our algorithm
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(5.2) performance. Combettes (1994) updates the stepsize according to rule below.

If R (xk)−R (xk+1)< αk
‖∇R (xk)‖2

2
, then set αk = 0.75αk, (6.11)

where α0 = 1.999. We should mention a significant difference between the implementation of

PPM in our setup and Combettes (1994). Even if we choose m sets all at once, our results are

not comparable to Combettes (1994) work exactly because the sets defined by Combettes (1994)

are in deterministic nature as opposed to ours being stochastic.

(d) We project the iterate xk onto randomly chosen sets. Initially projection onto complete collection

of m= 66 sets is done as if it is a parallel projection algorithm. Combettes (1994) implements the

parallel projection algorithm for the same problem with some important differences. Firstly the

projection onto the sets i = 1, . . . ,64, which are built on the knowledge of the blurring operator

L and bounded noise vector u are deterministic in Combettes (1994). In reality bounded noise

of u means that signal can vibrate between [xi− ui,xi + ui]. That is why we applied at each

iteration random realizations of noise to sets i = 1 through 64. Later subcollection of sets of 44

and 33 were randomly chosen. The resulting function values R(xk) and recovered signals h∗

were recorded.

(e) The goal of the our algorithm (5.2) is to obtain an approximate minimum of the function R in

a finite number of steps. The near convergence of the algorithm is measured by the stopping

criteria below.

R (xk)−R (xk+1)≤ ε

for a small positive value ε.

6.2.1 Figures and Tables

From figures below it is seen that most feastures of h have been fairly well recovered. The limiting function

values in Figure 6.4 and 6.6 are fairly close to results of Combettes (1994) which is also replicated here.

Since Combettes (1994) projects onto larger sets by setting ui = 0.15 he was able to achieve slightly lower

limiting function values. Another important point that we need to mention is that even if the required number

of iterations increases slightly by decreasing the number of sets chosen, we were still able to recover the
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original signal adequately.
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Figure 6.1: Original Signal, h
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Figure 6.2: Degraded Signal, x=L*h+u
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Figure 6.3: Proximity Function, R,
αk = 1/k0.75, Xi, 1≤ i≤ 66
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Figure 6.4: Recovered Signal, h∗,
αk = 1/k0.75, Xi, 1≤ i≤ 66
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Figure 6.5: Proximity Function, R,
αk = 1/k0.75, Xi, 1≤ i≤ 44
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Figure 6.6: Recovered Signal, h∗,
αk = 1/k0.75, Xi, 1≤ i≤ 44
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Figure 6.7: Combettes’ PPM,
Proximity Function, R,
Stepsize (6.11), Xi, 1≤ i≤ 66
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Figure 6.8: Combettes’ PPM,
Recovered Signal, h∗,
Stepsize (6.11), Xi, 1≤ i≤ 66
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A. Nedić. Random projection algorithms for convex set intersection problems. In Decision and Control (CDC), 2010

49th IEEE Conference on, pages 7655–7660. IEEE, 2010.
S. Oh, C. Ramon, R. Marks, A. Nelson, M. Meyer, et al. Resolution enhancement of biomagnetic images using the

method of alternating protections. Biomedical Engineering, IEEE Transactions on, 40(4):323–328, 1993.
P. Oskoui-Fard and H. Stark. Tomographic image reconstruction using the theory of convex projections. Medical

Imaging, IEEE Transactions on, 7(1):45–58, 1988.
B. Polyak. Introduction to optimization. Optimization Software, Inc., New York, 1987.
B. Polyak. Random algorithms for solving convex inequalities. In D. Butnariu, Y. Censor, and S. Reich, editors,

Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, pages 409–422. Elsevier,
Amsterdam, Netherlands, 2001.

B. T. Polyak. Gradient methods for the minimisation of functionals. USSR Computational Mathematics and Mathe-
matical Physics, 3(4):864 – 878, 1963.

H. Robbins and D. Siegmund. A convergence theorem for nonnegative almost supermartingales and some applications.
Optimizing methods in statistics, pages 233–257, 1971.

N. Shor. Nondifferentiable optimization and polynomial problems, volume 24. Springer, 1998.
N. Z. Shor, K. C. Kiwiel, and A. Ruszczynski. Minimization methods for non-differentiable functions, volume 3.

Springer-Verlag Berlin, 1985.
G. Stewart and J. Sun. Matrix perturbation theory, volume 175. Academic press New York, 1990.
H. Trussell and M. Civanlar. The feasible solution in signal restoration. Acoustics, Speech and Signal Processing,

IEEE Transactions on, 32(2):201–212, 1984.
M. Vainberg. On the convergence of the method of steepest descent for nonlinear equations, Sibirsk. Math. Z, 2:

201–220, 1961.
S. Van Huffel and J. Vandewalle. The total least squares problem: computational aspects and analysis, volume 9.

Society for Industrial and Applied Mathematics, 1987.
J.-P. Vial. Strong convexity of sets and functions. Journal of Mathematical Economics, 9(1-2):187 – 205, 1982.
R. Vinter. Optimal control. Springer, 2010.
D. C. Youla and H. Webb. Image restoration by the method of convex projections: Part 1 theory. Medical Imaging,

IEEE Transactions on, 1(2):81–94, 1982.
K. Zhou, J. Doyle, and K. Glover. Robust and optimal control. Prentice Hall Englewood Cliffs, NJ, 1995.

92



APPENDIX

Lemma 15. For the stepsize that is not summable but square summable such that ∑
∞
k=1 αk =∞ and ∑

∞
k=1 α2

k <

∞, if stepsize and variance of error term satisfies limk→∞αk = α̂ ≥ 0 and limk→∞νk = ν̂ ≥ 0 with ᾱ =maxkαk

and ν̄ = maxkνk then for any M > K limsupM→∞

∑
M
k=1 νkα2

k

∑
M
k=1 αk

≤ (ν̄ + ε)α̂ , where ᾱ > 0 and ν̄ > 0 are some

scalars for all k ≥ 1.

Proof. Let the stepsize be not summable but square summable such that ∑
∞
k=1 αk = ∞ and ∑

∞
k=1 α2

k < ∞

for some scalar ᾱ > 0 and all k ≥ 1. If the stepsize satisfies limk→∞αk = α̂ ≥ 0 and ∑
∞
k=1 αk = ∞, and

limk→∞νk = ν̂ ≥ 0 with ᾱ = maxkαk and ν̄ = maxkνk. Since limt→∞St = ∞ and limt→∞

∑
t
k=1 α2

k
St

= α̂, For

every ε > 0 there is a large enough K such that νk− ν̄ ≤ ε

For any M > K,

∑
M
k=1 νkα2

k

∑
M
k=1 αk

=
∑

K
k=1 νkα2

k

∑
M
k=1 αk

+
∑

M
k=K+1 νkα2

k

∑
M
k=1 αk

≤ ∑
K
k=1 νkα2

k

∑
M
k=1 αk

+(ν̄ + ε)
∑

M
k=K+1 α2

k

∑
M
k=1 αk
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