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ABSTRACT 

 

This thesis presents some results relating to an implementation of a safe and reliable coverage 

control algorithm.  The application was focused on implementation on differential drive robots 

developed at the University of Illinois at Urbana-Champaign.  Control laws for coverage, 

avoidance, and proximity were applied to a multi-agent system of robots.  The control laws were 

merged to provide coverage using the system while guaranteeing inter-agent proximity, inter-

agent collision avoidance, and agent-environment collision avoidance.  Circular regions were 

considered for avoidance.  The performance and limitation of the application are examined.  

Practical considerations for implementation are discussed.  The experimental platform consisted 

of a motion capture system, three differential drive robots with multiple sensing capabilities, and 

two supporting computers for the motion capture system and data visualization. 
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CHAPTER 1 

INTRODUCTION 

 

The control and coordination of multiple autonomous vehicles has been the focus of much study.  

One of the most important issues when working with multiple autonomous agents is 

guaranteeing the safety of the operation, i.e. avoiding any collisions between the agents or 

between agents and their environment.  In addition to this, it is also important to be able to 

combine this guaranteed safety with other objectives, such as maintaining short range 

communication networks or sensing a compact area.  It has been presented in [1] that it is 

possible to combine these multiple control objectives in a manner that can be applied to a 

network of agents of arbitrary size, so long as the agents have dynamic models that are nonlinear 

yet affine in control.  In this thesis, an implementation of the multi-objective problem where 

multiple differential drive robots are tasked with sensing an area while remaining collision free 

and maintaining reliable short range communication is demonstrated.  The agents were not 

strictly required to remain in the compact domain, and the domain being sensed was not required 

to be a square area, but for this implementation a square area was sensed.   

Chapter 2 of this thesis outlines the avoidance and proximity objective functions as well 

as their proposed control laws used in the implementation.  The control laws presented in this 

chapter will be applied in Chapter 5, the experimental results chapter. 

Chapter 3 will focus on the coverage control aspect of the agents’ objectives.  It will 

discuss how the sensing capabilities and coverage quality of the robots was modeled, and it will 

show how the control law for coverage is calculated for each robot.  The control law shown in 

this chapter will be applied to the agents’ specific dynamic models in Chapter 5. 

Chapter 4 discusses the experimental testbed for the implementation.  The algorithm can 

support an arbitrary number of agents and obstacles, but three agents and two obstacles were 

implemented.  Additionally, while the algorithm does not strictly require a square compact 

domain to be sensed, a square planar domain was used.  The implementation used the OptiTrack 

motion capture system, onboard sensors on the differential drive robots, and a local wireless 

network utilizing UDP (User Datagram Protocol) for communication. 

Chapter 5 will present the specific dynamic models for the agents, the specific control 

laws used, and the specific parameters used in the implementation.  The robots were modeled 
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using a unicycle model, the control laws developed in Chapters 2 and 3 were merged for 

application on the robots, and design parameters, such as the sensing radii of the robots, were 

chosen appropriately for this experiment.  Additionally, this chapter also discusses the issue of 

determining accurate state variables over time.  Due to issues with both the motion capture 

system and calculating position and orientations using dead reckoning, a Kalman filter was 

implemented to provide much smoother and reliable state estimations for the robots.  Full 

motivation for this filter implementation is discussed.  Finally, the results of the implementation 

are discussed.  Multiple scenarios with different assumptions about the robots will be presented 

in this chapter. 

The final chapter discusses the conclusions drawn from the implementation of the safe 

and reliable coverage control algorithm in this thesis.  Ideas for further implementation are also 

presented. 
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CHAPTER 2 

AVOIDANCE AND PROXIMITY CONTROL 

 

Part of the experiment was focused on the objective of inter-agent, and agent-environment 

collision avoidance, as well the objective of inter-agent proximity.  For this experiment using 

differential drive robots, which are nonlinear and affine in control, we can model the agents as 

[2] 

  ̇    (     )    (  )     (  )     ( )            ,    )         (1) 

where N is the number of agents,   *     +,        is the state,        is the control 

input, and     is a given initial condition for the ith agent.  As stated in [1], the   -dimensional 

vector functions   (   )     are assumed to be continuously differentiable with respect to both 

arguments.  The objective functions and control laws developed for these tasks of avoidance and 

proximity are outlined in what follows. 

 

2.1 Avoidance Objective Functions 

The objective function for avoidance between the ith and jth agents is given by [3]: 
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where         are positive scalars and     is a positive definite matrix for the pair (   ).  

Similarly, the objective function for avoidance between the ith agent and the lth obstacle is given 

by: 
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where         are positive scalars and     is a positive definite matrix for the pair (   ).  The 

gradients of the avoidance objective functions, in terms of the number of agents i and the 

combined number of agents and obstacles j, is given by [3]: 
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where  ̂  refers to   
 
 if j corresponds to an agent and   

  if j corresponds to an obstacle, and 

‖ ‖   
 √       where   is a vector.  The particular choices for the constants    ,    , and     

from (2), and the choices for constants    ,    , and     from (3) for the experiment are discussed 

in Chapter 5, the experimental results chapter.  The parameters are chosen based off of the 

sensing capabilities of the agents, the dynamics of the agents, and the desired safety requirements 

for the experiment.  Also, practical considerations for implementation of the gradient are 

discussed in Chapter 5.    

 

2.2 Proximity Objective Functions 

As stated in [1], it is assumed that the agents exchange information wirelessly over a network.  

Details regarding the proximity of agents and the exchange of information will be discussed in 

later chapters.  The objective function, which is similar to those in [4], for proximity is given in 

[1] by: 
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where  ̂   is the constant maximum desired distance between the ith and jth agents for reliable 

communication.  The gradient for this objective function is given by: 
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2.3 Avoidance and Proximity Control Functions 

As described in [1], it is possible to find the approximation of the maximum for use in a 

Liapunov-type analysis for accomplishing multiple objectives using the following equation: 
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where      (    ),   ,         -    
 , and N is a positive integer.  The preceding is 

a  -norm when   ,    ).  It was also shown that the overall goal of avoidance and proximity 

could be formulated as   (   )    where 

   ( )   ̅ .      ( )         
    

( )/  (8) 

where      
   

⁄ when     is chosen appropriately such that        for the avoidance and 

proximity objective functions from (2), (3), and (5).  Finally, it was shown in [1] that the agents’ 

dynamics and objective function gradients could produce a control vector of the form: 

  ̂ ( )    ̂   
 (  )

   ( )

   

 

 (9) 

where  ̂  is a positive scalar gain.  This application of this control vector for the experiment, as 

well as its combination with the control laws produced by the third objective of coverage, will be 

discussed in Chapter 5, the experimental results chapter. 
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CHAPTER 3 

COVERAGE CONTROL 

 

In addition to the control corresponding to avoidance and proximity, we desire a control law 

corresponding to the coverage of a given domain.  For the control of agents when their dynamics 

are affine in control, an error function with a modified area integral for agents with overlapping 

nonuniform sensing capabilities that does not require the agents to remain inside of the sensing 

region was developed in [1].  This was useful in the application presented in this paper due to the 

fact that agents were allowed, without penalty, to exit the search area in order to avoid collisions 

with obstacles and other agents.  An overview of the modeling of the cumulative coverage, the 

sensing of the robots, and the coverage error and control laws is given in this chapter. 

 

3.1 Sensing 

The sensing of the robots is modeled by the following function [5]: 

   ( )  
  

  
    {    

   }
 
   

 ( )    
  

  
    {    

   }  (10) 

where    is the peak sensing capability of the ith agent, and    is the ith agent’s sensing radius.  

The choices for the sensing capabilities and the sensing radii for the robots will be discussed in 

Chapter 5.  Also from [5], the cumulative sensing function is 
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where N is the number of agents,  ̃  , ̃   ̃ -
       and   

 ( ) is the planar position of the ith 

agent as a function of time.   

 

3.2 Coverage Control Functions 

As shown in [1], letting  ( )  (   *   +) , so that   ( )   (   *   +)  and    ( )  

    *   +, a possible coverage error function is 
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where   is the area to be covered,    is a positive constant that represents the desired quality of 

the coverage at a certain point,  ( ̃) is a nonnegative scalar function used to incorporate 

preferences,    is a positive constant that satisfies    ∑   
 
   , and   (   ̃)  ‖  

 ( )   ̃‖
 
.  

The use of the coverage error function in (12) does not demand that the agents remain inside of 

the coverage area.  From [1], when  ̇ 
    

 (  )  
  represents the relationship between the state 

position variables and the agents’ corresponding partial dynamics, the proposed control law for 

the control vector corresponding to the state position variables is  

   
 ( )    

   
 (  )

   ( )    *     + (14) 

where   
  is a positive coverage control gain for agent i and   is the number of agents.  The 

application of this proposed control law will be discussed in Chapter 5.   
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CHAPTER 4 

EXPERIMENTAL TESTBED 

 

The experiments using the applied safe and reliable coverage control were all conducted in room 

302 Transportation Building of the University of Illinois in Urbana, Illinois.  The room is an 

instructional lab containing a Natural Point OptiTrack motion capture system.  Position and 

attitude data were collected by the motion capture system and broadcast over a local network to 

three differential drive robots.  The robots utilized the data from the motion capture system, as 

well as data from onboard sensors, to localize.  With these localizations, the robots shared their 

positions and orientations with each other over a wireless network.  Each robot ran the control 

scheme, and then position, orientation, and coverage data was transmitted to, collected on, and 

visualized on a computer in real time.  An overview of the flow of information between the 

robots and the external environment is shown in Figure 4.1.

 

Figure 4.1: Overview of the Flow of Information between Different Entities in the Testing Environment 

 

4.1 Natural Point OptiTrack Motion Capture System 

The motion capture system utilized in the lab was an 18 camera OptiTrack system from Natural 

Point.  The cameras used were V100:R2 cameras running at 100 Hz and are shown in Figure 4.2.  

At each time step, the system would calculate the centroids and the orientations of robots.  The 

Natural Point program that processed and displayed the calculated positions and orientations of 

Agent #1 Agent #2 Agent #3

OptiTrack
Cameras

OptiTrack 
Positioning 
Computer

Python Code 
Broadcasting 

OptiTrack Observable Volume

Data Collection and 
Visualization 

Computer
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the robots was Tracking Tools.  A screenshot of the interface with the three robots is shown in 

Figure 4.3.   

 

 

Figure 4.2: Natural Point V100:R2 Camera 

 

 

Figure 4.3: Natural Point Tracking Tools Software Interface 
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Each robot was defined by a unique pattern of reflective tracking balls arranged on a hard 

piece of foam attached to the robots.  An example of the identifier template for one of the robots 

is visible in Figure 4.4.  Due to the fact that the robots in this experiment moved within a plane 

and mounting space for the tracking balls was not tightly constrained, it was trivial to create a 

unique template for each robot.  In more complicated systems where agents have more degrees 

of freedom, it is important to carefully construct identifier templates that will not cause aliasing 

within the positioning software. 

 

 

Figure 4.4: Differential Drive Robot with Tracking Ball Identifier Template 

 

After the Tracking Tools software calculated the positions and orientations of all of the 

robots, a Python script would receive the data from Tracking Tools and condense the data into 

smaller packets containing only the necessary data.  This was done to decrease transmission 

times.  The motion capture system broadcasted far more data than was necessary to run the safe 

and reliable coverage control algorithm.  In particular, because the robots were ground robots 

moving on a planar surface, the only necessary data for each robot was its coordinates in the 

ground plane and its heading.  All of the other data, such as roll, pitch, and the positions of each 

individual tracking ball comprising each trackable object, were unnecessary and therefore not 

sent to the robots.  Of course, this platform and the safe and reliable coverage control algorithm 
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can be expanded to accommodate agents moving in three dimensions with higher degrees of 

freedom. 

Once the data was condensed into a smaller packet, the Python script would send the 

relevant data to each robot in the experiment using UDP.  A Linux program running on each 

robot would receive the data and transfer it to the DSP (Digital Signal Processor) core on each 

robot.  This receiving process will be discussed in more detail in the next section. 

 

4.2 Robot Hardware and Software 

The robots used in the experiment were differential drive, four wheeled, two motor robots built 

by Daniel Block of the College of Engineering Control Systems Lab at the University of Illinois.  

The robots used are pictured in Figure 4.4.  Each robot has a custom designed circuit board with 

a Logic PD OMAP-L138 SOM-M1 (System on Module) for higher level tasks such as wireless 

communications and control calculations, a TMS320F28335 controlCARD for lower level tasks 

such as sensor data collection and motor control, a wireless module for communicating on the 

wireless network, various sensors such as a gyroscope on a Pololu gyroscope breakout board, 

and two LiPo (Lithium Polymer) batteries.  A closer view of the robot with some of its important 

hardware labeled is shown in Figure 4.5. 

 

 

Figure 4.5: Robot Hardware with Selected Components Labeled 
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The OMAP processor of the robot has a DSP core to complete the control computations 

and to communicate with the TMS320F28335 processor that controls the motors.  The OMAP 

also has an ARM core running an Ångström Linux distribution.  Processes running in Linux on 

this ARM core handle the inter-robot, OptiTrack, and data visualization communications.  Data 

is exchanged between the ARM core running Linux and the DPS core of the OMAP through 

shared memory.  An overview of the internal flow of information on each robot is shown in 

Figure 4.6. 

 

 

Figure 4.6: Internal Robot Information Flow 

 

4.3 Data Collection and Visualization 

At each time step of the experiment, the coverage quality data for the discretized arena was 

collected in addition to the positions of each of the robots and obstacles.  This data was then 

transmitted and collected on a desktop computer running a VB6 (Visual Basic 6) application.  As 

this data was collected, it was plotted, along with the positions of the robots, on a map of the 

course.  The robots were represented by different colored circles, and each square of the 

discretized map was colored according to the quality of the coverage at that location up to that 

point in time.  This was accomplished by converting the coverage quality to an RGB (Red, 

OptiTrack
Computer 
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Green, Blue) value.  While this type of heat map conversion is native to other applications such 

as MathWorks’ MATLAB, a simple version of this value to RBG encoding had to be 

programmed for VB6.  A screenshot of the VB6 real time visualization can be seen in Figure 4.7. 

 

 

Figure 4.7: VB6 Coverage Visualization Program 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

 

In the experiment, three robots, as described in Chapter 4, were controlled by the safe and 

reliable coverage control algorithm.  The three robots were modeled as unicycles.  Their motors 

were controlled by an inner PI (Proportional and Integral) control loop.  Each robot was assigned 

gains and experimental parameters for coverage control and avoidance and proximity control.  

Positions and orientations of each robot were estimated with Kalman filtering using 

measurements from multiple sensors, including the data from the OptiTrack motion capture 

system.  This was done so the robots were not constrained to the space viewable by the 

OptiTrack camera system.  The aforementioned elements, as well as other assumptions and the 

performance and difficulties of the implementation will be discussed in this chapter.  

 

5.1 Unicycle Model and Tracking 

The three robots in the experiment are differential drive robots, so they were modeled using a 

unicycle model as shown in [1].  For each robot       *     + where N is the total number 

of robots, in this case three, the model is: 

 

 ̇  
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 ̇  
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(15) 

where   
  [   

     
 ]

 
 is the position state variables,     is the orientation state, and    

0(  
 )

 
    1

 

is the state vector.  The state vector of each agent is determined experimentally 

using sensors and Kalman filtering.  This will be discussed in the Kalman filtering section of this 

chapter.  The control vector for the ith agent is    ,       -
  where     is the speed control 

input, and     is the angular velocity control input.  Therefore, it follows that   (  ) from (1) is: 

   (  )  [
   (   )  

   (   )  
  

] (16) 

When    (   )              *   +⁄  for collision avoidance and proximity with   ( ) given in 

(8), and    (   )     ( ) for coverage with    ( ) given in (13), it has been shown in [1] that 

valid control laws for     are: 
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    (   )      
 (   (   )   (   )     (   )   (   ))      (17) 

where       for collision avoidance and proximity and      for coverage, and   
  are 

positive gains related to speed.  For this experiment, a consideration had to be made in order to 

implement (17) on the robots.  Recalling that for the cases when ‖  
 

  ̂ ‖   
     in (4), the 

gradient     
    

 ⁄  will either be undefined or equal to zero.  This can be interpreted as if a pair of 

agents, or an agent and an object, are at or within some critical range     , 

                    .  This is undesirable because if two agents, or an agent and an obstacle, 

are too close, we would still like the avoidance objective function to continue to contribute to the 

overall control of the robots, even though they may have failed the safety requirements.  The 

gradient in (4) can’t realistically be used to prevent cases where ‖  
 

  ̂ ‖   
     from ever 

occurring, because it is not possible to indefinitely increase the speed control input in the limit as 

‖  
   ̂ ‖   

 approaches     on the actual system.  The speed control input and the angular 

velocity control inputs are both physically limited by the maximum torque of the motors, so it is 

possible that ‖  
   ̂ ‖   

     could occur.  It should also be noted that it is possible for initial 

conditions such that ‖  
   ̂ ‖   

    .  Therefore, a proposed modified version of the gradient 

in (4) was implemented as shown below: 
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where         (   ) is a design parameter to force the gradient to a relatively large value 

until the agent pair, or the agent and the object, are no longer considered to be too close.  From 

[1] it was shown that     is optimally efficient when 

    
    

   
 ⁄        (

   (   )

   (   )
) (19) 

A valid angular velocity control can then be designed as a proportional controller as follows: 
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 (      

 ) (20) 

where   
  are positive gains related to angular velocity. 

In the numerical example simulation from [1], the state vectors of the agents were 

updated at each time step according to the dynamic model in (15).  For this implementation, the 

control vector is applied to the differential drive motors of the robots using a PI control inner 

loop as shown in Figure 5.1.   

 

 

Figure 5.1: Block Diagram of Inner PI Control Loop 
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The error equations for this inner loop controller of each ith robot are shown below: 

 

                 

                    
    

                    
    

(21) 

where      is     and      is    ,        
is a positive design gain for each robot, and        

 *   + are the velocities of the left and right motors of the robots.   
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(22) 

 

5.2 Experimental Parameters 

In most of the experiments conducted, three robots and two obstacles were used.  As in the 

numerical example in [1], let indices {1,2,3} denote the robots, and let indices {4,5} denote the 

objects.  The robots were placed arbitrarily within a 5 meter by 5 meter area centered in the 

visible range of the OptiTrack motion camera system.  Due to the fact that the robots used in the 

implementation were the same design and nearly identical, similar design parameters were used 

for each agent in the experiments.  For recording the coverage quality the robots performed over 

time, the 5 meter by 5 meter course was discretized into a 160x160 space.  Therefore, there were 

25,600 discrete square areas with their own coverage quality information.  Each tile of the area to 

be covered was a square with size length 0.03125 m.  In order to help visualize the area being 

covered and the sizes of the robots and obstacles relative to that area, Figure 5.2 has been 

included to show the robots navigating the area during one of the experiments. 

The positive definite avoidance matrices     and     from (2) and (3) were declared to be 

the 2-dimensional identity matrix.  The circular avoidance and detection regions of the robots 

were defined by                 and                    *     +.  The gains 

relating to speed control input in (9) were defined to be  ̂   ̂   ̂       for the three 

agents.  The agents were assigned proximity distances  ̂   from (5) in a uniform manner such 

that  ̂    ̂    ̂         *     +.  Scaling coefficients     from (8) for collision 

avoidance objective functions were set as                       *     +     .  

Scaling coefficients     from (8) for proximity objective functions were set as             



18 

 

          *     +     .  As in [6], for one of the experiments it was decided that robot 1 

would avoid obstacles but would not attempt to avoid the other agents or remain in proximity 

with them.  In calculating the approximation in (7),     was chosen. 

 

 

Figure 5.2: Experimental Setup with Three Robots and Two Obstacles 

 

In the experiments, limitations on wireless communication and the transmission of 

cumulative coverage data were simulated.  Each robot continuously estimated its own position 

using Kalman filtering, which will be discussed in the following section, and wirelessly sent this 

calculated position to the other robots.  Using these positions, each robot calculated the sensing 

and cumulative coverage data,   from (11), for itself and the other robots.  However, even 

though each robot had the total cumulative coverage data for every other robot in memory at all 

times, the cumulative coverage data for a robot was only merged with the cumulative coverage 

data of other robots if the neighboring robots were determined to be within the assigned 
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proximity distances  ̂  .  This simulation of sharing coverage data was done because it was 

determined to be faster to calculate the coverage data for all robots on each robot rather than 

broadcast the coverage data for a robot to the other robots over the wireless network.  This 

method also avoided the problem of having to design a robust protocol that would allow for 

sharing of large amounts of data over the wireless network without data loss or network 

interference. 

For coverage control, agents were also given specific parameters.  In many experiments, 

the robots were assumed to be homogenous in terms of sensing region radius,    from (10), and 

peak sensing capability,    from (10).  The robots were designed with                

and            .  While all of the robots could potentially be fitted with appropriate 

sensors, such as LIDAR (Light Detection And Ranging), cameras, ultrasonic, etc, this was left 

out for simplicity and for future work.  The sensing radius for each of the robots was designed so 

that the sensing area was approximately the same as the area covered by the base of the robots 

while they drove around the space.  Just as with the avoidance and proximity control, speed 

control gains from (14) were also assigned for coverage control of each robot.  These gains were 

defined as   
    

    
          .  The maximum coverage value    from (13) was chosen 

to be      . 

The total speed control input for each robot was calculated using the sum of the results of 

(17) when using the aforementioned defined gains of   
  for coverage control and   

  and  ̂ for 

proximity and avoidance control.  The heading angle control for each robot was calculating using 

(20).  The gains for the proportional heading angle control law were set as   
      *     +.  

The reference angle for this control was the sum of the desired angles for coverage and for 

avoidance and proximity calculated by (19). 

 

5.3 Kalman Filtering 

The OptiTrack motion capture system offers accurate data about the position and orientation of 

rigid bodies, such as the robots used in the experiment.  However, it does have two issues: the 

updated position and orientation is only calculated by the camera system’s software at 100Hz, 

and the camera system has a limited tracking area.  The first problem, the rate at which robot 

data is calculated, leaves open the possibility that when the coverage and avoidance control 

algorithm runs, it may use position and orientation data that is up to 10 ms old.  This means that 
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the algorithm may produce control inputs that are not suited for the robots’ actual current 

positions and orientations.  This is part of the motivation for having a better way to update the 

robots’ states.  The second problem, the limited tracking range of the cameras, is a much larger 

problem.  If only the camera system is used and a robot ends up driving out of the range of the 

cameras, there is no chance for recovery.  Since the algorithm doesn’t require that the agents 

remain in the area being covered, this again provides motivation for an improved method for 

updating the agents’ states.  To avoid both of the aforementioned issues, a dead reckoned 

position and orientation could be used.  In this situation, the data from the gyro and the encoders 

of the robots could be used to dead reckon the position and orientation of the robots.  However, 

this method has well known downsides as well such as wheel slippage and gyro drift.  It was 

decided that a Kalman filter to combine the dead reckoned position and the position from the 

camera system would work well for this application. 

 As described in [7], the Kalman filter is a set of recursive mathematical equations which 

aim to minimize the mean of the squared error in the estimation of the states in a given process.  

This filter works well for this implementation, because a precisely identified model of the system 

and the dynamics of the robot are not required to accurately estimate states.  It is assumed that 

the state for any given robot,  , is governed by the linear stochastic difference equation 

                        (23) 

with state measurements,  , given by 

           (24) 

where    and    are random process and measurement noise, respectively, with assumed normal 

probability distributions of 

  ( )  (   ) (25) 

  ( )  (   ) (26) 

where   and   are assumed to be constant matrices representing process noise covariance and 

measurement noise covariance, respectively.  As demonstrated in [8], trusting the onboard dead 

reckoning process much more than the off-board camera measurements provides smooth state 

variables without the drift inherent with dead reckoning with encoders and a gyro.  Therefore, 

the covariance of the process noise matrix,  , was set to be orders of magnitude smaller than the 

covariance of measurement noise matrix,  .  Additionally, these matrices were experimentally 

tuned so that if a robot spent a considerable amount of time outside of the trackable area of the 
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camera system and then returned to the trackable area, the drifted states of the robot would 

converge at a desirable rate to near the states measured by the cameras.  These Kalman filtered 

state variables, updated every millisecond on the robots’ DSPs, provided the state variables to be 

used in the control algorithms. 

 From [7], the Kalman filter is composed of two sets of equations.  The first set, the time 

update equations, are intended to predict an a priori state estimate,  ̂ ̅.  The second set, the 

measurement update equations, are intended to correct the a priori estimate to generate a more 

accurate a posteriori state estimate  ̂ .  The equations for the time update are given as 

  ̂ ̅    ̂             (27) 

   ̅        
    (28) 

where    is the a priori state estimate error covariance matrix.  The equations for the 

measurement update are given as 

      ̅  (   ̅    )   (29) 

  ̂   ̂ ̅    (     ̂ ̅) (30) 

    (     )  ̅ (31) 

For the next time step after a measurement update, the previous a posteriori state estimate is then 

used to predict the a priori state estimate.   

 

5.4 System Performance 

Testing of the safe and reliable coverage control algorithm on the platform was conducted during 

many experiments.  Five different sets of experimental results of interest are presented in this 

section.  However, many more experiments were conducted in order to tune certain system 

parameters, such as the coverage and avoidance proximity gains, so that satisfactory performance 

was achieved on this platform.  Also, for each experiment, it is assumed parameters are equal to 

the values given in Section 5.2 unless otherwise noted. 

Experiment 1 used the default parameters given in Section 5.2 representing three 

homogenous robots searching the area.  The centered positions of the obstacles, fixed across all 

of the experiments, except Experiment 5 which had no obstacles, were (1.9, 2.2) and (3.1, 4.3).  

The obstacles are shown as the black circles in Figure 5.3.  The figure also shows the trajectories 

of the robots over the duration of this experiment.  The green dots and red dots show the initial 

and final positions of the robots, respectively.  The trajectories are shown as the blue line for 
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agent 1, the green line for agent 2, and the magenta line for agent 3.  Figure 5.4 shows the 

pairwise distances for the robots in the experiment over time, and Figure 5.5 shows the pairwise 

distances for the robots and obstacles over time.  It is important to note the behavior of the robots 

near the desired proximity, detection, and avoidance boundaries.  The normalized coverage error 

over time for this experiment is given in Figure 5.6.  Finally, the terminal coverage quality is 

shown as a heat map in Figure 5.7. 

 

 

Figure 5.3: Experiment 1 Agent Trajectories and Object Positions Where Green Circles Are Start Positions 

and Red Circles Are Final Positions (blue = agent 1, green = agent 2, magenta = agent 3) 
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Figure 5.4: Experiment 1 Agent Pairwise Distances 
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Figure 5.5: Experiment 1 Agent-Object Pairwise Distances 
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Figure 5.6: Experiment 1 Normalized Coverage Error 
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Figure 5.7: Experiment 1 Terminal Coverage Quality Heat Map (green = agent 1, yellow = agent 2, magenta = 

agent 3) 

 

It becomes clear that in Experiment 1 the robots did not fully cover the search domain 

after becoming “stuck” in a particular arrangement.  This represents the issue of combining the 

control laws from (17) to create the control input to each robot.  In this case, it is apparent that 

the control contributed by the coverage control law and the control contributed by the proximity 

and avoidance control laws summed to yield a control input for each robot that was not great 

enough to actually move any of the robots.  Furthermore, because the sensing regions of the 

robots were designed to be very local and symmetrical, representing approximately only the area 
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a robot occupied on the floor, the coverage control law remained fixed over time.  Therefore, 

once the robots reached their terminal arrangement with the coverage quality that had been 

cumulated up to that point in time, there was very little chance that the robots would be able to 

escape this equilibrium.  It is also worth noting that in the pairwise distance plots, the robots 

behaved desirably around the proximity limit, detection limit, and avoidance limit.  Whenever a 

robot pairwise distance went over the proximity limit, the robots quickly rebounded back into 

proximity.  Similarly, whenever a robot pairwise distance or robot-obstacle pairwise distance 

went under the detection limit into the detection region, the robots rebounded out of the detection 

region without entering the avoidance region. 

In Experiment 2, an attempt at addressing the issue of the robots being trapped in an 

equilibrium was made by modifying the coverage gains of the robots from   
    

    
       

     to nonhomogeneous values   
           ,   

           , and   
              The 

results for this experiment are shown in Figures 5.8 through 5.12.  The changes made in 

Experiment 2 failed to improve the performance of the system.  Much like in Experiment 1, the 

robots left much of the area uncovered and became trapped in an equilibrium.  It is apparent that 

simply increasing coverage gains and reducing the amount of uniformity of coverage gains was 

not enough to address the problems preventing more thorough coverage. 
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Figure 5.8: Experiment 2 Agent Trajectories and Object Positions Where Green Circles Are Start Positions 

and Red Circles Are Final Positions (blue = agent 1, green = agent 2, magenta = agent 3) 
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Figure 5.9: Experiment 2 Agent Pairwise Distances 
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Figure 5.10: Experiment 2 Agent-Object Pairwise Distances 
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Figure 5.11: Experiment 2 Normalized Coverage Error 
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Figure 5.12: Experiment 2 Terminal Coverage Quality Heat Map (green = agent 1, yellow = agent 2, magenta 

= agent 3) 

 

Experiment 3 attempts to solve the equilibrium issue by removing the proximity constraint on 

one of the robots.  By restoring the homogenous coverage gains of   
    

    
            

and removing the proximity constraint on robot 1, the results of Experiment 3 are shown in 

Figures 5.13 through 5.17.  As in Experiment 2, this attempt at correcting the equilibrium issue 

fails.  It is interesting to note that even though robot 1 makes no attempt to remain in proximity 

with the other robots, the other two robots are able to maintain proximity with robot 1 by 
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themselves.  Therefore, it is apparent that the proximity constraint is likely not necessary for both 

robots in every unique set of two robots. 

 

 

Figure 5.13: Experiment 3 Agent Trajectories and Object Positions Where Green Circles Are Start Positions 

and Red Circles Are Final Positions (blue = agent 1, green = agent 2, magenta = agent 3) 
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Figure 5.14: Experiment 3 Agent Pairwise Distances 
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Figure 5.15: Experiment 3 Agent-Object Pairwise Distances 
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Figure 5.16: Experiment 3 Normalized Coverage Error 
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Figure 5.17: Experiment 3 Terminal Coverage Quality Heat Map (green = agent 1, yellow = agent 2, magenta 

= agent 3) 

 

Experiment 4 takes a different approach at guaranteeing coverage of the entire area.  

Instead of assuming that all three robots have homogenous sensing regions that are constrained 

to very local regions centered at the center position of the individual robots, it is assumed that 

robot 1 has sensing capabilities over the entire domain.  Robot 1 was given a sensing region 

radius,    from (10), of     √  and a peak sensing capability,    from (10), of      ⁄ .  

The other two robots, robots 2 and 3, retained the default sensing parameters with       



38 

 

     and         .  In addition, robot 1 was free of any proximity and avoidance 

constraints in relation to other robots.  However, it still had avoidance enabled for the obstacles.  

The results of Experiment 4 are shown in Figures 5.18 through 5.22.  Satisfactory coverage of 

the entire area was reached when the coverage error function fell below 0.001 at T = 489.936 

seconds.  As in the previous experiments, the agents exhibited desirable proximity and 

avoidance.  Also as in the previous experiments, the robots reached very near their terminal 

positions before coverage was completed.  After this, robot 1 completed the coverage of the 

entire area relatively slowly using its relatively low peak sensing capabilities over the entire 

domain.  Therefore, while this experiment guaranteed coverage of the entire domain, it still did 

not have entirely desirable characteristics. 
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Figure 5.18: Experiment 4 Agent Trajectories and Object Positions Where Green Circles Are Start Positions 

and Red Circles Are Final Positions (blue = agent 1, green = agent 2, magenta = agent 3) 

 



40 

 

 

Figure 5.19: Experiment 4 Agent Pairwise Distances 
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Figure 5.20: Experiment 4 Agent-Object Pairwise Distances 
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Figure 5.21: Experiment 4 Normalized Coverage Error 
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Figure 5.22: Experiment 4 Terminal Coverage Quality Heat Map (green = agent 1, yellow = agent 2, magenta 

= agent 3) 

 

Experiment 5 takes a different approach to the coverage problem.  In Experiment 5, the 

robots were once again set to have homogenous sensing parameters of                

           .  Robot 1, instead of being controlled using the safe and reliable coverage 

control algorithm, was controlled by pursuing randomly generated target positions using a PI 

controller.  Once robot 1 reached its targeted position, it was then assigned a new target position.  

Due to the removal of the avoidance control for robot 1, the obstacles were also removed from 

the experiment.  Robots 2 and 3 were still controlled using the safe and reliable coverage control 
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algorithm with all of the default parameters from section 5.2.  The results of this experiment are 

shown in Figures 5.23 through 5.26.  The coverage error in this experiment never reached a 

value near zero due to the fact that one of the robots became disabled at the end of the 

experiment.  This can be seen in Figure 5.24 when the pairwise distance between robots 1 and 2 

entered deep in the avoidance region.  Robot 1 continued to pursue its randomly assigned target 

positions, but robot 2 made no attempt at avoidance because it became disabled by a broken 

connection between the embedded Linux process handling communication and the Python script 

broadcasting the OpiTrack data.  However, this experiment does show that there are alternative 

methods that may be used eliminate the possibility of a team of robots reaching an undesirable 

equilibrium.  Depending on the application, additional logic or time-varying experimental 

parameters may enhance the performance of the system. 
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Figure 5.23: Experiment 5 Agent Trajectories and Object Positions Where Green Circles Are Start Positions 

and Red Circles Are Final Positions (blue = agent 1, green = agent 2, magenta = agent 3) 
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Figure 5.24: Experiment 5 Agent Pairwise Distances 
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Figure 5.25: Experiment 5 Normalized Coverage Error 
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Figure 5.26: Experiment 5 Terminal Coverage Quality Heat Map (green = agent 1, yellow = agent 2, magenta 

= agent 3) 
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CHAPTER 6 

CONCLUSIONS 

 

In this thesis, a successful implementation of the safe and reliable coverage control algorithm 

simulated in [1] was demonstrated.  A review of the methodologies in [1] for avoidance and 

proximity control, coverage control, and the merger of the multiple objectives was discussed.  In 

addition, practical considerations for the avoidance and proximity control objective functions and 

gradients were presented.  The experimental test bed, specifically the Natural Point OptiTrack 

motion capture system and the differential drive robots developed at the University of Illinois, 

were detailed.  Experimental parameters that were analogous to the experimental parameters of 

the simulation chosen in [1] were applied to this implementation.  The dynamic models of the 

differential drive robots were assumed to be nonlinear yet affine in control.  The motivation and 

development of Kalman filtering for the positions and orientations of the robots was discussed.  

The experimental system performance of the safe and reliable coverage control algorithm was 

presented.  While successful at preventing collisions and maintaining proximity between the 

robots, many of the experiments failed to guarantee coverage of the entire area defined with the 

assumptions made about sensing capabilities of the robots.  The implementation proved to be a 

reliable testing platform for testing control strategies of this type involving carefully constructed 

objective functions for avoidance, proximity, and coverage.  Additional work, such as attempts 

to overlay additional strategies for guaranteeing coverage, as demonstrated in the fifth 

experiment in Chapter 5, may offer improved system performance in terms of terminal coverage 

quality and the time required to reach satisfactory coverage. 
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APPENDIX A 

OMAPL138 DSP Code 

 

This section includes a selected portion of the DSP code that implemented the safe and reliable 

coverage control algorithm on the robots.  This included code does not necessarily reflect the 

state of the code for any one specific experiment conducted, but is provided to demonstrate the 

general methods of implementation. 

 

#include <std.h> 

#include <log.h> 

#include <clk.h> 

#include <gbl.h> 

#include <bcache.h> 

 

#include <mem.h> // MEM_alloc calls 

#include <que.h> // QUE functions 

#include <sem.h> // Semaphore functions 

#include <sys.h>  

#include <tsk.h> // TASK functions 

#include <math.h>  

#include <stdio.h>  

#include <stdlib.h> 

#include <string.h> 

#include <c6x.h> // register defines 

 

 

#include "projectinclude.h" 

#include "c67fastMath.h" // sinsp,cossp, tansp 

#include "evmomapl138.h" 

#include "evmomapl138_i2c.h" 

#include "evmomapl138_timer.h" 

#include "evmomapl138_led.h" 

#include "evmomapl138_dip.h" 

#include "evmomapl138_gpio.h" 

#include "evmomapl138_vpif.h" 

#include "evmomapl138_spi.h" 

#include "COECSL_edma3.h" 

#include "COECSL_mcbsp.h" 

#include "COECSL_registers.h" 

 

#include "mcbsp_com.h" 

#include "ColorVision.h" 

#include "ColorLCD.h" 

#include "sharedmem.h" 

#include "LCDprintf.h" 

#include "MatrixMath.h" 

#include "xy.h" 

 

#define NUM_OBSTACLES 2 

#define NUM_AVOIDANCE (NUM_TRACKABLES+NUM_OBSTACLES) 

#define AVOID_ON 1 

#define PROX_ON 1 

#define SPECIAL_LEADER 0  // 1 = leader sensing, no avoiding other robots 

#define SPECIAL_LEADER2 0  // 1 = controller / no avoid/prox influence on utheta 

#define SPECIAL_LEADER3 0  // 1 = no prox influence on leader 

#define SPECIAL_LEADER4 0  // goto x,y control for leader 

#define D_PROX 3 // was 1.5 

#define SETTLETIME 6000 // gyro settling time 

#define ProcUncert 0.0001  // Kalman filter uncertainties 

#define CovScalar 10 

#define MeasUncert 1 // was 10 

 

extern unsigned long timeint; 

extern float enc1;  // Left motor encoder 

extern float enc2;  // Right motor encoder 

extern float enc3; 

extern float enc4; 
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extern float adcA0;  // ADC A0 - Gyro_X -400deg/s to 400deg/s  Pitch 

extern float adcB0;  // ADC B0 - External ADC Ch4 (no protection circuit) 

extern float adcA1;  // ADC A1 - Gyro_4X -100deg/s to 100deg/s  Pitch 

extern float adcB1;  // ADC B1 - External ADC Ch1 

extern float adcA2;  // ADC A2 -    Gyro_4Z -100deg/s to 100deg/s  Yaw 

extern float adcB2;  // ADC B2 - External ADC Ch2 

extern float adcA3;  // ADC A3 - Gyro_Z -400deg/s to 400 deg/s  Yaw 

extern float adcB3;  // ADC B3 - External ADC Ch3 

extern float adcA4;  // ADC A4 - Analog IR1 

extern float adcB4;  // ADC B4 - USONIC1 

extern float adcA5;  // ADC A5 -    Analog IR2 

extern float adcB5;  // ADC B5 - USONIC2 

extern float adcA6;  // ADC A6 - Analog IR3 

extern float adcA7;  // ADC A7 - Analog IR4 

extern float adc1_i2c;  // Not connected 

extern float adc2_i2c;  // Not connected 

extern float adc3_i2c;  // Not connected 

extern float adc4_i2c;  // Not connected 

extern float compass; 

extern float switchstate; 

 

extern volatile int new_sendtolinux_vision; 

extern volatile float send_object_x; 

extern volatile float send_object_y; 

extern volatile int send_numpels; 

 

extern volatile int new_sendtolinux_tcpip; 

extern volatile float send_tcpip1; 

extern volatile float send_tcpip2; 

extern volatile float send_tcpip3; 

extern volatile float send_tcpip4; 

 

extern volatile int new_sendtolinux; 

extern volatile float send_object_x; 

extern volatile float send_object_y; 

extern volatile int send_numpels; 

 

extern float tcpip1; 

extern float tcpip2; 

extern float tcpip3; 

extern float tcpip4; 

 

extern sharedmemstruct *ptrshrdmem; 

sharedmemstruct2 *ptrshrdmem2; 

 

 

volatile uint32_t index; 

uint8_t LinuxBooted = 0; 

 

float temp_ang = 0; 

float temp_ot = 0; 

float temp_kal = 0; 

int errorcheck = 1; 

 

// wall follow variables 

float ir1 = 0; 

float ir2 = 0; 

float Rwall = 2500; 

float Fwall = 2000; 

float Kpright = 0.0012; 

float Kpfront = 0.002; 

float Turn_vel = 0; 

float Turn_sat = 3.0; 

float Vel_forward = 0.5; 

float front_wall_error = 0; 

float right_wall_error = 0; 

 

float vref = 0; 

float turn = 0; 

 

int otkalcount = 0; 

int tskcount = 0; 

 

char fromLinuxstring[LINUX_COMSIZE + 2]; 

char toLinuxstring[LINUX_COMSIZE + 2]; 

 

float VBDAC1 = 0; 

float VBDAC2 = 0; 

float VBDAC1_send = 0; 

float VBDAC2_send = 0; 

int new_VB_data = 0; 



53 

 

float value_tcpip1 = 0.0; 

float value_tcpip2 = 0.0; 

float value_tcpip3 = 0.0; 

float value_tcpip4 = 0.0; 

 

float value_object_x = 0; 

float value_object_y = 0; 

float value_numpels = 0; 

 

int newnavdata = 0; 

float newvref = 0; 

float newturn = 0; 

 

unsigned char controllerdata[65]; 

 

// OPTITRACK/ALGORITHM VARIABLES 

float dx = 0.03125; // was 0.03125 for size = 5, 0.01875 for size = 3 

float dy = 0.03125; 

int size = 5; 

int gridsize = 160; 

int C = 40; 

dataset *alldata; 

float *Q_global; 

int *Q_linux; 

unsigned char *sharedQTmem; 

float M[NUM_TRACKABLES]; 

float R_cov[NUM_TRACKABLES]; 

float R_cov2[NUM_TRACKABLES]; 

float M_over_R4[NUM_TRACKABLES]; 

int trackableID = -1; 

float ax[NUM_TRACKABLES]; 

float ay[NUM_TRACKABLES]; 

float ce = 0; 

float P[4] = {1,0,0,1}; 

float vP[NUM_TRACKABLES*NUM_AVOIDANCE]; 

float dvPx[NUM_TRACKABLES*NUM_AVOIDANCE]; 

float dvPy[NUM_TRACKABLES*NUM_AVOIDANCE]; 

float vA[NUM_TRACKABLES*NUM_AVOIDANCE]; 

float dvAx[NUM_TRACKABLES*NUM_AVOIDANCE]; 

float dvAy[NUM_TRACKABLES*NUM_AVOIDANCE]; 

float R_col[NUM_TRACKABLES]; 

float r_col[NUM_TRACKABLES]; 

float dvi_dx[NUM_TRACKABLES]; 

float dvi_dy[NUM_TRACKABLES]; 

float theta_des_ap[NUM_TRACKABLES]; 

float theta_des_cov[NUM_TRACKABLES]; 

float theta_des[NUM_TRACKABLES]; 

float AP_gain[NUM_TRACKABLES] = {-1.25,-1.25,-1.25}; 

float cov_gain[NUM_TRACKABLES] = {0.00015,0.00015,0.00015}; // k_cov = .0008*[.35 .0041 .062];  // was 0.0005 

for each 

float theta_gain[NUM_TRACKABLES] = {-1.0,-1.0,-1.0}; 

int trackableIDerror = 0; 

int firstdata = 1; 

volatile int new_optitrack = 0; 

volatile int new_optitrack_kal = 0; 

volatile float previous_frame = -1; 

int frame_error = 0; 

volatile float Optitrackdata[OPTITRACKDATASIZE]; 

volatile long currtime = 0; 

volatile long prevtime = 0; 

volatile long swi_time = 0; 

volatile long swi_time_prev = 0; 

volatile long optitrack_rectime = 0; 

volatile int temp_trackableID = -1; 

volatile float dt = 0; 

int firstime = 1; 

 

float gp[NUM_TRACKABLES] = {0.075,0.075,0.075};  // was 0.025 

float ga[NUM_TRACKABLES] = {0.025,0.025,0.025}; // was 0.02 

float gamma_prox[NUM_TRACKABLES*NUM_TRACKABLES] = {0,1,1, 

                                                   1,0,1, 

                                                   1,1,0}; 

float gamma_avoid[NUM_TRACKABLES*NUM_AVOIDANCE]; 

 

float angle_diff1 = 0; 

float angle_diff2 = 0; 

float remain = 0; 

float theta_des_norm[NUM_TRACKABLES] = {0,0,0}; 

float theta_control_temp = 0.0; 

float theta_des_temp = 0.0; 

float temp_theta = 0.0; 
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volatile float xpos_ot[NUM_AVOIDANCE] = {-1.0,-2.0,-3.0,1.9,3.1};//,4.0,5.0}; 

volatile float ypos_ot[NUM_AVOIDANCE] = {-1.0,-2.0,-3.0,2.2,4.3};//,4.0,5.0}; 

volatile float theta_ot[NUM_AVOIDANCE] =  {0,0,0,0,0};//,0,0}; 

volatile float xpos_kal[NUM_AVOIDANCE] = {-1.0,-2.0,-3.0,1.9,3.1};//,4.0,5.0}; 

volatile float ypos_kal[NUM_AVOIDANCE] = {-1.0,-2.0,-3.0,2.2,4.3};//,4.0,5.0}; 

volatile float theta_kal[NUM_AVOIDANCE] =  {0,0,0,0,0};//,0,0}; 

volatile float xpos_control[NUM_AVOIDANCE] = {-1.0,-2.0,-3.0,1.9,3.1};//,4.0,5.0}; 

volatile float ypos_control[NUM_AVOIDANCE] = {-1.0,-2.0,-3.0,2.2,4.3};//,4.0,5.0}; 

volatile float theta_control[NUM_AVOIDANCE] =  {0,0,0,0,0};//,0,0}; 

 

float u_control = 0; 

float utheta_control = 0; 

float u_out = 0; 

float utheta_out = 0; 

float ce_control = 0; 

 

float gotox = 0; 

float gotoy = 0; 

float gotox_control = 0; 

float gotoy_control = 0; 

 

volatile int updateControlOut = 0; 

volatile int updateControlPos = 1; 

 

// KALMAN FILTER VARIABLES 

float vel1 = 0,vel2 = 0; 

float vel1old = 0,vel2old = 0; 

float enc1old = 0,enc2old = 0; 

 

// SETTLETIME should be an even number and divisible by 3 

int settlegyro = 0; 

float gyro_zero = 0; 

float gyro_angle = 0; 

float old_gyro = 0; 

float gyro_drift = 0; 

float gyro = 0; 

int gyro_degrees = 0; 

float gyro_radians = 0.0; 

float gyro_x = 0,gyro_y = 0; 

float gyro4x_gain = 1.01; 

 

// KALMAN FILTERING 

float x_pred[3][1] = {{0},{0},{0}};                 // predicted state 

 

//more kalman vars 

float B[3][2] = {{1,0},{1,0},{0,1}};            // control input model 

float u[2][1] = {{0},{0}};          // control input in terms of velocity and angular velocity 

float Bu[3][1] = {{0},{0},{0}}; // matrix multiplication of B and u 

float z[3][1];                          // state measurement 

float eye3[3][3] = {{1,0,0},{0,1,0},{0,0,1}};   // 3x3 identity matrix 

float K[3][3] = {{1,0,0},{0,1,0},{0,0,1}};      // optimal Kalman gain 

float Q[3][3] = {{ProcUncert,0,ProcUncert/CovScalar}, 

                 {0,ProcUncert,ProcUncert/CovScalar}, 

                 {ProcUncert/CovScalar,ProcUncert/CovScalar,ProcUncert}};   // process noise (covariance of 

encoders and gyro) 

float R[3][3] = {{MeasUncert,0,MeasUncert/CovScalar}, 

                 {0,MeasUncert,MeasUncert/CovScalar}, 

                 {MeasUncert/CovScalar,MeasUncert/CovScalar,MeasUncert}};   // measurement noise (covariance of 

LADAR) 

float S[3][3] = {{1,0,0},{0,1,0},{0,0,1}};  // innovation covariance 

float S_inv[3][3] = {{1,0,0},{0,1,0},{0,0,1}};  // innovation covariance matrix inverse 

float P_pred[3][3] = {{1,0,0},{0,1,0},{0,0,1}}; // predicted covariance (measure of uncertainty for current 

position) 

float temp_3x3[3][3];               // intermediate storage 

float temp_3x1[3][1];               // intermediate storage 

float ytilde[3][1];                 // difference between predictions 

float start_laser_pred[3][1];       // keeps track of the prediction when the LADAR has new data 

 

// leader goes to least covered inits 

float minX = 0.0; 

float minY = 0.0; 

float Qmin = 40.0; 

 

// USED FOR GYRO CAL 

// a pose (position and orientation) of the robot 

typedef struct 

{ 

    float x;        //in feet 

    float y;        //in feet 

    float theta;    // in radians between -PI and PI.  O radians is along the +x axis, PI/2 is the +y axis 
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} pose; 

 

int statePos = 0;   // index into robotdest 

int robotdestSize = 4;  // number of positions to use out of robotdest 

pose robotdest[4];  // array of waypoints for the robot 

 

float Q_average = 0; 

float Q_min = 40; 

float Q_average_print = 0; 

int num_pels_print = 0; 

 

/* 

 *  ======== main ======== 

 */ 

Void main() 

{ 

 

 

    int i = 0; 

    int j = 0; 

    int k = 0; 

 

 

   // unlock the system config registers. 

   SYSCONFIG->KICKR[0] = KICK0R_UNLOCK; 

   SYSCONFIG->KICKR[1] = KICK1R_UNLOCK; 

 

   SYSCONFIG1->PUPD_SEL |= 0x10000000;  // change pin group 28 to pullup for GP7[12/13] (LCD switches) 

 

   // Initially set McBSP1 pins as GPIO ins 

   CLRBIT(SYSCONFIG->PINMUX[1], 0xFFFFFFFF); 

   SETBIT(SYSCONFIG->PINMUX[1], 0x88888880);  // This is enabling the McBSP1 pins 

 

   CLRBIT(SYSCONFIG->PINMUX[16], 0xFFFF0000); 

   SETBIT(SYSCONFIG->PINMUX[16], 0x88880000);  // setup GP7.8 through GP7.13 

   CLRBIT(SYSCONFIG->PINMUX[17], 0x000000FF); 

   SETBIT(SYSCONFIG->PINMUX[17], 0x00000088);  // setup GP7.8 through GP7.13 

 

 

   //Rick added for LCD DMA flagging test 

   GPIO_setDir(GPIO_BANK0, GPIO_PIN8, GPIO_OUTPUT); 

   GPIO_setOutput(GPIO_BANK0, GPIO_PIN8, OUTPUT_HIGH); 

 

   GPIO_setDir(GPIO_BANK0, GPIO_PIN0, GPIO_INPUT); 

   GPIO_setDir(GPIO_BANK0, GPIO_PIN1, GPIO_INPUT); 

   GPIO_setDir(GPIO_BANK0, GPIO_PIN2, GPIO_INPUT); 

   GPIO_setDir(GPIO_BANK0, GPIO_PIN3, GPIO_INPUT); 

   GPIO_setDir(GPIO_BANK0, GPIO_PIN4, GPIO_INPUT); 

   GPIO_setDir(GPIO_BANK0, GPIO_PIN5, GPIO_INPUT); 

   GPIO_setDir(GPIO_BANK0, GPIO_PIN6, GPIO_INPUT); 

 

   GPIO_setDir(GPIO_BANK7, GPIO_PIN8, GPIO_OUTPUT); 

   GPIO_setDir(GPIO_BANK7, GPIO_PIN9, GPIO_OUTPUT); 

   GPIO_setDir(GPIO_BANK7, GPIO_PIN10, GPIO_OUTPUT); 

   GPIO_setDir(GPIO_BANK7, GPIO_PIN11, GPIO_OUTPUT); 

   GPIO_setDir(GPIO_BANK7, GPIO_PIN12, GPIO_INPUT); 

   GPIO_setDir(GPIO_BANK7, GPIO_PIN13, GPIO_INPUT); 

 

   GPIO_setOutput(GPIO_BANK7, GPIO_PIN8, OUTPUT_HIGH); 

   GPIO_setOutput(GPIO_BANK7, GPIO_PIN9, OUTPUT_HIGH); 

   GPIO_setOutput(GPIO_BANK7, GPIO_PIN10, OUTPUT_HIGH); 

   GPIO_setOutput(GPIO_BANK7, GPIO_PIN11, OUTPUT_HIGH); 

 

   CLRBIT(SYSCONFIG->PINMUX[13], 0xFFFFFFFF); 

   SETBIT(SYSCONFIG->PINMUX[13], 0x88888811); //Set GPIO 6.8-13 to GPIOs and IMPORTANT Sets GP6[15] to 

/RESETOUT used by PHY, GP6[14] CLKOUT appears unconnected 

 

   GPIO_setDir(GPIO_BANK6, GPIO_PIN8, GPIO_OUTPUT); 

   GPIO_setDir(GPIO_BANK6, GPIO_PIN9, GPIO_OUTPUT); 

   GPIO_setDir(GPIO_BANK6, GPIO_PIN10, GPIO_OUTPUT); 

   GPIO_setDir(GPIO_BANK6, GPIO_PIN11, GPIO_OUTPUT); 

   GPIO_setDir(GPIO_BANK6, GPIO_PIN12, GPIO_OUTPUT); 

   GPIO_setDir(GPIO_BANK6, GPIO_PIN13, GPIO_INPUT); 

 

   // flag pins 

   GPIO_setDir(IMAGE_TO_LINUX_BANK, IMAGE_TO_LINUX_FLAG, GPIO_OUTPUT); 

   GPIO_setDir(CONTINUOUSDATA_TO_LINUX_BANK, CONTINUOUSDATA_TO_LINUX_FLAG, GPIO_OUTPUT); 

   GPIO_setDir(DATA_TO_LINUX_BANK, DATA_TO_LINUX_FLAG, GPIO_OUTPUT); 

   GPIO_setDir(DATA_FROM_LINUX_BANK, DATA_FROM_LINUX_FLAG, GPIO_OUTPUT); 
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    LinuxBooted = GET_LINUX_BOOTED; 

    if (LinuxBooted == 1) { 

        while ((T1_TGCR & 0x7) != 0x7) { 

          for (index=0;index<50000;index++) {}  // small delay before checking again 

 

        } 

    } else { 

        EVMOMAPL138_lpscTransition(PSC0, DOMAIN0, LPSC_TPCC, PSC_ENABLE); 

        EVMOMAPL138_lpscTransition(PSC0, DOMAIN0, LPSC_TPTC0, PSC_ENABLE); 

        EVMOMAPL138_lpscTransition(PSC0, DOMAIN0, LPSC_TPTC1, PSC_ENABLE); 

 

        // configure the next state for psc1 modules. 

        EVMOMAPL138_lpscTransition(PSC1, DOMAIN0, LPSC_EDMA3CC1, PSC_ENABLE); 

        EVMOMAPL138_lpscTransition(PSC1, DOMAIN0, LPSC_TPTC2, PSC_ENABLE); 

 

        T1_TCR = 0;  // Disable timer and set to internal Clock 

        T1_TGCR = 0;  // Reset both 32bit timers 

        T1_TGCR = TGCR_TIMMODE_32BIT_UNCHAINED;  // set 32bit unchained 

        T1_TGCR |= (TGCR_TIM12_RESET | TGCR_TIM34_RESET);  // pull timers out of reest 

        T1_TIM12 = 0;  // zero count register 

        T1_TIM34 = 0; // zero count register 

 

    } 

    USTIMER_init(); 

 

    // Turn on McBSP1 

    EVMOMAPL138_lpscTransition(PSC1, DOMAIN0, LPSC_MCBSP1, PSC_ENABLE); 

 

    if (LinuxBooted == 1) { 

        USTIMER_delay(4*DELAY_1_SEC);  // delay allowing Linux to partially boot before continuing with DSP 

code 

    } 

 

    // init the us timer and i2c for all to use. 

    I2C_init(I2C0, I2C_CLK_100K); 

    init_ColorVision(); 

    init_LCD_mem(); // added rick 

 

    EVTCLR0 = 0xFFFFFFFF; 

    EVTCLR1 = 0xFFFFFFFF; 

    EVTCLR2 = 0xFFFFFFFF; 

    EVTCLR3 = 0xFFFFFFFF; 

 

    init_DMA(); 

    init_McBSP(); 

 

    CLRBIT(SYSCONFIG->PINMUX[1], 0xFFFFFFFF); 

    SETBIT(SYSCONFIG->PINMUX[1], 0x22222220);  // This is enabling the McBSP1 pins 

 

    CLRBIT(SYSCONFIG->PINMUX[5], 0x00FF0FFF); 

    SETBIT(SYSCONFIG->PINMUX[5], 0x00110111);  // This is enabling SPI pins 

 

    CLRBIT(SYSCONFIG->PINMUX[16], 0xFFFF0000); 

    SETBIT(SYSCONFIG->PINMUX[16], 0x88880000);  // setup GP7.8 through GP7.13 

    CLRBIT(SYSCONFIG->PINMUX[17], 0x000000FF); 

    SETBIT(SYSCONFIG->PINMUX[17], 0x00000088);  // setup GP7.8 through GP7.13 

 

    init_LCD(); 

 

    // ADDED FOR OPTITRACK 

    alldata = (dataset *)(CONTROL_MEM_BASE); // external memory  //    is C4000000 

    Q_global = (float *)(CONTROL_MEM_BASE+CONTROL_OFFSET*2); // should be C4400000 

    Q_linux = (int *)(CONTROL_MEM_BASE+CONTROL_OFFSET*3);  // should be C4600000 

    ptrshrdmem2 = (sharedmemstruct2 *)(SHARED_MEM+0x2000);  // should be 80005000 

    sharedQTmem = (unsigned char *)(SHARED_MEM+0x3000); 

 

    // Initialize shared memory flags 

    SET_CONTINUOUSDATA_TO_LINUX; 

    CLR_DATA_FROM_LINUX; 

    SET_DATA_TO_LINUX; 

    SET_IMAGE_TO_LINUX; 

 

    // Initialize sensing and avoidance variables 

    for (i=0;i<NUM_TRACKABLES;i++){ 

        if (i==0 && SPECIAL_LEADER) { 

            R_cov[i] = size*sqrtsp(2);///4.0; // was size*sqrt(2) 

            M[i] = 1.0/10.0;  // was 1/75 

        } else { 

            R_cov[i] = 0.25;//size*sqrtsp(2);//0.25; // was 0.3125 

            M[i] = 12.0;  // was 4 

        } 
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        R_cov2[i] = R_cov[i]*R_cov[i]; 

        M_over_R4[i] = M[i]/((R_cov[i])*(R_cov[i])*(R_cov[i])*(R_cov[i])); 

        //M_over_R4[i] = M[i]/powsp(R_cov[i],32); 

 

        R_col[i] = 1.0;  // was 10 

        r_col[i] = 0.5;  // was 5 

    } 

 

    // Initialize gammas for proximity/avoidance 

    for (i=0;i<NUM_TRACKABLES;i++) { 

        for (j=0;j<NUM_TRACKABLES;j++) { 

            gamma_prox[i*NUM_TRACKABLES+j] = gp[i]*gamma_prox[i*NUM_TRACKABLES+j]; 

        } 

        for (k=0;k<NUM_AVOIDANCE;k++) { 

            gamma_avoid[i*NUM_AVOIDANCE+k] = ga[i]*1.0; 

        } 

    } 

 

    // Initialize algorithm grid memory structure 

    for (k=0;k<NUM_TRACKABLES;k++){ 

        for (i=0;i<gridsize;i++) { 

            for (j=0;j<gridsize;j++) { 

                alldata[gridsize*(gridsize*k+i)+j].Q = 0; 

                alldata[gridsize*(gridsize*k+i)+j].S = 0; 

                alldata[gridsize*(gridsize*k+i)+j].S_prev = 0; 

                alldata[gridsize*(gridsize*k+i)+j].dS = 0; 

                alldata[gridsize*(gridsize*k+i)+j].intS = 0; 

            } 

        } 

    } 

 

    // Initialize Algorithm Variables 

    for (i=0;i<NUM_TRACKABLES;i++) { 

        for (j=0;j<NUM_AVOIDANCE;j++) { 

            dvAx[i*NUM_TRACKABLES+j] = 0; 

            dvAy[i*NUM_TRACKABLES+j] = 0; 

        } 

    } 

    for (i=0;i<NUM_TRACKABLES;i++) { 

        for (j=0;j<NUM_AVOIDANCE;j++) { 

            vP[i*NUM_AVOIDANCE+j] = 0.0; 

            dvPx[i*NUM_AVOIDANCE+j] = 0.0; 

            dvPy[i*NUM_AVOIDANCE+j] = 0.0; 

            vA[i*NUM_AVOIDANCE+j] = 0.0; 

            dvAx[i*NUM_AVOIDANCE+j] = 0.0; 

            dvAy[i*NUM_AVOIDANCE+j] = 0.0; 

        } 

    } 

 

    // Initialize Linux/Global coverage arrays 

    for (i=0;i<gridsize;i++) { 

        for (j=0;j<gridsize;j++) { 

            Q_linux[gridsize*i+j] = 0; 

            Q_global[gridsize*i+j] = 0; 

        } 

    } 

 

    // Initialize PS3 controller data 

    for (i=0;i<65;i++) { 

        controllerdata[i] = 127; 

    } 

 

    // USED FOR GYRO CAL 

    // TODO: defined destinations that moves the robot around and outside the course 

    robotdest[0].x = 0;     robotdest[0].y = 0; 

    robotdest[1].x = 5;     robotdest[1].y = 0; 

    robotdest[2].x = 5;     robotdest[2].y = 5; 

    robotdest[3].x = 0;     robotdest[3].y = 5; 

 

} 

 

 

// Control Algorithm Task 

void Control(void) { 

 

    TSK_sleep(100); 

 

    while(1) { 

 

        int i = 0; 

        int j = 0; 
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        int k = 0; 

        int l = 0; 

        float max_temp = 0; 

        float MRM_temp = 0; 

        float Q_temp = 0; 

        float p_temp = 0; 

        float axD_prev = 0; 

        float axD_temp = 0; 

        float axDD_prev = 0; 

        float axDD_temp = 0; 

        float ayD_prev = 0; 

        float ayD_temp = 0; 

        float ayDD_prev = 0; 

        float ayDD_temp = 0; 

        float ceD_prev = 0;  // coverage error 

        float ceD_temp = 0; 

        float ceDD_prev = 0; 

        float ceDD_temp = 0; 

        float norm_err_const = 0; 

        float D_temp = 0; 

        float vcalc_temp = 0; 

        float Lx = 0; 

        float Ly = 0; 

        float prox_diff = 0; 

        float prox_max = 0; 

        float ai_delta_sum = 0; 

        float dai_Px = 0; 

        float dai_Py = 0; 

        float dai_Ax = 0; 

        float dai_Ay = 0; 

        float dRho = 0; 

        float C_temp = 0; 

        float size_temp = 0; 

 

        C_temp = (float)C; 

        size_temp = (float)size; 

 

        while (updateControlPos == 1) { 

            TSK_sleep(1); 

        } 

 

        if (firstime) { 

            currtime = CLK_getltime(); 

            firstime = 0; 

        } 

 

        for (i=0;i<NUM_TRACKABLES;i++) { 

            ax[i] = 0; 

            ay[i] = 0; 

        } 

        ce = 0; 

 

        prevtime = currtime; 

        currtime = CLK_getltime(); 

 

        dt = (currtime - prevtime)/1000.0; 

 

        Q_average = 0; 

        Q_min = 40; 

         

        norm_err_const = (C_temp)*(C_temp)*(C_temp)*(size_temp)*(size_temp);  // i need to typecast this 

correctly 

 

        for (k=0;k<NUM_TRACKABLES;k++){ 

            for (i=0;i<gridsize;i++) { 

                for (j=0;j<gridsize;j++) { 

 

                    p_temp = (xpos_control[k]-0.03125*j)*(xpos_control[k]-0.03125*j) + (ypos_control[k]-

0.03125*i)*(ypos_control[k]-0.03125*i);  // room for improvement (?) 

                    //p_temp = (xpos[k])*(xpos[k]) + (ypos[k])*(ypos[k]); 

 

                    //max_temp = (R_cov[k])*(R_cov[k])-p_temp; 

                    max_temp = (R_cov2[k])-p_temp;  // no change 

                    max_temp = (max_temp < 0) ? 0.0 : max_temp; 

 

                    // +162us (all data for 3 trackables / 80 gridsize 

                    alldata[gridsize*(gridsize*k+i)+j].S_prev = alldata[gridsize*(gridsize*k+i)+j].S; // save 

the old values - MOVE THIS LATER 

 

                    // adds 4.2+ ms 

                    //MRM_temp = M[k]/((R_cov[k])*(R_cov[k])*(R_cov[k])*(R_cov[k]))*max_temp; 
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                    MRM_temp = M_over_R4[k]*max_temp; // drastic improvement 

                    alldata[gridsize*(gridsize*k+i)+j].S = 

MRM_temp*max_temp;//M_over_R4[k]*powsp(max_temp,16);//MRM_temp*max_temp; // need a max function for floats 

 

                    // adds 300 us only 

                    alldata[gridsize*(gridsize*k+i)+j].dS = -2.0*MRM_temp;//-

16.0*M_over_R4[k]*powsp(max_temp,15);//-2.0*MRM_temp; // make faster with one calc 

 

                    // adds 40us only / maybe 0.5ms 

                    alldata[gridsize*(gridsize*k+i)+j].intS = 

0.5*(alldata[gridsize*(gridsize*k+i)+j].S_prev+alldata[gridsize*(gridsize*k+i)+j].S)*dt;  // Ti in matlab code 

.005 = .01s / 2. 

 

                    // adds 300us only 

                    Q_temp = alldata[gridsize*(gridsize*k+i)+j].Q+alldata[gridsize*(gridsize*k+i)+j].intS; 

                    alldata[gridsize*(gridsize*k+i)+j].Q = (Q_temp < C) ? Q_temp : C;  // Q for agent 

 

                    if (k==0) { 

                        Q_average += (alldata[gridsize*(gridsize*0+i)+j].Q); 

                        if (alldata[gridsize*(gridsize*0+i)+j].Q < Q_min) { 

                            Q_min = alldata[gridsize*(gridsize*0+i)+j].Q; 

                        } 

                    } 

                     

                    // adds 800 us 

                    Q_temp = Q_global[gridsize*i+j]+alldata[gridsize*(gridsize*k+i)+j].intS; 

                    Q_global[gridsize*i+j] = (Q_temp < C) ? Q_temp : C;  // Global Q - Keep these local maybe 

or put in shared memory? 

                    if (k == (NUM_TRACKABLES - 1)) { 

                        Q_temp = C - Q_global[gridsize*i+j]; 

                        Q_temp = (Q_temp > 0) ? Q_temp : 0; 

                        ceDD_temp = (Q_temp != 0) ? (Q_temp*Q_temp*Q_temp) : 0; 

                    } 

 

                    Q_temp = C - alldata[gridsize*(gridsize*k+i)+j].Q; 

                    Q_temp = (Q_temp > 0) ? Q_temp : 0; 

                    axDD_temp = (Q_temp != 0) ? 

6.0*(Q_temp*Q_temp)*(alldata[gridsize*(gridsize*k+i)+j].dS)*(xpos_control[k]-0.03125*j) : 0; 

                    ayDD_temp = (Q_temp != 0) ? 

6.0*(Q_temp*Q_temp)*(alldata[gridsize*(gridsize*k+i)+j].dS)*(ypos_control[k]-0.03125*i) : 0; 

 

                    if (j > 0) { 

                        axD_temp += (axDD_temp+axDD_prev)/2.0; 

                        ayD_temp += (ayDD_temp+ayDD_prev)/2.0; 

                        if (k == (NUM_TRACKABLES - 1)) { 

                            ceD_temp += (ceDD_temp+ceDD_prev)/2.0; 

                        } 

                    } 

 

                    axDD_prev = axDD_temp; 

                    ayDD_prev = ayDD_temp; 

                    if (k == (NUM_TRACKABLES - 1)) { 

                        ceDD_prev = ceDD_temp; 

                    } 

 

                } 

                if (i > 0) { 

                    ax[k] += (axD_temp+axD_prev)/2.0; 

                    ay[k] += (ayD_temp+ayD_prev)/2.0; 

                    if (k == (NUM_TRACKABLES - 1)) { 

                        ce += (ceD_temp+ceD_prev)/2.0; 

                    } 

                } 

                axD_prev = axD_temp; 

                axD_temp = 0; 

                axDD_prev = 0; 

                ayD_prev = ayD_temp; 

                ayD_temp = 0; 

                ayDD_prev = 0; 

                if (k == (NUM_TRACKABLES - 1)) { 

                    ceD_prev = ceD_temp; 

                    ceD_temp = 0; 

                    ceDD_temp = 0; 

                } 

            } 

            axD_prev = 0; 

            ayD_prev = 0; 

            if (k == (NUM_TRACKABLES - 1)) { 

                ceD_prev = 0; 

            } 



60 

 

        } 

 

        // scale ax and ay for gridsize 

        for (i=0;i<NUM_TRACKABLES;i++) { 

            ax[i] = ax[i]*dx*dx; // works for square grid only 

            ay[i] = ay[i]*dx*dx; // works for square grid only 

        } 

        ce = (ce*dx*dx)/norm_err_const; 

 

        //dist_count = 1; 

        for (i=0;i<NUM_TRACKABLES;i++) { 

            for (j=0;j<NUM_AVOIDANCE;j++) { 

                if (i != j) { 

                    Lx = xpos_control[i]-xpos_control[j]; 

                    Ly = ypos_control[i]-ypos_control[j]; 

                    D_temp = sqrtsp((Lx)*(Lx)+(Ly)*(Ly)); 

 

                    // if in proximity 

                    if ((j < NUM_TRACKABLES) && (i<j)) { 

                        if (D_temp <= D_PROX) { 

                            // merge Q values 

                            for (k=0;k<gridsize;k++) { 

                                for (l=0;l<gridsize;l++) { 

                                    if (alldata[gridsize*(gridsize*i+k)+l].Q > 

alldata[gridsize*(gridsize*j+k)+l].Q) { 

                                        alldata[gridsize*(gridsize*j+k)+l].Q = 

alldata[gridsize*(gridsize*i+k)+l].Q; 

                                    } else { 

                                        alldata[gridsize*(gridsize*i+k)+l].Q = 

alldata[gridsize*(gridsize*j+k)+l].Q; 

                                    } 

                                } 

                            } 

                        } 

                    } 

 

                    if (PROX_ON) { 

                        if (j < NUM_TRACKABLES) { 

                            if (i == 0 && SPECIAL_LEADER3) { 

                                vP[i*NUM_AVOIDANCE+j] = 0; 

                                dvPx[i*NUM_AVOIDANCE+j] = 0; 

                                dvPy[i*NUM_AVOIDANCE+j] = 0; 

                            } else { 

                                prox_diff = (D_temp)*(D_temp) - (D_PROX)*(D_PROX); 

                                prox_max = (prox_diff > 0) ? prox_diff : 0; 

                                vP[i*NUM_AVOIDANCE+j] = (prox_max)*(prox_max); 

                                dvPx[i*NUM_AVOIDANCE+j] = 4*prox_max*Lx; 

                                dvPy[i*NUM_AVOIDANCE+j] = 4*prox_max*Ly; 

                            } 

                        } 

                    } 

 

                    if (AVOID_ON) { 

 

                        if (j < NUM_TRACKABLES) { 

                            D_temp = sqrtsp(Lx*Lx+Ly*Ly); 

                        } else { 

                            D_temp = sqrtsp(Lx*(Lx*P[0]+Ly*P[2])+Ly*(Lx*P[1]+Ly*P[3])); // L'*P*L 

                        } 

 

                        vcalc_temp = (D_temp*D_temp - R_col[i]*R_col[i])/(D_temp*D_temp - r_col[i]*r_col[i]); 

                        vA[i*NUM_AVOIDANCE+j] = (vcalc_temp < 0) ? vcalc_temp*vcalc_temp : 0; 

 

                        if (i == 0 && j < NUM_TRACKABLES && SPECIAL_LEADER) {  // REMOVED <= 5/18/2012 

                            dvAx[i*NUM_AVOIDANCE+j] = 0.0; 

                            dvAy[i*NUM_AVOIDANCE+j] = 0.0; 

                        } 

 

                        else if (D_temp >= R_col[i]) { 

                            dvAx[i*NUM_AVOIDANCE+j] = 0.0; 

                            dvAy[i*NUM_AVOIDANCE+j] = 0.0; 

                        } 

 

                        else if (D_temp > r_col[i]) { 

                            if (j < NUM_TRACKABLES) { 

                                dvAx[i*NUM_AVOIDANCE+j] = 4*(R_col[i]*R_col[i] - 

r_col[i]*r_col[i])*(D_temp*D_temp-R_col[i]*R_col[i])* 

                                        (Lx)/((D_temp*D_temp - r_col[i]*r_col[i])*(D_temp*D_temp - 

r_col[i]*r_col[i])*(D_temp*D_temp - r_col[i]*r_col[i])); 

                                dvAy[i*NUM_AVOIDANCE+j] = 4*(R_col[i]*R_col[i] - 

r_col[i]*r_col[i])*(D_temp*D_temp-R_col[i]*R_col[i])* 
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                                        (Ly)/((D_temp*D_temp - r_col[i]*r_col[i])*(D_temp*D_temp - 

r_col[i]*r_col[i])*(D_temp*D_temp - r_col[i]*r_col[i]));; 

                            } else { 

                                dvAx[i*NUM_AVOIDANCE+j] = 4*(R_col[i]*R_col[i] - 

r_col[i]*r_col[i])*(D_temp*D_temp-R_col[i]*R_col[i])* 

                                        (Lx*P[0]+Ly*P[2])/((D_temp*D_temp - r_col[i]*r_col[i])*(D_temp*D_temp - 

r_col[i]*r_col[i])*(D_temp*D_temp - r_col[i]*r_col[i])); 

                                dvAy[i*NUM_AVOIDANCE+j] = 4*(R_col[i]*R_col[i] - 

r_col[i]*r_col[i])*(D_temp*D_temp-R_col[i]*R_col[i])* 

                                        (Lx*P[2]+Ly*P[3])/((D_temp*D_temp - r_col[i]*r_col[i])*(D_temp*D_temp - 

r_col[i]*r_col[i])*(D_temp*D_temp - r_col[i]*r_col[i]));; 

 

                            } 

                        } 

 

                        else if (D_temp < r_col[i]) { 

 

                            if (j < NUM_TRACKABLES) { 

                                dvAx[i*NUM_AVOIDANCE+j] = 4*(R_col[i]*R_col[i] - 

(0.2*r_col[i])*(0.2*r_col[i]))*(D_temp*D_temp-R_col[i]*R_col[i])* 

                                        (Lx)/((D_temp*D_temp - (0.2*r_col[i])*(0.2*r_col[i]))*(D_temp*D_temp - 

(0.2*r_col[i])*(0.2*r_col[i]))*(D_temp*D_temp - (0.2*r_col[i])*(0.2*r_col[i]))); 

                                dvAy[i*NUM_AVOIDANCE+j] = 4*(R_col[i]*R_col[i] - 

(0.2*r_col[i])*(0.2*r_col[i]))*(D_temp*D_temp-R_col[i]*R_col[i])* 

                                        (Ly)/((D_temp*D_temp - (0.2*r_col[i])*(0.2*r_col[i]))*(D_temp*D_temp - 

(0.2*r_col[i])*(0.2*r_col[i]))*(D_temp*D_temp - (0.2*r_col[i])*(0.2*r_col[i])));; 

                            } else { 

                                dvAx[i*NUM_AVOIDANCE+j] = 4*(R_col[i]*R_col[i] - 

(0.2*r_col[i])*(0.2*r_col[i]))*(D_temp*D_temp-R_col[i]*R_col[i])* 

                                        (Lx*P[0]+Ly*P[2])/((D_temp*D_temp - 

(0.2*r_col[i])*(0.2*r_col[i]))*(D_temp*D_temp - (0.2*r_col[i])*(0.2*r_col[i]))*(D_temp*D_temp - 

(0.2*r_col[i])*(0.2*r_col[i]))); 

                                dvAy[i*NUM_AVOIDANCE+j] = 4*(R_col[i]*R_col[i] - 

(0.2*r_col[i])*(0.2*r_col[i]))*(D_temp*D_temp-R_col[i]*R_col[i])* 

                                        (Lx*P[2]+Ly*P[3])/((D_temp*D_temp - 

(0.2*r_col[i])*(0.2*r_col[i]))*(D_temp*D_temp - (0.2*r_col[i])*(0.2*r_col[i]))*(D_temp*D_temp - 

(0.2*r_col[i])*(0.2*r_col[i])));; 

 

                            } 

                        } 

                    } // end if AVOID ON 

                } // end if i != j 

            } // end j<NUM_AVOIDANCE 

            ai_delta_sum = 0.0; 

            dai_Px = 0.0; 

            dai_Py = 0.0; 

            dai_Ax = 0.0; 

            dai_Ay = 0.0; 

            dRho = 0.0; 

            if (i == 0 && SPECIAL_LEADER) { // ALL FOR delta = 2 

                for (k=0;k<NUM_AVOIDANCE;k++) { 

                    if ((k != i) && (k<NUM_TRACKABLES)) { 

                        ai_delta_sum += 

gamma_prox[i*NUM_TRACKABLES+k]*gamma_prox[i*NUM_TRACKABLES+k]*vP[i*NUM_AVOIDANCE+k]*vP[i*NUM_AVOIDANCE+k]; // 

delta = 2 

                        dai_Px += 

gamma_prox[i*NUM_TRACKABLES+k]*gamma_prox[i*NUM_TRACKABLES+k]*vP[i*NUM_AVOIDANCE+k]*dvPx[i*NUM_AVOIDANCE+k]; 

                        dai_Py += 

gamma_prox[i*NUM_TRACKABLES+k]*gamma_prox[i*NUM_TRACKABLES+k]*vP[i*NUM_AVOIDANCE+k]*dvPy[i*NUM_AVOIDANCE+k]; 

                    } 

                    if (k >= NUM_TRACKABLES) { // only avoid obstacles 

                        ai_delta_sum += 

gamma_avoid[i*NUM_AVOIDANCE+k]*gamma_avoid[i*NUM_AVOIDANCE+k]*vA[i*NUM_AVOIDANCE+k]*vA[i*NUM_AVOIDANCE+k]; // 

delta = 2 

                        dai_Ax += 

gamma_avoid[i*NUM_AVOIDANCE+k]*gamma_avoid[i*NUM_AVOIDANCE+k]*vA[i*NUM_AVOIDANCE+k]*dvAx[i*NUM_AVOIDANCE+k]; 

                        dai_Ay += 

gamma_avoid[i*NUM_AVOIDANCE+k]*gamma_avoid[i*NUM_AVOIDANCE+k]*vA[i*NUM_AVOIDANCE+k]*dvAy[i*NUM_AVOIDANCE+k]; 

                    } 

                } 

            } else { 

                for (k=0;k<NUM_AVOIDANCE;k++) { 

                    if ((k != i) && (k<NUM_TRACKABLES)) { 

                        ai_delta_sum += 

gamma_prox[i*NUM_TRACKABLES+k]*gamma_prox[i*NUM_TRACKABLES+k]*vP[i*NUM_AVOIDANCE+k]*vP[i*NUM_AVOIDANCE+k]; // 

delta = 2 

                        dai_Px += 

gamma_prox[i*NUM_TRACKABLES+k]*gamma_prox[i*NUM_TRACKABLES+k]*vP[i*NUM_AVOIDANCE+k]*dvPx[i*NUM_AVOIDANCE+k]; 

                        dai_Py += 

gamma_prox[i*NUM_TRACKABLES+k]*gamma_prox[i*NUM_TRACKABLES+k]*vP[i*NUM_AVOIDANCE+k]*dvPy[i*NUM_AVOIDANCE+k]; 

                    } 
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                    if (k != i) { // avoids everything but itself 

                        ai_delta_sum += 

gamma_avoid[i*NUM_AVOIDANCE+k]*gamma_avoid[i*NUM_AVOIDANCE+k]*vA[i*NUM_AVOIDANCE+k]*vA[i*NUM_AVOIDANCE+k]; // 

delta = 2 

                        dai_Ax += 

gamma_avoid[i*NUM_AVOIDANCE+k]*gamma_avoid[i*NUM_AVOIDANCE+k]*vA[i*NUM_AVOIDANCE+k]*dvAx[i*NUM_AVOIDANCE+k]; 

                        dai_Ay += 

gamma_avoid[i*NUM_AVOIDANCE+k]*gamma_avoid[i*NUM_AVOIDANCE+k]*vA[i*NUM_AVOIDANCE+k]*dvAy[i*NUM_AVOIDANCE+k]; 

                    } 

                } 

            } 

            dRho = (ai_delta_sum == 0) ? 0 : 1.0/sqrtsp(ai_delta_sum);  // delta = 2 : ai_delta_sum^(1/delta-1) 

= ai_delta_sum^(-1/2) 

            dvi_dx[i] = dRho*(dai_Px+dai_Ax); 

            dvi_dy[i] = dRho*(dai_Py+dai_Ay); 

 

            theta_des_ap[i] = PI/2.0 - atan2f(dvi_dy[i],dvi_dx[i]); 

            theta_des_cov[i] = PI/2.0 - atan2f(ay[i],ax[i]); 

            if (trackableID == 0 && SPECIAL_LEADER2) { 

                theta_des[i] = theta_des_ap[i]; 

            } else { 

                theta_des[i] = theta_des_ap[i] + theta_des_cov[i]; // remove coverage influence for driver mode 

            } 

 

 

            if ((i == trackableID) && (updateControlOut == 0)) { 

                u_control = 

AP_gain[i]*(dvi_dx[i]*cosf(theta_control[i])+dvi_dy[i]*sinf(theta_control[i]))+cov_gain[i]*(ax[i]*cosf(theta_co

ntrol[i])+ay[i]*sinf(theta_control[i])); 

 

                theta_control_temp = fmodf(theta_control[i],(float)(2*PI)); 

                theta_des_temp = fmodf(theta_des[i],(float)(2*PI)); 

                if (theta_control_temp < -PI) theta_control_temp+=2*PI; 

                if (theta_control_temp > PI) theta_control_temp-=2*PI; 

                if (theta_des_temp < -PI) theta_des_temp+=2*PI; 

                if (theta_des_temp > PI) theta_des_temp-=2*PI; 

 

                angle_diff1 = theta_des_temp - theta_control_temp; 

                if (angle_diff1 > PI) angle_diff1 -= (2*PI); 

                if (angle_diff1 < -PI) angle_diff1 += (2*PI); 

 

                utheta_control = theta_gain[i]*angle_diff1; 

 

                if ((trackableID == 0) && (SPECIAL_LEADER4)) { 

                    Q_average = Q_average/25600.0; 

                    Q_average_print = Q_average; 

 

                    findLeastCovered(); 

                    gotox_control = gotox; 

                    gotoy_control = gotoy; 

                    num_pels_print = send_numpels; 

                } 

                ce_control = ce; 

                updateControlOut = 1; 

            } 

 

        } // end i<NUM_TRACKABLES 

        updateControlPos = 1; 

        TSK_sleep(1); 

    } 

} 

 

 

long timecount= 0; 

int whichled = 0; 

 

 

 

// This SWI is Posted after each set of new data from the F28335 

void RobotControl(void) { 

 

    int n = 0; 

    int i = 0; 

 

    if (0==(timecount%1000)) { 

        switch(whichled) { 

        case 0: 

            SETREDLED; 

            CLRBLUELED; 

            CLRGREENLED; 

            whichled = 1; 
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            break; 

        case 1: 

            CLRREDLED; 

            SETBLUELED; 

            CLRGREENLED; 

            whichled = 2; 

            break; 

        case 2: 

            CLRREDLED; 

            CLRBLUELED; 

            SETGREENLED; 

            whichled = 0; 

            break; 

        default: 

            whichled = 0; 

            break; 

        } 

    } 

 

    if (GET_DATA_TO_LINUX) { 

        for (i=0;i<65;i++) { 

            controllerdata[i] = sharedQTmem[i]; 

        } 

 

        BCACHE_wb ((void *)sharedQTmem,65,EDMA3_CACHE_WAIT); 

 

        CLR_DATA_TO_LINUX; 

    } 

 

    BCACHE_inv((void *)ptrshrdmem,sizeof(sharedmemstruct),EDMA3_CACHE_WAIT); 

    if (GET_DATA_FROM_LINUX) { 

 

        if (new_optitrack == 0) { 

            for (i=0;i<OPTITRACKDATASIZE;i++) { 

                Optitrackdata[i] = ptrshrdmem->Optitrackdata[i]; 

                temp_trackableID = ptrshrdmem->RobotID; 

            } 

            optitrack_rectime = CLK_getltime(); 

            new_optitrack = 1; 

        } 

        if (GET_CONTINUOUSDATA_TO_LINUX) { 

            for (i=0;i<NUM_TRACKABLES;i++) { 

                if (i != trackableID) { 

                    xpos_kal[i] = ptrshrdmem2[i].tx; 

                    ypos_kal[i] = ptrshrdmem2[i].ty; 

                } 

            } 

            ptrshrdmem2[trackableID].tx = xpos_kal[trackableID]; 

            ptrshrdmem2[trackableID].ty = ypos_kal[trackableID]; 

 

            BCACHE_wb ((void *)ptrshrdmem2,(3*NUM_TRACKABLES)*4,EDMA3_CACHE_WAIT); 

 

            CLR_CONTINUOUSDATA_TO_LINUX; 

        } 

        CLR_DATA_FROM_LINUX; 

    } 

 

    if (new_optitrack == 1) { 

        // Check for frame errors / packet loss 

        if (previous_frame == Optitrackdata[OPTITRACKDATASIZE-2]) { 

            frame_error++; 

        } 

        previous_frame = Optitrackdata[OPTITRACKDATASIZE-2]; 

 

        // Set local trackableID if first receive data 

        if (firstdata){ 

            CLRLED2; 

            CLRLED3; 

            CLRLED4; 

            CLRLED5; 

            trackableID = temp_trackableID; 

            firstdata = 0; 

            switch(trackableID) { 

            case 0: 

                SETLED2; 

                break; 

            case 1: 

                SETLED3; 

                break; 

            case 2: 

                SETLED4; 
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                break; 

            default: 

                SETLED2; 

                SETLED3; 

                SETLED4; 

                SETLED5; 

                break; 

            } 

        } 

 

        // Check if local trackableID has changed - should never happen 

        if (trackableID != temp_trackableID) { 

            trackableIDerror++; 

        } 

 

        // Save position and yaw data 

        for (i=0;i<NUM_TRACKABLES;i++){ 

            // subtracting 16 so everything is shifted such that optitrack's origin is the center of the arena 

(while keeping all coordinates positive) 

            if (isnan(Optitrackdata[i*3+0]) != 1) { 

                if ((Optitrackdata[i*3+0] != 0.0) && (Optitrackdata[i*3+1] != 0.0) && (Optitrackdata[i*3+2] != 

0.0)) { 

//                  xpos[i] = Optitrackdata[i*3+0]*32.0/3.6576+16;  // scaled so 32x32 unit course fits 12x12 

feet tiles (OpitrackdataInMeters*32units/3.66metersIn12Feet) 

//                  ypos[i] = (Optitrackdata[i*3+1]*32.0/3.6576)*-1.0+16;  // need to flip the y direction 

(ground tool sets it opposite of what I want) 

//                  theta[i] = Optitrackdata[i*3+2]*2*PI/360.0;  // in radians - should this not accumulate? 

                    xpos_ot[i] = Optitrackdata[i*3+0]+2.5; // was 2.5 for size = 5 

                    ypos_ot[i] = Optitrackdata[i*3+1]*-1.0+2.5; 

 

                    if (i != trackableID) { 

                        theta_ot[i] = Optitrackdata[i*3+2]*2*PI/360.0; 

                    } else { 

                        temp_theta = fmodf(theta_kal[trackableID],(float)(2*PI));//(theta[trackableID]%(2*PI)); 

                        if (temp_theta > 0) { 

                            if (temp_theta < PI) { 

                                if (Optitrackdata[i*3+2] >= 0.0) { 

                                    // THETA > 0, kal in QI/II, OT in QI/II 

                                    theta_ot[i] = ((int)((theta_kal[trackableID])/(2*PI)))*2.0*PI + 

Optitrackdata[i*3+2]*2*PI/360.0; 

                                } else { 

                                    if (temp_theta > (PI/2)) { 

                                        // THETA > 0, kal in QII, OT in QIII 

                                        theta_ot[i] = ((int)((theta_kal[trackableID])/(2*PI)))*2.0*PI + PI + 

(PI + Optitrackdata[i*3+2]*2*PI/360.0); 

                                    } else { 

                                        // THETA > 0, kal in QI, OT in QIV 

                                        theta_ot[i] = ((int)((theta_kal[trackableID])/(2*PI)))*2.0*PI + 

Optitrackdata[i*3+2]*2*PI/360.0; 

                                    } 

                                } 

                            } else { 

                                if (Optitrackdata[i*3+2] <= 0.0) { 

                                    // THETA > 0, kal in QIII, OT in QIII 

                                    theta_ot[i] = ((int)((theta_kal[trackableID])/(2*PI)))*2.0*PI + PI + (PI + 

Optitrackdata[i*3+2]*2*PI/360.0); 

                                } else { 

                                    if (temp_theta > (3*PI/2)) { 

                                        // THETA > 0, kal in QIV, OT in QI 

                                        theta_ot[i] = ((int)((theta_kal[trackableID])/(2*PI)))*2.0*PI + 2*PI + 

Optitrackdata[i*3+2]*2*PI/360.0; 

                                    } else { 

                                        // THETA > 0, kal in QIII, OT in QII 

                                        theta_ot[i] = 

(floorf((theta_kal[trackableID])/((float)(2.0*PI))))*2.0*PI + Optitrackdata[i*3+2]*2*PI/360.0; 

                                    } 

                                } 

                            } 

                        } else { 

                            if (temp_theta > -PI) { 

                                if (Optitrackdata[i*3+2] <= 0.0) { 

                                    // THETA < 0, kal in QIII/IV, OT in QIII/IV 

                                    theta_ot[i] = ((int)((theta_kal[trackableID])/(2*PI)))*2.0*PI + 

Optitrackdata[i*3+2]*2*PI/360.0; 

                                } else { 

                                    if (temp_theta < (-PI/2)) { 

                                        // THETA < 0, kal in QIII, OT in QII 

                                        theta_ot[i] = ((int)((theta_kal[trackableID])/(2*PI)))*2.0*PI - PI + (-

PI + Optitrackdata[i*3+2]*2*PI/360.0); 

                                    } else { 

                                        // THETA < 0, kal in QIV, OT in QI 
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                                        theta_ot[i] = ((int)((theta_kal[trackableID])/(2*PI)))*2.0*PI + 

Optitrackdata[i*3+2]*2*PI/360.0; 

                                    } 

                                } 

                            } else { 

                                if (Optitrackdata[i*3+2] >= 0.0) { 

                                    // THETA < 0, kal in QI/II, OT in QI/II 

                                    theta_ot[i] = ((int)((theta_kal[trackableID])/(2*PI)))*2.0*PI - PI + (-PI + 

Optitrackdata[i*3+2]*2*PI/360.0); 

                                } else { 

                                    if (temp_theta < (-3*PI/2)) { 

                                        // THETA < 0, kal in QI, OT in QIV 

                                        theta_ot[i] = ((int)((theta_kal[trackableID])/(2*PI)))*2.0*PI - 2*PI + 

Optitrackdata[i*3+2]*2*PI/360.0; 

                                    } else { 

                                        // THETA < 0, kal in QII, OT in QIII 

                                        theta_ot[i] = ((int)((theta_kal[trackableID])/(2*PI)))*2.0*PI + 

Optitrackdata[i*3+2]*2*PI/360.0; 

                                    } 

                                } 

                            } 

                        } 

                        if (fabs(theta_ot[i]-theta_kal[trackableID])<(0.25)){ // 0.25rad is about 15 degrees 

                            new_optitrack_kal = 1; 

                        } else { 

                            otkalcount++; 

                        } 

                    } 

                } 

            } 

        } 

        new_optitrack = 0; 

    } 

     

    // using 400deg/s gyro 

    gyro = adcA3*3.0/4096.0; 

    if (settlegyro < SETTLETIME) { 

        settlegyro++; 

        if (settlegyro < (SETTLETIME/3)) { 

            // do nothing 

        } else if (settlegyro < (2*SETTLETIME/3)) { 

            gyro_zero = gyro_zero + gyro/(SETTLETIME/3); 

        } else { 

            gyro_drift += (((gyro-gyro_zero) + old_gyro)*.0005)/(SETTLETIME/3); 

            old_gyro = gyro-gyro_zero; 

        } 

        if(settlegyro%500 == 0) { 

            LCDPrintfLine(1,"Cal Gyro -- %.1fSecs", (float)(SETTLETIME - settlegyro)/1000.0 ); 

            LCDPrintfLine(2,""); 

        } 

 

        // while calibrating set positions to optitrack data 

        x_pred[0][0] = xpos_ot[trackableID]; //estimate in structure form (useful elsewhere) 

        x_pred[1][0] = ypos_ot[trackableID]; 

        x_pred[2][0] = theta_ot[trackableID]; 

 

        for (i=0;i<NUM_TRACKABLES;i++) { 

            xpos_kal[i] = xpos_ot[i]; 

            ypos_kal[i] = ypos_ot[i]; 

            theta_kal[i] = theta_ot[i]; 

        } 

 

        new_optitrack_kal = 0; 

 

        SetRobotOutputs(0,0,0,0,0,0,0,0,0,0); 

    } else { 

 

        gyro_angle = gyro_angle - ((gyro-gyro_zero) + old_gyro)*.0005 + gyro_drift;   // doing to have to do 

this based on time 

        old_gyro = gyro-gyro_zero; 

        gyro_radians = (gyro-gyro_zero)*(PI/180.0)*400.0*gyro4x_gain; 

 

        // Kalman filtering 

        vel1 = (enc1 - enc1old)/(193.0*0.001)*0.3048;   // calculate actual velocities IN METERS/s 

        vel2 = (enc2 - enc2old)/(193.0*0.001)*0.3048; 

        if (fabsf(vel1) > 10.0) vel1 = vel1old; // check for encoder roll-over should never happen 

        if (fabsf(vel2) > 10.0) vel2 = vel2old; 

        enc1old = enc1; // save past values 

        enc2old = enc2; 

        vel1old = vel1; 

        vel2old = vel2; 
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        // Step 0: update B, u 

        B[0][0] = cosf(theta_kal[trackableID])*0.001; 

        B[1][0] = sinf(theta_kal[trackableID])*0.001; 

        B[2][1] = 0.001; 

        u[0][0] = 0.5*(vel1 + vel2);    // linear velocity of robot 

        u[1][0] = (gyro-gyro_zero)*(PI/180.0)*400.0*gyro4x_gain;    // angular velocity in rad/s (negative for 

right hand angle) 

 

        // Step 1: predict the state and estimate covariance 

        Matrix3x2_Mult(B, u, Bu);                   // Bu = B*u 

        Matrix3x1_Add(x_pred, Bu, x_pred, 1.0, 1.0); // x_pred = x_pred(old) + Bu 

        Matrix3x3_Add(P_pred, Q, P_pred, 1.0, 1.0); // P_pred = P_pred(old) + Q 

 

        // Step 2: if there is a new measurement, then update the state 

        if (1 == new_optitrack_kal) { 

            z[0][0] = xpos_ot[trackableID]; // take in the optitrack measurement 

            z[1][0] = ypos_ot[trackableID]; 

            z[2][0] = theta_ot[trackableID]; 

 

            new_optitrack_kal = 0; 

 

            // Step 2a: calculate the innovation/measurement residual, ytilde 

            Matrix3x1_Add(z, x_pred, ytilde, 1.0, -1.0);    // ytilde = z-x_pred 

            // Step 2b: calculate innovation covariance, S 

            Matrix3x3_Add(P_pred, R, S, 1.0, 1.0);                          // S = P_pred + R 

            // Step 2c: calculate the optimal Kalman gain, K 

            Matrix3x3_Invert(S, S_inv); 

            Matrix3x3_Mult(P_pred,  S_inv, K);                              // K = P_pred*(S^-1) 

            // Step 2d: update the state estimate x_pred = x_pred(old) + K*ytilde 

            Matrix3x1_Mult(K, ytilde, temp_3x1); 

            Matrix3x1_Add(x_pred, temp_3x1, x_pred, 1.0, 1.0); 

            // Step 2e: update the covariance estimate   P_pred = (I-K)*P_pred(old) 

            Matrix3x3_Add(eye3, K, temp_3x3, 1.0, -1.0); 

            Matrix3x3_Mult(temp_3x3, P_pred, P_pred); 

        }   // end of correction step 

 

        // set ROBOTps to the updated and corrected Kalman values. 

        xpos_kal[trackableID] = x_pred[0][0]; 

        ypos_kal[trackableID] = x_pred[1][0]; 

        theta_kal[trackableID] = x_pred[2][0]; 

 

        if (updateControlPos){ 

            for (n=0;n<NUM_TRACKABLES;n++){ 

                    xpos_control[n] = xpos_kal[n]; 

                    ypos_control[n] = ypos_kal[n]; 

                    theta_control[n] = theta_kal[n]; 

            } 

 

            if (GET_IMAGE_TO_LINUX) { 

 

 

                for (n=0;n<gridsize;n++) { 

                    for (i=0;i<gridsize;i++) { 

                        Q_linux[gridsize*n+i] = (int)(Q_global[gridsize*n+i]*1000); 

                    } 

                } 

 

                for (n=0;n<NUM_TRACKABLES;n++) { 

                        Q_linux[gridsize*gridsize+n*2] = (int)(xpos_control[n]*1000); 

                        Q_linux[gridsize*gridsize+n*2+1] = (int)(ypos_control[n]*1000); 

                } 

 

                Q_linux[gridsize*gridsize+NUM_TRACKABLES*2] = (int)(ce_control*10000.0); 

                Q_linux[gridsize*gridsize+NUM_TRACKABLES*2+1] = (int)(sqrtsp((xpos_control[0]-

xpos_control[2])*(xpos_control[0]-xpos_control[2])+(ypos_control[0]-ypos_control[2])*(ypos_control[0]-

ypos_control[2]))*1000.0); 

                Q_linux[gridsize*gridsize+NUM_TRACKABLES*2+2] = (int)(sqrtsp((xpos_control[1]-

xpos_control[2])*(xpos_control[1]-xpos_control[2])+(ypos_control[1]-ypos_control[2])*(ypos_control[1]-

ypos_control[2]))*1000.0); 

                Q_linux[gridsize*gridsize+NUM_TRACKABLES*2+3] = (int)(sqrtsp((xpos_control[0]-

xpos_control[3])*(xpos_control[0]-xpos_control[3])+(ypos_control[0]-ypos_control[3])*(ypos_control[0]-

ypos_control[3]))*1000.0); 

                Q_linux[gridsize*gridsize+NUM_TRACKABLES*2+4] = (int)(sqrtsp((xpos_control[0]-

xpos_control[4])*(xpos_control[0]-xpos_control[4])+(ypos_control[0]-ypos_control[4])*(ypos_control[0]-

ypos_control[4]))*1000.0); 

                Q_linux[gridsize*gridsize+NUM_TRACKABLES*2+5] = (int)(sqrtsp((xpos_control[1]-

xpos_control[3])*(xpos_control[1]-xpos_control[3])+(ypos_control[1]-ypos_control[3])*(ypos_control[1]-

ypos_control[3]))*1000.0); 
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                Q_linux[gridsize*gridsize+NUM_TRACKABLES*2+6] = (int)(sqrtsp((xpos_control[1]-

xpos_control[4])*(xpos_control[1]-xpos_control[4])+(ypos_control[1]-ypos_control[4])*(ypos_control[1]-

ypos_control[4]))*1000.0); 

                Q_linux[gridsize*gridsize+NUM_TRACKABLES*2+7] = (int)(sqrtsp((xpos_control[2]-

xpos_control[3])*(xpos_control[2]-xpos_control[3])+(ypos_control[2]-ypos_control[3])*(ypos_control[2]-

ypos_control[3]))*1000.0); 

                Q_linux[gridsize*gridsize+NUM_TRACKABLES*2+8] = (int)(sqrtsp((xpos_control[2]-

xpos_control[4])*(xpos_control[2]-xpos_control[4])+(ypos_control[2]-ypos_control[4])*(ypos_control[2]-

ypos_control[4]))*1000.0); 

 

                BCACHE_wb ((void *)Q_linux,(gridsize*gridsize+2*NUM_TRACKABLES+9)*4,EDMA3_CACHE_WAIT); 

 

                CLR_IMAGE_TO_LINUX; 

            } 

 

            updateControlPos = 0; 

 

        } 

 

        if (updateControlOut) { 

            if ((trackableID == 0) && SPECIAL_LEADER4) { 

                 

                xy_control(&vref, &turn, 1.0, xpos_control[trackableID], ypos_control[trackableID], 

gotox_control*dx, gotoy_control*dy, theta_control[trackableID], 0.0762, 0.1524); 

                 

                u_out = vref; 

                utheta_out = turn; 

 

 

            } else { 

                u_out = u_control; 

                utheta_out = utheta_control; 

            } 

            updateControlOut = 0; 

        } 

 

        swi_time = CLK_getltime(); 

        // Halt robots if Optitrack stops streaming 

        if ((swi_time - optitrack_rectime) > 500) { 

            u_out = 0; 

            utheta_out = 0; 

        } 

 

        if (errorcheck == 0) { 

            u_out = 0; 

            utheta_out = 0; 

        } 

 

        if ((swi_time - swi_time_prev) > 150) { 

            if (trackableID > -1) { 

 

                if ((trackableID == 0) && SPECIAL_LEADER4) { 

                    

LCDPrintfLine(1,"%.1f,%.1f,%.1f,%d",gotox_control*dx,gotoy_control*dy,Q_average_print,num_pels_print); 

                } else { 

                    

LCDPrintfLine(1,"t:%.1f,x:%.1f,y%.1f",theta_control[trackableID],xpos_control[trackableID],ypos_control[trackab

leID]); 

                } 

 

                LCDPrintfLine(2,"u:%.1f,ut:%.1f,dt:%.3f",u_out,utheta_out,dt*1000.0); 

 

            } else { 

 

                    LCDPrintfLine(1,"%u,%u,%u",controllerdata[0],controllerdata[1],controllerdata[2]); 

                    LCDPrintfLine(2,"u:%.1f,ut:%.1f,dt:%.3f",u_out,utheta_out,dt*1000.0); 

            } 

            swi_time_prev = swi_time; 

        } 

 

        // Saturation 

        if (u_out > 4) u_out = 4; 

        if (u_out < -4) u_out = -4; 

        if (utheta_out > 10) utheta_out = 10; 

        if (utheta_out < -10) utheta_out = -10; 

 

        SetRobotOutputs(u_out,utheta_out,0,0,0,0,0,0,0,0); 

 

        timecount++; 

    } 

} 


