View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by lllinois Digital Environment for Access to Learning and Scholarship Repository

© 2013 Justin Koeln


https://core.ac.uk/display/17355513?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A DECENTRALIZED CONTROL DESIGN APPROACH TO A CLASSF
LARGE-SCALE SYSTEMS

BY

JUSTIN KOELN

THESIS
Submitted in partial fulfillment of the requirement
for the degree of Master of Science in Mechanicajiieering

in the Graduate College of the
University of lllinois at Urbana-Champaign, 2013

Urbana, lllinois

Adviser:

Professor Andrew Alleyne



Abstract

Large-scale systems present a unique control ciggle The large number of states,
actuators, and control objectives for these systeften restricts the ability to analyze and
control the system as a whole. Typically, thesgdaystems are decomposed into multiple
smaller subsystems which can be analyzed and dlewdtreeparately using a decentralized
control approach. However, if the interactionswesn subsystems significantly affect the
dynamics of the system, a decentralized controtagmgh may prove to be ineffective and
even result in unstable behavior.

This thesis develops a control strategy for a classystems with a particular
hierarchical structure known as a Block Arrow Stuue (BAS). Many real world systems
naturally exhibit this two-level hierarchical sttute, where a common subsystem at the
higher, global, level interacts with multiple subms at the lower, local, level. There is no
direct interaction among the lower level subsysten’ standard decentralized control
approach would control each subsystem separagghgring the interactions between the
higher and lower level subsystems. However, theraction between the two levels may
significantly affect the system dynamics, renderithg decentralized control approach
ineffective. The proposed control strategy, reférto as the BAS control strategy, retains
the scalability of the decentralized control appfoaut is also able to directly consider the
interactions between the higher and lower levekgsitems. This allows the BAS control
approach to perform significantly better than aemé@alized approach. Model predictive
control (MPC) is used to evaluate the performarnicéhe BAS control strategy relative to
both centralized and decentralized approachesviodifferent BAS systems.

In addition to the BAS control approach, this teedevelops an extremum seeking

control (ESC) strategy which is used to improvedtierall efficiency of the BAS system. In



addition to performance objectives such as trackimigsired value for a state of the system,
many systems have an efficiency objective. Thiedlve seeks to control the system in the
most efficient way possible, while still meetingetherformance objectives. Minimizing the
total energy use of all the actuators in the sysgeencommon example of such an efficiency
objective. In this work, ESC is used to augmeptBAS control strategy at the global level
to further improve the efficiency of the overalssggm. The model-free nature of ESC makes
this control strategy especially effective in thregence of unknown disturbances and system
nonlinearity, which may not be captured by the n®dsed for the MPC controllers of the
BAS control strategy.

A linear example system is used to demonstratectimeepts and ideas presented
throughout this thesis. For this example systdma,BAS control architecture with ESC is
able to achieve a control performance very simdathat of the centralized control approach
while retaining the scalability of the decentratizgpproach. The benefits of the BAS control
approach are also demonstrated for a more reaigstem: a variable refrigerant flow (VRF)
air-conditioning and refrigeration system for albug. Through a gray-box modeling
approach, it is shown that VRF systems naturalhjil@ka BAS structure and, therefore, can
benefit from a BAS control approach. VRF systemssk@coming widely used to meet the
air-conditioning and refrigeration needs of builghnbecause of their greater efficiency in
removing heat versus the conventional forced astesys. For these systems, it is very
important to meet both the performance objectiv@ssh as maintaining a desired air
temperature in a room, as well as the efficiencjeaive of minimizing the total energy
consumed by the system. Through a series of stranleexamples, the BAS control

approach is found to be a very effective contn@tsgy for meeting both of these objectives.
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Chapter 1

Introduction

This thesis investigates the control architectuesigh for a class of large-scale systems
with a particular structure known as a Block Arr@tvucture (BAS). In general, the control of
large-scale systems is a particularly challengingblem that has been the focus of many
research efforts over the past few decades. Tige laumber of actuators, states, and control
objectives for these systems often restricts thbtyalbo analyze and control the system as a
whole due to the high communication and computati@osts associated with a centralized
control approach. Often, large-scales systemsbeadecomposed into interacting subsystems,
permitting a decentralized control approach whetdtipie controllers are developed and each
controller only has access to information for tbheresponding subsystem. By reducing a single
large control problem into multiple smaller contpsbblems, communication and computational
costs can be drastically reduced, improving thectprality and scalability of the control
approach. However, the decentralization of thetrobrproblem comes at a cost. Without
explicit knowledge of the interactions between ssbmms, the control performance of a
decentralized approach can be significantly degrad®een compared to a centralized approach.

In this thesis, several control architectures wittrious levels of decentralization are
developed and analyzed for a class of BAS systeBAS systems, also known as bordered
block diagonal (BBD) systems, have a two-level dniehical structure. The lower, local, level
consists of a set of subsystems which are compldetoupled, meaning that there is no direct
interaction between these subsystems. The highaal, level contains a single subsystem
which has a bidirectional interaction with eachtbé& subsystems in the lower level. This

structure is defined more rigorously in ChapterThe goal of this thesis is to utilize the unique



structure of these systems to develop a contrakegjy that provides both the scalability of

decentralized control and the high performanceeatralized control.

1.1 Motivation

Despite extensive research efforts focused onxpwigation of the BAS (often referred
to as BBD) in relation to parallel computing [1]][Zurprisingly little work has studied the
control of systems with this structure. BAS systeare found in a variety of applications
including power systems, resource management, gddahlic systems [3]. Additionally, any
sparse matrix can be rearranged into a nested BB [4], allowing the use of BAS control
techniques on a wide variety of large-scale systems

Previous work on the development of control strg®gor BAS system, which is
summarized in Chapter 2, has focused exclusivelythenuse of Linear Matrix Inequalities
(LMIs) or Linear Quadratic Regulators (LQR) to dgsstatic feedback controllers which exploit
the structure of a BAS system. This thesis aimesxtend this work through the development of
a Model Predictive Control (MPC) framework whicts@lexploits the system structure while
providing the additional benefits of MPC [5]; inrpeular, the ability to enforce constraints and
use predictions of how the system responds to varmontrol decisions.

In additional to developing a MPC framework for BAgstems, the ideas and techniques
developed throughout this thesis are demonstratea Yariable Refrigerant Flow (VRF) system
in Chapter 7. VRF systems, also known as multpevator vapor-compression systems, are
becoming widely used to meet the heating and cgalemands for buildings [6]. These large-
scale systems are often used to heat or cool dveatifferent zones or rooms with a single
system. With multiple states and actuators perezancentralized control approach is often
infeasible, suggesting the use of decentralizedrcbnHowever, the large degree of interaction
between the various subsystems in a VRF systemspomg®oblem. In [7], it was found that
despite this coupling, decentralized control caefiective in meeting the performance objective
for the system, namely regulating a desired aipenature or cooling capacity for each room in
the building. However, heating and cooling conswarggnificant portion of the energy use in
buildings each year [8], and therefore, the efficieof these systems is also of great importance.

In Chapter 7, it is found that VRF systems haveatunal BAS which can be exploited when



developing a control strategy used to meet botlpdrrmance and efficiency requirements for
these systems. While exploiting the structure &FVsystems can lead to improved control
performance, it is found that the nonlinearity anomerous disturbances seen in VRF systems
limit the capabilities of a MPC control strategy iatn is based on the assumption of a linear
system model. Therefore, in addition to MPC, a etdicee adaptive control approach known as
Extremum Seeking Control (ESC) is development angléemented to further improve the

efficiency of the VRF system.

1.2 Organization of Thesis

The remainder of the thesis is organized as folloWse class of BAS systems is defined
and analyzed in Chapter 2. Additionally, a lineaample system is introduced which is used to
demonstrate the ideas and techniques presentedghtioot the thesis. In Chapter 3, model
predictive control is introduced along with the alkst of the specific MPC formulation used in
this thesis. The basics of extremum seeking cbatepresented in Chapter 4 along with some
details pertaining to the implementation of ESCaophysical system. Chapter 5 develops the
various control architectures used to control thedr example system with the results shown in
Chapter 6. A brief overview of variable-refrigetdiow systems is given in Chapter 7, followed
by the details of a gray-box model identificatioppeoach used to obtain a linear model
representation for the system. Chapter 7 also shbew each of the various control
architectures can be used to control a VRF systadhthe associated control performance.

Finally, some concluding remarks and future redednections are presented in Chapter 8.



Chapter 2

A Class of Block Arrow Structure Systems

This chapter presents a class of systems with Bdoobw Structure (BAS). Section 1.1
develops a linear system representation for BA$egys and Section 1.2 details previous work
on the analysis and control of these systems. odarieatures of BAS systems relevant to
control are analyzed in Section 2.3 and generairabobjectives for these systems are presented
in Section 2.4. Finally, Section 2.5 describes example BAS system which is used to
demonstrate the various ideas and techniques peestmoughout this thesis.

2.1 Block Arrow Structure

In this work we consider linear, time-invariant t®ms with a block arrow structure

(BAS), also referred to as a bordered block diab@BD) structure. BAS systems consist of
N subsystemsS,, where iON :{1,2,...,N} , Interconnected through a single common
subsystemS,. Fig. 2.1 visually shows the structure of theggteans where each subsyst&n
has a bidirectional interaction with, but no interaction with subsysteﬁ] wherei, jON and
EAR

Each subsysters, can be represented in state-space form as

S X% =AX*+AXTBU+Bu,+Vd, 21
Yy, =G +Du +Wd, 1)



Figure 2.1 Subsystem interaction diagram for BAS stems.

where x OR™ , u OR™', andd, OR™ are the state, control, and disturbance vectarsSfo
and x, OR™°, u, OR"“* are the state and control vectors &r. Note that it is assumed that the

disturbancedd, are naturally decoupled. Additionally, throughthis work, it is assumed that

all states are outputs of the systegn=x. ThusC; =1, , D; =0 .. ,andW, =0, . .
The subsysten®, can be represented in state-space form as
. N N
S 1% = AXot X Agk + Bl ot 2 Bt +V dl (2.2)
i=1 i=1

The subsystem representations from (2.1) and (@a2) be combined to create the

complete systen®, represented as

S:x=Ax+Bu+Vd,
(2.3)
y=X
where x=[x % ... X, %] ,u=[u u, .. u, u],andd=[d, d, .. d, d

N
are the state, control, and disturbance vectorghentire system. Denoting = z ng +ng,,
i=1



N N
n,=> n,;+n, andn, =>n, +n,,, we havexdR™, uOR"™, andd OR™ with AOR™"™,
i=1 i=1

BOR™™, andVv OR™"™ . Writing out theA, B, andV matrices as

Ah 0 0 iAlo B11 o - 0 i BlO
0 A, iAzo 0 B, - : iBzo
A= . 0! |, B=| : 0! | (2.4)
L 0 0 Bu By
_Abl A A i Aoo_ _Bm B o By i Boo_
"V, O 0! 0]
0V, 0
V= g 0ol (2.5)
0 0 Vg !| O
0 0 01V,

it is easy to see why these systems are said ®ddalock arrow structure.

2.2 Literature Review

The majority of BAS research has focused on théoggpion of the structure for parallel
computing purposes [1] [2]. However, there havenbseveral efforts to utilize the structure of
BAS systems in the development of control stratefpe these systems. Most of this work has
come from Dr. Groumpos and colleagues [3] [9] [11], where a linear-quadratic regulator
(LQR) approach is used to develop a static feedibaokrol law which preserves the BAS form.
In [9] it is found that the development of a BAShtol law can be decomposed into the solution
of multiple smaller independent algebraic Riccguaions. In addition to the reduction in size
of each of these Riccati equations, the fact thase equations can be solved independently
allows for the use of parallel processing, whichtHar reduces computational time when
compared to a centralized approach. It was folnadl the BAS approach proved a desirable
compromise between centralized and completely desdeaed control strategies by combining
the low computational complexity of decentralizednitol with the high performance of

centralized control. The controllability and stapiof BAS systems using the proposed BAS



static feedback control law is analyzed in [3] 4h€]. Additionally, in [11] it is found that a
gradient-type algorithm can be used to optimize BAS feedback gain and is shown to
significantly improve the performance of the BASol strategy; nearly achieving the same
performance as the centralized approach.

The other set of research related to the contr@@A$ systems comes from Siljak and
colleagues [4] [12], where a linear matrix inequallLMI) approach is used to determine the
BAS feedback gain. In [4], a graph-theoretic deposition method is presented which allows
any sparse system matrix to be reordered into gedchém®rdered block diagonal form. Both [4]
and [12] use an LMI approach to develop output lbee#t control gains for nested BAS systems.

The previous literature has shown that a BAS cémpproach can provide a significant
improvement in control performance when comparedidoentralized control. However, the
previous approaches, using LQR and LMI methodseignh static feedback control laws, may
not meet some of the practical needs of indusaipalications. Examples of these needs include
the ability to directly consider state, output,amtuator saturation and to predict the future state
of the system. Therefore, this thesis extendsntht@®ns of BAS control design to a model
predictive control (MPC) framework which allows fdirect consideration of state, output, and

actuator saturation as well as increased flexyhititthe control design.

2.3 BAS System Analysis

Prior to the development of a control strategy f aystem, the fundamental properties
of controllability and observability, first preseut in [13], need to be tested. Controllability
means that each state of the system can be mowed dny initial condition to any final
condition in finite time under some control inpuDbservability means that each state can be
determined in finite time based on knowledge of itguts and outputs of the system. The

standard tests for controllability and observapitite
rankC = ranI{B AB ... A”S’lB] =n, (2.6)
and

rankO = ranfC CA ... CA”s‘l}T =n (2.7)
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where n, is the number of states in the system. Basedhenduality of controllability and

observability, only controllability is considered ihe following analysis and discussion and the

results can easily be adapted for observability.
For large-scale systems, determining the rank GfR™™™)  wheren, is the number of

inputs to the system, may become a very difficultnerical problem to solve. Fortunately, as
presented in [14] there is an alternative methodédtermine the controllability of large-scale
systems. Here the notions of structured matrige$ structural controllability are used to
simplify the analysis.

Definition. [14] An nxm matrix M :(rﬁj) is said to be a structured matrix if its elemeris

are either fixed zeros or independent free parasiete

For example, the scalar BAS matrix

2 0 1
M=l0 -2 2 (2.8)
1 2 -3

is admissible with respect to the structured matrix
00 O

M=|0 O O. (2.9)
O 00

Definition. [14] A pair of matrices(A, B) is said to be structurally controllable if thepasts a

controllable pair( A B) such thaf A, B) D(A, B).
Thus a system is structurally controllable, if #hexists a controllable syste(nA, B)

with the given structuregA, I§). By not taking into account the actual valueshie A and B

matrices, the test for structural controllabiliakes to large systems significantly better than th
test for controllability found in (2.6). Howevespme systems may be found to be structurally
controllable but are not controllable due to therglation between parameters in theand B

matrices. This issue will be further addresseGhiapter 7.



Prior to presenting the conditions to test for cincal controllability, several notions
need to be introduced. First is the notiongefieric, or term, rank. The generic rank oM ,

denoted asb(l\7| ) is the maximal rank tha?l can achieve through the appropriate selection of

the numerical values for the undetermined elemeftdV. Second is the notion dfput
reachability. With additional details found in [14], the copt®f input reachability comes from
graph theory where a vertex is reachable frony, if there exists a path from, to v,. The

existence of this path is based on the structuthefyraph and reachability can be tested using

the notion of structured matrices presented abéwe.a generic system

S: x= Ax+ Bu,
(2.10)
y:CXl
the Boolean matriceg\:(gij) . B= (El,) ,andC = (E”-) are defined with the elements
__1, %7'-'0, —_1, hj;tO,__ 1’C|j¢0
aﬁ‘{o, qj:O, qi_{O' qj;o’ Gj = 0, ¢, = 0 (2.11)

Definition. [14] The interconnection matrix & is a binary(nS +n, + ny)><(nS +n, + ny) matrix

E =(qj) defined as

A BO
E=/0 0 0. (2.12)
)

Using the interconnection matrix the reachability matribR is defined as

R=EOE20...0F°, (2.13)

wheres=n_+n, +n,, E“=E*'OE, and the Boolean operator$and LI representaind andor

operations. An efficient method for calculatiiyis presented in [14]. Fal =2, E° may be

calculated as



A ATB 0
E°=| 0 0 0. (2.14)
C_A\d_l CTA\d_ZE 0

From (2.13) and (2.14) the reachability matrix banwritten as

(2.15)

pyj

11
I o T
o ®
o o O

From [14], we get the following theorem:
Theorem. A systemS is input reachable if and only if the binary maté has no zero rows.

With the notions of generic rank and input readitgpthe following theorem states

conditions for structural controllability of a sgst with structure(A, L5>) based on the results

developed in [14].

Theorem. A pair (A, I§) is structurally controllable if and only if theggm S is input reachable

and
p([A B]) =n. (2.16)

While the theorem above holds for any system, re¢@assumptions about the structure of

BAS systems further simplify the analysis. Forstthesis, it is assumed that each decoupled

subsystemS and S is structurally controllable. This is to say tIWCh(Ri,Ei)Di ON and

(Zbo, EOO) is input reachable and full generic rank. Itngortant to note that the coupling terms

in the last row and last column of the and B matrices for a BAS system cannot prevent the
structural controllability of the syster® and, therefore, if each of thBl+1 subsystems is
structurally controllable, then the entire systanstructurally controllable. As previously stated,
structural controllability does not take into acobthe potential relationships between terms in
the A and B matrices and, therefore, a system may not actbalgontrollable despite being
structurally controllable. In Chapter 7, an algetrconstraint on the system causes such a

10



relationship between terms in the and B matrices, thus motivating the need to modify the

system representation.

2.4 Control of BAS Systems

With the BAS systemS from (2.3) it is important to classify some genecontrol
objectives as well as the information and actuatmstraints typically found for this class of

systems.

2.4.1 Control Objectives

As with any large-scale system, BAS systems haviéipteicontrol objectives which are
classified here as eithtacal or global objectives. Local objectives refer to controlestjves at
the subsystem level such as regulating a subsystai® to a desired value. Global objectives
refer to control objectives that either rely on tipié subsystems or the entire system. Examples
of global objectives are the regulation of the eldéince between the states of two different
subsystems or the minimization of the power congslinethe entire system. For this work, it is
also important to classify control objectives athe&i performance or efficiency objectives.
Performance objectives, which are typically conedrmwith states or outputs, include the state
regulation or tracking of a desired reference valBerformance objectives have a well-defined
desired outcome where it is easy to discern whdtmerobjective is being met. Alternatively,
efficiency objectives, which are typically concedneith inputs, refer to the minimization (or
maximization) of a value which does not have artjeachievable desired value. The term
efficiency is used for these types of objectiveshesy often correspond to the minimization of
total power consumption of the system where zerg beathe desired power consumption but
this objective is clearly not obtainable due to fioting performance objectives. Efficiency
objectives are considerably more difficult to aclei@nd evaluate than performance objectives.

A generic cost function of the form
3=1 (13, +(1-16) 3.)+(1-14) da (2.17)
is used for all of the controllers throughout thisrk. Here J , J,, and J,, refer to costs

associated with performance, control input, andhgka in control input, respectively. For this
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work, the control input cost, is considered an efficiency objective. It is assd that each

actuator has a cost associated with the magnitbitteeccontrol input and the sum of these costs

is represented byl,. Therefore, the objective is to meet the perforoearequirements
represented byl & while minimizing J,. The weightingsy, andy, are used to adjusted the
relative importance between the different objectiwehere), is used to determine the tradeoff

between changes in control actions and the obgxtand), is used to determine the tradeoffs

between the performance and efficiency objectivEss cost function and the associated control
objectives are made more concrete for an exampdéersy in Section 2.5 and the Model

Predictive Control (MPC) algorithm used to minimtkés cost function is detailed in Chapter 3.

2.4.2 Information Constraints

For large-scale systems, information constraintenofrestrict the types of control
architectures which can be used to minimize the ftoxtion (2.17). Assuming state-feedback
control, centralized control architectures utilize complete state infation and a complete
system model when determining the control inputth®entire system. It is well known that a
centralized control approach to solving a multiemtive control problem results in a Pareto
optimal solution [15], where it is impossible to keaany term of the cost function smaller
without making another term larger. Unfortunatelgntralized control approaches to large-scale
systems are typically infeasible. This is dueh® large communication and computational costs
associated with using information of all the syststates and a complete system model in the
minimization of the cost function for the systeritherefore, control of large-scale systems is
often done in a decentralized mannBrecentralized control architectures utilize only local state
information and a model of only the local subsysterdetermine the local control efforts. This
decentralization reduces the single large controblem into a set of smaller control problems.
These control problems can be solved independehtiye another, allowing the problems to be
solved in parallel with reduced computational costs

For large-scale BAS systems, information constsaiodn be categorized as either
constraints oncommunication or plant knowledge. Communication constraints restrict the

information, typically state or input values, thlan be used to make control decisions by the

12



various controllers for the system. Plant knowkedgnstraints often arise in large-scale systems
with multiple subsystems. While the dynamics afreaubsystem may be well understood and
accurately modeled, often it may be more diffictdt develop an accurate model for the
interactions between subsystems. Thus, some ¢@mtioitectures may be constrained to make
control decisions with limited knowledge of thedartonnection between subsystems in the plant.
Chapter 5 develops several control architecturefeumarious information constraints and the

performance of these architectures is evaluatedrf@xample system in Chapter 6.

2.4.3 Actuator, State, and Output Constraints

In addition to constraints on information, actuatetate, and output constraints are
another key aspect of BAS systems which can sigmfly affect the control of these systems.

In this work, all actuators with inputs are constrained to have a minimum valyg, and a

maximum valueu,,, such that

Upn SU(t) SUL, OtO[tg 0], (2.18)

min max
wheret, is the initial time. The BAS with constrained @ators presents an interesting control
problem. The inputsi, of the common subsystefs) have the ability to significantly affect the

states of the each subsystedn If the inputsu, are chosen poorly, the ability for each
subsystemS to meet its performance objectives can be commedhdue to the constraints on

the inputsu,. The effects of actuator saturation are covenegreater detail and demonstrated

for an example system in Chapter 6.

MPC provides the capability to constrain the stated outputs of the system in addition
to constraining the actuator inputs. In practicés common to place minimum and maximum
bounds on states and outputs instead of forcing tieetrack a desired value. These constraints

are of the form
Xoin < X(t) € Xpax O t0[tg,00], (2.19)
Yorin < V(1) € Yiax 0 t0O[tg00]. (2.20)
Additionally, MPC is able to enforce algebraic telaships between states of the form

13



Ax(t)=b DOtO[t,,]. (2.21)
The equality relationship in (2.21) can also beaxet to an inequality relationship such that
Ax(t)<b DOtO[ty,o]. (2.22)

While these state and output constraints can bg wuseful in practice, this work will only
consider the effects of actuator constraints incibvtrol of BAS systems. The use of state and

output constraints is left for future work.

2.5 Example System

Throughout the rest of this thesis, it is benefitbause an example system to demonstrate
the controller designs in Chapters 3 and 4 and dibwtrol architecture development and
comparison in Chapters 5 and 6. This example systpresents a system with a BAS and was
designed to have many of the features found inleggk-scale BAS systems such as unknown
disturbances, actuator saturation, and performandeefficiency control objectives. In order to
effectively convey the ideas in the following cheqgt the system was also designed to be linear

and relatively small, with only 3 subsystei§sand one subsystef, .

2.5.1 Example System Description

Fig. 2.2 shows the example system which is usesugirout the chapters that follow.
The system is represented by an electrical cimwith 3 subsystemsS i0ON :{1,2,:} and a

common subsysters,. Each subsyster§ has two dynamic statdé andV, , two capacitors
C, and C,, two variable resistance’R and R, with actuator inputs} and u,, respectively, a
fixed resistanceR,, and a current sink ; which acts as a disturbance. The common subsystem
S, has two statey, andV,, two capacitor<C, and C,, a variable resistancég with actuator
input u,, a current source, with actuator inputy, and a voltage sourcé, which acts as a

disturbance.
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Figure 2.2 Electrical circuit diagram for example BAS system.

From the circuit diagram in Fig. 2.2, the followinlifferential and algebraic equations
represent the dynamics of the system and are osgelvelop a state-space model representation

of the system. Each subsyst&nhas two differential equations
CV =1 -1,-1, 0i0ON, (2.23)
C,V,=I1,-1,0i0N. (2.24)
The variable resistor® andR, are represented as
V-V, =R (u) OiON, (2.25)
V-V, =1,R, (u; ) DiON, (2.26)

In order to make these equations linear, the veltrgp across each of the resistors is expressed

as a linear combination of the current throughréséstor and the control input, written as

V.-V =1 R-Ku OiON, (2.27)

g
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V-V, =I,R, -K,u, DiON, (2.28)

where R, R,, K,, and K, are positive constants of the linearization @dand R, can be

thought of as nominal resistances. The resiBlois simply expressed as
V-V, =1 R, OiON. (2.29)

Arranging (2.23) — (2.29) into a subsystem sta&esgorm yields

W1 T o vk L
S:l.. |= ! b "[+|CGR CRi || 7]+
V, 1 1 ||V, V,
c e 0 0
ai Ral aiRal (230)
K, Ky
R CR [u]|
' e {1} 1 |[1,] Oigw,
Kai U, T~
Cai
CaRy
= 1 1 1 : .
where R =—+—+E, and is written more compactly as
S %= AX T AgX, + By, +Viidi OiON. (2-31)
The common subsyste®, has two differential equations
CV, =1+l -1, (2.32)
CV.=1_-1. (2.33)
The variable resistofg is represented as
V.-V, =1,R, (2.34)
with the linearization
V, -V, = 1,R, - K,ug, (2.35)
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where R, and K are positive constants ari, can be thought of as the nominal resistance.

The current source is given by
L =aV,+aN,+au, (2.36)

where a,, a,, and a, are positive coefficients. Note that this is aotideal current source, as

the current depends on the voltaggsandV, . Finally, from Kirchhoff's current law, we have
=>4, (2.37)

I, :ih. (2.38)

A 3 V, = 1 V,;
& s Tlew
I . AR e (2.39)
K
& L
+ 9 Ry Lljt}+z R L:J‘}+ C,R, V.,
I Lo e O ] S I
Ce
and is written more compactly as
3 3
Sozxo:Aooxo"'ZAoXi +Boéj o+zBoui +Vog 0 (2'40)

i=1 i=1

Combining (2.31) and (2.40), the complete system is
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Xl Ail 0 0 AlO 0 ul
s. % _| 0 Ay 0 AyllX, 0|lu,
).(3 0 0 A33 A30 X 0 3
XO Abl AOZ A03 AOO XO Ol B 0] u (241)
Vy, 0 0 0}ld
0OV, 0 0}d,
0 0 V, O0]ld]
0 0 0 Vgl
or
S:x=Ax+Bu+Vd. (2.42)

2.5.2 Example System Control Objectives

The example system was designed to have contrettigs representative of the type of
objectives found in many large-scale BAS systeifisese objectives consist of local and global
performance objectives for state reference trackimg) a global efficiency objective. The local

performance objectivel ; is used to have the stat§ track a desired referenag for each

subsystent, , which is expressed as

3. =(V,-n) (2.43)

Pl

The global performance objective is to track a @esreference,, for the currentl,. From

(2.29) and (2.37), it is clear that the curréptcan be expressed as

3 -
_y ViV (2.44)

i=1
Since I, is a function of states and parameters from meltjobsystems, the control ¢f is a

global performance objectivé__, written as

p.g’

J,,=(l.-r.)" (2.45)

e
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In addition to the performance objectives, eacluator is assumed to consume a resowgce

(e.g. energy) as a quadratic function of the aotuaputu, ,
K, =au’+bu; +c;. (2.46)

The global efficiency objectivel, is to minimize the sum of the resources consumealb

actuators

3,=Y«, (2.47)

where n, is the number of actuators in the system ap& 8 for the example system. The

efficiency objective is a global objective becausgempting to minimize the resource
consumption for each actuator individually does mesult in the lowest resource consumption
possible due to the coupling between subsystemsiis Tdea is further explained and

demonstrated in the decentralized control sectign 5

An addition objectivel,, is used to penalize changes in the control inputsne. This

objective is necessary to prevent the actuatomn fobhanging too rapidly, which can cause

instability. Finally, these control objectives dag combined resulting in the control problem

T 8

minimize J= j y,,s\(yb(i\lpyi (t)+3,, (t)J+(1—yb)ZKj (t)j"‘(l_ya)JAu’

t=ty i= j=1
subjecto  u(t)Ou , x(t)Ox ,tO[t, T] . (2.48)
x(t) = Ax(t) +Bu(t) +Vvd(t), tO[t,,T],
X(t) =% 0,
wheret, andT are the initial and final timeg/ and X are sets of admissible control input and

state values, ang, is the initial state at timg,. For the example system, the actuator inputs are

constrained but the states are not, thereforeR® . This control problem is augmented into the
form used for Model Predictive Control (MPC) in @her 3.
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Chapter 3
Model Predictive Control (MPC)

Model Predictive Control (MPC) is a receding-honzaptimal control framework which
uses a dynamic model of a system to predict therdutesponse of the system. By solving a
finite-time horizon, open-loop, optimal control ptem using the current state of the system,
MPC determines a sequence of control decisions hwinimimize the specified cost function
over the prediction horizon. The first elementlat control sequence is applied to the system
and the procedure is repeated at the next timarinst Aspects such as stability and robustness
are thoroughly developed in the literature [5]. ®1Ras been widely adopted in industry due to
its ability to explicitly consider hard constrairda the inputs, states, and outputs of the system.
Additional features that make MPC attractive fontcol applications are the abilities to perform
multi-input multi-output (MIMO) control, utilize avide range of cost functions, and predict the
future state of the system. For this work, linb&#PC is used as opposed to nonlinear MPC.
While most practical systems are nonlinear, lind&C requires a linear representation of the
system. Despite the fact that the linear approttonaof the nonlinear system is only valid for a
limited range of operating conditions, linear MP&stsignificantly lower computational costs
than nonlinear MPC. For additional details on nmwdr MPC please refer to [16].

Fig. 3.1 demonstrates the MPC process for a givee instance. Starting at the current

samplek, the finite-time horizon consists dfl, time samples with the time between samples

At. The number of time sample, is known as the prediction horizon and denotes the

number of future time steps for which the systeatest are predicted. Similarly, the control
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Figure 3.1 Model predictive control.

horizon N, denotes the number of future time steps for wiimhtrol decisions are determined

by solving the optimization problem. Note thidf <N, and if N, <N, we have
u(k+N,)=u(k+N,+1)=..=u(k+N,). (3.1)

While MPC provides the flexibility to consider reé@ces and disturbances that change
over the prediction horizon, as presented in [fW$ work considers references and disturbances
to be constant. Section 3.1 details the MPC foatmuh used for the various control strategies
presented throughout this thesis and Section 312odstrates how this formulation is used to

develop the controllers for the example system ftiimapter 2.

3.1 Basic MPC Formulation

MPC uses a discrete system model of the form

x(k+1) = Ax(k) +Bu(k)+Vvd (k),

y(k) =Cx(K)+ Du(K)+Wd (K), (3.2)

where xOR™, yOR"Y, uOR"™, andd OR™ with matricesA,B,C,D,V W of the appropriate

sizes. For simplicity, theD and W matrices are considered to be zero for this wofle

generic MPC formulation solves the control problem
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Np

minimize  J = Zf( x(k+7)y(k+j) u(k+j-1),

i=

subjectto  u(k+j- 304, x(k+j)0x, jO[LN,],
x(k+j)=Ax(k+j-1)+Bu(k+j-1)+vd(k+j-1), jO[IN,] (3.3)
y(k+j)=Cx(k+j), jD[l,Np]
x(k)=x 0%,

whereU is the set of control inputs over the control hon, ¢/ and X are sets of admissible

control input and state values, akgis the initial state at sample The costf , at each time

k+j, is composed of costs associated with performahgeefficiency J,, and changes in

u’

control input actuation,,. Additionally, each of these terms is the suncasdts from each

subsystens andS,. Therefore, the cost function from (3.3) can kpressed as
Np N
J= Z|:Z(ya (yb‘Jp,i + (1_ yb) ‘]u,i ) + (l_ ya) ‘JAu,i )j|’ (34)

j=1| i=0

where y, and ), are weightings used to assign the relative impedabetween the objectives

and control inputs and between the performancesffrtdency objectives.
When solving this control problem, it is commonré&uvrite the cost function as only a

function of the initial statex(k) and the control inputs over the control horizofk +1), where
I D[O,Nu —J]. Thus, the discrete model (3.2) is used to espadisfuture states and outputs of

the system as a function of the initial state at@a k and the control input§l over the control

horizon

x(k +1) = Ax(k) + Bu(k) +Vd,
x(k+2) = A’(k)+ ABu(k) +Bu(k +1)+(A+1)vd,
x(k+N,) = Ax(k)+ A%Bu(k)+...+ Bu(k+ N, _1)+(ANU—1+ A+ ])Vd ENERS

X(k+N,) = A x(k)+ A" Bu(k)+..+ A Bu(k+N, -1 +(A" "+ .+ A+ Jvd
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Note that the disturbance is assumed to be constant over the entire predittorizon. From

(3.5), the system response over the predictiorzborcan be expressed in a lifted form as

where

AB
ANIB

AV%?B

i ANp—lB

X =Tx(k)

AB

N,—-N,-1

AT

+3U +Rd,
u(k)
U= u(k:+1) DR(nUENU),
u(k+N,-1)
Vv -
(A+1)V DR(nS[Np)x(nd)

AN Nlp

B ANp—Nu B |

The outputs of the system can be expressed as

whereY OR™™) P ORMMeHnm) ~and
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(3.6)

(3.7)

(3.8)

(3.9)

(3.10)



P=|. . o (3.11)

Now the cost function from (3.3) can be expressed a
J=U"HU +F'U, (3.12)

where H DRM™ V) E OR(VM) gre functions off , S, R, P, x(k), andd . In addition
to minimizing this cost function, the solution msstisfy the constraints on the actuators

U,,sUusuU_., (3.13)
and constraints on the states

Xin S X< X (3.14)
The constraints on the states can be converteohistraints on the inputs using (3.6)

Xmin ~TX(K)-Rd < SU < X, .~ Tx(k) - Rd (3.15)

A similar transformation can be done for constimm the outputs.

3.2 MPC Formulation for Example System

Now we develop the MPC framework based on thessf@psented in the previous
section. With the continuous system model (2.45tated here as

S:x=Ax+Bu+Vd, (3.16)

the first step is to define the outputs of the eyst Based on the control objectives presented in

Section 2.5.2, it is valuable to havg be an output of the system. Therefore, with tiaes

vector x:[\/1 Vau Vo Vi, Vi V.V, VQ]T and the output vector

y:[\/1 Vu Vo V,, VoV, VY, Ie]T,theC matrix is
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c=| 1 1 1 Ooi_(l 1 1]. (3.17)
R, R, R, | \R R, R,

Next, in order to achieve perfect reference traghaor the desired outputs, it is typical to convert

the states into tracking error states. Often, h@aneonly a subset of the states have a desired

value, which are defined gg1R" , and the matrixv OR"™™ is used to isolate these states (i.e.

§=My). For the example system, the stafgsi =1,2,%, and |, have desired values, resulting
in
M =blkdiag([0 [0 1[0 L[ 0o ] (3.18)
The error states are defined as
e=y-MTr, (3.19)
where M ™' denotes a pseudo-inverse singe is rarely invertible. With the references

assumed to be constant, the error system n®den be written as

. d
S:é=CAC e+ CBu+[cv CAC™M ﬂ[r] (3.20)

or
S:e= Ae+ Bu+Vd. (3.21)
Now, we discretize the system with a sample timAbfesulting in the discrete mod§,
S, re(k+1) = Aje(k) +B,u(k) +V,d (k). (3.22)

In addition to having error states, perfect refeeetracking also requires integral states The

system in (3.22) is further augmented to includsséhintegral states

e s e B S R A
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As mentioned in Section 2.5.2, when designing arotlar to achieve reference tracking (as
opposed to stabilizing an equilibrium) it is oftealuable to penalize changes in the control
inputs in time instead of penalizing the magnitwdiehe control input. Thus, through a final

augmentation, the system (3.23) is transformed d@weehinputs in terms ofAu(k) where

u(k)=u(k-1)+Au(k). Defining an additional set of statesx3¢k) =u(k-1), we have

e(k+1) A, 0 B, e(k)| [B, V,
Syif z(k+1) |[=|M @At | 0| z(k) |+| O |Au(k)+| 0|d(K),
x, (k+1) 0 0 I ||x(k) I 0 (3.2)

7(t)=[l\g X g} :(k) ,
X

or

(3.25)

Note thaty only contains the error states which have desiades and the integral states of

those errors. As was done in (3.6), the systerporese over the prediction horizon can be

expressed in lifted form as
>_<=1_7_(k)+SAU +Rd, (3.26)
Y =PX

Now the cost function for the example system frih8) can be written in the lifted

system representation as

J=Y"QY +AUTQAU +K, (3.27)

where Q1DR(2"'ENP)X(2"'WP) is a diagonal matrix containing the weightings fbe reference

tracking error and integral states a@gDR(““m‘“)x(”“m‘“) is a diagonal matrix for the weightings

on the changes in control inputs. In (3.2K), represents the cost associated to the resource
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consumption of each actuator. As stated in (2 #@se actuator costs are quadratic functions of

the actuator inputs, rewritten here as
— 2
K, =a,u”+bu, +c,. (3.28)

Often, system models and controllers are develagbedt a nominal operating condition and the
control inputs determined by the controller areidgans ou from the nominal actuator input
u®, where the superscript denotes a nominal, notaepoTherefore, it is important to be able to
express the actuator costs as a function oy, b, c;, u?, and du;. Through a simple change
of coordinates the actuator costs in (3.28) cawllitten as

K, =a,0u;’ +(2aju]9 +bj)5uj +(a(u.°)2 +bu?+c, ) :

J

- (3.29)
K, =@,0u’+bdu, +T;.

Note that from here on the deviation inpdt, is written asu to simplify the notation. Also, it
is important to remember thalu is a deviation from a nominal condition, where&s is a
change in the input from one sample time to the.nex

Additionally, since these actuator costs are fumdgiof the magnitude of the actuators
inputsU over the prediction horizon and not the changefeninputsAU , the magnitudes of
the inputs are written as functions of the charnigele inputs and the magnitude of the input at

the current sample time(k) as

U =NAU +nu(k), (3.30)

where N O R um) N gR™: ) . and

Il O 0 I
I 0

_ -0 :

N = , n=| | 3.31
I I 0 ( )
LR . 10

The actuator resource consumption cd§tsan be written as
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K=U"QU +qU, (3.32)

where QaDR("“ENp)X(W") is a diagonal matrix containing th@, terms from (3.29) and

o} DR(““[N") is a vector containing tth terms. Note that the; terms, while they do affect the

cost, do not influence the optimal control sequeaod can be omitted moving forward.

It is beneficial to rewrite the cost function (3)2as a quadratic function of the control
decisions. This allows the optimization problemb® solved very quickly using thgeiadprog
function in the MATLAB Optimization Toolbox [18]Using (3.26), (3.30), and (3.32), the lifted

cost function (3.27) can be written as a quadfatiction of AU
J=AU'HAU +FTAU, (3.33)
where

H =STPTQPS+Q,+N'Q.N,

R, _ _ 3.34
F =2S"PTQPTX(k)+2S"P'QPRd + 2N'Q,fu(k)+N'q, . (339

Since actuator constraints actdn and notAU , using (3.30), actuator constraints of the form

(3.35)
can be written as constraints &J as
U, —Mu(k) < NAU <U_, —7u(k). (3.36)

This MPC formulation for the example system uéiizhe entire model to determine the
control decisions for each actuator in the systanhia used for the centralized control approach
in Chapter 5. Additionally, in Chapter 5, the sgonecedure is used to develop MPC controllers
for several decentralized control strategies uaitgynative representations of the system.

MPC can be very effective when an accurate mod#letystem is available. However,
the presence of unknown or unmodeled disturbanodsuamodeled system nonlinearity may
significantly degrade the performance of MPC. Thke of integrator states, as detailed above, is
commonly used to overcome model inaccuracy and bmrsuccessfully used to meet the
performance objectives for the system. Howeverdehmaccuracy can also cause model-based

control strategies to operate the system away ftarmost efficient operating conditions, thus
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degrading the ability of the controller to meet thificiency objective for the system. The
following chapter presents a model-free controatsfyy known as extremum seeking control
(ESC), which can be used in conjunction with MPCptovide greater system efficiencies,
especially in the presence of unknown disturbaaoelssystem nonlinearity.
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Chapter 4

Extremum Seeking Control

Extremum seeking control (ESC) is an adaptive faeklbcontrol algorithm used to
maximize (minimize) a system outpyt by driving a system inputi to an optimal valueu*,
while utilizing very little information about theystem. With the first rigorous stability proof in
[19], ESC has become widely used in a variety opliapgtions including thermoacoustic
oscillations [20], wind turbines [21], and PID cumiter tuning [22]. This work focuses on
single-input single-output (SISO) gradient-basedCE®hich is developed in Section 4.1.
Section 4.2 outlines the selection process for pheameter used by the ESC algorithm.
Alternative ESC formulations, along with variougyeentations to the standard ESC algorithm,
are presented in Section 4.3 and a few of thesenanigtions are used in the control of the

example system as shown in Section 4.4.

4.1 Basic ESC Formulation

Based on the analysis from [19], consider a gemamalinear plant of the form,

(4.1)

where xOR", u,yOR, and f:R"xR - R" and h:R" -~ R are smooth. Using a smooth

control law,u = a(x, 6) , the closed loop system becomes,

x=1f(xa(x8)). (4.2)
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It is assumed that there exists a functioi® — R" such thatf (x,a(x,8))=0 if and only if
x=1(6). Additionally, for eachdOR, the equilibriumx=1(8) is locally exponentially stable.

It is also assumed that there exists a uni@g R such that

(4.3)

Thus, our objective is to driv@ to 8* in order to maximizey = h(I (0)) without knowledge of

g*, f,h,orl.

s Yo H(s)

<l

[}
I
A
NN
—
—
()
N
S

asin wt asin(at +¢)

Figure 4.1. ESC schematic.

Fig. 4.1 shows a schematic of a basic gradientebagsgemum seeking controller. The
plant is represented by a transfer functé(s), where the tilde denotes the fact that this temsf
function changes as a function of the inpuand disturbances to the system. It is assumed tha
G(s) changes in such a way as to preserve a convetiorship betweeru and Y, allowing

information about the gradient to be used to dtive u*. The following algorithm outlines in
greater detail how the various signals in Fig.a¥d calculated and what they represent.
Gradient-based ESC Algorithm:

1. With the input

u=0+asinat, (4.4)
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the objective is to drivel — u*, where w is the perturbation frequency aral is the
perturbation amplitude.

. Given inputu, the plant outputy can be considered of the form
y:§/+bsin(wt+¢)p)+y, (4.5)

where:

(i) ¥ changes withi and the plant dynamics, but is assumed to be angusiowly with
respect tow,

(i) b=aG, (u,w) whereG, is the plant gain which is a function of the inpuand w,
(iii) @, is a phase shift caused by the plant dynamicshwigpends orw, and

(iv) y is the noise in the measurement (which is nededitr the simulation studies in this
thesis).

. Note: For a static plantp, =0 if G<u* and =180 if G>u*. However, with a dynamic

plant, this may not be the case.

. The outputy is passed through a high-pass filter(s) to removey. The resulting signal
is

37=hbsin(a1+gop +¢p), (4.6)
whereh =mag(H (jw)) andg, = phase(H (jw)).

. Multiplying ¥ by the demodulation signalsin(at + ¢) produces

1 = ahbsin(at +¢) sin(at + ¢, +q, )

_ahb 4.7)
T2

[cos{@, + @ —9) - cog at+g+q, +9)|
. The signalp is passed through the low-pass filtle(s) which is designed to attenuate the

cos( W +@ +q, +¢) term. Thus{z%cos(wp +q, —w).

. The signal¢ is scaled byk and integrated to produce
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From this algorithm, it is clear thafi will increase if £>0 which occurs when

cos(qop +q, —qo)> C. Similarly, G will decrease if &, cos(qz)p+¢;| —ga) <C When

@ +@ —p=90°, Cos(qop +@, —¢7) = C and U will remain constant. Ideallyg, +¢, —@=90

when G =u*, however, the ESC parameters must be tuned clyrfecthis to occur.

4.2 ESC Parameter Selection

When developing an ESC controller, the performamicéhe controller is significantly

affected by the choice of the perturbation freqyearg perturbation amplituda, scaling factor

k, phase shiftp, and the high and low-pass filtersl, (s) and L(s). First, the amplitudea

must be chosen so thht from (4.5), is distinguishable above the nojae Additionally, the
larger the amplitude, the fastér can be driven tau*. However, a large amplitude will also
cause large perturbations in once U gets close tou*. If desired, the perturbation signal
amplitude can be adapted as presented in [20]. amf@itude can be made a functionfofuch
that when ¢ is large, a is large, allowing for faster converges tf. When & is small,
indicating U is close tou*, a can be made small so thatdoes not deviate far from*.

The perturbation frequency can greatly affeet tbnvergence of the ESC controller.
While w needs to be significantly slower than the dynaroifdhe system for stability purposes,
see [19], in [23] it was found that the choice @f can also effect the value to whidh
converges. lfw is poorly chosen, typically itv is too fast,0 may converge to a point very far

from u*. From the analysis above, this means that ¢, # 90° whenUd=u*. Fortunately, the

demodulation signal can be phase shiftedgbyp compensate such that +¢@, —¢=90" when

~

u=u*. Therefore, the choice @ and ¢ need to be coordinated.

The choice of the scaling factdr directly affects the convergence rate of the ailgor.
In order to insure stabilityk needs to be relatively small [19], but large erotm achieve an
acceptable convergence rate. If increaskhgannot provide the desired convergence rate,
alternative approaches such as the use of dynameensators [24] and Newton-based methods
[20] can be used to improve stability and achiestdr convergence.

33



Finally, the choice of the high- and low-pass fités also of importance. The high-pass

filter is used to remove the slowly changing component of the output signal from (4.5).

Therefore, the output of the filtely mainly contains a phase-shifted sine wave at the
perturbation frequency. The design}ebf(s) IS not unique, but a first-order filter of the rfior

S

H(s)=s+%,

(4.8)

is often sufficient, whereu, determines the cut-off frequency for the filt8rypically, w, = w is
acceptable, but ify changes quickly, it may be necessary to make w. While the low-pass
filter is not actually required, the filter is tyailly used to remove theos( 2 +@ +q, +qo)

term in /7 from (4.7) and to help preveft from changing too quickly. Once again, a firstiar

filter of the form

L) =g (4.9)

is often sufficient, wherey determines the cut-off frequency for the filtewhile @ =w is
typically acceptable, in choosing) it is important to ensure that the perturbation/inis

sufficiently attenuated while still allowingl to adequately track changes it caused by
disturbances to the system.

While the above procedure for determining the a#si ESC parameters is useful, the
tuning of these parameters is highly dependenthendiynamics of the particular system being
controlled. The parameters chosen for the exasydem are presented in Chapter 6.

4.3 ESC Augmentations

In Section 4.1, a basic gradient-based ESC apprigagiien. However, there are several
commonly used augmentations and alternative apbesaavhich provide greater control
performance, typically in terms of convergence @ate robustness to disturbances. First, the
use of dynamics compensators, as developed ing@d]25], has been shown to allow for faster

adaption through improvements in the relative degamd phase response of the system.
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Alternative methods for gradient estimation haveoabeen proposed which provide faster
convergence. Extended Kalman filters (EKF) areduse this purpose in [26] and an observer
based method is presented in [20], which not aihdyiifies the gradient but also the curvature of
the system allowing for the use of a Newton-likgosithm. There has also been some work
where gradient information is not used and a tregion-based approach is applied instead [27].
In addition to these alternative approaches, theeeseveral augmentations that can be
used to improve the performance of any ESC algworitin [21], three such augmentations are
presented, including anti-windup, integrator resgit and high-pass filter resetting. Anti-
windup [28] is a widely used technique to prevemttoollers with integral action from ‘winding
up’ in the presence of actuator constraints. Bébth integrator and high-pass filter resetting
techniques are used to improve the transient regpohthe ESC algorithm following a large
abrupt change in the plant output due to a distweba The perturbation signal amplitude can
also be dynamic. In [20], a Dither Signal Ampliecudchedule (DSAS) is proposed which
changes the magnitude of the perturbation signakdbaon the gradient estimation. If the
gradient is large, implying that the input is faorh the optimal, the perturbation amplitude
increases to improve the convergence rate. Howewee the gradient is small and the input is
close to the optimal, the amplitude is reducedhso the input oscillates within a small region of
the optimal value. Finally, the shape of the yration signal can also be modified. In [29], it
was found that a square wave can provide fastevergence when compared to sine and

triangular wave perturbations.

4.4 ESC Formulation for Example System

With the different approaches and augmentatioesemted in the previous section, the
schematic presented in Fig. 4.1 and the algoritletailkd in Section 4.1 are used with two
modifications to make ESC much more suitable incfica. Evaluating the potential
convergence improvements provided by the othercambres is left for future work. Fig. 4.2
shows the modified ESC schematic with two additideatures.

First an anti-windup feature is added to retainES€ functionality even when the input
u saturates. The anti-windup scheme used comes[#8m Additionally, in practice, the plant

output Y may change quickly due to a disturbance to theesys This causey to change
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Figure 4.2. Modified ESC schematic.

<I

asin(at +¢)

quickly and, therefore, may not be adequately resdawith the high-pass filter. This can cause

the magnitude off to become very large, causing large change8,invhich may cause the

system to go unstable. Therefore, an integras®ttiag scheme [21] is used such that

:

£if |d<q
0 if |f=¢&’

(4.10)

where é, is chosen based on valueséotietermined to prevent the system from going umestab

With this ESC formulation and the MPC formulatioorh Chapter 3, the following

chapter develops several control architectures hwiaiee used to meet the performance and

efficiency control objectives for BAS systems.
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Chapter 5

Controller Architectures

With the class of large-scale BAS systems presemtdchapter 2, there are numerous
control architectures available which can be usednteet the various local and global
performance and efficiency objectives. Despiteitgvhe same control objectives, different
control architectures attempt to meet these objestiunder different constraints on the
information available to the controller. As prewehin Chapter 2, the two types of information
constraints relevant to BAS systems are constr@ntsommunication and constraints on plant
knowledge. These information constraints are wengortant to consider when developing and
evaluating a control architecture. In industrymeounication and plant knowledge are often
constrained when developing a control architecttoe make the control design and
implementation more practical by reducing setup amginmissioning cost and avoiding
excessive communication and computational costeereffore, it is important to understand how
imposing different types of constraints on informatcan improve the ability to implement a
control architecture and the associated potengidilictions in control performance due to these
constraints.

This chapter focuses on 3 such control architestwkich are denoted aentralized,
decentralized, and BAS. In a notional sense, Fig. 5.1a shows the redategrees of plant
knowledge and communication required for the 3igectures. The centralized approach has no
constraints on plant knowledge and communicatiohereas the decentralized approach is
constrained to use the least amount of plant maelcommunication. The BAS approach uses
the same plant knowledge as the centralized apprdag requires significantly less

communication.
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Figure 5.1 Qualitative comparison between centralizd, C, decentralized, D, and BAS, B,
control architectures — a) relative plant knowledgeand communication, b) relative

performance and scalability.

As will be demonstrated using the example syster@hapter 6, the varying degrees of
plant knowledge and communication for each of treritectures result in different levels of
performance and scalability, as shown in Fig. 5.Here, performance refers to the ability to
meet both the performance and efficiency objectagesdefined in Section 2.4. Scalability refers
to the feasibility and practicality of applying éacontrol architecture to a large-scale system.
While the centralized control approach achievesbis performance, the large communication
and plant knowledge requirements restrict the bdélaof this architecture. The decentralized
control approach is very scalable but performsiSgantly worse than the centralized approach.
By utilizing additional plant knowledge, the BASpapach performs significantly better than the
decentralized approach, while still remaining rigkly scalable.

The centralized, decentralized, and BAS controhiéectures are presented in Sections
5.1, 5.2, and, 5.3 respectively. The issue of rhodeertainty is addressed in Section 5.4, where

extremum seeking control is proposed as a possdblgion.

5.1 Centralized Control Architecture

Fig. 4.1 shows a schematic of the centralized cbatchitecture.
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Figure 5.2 Centralized control architecture.

For the plantS with BAS structure presented in Chapter 2 and iteswr here as

_Xl_ _Ail O 0 i AlO__Xl_ —Bll O O i Blow—ul_
X, 0 A, : iAzo X2 0 B, - iBzo u,
S = - 0! : + .00
Xy 0 0 A i Avo || X 0 0 B i Buo || Un
% | (A Aw o Al Ag|Xo| [Bw Bo o Byl ByUg -
'V, 0 0 ! 0]fd,] &-1)
0V, : 10/ d,
+ B 0 i D
0 0 Vi | 0] d,
0 0 0 1Vyldo
or
S:x= Ax+Bu+Vd, (5.2)

the centralized control architecture uses the cetaptystem modelA,B,V ) as well as the
complete set of states to determine the control inputs for the system. Additionally, it is
assumed that the controller has access to alligherbdancesd. Chapter 7 considers the control

performance of a system when this is not the c8seusing information about the entire system,
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the centralized architecture produces a Paretomaptisolution. However, centralized
architectures can rarely be applied to large-segtems. The extensive communication and
computational requirements associated with reqgigacess to all of the states and a complete
model of the system makes centralized control siflda for many large-scale applications.
Therefore, the centralized control architecturased to represent the best case scenario in terms
of controller performance with the understandingt tthis is not a practical solution for many

large-scale systems.

5.1.1 Centralized Control Problem
The centralized control architecture solves a Isingpntrol problem. This control
problem is the same that was presented in Chaptard?is rewritten here as
N

minimize = ZP{Z(Va(Vb +(1—Vb)3u,i)+(1‘ya)3mi)}

j=1Li=0

subject to u(k+j-1)0u, x(k+j)Ox, JD[lN]
k+,) (k+J—)+Bu(k+1—)+Vd(k+j—:|), jO[LN,], (63)

The centralized control architecture has accegsAtB ,V ), which model the dynamics of the

entire systemS. Using this model and knowledge of all the statethe systemx(k) at time

instancek, the centralized control problem is solved to picel the complete set of control

inputsu.

5.1.2 Centralized Formulation for Example System

The MPC formulation developed in Chapter 2 for th@mple system is used for the

centralized control formulation and is outlinedédeFirst, the complete system mo&el

S:x=Ax+Bu+Vd,

J-x (5.4)

is used by the MPC controller whexé] R®, uOR®, dOR*, yOR?, andC is
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c=|1 1 1, Oi_(l 1 1}. (5.5)
I (R: R, Rg

Since there are only 4 reference value§R*, the matrix M is used to select which outputs

have desired reference values,
M =blkdiag([0 §[0 1[0 L[ o [ (5.6)

The system is then augmented into the form show(3.i24) to include error states integral

statesz, and changes in control inpd . Next, the system is written in a lifted formsiswn
in (3.26). The cost function is rewritten as adiion of the lifted outputy , the lifted inputs
AU , the weightingQ, and Q,, and the actuator resource consumption ckstsThe weighting
matrix Q, is used to penalize the magnitudes of the errar iategral states and weighting
matrix Q, is used to penalize the changes in control inplitee actuator cost terrd represents
the efficiency objective to be minimized and iswadratic function of the lifted inputd , the
matrix Q,, and the vecton,, as defined in (3.32). The actuator constrairgsagitten in a lifted
form and converted to be a function AU and the actuator inpul(k) at sample timek, as

shown in (3.36). Finally, the optimization problésnsolved to determine the sequence of inputs
which satisfy (3.36) and minimizé (3.33).

5.2 Decentralized Control Architecture

The decentralized control architecture is desigteetdbe much more scalable than the
centralized architecture but at the cost of corgesformance. Fig. 5.3 shows a schematic of the
decentralized control architecture.

Instead of using a complete system model and krdgelef all the states, decentralized

control acts at the subsystem level. For a BASesyg4.1) containingN +1 subsystemsN

subsystemss , defined as

S 1% = AX +By +V,d (5.7)
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Figure 5.3 Decentralized control architecture.

and one subsystely,, defined as

SO XO = A00X0+ BO(;'l 0+V06:l 0 (58)

are used byN +1 decentralized controllers. These controllersdasigned independently and

use only local state information to make contralisiens for the actuators of that subsystem.
The decentralized control architecture solvéé+1 significantly smaller control

problems, which drastically improves the scalapidit the control architecture. However, by not

utilizing information about the interconnection,, A,, B,, and B, of the subsystems, the

performance of the decentralized control solut@ofien significantly degraded when compared
to the centralized approach. If the subsystemstaoagly interconnected, decentralized control
may cause the system to go unstable or requireekentralized controller to be significantly
less aggressive. Additionally, if there is a sysiwide efficiency objective, decentralized
control often results in much lower efficiency. erafore, the decentralized control architecture
is used to represent a worst case scenario in tefnesntroller performance but is the most

scalable architecture and the simplest to implerfariarge-scale systems.

42



5.2.1 Decentralized Control Problem

For the decentralized control architecture, thglsicontrol problem from (5.3) is broken

into N+1 smaller control problems corresponding to tNe subsystemsS and the common

subsystents,. The control problem for th& subsystems is

minimize
Ui

subjecto

3=3 [ (1)) (1) 0]
X
Y,

X

k+j-1)04, x(k+j)0x, jO[LN,],
+7)=Ax (k+j-1)+Bu (k+-1)+V,d (k+j-1, jO[IN,] (5.9

j)= C..x(kﬂ) jO[LN, ],
k) =%, OX,.

1
(k
(k+
(

The control problem for th&, subsystem is

minimize
UO

subjectto

Np

J= Z[Va(yb p.0 (l_yb)‘]u,o)"'(l_ya)‘]Au,o]!

uo(kj+1—;mu, % (k+ ()0, jO[LN,],

X (K+ )= AgXo(K+j=1)+Boig(k+ =1 +V el {k+j-1), jO[1IN,] (5.10)

yO( + ) oXo(k+J)’ J-D[]-,Np],
(

X, (K) = %0 0 X,

The individual controllers in the decentralized woharchitecture only have access to parts of

each matrix which model only the dynamics of theresponding subsysterﬁ;,DiD[O,N].

Using these subsystem models and knowledge oftbelyocal states (k) at time instance,

the decentralized control problems are solved ¢alpece only the local control inputs.

5.2.2 Decentralized Formulation for Example System

The decentralized control formulation follows thanse procedure as defined for the

centralized control formulation in Section 5.1F2or the N subsystemss , the subsystem model

S
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S % =Ax+Bu+Vd, (5.11)
Y, =GiX,
is used by the corresponding MPC controller wherelR?, u OR?, d, OR", y,OR?, and
C, =1l,,. Since there is only one reference value for eshsystem,r OR*, the matrix
M, = [O 1] is used to select the output with the desiredreefee value. Similarly, the system
model S,

SO : XO = A)OXO+ BOd"I 0+V0g 0

(5.12)
yO = COOXO’

is used by the corresponding MPC controller whergR?, u, OR?, d, OR*, y, OR?, andC,,

is
1 0
Coo = ( 11 1} . (5.13)
0 -| —+—+—
R: R, Ry

Once again, since there is only one reference vldueeach subsystenr, JR', the matrix
M, :[O ]] is used to select the output with the desiredreefee value. The remainder of the

steps in Section 5.1.2 can be directly appliechesé¢ decentralized subsystems to complete the

decentralized control formulation.

5.3 BAS Control Architecture

The BAS control approach directly utilizes the ifist structure of BAS systems. Fig.
5.4 shows a schematic of the BAS control architectu
Whereas the decentralized control approach Nall controllers, the BAS architecture

only hasN controllers corresponding to tie subsystemss. Based on the system (4.1Y,

newBAS subsystems, denoted with a prime, are defined as
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S X =AX+Bu +Vd (5.15)

or

Each of these BAS subsystems includes one of tigenalr S subsystems and the comm&q
subsystem. Thus, knowledge of the subsystem wmieections A,, A;, B,, and B; is

included in the BAS subsystem models and availableach BAS controller. Using state

information x and x, and the corresponding BAS subsystem model, eankratiler makes
control decisions for the actuator inpuis of the subsystens and u, of the subsystens,.
Note that the states and inputs correspondintaare denoted with a tilde. With an MPC

framework, the tilde is used to highlight the féltat each of theN controllers may predict a

unique set of future values fog and may determine different control inpwts This means

that there areN sets of control signal§, for the subsysten®,. Thus, the control decisiong
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need to be combined into a single set of contnaliiau,. For this work, theN input signals(,
are averaged to producg, written as
1 N
— 5.16
"N (5.16)

With the knowledge of how th& and S, subsystems interact, the BAS controller does

not suffer from the same stability issues that rmase from the decentralized approach and can
be designed to be significantly more aggressiveomrRthe construction of the BAS controller,

state and input information only need to be passtadeen the common subsyst&y and each
subsystemS. There is no need to pass information among |iés)s S, allowing this

architecture to scale to systems wheéteis large.

5.3.1 BAS Control Problem

For the BAS control architecture, the single conprmblem from (5.3) is broken intdl

smaller control problems corresponding to tdesubsystemsS. The control problem for each
subsystents is

minLiJmize J= Z::[ya(yb +(1—yb)J;) (1 Va) Au.],

i
J

subjectto o/ (k+j-1)0, x(k+j)0&, jO[LN,],

k
k+i)=A'i>ﬂ'(k+J— D+Bu (k+j-1)+Vvid/'(k+j-1, jO[LN,], (5.17)
k

Using the subsystem models from (5.15) and knovdeafgonly the local states (k) and the
common statesx, (k) at time instancek, the individual controllers in the BAS control
architecture solve the BAS control problems to picel the local control inputsl and the

common control inputsl,. These common inputs are combined according.i®)5
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5.3.2 BAS Formulation for Example System

As with the decentralized control formulation, tBAS control formulation follows the

procedure from Section 5.1.2. First, the BAS systeodelS

S X = Ax +Bu +V/d,
5.18
Y =CX, 5.19)

is used by the corresponding MPC controller wheri@ R*, u' OR*, d'O0R?, y/OR*, andC

is
LN Osa _____
c=l 1, oi_(i+_1+_1]- (5.19)
R, | (R R, Ry

Since there are 2 reference valueg]R?, the matrixM/ is used to select which outputs have

desired reference values,
M/ =blkdiag([0 [0 }) (5.20)

Once again, the remainder of the steps in Sectidr? £an be directly applied to these BAS
subsystem to complete the BAS control formulation.

5.4 ESC Control Architecture

It is important to note that the relationships préed in Fig. 5.1 only hold when the plant
knowledge used by the various controllers is pérfétowever, this is often not the case. When
controlling most systems, there are numerous seus€eincertainty that can cause significant
differences between the system representation weed determining control decisions and the
true system behavior. Examples of these sourcasa#rtainty are model inaccuracies from the
system identification process, unknown or unmodedesturbances, or system nonlinearity.
While these uncertainties do affect the abilityrteet the performance objectives for the system,
feedback controllers are often designed with irdkgction to overcome model uncertainty.
These uncertainties do have a major effect, howevieen it comes to meeting the system-level

efficiency objectives. Since there is not a walfided, achievable desired value for these
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objectives, integral action cannot be used to meget these objectives. Therefore, the set of
control decision determined to be optimal for thedel used by the controller, may not be

optimal for the actual system. This idea is derrated in Section 7.6, where it is shown that

the centralized control approach may be more seest model uncertainty.

With the degradation in system efficiency due tadelanaccuracy, a model-free control
approach is desirable and can be used to drivesyseem to the most efficient operating
condition while still meeting the performance objees. Extremum seeking control (ESC),
presented in Chapter 4, is a model-free adaptimraloapproach used to drive a system input

to an optimal inputi* which minimizes (or maximizes) a system output

While ESC can be used to control an actuator imingctly, as discussed in Chapter 4,
ESC is an adaptive algorithm that requires a plestiiosn signal to be sufficiently slower than the
dynamics of the system. This means the actuaparticontrolled by ESC is not able to respond
quickly to disturbances to the system. Therefdrés desirable to combine the fast transient
performance of the model-based MPC approaches msss@above with the ability to achieve
greater system efficiency through ESC in the presef model uncertainty. Any model-based
control strategy can be augmented with ESC as dstrataed for the BAS architecture in Fig.
5.5. For this study, only single-input ESC is ddesed, meaning only one actuator input signal

can be augmented by ESC. The augmented inputalsgydenoted as and is the sum of the

control signall from the MPC controller and the control sigiiafrom the ESC controller,

u=u+0. (5.21)
The remaining un-augmented control inputs are dshasu .

Clearly, the choice ofi is not unique. Howevery must be chosen strategically in order

to achieve the greatest effect and the ability risedthe system from the operating condition
determined by the MPC control to the truly optingderating condition. Typically, the

efficiency objective is a global objective and, rifere, it is necessary that has the ability to
sufficiently affect the entire system. Uf is isolated and not coupled to the rest of theesys
augmentingu does not provide the necessary change in systenatign. Therefore, for a BAS

system, intuition says to choose one of the comaystem inputs), asu. Additionally, if one
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Figure 5.5 Augmented control architecture with ESC.

of the u, has a strong connection to one of the performabgectives forS,, it is suggested not
to choose that input as the augmented inputrrom here, the decision afis highly dependent

on the system being controlled and this decisidaeftdo the control designer.

5.4.1 ESC Control Problem

Since the ESC algorithm is used to simply modifgoatrol input signal from an MPC
controller, either the centralized control problé3), the decentralized control problems (5.9)
and (5.10), or the BAS control problem (5.17), barused. Once the control signais chosen,
the ESC algorithm presented in Chapter 4 is usegt@rate a control signél which drivesu
to minimize the efficiency cost term

N
Jo = duis (5.22)

i=0

which is calculated as the outpytof the system.
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5.4.2 ESC Formulation for Example System

For the example systenu,, is chosen as the control input to be augmenteth&yESC
controller. As stated above, it is important t@eent a control input which sufficiently affects
the entire system. From (2.39), it is clear thatdirectly affectsv,, which influences/, and all
of the states/ andV,, as seen in (2.30). The input was not chosen to be augmented due to
its direct influence orY, which is used in the calculation of. Since the control of, is one of
the global performance objectives for the systéns, important to utilizeu, to effectively meet
this objective. The outpuy from the system, to be minimized by the ESC atani is the sum
of the actuator resource consumption codis, This output is calculated in real-time based on
the actuator inputs; and the cost function for each actuator, as se€2.46) and (2.47).

With the input and output for the ESC algorithmestetined, the only additional step is to
determine the perturbation frequenay, perturbation amplitude, scaling factork, phase shift
@, and the high and low-pass filtetld,(s) and L(s). Since tuning these parameters is based on
the dynamics of the actual system, the selectiothese parameters is presented in Chapter 6,

where the example system from Chapter 3 is giveetaof values and simulated in order to

evaluate the performance of the various contrdiiggctures developed in this chapter.
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Chapter 6

lllustrative Example System

Throughout Chapters 2-5, an example system has Umssgh to demonstrate the distinct
structure of BAS systems, the development of MPE@ BEC controllers, and the formulation of
centralized, decentralized, and BAS control arclitees. In this Chapter, numerical values are
assigned to this example system in order to dematesthe analysis of BAS systems and the
functionality of the various control approaches.

In Section 6.1, parameter values are assigned & ekample system and the
controllability of the system is tested. The periance of the various control architectures is
compared for two different scenarios in Section¥6.2ESC is used in Section 6.2.2 to further
improve the performance of the BAS control stratedyinally the scalability of the control
architectures is analyzed in Section 6.2.3. Apperdcontains the MATLAB code used to

generate and control the example system.

6.1 System Parameters and Analysis

Table 6.1 contains the values for the example sygt@rameters presented in Chapter 2.
While the 3 subsystems have the same structurepdh@meters were chosen to make each
subsystem have different nominal conditions andadyic responses. For example, at the
nominal operating condition (all actuators inputs@volts), the amount of current entering each

subsystem is significantly different wherg=3, 1,=1.3, and |,=2.3. Additionally, the

capacitances for the subsystems range f@&m0.06 to C, =0.01andC,, =2 to C_, =5.

51



Table 6.1 Example System Parameters

Subsystem
Parameter S S, S, Parameter S
C 0.060 0.030 0.010 C. 0.010
C, 2.000 4.000 5.000 C, 0.050
R 15.00 22.00 20.00 R, 5.000
K, 0.300 0.172 0.120 Ky 0.200
R, 10.00 45.00 20.00 a 0.002
K, 0.180 0.280 0.460 a, 0.002
R, 300.0 400.0 50.00 a, 0.008
[nitial Condition
State S S, S, State S,
\V 50 60 40 Vv, 80
V, 30 20 25 V, 20
ResourceCosts
Actuator a o G
u 0.0 0 0
u, 0.01 0 0
U, 0.01 0 0
Ug 0.02 0 0

With the parameter values from Table 6.1, the cetepsystem modeb from (2.41) is

now written as

S:x= Ax+ Bu+Vd, (6.1)

where
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[-2.833 1.667 | 1.111 0.056 |
Ozxz 02><2 |
0.050 -0.050 | 0 0
-2.339 0.741 | 1515 0.083
02><2 02><2 :
0.006 -0.006 . 0 0
A= : , (62)
0 0 -12.000 5.000; 5.000 2.000
>z 2 0.010 -0.010 0 0
Sy T I _
1.333 0 0.909 0 1.000 0 - 7.202 0.04D
0.333 0 0.250 0 2.000 0 i— 0.200- 2.783
[0.333 -0.300 ! T
0  0.009 Oz O | Oac
0.261 -0.207 |
Oz 0 0.002 Oz | Oar:
B= : , (63)
0 0 0.600 -2.300 y
2 2 0 0.0046! x2
-0.400 O -0.1564 0 - 0.120 oi 0.160 0.80
0 0 0 0 0 0 i—o.soo 0
S )
-0.500 Ole 02x1 qu
0 0 0 0
2x1 2x1 x1
-0.250

024 0z —0.200 0x1

0
0, 0, 021 4.000

Table 6.1 also show the coefficients, hj, and ¢ for the quadratic resource
consumption costs for each actuator. For simplitite b andc terms are all 0. Therefore, the

consumption cost for each actuator is 0 wher 0. The efficiency objective attempts to

minimize the sum of the 8 actuator consumption aghile still meeting the performance
objectives. For the following studies, the perfamoe objectives are to track the nominal

operating conditions (i.eV,; =30, V,,=20, V,;=25, and I,=0.6) in the presence of
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disturbances. With the nominal input of 50 votisech actuator, the minimum and maximum
constraints for all of the actuators are 0 and dlGs.

Following the process presented in Chapter 2, strigightforward to determine that the
example system is structurally controllable. Witle Boolean representation of tiiee matrix

from (6.3) written as

(6.5)

1
1

os]]
I

1
Qg
it is clear that thé5 matrix of the reachability matriR from (2.15) will not have any zero rows

and, therefore, the system is input reachable. ithaally, the system has full generic rank (i.e.

,Z)([A Lﬂ) =8). This is easily verified using the fact that lead the block matrices along the

diagonalB;;, B,,, B,;, and By, has a generic rank of 2. Since the system istirgachable and

full generic rank, the example system is structyrabntrollable. For this system, structural
controllability implies controllability. An examelof when this is not the case is presented in
Chapter 7.

6.2 Control Architecture Comparison

In this section, the centralized, decentralized] BAS control strategies are compared
under two conditions. First, the MPC control atetiures from Chapter 5 are implemented for
two different scenarios to analyze how each conéqgproach meets the performance and
efficiency objectives. Second, the BAS architeetis augmented with ESC, as developed in
Chapters 4 and 5, in order to improve system eificy for the BAS control approaches.

Finally, the different control approaches are coragan terms of scalability.
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6.2.1 Baseline Controller Performance

Two scenarios are used to evaluate the performainitee centralized, decentralized, and
BAS control strategies. Scenario 1 demonstratesctintrol performance when each control
architecture is able to meet the performance obgxt Scenario 2 compares the control
architectures when this is not the case due tcasmtisaturation. For the MPC controllers used

by each control architecture, a sample time\of10 seconds is used with a control horizon of

N, =15 steps and a prediction horizon Nf, =30 steps.

6.2.1.1 Scenario 1
Fig. 6.1 shows the disturbancés andV, over the 80 minute simulation for Scenario 1.

These disturbances are roughly 10 — 20% deviatimma the nominal conditions and were
designed to sufficiently test the performance of trarious control architectures. For the
following comparisons, each controller has accesthé disturbance information when making
control decisions. The effects of unknown distuides are studied for a more realistic system in
Chapter 7.

For comparison purposes, the open-loop responste dfystem due to the disturbances

from Fig. 6.1 are shown in Fig. 6.2 and 6.3. Altlee actuators are held constant at the nominal

L1

L2

= 2= —_—
L3
1r \ \
| | | | | | | ‘
0 10 20 30 40 50 60 70 80
Time (min)
115
110-
== 105- .
100 .
95 | | | | | | |
0 10 20 30 40 50 60 70 80
Time (min)

Figure 6.1 System disturbanced ;, and V, for Scenario 1.
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Figure 6.2 Open-loop response fo¥, due to the disturbances for Scenario 1.
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Figure 6.3 Open-loop response fof, due to the disturbances for Scenario 1.

input values of 50 volts. With the first disturlcanat 20 minutes into the simulation, and |,

which represent the performance objectives, dewgigt@ficantly from the nominal conditions.

Figs. 6.4 and 6.5 show the closed-loop responseg,irand |, for each of the three

control architectures. Clearly, each architectisr@able to meet the objective, but there is a
difference in the transient responses. As expedtezl deviations from the reference values

following a disturbance are significantly smaller the centralized controller opposed to the
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Figure 6.4 Ability of each control architecture tomeet local performance objectives by

tracking the desired value forV, for Scenario 1.
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Figure 6.5 Ability of each control architecture tomeet the global performance objective by

tracking the desired value for |, for Scenario 1.

decentralized approach due to the coupling in ystesn. The BAS approach consistently
performs better than the decentralized approachnamsle that the centralized approach.

The major difference between the control architexty however, is seen when
comparing the efficiency objective. Fig. 6.6 shothat the centralized controller is able to

achieve a significantly lower actuator cost thamdlecentralized and BAS approaches. Itis
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Figure 6.6 Ability of each control architecture tomeet the global efficiency objective by

minimizing the total actuator cost for Scenario 1.

interesting to note that the centralized contraethe only architecture that was able to improve
the system efficiency in the first 20 minutes ahslation after the controller is turned on at 5

minutes into the simulation. The other two arattilees result in a large increase in actuator cost
when the controllers are turned on, even thoughdibirbances and references for the system
are constant for the first 20 minutes. After imtgng the total actuator cost over the 80 minutes
of simulation, the cost for the decentralized applowas 35% higher than that of the centralized
approach. With a 30% higher cost, the BAS approaels only slightly better than the

decentralized. In order to see how the differeomtiol approaches resulted in such different
efficiencies, despite the fact that they performvedy similarly at meeting the performance

objectives, the actuator inputs for each controhéecture are shown in Figs. 6.7, 6.8, and 6.9.
From these figures, it is clear that the majoretdhce between the control architectures, which

led to the difference in efficiencies, is the cohtof actuatoru,, seen in Fig. 6.9. Both the
decentralized and BAS approaches drastically redycesaturating in the decentralized case,
while the centralized approach maintags relatively close to the nominal value. While, the
decentralized and BAS approaches achieve signtficamaller costs for thei, actuator, the

reduction inu, forces theu, andu, actuators to increase as seen in Figs. 6.7 andTh&
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Figure 6.7 Actuator inputs u from each control architecture for Scenario 1.
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Figure 6.8 Actuator inputs u,; from each control architecture for Scenario 1.

increase in actuator costs associated with theeaser inu, and u,; outweighs the reduction in

cost from the reduction ojg , thus the increase in the total actuator cost.

While the BAS approach did perform slightly bettean the decentralized approach in

terms of meeting both the performance and effigiemlgjectives, it is surprising that the BAS

approach did not perform better given the fact tihat coupling terms in theéd and B are

directly considered when making control decisiofsom Figs. 6.7, 6.8, and 6.9, it is clear that

there is not a unique combination of actuator ispyt, u,, andu, which can achieve the
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Figure 6.9 Actuator inputs u, and u, from each control architecture for Scenario 1.

performance objectives. However, different combores of these actuators do result in
different system efficiencies. With the deceni@di control approach, each controller tries to
minimize the actuator costs for only its correspngdsubsystem actuators. This results in an
equilibrium far from the optimal solution achievéy the centralized approach. The BAS
approach is able to perform slightly better becaeseh of the BAS controllers tries to find a
balance which minimizes the common actuator costs the costs of the actuators for the

corresponding subsystel. The reason the BAS controller does not perfotaser to the
centralized controller is due to the fact that eeshtroller only considers the trade-off between
the common actuators and a set of actuators camesgpy only to a single subsystesh and not
the set of actuators for all the subsystems. Wik insight, a simple modification to the BAS
approach can significantly improve its efficiencgriprmance. When calculating the matrices

Q, andq, used in the MPC formulation, multiplying the adtwacost coefficientss andl, for
the only actuatorsi andu,, by the number of subsysten (N =3 for the example system)

can cause the BAS approach to perform much moee thie centralized approach. This is
because each of the BAS controllers must now deteriihe trade-off between the common
actuator costs and the costs corresponding to @stitime actuator costs for a single subsystem.
While each subsystem is different, this multiplicat better approximates the effect of the

common actuators on all of the actuatoysand u,. This modification has a slight negative
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effect on the performance objectives but signiftgaimproves the system efficiency as shown
in Fig. 6.10. Now, after integrating the totalwadbr costs over the entire simulation, the cost fo
the BAS approach is only 4% greater than that efantralized approach. Fig. 6.11 shows that

the control signal foru, is now much closer to that from the centralizegrapch. If the

subsystemss were more similar, this modification would provieeen greater improvement.
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Figure 6.10 Improved system efficiency achieved lihe modified BAS controller for

Scenario 1.
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Figure 6.11 Change inu, when using the modified BAS controller for Scenao 1.
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6.2.1.2 Scenario 2

Scenario 2 presents a situation where not all @fctimtrol architectures are able to meet

the performance objectives due to actuator comsgaiFig. 6.12 shows the disturbandgsand

V,, over the 80 minute simulation for Scenario 2. @sturbances are the same as for Scenario 1
with the exception ofl ;, which is increased to 3.5 instead of 3.2. Thigease inl; causes
both actuatorsy, andu, to saturate in the decentralized control appraeckeen in Figs. 6.13
and 6.14. With both actuators f& saturated, the performance objective ¥gr cannot be met

andV,; deviates far from the desired value as seen in6=id.

4 \ I
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Figure 6.12 System disturbances ; andV, for Scenario 2.

This scenario highlights one of the major beneditshe BAS control structure. From
Scenario 1, the decentralized and unmodified BA&robapproaches performed very similarly.

However, now when the decentralized approach iblent meet the performance objectives,

the unmodified BAS approach remains able to meetothjective despite that fact that bath
and u, saturate. Looking at the common actuator inpot§ig. 6.16, the major difference
between the BAS and decentralized approach is #heevof u,. When the disturbancé,
changes 20 minutes into the simulation, the BAStrebrrchitecture is able to increase the

input significantly in order to help meet the lop&formance folS,. Since the performance
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Figure 6.13 Actuator inputs u, from each control architecture for Scenario 2.
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Figure 6.14 Actuator inputs u, from each control architecture for Scenario 2.

objectives forS, andS, are considered by the MPC controller f§r, the BAS approach is able
to utilize the common subsystem actuators to hedptrthe objectives fof . The decentralized
control approach, however, does not know the caggdbetween the subsysterSs and S and

therefore, is unable to utilize the common actusatormeet the objectives & .
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Figure 6.15 Ability of each control architecture tomeet local performance objectives by

tracking the desired value forV, for Scenario 2.
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Figure 6.16 Actuator inputs u, and u, from each control architecture for Scenario 2.

6.2.2 Augmented Controller Performance via ESC

From Section 6.2.1, it is clear that the BAS cohtcchitecture is able to provide

improved control performance when compared to theedtralized approach both in terms of

meeting performance objectives as well as maxirgisystem efficiency. Additionally, the BAS

approach is able to achieve significantly greatiiciency by modifying the actuator costs.

However, if the subsystems are too dissimilar, thdification may not provide a significant
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efficiency improvement. If the BAS approach canbetmodified, the efficiency of the approach
may be significantly lower than that of the ceng@dl approach. Fortunately, extremum seeking
control can be used to augment the BAS controligcture to improve the system efficiency.
Following the formulation from Chapter 5, the BA®ntrol architecture from the previous
section was modified to include an ESC controll€éhe ESC parameters used for the controller

are presented in Table 6.2.

Table 6.2 ESC Parameters

Parameter Value
w 71/100 rad.
a 5
k 3w
@ 1577/180 rad.
a, 10w
] 0.lw

Due to the fact that ESC is an adaptive contrdinegue and is relatively slow to adapt
following a disturbance, the following figures shdhe results for a 240 minute simulation,
where the same disturbances as Scenario 1 fromealr@vused but are stretched in time by a

factor of 3, as shown in Fig. 6.17.
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Figure 6.17 System disturbanced ; andV, for ESC Scenario.
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First, from Fig. 6.18, it is clear that the pertatibn from the ESC degrades the ability of

the MPC controllers to meet the performance objesti The majority of the oscillations W),

are small and are centered about the desired nefenslue. However, the disturbanceévjpat
180 minutes causes a rather large oscillatioW,ijnwhich does not settle out until 45 minutes
later. The reason for this is actuator saturatibn, andu,, during the transient that follows the
disturbance inV,, as seen in Figs. 6.19 and 6.20. These figuresv ghat the centralized

solution saturatesl, and bringsu,, close to saturation. From these figures, it eaclthat the

ESC approach often overshoots the centralized isalldut then converges very close to the

centralized solution. After the disturbancep the ESC approach overshoots and satunates
until approximately 220 minutes when both, and u,, seen in Fig. 6.21, converge to the

centralized solution.
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Figure 6.18 Ability of each control architecture tomeet local performance objectives by

tracking the desired value forV, for ESC Scenario.

66



100 ===ttt s e e e e g e e -
1255,

0 30 60 90 120 150 180 210 240
Time (min)

Figure 6.19 Actuator inputs u, from each control architecture for Scenario 1.

10 L PP al

Uai

Time (min)

Figure 6.20 Actuator inputs u, from each control architecture for Scenario 1.

67



0 Cu

Q- ame Bu
80 A Bu
| 3 _

sxfhasssalt

60
50
40+

ra T S ———

IO T
o

s

Up, Ug

30

20
10~

| | |
150 180 210 240
Time (min)

Figure 6.21 Actuator inputs u, and u, from each control architecture for Scenario 1.

From Figs. 6.19, 6.20, and 6.21, it is clear that ESC augmentation is able to drive the
actuator inputs of the BAS approach toward the tsfirom the centralized solution. This results
in a drastic improvement in the system efficiensysaen in Fig. 6.22. Fifteen minutes into the
simulation when the controller are activated, Bi@2 shows that initially the total actuator costs
for the BAS and the ESC augmented BAS approacleeseay similar and are both much larger
than that of the centralized approach. Howevder&0 minutes into the simulation, the ESC
controller has augmented the control inputs enoaghto drive down the actuator costs,
converging very close to the centralized solutidrar each disturbance to the system, the ESC
controller is able to significantly reduce the attu cost after a short transient. When
comparing the integral of the total actuator casts,unmodified BAS approach results in a 30%
higher cost than the centralized approach. The Bffroach with the ESC augmentation,
however, is only 5% higher. Therefore, the ESCnaemgtation presents a trade-off. Fig. 6.18
shows that the ESC approach can adversely affecltlity to meet the performance objectives
during a transient, while Fig. 6.22 shows that B8C augmentation can significantly improve

the total system efficiency.
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Figure 6.22 Improved system efficiency achieved lihe modified BAS controller for

Scenario 1.

6.2.3 Scalability

Sections 6.2.1 and 6.2.2 have demonstrated thereiites between the various control
architectures in terms of the ability to meet tlefgrmance and efficiency objectives for the
system. When developing control strategies fogdescale systems, the scalability of the
approach also needs to be considered. In this, cas#ability refers to the associated
communication and computational costs for a giventrol architecture. Fig. 5.1 showed that
the centralized control approach is the least btaland the decentralized approach is the most.
The BAS (and the ESC augmented BAS) approach falsveen these two. This section
guantifies the communication and computation costtie example system to demonstrate this

result.

6.2.3.1 Communication

A centralized control strategy requires knowledfalbsystem states when determining
the control decision for any given input. For sosystems, especially large-scale system which
may consist of subsystems which are spatially ibisted, the communication of all these states
may be expensive and restrict the ability to useeatralized approach. Additionally, a
centralized approach is very sensitive to faultserg a sensor failure has the ability to adversely

affect the control decisions for the entire systeAiternatively, decentralized control requires
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very little communication since only local statdéommation is used to make control decisions.
This also makes decentralized control more robugadlts, where a sensor failure only affects
the control decisions for the corresponding sulesysand not the entire system. The BAS
control approach requires more communication thia@ decentralized approach but less
communication than the centralized approach. TS Barchitecture only requires the

communication of the common subsystem states to ebthe N subsystems. The fact that the
states of theN subsystems are not communicated to each othersitageBAS approach more

robust to faults than the centralized approach.

6.2.3.2 Computation

One of the major motivations for a decentralizedhtoad approach is the reduced
computational costs when compared to a centraligetition. In practice, excessive
computational costs can make a centralized approafgasible; thus, the motivation for
decentralized control. Dividing the centralizechttol problem into several smaller problems
accomplishes two things; each control problem leagef states and inputs resulting in less
computational cost and each control problem magdbeed in parallel allowing each problem to
be solved on a separate processor. Having muligdeessors can also reduce communication
costs since each processor can be physically ibaaar the corresponding subsystem. The
reduction in computational costs is now demongiréte the example system.

With the centralized control approach for the exbrgystem, the system model has 8
states and 8 inputs. Additionally, a control honzf 15 time steps and a prediction horizon of
30 time steps are used by the MPC formulation. s Thsults in a large optimization problem
where the lifted control vectdd OR'® is solved for every 10 seconds. For the deceénéahl
control approach, the centralized control problearmbioken into 4 smaller control problems
where each has only 2 states and 2 inputs, regtiitia lifted control vectot) OR*°. Similarly,
the BAS control approach, decomposes the centratraoproblem into 3 smaller control
problems, where each has 4 states and 4 inputstingsin a lifted control vecto OR®. Fig.
6.23 shows the computational time required at esmhple time for Scenario 1 from Section
6.2.1. Note that the y-axis is a log scale andesihhe decentralized and BAS approaches have

multiple MPC controllers, the largest computatiame at each sample time is shown in the
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figure. The maximum computation time for the calited, decentralized, and BAS approaches
are 2.089, 0.299, and 0.317 seconds, respectivEhe average computation time for each is
0.036, 0.005, 0.010 seconds, respectively. Witk mhaximum computation time for the

centralized solution nearly an order of magnitualgér than that of the decentralized and BAS

solutions, it is clear why a centralized approa@ymot be feasible in some applications.
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Figure 6.23 Computation time for each control apprach for Scenario 1.

For a BAS system, as the number of subsystgmacreases, the computational cost for

the centralized solution grows rapidly. Howeveoy fthe BAS control architecture the
computational costs simply grow linearly with thammber of subsystems and as previously
mentioned, the BAS approach can take advantagareflel processing. If parallel processing is
used, the computation cost for each processor remeonstant and only the number of
processors increases as the number of subsystameases. Fig. 6.24 shows the growth in
computational costs for the centralized and BAStrobrstrategies for an increasing number of
subsystems. The data in this figure was genenagedy a system very similar to the example
system with the slight difference of having ideatisubsystems. With each subsystem having 2
states and 2 inputs and the MPC having a contnazdwo of 15 steps and a prediction horizon of

30 steps, the number of subsysteSswvas varied between 2 and 30. The two plots shmw t

same data using linear and logarithmic y-axes. BA& data assumes the computations are

performed on a single processor and, thereforecdhgutational costs grow on the orderMf

71



However, for the centralized approach the compartatiosts grow on the order of*. While
the computational costs are similar when there fare subsystems, once the number of
subsystems reaches 30, the centralized computatisinis over an order of magnitude greater
than that of the BAS approach. Clearly the BAStadrapproach scales significantly better than
the centralized approach.
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Figure 6.24 Computation time for each control apprach for Scenario 1.

This chapter has demonstrated the advantageg Al and ESC control strategies for
a linear example system. The following chapterleatas these control strategies for a more
realistic system which includes additional challenguch as unknown disturbances and system

nonlinearity.

72



Chapter 7
VRF System

The example system developed in Chapter 2 has uisssh to demonstrate the methods
and ideas presented through this thesis, howelesettechniques must be applicable to real-
world systems in order to be of value. While thare many different systems that can naturally
be modeled with a BAS structure, this chapter destrates how the BAS control approach can
be applied to variable refrigerant flow (VRF) syste Section 7.1 provides a detailed
background of previous modeling and control effdais VRF systems and motivates the need
for improved control strategies. A gray-box modglapproach is developed in Section 7.2 and
the state-space BAS structure of VRF systems isepted in Section 7.3. Model validation is
performed in Section 7.4. The control architectared controller design are developed in
Section 7.5 and simulation results are presentesertion 7.6, which are used to evaluate the
control performance. Appendix B contains the MATB.A&ode used to generate and control the

VRF system.

7.1 VRF Background

VRF systems utilize the vapor compression cycle QYGQo transfer heat from one
location to another. VRF systems are also knowmmadti-evaporator vapor compression
systems (ME-VCS) and are becoming widely used tovide the air-conditioning and
refrigeration needs for buildings. A single VRFS®m can remove heat from multiple rooms or
zones of a building and reject this heat to thedoot environment. Prior to analyzing VRF
systems in greater detail, it is important to haweunderstanding of VCC basics. Fig. 7.1a

shows a four component single-evaporator vapor cesspon system (VCS) consisting of a
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compressor, condenser, electronic expansion v&l#/), and evaporator. The corresponding
VCC is shown on a pressure-enthalpy (P-h) diagrantig. 7.1b. Low temperature, low
pressure refrigerant vapor enters the compressaofl)atat which point the refrigerant is
compressed, causing a drastic increase in preasdréemperature. The refrigerant vapor at (2)
then enters the condenser where the high temperagfrigerant loses heat to the lower
temperature air passing through the heat excham@ethe refrigerant loses heat, the refrigerant
condenses from a vapor into a liquid and is typyocabmpletely liquid by the time the refrigerant
exits the condenser at (3). Then, the refrigeeamers the EEV, where the refrigerant is
suddenly expanded causing a quick drop in pressuwletemperature. This expansion turns the
liquid refrigerant entering the EEV into a two-plamsixture of vapor and liquid. This mixture at
(4) enters the evaporator where the refrigerandrilssheat from the warmer air passing through
the heat exchanger. This absorption of heat cdugseemainder of the liquid to evaporate and by
the time the refrigerant exits the evaporator iemsirely vapor and the cycle repeats. Through
this process, a VCS system is able to remove hmeat & room or space (the low temperature
reservoir) and expel the heat to the high tempegateservoir even if the temperature of this
environment is significantly higher than the tengtere of the room or space.

:High Temperature Reservoir: Ty :
| |
|

| Condenser Fan \
. o 19 "
L __ =~ || _____ |
3 Condenser 2 ° Liquid TWO'Phase vapor
5
Expansion Compressor <’l:| y o P, 3 - .2
Valve W g / !
Evaporator
4 1 o !
JUU | /s -
I T T T T A~ . T T T~ 1 >
Q ? Evaporator h, h,
L Fan Enthalpy

Low Temperature Reservoir: T,

(a) (b)

Figure 7.1 Single-evaporator VCS — a) 4 componenystem schematic, b) P-h diagram of

vapor compression cycle.
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VCSs are of particular interest due to their rgkii high efficiencies. VCSs are heavily
embedded in today’s society and are used to mkege variety of cooling needs ranging from
household refrigerators and air-conditioning systeim aircraft and large-scale data centers.
Therefore, there has been extensive researchhetonbdeling and control of these systems. A

detailed review of previous research efforts cafolo@d in [30].

Branch Refrigerant
Outdoor Controller E’iping
Unit /

Indoor

‘/\/) %/ Units condenser
— e BT
< , &
; ) 3 EEV 1 XEEV 2 EEV N
compressor
; ( evaporator evaporator |[[[|evaporator
& 1 2 N

(a) (b)

Figure 7.2 VRF system — a) Industrial system useatheat and cool multiple rooms in a
building [31], b) schematic of VRF system.

VRF systems are very similar to the single-evapor®tCS system shown in Fig. 7.1.
While still using a single compressor and condenaeVYRF system has multiple EEVs and
multiple evaporators which allow a single systemdiectly cool multiple rooms. Fig. 7.2a
shows how a VRF system is used to directly cooh@at) multiple rooms in a building and Fig.
7.2b shows a schematic of & evaporator VRF system. With multiple evaporatths, total
refrigerant flow rate from the compressor is divideto N different flow paths after exiting the
condenser. The EEV apertures are used to detefmowemuch of the total refrigerant flow is
sent to each evaporator. This division of refragerflow rate is a major source of coupling in
the system which needs to be considered when damwgl@ decentralized control strategy. An
additional source of coupling comes from the jogniof refrigerant flows downstream of the
evaporators. Prior to entering the compressor réffrggerant flows from each evaporator are
combined in a junction, at which point the refrigiar flows converge to a single pressure. While

each evaporator can operate at a different presthege pressures are highly coupled due to the
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combination of flows at the junction. Further dission and analysis of these sources of
coupling can be found in [7].

Significantly less research has focused on the fmgand control of multi-evaporator
systems. Due to the high degree of coupling batweeaporators, the majority of multi-
evaporator control research utilizes Multiple-Inpdtltiple-Output (MIMO) control strategies
which rely on a linear model of the system to medeetrol decisions. Thus, the first challenge to
controlling VRF systems is developing an appropriatear model. Most of the previous work
has used black-box models developed using traditiatata-driven system identification
techniques. Unfortunately, black-box modeling teghes suffer from several disadvantages,
the most important of which is the fact that theg aot scalable (with respect to the number of
evaporators in the system) since the identified ehagl specific to the system configuration at
the time data is gathered. Section 7.2 develogsag-box modeling approach (based on the
fluid dynamic modeling effort from [32]) for bothhé fluid and thermal dynamics of B
evaporator VRF system.

Once an appropriate linear model is identified,46eond challenge is to design a control
architecture which is scalable to VRF systems wvaitharge number of evaporators. Several
control strategies have been proposed in the fitexafor dual- and triple-evaporator VRF
systems. Model-based cascaded control approachekiél- and triple-evaporator systems are
presented in [33] and [34], which take advantagethef time scale separation between the
refrigerant thermal dynamics and the room air tlerdynamics. A linear-quadratic regulator
(LQR) approach is used to control a dual-evaporagstem in [35] and is one of the few efforts
in which the model used for control came from timedrization of a nonlinear model of the
system as opposed to a black-box approach. A tratieed hierarchical control approach for a
dual-evaporator system is developed in [36]. /At ldwer level, decentralized MPC controllers
use the EEV and secondary fluid flow rate to cdntanling capacity and superheat for each
evaporator. The compressor speed and dischargee vaperture are controlled using
proportional-integral (PI) controllers to reguldkes evaporator pressures. At the higher level, a
global controller, using MPC, determines the caplaapacity and pressure set points for each
evaporator in order to maximize system efficiendyhile these control approaches have been
demonstrated for dual- and triple-evaporator systestalable control architecture for arbitrarily
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large VRF systems is still needed. The BAS cordpgroach developed in Chapter 5 is applied
to a 5-evaporator VRF system in Section 2.4 andchtikty of this control approach to meet both

the performance and efficiency objectives for thegdems is demonstrated in Section 7.6.

7.2 System Modeling

In this thesis, a simulated VRF system is usedaogof an experimental system. While
experimental work is of interest and will be theude of future work, the simulated system used
for the following modeling and control efforts capgs a wide-range of system dynamics and
features found in the physical systems. The VR$iesy is modeled and simulated using the
AFRL (Air Force Research Laboratory) Transient Thar Modeling and Optimization
(ATTMO) toolbox [37], which is based on the Thermegoolbox [38] from the University of
lllinois at Urbana-Champaign (UIUC). ATTMO is anSilink® based toolbox which uses a
modular approach wherein each component of a VGB8odeled independently. The dynamic
heat exchanger models use a lumped parameter mdnongdary approach to model the
condenser with three refrigerant fluid zones (sheat, two-phase, subcooled) and the
evaporator with two refrigerant fluid zones (twoaghk, superheat). Each component calculates
its own refrigerant outlet enthalpy. The heat exder and flow junction models calculate the
system pressures and the compressor and valve sncaleulate the refrigerant mass flow rates.
For this study, the heat exchangers are of the-amldefin configuration and the secondary fluid
is air. Validation efforts for ATTMO can be foumad [37] and validation efforts for Thermosys
can be found in [38], which uses a very similar elody approach. ATTMO is able to capture
both the nonlinear and transient dynamics of VCGtesys and, therefore, serves as an
appropriate substitute for an experimental systedT.TMO, however, does not simulate the
signal noise found in experimental system and, ,thie effect of signal noise on control
performance is left for future work. ATTMO servan efficient platform to conduct control
design and analysis due to its ability to simuitetems significantly faster than real-time. With
speed-ups ranging from 10x to well over 100x (delpem on the operating conditions and the
degree of the transient behavior), ATTMO offerssticareductions in control development time.

Please refer to [37] for additional details.
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7.2.1 Fluid Dynamics

Fig. 7.3 shows the electrical circuit schematicduserepresent the fluid dynamics for the
VRF system. Table 7.1 lists the correspondingtetad analogue for each component of the
fluid system. The schematic depicts a gendYicevaporator system which results h+2
differential equations. These equations repreg@ntdynamics for the condenser pressBre

the N evaporator pressurd3, and the junction pressuie downstream of the evaporators and

are written as

Ccl:‘z::rm_rm-l_KC(Qrwc_Qwac)’ (71)
Ci'?:m_m’+/(i(Qawi_Qwri) DlDN, (72)
C,R, =2 mif —ni. (7.3)

Note that (7.1) and (7.2) include several heatsfemrate terms denoted by which will be

described in detail in the following section. Atiolnally, P represents a derivative state which

should not be confused with refrigerant mass flate mh or heat transfer rat€, which are
algebraic quantities of the system. For notatignaposes DN ={1,2,...N}. It is important

to note that all quantities used to model the flail thermal dynamics for the system are
deviations from a nominal operating condition.

The compressor is modeled as a current source ravilps a refrigerant mass flow rate

11 to the inlet of the compressor. This mass flote,renodeled as
m'< = :Bk1Pq _:Bkzpc +:8k30~‘1< _:Bk4Trq1 (7'4)

is a function of the junction and condenser pressu?, and F,, the compressor speeg, (a
control input to the system), and the refrigeraarhperature of the junction,,, which is a

dynamic state of the thermal model presented iméx section. The parametefs,, 5., B,

and 3, are positive linearization coefficients.
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Figure 7.3 Electrical circuit diagram of the fluid dynamics of a VRF system. The symbol

o— indicates the presence of a control input.

Table 7.1 Electrical Circuit Analogues for Fluid Dynamics of VRF Systems

Electrical Circuit
VRF System
Analogue

refrigerant mass flow rate electric current

pressure differential voltage potential
fluid resistance resistor
compressor current source
EEV variable resistor
condenser/evaporators capacitor

fluid junction capacitor

Each of theN EEVs is modeled as a variable resistor whoseteggie R, is a function

of the EEV apertur@, (a control input to the system). The pressur@ @woss the EEV is
R-R=R/(a)m iON. (73)

This equation is linearized as
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P-P=Rm-K,a, OiON, (7.6)
so that the pressure drop across the EEV is arlio@abination of the refrigerant flow rate
through the valve and the valve aperture. PositeastantsR, and K, arise from the

linearization andR; can be thought of as the nominal resistance ofahee.

With each evaporator potentially operating at dinlt$ pressure, there is a pressure drop
after the evaporator prior to the joining of reéignt flows at the junction near the inlet of the

compressor, resulting in a common presstte The pressure drop downstream of each

evaporator is modeled as a resistance, resulting in
R-PR =Rim + Ky +Kywy K T, DiON. (7.7)

Note that several terms in addition to a fixed s&siceR, are needed in order to accurately

model this pressure drop. The pressure drop ésalsinction of the compressor speggd and

the evaporator fan speed, , which are inputs to the system, as well as thepezature of the

refrigerant in the evaporatdt, , which comes from the thermal model in the followsection.

Finally, based on Kirchoff’'s current law, there asmass flow conservation equation

corresponding to the refrigerant flow split followgi the condenser which is given by

M=, m. (7.8)

7.2.2 Thermal Dynamics

Fig. 7.4 shows the electrical circuit schematicduserepresent the thermal dynamics for
the VRF system. Table 7.2 lists the corresponeiegtrical analogue for each component of the
thermal system. For th&l evaporator system there a?®\ + 2 differential equations used to
represent the thermal dynamics of the system. t,Fihee dynamics of the lumped wall

temperatures for the condenser and each evaparataescribed by

chTwc = Qrwc - Qwac’ (79)
Cwi-l;wi = Qawi _Qwri D I DN (710)
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Figure 7.4 Electrical circuit diagram of the thermd dynamics of a VRF system. The
symbol o— indicates the presence of a control input.

Table 7.2 Electrical Circuit Analogues for ThermalDynamics of VRF Systems

VRF System Electrical Circuit Analogue

heat transfer rate electric current

temperature differential voltage potential

thermal resistance resistor

compressor voltage source and current source
EEV variable resistor
condenser/evaporator tube wall thermal capacitor

thermal junction thermal capacitor

Once again, it is important to remember fhds a derivative state and should not be confused

with the heat transfer rat€), which is an algebraic quantity. The temperattze of the
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refrigerant in the junction downstream of the evapars is also a dynamic state of the system

and is given by
erTrq ZZQr'l _Qre_ rqz m'+qurhl'<' (711)

The constanC, , represents the thermal capacitance of the reérgenside the junction anl,

is a positive linearization coefficient. The remag N differential equations capture the

dynamics of the air temperaturés inside each of théN rooms cooled by the VRF system and

are written as
CaiTaj :QLi _Qawi Di0N, (7.12)

where Q, is an unknown thermal load for each room and asta disturbance to the system.

For this study, it is assumed that there is no treasfer between the rooms cooled by the VRF
system and the effects of thermal coupling betweems is left for future work.

Each heat exchanger has an air-side thermal resestand a refrigerant-side thermal
resistance. Starting with the air-side resistatioe,temperature difference between the air and

wall of the heat exchangers varies as a functidgh@heat exchanger fan speed and is written as
Twc _Tac = Qwac lifc (a)fc) ! (713)
T, T = QuRy (wfi) OidN. (7.14)

These equations are linearized such that the textyerdifference is a linear function of the heat

transfer rate and the heat exchanger fan speeash(eotinput to the system), shown as
Twc _Tac = RacQwac - Kfca%c’ (715)
T,-T,=RQ,, K, OiON. (7.16)

Both R, and K, are positive coefficients arising from the lingation andR,; can be thought

of as the nominal thermal resistance between thara heat exchanger wall. The same is true

for R, andK,, of the condenser.
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For the refrigerant side, the thermal resistanaaaseled as a function of the refrigerant

mass flow rate:
Trc _TWC :Q‘I’WCRC(ITI'()’ (7.17)
T, T, =QuR, (M) OiON. (7.18)

Once again, these equations are linearized sdhltbaemperature difference is a linear function
of the heat transfer rate and the refrigerant rflassrate through the heat exchanger. From the
parameter identification process presented in &ecti.4, it was found that the temperature
difference for the condenser was also a strongtiomof the condenser pressure and, therefore,

the equations are
Trc _Twc = chQrwc _Arclrn: +/1rc2Pc’ (719)
Twi _Tri = RriQwri _/]rim Oi DN (720)

Again, the coefficients are all positive and afigen the linearization.

The lumped temperature of the refrigerant in eagdt Bxchanger is approximated as

TrC :,7rCPC’ (7.21)
T =014 R + 105 =115 Oi0ON (7.22)

The refrigerant temperaturds, and T, are not made to be dynamic states of the systesrtalu
their strong dependence on the pressufesand P, which are dynamic states of the fluid

system.

The compressor is modeled as both a current soanck a voltage source. The
compressor not only adds thermal energy to thageslint, it also increases the refrigerant
temperature through the compression process, ffeusded to model the compressor as a current
and voltage source. The additional heat transtterfrom the compressor is given by

Qr'k = akl re akZTrq + ak3a'{<’ (723)
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which is a function of the compressor speed as aglihe refrigerant temperatures at the inlet
and outlet of the compressor. The total heat tearmste of the refrigerant at the exit of the

compressor is
Qrk = Qre + ‘r'k = ylerc _ykZTrq + yk3a‘l< +yk4R1 _ykspc' (724)

Each EEV is modeled as a variable resistor wittheanbal resistanceR, which is a

function of the valve aperture and the evaporator $peed, both of which are inputs to the

system. The temperature drop across the valviees ¢py
T.-T. =R (a4 )Q DIV, (7.25)
and is linearized, resulting in
Te =T =RQ ~Kia, Ky, DION, (7.26)

where R;, K., and K, are positive coefficients from the linearizatiomaR|, can be thought

of as the nominal thermal resistance of the EEV.

The temperature change downstream of the evapsrnatarodeled as
Tri _Trq :ﬂnﬂiQ:i _ﬂmzim'_ﬂmaQre+ﬂm4ﬁ1: * o 5 W OidnN, (7-27)

and it is important to note thaj, may be higher or lower thaf};, depending on the operating

conditions of the system.
Finally, two energy conservation equations can bi&enm for the VRF system; one for
the refrigerant flow split downstream of the conslemand the other for the compressor, which

are given by
Qrc = ZQri 1 (7'28)

Qrk = Qr'k + Qre' (729)
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7.3 Complete System Model

With the dynamic and algebraic equations develape8ection 7.2, theN evaporator
VRF system can be represented in state-space fdfirst, a subsystem representation is used to
divide the VRF system intdN +1 subsystems. The" EEV andi" evaporator make up thé&

subsystemS, and the compressor and condenser combine to malka additional subsystem

S,. Combining the fluid and thermal dynamics for BieV and evaporator, the state, input, and
. T T .
disturbance vectors fo8; arex =[P T, T,]',u=[a, @] andd =[Q,]. The state,

inputs, and disturbance vectors f8, are xo:[F’C P T Trq]T, uo:[cq( wa], and
dy =[T.c]-

Before developing the subsystem representations, inportant to note that the fluid
dynamics are represented bylased system. Here closed refers to the fact that ¢fiegerant
mass flow ratem is conserved throughout the system and cannot enexit the system. This
is contrary to the example system presented iptbeeious chapters, where current can enter the
system through the voltage source $ and exit through the current sinks B . This
refrigerant mass flow rate conservation imposeglgebraic relationship between the dynamic

states of the system. Using (7.1), (7.2), (7.3)8), (7.9), and (7.10), it is clear th&g can be

written as
CP =Y [-CR+KC, T, ]-CP +kC,T.. (7.30)
=
which results in
C,P, :i[—c,emcmm]—ccpc +kC T .+V, (7.31)
=

where ) is a constant of integration and depends on thialistate of the system, assumed here

to equal 0. As discussed in Section 2.3, relalignss between parameters in the and B
matrices of a system can create a situation whesgstem is not controllable despite being

structurally controllable. The algebraic relatibipsfrom (7.31) creates such a situation, where if
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a state-space representation were developed cogal), B, T,, P, and T, as states, the
system would not be controllable. Therefore, (yi8lused to rewrite thé, state as a function

of the other states in the system, thus, with ghslabuse of notation, the state vector &ris
T
reduced tox, :[PC P, Trq] :
The subsystem representation fris written as
S % = AX T A% T B + B, +Vd OiON, (7.32)

where the matrice#\,, A,, B,, B,, andV, are

&1 & 1 & i (8011 @01 O
A=la o & 2 & sl Ao = Ao n 0 0f, (7.33)
0 a5 & s L0 0 0
bli_ll hi_12_ _QO_ll 0
B = bn_21 l%_22 , Bo=| O 01, (7.34)
0 hi_32_ . 0 O
0
V.=| 0 (7.35)
Vi s

Due to the complexity of the terms in each of theserices, Table 7.3 is used to present

these terms in a single location. Table 7.4 inetuddditional terms which are too large to fit in

Table 7.3. The subsystem representatiorSiprs written as
N N
So:xo:AooXo"'on)ﬂ +Bo&*' O+ZBDui +Vog 0 (7-36)
i=1 i=1

where the matricesy,,, A, B,,, B, , andV,, are

Ao 11 Qo 12 R0 13 i 11 Q5 12 0
Abo =1 Qg 21 Qgo 22 Ao 29 Abi =l Qi 0 0], (7-37)
B 31 Qg0 32 Q0 3 Az 0 0
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b00_11 b00_12 by 1 0
Boo = boo_21 0 |, By= bOi_21 b, _22) (7.38)
boo_31 0 bOi_31 by _32
Voo_1
Vi,=| O (7.39)
0
Table 7.3 VRF System Matrix Elements
&, | SeeTable7.4 Agy 11 See Table 7.4
& 1o ——'{i+—J Ago_12 'Bkl( + X ’°1j ﬁ(i+ 1 J S,
CI Ral i Cc ch ch Rac KCCWC
& 13 % Qo0 13 ’f:k: [1+ E:lJ
aii_zl 1 {Uru +/]ri +”r3ij 300_21 i[ﬁz ~ N Kq3i’7r3i]
CuRi Ri C, X ,Z:;‘ RiRi
’ N 1 N1
|, [Rm- ' RJ o2z -C—q[ﬂm;[ﬂ]
1
A | er s |
aii_32 C -1Ra- aoo_31 See Table 7.4
8 33 -C_l _ gy 3 See Table 7.4
8o 11 L P Kaallia _ & (7,4 + ri)} 890_33 See Table 7.4
CGR, R R
| L | k(1. 1)
"o | cr, R S (Rc ' Racj «C..
A,
| CRR v HeaiE
bli_ll Kvi (1_'_ q3|,7r3| _ﬁ A +n. ] aOi 21 {1+K iy ¥ q3i’7r3i}
CiR,i qu R”( ri r3|) - R q Rn
b|i_12 i[ Kqu — qui”’z +KiKfi + KiHTZiJ a()i_gl See Table 7.4
GlR Ry R R
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Table 7.4 VRF System Matrix Elements Continued

bA KV' (/]” +,7V3') b ﬁk3 K, rcl
i 21 C.RR 00_11 C. 1+=== R
bli 22 i[ﬁ+,7’2'j b00_12 - K
CW| Rai R’I
bn_32 Ky b00_21 _i i Kay
CaRi G, i Ry
bIO 11 Kq]j boo 31 See Table 7.4
- CRy -
1 K.
V. b, i
ii_3 Cai 0i_11 CCR,i
bOi ” _ Kq3i,7r3i Kvi
) CRiR
1
bOi_22 _C—qu(Kqu _Kq3il7r2')
q' i
Boi a1 See Table 7.4
Byi 32 See Table 7.4
K,
V C
00 1 CR.

1( 1 Keallai 1 K, s A
R e Ry
1 N K[ 1 1) C,
aoo_ll —C—( +zl[ j R ( rclﬁkz ,7rc cm)J_C_[R +EJKC
i N | 1 I /umZquBi ( ,73J rq q3|,7r3|
— | It - Mg \VidTee = Vis = Odlrc +lum ﬂ T 5 b
a00_31 Ci ;_,Um” _[ qu Rn 3( « © kl,? ) e quRn
rq
__(yqurc_yk5_ak1,7rc)_l(rqﬂk2
1o 1 [ K
Qo 32 | — z — 2t Vi~ ﬂmmﬁk1:| ~Via T Ko B
rq _i=l _l'lmlj L i qu
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1131
a00_33 C_ 2/1 [_1_ium3i (ykz_ak2)+:um4ilgk4:|+(yk2_ak 2)_quﬁk4:|
rq L= mli
Qi 31 NS 1+ =L (Urli +hj+ £ ~Kyq [i"'&(”rli +hjj
Cua | Hr Ry Ri) R R Ry R
1ol 1 [ maKy KK,
b0°—31 -~ ZLU_{_ 2R1 = + U (yks_ak3)_:um4ﬁk3:|+ E}qh :|+(ak3_yk 3)+qu/8|< 3]
rq | i=1 mili i i
bOi a1 i i_ 1+ Hinai Kq3i [_/7;3 KVI\J +quKq3,7r3i Kvi
) er _'umli L Rﬂ Ri RuRn
1] 1] Hrgi Ko Hro Koz K,
bOi_32 C_ E [l+ ;q g3 j”rZi _ ;} q2 _/’lmﬁjl_ﬁf(an”rz - Kqu ):l
rq i i i i

With the subsystem representation from (7.32) ah@86(, the completeN evaporator

system can be represented as

S:Xx=Ax+Bu+Vd, (7.40)

where x=[x % ... X, %] ,u=[u u, .. u, u],andd=[d, d, .. d, d

are the state, control, and disturbance vectorshierentire VRF system. We hawe] R¥M*Y

uOR* ™Y andd DR with the A, B, andV matrices of the appropriate sizes written as

A, 0 0 | A B, O 0 | By
O A22 i AZO O BZZ i BZO
A= o0 i B=| 0! &, (7.41)
0 0 AulAe o 0 By | By
_A)l Ao Ay i Aoo_ _Bm B o By i Boo_
V, O 0} 0]
0 V, 0
V= g 0ol (7.42)
0 = 0 Vg O
0 0 0 1V

89



7.4 Model Validation

Up until this point, the gray-box modeling approgmesented in the previous sections
can be used to develop a linear model of &hyevaporator of the form shown in Fig. 7.2. In
order to validate this modeling approach, a 5-evatpo system, developed in ATTMO, is used
as a representative system. Fig. 7.5 shows theapeeator system modeled using ATTMO in
the Simulin® environment. It is assumed that all 5 evaporateEVs, and evaporator fans are
identical to one another. Note that future work wonsider when this is not the case. Each of
the heat exchangers are of the tube-and-fin cordtgan and the evaporators and EEVs are
modeled after the components of a physical dugb@nzdor system presented in [38], while the
compressor and condenser are scaled appropriaféty. 7.5 does not show the rooms being
cooled by each evaporator. The air temperaturthefinlet air to each evaporator is varied
according to the model of the room dynamics fromiZy. Each of the 5 rooms is identical.

To identify the parameters used throughout Tabl8sand 7.4, pseudo-random binary
signals (PRBS) were sent to each of the actuafadisecentire system. Fig. 7.6 shows the input
signals for the compressor and condenser fan agqd7Ei shows the inputs signals for EEV 1
and evaporator 1. Similar signals were also setiieé other 4 EEVs and evaporators. The step
inputs of the PRBSs theoretically contain infinftehany frequencies and are used to adequately
excite the system in order to accurately identify various system parameters. A least-squares
based approach was used to identify each of thenpaters using the input and corresponding
output signals. The identified parameters are shiomf able 7.5. Note that standard Sl units are
used: pressure (kPa), mass flow rategkg temperature®C), and heat transfer rate (kW).

90



H
] 5

I

<,4
U1

K - Compressor V- EEV J - Junction
C - Condenser E - Evaporator | - Inlet Air
S - Split P - Pipe O - Outlet Air

Figure 7.5 ATTMO model of 5-evaporator VRF system.

Table 7.5 ldentified Fluid and Thermal Parameters

.

Component Fluid Thermal
fa  1.039x10" oy 1.990x1C0
fe 2.422x10 ap 1.510x1d
fe  1.277x10 s 3.656x1(

1.163x10 yq  8.140x1C

Compressor

Ve 6.600x10

e 3.800x1C°

Ya  2.600x10°

%  1.500x10

Ri 5.098x10 R, 5.401x10

EEV Ki 6.593x16 K 5.487x10"
Ki 3.700x10
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Condenser

Ce

Kc

9.932x10
7.400x10°

Rac
Rec
Nrc

/erl

/IFCZ

5.570x16
4.404x16
1.501x16
2.530x1C
1.890x1C
2.667x10
1.300x1C°

Evaporator

Ki

7.888x10
7.991x1d

1.211x16
9.250x16
1.276x10
3.980x10°
3.900x1C°
5.593x10
4.700x10°
1.602x10

Pipe

Ry

Kaii
Koz
Kgai

5.930x18
8.900x10’
3.400%x10
6.428x10"

4.151x10
1.195x10
3.762x10
1.050x10
2.400x10°

Junction

4.720x1¢

6.510x10
2.691x10

Room

6.500x10
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Figure 7.6 Compressor and condenser fan input sighfor parameter identification.
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Figure 7.7 EEV and evaporator fan input signal forparameter identification.

Using the parameters from Table 7.5, the matrixnelets from Tables 7.3 and 7.4 are
evaluated and the complete system is modeled uAiremd B matrices from (7.41) and (7.42),
with N =5 and

-2.186<160 -1.898 10 1.095 10 2.301x 10° 2.138 10
A =|2.848<10° -1548 10 8926 10| A, =|-2.743 10" 0 (7.43)
0 1.663% 10° - 1.668 18 0 0 0
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1.517x 16 1.008 19 1.896x 10°

B, =|-1.80%x 10° 6.762 10 | B, = 0 0, (7.44)
0 -7.844x 10° 0 0
0
Vv, = 0 : (7.45)
1.53% 10°
-5.140x 10°  1.664 180 - 2.7 19 -1.076x 10° 1.568 10
A, =|-7.466x 10" -2.00% 10 2.464 10| A, =| 3.667x 10" 0 (7.46)
3.83x 10° -4.208 10 - 4.202 1 6.498x 107 0
2.978x 10° - 3.204 10 -1.302x 10" 0
By, =| —4.289% 107 0 B, =| -1.661x 10> - 3.008 10 (7.47)
-1.321x 10° 0 -2.90x 10> 5.388 10
1.697x 16
Vo = 0 : (7.48)
0

Note that since all of the evaporators and EEVsdentical, the matrices for thé" subsystem
are applied to all 5 subsystems.

By applying the same input signals used to idgritife parameters in Table 7.5, the
outputs of the identified linear model are compa@dhe outputs from the ATTMO model in

order to validate the linear model. Fig. 7.8 shomesvalidation results for the pressufe wall
temperatureT,,, and room air temperatur€, for evaporator 1. Both the steady-state and

transient responses for the evaporator pressurea@arately captured by the linear model.
While the transient responses for the evaporatdr t@mperature are very accurate, there is a
slight steady-state offset which results in a dlighsagreement between the room air

temperatures. Fig. 7.9 shows the validation residt the condenser pressufke, junction
pressureP, , and junction temperaturg,. Once again, the transient responses for thetpeitsu

are accurately captured by the linear model, wttiere is some slight disagreement in the
steady-state values. As will be shown in Sectidh these steady-state discrepancies can be

easily overcome when controlling the system usntggral action. In fact, the simulation results
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Figure 7.8 Validation of linear model for pressurewall temperature, and room air

temperature for evaporator 1.

in Section 7.6 show that the linear model usingpgheameters from Table 7.5 can be used to
control the system well outside of the range ofrapeg conditions for which the parameters
were identified. For example, during the idengfion process the EEV apertures were only
varied by +0.5% open. However, from the scenanoSection 7.6, the EEV apertures change
by over 10% open from the nominal condition. Cledéne identified linear model can be used
successfully outside of the range for which theapweters were identified. Unfortunately,
additional simulation studies have shown that aylsidinear model cannot be used for all
operating conditions. Examples of such conditiares very low heat exchanger fan speed and
very low evaporator superheats (which is definedSection 7.5.2), for which the system
becomes very sensitive. If a model identified dperating conditions where the system is less
sensitive is used under these more sensitive dondjtthe system may oscillate significantly

and even go unstable. A systematic analysis ofghge in which a linear model can be used is
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Figure 7.9 Validation of linear model for condensepressure, junction pressure, and

junction temperature.

left for future work. Additionally, while thesediures only show model validation results about a
single nominal operating condition, it is found tthiais gray-box modeling approach is able to
accurately identify linear models for a wide rameperating conditions. Therefore, this same
approach can be used to identify multiple lineadeis for different operating conditions and a
gain scheduling approach, such as the one developg@8], can be used to control the system
over a very large range of operating conditionsis expected that this same approach can also
be used for a wide variety of systems with difféereamponents and configuration, however,

validation of this claim is left for future work.
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7.5 Control Design and Analysis

7.5.1 Controllability

Prior to developing a controller based on the lineedel of the 5-evaporator VRF
system, the controllability of the system must kefied. Using the test presented in Chapter 2,
the structural controllability of a generid -evaporator system can be easily verified using the
linear system representation developed in Secti8n From Chapter 2, in order for a system to
be structurally controllable, the system must bmhnput reachable and satisfy

p([A é]) =n, (7.49)

where n, =3N is the number of states of the system. As statéchapter 2, for this work it is
assumed that the decoupled subsystefis and S, are structurally controllable, which

guarantees that the entire systénis structurally controllable. To check the sturet

controllability of S, , the binary matrice#\, and B, are

=

1
A =[1 (7.50)
0

e
i
Eos)

11
o I

=

Since B, does not have any zero rows, tBe matrix of the reachability matri®R will not have

any zero rows and, therefore, th&, subsystem is input reachable.  Additionally,
,Z)([Ai gd):3 and, therefore,S, has full generic rank. Thus, the subsyst&n is

structurally controllable. The same is shown fug &, subsystem, where the binary matrices

A, andB,, are

111 11
A=[111,B=/10 (7.51)
111 10
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Once again,B,, does not have any zero rows, and th§sjis input reachable. The subsystem

S, also has full generic rank witﬁ)([ﬁm BOO]):& Therefore, the subsystef, is also

structurally controllable. As mentioned in SectiB, structural controllability does not always
mean that the system is controllable. In facthé stateT,, had not been removed from ti%g
subsystem, theN -evaporator system would not be controllable despieing structurally
controllable. As previously mentioned, this is doea relationship between the parameters in
the A and B matrices based on an algebraic relationship betwegeral states of the system
shown in (7.31). Therefore, when using gray-boxdalimg techniques, it is very important to
look for these types of algebraic constraints asel thhem to reduce the number of states in the

system prior to developing a control strategy Far $ystem.

7.5.2 Control Objectives

As with the example system, the VRF system hagrakperformance and efficiency

control objectives. The primary purpose of a VRBtem is to provide a cooling capaciy,,
to offset the thermal loa@,, in each room or zone being cooled by the systendoing so, the

VRF system can regulate the air temperature in easin to a desired value. Thus, the local
performance objectivd ; for eachS; subsystem is to regulalg to a desired value, , which

is expressed as

2

Joi =(Ty -ra)"- (7.52)

In practice, a popular alternative to this perfoneea objective may be to constrain the room air
temperature between upper and lower bounds, a®rie ¢h [39]. This provides additional
flexibility in the control of the system and wilekexplored in future work.

An additional performance objective is typicallyapéd on the VRF system pertaining to
the superheat of the system. In a single-evaponspor compression system, superheat,

denoted here a3y, , is the difference between the temperature ofrédiggerant exiting the

evaporator T,

e,out

and the evaporation (or saturation) temperaturethef refrigerant in the
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evaporatorT,

e,sat’

which is based on the evaporator pressdre Thus, superheat for a single

evaporator system is defined as
Tor = Toow ~Tost|o - (7.53)

A positive superheat means that the refrigeraniingxthe evaporator is completely vaporized
and some of the heat absorbed by the evaporatobdeas used to raise the temperature of this
vapor above the evaporation temperature. ZerorBape means that the temperature of the
refrigerant exiting the evaporator is the same les @vaporation temperature. With zero
superheat, there is the potential that all of tgeid which entered the evaporator has not turned
to vapor and, thus, some liquid may exit the evafpor This liquid can cause damage to the
compressor and, therefore, it is desirable to hensystem with a non-zero value of superheat.
However, running the system with a very high supathis very inefficient. Therefore, an
additional control objective for the system is ¢égulate evaporator superheat to a desired value.
Alternatively, model predictive control providesetHexibility of simply constraining the values
of superheat where a lower bound is used to prdigntl from entering the compressor and an
upper bound is used to prevent the system fromimgnimefficiently. This approach has been
used in a number of research efforts including \siggtems [36].

While controlling evaporator superheat is very efifee for single evaporator systems, in
[7] it is found that directly controlling the suferat of each evaporator for a multi-evaporator
system may be challenging, especially if a decéméth control approach is used. Additionally,
there may not even be a need to directly contrel dhperheat of each evaporator. The true
purpose of controlling superheat is to prevent dgarta the compressor. Therefore, the state of
the refrigerant entering the compressor is of ggernot the state of the refrigerant exiting the
evaporator. For single evaporator systems the sffathe refrigerant is typically very similar at
these two locations, but for a VRF system this may be the case due to the mixing of
refrigerant in the junction downstream of the evapmrs. The superheat of the refrigerant
exiting the junctionTy, . defined as

T =T, -T (7.54)

q rq 'rg.sat P,
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where T is the junction temperature arg, ., is the junction saturation temperature, which is
based on the junction pressuRe. By controlling Ty, ,, the evaporators have additional

freedom. Now it is possible for an evaporatordsel superheat but due to the superheat of the
other evaporators, the junction superheat can reman-zero. This additional freedom helps
prevent the fighting behavior seen in [7]. Thus,addition to the air temperature regulation

performance objectives, the control of junctionestyeat is a performance objective for the

subsystem and is written as

350 =(Targ i) - (7.55)

Similar to the air temperature objective, this shpat objective could be replaced by upper and
lower constraints as is done in [7] and [36] tovie greater flexibly in the operation of the
system.

Unfortunately, Ty, . is not a state of the linear systédn(7.40) identified in Section 7.3.

q

However, as seen in (7.54]g, , is a function of T, and P, which are both states d§,.

can be written as a function of states, if thatiehship betweerT

rg,sat

Therefore, T, and P,

q
is identified. It is well known, that the saturatitemperature for a refrigerant is a nonlinear
function of pressure. Fig. 7.10 shows this relatlop for R-134a over a wide range of
pressures. Fig. 7.10 also shows that a linearoappation can be used to calculate the
saturation temperature based on pressure. Tlaarlimpproximation matches the true saturation
temperature value within #2 between 186.7 and 452.3 kPa. This range easilgrs the range

of expected operating conditions for the low pressside of most R-134a systems and,

therefore, the linear approximation can be uselaus]Ty, , is written as a function of the states

T, andP, as

TS-I Trq _apq' (756)

q -

where a =0.092. Note that since all of the states are actuadlyiations from a nominal

operating condition, the constant term from thedinmodel can be neglected.
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Figure 7.10 Linear approximation of the relationshp between saturation pressure and

saturation temperature for R-134a.

In order to haveTy, . be a state of the linear system, a transformatiomiar to the one

done in (3.20) can be used, where

I 1?_15_4:.___0_1?_3__

c-| 1229 (7.57)
O35 10 0 O
iO -a 1

The state vector for th8, subsystems remains :[R T, Taj]T , but now the state vector for

the S, subsystem isx, :[Pc P, TSHVq]T.

In addition to the performance objective, thereaiglobal efficiency objective. The
compressor, condenser fan, and tNe evaporator fans all consume a significant amount o
power. Therefore, the efficiency objective for 8ystem is to minimize the power consumed by
the entire system. Fig. 7.11 shows the relatignbletween fan speed and power consumption
for the condenser and evaporator fans. This dathased on the fans used for the dual-
evaporator experimental system in [38] and wasescappropriately for the 5-evaporator

system. A quadratic function is used to approxariie relationship between fan speed and
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power consumption. The resulting power consumptiorthe condenser and evaporator fans is

approximated as
Kc = aca)fc2 + bcwfc + Cc’ (758)

K :aia)fi2+hwfi *G. (7.59)
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Figure 7.11 Power consumption for heat exchanger .

The power consumption for the compressor is natrasghtforward. Fig. 7.12 shows the
power consumed by the compressor for the expermhesystem in [38] over a range of
compressor speeds and EEV apertures, shown in 7i@. The figure also shows two

approximations based on the quadratic functions
K. =a,a’+bw +c,, (7.60)

Kk :aka{<2+h<a{<+aPcPcz+chPc+anF312+quF31+Ck' (761)
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Figure 7.13 Compressor speed and EEV inputs used tievelop compressor power map.

From Fig. 7.12, it is clear that unlike the heathleanger fans, the compressor power is
not just a function of the compressor speed. Towep is also significantly affected by the
condenser and junction pressures. Fortunatelgetpeessures are states in the identified linear
model. With the addition of the dependence ofestatriables, the actuator cost function from

(3.32) can be written as

K=UTQU +qU +X"Q, X +¢ X, (7.62)
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whereQ, , and g, contain thea, , b, , a,,, andb,, terms from (7.61). This slightly modifies

the MPC cost function
J=AUTHAU +FTAU, (7.63)
where now

H=S"P'"QPS+Q,+N'Q,N+S5'Q,,S,
F =2S5"P'QPTx(k)+2S"P'QPRd + 2N'Q,Au(k) + N'q, (7.64)
+25'Q, TX(k)+25'Q, ,Rd +S"q, .

7.5.3 MPC Formulation

The centralized and BAS control architectures dawedl in Chapter 5 are used to control
the 5-evaporators VRF system. The decentralizedraoarchitecture is not used for reasons
explained in the following section. The same pdure demonstrated with the example system
is used to develop these control architecture addszidual MPC controllers with a few slight

differences. For the centralized controller, weviave x DR*®, uOR*?, d OR®, yOR®, and

C is from (7.57). With 6 reference values,]R®, the matrixM used to select which outputs

have desired reference values is,
M =blkdiag([0 0 }[0 0 [0 o Jif,0o o]f,0 0]f.0 0]): (7.65)

Now, the exact same procedure is used to augmersygtem into error states integral
statesz, and changes in the control inpfiti. The system is then written in lifted form, aine t
cost function is written in terms of the lifted put and input vectors. The fact that the
compressor power consumption depends on the $taseslready been addressed in the previous
section, resulting in the cost function (7.63) watligmented terms in (7.64). All of the actuators
in the VRF system have upper and lower bounds whieh presented for the 5-evaporator

system in Table 7.6. These actuator constraimtsvatten in a lifted form and converted to be a

function of AU and the actuator input(k) at sample timex.

The same procedure is used to develop the BASaters, which are based on the BAS

subsystem representation
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Table 7.6 Actuator Constraints for VRF System

Actuator Lower Bound Upper Bound
Compressor Speed (RPM) 0 3500
Condenser Fan Speed (RPM) 0 1600
EEV Aperture (% open) 0 100
Evaporator Fan Speed (RPM) 0 1500

A AT SR e o

Note that theA, and B, terms are multiplied by the number of evaporatd¥s=5). Since
each S subsystem is identical, multiplyingy, and B, by N can significantly improve the

accuracy of the BAS models. In fact, if all thatesx and inputu, are the same, then this BAS
model has the same dynamics as the centralized Imdéar the BAS controllers, we have

xOR®, uOR*, dOR?, yOR®, andC is

|3><3 : 03><3
700 o
C' = : _ (7.67)
104,10 0 O
i 0 -a 1

With 2 reference values; JR?, the matrix M/ used to select which outputs have desired

reference values is,
M/ =blkdiag[0 0 [0 0 ]) (7.68)

The remainder of the steps used for the centrakkoedroller can be directly applied to develop
the BAS controllers.
For the centralized and BAS MPC controllers, a dantime of At =10 seconds is used

with a control horizon ofN, =15 steps and a prediction horizon of =60 steps. These

parameters were chosen based on the dynamics &RResystem. It is important to choose
these parameters such that the MPC controller giefir enough into the future to capture to

dynamics of the slowest dynamic of the system. ddmabination of the prediction horizon and
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sample time allows the controllers to look 600 sesointo the future, which is long enough to
capture the dynamics of the room air temperaturkdditionally, the sample time needs to be
small enough to capture the fastest dynamics ofyseem. It is found that 10 seconds was the
largest sample time which still adequately captutteel dynamics of the junction superheat.
Finally, the control horizon is chosen as a balaoiceontrol performance and computational
costs. The control horizon directly affects theesof the optimization vectdd . The smaller
the control horizon the lower the computation cobtsvever, the control performance can be
significantly reduced by not considering enoughufatcontrol decisions. A control horizon of

15 steps is found to be an appropriate compromisthé VRF system.

7.5.4 Decentralized Control

It is well known that some systems cannot be cdlettan a decentralized manor due to
the high degree of coupling between subsystemsic@ly, if this high degree of coupling is
ignored, the controlled actuators begin to “fightith each other, causing the system to oscillate
and even go unstable [40]. From the linear moddlQ) identified in Section 7.3, it is found that

the high degree of coupling between tBe and S, subsystems prevents the decentralized

control approach developed in Chapter 5 from beiffigctive. The decentralized model for the

S, subsystem

SO : XO = A00X0+ BO(!J 0+V06j 0 (769)

does not accurately capture the relationship betwée inputsu, (compressor speed and
condenser fan speed) and the junction superngat Fig. 7.14 shows the superheat response

for step changes in compressor speed and condtarsspeed (Fig. 7.15) for the centralized,
decentralized, and BAS linear system models aloitly the response from the ATTMO model.
Note that the centralized and BAS models predietsdime responses and are represented by the
same trace in the figure. For the step decreasenipressor speed at 5 minutes, the superheat
for the ATTMO model decreases and is accuratelyured by the centralized and BAS models.
However, the decentralized model predicts an irsea superheat. Similarly, for the increase
in condenser fan speed at 15 minutes the superi@atses, however, the decentralized model
predicts a decrease in superheat.
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Figure 7.14 Junction superheat response for changascompressor speed and condenser

fan speed from ATTMO model and linear models.
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Figure 7.15 Changes in compressor speed and condentan speed for superheat analysis.

The fact that both of the relationships betweemm@ssor speed and superheat and
condenser fan speed and superheat have the wigmggians that integral action cannot simply
be used to overcome the model mismatch. In faehtegral action is used, the system goes
unstable. While the current model cannot be useddcentralized control, this is not to say that
decentralized control can never be used for VRRegys or even that a different operating
condition would produce these same results. Otoatrol approaches [7] have shown that
decentralized approaches can be effective wherm ukiferent modeling frameworks. However,
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these modeling frameworks often use black-box madehtification techniques and do not
provide the benefits of a gray-box modeling apphoatentified in Section 7.2. Additionally,
unlike the current approach, these alternativeriegies may not be able to consider system-

level efficiency objectives and do not easily s¢aléN evaporator systems.

7.6 Simulation Results

Three different scenarios are used to demondtnatperformance of the centralized and

BAS control strategies. First, a baseline scenariosed to compare the centralized and BAS

strategies under step changes in thermal IQgdand ambient temperatufg.. While these

disturbances may not be realistic, this scenargs tisese simple disturbances to demonstrate the
similarities and differences between the two cdrdtategies. The second scenario shows how
ESC can be used to modify the BAS control architectin order to provide additional
improvements in system efficiency. The final scemtests the BAS control architecture under a

more realistic set of disturbances.

7.6.1 Baseline Scenario

Fig. 7.16 shows the disturbanc€}, and T, over the 80 minute simulation for the

baseline scenario. Note that this 80 minute séetaok only 2.5 minutes in real-time to
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Figure 7.16 System disturbance$); and T_. for baseline scenario.
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Figure 7.17 Open-loop response foff; due to disturbances for baseline scenario.
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Figure 7.18 Open-loop response follg, , due to disturbances for baseline scenario.

simulate, including the computation time for the @Eontrollers, thus highlighting one of the

many benefits of the ATTMO modeling framework. $halisturbances are roughly 10 — 20%
deviations from the nominal conditions and wereglesd to sufficiently test the performance of
the control architectures. These disturbanceldaystem are unknown to the MPC controllers

since the thermal load in a room is typically umkmo Note that for simplicity subsystens;,
S,, and S, have the same disturbances and, thus, the resulthese subsystems will be

presented together. For comparison purposesyHig.and 7.18 show the open-loop response of

109



20.3 \

O Room1
O Room 2
*  Room 3,4,51

N
o
N
g

Air Temperature
OC)
N
o
'_\

0 10 20 30 40 50 60 70 80
Time (Min)

Figure 7.19 Ability of each control architecture tomeet local performance objectives by

tracking the desired value forT, for baseline scenario.
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Figure 7.20 Ability of each control architecture totrack the desire junction superheat for

baseline scenario.

the system to the disturbances from Fig. 7.16.h\&ik of the inputs held constant at the nominal
input conditions, the room 1 air temperature degatearly 18C from the nominal condition
and the junction superheat deviates nedi@. 5

Figs. 7.19 and 7.20 show the responses in air teatye T, and junction superheat

T

s1.q» Which represent the performance objectives fdi bioe centralized and BAS control

110



Evaporator Superheat
(°0)
'_\
U

O Evapl
0 o Evap 2
sl * Evap3,453 A, ft BT
Central
----- BAS
Ot T | | | | | |
0 10 20 30 40 50 60 70 80

Time (Min)
Figure 7.21 Different refrigerant superheat for eab evaporator for baseline scenario.

architectures. Both architectures are able tdttiae desired room temperatures very accurately.
The BAS approach performs slightly better thandémetralized at tracking the desired superheat.
This is because the centralized solution drivestiperheat for evaporator 2 to a lower value and
superheat is lost during the transient, causingelascillations, as seen in Fig. 7.21. Fig. 7.21
also demonstrates the additional flexibility of fv@posed superheat control strategy. The

superheat in each evaporator can differ signifigatépending on the operating conditions as

long as the junction superheat maintains the disiate.
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Figure 7.22 Ability of each control architecture tomeet the global efficiency objective by

minimizing the total power consumption by the actugors for baseline scenario.
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As seen in Fig. 7.22, the centralized and BAS agrias result in very similar system
efficiencies. In fact, the BAS strategy is ablemeet the performance objectives using less
power than the centralize approach for a largeqouf the simulation. It is expected that this is
due to the unknown disturbances as well as theimearity in the system which is not captured
by the linear models used for MPC. The decentwdlizature of the BAS approach may be more
robust to these disturbances and nonlinearity thancentralized approach. More importantly
though is the fact that both control approachesigeosignificant improvement in the efficiency
of the system. When the controllers are activdtednutes into the simulation, the total system
power decreases 23% prior to the first disturbaatcg&7 minutes. Each control architecture is
able to find a better combination of actuator ispwhich reduces the total system power, while

still meeting the performance objectives. Fig37and 7.24 show that the two approaches

result in very similar control decisions for the \EBperturea, and evaporator fan speeds .

The majority of the difference between the two apphes comes from the control of the

compressor speed), and the condenser fan,, as seen in Figs. 7.25 and 7.26.

Overall, this scenario shows that the BAS contraih@ecture is a very effective
approach for controlling VRF systems. The fact @lhof the evaporators are identical allows
the BAS model from (7.66) to very accurately capttine dynamics of the entire system
allowing for performance comparable to the certeali approach while remaining scalable to

larger systems with more evaporators.
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Figure 7.23 Actuator inputs a, from each control architecture for baseline scenao.
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Figure 7.24 Actuator inputs w,, from each control architecture for baseline scenao.

2900

Central

2800

2700

(RPM)

2600

Compressor Speed

2500

2400 \ \ ! \ \ !
0 10 20 30 40 50 60 70 80

Time (Min)

Figure 7.25 Actuator inputs e, from each control architecture for baseline scenao.
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Figure 7.26 Actuator inputs @, from each control architecture for baseline scenao.

7.6.2 ESC Scenario

In the presence of unknown disturbances and naritye modifying the BAS control
approach with ESC may further improve the efficieind the system. For VRF systems, the
condenser fan speed is a natural choice of ingutasito modify with ESC. As mentioned in

Chapter 5, ESC should be used to modify one ofSheubsystem inputs. Therefore, either the
compressor speed or the condenser fan speed sheulded. Additionally, as seen in tBg,
matrix from (7.47), the compressor directly inflees theP, and T, states and, therefore,
directly influencesTg, ,, which is a performance objective for the systeAdternatively, the

condenser fan only directly affects the condensessgure. It is interesting to note that
increasing the condenser fan speed, which reqairesncrease in power, will decrease the
condenser pressure. In turn, this decrease inermed pressure decreases the compressor
power. Therefore, there is a trade-off betweendeaser fan power and compressor power.
Using ESC to modify the condenser fan speed, tmebamation of condenser fan speed and
compressor speed which minimizes total system pmaarbe found even in the presence of
unknown disturbances and system nonlinearity. fohewing set of figures is used to show the

potential improvements ESC can provide when useauggment the BAS control architecture.
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The un-augmented BAS architecture is used for coisgra Note that the centralized control
approach could also be augmented with ESC to funthgrove system efficiency.

The same disturbances from the previous scenagi@pplied to the system, however,
these disturbances are stretched in time by arfaété since ESC is relatively slow to adapt to
changes in operating condition. Table 7.7 showsBBC parameters used for the VRF system.
Fig. 7.27 shows that the addition of ESC has vilgugero effect on the control of the room air
temperatures while Fig. 7.28 shows that the simadascillations from ESC are not completely
removed when controlling the junction superheat thet desired value is still tracked very

closely.

Table 7.7 ESC Parameters for VRF System

Parameter Value

w 77/200 rad.

a 20 RPM

k 5w

@ 5077/180 rad.

a, 10w

a 0.1w
20.3 ‘
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0 50 100 150 200 250 300 350 400
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Figure 7.27 Ability of each control architecture tomeet local performance objectives by

tracking the desired value forT, for ESC scenario.
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Figure 7.29 Ability of each control architecture tomeet the global efficiency objective by

minimizing the total power consumption by the actugors for ESC scenario.

Fig. 7.29 shows that the ESC approach is only @blprovide slight improvements in
system efficiency at steady-state while performstightly worse during the transients. The
major difference between the ESC and un-augment8 Bpproaches is seen following the
change in ambient temperature at 300 minutes h@asimulation. The ESC approach is able to
meet the performance objectives while consuming@apmately 2% less energy. This shows
that the un-augmented BAS approach is able to tpehe system very close to the optimal
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conditions despite the unknown disturbances antesysonlinearity. It is expected that if the
disturbances were larger, the BAS approach woultese optimal and the ESC augmentation
would provide greater improvements in efficiencihe actuator input signals are shown in Figs.
7.30-7.33. From Figs. 7.32 and 7.33 it is cleat the ESC approach found a slightly different

combination of compressor speed and condensempiedsvhich resulted in slightly lower total

system power.
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Figure 7.30 Actuator inputs a; from each control architecture for ESC scenario.
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Figure 7.31 Actuator inputs @, from each control architecture for ESC scenario.
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Figure 7.32 Actuator inputs e, from each control architecture for ESC scenario.
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Figure 7.33 Actuator inputs w,. from each control architecture for ESC scenario.

7.6.3 Realistic Scenario

While the previous scenarios are useful when comg@athe performance of various
control architectures, the thermal loads and ambiemperature are not very realistic for a
typical VRF system. This scenario is used to destrate the capabilities of the BAS control
architecture using more realistic and taxing opegatonditions. The changes in thermal loads

and ambient temperature are shown in Fig. 7.34h®B hour simulation.
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Figure 7.34 System disturbance$); and T, for realistic scenario.

Figs. 7.35 and 7.36 show the air temperaturesapeérheat tracking performance. Both
the desired air temperatures and desired juncuperbeat are tracked very closely. Fig. 7.37
shows the superheat for each of the five evaparatdnterestingly, the superheat for each
evaporator can change drastically depending othéirenal load for each room. For example the
superheat for evaporator 2 ranges from greater #E@ to less than . Despite the large
changes in individual evaporator superheat, thetjon superheat is maintained within +C5
of the desired value. Also note that the systens Vuaearized about a nominal junction
superheat of 2C, which was used for the desired value in the iptes/scenarios. However,
21°C superheat is rather large and lower superheaesare typically used in industry. The
desired superheat for this scenario has been rddiacd5C in order to be more realistic.
Despite operating fairly far away from the nomimgderating condition for which the linear

model was identified, the BAS controller is stitlla to track the desired superheat value.
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Figure 7.35 Ability of BAS control architecture to meet local performance objectives by

tracking the desired value forT, for realistic scenario.
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Figure 7.36 Ability of BAS control architecture totrack the desire junction superheat for

realistic scenario.
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Figure 7.37 Different refrigerant superheat for eab evaporator for realistic scenario.

The total power consumption for the system is showiig. 7.38 and it is clear that the
power consumption closely follows the change in imtbtemperature. Figs. 7.39-7.42 display
the actuator input signals throughout the simutatiés seen in Figs. 7.39 and 7.40, the actuator
inputs for the EEVs and evaporator fans can befggntly different for each subsystem due to
different thermal loads. Despite the differencesactuator inputs, the BAS approach is very

successful in controlling the system to meet bbéhgerformance and efficiency objectives.
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Figure 7.38 Ability of BAS control architecture to meet the global efficiency objective by

minimizing the total power consumption by the actu#ors for realistic scenario.
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Figure 7.40 Actuator inputs @, from BAS control architecture for realistic scenaio.
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Figure 7.42 Actuator inputs w,. from BAS control architecture for realistic scenaio.
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Chapter 8

Conclusion

8.1 Summary of Research Contributions

This thesis develops and analyzes a contrdiitecture for a class of large-scale
systems with a Block Arrow Structure (BAS). Thegeinumber of states and actuators of large-
scale systems often prevents the system from leeatyzed and controlled as a whole. Often
these systems are divided into multiple subsystehish have interacting dynamics. A typical
decentralized control architecture controls eadbsgstem without explicit knowledge of the
interactions between subsystems. If the degraatefaction between subsystems is too large,
the performance of a decentralized control approeah be significantly degraded when
compared to a centralized approach and may evesecan open-loop stable system to go
unstable. The BAS control architecture proposeithismwork takes advantage of the structure of
BAS systems in order to combine the benefits ohbagntralized and decentralized control
approaches. The BAS approach remains decentralizetthe fact that there are multiple
controllers that do not cooperate in making conttetisions. However, the BAS approach is
able to use direct knowledge of the coupling betwsebsystems, providing a significant
improvement in control performance, which can bengarable to the performance of a
centralized approach.

In order to evaluate the BAS control approachmtredized, decentralized, and BAS
control architectures are developed which use M&detlicative Control (MPC). Using a linear
model of the system, MPC makes control decisionpridicting how the system will respond to
different control inputs. The controllers implentesh in this work take advantage of the ability
to directly consider actuator saturation providegd MPC as well as the flexibility when
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designing the control cost function. Using a linesample system, the BAS control architecture
was found to perform, in terms of meeting both genfance and efficiency objectives,
significantly better than the decentralized apphoabile maintaining scalability.

In addition to the BAS control architecture, it wiasind that Extremum Seeking Control
(ESC) can be used to provide even greater systénieaties. In this work, ESC is used to
augment the BAS control architecture by adjusting of the control inputs to the system with
the objective of maximizing system efficiency. Boipng the BAS structure of the system, the

ESC algorithm is used to modify the control degisidor one of the5, subsystem inputs such

that the effects of the ESC algorithm are distedoluto the entire system. In this way, ESC can
be used to maximize the efficiency of the entirstegn and drive the BAS control solution closer
to the centralized control solution. The modekfreature of ESC also allows the controller to
achieve greater efficiencies in the presence ohawnk disturbances and system nonlinearity,
which may cause the model-based MPC control appesato operate away from the optimal
conditions.

Finally, the BAS control approach was developeddotrol a Variable-Refrigerant-Flow
(VRF) system. These systems are becoming widedg ts meet the cooling demands for many
applications including large buildings. For builds, VRF systems may be used to directly cool
over 30 rooms using a single system. With suadlelarystems, decentralized control approaches
have been the focus of many research efforts. &\thibst of the previous work has focused on
the modeling and control of dual- and triple-evaor systems, this work develops an approach
applicable to anN evaporator system which readily scales to systemmsre the number of
evaporators is large. Through a gray-box modedipgroach, it was found that VRF systems are
naturally BAS systems and, therefore, benefit fittven BAS control approach developed in this
thesis. Through a series of simulations, the BA&tol architecture was found to be very
effective in meeting the performance and efficienbtyectives for a 5-evaporator VRF system.
While this thesis has shown that there are sigaii@dvantages that come from exploiting the
BAS structure when making control decisions, thare still several aspects that require

additional attention as detailed in the followirgggon.
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8.2 Future Work

Future work will continue to develop the BAS coht@pproach through advancements in
theory and application.

8.2.1 Theory

There are aspects of the BAS control approach wivenitant additional attention from a
theoretical perspective. Decentralized contrabfien more robust to disturbances and system
faults than centralized control. Future work wathalyze the robustness of the BAS control
architecture. In [9] it is mentioned that the B&&ntrol architecture provides the flexibility to
add and remove subsystems without significantlyngivey the controllers. This is in contrast to
a centralized control approach which requires aptetaly new model every time the system is
changed. Future work will investigate this funotdity and the robustness of the BAS approach
to changes in system architecture.

Additionally, the current BAS approach only consg&le two-level hierarchy with a
common subsystem at the higher level and decowguibgystems at the lower level. However, a
larger class of systems may have multiple levedsiting in a nested BAS structure as described
in [4]. Itis expected that the BAS framework aassociated control benefits can be generalized
to the class of system with a nested BAS strucame a control framework for these systems

will be developed and tested in future work.

8.2.2 Application

Future work will also utilize the additional contréeatures provided by the MPC
framework. By replacing the state tracking anduflation control objectives with upper and
lower constraints on system states and outputs,syiséem can be operated with greater
flexibility, which may provide greater system efincy. MPC also provides the ability to use
information about upcoming disturbances to makepgive control decisions to better react to
these disturbances. Future work will explore hofeimation of future disturbances can be used
to achieve even better control performance.

While the BAS control architecture was able to cona 5-evaporator VRF system in

simulation, a natural extension is to implementabatrol approach on an experimental system.
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As with any experimental platform, the presencesiginal noise, unmodeled dynamics and
disturbances, and restrictions on sensor locatiwh @mputational power provides additional
challenges when developing and implementing a obstrategy. Therefore, the BAS approach
needs to be implemented on a physical system ier doddetermine its practicality.

Another avenue of future work is the applicationtbé BAS control architecture to
systems other than VRF systems. This will inclsgstems such as hydraulic and electrical
system which also exhibit the block arrow structurkr addition to exploring the potential
benefits of applying the BAS approach to theseesyst it will be interesting to evaluate the
generality of the approach and see if the BAS aggraneeds to be modified to handle these

applications.
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Appendix A
Example System MATLAB Code

A.1 Parameters and System Development

The following MATLAB code is used to develop thentralized, decentralized, BAS,

and ESC controllers for the example system frompdre2.

% Parameters
% Define parameters for each subsystem
% Subsystem SO

Ce =1le-2;
Cg =5e-2;
Rg =5;

Kg =0.2
alpha_1 =0.002;
alpha_2 =0.002;
alpha_3 =0.008;
% Subsystem S1
Ci = 6e-2;
Cal =2;

R1  =15;

K1 =0.3;

Ral =10;

Kal =0.18;
Rel =300;

% Subsystem S2
C2 =3e-2
Caz =4

R2 =22;

K2 =0.172;
Ra2 =45;

Ka2 =0.28;
Re2 =400;

% Subsystem S3
C3 =1le-2;
Ca3 =5;

R3  =20;

K3 =0.12;
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Ra3 =20;

Ka3 =0.46;

Re3 =50;

% Define simplifying notation

R_barl = (1/R1 + 1/Ral + 1/Rel);

R_bar2 = (1/R2 + 1/Ra2 + 1/Re2);

R_bar3 = (1/R3 + 1/Ra3 + 1/Re3);

% Nominal actuator inputs (all nominal inputs are 5
u0  =50;

% Actuator costs (actuators for S1,S2,S3 have the s

ai = 1/100; % (3/100 for Modified BAS)
bi = 2*ai*u0 + 0;

Ci =0;

aai =1/100; % (3/100 for Modified BAS)
bai = 2*aai*u0 + 0;

cai =0;

at =1/100;

bt = 2*at*u0 + O;

ct =0;

ag = 2/100;

bg =2*ag*u0 + 0;

cg =0

% Initial Conditions for Simulation
Vg0 =80;

Ve0 =20;

V10 =50;

Val0 = 30;

V20 =60;

Va20 =20;

V30 =140;

Va30 =25;

%% Matrices

% Build matrices A,B,V,C,D for system S
% Matrix A

al =-R_barl/C1;

bl =1/(C1*Ral);

cl =1/(Cal*Ral);

dl =-1/(Cal*Ral);
block_all =[al bil;cl di];
a2 =-R_bar2/C2;

b2  =1/(C2*Ra2);
c2 =1/(Ca2*Ra2);

d2 =-1/(Ca2*Ra2);
block_a22 =[a2 b2; c2 d2];
a3 =-R_bar3/C3;

b3 = 1/(C3*Ra3);

c3 =1/(Ca3*Ra3);

d3 =-1/(Ca3*Ra3);

block_a33 =[a3 b3; c3d3];

All = blkdiag(block_all,block a22,block_a33);
block_al0 =[1/(C1*R1) 1/(C1*Rel); 0 0];
block_a20 = [1/(C2*R2) 1/(C2*Re2); 0 0];
block_a30 =[1/(C3*R3) 1/(C3*Re3); 0 0];

A10 =[block_al0; block_a20; block_a30];
block_a01 =[1/(Cg*R1) 0; 1/(Ce*Rel) 0];

133

0)

ame costs)



block_a02 =[1/(Cg*R2) 0; 1/(Ce*Re2) 0];
block_a03 =[1/(Cg*R3) 0; 1/(Ce*Re3) 0];
A01 = [block_a01 block_a02 block_a03];
A00 =[-1/Cg*(1/Rg+(1/R1+1/R2+1/R3)-alpha_1) al
-alpha_1/Ce -1/Ce*((1/Rel+1/Re2+1/Re3)+a
% Matrix B
el =KI1/(C1*R1);
fl  =-Kal/(Cl1*Ral);
gl  =0;
hl =Kal/(Cal*Ral);
block_ b1l =[elf1l; gl hl];
e2 =K2/(C2*R2);
f2  =-Ka2/(C2*Ra2);
g2 =0
h2 =Ka2/(Ca2*Ra2);
block_b22 =[e22; g2 h2];
e3 = K3/(C3*R3);
f3  =-Ka3/(C3*Ra3);
g3 =0
h3 =Ka3/(Ca3*Ra3);
block_b33 =[e3f3; g3 h3];
B11l = blkdiag(block b11,block b22,block b33);
B10 = zeros(6,2);
block_b01 =[-K1/(Cg*R1) 0; 0 O];
block_b02 =[-K2/(Cg*R2) 0; 0 0];
block_b03 =[-K3/(Cg*R3) 0; 0 0];
BO1 = [block_b01 block b02 block_b03];
BOO = [alpha_3/Cg Kg/(Cg*Rg); -alpha_3/Ce 0];
% Matrix V
vll =|[0;-1/Cal];
v22 [0; -1/Ca2];
v33 [0; -1/Cag3];
V11 = blkdiag(v11l,v22,v33);
V12 = zeros(6,1);
V21 =zeros(2,3);
V22 =[1/(Cg*Rg); O];
% Matrix C
C =[eye(7) zeros(7,1);
1/Rel1 0 1/Re2 0 1/Re3 0 0 -(1/Rel+1/Re2+1/Re
%% Common Information
% Sample time
Sys.dt =10;
% Control Horizon
Sys.Nu =15;
% Prediction Horizon
Sys.Np =30;
% Objectives vs delta U
Sys.gamma_a =0.98;
% Performance vs efficiency
Sys.gamma_b =0.01;
% Error vs integral

Sys.gamma_c =0.9;
% Va tracking performance objective
g_Va =1;

% le tracking performance objective
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q_le =50;
% Actuator ui

g_ui =1;
% Actuator uai
g_uai =1;
% Actuator ut
g_ut =10;
% Actuator ug
q_ug =1
% Constraints
Min_ui = 0-u0;
Min_uai = 0-u0;
Min_ut = 0-u0;
Min_ug = 0-u0;

Max_ui = 100-u0;

Max_uai = 100-u0;

Max_ut = 100-uO0;

Max_ug = 100-u0;

%% Centralized System Information
% Model

Sys.A =[All A10; AO1 A0O];

Sys.B =[B11 B10; BO1 BOO];
Sys.V =[V11V12; V21 V22];
Sys.C =C;

% Number of States

Sys.ns  =8;

% Number of Inputs

Sys.nu  =38§;

% Number of Disturbances
Sys.nd =4

% Number of References
Sys.nr =4,

% States with desired values
Sys.M = blkdiag([0 1],[0 1],[0 1],[0 1]);

% Weightings

Sys.ge = Sys.gamma_a*Sys.gamma_b*Sys.gamma_c*[q_Va
Sys.qgi = Sys.gamma_a*Sys.gamma_b*(1-Sys.gamma_c)*[
Sys.q2 =[g_uig_uaig_uig_uaig_uig_uaiq_utg_
Sys.qa = [ai aai ai aai ai aai at ag];

Sys.gbl = [bi bai bi bai bi bai bt bg];

% Min and Max inputs

Sys.Mins = [Min_ui;Min_uai;Min_ui;Min_uai;Min_ui;Mi
Sys.Maxs = [Max_ui;Max_uai;Max_ui;Max_uai;Max_ui;Ma
% Formulated MPC Variables

[Outputs] = MPC_Formulation(Sys);

T _bar = Outputs.T_bar;

S_bar = Outputs.S_bar;

R_bar = Outputs.R_bar;

P_bar = Outputs.P_bar;

N_bar = Outputs.N_bar;

n_bar = Outputs.n_bar;

Q1 = Outputs.Q1;

Q2 = Outputs.Q2;

Qa = Outputs.Qa;

gb = Outputs.qgb;
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U_min = Outputs.U_min;

U_max = Outputs.U_max;

%% BAS1 System Information

% Model

Sys.A = [block_all block al0; block_a01 AO0Q];
Sys.B = [block b1l zeros(2,2); block _b01 B0O];
Sys.V =[v11 zeros(2,1);zeros(2,1) V22];

Sys.C =[eye(3) zeros(3,1); 1/Rel1 0 0 -(1/Rel1+1/R
% Number of States

Sys.ns  =4;

% Number of Inputs

Sys.nu =4

% Number of Disturbances
Sys.nd =2

% Number of References
Sys.nr =2

% States with desired values
Sys.M = blkdiag([0 1],[0 1]);

% Weightings

Sys.ge = Sys.gamma_a*Sys.gamma_b*Sys.gamma_c*[q_Va
Sys.qi = Sys.gamma_a*Sys.gamma_b*(1-Sys.gamma_c)*[q
Sys.q2 = [g_ui g_uai g_ut q_ug];

Sys.qa = [ai aai at ag];

Sys.qgbl = [bi bai bt bg];

% Min and Max inputs

Sys.Mins = [Min_ui;Min_uai;Min_ut;Min_ug];
Sys.Maxs = [Max_ui;Max_uai;Max_ut;Max_ug];

% Formulated MPC Variables

[Outputs] = MPC_Formulation(Sys);

BAS1 T bar = Outputs.T_bar;

BAS1_ S bar = Outputs.S_bar;

BAS1 R_bar = Outputs.R_bar;

BAS1_P_bar = Outputs.P_bar;

BAS1_N_bar = Outputs.N_bar;

BAS1 n_bar = Outputs.n_bar;

BAS1 Q1 = Outputs.Q1;

BAS1 Q2 = Outputs.Q2;

BAS1_Qa = Outputs.Qa;

BAS1_gb = Outputs.gb;

BAS1 U_min = Outputs.U_min;

BAS1 U_max = Outputs.U_max;

%% BAS2 System Information

% Model

Sys.A = [block_a22 block_a20; block_a02 A0Q];
Sys.B = [block_b22 zeros(2,2); block b02 B0O];
Sys.V =[v22 zeros(2,1);zeros(2,1) V22];

Sys.C =[eye(3) zeros(3,1); 1/Re2 0 0 -(1/Rel+1/R
% Number of States

Sys.ns  =4;

% Number of Inputs
Sys.nu =4

% Number of Disturbances
Sys.nd =2

% Number of References
Sys.nr =2
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% States with desired values

Sys.M = blkdiag([0 1],[0 1]);

% Weightings

Sys.ge = Sys.gamma_a*Sys.gamma_b*Sys.gamma_c*[q_Va
Sys.qi = Sys.gamma_a*Sys.gamma_b*(1-Sys.gamma_c)*[q
Sys.q2 = [g_ui g_uai g_ut q_ug];

Sys.qa = [ai aai at ag];

Sys.qgbl = [bi bai bt bg];

% Min and Max inputs

Sys.Mins = [Min_ui;Min_uai;Min_ut;Min_ug];
Sys.Maxs = [Max_ui;Max_uai;Max_ut;Max_ug];
% Formulated MPC Variables

[Outputs] = MPC_Formulation(Sys);
BAS2_T_bar = Outputs.T_bar;

BAS2_S bar = Outputs.S_bar;

BAS2 R_bar = Outputs.R_bar;

BAS2_P_bar = Outputs.P_bar;

BAS2_N_bar = Outputs.N_bar;

BAS2_n_bar = Outputs.n_bar;

BAS2_Q1 = Outputs.Q1;

BAS2_Q2 = Outputs.Q2;

BAS2_Qa = Outputs.Qa;

BAS2_gb = Outputs.qgb;

BAS2_U_min = Outputs.U_min;

BAS2_U_max = Outputs.U_max;

%% BAS3 System Information

% Model

Sys.A = [block_a33 block_a30; block_a03 A0Q];
Sys.B = [block_b33 zeros(2,2); block_b03 B0O];
Sys.V =[v33 zeros(2,1);zeros(2,1) V22];

Sys.C =[eye(3) zeros(3,1); 1/Re3 0 0 -(1/Rel+1/R
% Number of States

Sys.ns  =4;

% Number of Inputs
Sys.nu =4

% Number of Disturbances
Sys.nd =2

% Number of References
Sys.nr =2

% States with desired values

Sys.M = blkdiag([0 1],[0 1]);

% Weightings

Sys.ge = Sys.gamma_a*Sys.gamma_b*Sys.gamma_c*[q_Va
Sys.qgi = Sys.gamma_a*Sys.gamma_b*(1-Sys.gamma_c)*[q
Sys.q2 = [g_ui g_uai g_ut q_ug];

Sys.qa = [ai aai at ag];

Sys.qbl = [bi bai bt bg];

% Min and Max inputs

Sys.Mins = [Min_ui;Min_uai;Min_ut;Min_ug];

Sys.Maxs = [Max_ui;Max_uai;Max_ut;Max_ug];

% Formulated MPC Variables

[Outputs] = MPC_Formulation(Sys);

BAS3_T_bar = Outputs.T_bar;

BAS3_S_bar = Outputs.S_bar;

BAS3_R_bar = Outputs.R_bar;
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BAS3_P_bar = Outputs.P_bar;
BAS3_N_bar = Outputs.N_bar;
BAS3_n_bar = Outputs.n_bar;
BAS3_Q1 = Outputs.Q1;
BAS3_Q2 = Outputs.Q2;
BAS3_Qa = Outputs.Qa;
BAS3_gb = Outputs.qgb;
BAS3_U_min = Outputs.U_min;
BAS3_U_max = Outputs.U_max;
%% Decentral 1 System Information
% Model

Sys.A =block_all;

Sys.B =block_b11;

Sys.V =vl1;

Sys.C =-eye(2);

% Number of States

Sys.ns  =2;

% Number of Inputs
Sys.nu =2

% Number of Disturbances
Sys.nd  =1;

% Number of References
Sys.nr =1;

% States with desired values
Sys.M = blkdiag([0 1]);

% Weightings

Sys.ge = Sys.gamma_a*Sys.gamma_b*Sys.gamma_c*q_Va;
Sys.qgi = Sys.gamma_a*Sys.gamma_b*(1-Sys.gamma_c)*q_ Va;
Sys.q2 = [g_ui g_uai];

Sys.qa = [ai aali];

Sys.qbl = [bi bai];

% Min and Max inputs

Sys.Mins = [Min_ui;Min_uail;
Sys.Maxs = [Max_ui;Max_uail;

% Formulated MPC Variables
[Outputs] = MPC_Formulation(Sys);
D1 T bar = Outputs.T_bar;
D1 S bar = Outputs.S_bar;

D1 _R_bar = Outputs.R_bar;

D1 _P_bar = Outputs.P_bar;

D1 N_bar = Outputs.N_bar;

D1 _n_bar = Outputs.n_bar;

D1_Q1 = Outputs.Q1;

D1_Q2 = Outputs.Q2;

D1_Qa = Outputs.Qa;

D1 gb = Outputs.qb;

D1 _U_min = Outputs.U_min;
D1_U_max = Outputs.U_max;

%% Decentral 2 System Information
% Model

Sys.A =block_a22;

Sys.B = block_b22;

Sys.V =v22;

Sys.C =-eye(2);

% Number of States
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Sys.ns  =2;
% Number of Inputs

Sys.nu =2

% Number of Disturbances
Sys.nd  =1;

% Number of References
Sys.nr =1;

% States with desired values
Sys.M = blkdiag([0 1]);

% Weightings

Sys.ge = Sys.gamma_a*Sys.gamma_b*Sys.gamma_c*q_Va;
Sys.qi = Sys.gamma_a*Sys.gamma_b*(1-Sys.gamma_c)*q_ Va;
Sys.q2 = [g_ui g_uai];

Sys.qa = [ai aali];

Sys.qbl = [bi bai];

% Min and Max inputs

Sys.Mins = [Min_ui;Min_uail;
Sys.Maxs = [Max_ui;Max_uail;

% Formulated MPC Variables
[Outputs] = MPC_Formulation(Sys);
D2_T_ bar = Outputs.T_bar;

D2_S bar = Outputs.S_bar;
D2_R_bar = Outputs.R_bar;
D2_P_bar = Outputs.P_bar;
D2_N_bar = Outputs.N_bar;
D2_n_bar = Outputs.n_bar;

D2_Q1 = Outputs.Q1;

D2_Q2 = Outputs.Q2;

D2_Qa = Outputs.Qa;

D2_qgb = Outputs.qb;

D2_U_min = Outputs.U_min;
D2_U_max = Outputs.U_max;

%% Decentral 3 System Information
% Model

Sys.A = block_a33;

Sys.B = block_b33;

Sys.V =v33;

Sys.C =-eye(2);

% Number of States

Sys.ns  =2;

% Number of Inputs

Sys.nu  =2;

% Number of Disturbances
Sys.nd =1;

% Number of References
Sys.nr =1;

% States with desired values
Sys.M = blkdiag([0 1]);

% Weightings

Sys.ge = Sys.gamma_a*Sys.gamma_b*Sys.gamma_c*q_Va;

Sys.qi = Sys.gamma_a*Sys.gamma_b*(1-Sys.gamma_c)*q_ Va;
Sys.q2 = [g_ui g_uai];

Sys.qa = [ai aali];

Sys.qgbl = [bi bali];

% Min and Max inputs
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Sys.Mins = [Min_ui;Min_uail;
Sys.Maxs = [Max_ui;Max_uail;

% Formulated MPC Variables
[Outputs] = MPC_Formulation(Sys);
D3 T bar = Outputs.T_bar;

D3_S bar = Outputs.S_bar;

D3 _R_bar = Outputs.R_bar;
D3_P_bar = Outputs.P_bar;
D3_N_bar = Outputs.N_bar;

D3 _n_bar = Outputs.n_bar;

D3_Q1 = Outputs.Q1;

D3_Q2 = Outputs.Q2;

D3_Qa = Outputs.Qa;

D3 _gb = Outputs.qb;

D3_U_min = Outputs.U_min;
D3_U_max = Outputs.U_max;

%% Decentral 0 System Information

% Model

Sys.A = A00;
Sys.B = BO00;
Sys.V =V22;

Sys.C =[10; 0 -(1/Rel+1/Re2+1/Re3)];
% Number of States

Sys.ns  =2;

% Number of Inputs
Sys.nu  =2;

% Number of Disturbances
Sys.nd =1;

% Number of References
Sys.nr =1;

% States with desired values
Sys.M = blkdiag([0 1]);

% Weightings

Sys.ge = Sys.gamma_a*Sys.gamma_b*Sys.gamma_c*[q_le]
Sys.qgi = Sys.gamma_a*Sys.gamma_b*(1-Sys.gamma_c)*[q
Sys.q2 = [q_ut q_ug];

Sys.qa = [at ag];

Sys.qgbl = [bt bg];

% Min and Max inputs

Sys.Mins = [Min_ut;Min_ug];
Sys.Maxs = [Max_ut;Max_ug];

% Formulated MPC Variables
[Outputs] = MPC_Formulation(Sys);
DO_T_bar = Outputs.T_bar;

DO_S bar = Outputs.S_bar;
DO_R_bar = Outputs.R_bar;
DO_P_bar = Outputs.P_bar;
DO_N_bar = Outputs.N_bar;
DO_n_bar = Outputs.n_bar;

DO_Q1 = Outputs.Q1;

DO0_Q2 = Outputs.Q2;

DO0_Qa = Outputs.Qa;

DO_gb = Outputs.qb;

DO_U_min = Outputs.U_min;
DO_U_max = Outputs.U_max;
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%% ESC Parameters

a0 =5;
ugd =0;
delta =1;

omega = 2*pi/200;

phi = 15*pi/180;

k_prime = 3e0;

omega_|_prime = 0.1;

omega_h_prime = 10;

k = omega*delta*k_prime;

omega_| = omega*deltaromega_|_prime;
omega_h = omega*delta*omega_h_prime;

A.2 MPC Formulation

The following MATLAB code contains the functioMPC_Formulation.m which is

called in the code above to generate the varialsed for the MPC controllers.

function  [Outputs] = MPC_Formulation(Sys);
A = Sys.A;

B = Sys.B;

V = Sys.V,

C = Sys.C;

ns = Sys.ns;

nu = Sys.nu;

nd = Sys.nd;

nr = Sys.nr;

M = Sys.M;

dt = Sys.dt;

Nu = Sys.Nu;

Np = Sys.Np;

gamma_a = Sys.gamma_a;
gamma_b = Sys.gamma_b;
gamma_c = Sys.gamma_c;

ge = Sys.ge;

gi = Sys.qi;

g2 = Sys.q2;

ga = Sys.qa;

gbl = Sys.qgb1l;

Mins = Sys.Mins;

Maxs = Sys.Maxs;

%% Augment system into error system S_hat
A hat = C*A/C;

B _hat = C*B;

V_hat =[C*V C*A/C*pinv(M)];
C_hat =eye(ns);

D_hat = zeros(ns,nu);

%% Discretize SystemtogetS d
% Centralized System

sys ¢ =ss(A_hat,[B_hatV_hat],C_hat,[D_hat zeros (size(V_hat))]);
sys_d_prime = c2d(sys_c,dt);
A d =sys d prime.a;
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B d =sys d prime.b(;,1:nu);
V_d =sys_d prime.b(;,nu+l:nu+nd+nr);
C_d =sys_d prime.c;
D d =sys d_prime.d(:,1:nu);
%% Add Integrator and x_u states to get S_d_bar
A bar =[A d zeros(ns,nr) B_d;
M*dt eye(nr) zeros(nr,nu

zeros(nu,ns) zeros(nu,nr) eye(nu)];
B_bar =[B_d; zeros(nr,nu); eye(nu)];
V_bar =[V_d; zeros(nr,nd+nr); zeros(nu,nd+nr)];
C bar =[M zeros(nr) zeros(nr,nu);
zeros(nr,ns) eye(nr)  zeros(nr,nu)];
%% Generate lifted system matrices
% T_bar
T_bar = zeros((ns+nr+nu)*Np,ns+nr+nu);
for i=1:Np
T bar((i-1)*(ns+nr+nu)+1:i*(ns+nr+nu),:) = A_ba
end
% S_bar
S_bar = zeros((ns+nr+nu)*Np,nu*Nu);
for i=1:Np
for j=1:Nu
if <0
S_bar((i-1)*(ns+nr+nu)+21:i*(ns+nr+nu),(
zeros((ns+nr+nu),nu);

elseif i-j==0
S_bar((i-1)*(ns+nr+nu)+21:i*(ns+nr+nu),(
elseif i-j>0

S_bar((i-1)*(ns+nr+nu)+1:i*(ns+nr+nu),(
A_bar(i-))*B_bar;
end
end
end
% R_bar
R_prev = zeros(size(V_bar));
R_bar = zeros((ns+nr+nu)*Np,nd+nr);
for i=1:Np
R_bar((i-1)*(ns+nr+nu)+1:i*(ns+nr+nu),:) = A_ba
R_prev = A_bar(i-1)*V_bar+R_prev;
end
% P_bar
P_bar = zeros(2*nr*Np,(ns+nr+nu)*Np);
for i=1:Np
P_bar((i-1)*2*nr+21:i*2*nr,(i-1)*(ns+nr+nu)+1:i*
end
% N_bar
N_bar = zeros(nu*Np,nu*Nu);
for i=1:Np
for j=1:Nu
if 1>=]
N_bar((i-1)*nu+21:i*nu,(j-1)*nu+1:j*nu)
end
end
end
% n_bar
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n_bar = zeros(nu*Np,nu);

n_bar(1:nu,1:nu) = eye(nu);

%% Weighting Matrices

% Q1

ql = [ge qi];

for i=1:Np
gl_all((i-1)*2*nr+1:i*2*nr) = q1;

end

Q1 =diag(gl_all);

% Q2

for i=1:Nu
g2_all((i-1)*nu+1:i*nu) = q2;

end

Q2 = (1-gamma_a)*diag(g2_all);

% Qa

for i=1:Np
ga_all((i-1)*nu+1:i*nu) = ga;

end

Qa = gamma_a*(1-gamma_b)*diag(qa_all);

% gb

for i=1:Np
gb_all((i-1)*nu+1:i*nu) = qb1l;

end

gb = gamma_a*(1-gamma_b)*qb_all;

%% Constraints

% Lifted Constraints

for i=1:Np
U_min((i-1)*nu+1:i*nu,1) = Mins;

end

for i=1:Np
U_max((i-1)*nu+1:i*nu,1) = Maxs;

end

%% Outputs
Outputs.T_bar =T _bar;
Outputs.S_bar =S _bar;
Outputs.R_bar = R_bar;
Outputs.P_bar = P_bar;
Outputs.N_bar = N_bar;
Outputs.n_bar = n_bar;
Outputs.Q1 = Q1;
Outputs.Q2 = Q2;
Outputs.Qa = Qa;
Outputs.gb = gb;
Outputs.U_min = U_min;
Outputs.U_max = U_max;

A.3 MPC Code

The following MATLAB code contains the functiaddPC.m which uses the MATLAB

functionquadprog to solve the MPC optimization problem at every edime of the simulation.

function  [Controls,DV,t] = MPC(T_bar,S_bar,R_bar,P_bar,N_ba r,n_bar,Q1,Q2,Qa,
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gb,U_min,U_max,X,R0,V0,U0,Dist)

eml.extrinsic( '‘quadprog’ , 'optimset’ , 'tict,'toc’ )

tic;

x_bar0 = [X;U0];

d = [Dist;R0];

a = [-N_bar;N_bar];

b = [-(U_min-n_bar*U0);(U_max-n_bar*U0)];

H = zeros(size(Q2));

F = zeros(size(Q2,1),1);

H=S_bar*P_bar*Q1*P_bar*S_bar + Q2 + N_bar*Qa*N _bar;

H = 2*(H+H")/2;

F =2*S_bar*P_bar*Q1*P_bar*T_bar*x_bar0 + 2*S_bar "*P_bar*Q1*P_bar*R_bar*d
+2*N_bar*Qa*n_bar*U0 + N_bar*qgb’;

options = optimset( 'Maxlter  ,50, ‘algorithm’ , 'active-set' );

DV = zeros(size(Q2,1),1);

DV = quadprog(H,F,a,b,[],[I.[1.[],VO,options);
Controls = DV(1:size(n_bar,2));

t=0;

t = toc;
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Appendix B
VRF System MATLAB Code

B.1 Parameters and System Development

The following MATLAB code is used to develop thentralized, decentralized, BAS,
and ESC controllers for the VRF system from Chapter

% Parameters

load Final_Sys_ID

Coeffs.S.Cal = 65;

n=>5;

%% State Space Equations

%% Pc dot

% Pi

a0l 11 = 1/(Coeffs.C.Cc*Coeffs.V.R_v1) -
Coeffs.C.Kc/Coeffs.C.Cc*(1/Coeffs.C.Rrc +

1/Coeffs.C.Rac)*Coeffs.E.C1/(Coeffs.C.Kc*Coeffs.C.C wc);

% Twi

a0l 12 = Coeffs.C.Kc/Coeffs.C.Cc*(1/Coeffs.C.Rrc +
1/Coeffs.C.Rac)*Coeffs.E.K1*Coeffs.E.Cw1/(Coeffs.C. Kc*Coeffs.C.Cwc);

% Pc

a00_11 = -1/Coeffs.C.Cc*(Coeffs.K.B_k2 + n/Coeffs.V R vl+
Coeffs.C.Kc/Coeffs.C.Rrc*(Coeffs.C.Lambdarc1*Coeffs .K.B_k2 - Coeffs.C.eta_rc
+ Coeffs.C.Lambdarc?2)) - Coeffs.C.Kc/Coeffs.C.Cc*(1 /Coeffs.C.Rrc +
1/Coeffs.C.Rac)*Coeffs.C.Cc/(Coeffs.C.Kc*Coeffs.C.C wc);

% Pq

a00_12 =

Coeffs.K.B_k1/Coeffs.C.Cc*(1+Coeffs.C.Kc*Coeffs.C.L ambdarc1/Coeffs.C.Rrc) -
Coeffs.C.Kc/Coeffs.C.Cc*(1/Coeffs.C.Rrc +
1/Coeffs.C.Rac)*Coeffs.J.Cq/(Coeffs.C.Kc*Coeffs.C.C wc);

% Trq

a00_13 =-

Coeffs.K.B_k4/Coeffs.C.Cc*(1+Coeffs.C.Kc*Coeffs.C.L ambdarc1/Coeffs.C.Rrc);
% avi

b01 11 = -Coeffs.V.K_v1/(Coeffs.C.Cc*Coeffs.V.R_v1) ;

% wk
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b00_11 =
Coeffs.K.B_k3/Coeffs.C.Cc*(1+Coeffs.C.Kc*Coeffs.C.L
% wfc

b00_12 = -Coeffs.C.Kc*Coeffs.C.Kfc/(Coeffs.C.Cc*Coe
% Tac

v00_1 = Coeffs.C.Kc/(Coeffs.C.Cc*Coeffs.C.Rac);

%% Pq dot

% Pi

a0l 21 = 1/(Coeffs.J.Cq*Coeffs.P.R_q1)*(1 + Coeffs.
Coeffs.P.K_qg3*Coeffs.E.eta_r31/Coeffs.V.R_vl);

% Pc

a00 21 = 1/Coeffs.J.Cq*(Coeffs.K.B_k2 -
n*Coeffs.P.K_qg3*Coeffs.E.eta_r31/(Coeffs.P.R_ql*Coe
% Pq

a00_ 22 = -1/Coeffs.J.Cq*(Coeffs.K.B_k1 + n/Coeffs.P
% Trq

a00 23 = Coeffs.K.B_k4/Coeffs.J.Cq;

% avi

b01 21 =-
Coeffs.P.K_qg3*Coeffs.E.eta_r31*Coeffs.V.K_v1/(Coeff
s.V.R_vl);

% wfi

b01_22 =-1/(Coeffs.J.Cg*Coeffs.P.R_ql)*(Coeffs.P.K
Coeffs.P.K_qg3*Coeffs.E.eta_r21);

% wk

b00_21 = -1/Coeffs.J.Cq*(Coeffs.K.B_k3 + n*Coeffs.P
%% Pi dot

% Pi

all 11 =-1/Coeffs.E.C1*(1/Coeffs.V.R_v1*(1 +
Coeffs.P.K_qg3*Coeffs.E.eta_r31/Coeffs.P.R_q1) +
1/Coeffs.P.R_qg1*(1+Coeffs.P.K_q3*Coeffs.E.eta_rll)
Coeffs.E.K1/Coeffs.E.Rr1*(-Coeffs.E.eta_r11+Coeffs.
Coeffs.E.Lambdarl1/Coeffs.V.R_v1));

% Twl

all 12 = -Coeffs.E.K1/Coeffs.E.C1*(1/Coeffs.E.Ral +
% Tai

all 13 = Coeffs.E.K1/(Coeffs.E.C1*Coeffs.E.Ral);

% Pc

al0_11 = 1/(Coeffs.E.C1*Coeffs.V.R_v1)*(1 +
Coeffs.P.K_qg3*Coeffs.E.eta_r31/Coeffs.P.R_q1 -
Coeffs.E.K1/Coeffs.E.Rr1*(Coeffs.E.eta_r31 + Coeffs
% Pq

al0_12 = 1/(Coeffs.E.C1*Coeffs.P.R_ql);

% avi

b1l 11 = Coeffs.V.K_v1/(Coeffs.E.C1*Coeffs.V.R_v1)*
Coeffs.P.K_qg3*Coeffs.E.eta_r31/Coeffs.P.R_q1 -
Coeffs.E.K1/Coeffs.E.Rr1*(Coeffs.E.Lambdarl + Coeff
% wfi

b1l 12 =1/Coeffs.E.C1*(Coeffs.P.K_g2/Coeffs.P.R_q1l
Coeffs.P.K_q3*Coeffs.E.eta_r21/Coeffs.P.R_qgl +
Coeffs.E.K1*Coeffs.E.Kf1/Coeffs.E.Ral +
Coeffs.E.K1*Coeffs.E.eta_r21/Coeffs.E.Rrl);

% wk

b10_11 = Coeffs.P.K_q1/(Coeffs.E.C1*Coeffs.P.R_ql);
%% Twi dot
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% Pi

all 21 = 1/(Coeffs.E.Cw1*Coeffs.E.Rrl1)*(Coeffs.E.et

+ Coeffs.E.eta_r31)/Coeffs.V.R_v1);

% Twi

all 22 =-1/Coeffs.E.Cwl*(1/Coeffs.E.Ral + 1/Coeffs
% Tai

all 23 = 1/(Coeffs.E.Cwl*Coeffs.E.Ral);

% Pc

al0 21 = -(Coeffs.E.Lambdarl +
Coeffs.E.eta_r31)/(Coeffs.E.Cwl*Coeffs.E.Rr1*Coeffs
% avi

b1l 21 =-Coeffs.V.K_v1*(Coeffs.E.Lambdarl +
Coeffs.E.eta_r31)/(Coeffs.E.Cw1*Coeffs.E.Rr1*Coeffs
% wfi

b1l 22 = 1/Coeffs.E.Cwl*(Coeffs.E.Kf1l/Coeffs.E.Ral
Coeffs.E.eta_r21/Coeffs.E.Rrl);

%% Tai dot

% Twi

all 32 = 1/(Coeffs.S.Cal*Coeffs.E.Ral);

% Tai

all 33 =-1/(Coeffs.S.Cal*Coeffs.E.Ral);

% wfi

b1l 32 = -Coeffs.E.Kf1/(Coeffs.S.Cal*Coeffs.E.Ral);
% QLI

vll 3 = 1/Coeffs.S.Cal;

%% Trq dot

% Pi

a0l 31=
1/Coeffs.J.Crg*(1/Coeffs.P.mu_m1*((1+Coeffs.P.mu_m2
gl)*(Coeffs.E.eta_r11+Coeffs.E.eta r31/Coeffs.V.R_v
.R_ql)-
Coeffs.J.Krg*(1/Coeffs.P.R_ql+Coeffs.P.K_q3/Coeffs.
oeffs.E.eta_r31/Coeffs.V.R_v1)));

% Pc

a00_31=
1/Coeffs.J.Crg*(n*(1/Coeffs.P.mu_m1*((1+Coeffs.P.mu
R_q1)*(-
Coeffs.E.eta_r31/Coeffs.V.R_v1)+Coeffs.P.mu_m3*(Coe
a_rc-Coeffs.K.gamma_Kk5-
Coeffs.K.alpha_k1*Coeffs.C.eta_rc)+Coeffs.P.mu_m4*C
*Coeffs.P.K_q3*Coeffs.E.eta r31/(Coeffs.P.R_ql1*Coef
(Coeffs.K.gamma_k1*Coeffs.C.eta_rc-Coeffs.K.gamma_k
Coeffs.K.alpha_k1*Coeffs.C.eta_rc)-Coeffs.J.Krg*Coe
% Pq

a00_32 = 1/Coeffs.J.Crg*(n*(1/Coeffs.P.mu_m1*(-
Coeffs.P.mu_m2/Coeffs.P.R_ql+Coeffs.P.mu_m3*Coeffs.
Coeffs.P.mu_m4*Coeffs.K.B_k1)+Coeffs.J.Krg/Coeffs.P
Coeffs.K.gamma_k4+Coeffs.J.Krq*Coeffs.K.B_k1);

% Trq

a00_33 = 1/Coeffs.J.Crg*(n/Coeffs.P.mu_m1*(-1-
Coeffs.P.mu_m3*(Coeffs.K.gamma_k2-
Coeffs.K.alpha_k2)+Coeffs.P.mu_m4*Coeffs.K.B_k4)+Co
Coeffs.K.alpha_k2-Coeffs.J.Krq*Coeffs.K.B_k4);

% avi
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b01_31=
1/Coeffs.J.Crg*(1/Coeffs.P.mu_m1*((1+Coeffs.P.mu_m2
q1)*-
Coeffs.E.eta_r31*Coeffs.V.K_v1/Coeffs.V.R_v1)+Coeff
fs.E.eta_r31*Coeffs.V.K_v1/(Coeffs.P.R_ql*Coeffs.V.
% wfi
b01_32 =
1/Coeffs.J.Crg*(1/Coeffs.P.mu_m1*((1+Coeffs.P.mu_m2
gl)*Coeffs.E.eta_r21-Coeffs.P.mu_m2*Coeffs.P.K_q2/C
Coeffs.P.mu_mb5)-Coeffs.J.Krg/Coeffs.P.R_ql1*(Coeffs.
Coeffs.P.K_q2));
% wk
b00_31 = 1/Coeffs.J.Crg*(n*(1/Coeffs.P.mu_m1*(-
Coeffs.P.mu_m2*Coeffs.P.K_q1/Coeffs.P.R_ql1+Coeffs.P
Coeffs.K.alpha_k3)-
Coeffs.P.mu_m4*Coeffs.K.B_k3)+Coeffs.J.Krq*Coeffs.P
s.K.alpha_k3-Coeffs.K.gamma_k3+Coeffs.J.Krq*Coeffs.
%% Generate State-space SubMatrices
all=Jall_11all 12 all 13;
all 21 all 22 all 23;
0 all 32all 33j;
al0=[al0_11a10 120;
alo_ 21 0 O;
0 0 0
a0l =[a01_11a01 120;
a0l _2100;
a0l _3100j;
a00 =[a00_11 a00_12 a00_13;
a00_21 a00_22 a00_23 ;
a00_31 a00_32 a00_33];
b1l =[b11 11 b11_12;
b1l 21 b11_22;
0 b1l _32];
b10 =[b10_110;
0 0O
0 0f;
b01=[b01_11 O ;
b01 21 b01_22;
b01 31 b01_32];
b00 = [b00_11 b00_12;
b00_21 O ;
b00_31 O];
v1l =[0;
0;
vll 3];
v00 = [v00_1;
0;
0;
%% Generate State-space Matrices
All = blkdiag(all,all,all,all,all);
A10 = [al0;a10;a10;a10;a10];
A0l = [a01 a01 a01 a0l a01];
A00 = a00;
A =[A11 A10; A01 AQQ];
B11 = blkdiag(b11,b11,b11,b11,b11);
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B10 = [b10;b10;b10;b10;b10];

BO1 =[b01 b01 b01 b01 b01];

B0OO = b0O0;

B =[B11 B10; BO1 BOO];

V11 = blkdiag(v11,v11,v11,v11,v11);
V10 = zeros(3*n,1);

V01 = zeros(3,n);

V00 = v00;

V =[V11 V10; V01 Vv00];

C = zeros(18);

C(1:17,1:17) = eye(17);

C(18,18) = 1;

C(18,17) = -0.092;

%% Nominal actuator and state inputs

EEVO =18.25;
eFan0 =1190.1;
Comp0 =2425;
cFan0 =740.1767;
PcO =1669.1;

Pg0 =321.9345;

% Actuator costs (actuators for S1,52,53,54,S5 have
au_EEV =0;

bu_EEV =2*au_EEV*EEVO + 0;

au_eFan =5.1e-5;

bu_eFan = 2*au_eFan*eFan0 + (-1.18e-2);
au_Comp = 2.9204e-5;

bu_Comp = 2*au_Comp*Comp0 + (2.1364e-1);
au_cFan = 1.5*1.4e-4;

bu_cFan = 1.5%(2*au_cFan*cFan0 + (3.15e-2));

ax_Pc =1.6656e-3;
bx Pc =2*ax_Pc*PcO + (-2.9835€e0);
ax_Pq =-1.7646e-3;

bx Pg = 2*ax_Pg*Pq0 + (1.4343e0);
%% Common Information

% Sample time

Sys.dt =10;

% Control Horizon

Sys.Nu =15;

% Prediction Horizon

Sys.Np =60;

% Objectives vs delta U
Sys.gamma_a =0.1;

% Performance vs efficiency
Sys.gamma_b =0.1;

% Error vs integral

Sys.gamma_c =0.1;

% Ta tracking performance objective
g_Ta =1le2;

% SH tracking performance objective
g_SH =le-2;

% Acutator EEV

g_EEV =1lez;

% Actuator eFan

g_eFan =1le-3;

% Acutator Comp
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g_Comp =1le-1;

% Actuator cFan

g_cFan =1le-2;

% Constraints

Min_EEV = 0-EEVO;
Min_eFan = 0-eFan0;
Min_Comp = 0-Comp0;
Min_cFan = 0-cFanO0;
Max_EEV = 100-EEVO;
Max_eFan = 1500-eFan0;
Max_Comp = 3500-Comp0;
Max_cFan = 1600-cFan0;
%% Centralized System Information
% Model

Sys.A =[All A10; AO1 A0O];

Sys.B =[B11 B10; BO1 BOO];
Sys.V =[V11V10; V01 VO00]j;
Sys.C =C;

% Number of States

Sys.ns  =18;

% Number of Inputs

Sys.nu  =12;

% Number of Disturbances
Sys.nd  =6;

% Number of References
Sys.nr =6;

% States with desired values
Sys.M = blkdiag([0 0 1],[0 0 1],[0 0 1],[0 O

% Weightings

Sys.ge = Sys.gamma_a*Sys.gamma_b*Sys.gamma_c*[q_Ta
Sys.qgi = Sys.gamma_a*Sys.gamma_b*(1-Sys.gamma_c)*[q
q_SHJ;

Sys.q2 = [q_EEV gq_eFan q_EEV q_eFan q_EEV g_eFan q_
g_Comp g_cFanj;

Sys.qa =[au_EEV au_eFan au_EEV au_eFan au_EEV au_e
au_eFan au_Comp au_cFan];

Sys.qbl = [bu_EEV bu_eFan bu_EEV bu_eFan bu_EEV bu_
bu_eFan bu_Comp bu_cFan];

Sys.qax = [zeros(1,15) ax_Pc ax_Pq 0];

Sys.qgbx1 = [zeros(1,15) bx_Pc bx_Pq 0];

% Min and Max inputs

Sys.Mins =
[Min_EEV;Min_eFan;Min_EEV;Min_eFan;Min_EEV;Min_eFan
Min_eFan;Min_Comp;Min_cFan];

Sys.Maxs =
[Max_EEV;Max_eFan;Max_EEV;Max_eFan;Max_EEV;Max_eFan
Max_eFan;Max_Comp;Max_cFan];

% Formulated MPC Variables

[Outputs] = MPC_Formulation(Sys);

T_bar = Outputs.T_bar;

S_bar = Outputs.S_bar;

R_bar = Outputs.R_bar;

P_bar = Outputs.P_bar;

N_bar = Outputs.N_bar;

n_bar = Outputs.n_bar;
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Q1 = Outputs.Q1;

Q2 = Outputs.Qz;

Qa = Outputs.Qa;

gb = Outputs.qgb;

Qax = Outputs.Qax;

gbx = Outputs.qgbx;

U_min = Outputs.U_min;

U_max = Outputs.U_max;

%% BAS System Information

% Model

Sys.A =J[all al0; 5*a01 a00];

Sys.B =[bll b10; 5*b01 b00];

Sys.V =[v11 zeros(3,1);zeros(3,1) vOO];
Sys.C =[eye(5) zeros(5,1); zeros(1,4) -0.092 1];
% Number of States

Sys.ns  =6;

% Number of Inputs

Sys.nu =4

% Number of Disturbances

Sys.nd =2

% Number of References

Sys.nr =2

% States with desired values
Sys.M = blkdiag([0 0 1],[0 0 1]);

% Weightings

Sys.ge = Sys.gamma_a*Sys.gamma_b*Sys.gamma_c*[q_Ta
Sys.qi = Sys.gamma_a*Sys.gamma_b*(1-Sys.gamma_c)*[q
Sys.qg2 = [q_EEV g_eFan g_Comp g_cFan];

Sys.qa = [au_EEV au_eFan au_Comp au_cFan];
Sys.qgbl = [bu_EEV bu_eFan bu_Comp bu_cFan];
Sys.qax = [zeros(1,3) ax_Pc ax_Pq 0];

Sys.qbx1 = [zeros(1,3) bx_Pc bx_Pq 0];

% Min and Max inputs

Sys.Mins = [Min_EEV;Min_eFan;Min_Comp;Min_cFan];
Sys.Maxs = [Max_EEV;Max_eFan;Max_Comp;Max_cFan];
% Formulated MPC Variables

[Outputs] = MPC_Formulation(Sys);

BAS1_T_bar = Outputs.T_bar;

BAS1_S bar = Outputs.S_bar;

BAS1 R_bar = Outputs.R_bar;

BAS1 P _bar = Outputs.P_bar;

BAS1 N_bar = Outputs.N_bar;

BAS1 _n_bar = Outputs.n_bar;

BAS1_ Q1 = Outputs.Q1,;

BAS1 Q2 = Outputs.Q2;

BAS1 Qa = Outputs.Qa;

BAS1 gb = Outputs.qgb;

BAS1_Qax = Outputs.Qax;

BAS1_gbx = Outputs.qgbx;

BAS1 U_min = Outputs.U_min;

BAS1 U_max = Outputs.U_max;

%% ESC Parameters

a0 = 20;

ugo = 0;

delta = 1;
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omega = 2*pi/400;

phi = 50*pi/180;

k_prime = 5e0;

omega_|_prime = 0.1;

omega_h_prime = 10;

k = omega*delta*k_prime;

omega_| = omega*deltaromega_|_prime;
omega_h = omega*delta*omega_h_prime;

B.2 MPC Formulation

The following MATLAB code contains the functioMPC_Formulation.m which is

called in the code above to generate the varialded for the MPC controllers.

function  [Outputs] = MPC_Formulation(Sys);
A = Sys.A;

B = Sys.B;

V = Sys.V;

C =Sys.C;

ns = Sys.ns;

nu = Sys.nu;

nd = Sys.nd;

nr = Sys.nr;

M = Sys.M;

dt = Sys.dft;

Nu = Sys.Nu;

Np = Sys.Np;

gamma_a = Sys.gamma_a;

gamma_b = Sys.gamma_b;

gamma_c = Sys.gamma_c;

ge = Sys.ge;

gi = Sys.qi;

g2 = Sys.q2;

ga = Sys.qa;

gbl = Sys.qbl;

gax = Sys.gax;

gbx1 = Sys.qbx1;

Mins = Sys.Mins;

Maxs = Sys.Maxs;

%% Augment system into error system S_hat
A_hat = C*A/C;

B_hat = C*B;

V_hat =[C*V C*A/C*pinv(M)];

C_hat =eye(ns);

D_hat = zeros(ns,nu);

%% Discretize Systemtoget S_d

% Centralized System

sys ¢ =ss(A_hat,[B_hat V_hat],C_hat,[D_hat zeros (size(V_hat))]);
sys_d_prime = c2d(sys_c,dt);

A d =sys d prime.a;

B d =sys d prime.b(;,1:nu);

V_d =sys_d prime.b(;,nu+l:nu+nd+nr);
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C d =sys d prime.c;
D d =sys d prime.d(;,1:nu);
%% Add Integrator and X_u states to get S_d_bar
A bar =[A d zeros(ns,nr) B_d;
M*dt eye(nr) zeros(nr,nu
zeros(nu,ns) zeros(nu,nr) eye(nu)];
B_bar =[B_d; zeros(nr,nu); eye(nu)];
V_bar =[V_d; zeros(nr,nd+nr); zeros(nu,nd+nr)];
C_bar =[M zeros(nr) zeros(nr,nu);
zeros(nr,ns) eye(nr)  zeros(nr,nu)];
%% Generate lifted system matrices
% T_bar
T_bar = zeros((ns+nr+nu)*Np,ns+nr+nu);
for i=1:Np
T bar((i-1)*(ns+nr+nu)+1:i*(ns+nr+nu),:) = A_ba
end
% S_bar
S_bar = zeros((ns+nr+nu)*Np,nu*Nu);
for i=1:Np
for j=1:Nu
if i-j<0
S_bar((i-1)*(ns+nr+nu)+21:i*(ns+nr+nu),(
zeros((ns+nr+nu),nu);

elseif i-j==
S _bar((i-1)*(ns+nr+nu)+21:i*(ns+nr+nu),(
elseif i-j>0

S_bar((i-1)*(ns+nr+nu)+21:i*(ns+nr+nu),(
A_bar”(i-))*B_bar;
end
end
end
% R_bar
R_prev = zeros(size(V_bar));
R_bar = zeros((ns+nr+nu)*Np,nd+nr);
for i=1:Np
R_bar((i-1)*(ns+nr+nu)+1:i*(ns+nr+nu),:) = A _ba
R _prev =A _bar(i-1)*V_bar+R_prev;
end
% P_bar
P_bar = zeros(2*nr*Np,(ns+nr+nu)*Np);
for i=1:Np
P_bar((i-1)*2*nr+1:i*2*nr,(i-1)*(ns+nr+nu)+1:i*
end
% N_bar
N_bar = zeros(nu*Np,nu*Nu);
for i=1:Np
for j=1:Nu
if i>=]
N_bar((i-1)*nu+21:i*nu,(j-1)*nu+1:j*nu)
end
end
end
% n_bar
n_bar = zeros(nu*Np,nu);
n_bar(1:nu,1:nu) = eye(nu);
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%% Weighting Matrices

% Q1

ql = [qe qi];

for i=1:Np
gl_all((i-1)*2*nr+1:i*2*nr) = q1;

end

Q1 =diag(gl_all);

% Q2

for i=1:Nu
g2_all((i-1)*nu+1:i*nu) = q2;

end

Q2 = (1-gamma_a)*diag(g2_all);

% Qa

for i=1:Np
ga_all((i-1)*nu+1:i*nu) = ga;

end

Qa = gamma_a*(1-gamma_b)*diag(qa_all);

% gb

for i=1:Np
gb_all((i-1)*nu+1:i*nu) = qb1l;
end
gb = gamma_a*(1-gamma_b)*qb_all;
% Qax
for i=1:Np

gax_all((i-1)*(ns+nr+nu)+1:i*(ns+nr+nu)) = [gax
end
Qax = gamma_a*(1-gamma_b)*diag(qax_all);
% gbx
for i=1:Np
gbx_all((i-1)*(ns+nr+nu)+1:i*(ns+nr+nu)) = [qbx
end
gbx = gamma_a*(1-gamma_b)*qbx_all;
%% Constraints
% Lifted Constraints

for i=1:Np
U_min((i-1)*nu+1:i*nu,1) = Mins;

end

for i=1:Np
U_max((i-1)*nu+1:i*nu,1) = Maxs;

end

%% Outputs
Outputs.T_bar =T _bar;
Outputs.S_bar = S_bar;
Outputs.R_bar = R_bar;
Outputs.P_bar = P_bar;
Outputs.N_bar = N_bar;
Outputs.n_bar = n_bar;
Outputs.Q1 = Q1;
Outputs.Q2 = Q2;
Outputs.Qa = Qa;
Outputs.gb = gb;
Outputs.Qax = Qax;
Outputs.gbx = gbx;
Outputs.U_min = U_min;
Outputs.U_max = U_max;
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B.3 MPC Code

The following MATLAB code contains the functiaddPC.m which uses the MATLAB
functionguadprog to solve the MPC optimization problem at every edime of the simulation.

function  [Controls,DV] = MPC(T_bar,S_bar,R_bar,P_bar,N_bar, n_bar,Q1,Q2,Qa,qgb,
Qax,qbx,U_min,U_max,X,R0,V0,U0,Dist)
eml.extrinsic( ‘quadprog’ , 'optimset’ )
x_bar0 = [X;U0];
= [Dist;R0]J;
a = [-N_bar;N_bar];
= [-(U_min-n_bar*U0);(U_max-n_bar*U0)];
H = zeros(size(Q2));
F = zeros(size(Q2,1),1);

H=S_bar*P_bar*Q1*P_bar*S_bar + Q2 + N_bar*Qa*N _bar + S_bar*Qax*S_bar;
H = 2*(H+H")/2;
F =2*S bar*P_bar*Q1*P_bar*T_bar*x_bar0 + 2*S_bar *P_bar*Q1*P_bar*R_bar*d
+2*N_bar*Qa*n_bar*U0 + N_bar*gb'+
2*S bar' *Qax*T_bar*x_bar0 + 2*S_bar*Qax*R_ bar* d + S_bar*qgbx’;
options = optimset( 'Maxlter ,50, ‘algorithm’ , 'active-set' );

DV = zeros(size(Q2,1),1);
DV = quadprog(H,F,a,b,[].[I.[].[],VO,options);
Controls = DV(1:size(n_bar,2));
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