brought to you by

Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign

http://archive.org/details/summaryofwaterfl185with

State of Illinois William G. Stratton, Governor DEPARTMENT OF REGISTRATION AND EDUCATION Vera M. Binks, Director

6c

Division of the

STATE GEOLOGICAL SURVEY

M. M. Leighton, Chief

Urbana

CIRCULAR NO. 185

SUMMARY OF WATER FLOOD OPERATIONS IN ILLINOIS OIL POOLS DURING 1952

Ву

Paul A. Witherspoon and Members of the Illinois Secondary Recovery and Pressure Maintenance Study Committee

> Reprint of the Report Published by the Interstate Oil Compact Commission 1953

Printed by Authority of the State of Illinois

Urbana, Illinois 1953

ILLINOIS GEDLOGICAL

SURVEY LIBRARY

NOV 17 1953

PREFACE

The Interstate Oil Compact Commission, through its Secondary Recovery Division with Albert E. Sweeney, Jr., Director, and Paul D. Torrey, Chairman of the Secondary Recovery and Pressure Maintenance Advisory Committee, takes great pleasure in presenting this "Summary of Water Flood Operations in Illinois Oil Pools During 1952."

We have heretofore cooperated with the State of Illinois in preparing and publishing the following reports:

"Summary, Water Flooding Operations in Illinois, 1950," covering the 1949 operations.

"Summary, Water Flooding Operations in Illinois To 1951," covering the operations in 1950.

"Summary of Water Flooding Operations in Illinois Oil Pools During 1951," in which the Compact Commission did not officially participate but did render all assistance possible to the state.

We are honored to cooperate fully in the publication of this pamphlet which has been prepared with the cooperation of the Illinois State Geological Survey, and we feel sure that this report, together with the others above mentioned, will be of great interest and most helpful not only to the State of Illinois and the Compact, but also to the other states and the oil and gas industries generally.

The Interstate Oil Compact Commission wishes to express its appreciation, especially to Paul A. Witherspoon, Chairman, and members of the State Secondary Recovery and Pressure Maintenance Study Committee of the State of Illinois, and to all companies, organizations, and individuals who have assisted in gathering the data on this project. It is published in order that the states, the public in general, and the oil and gas industries in particular may have factual information regarding secondary recovery and pressure maintenance operations in the State of Illinois.

> Earl Foster Executive Secretary

CONTENTS

																										Р	age
Prefa	ce						•		·			÷			•	·	•		·								i
Introd	luct	ion					·			•		·	÷	·	·												1
Summ	ary	r of	Res	ult	s	•	·	•	·	·			÷														3
Table	I -	111	inoi	зW	at	er	Flo	od	Pro	ojec	ts	Du	rin	g 1	952	•										•	8
Table	н	- 11	lino	is J	Pr	ess	ure	м	aint	ena	nc	e P	roj	ect	s U	Jsir	ıg	Wat	e r	Inj	ect	ion	Du	ır ir	ıg		
		19	952	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•				20

Illustrations

Figure

1.	Annual Crude Oil Production in Illinois Showing Oil Recoveries Obtained		
	by Normal Operating Methods and Increased Recovery by Water Flooding	·	iv
2.	Development of Water Flood Projects in Illinois	·	2
3.	Map Showing Water Flood and Pressure Maintenance Operations in Illinois		
	During 1952	·	4
4.	Generalized Geologic Column Showing Formations Subjected to Water		
	Flooding in the Illinois Basin	•	6
5.	Index Map for Counties, Townships, and Ranges		7

Illinois State Geological Survey

SUMMARY OF WATER FLOOD OPERATIONS IN ILLINOIS OIL POOLS DURING 1952

INTRODUCTION

This report is the result of a joint effort by the Illinois State Geological Survey and the Illinois Secondary Recovery and Pressure Maintenance Study Committee of the Interstate Oil Compact Commission. The following persons were appointed to the Study Committee in 1953 by Governor William G. Stratton to assist in the compilation of data on the water flood and pressure maintenance projects that were in operation in Illinois oil pools during 1952.

Paul A. Witherspoon, Chairman Illinois State Geological Survey Urbana, Illinois

Frederick Squires, Past Chairman 1003 West Church Champaign, Illinois

Hugh S. Barger Barger Engineering Evansville, Indiana

C. E. Brehm Box 368 Mt. Vernon, Illinois

A. H. Bell Illinois State Geological Survey Urbana, Illinois

Allen Calvert Calvert Drilling Company Olney, Illinois

C. V. Cameron Shell Oil Company Centralia, Illinois

W. H. Davison Davison and Company Robinson, Illinois

R. E. Dunn Walter Duncan Oil Properties Vt. Vernon, Illinois

f. W. George Jeorge and Wrather Mt. Carmel, Illinois

l. F. Hammond larter Oil Company Mattoon, Illinois T. F. Lawry Mahutska Oil Company Robinson, Illinois

R. W. Love The Texas Company Salem, Illinois

A. J. Monzingo Magnolia Petroleum Company Salem, Illinois

Paul Phillippi Forest Oil Corporation Casey, Illinois

Mark Plummer The Pure Oil Company Olney, Illinois

L. C. Powell The Ohio Oil Company Terre Haute, Indiana

C. E. Skiles Skiles Oil Corporation Mt. Carmel, Illinois

Harry F. Swannack Gulf Refining Company Centralia, Illinois

Carl R. Temple Sohio Petroleum Company Centralia, Illinois

R. R. Vincent C. L. McMahon, Inc. Evansville, Indiana

M. R. Wilson The Texas Company Salem, Illinois

R. A. Wilson Tide Water Associated Oil Company Robinson, Illinois DEVELOPMENT OF WATER FLOOD PROJECTS IN ILLINOIS

As a means to collect information on water injection projects in operation during 1952, the Study Committee set up a questionnaire on February 10, 1953. The Geological Survey sent the questionnaire to all water flood operators in Illinois and compiled the data returned. This questionnaire did not request data on gas injection operations other than whether or not gas injection had previously been used.

This report supplements three previous summaries of water flood operations as follows:

- "Summary of Water Flooding Operations in Illinois, 1950," which reported operations during 1949. Published by Interstate Oil Compact Commission and reprinted by Illinois State Geological Survey as Circular 165.
- (2) "Summary of Water Flooding Operations in Illinois to 1951," which reported operations during 1950. Published by Interstate Oil Compact Commission and reprinted by Illinois State Geological Survey as Circular 176.
- (3) "Summary of Water Flooding Operations in Illinois Oil Pools During 1951." Published by Illinois State Geological Survey as Circular 182.

SUMMARY OF RESULTS

Water flooding as a means of improving oil recoveries is playing an increasingly important role in Illinois. This method of secondary recovery produced approximately 11,000,000 barrels of oil during 1952, or 18 per cent of the State's total recovery of 60,071,000 barrels. Of this water flood oil, 8,752,000 barrels are reported in Table I and an additional 2,000,000 barrels are estimated to have been recovered by "dump" flooding. The 1952 water flood recovery is 30 per cent higher than the 1951 recovery of 8,200,000 barrels, which includes an estimated ,800,000 barrels of "dump" flood oil.

Figure 1 shows the effect of water flood (including "dump" flood) operations on the State's annual crude oil production since 1936. It is interesting to note that the rate of decline in annual production has been noticeably decreased as a result of increasing secondary oil recoveries. In fact, Illinois oil production appears to be stabilized for the first time since 1936 at approximately 60,000,000 barrels per year. It is quite possible that the increasing production of oil by water flooding will more than offset the normal decline and will slowly increase the annual rate of oil recovery in Illinois over the next few years.

The cumulative water flood recovery at the end of 1952 was approximately 41,000,000 parrels, which includes an estimated 12,000,000 barrels of 'dump' flood oil.

Table I presents a summary of the information collected concerning water flood projects a operation during 1952. The data are arranged alphabetically by fields and include 131 water lood projects. Excluding the "dump" floods in the Clay City Consolidated field, there were pproximately 140 water floods in operation in Illinois during 1952. Table I provides the data on 4 per cent of these projects. In terms of cumulative figures, however, this summary approaches 00 per cent coverage for the controlled floods.

A total of 72,951,000 barrels of water was injected during 1952 in recovering 8,752,000 arrels of water flood oil, or a ratio of 8.3 barrels of water for each barrel of oil. A cumulative tal of 221,078,000 barrels of water had been injected by the end of 1952 in recovering 28,332,000 arrels of oil, or an input water-oil ratio of 7.8. The cumulative input water-oil ratio is lower an the 1952 ratio because a considerable number of new projects were started in 1951 and 1952 on which appreciable increases in oil production had not been realized by the end of the year.

Figure 2 shows the development of water floods in Illinois by years since 1942. The creasing development of water flood projects in recent years is very evident. For example, e number of projects has more than doubled in the past two years, from 59 projects at the end of 1952. As listed in Table I these 131 projects had developed ,330 acres for water flooding, or eight per cent of the State's total oil-productive acreage.

Figure 3 MAP SHOWING WATER FLOOD AND PRESSURE-MAINTENANCE OPERATIONS IN ILLINOIS DURING 1952

Table II presents data on the six pressure maintenance operations that used water injection during 1952. The oil-production statistics include both primary recovery and any additional oil obtained by pressure maintenance operations.

Each project listed in Tables I and II has been numbered, and corresponding numbers on Figure 3 show the location of water flood and pressure maintenance operations in Illinois during 1952.

A generalized geologic column is shown in Figure 4 which indicates the stratigraphic sequence of oil-producing formations in the Illinois basin. Listed opposite these oil-producing formations are the number of reported water floods as taken from Table I. An index map of counties, townships, and ranges in Illinois is shown in Figure 5.

Figure 4.

GENERALIZED GEOLOGIC COLUMN SHOWING FORMATIONS SUBJECTED TO WATER FLOODING IN THE ILLINOIS BASIN

SYSTEM	SERIES OR GROUP			FORMATION ("SAND" NAME)	NO. OF REPORTED WATER FLOODS DURING 1952
PLE	STOCENE	30.5			
NIAN	MC LEANSBORD			(GAS" SAND) (GASEY)	3
ENNSYLVA	CARBONDALE		•	(SIGGINS) ('500') (BELLAIR "500") (U. PARTLOW)	4 1 2 1
	CASEYVILLE- TRADEWATER		۰.	(PENN-UNCLASSIFIED) (BRIDGEPORT) (ROBINSON) (BIEHL)	5 4 23 8
SSISSIPPIAN	CHESTER		0 0 0 0 0 0 0 0 0 0 0 0	Amrau Decomia Cupe Paletime Waltresung Waltr	4 6 1 12 14 1 9
SIM 2	IOWA		0 0 0 0	ST. GENERATE PROSPLARE! PROSPLARE! PROSPLARE! ST. LOUIS SALEM OSAGE (GARPER) KINDERMOOK-	5 18 2
DEVONIAN			•	DEVONIAN	I
SILURIAN	ALEXAN- DRIAN		•	SILURIAN	
ORDOVICIAN	NATIAN		0	MAQUOKETA "TRENTON"	

(OIL PRODUCING FORMATIONS)

6

8

TABLE I

ILLINOIS WATER FLOOD PROJECTS DURING 1952

Map No.	Field	Operator	Project	"Sand"	County
1	Aden Consolidated	Texas	Aden	Aux Vases	Wayne
2	Aden Consolidated	Texas	Aden	McClosky	Wayne
3	Albion Consolidated	Carter	Albion	Lower Bridgeport	Edwards
4	Albion Consolidated	Concho Petroleum	-	Cypress	White
5	Albion Consolidated	Concho Petroleum	-	Tar Springs	White
6	Albion Consolidated	Continental	Stafford ·	McClosky	Edwards
7	Albion Consolidated	First National Petroleum Trust	Brown Lease	Aux Vases	Edwards
8	Albion Consolidated	Jarvis Brothers and Marcel	-	McClosky	Edwards
9	Albion Consolidated	Superior	South Albion	Bridgeport	Edwards
10	Albion Consolidated	Yingling	Bichl Unit #1	Biehl	White
11	Albion Consolidated	Yingling	Biehl Unit #2	Biehl	Edwards
12	Allendale	F. C. Luecking	Mattaliano et al.	Biehl	Wabash
13	Allison-Weger	Skiles	Weger	Robinson	Crawford
14	Assumption, North	Continental	Benoist	Benoist	Christian
15	Barnhill	Ashland	Barnhill	McClosky	₩ayne
16	Barnhill	Wayne Development	Walter	McClosky	Nayne
17	Bartelso	T. R. Kerwin	-	Cypress	Clinton
18	Bellair	Forest	Bellair	Bellair "500"	Crawford
19	Bellair	Pure	Fulton	Bellair "500"	Crawford
20	Benton	Shell	Benton Unit	Tar Springs	Franklin
21	Berryville Consolidated	Phillips	Tarpley	McClosky	∛abash
22	Berryville Consolidated	Phillips	Townsend	McClosky	Wabash
23	Birds	Franchot	Highsmith	Robinson	Crawford
24	Birds	iide Water	Birds Area	Robinson	Crawford
25	Birds	Yingling	Lindsay	Robinson	Crawford
26	Browns, East	Magnolia	Bellmont	Cypress	Wabash
27	Browns, East	Magnolia	Bellmont Water Flood	Cypress	Wabash
28	Bungay Consolidated	Texas	Blairsville	Aux Vases	Hamilton
29	Calhoun Consolidated	Ashland	Calhoun	McClosky	Richland
30	Calhoun Consolidated	Phillips	Bohlander	McClosky	Richland
31	Casey	Forest	Casey	Casey	Clark
32	Centerville, East	Sun	East Centerville	Tar Springs	White
33	Centralia	Sohio	Copple Trenton	Trenton	Clinton
34	Clay City Consolidated	F & W Oil Company	Miller Lambrich Unit	O'Hara, Rosiclare, & McClosky	Wayne

GENERAL INFORMATION

					TRODUCTION	AND ENJECTE	ON STATISTICS	(Barrels)		
	Location			Water Inj	ection	Oil Pr	oduction	Water 1	Production	
ction	Location Township	Range	Date First Injection	Total 1952	Cumulative 12-31-52	Total 1952	Cumulative 12-31-52	Total 1952	Cumulative 12-31-52	Map No.
9,16,17,	-3S	-7E	August, 1946	264,174	1,153,048	98,021	175,602)			1
9,16,17,	-3S	-7E	August, 1946	380,414	1,133,169	35,312) 141,102)	128,372	238,706	2
,12	-3S	-10E	December, 1947	52,694	235,140	7,760	50,900	42,580	-	3
.27,34,	- 35	-10E	October, 1952	104,322	104,322	None	None	-	-	4
,27,34.	=35	-10E	October, 1952	28,858	28,858	None	None	-	-	5
	-2S	-10E	May, 1943	4,709	-	3,607	25,839	4,709	-	6
	-25	-11E	April, 1952	39,914	39,914	None	None	None	None	7
	-25	-10E	July, 1951	46,384	52,504	None	None	50,747	50,747	8
11,12	-3S	-10E	August, 1946	-	854,511*	-	173,502*	-	789,679*	9
	-3S	-10E	August, 1949	491,118	1,373,402	121,741	365,032	-	-	10
	-3S	-10E	December, 1950	288,614	474,752	89,594	136,009	-	-	11
	-1N	-12W	June, 1952	16,250	16,250	None	None	8,400	8,400	12
,19	-5N	-11W	November, 1952	12,775	12,775	None	None	4,000	4,000	13
9,10,1	5, -13N	-1E	July, 1950	550,481	1,418,854	134,873	295,282	147,532	280,558	14
,34,35	-2S	-8E	January, 1951							15
	-2S	-8E	December, 1950	492,000(est.)	575,185	17,039*	-	78,000(es	st.) -	16
	-1N	-3W	April, 1952	65,427	65,427	19,819	19,819	7,120	7,120	17
1,12	-,8N	-14W	July, 1948	1,670,430	8,647,293	82.871	299,528	-	-	18
.11,12	-8N	-14W	July, 1948	4,366,391	17,218,441	153,725	520,600	2,012,841	5,127,274	19
-	-6S	-2E	November, 1949	10,095,048	30,092,631	2,516,773	4,268,300	3,030,970	4,651,685	20
	-1N	-14W	September, 1952	28,085	28,085	None	None	16,139	16,139	21
	-2N	-14W	February, 1952	18,300	18,300	None	None	22,169	22,169	22
	-5N	-11W	June, 1951	364,909	594,769	11,888	12,598	31,000*	40,800*	23
20,21	-5N	-11W	February, 1952	177,319	177,319	2,295	2,295	49,120	49,120	24
	-5N	-11W	August, 1950	948,675	1,566,681	26,918	48,372	-	-	25
μ	-25	-14W	November, 1947	80,892	536,953	66,532*	401,650*	42,885	81,663	26
.11,12	-2S	-14W	January, 1951	564,630	1,175,887	355,575*	448,874*	62,008	62,008	27
17,20,2	1 -4S	-7E	June, 1948	263,748	757,116	22,784	61,548	12,758	-	28
	-2N	-10E	September, 1951							29
	-2N	-10E	June, 1950	198,085	407,137	46,475	50,273	105,661	110,219	30
5,23	-10N	-14W	March, 1950	1,068,000	2,191,634	85,600	157,277	-	-	31
	-4S	-10E	October, 1950	55,150	81,223	11,789	13,163	445	445	32
	-2N	-1W	November, 1951	183,745	216,883	24,879*	27,945*	4,397	12,145	33
9	-1N	-8E	August, 1950	-	250,000*(e	st.) -	~	-	-	34

TABLE 1 (Continued)

		DE	VELOPMENT	AS OF 12-3	1-52		
Map No.	Number	of Wells Producers	Injection Pattern	Spacing Acres Per Input Well	Productive A Subjected To Injection	Total	Source
1	(7	20	Perimeter	-	640	1,050	Pennsylvanian sa
z	(6	20	Perimeter	-	520	920	Pennsylvanian sa
3	1	5	Flank	-	60	60	Produced
4	8	21	Perlmeter	-	250	300	Little Wabash Ri
5	4	-	Perlmeter	-		-	Little Wabash Ri
6	1	7	-	-	80	80	Produced
7	1	1	Spot	-	30	50	Hardinsburg
8	1	6	-	-	140	140	-
9	2	12	-	-	203	-	Produced
10	3	13	Flank		220	220	Pennsylvanian sa
11	1	6	Flank	-	90	90	Pennsylvanian sa
12	1	2		-	44		Shallow sand
13	9	11	5-spot	10	90	110	Creek water and
14	13	27	Perimeter	-	440	440	produced Shallow sand and
14		22	-		320		produced
15		22	-	-	520	-	Cypress
10				-	40	40	Cypress
17	2	,	5-spot	•	10	350	Tar Springs
18	56	51	5-Spot	4.4	200	-	Gravel bed
19	131	125	5-spot	4.4	443	443	Gravel bed
20	107	121	5-spot	20	2,200	2,200	Lake
21	1	2	-	-	14	30	Produced and Tar Springs
22	1	2	-	-	27	30	Produced and Tar Springs
23	9	6	5-spot	10	60	2,100	Tar Springs
24	4	14	5-spot	10	47	277	Tar Springs
25	23	24	5-spot	4.4	160	360	1,300-ft. sand
26	3	11	Line Drlve	10	184	184	Tar Springs
27	13	20	5-spot	20	290	330	Tar Springs
28	2	19	-	-	640	-	Pennsylvanian sa
29	3	7	Flank	-	195	-	Cypress
30	3	10	Irregular	-	160	280	Upper sand and
31	62	39	5-spot	4.4	240	-	Gravel bed
32	1	5	Spot	-	80	-	Gravel bed
33	2	12	-	20	160	200	Devonian
34	4	13	Innonulos	10			

	INJECTION	WATER	
		Avg. Bbls.	Averas
		Per Day	Wellhe
		Per Well	Pressi
Source	Type	Per Foot	PSI
Pennsylvanian sand	Brine	10.3	1 223
Pennsylvanian sand	Brine	48.2	1,101
Produced	Brine	11.1	200
Little Wabash River	Fresh	11.9	800
Little Wabash River	Fresh	13.1	800
Produced	Brine	3.2	2'
Hardinsburg	Brine	7.2	150
-	Brine	4.2	Vacu:
Produced	Brine	-	
Pennsylvanian sand	Brine	26.4	363
Pennsylvanian sand	Brine	35.9	636
Shallow sand	Fresh	5.5	
Creek water and	Fresh and	1.5	150
produced	brine		
Shallow sand and	Brine	9.1	920
produced Cypress	Brine	-	-
Cypress	Brine	74.8	-
Tar Springs	Brine	11.7	5751
Gravel bed	Fresh	2.2	280:
Gravel bed	Fresh	4.3	265
Lake	Fresh	7.4	501
Produced and	Brine	23.0	Vacuy
Produced and	Brine	15.0	Vacui
Tar Springs Tar Springs	Brine	4.3	284
Tar Springs	Brine	7.7	258
1,300-ft. sand	Brine	3.6	323
Tar Springs	Brine	-	1,650
Tar Springs	Brine	-	1,230
Pennsylvanian sand	Brine	23.3	1,052
Cypress	Brine	-	-
Upper sand and	Brine	18.1	0-1,080
Gravel bed	Fresh	4.7	210
Gravel bed	Fresh	25.2	1,100
Devonian	Brine	11.4	359
Cypress and produced	Brine	-	-

	Net Pay			Oil	011	
Depth Feet	Thickness	Porosity Per Cent	Permeability Millidarcys	Gravity API	Viscosity Centipoises	
3,200	10	22	150	35.4	-	
3,350	3.6	-	-	35.4	6.5 @ 100° F.	
1,900	13	20	305	35	6.0 @ 100° F.	
2,850	12	18	-	37	-	
2,460	6	18	-	37	-	
3,222	4	16.3	898	39	-	
3,005	21	-	-	-	-	
3,150	30	-	-	37	-	
1,900	20	19.7	304	32.5	6.3 @ 95° F.	
2,000	17	20.2	265	37.6	5.3 @ 88 ⁰ F.	
L,950	22	19.3	303	35.8	6.0 @ 84° F.	
1,385	15	-	-	34.5	-	
900	20	17	37	-	-	
1,050	12.7	19.4	102.5	39.8	-	
,350	9	-	-	39	-	
450	18	-	-	-	-	
971	15	22.2	1,655	37	-	
550	38	17.1	148	32.4	16 @ 77° F.	
560	21	18.6	149	32	18.7 @ 77° F.	
,100	35	19	65	38	3.5 @ 86° F.	
,890	10	-	-	-	-	
,890	10	-	-	-	-	
950	26	18.9	162	31.7	21	
950	18	19.4	197	30.1	-	
960	31	19.1	135	31.6	17 @ 80° F.	
,570	-	-	-	36.0	4.6 @ 90° F.	
2,570	-	-	-	-	-	
,330	15.5	19.6	92	35 to	1.8 @ 99° F.	
,150	6	-	-	40 37	-	
8,130	10	11.2	67.5	36		
450	10	17.4	173	31.9	16.6 @ 70° F.	
2,530	6	-	-	35		
3,950	22	10	-	39.8	2.7	
060	5		_		-	

REMARKS	
	Mar
	No.
	1
	2
	3
	4
	5
	6
	7
	8
topped injection early in 1952. Now disposal project. As of 6-1-52.	9
briginal BHP 800 psi.	10
	11
	12
	13
	14
	15
includes primary production since start of 11000.	10
reviewely subjected to one injection. Producing wells flowe	18
reviously subjected to gas injection. Troubleing wents nowe	19
	20
	21
	22
Estimated.	23
ubjected to gas injection 1946 to 1952.	24
	25
Includes primary production since start of flood.	26
Includes primary production since start of flood.	27
	28
	29
	30
Previously subjected to gas injection.	31
	32
includes primary production since start of flood.	33
Duran flood	34

Formation Man "Sand" Project Operator County Field No. Tuley McClosky White 35 Concord Phillips Cordes She11 Cordes Beneist Washington 36 North Rural Hill Unit Dale Consolidated Inland Aux Vases Hamilton 37 West Dale Unit Dale Consolidated Texas Aux Vases Hamilton 38 Eviendsville North Magnolia J. L. Litherland Biehl Wabash 30 Golden Gate Consolidated Cities Service Golden Gate Water St. Genevieve Lime Wayne 40 Flood Unit Iron Unit Hardinsburg White Shell 41 Iron McMahon Block A Casev Clark 42 Johnson, North Block B 43 Johnson, North MaMahan 500-foot Clark Johnson, North H. V. Sherrill V. Jones Casev Clark 44 Johnson, North Tide Water Clark County #1 Casev Clark 45 South Johnson Upper Partlow Clark 46 Johnson, South Forest Junction J. A. Lewis Waltersburg Gallatin Kenner, West Phillips West Kenner Unit Cypress Clay 4.0 George & Wrather Klondike 49 Lawrence Benoist Lawrence 50 Lawrence Ohio Two Projects Bridgeport Lawrence 51 Two Projects 52 Lawrence Ohio Kirkwood Lawrence 5 54 Louden Carter Loudon Chester Fayette 55 Main Arkansas Fuel North Morris Robinson Crawford 56 Main Buckeye Supply J. S. Kirk Robinson Crawford Main E. Constantin Sanders Pennsylvanian Sand Grawford 58 Main E. Constantin Short Pennsylvanian Sand Crawford 50 Mair E. Constantin Wood Pennsylvanian Sand Crawford 60 Mair A. J. Leverton Stanfield Robinson Crawford Main Logan Oil Alexander - Reynolds Robinson Crawford 62.63. Main Ohio Three Projects Robinson Crawford 65 Main Petroleum Producing Company Rohinson Crawford 66 Main W. L. Pickens Hughes-Robinson Robinson Crawford Main Skiles Dennis-Lloyd Robinson #4 Crawford 68 Main Skiler Highsmith Robinson #1 & #2 Crawford 69 Mair Skiles Walter Community Robinson #1 & #3 Crawford

Clarke-Hulse

Dennis-Hardin

Henry-Ikemire

Robinson

Robinson

Robinson

Crawford

Crawford

Crawford

GENERAL INFORMATION

70 Main

Main

Main

Tide Water

Tide Water

Tide Water

				Water	PRODUCTION A	ND INJECTIO	ON STATISTICS lary Recovery oduction	(Barrels) Water	Production	Man
Section	Location Township	Range	Date First Injection	Total 1952	Cumulative 12-31-52	Total 1952	Cumulative 12-31-52	Total 1952	Cumulative 12-31-52	Map No.
21	-6S	-10E	July, 1951	305,494	411,428	16,444	34,847	235,124	244,306	35
14,15,22	,23 -3S	-3W	August, 1950	1,419,753	3,312,301	595,641	1,124,949	695,640	1,330,054	36
5,6,7,8	-6S	-6E	February, 1952	222,520	222,520	-	-	-	-	37
11	-6S	-6E	August, 1951	339,347	521,200	8,362	8,563	15,678	-	38
1,12	-1N	-13W	July, 1947	76,043	299,186	12,543*	121,909*	25,819	92,294	39
28,32,33	-25	-9E	November, 1952	*	*	None	None	-	-	40
13,24,25	-6S	-8E	December, 1950	1,155,655	2,410,747	178,043	161,305*	68,803	82,466	41
	-9N	~14W	April, 1949	861,337	3,417,233	42,292	175,941	537,747	1,386,614	42
35,36	-10N	-14W	May, 1951	275,330	318,975	1,817	1,817	4,210	4,210	43
1,3	-9N	-14W	September, 1951	24,861	35,288	325	325	None	None	44
	-9N	-14W	February, 1950	415,818	1,330,944	11,368	32,368	114,557	244,512	45
:7,34,35	-9N	-14W	March, 1949	2,908,156	8,493,156	62,000	318,210	-		46
16,17,20	,21 -9S	-9E	May, 1951	129,000	210,000	7,000	7,700	-	-	47
:3	-3N	-5E	February, 1952	299,856	299,856	None	None	492,890	-	48
:5	-5N	-13W	June, 1952	180,310	180,310	4,977	4,977	-	-	49
-	-	-	-	4,443,718	9,760,259	735,431	1,256,226	1,067,777	1,625,693	50,
-	-	-	January, 1952	376,988	376,988	18,211	18,211	3,810	3,810	51 52,
-	-7N	-3E	October, 1950	2,239,347	3,089,888	435,667	467,479	45,850	-	53 54
	-8N -7N	-13W	April, 1951	145,533	205,397	10,171	11,421	47,238	218,353	55
:9	-7N	-12W	August, 1951	28,370	41,679	1,600	1,600	-	-	56
4,35,36,	26 -6N	-13W	August, 1952	87,348	87,348	None	None	-	-	57
2	-7N	-13W	February, 1952	315,257	315,257	None	None	-	-	58
1	-8N	-12W	August, 1952	188,928	188,928	None	None	-	-	59
7	-8N	-12W	May, 1952	24,400	24,400	None	None	-	-	60
:0	-7N	-12W	December, 1951	134,554	139,554	2,515	2,515	2,100	2,100	61
-	-	-	-	5,535,590	12,419,553	445,666	973,096	1,715,484	2,999,551	62,
9,32	- 811	-12W	August, 1951	134,575	175,575	-	-	-	-	64 65
2,27,28	-6N	-13W	June, 1951	116,172	-	None	None	None	None	66
0	-7N	-12W	July, 1951	117,173	157,330	None	None	760	-	67
1	-6N	-12W	September, 1951	140,140	153,104	None	None	36,800	-	68
6	-6N	-13W	December, 1951	23,871	25,821	None	None	29,000	-	69
8	-7N	-13W	January, 1952	186,363	186,363	8,971	8,971	15,372	15,372	70
7,34	-6N	-13W	August, 1950	787,303	1,220,952	27,573	35,473	119,140	142,487	71
0,15	-7N	-13W	February, 1948	431,514	1,513,365	54,571	212,371	223,385	477,961	72

 -	
- 74	
~ •	

		DE	VELOPMENT	r as of 12-31-	52			INJECTION	WATER
Map	Number	of Wells	Injection	Spacing Acres Per	Productive A Subjected	Total	Source	Tune	Avg. Bbls. Per Day Per Well Per Foot
No.	Injection	Producers	Pattern	inpat werr	<u>ro mjeenon</u>			1110	
35	1	5	Irregular	-	65	120	Upper sand and produced	Brine	27.9
36	36	68	5-spot	20	640	640	Pottsville	Brine	7.7
37	11	16	5-spot	20	-	325	Cypress	Brine	4.1
38	3	14	-	-	295	295	Produced and	Brine and	22.1
39	2	3	-	-	40	50	shallow sand Shallow sand	iresh Fresh	-
40	1	16	-	-	19	340	Pennsylvanian	Brine	-
41	19	22	5-spot	20	390	430	Tar Springs	Brine	6.7
42	28	26	5-spot	4.4	125	-	Shallow sand and	Fresh and	-
43	27	8	5-spot	4.4	80	-	Shallow sand and	Fresh and	1.3
44	3	2	5-spot	4.4	15	65	Shallow sand	Fresh	1.2
45	15	23	5-spot	4.4	65	80	Shallow sand and	Fresh and	4.5
46	47	56	5-spot	4.4	300	-	Produced	Brine	2.6
47	5	9	Modified	-	50	-	Gravel bed	Fresh	5.0
48	4	23	Edge	10	35	300	Produced	Brine	9.4
49	10	14	5-spot	13.5	195	300	Shallow sand	Fresh	5.0
50,	70	155	-	-	644	-	-	Fresh	-
52,	8	18	-	-	72	-	-	Fresh	-
54	43	117	5-spot	20	1,225	16,000	Tar Springs	Brine	4.8
55	5	7	Modified	4.4	44	400	Buchanan	Brine	6.6
56	4	4	5-spot	10	ro	100	1,325-ft. sand	Brine	0.9
57	24	21	5-spot	10	110	1,000	Lower Pennsyl-	Brine	1.2
58	15	12	5-spot	10	70	360	-	Brine	2.3
59	13	4	5-spot	10	70	260	Lower Pennsyl-	Brine	3.2
60	3	2	5-spot	4.4	20	130	-	Fresh	1.4
61	6	20	5-spot	Irregular	20	290	Cypress	Brine	2.8
62,6	3, 156	201	-	-	949	-	-	Fresh and brine	-
65	4	2	5-spot	10	40	700	Shallow sand and	Fresh	6.1
66	15	12	5-spot	10	40	298	Shallow sand	Fresh	-
67	18	17	5-spot	10	180	-	Creek water and Rennsylvaniar	Fresh and brine	0.9
68	13	23	5-spot	10	130	-	Upper Pennsylvanian	Brine	-
69	5	6	5-spot	10	40	4	Upper Pennsylvanian	Brine	-
70	8	15	5-spot	7	59	98	Gravel bed	Fresh	3.2
71	10	16	5-spot	10	89	93.5	Gravel bed	Fresh	6.3
72	25 1-2	25	5-spot	4.4	100	115	Pennsylvanian sand	Brine	3.3

Average Wellhea Pressur PSI

0

285

0

368 720

-

399 300

300

162

225

240

650

436

407

-72

310

57

335

212

143 77

24

-

0

300

300 563

200

206

218

377

RESERVOIR STATISTICS (Average Values)

h	Nec Pay Thickness Feet	Porosity Per Cent	Permeability Millidarcys	Oil Gravity API	Oil Viscosity Centipoises		Map No.
0	30	-	-	-	-		35
0	14	20	250	37	-	Cooperative: Shell, Magnolia, McBride and Horton.	36
5	14.7	23.9		-	-		37
0	14	17	125	38.0	-	Previously subjected to gas injection.	38
D	-	-	-	35.6	7.5 @ 86° F.	*Includes primary production since start of flood.	39
0	14	-	-	34	-	*Dump flood.	40
D	25	17.6	152	36	-	*1951 production 16,738 barrels below normal.	41
0	10-30	20.8	399	33.9	10.7 @ 70° F.	Previously subjected to gas injection.	42
0	22	18.3	66	33	10 @ 70° F.		43
0	19	19.8	252	35.4	-		44
5	17	20.6	415	33.9	10.7 @ 70° F.	Subjected to gas injection 1946-47.	45
0	48	16.6	319	29.2	14.7 @ 77° F.	Previously subjected to gas injection.	46
0	14	-	-	34.7	6.7 @ 81º F.		47
2	26	18	125	-	-		48
5	18	17.2	80	37.8	5.2 @ 80° F.		49
	-	-	-	-	-		50,
	-	-	-	-	-		51 52,
)	30	20	105	38	2.6 @ 79° F.	Previously subjected to gas injection.	53 54
3	12	21	243	32	73 @ 65° F.	Previously subjected to gas injection.	55
3	22	22.5	51.5	34	-		56
)	20	21	205	32	-	Previously subjected to gas injection.	57
)	30	22	130	32	-	Previously subjected to gas injection.	58
)	30	21	105	32	-	Previously subjected to gas injection.	59
7	30	23	57	36	-		60
)	22	20.5	167	36	7 @ 80° F.		61
	-	-	-	-	-		62,63, 64
0	15	20	75	-	-		65
D	30	19.5	125	32	10 @ 80° F.		66
5	20	22.2	100	33	13.5 @ Reser- voir temp.	Previously subjected to gas injection.	67
0	10 30	21.5	50	32	12		68
0	10 15	20.1	93	36	12.5 @ Reser- voir temp.		69
0	20	19.9	278	34	-	Subjected to gas injection since 1941.	70
5	34	19.8	175	32.7	-	Previously subjected to gas injection 1932 to 1950.	71
5	14	21	175	35	7 @ 60° F.	Previously subjected to gas injection 1934 to 1948.	72

REMARKS

		GENERAL	INFORMATION	
			Formation	
Field	Operator	Project	"Sand"	County
Main *	Tide Water	W.A.Howard	Robinson	Crawford
Main	Tide Water	Stifle-Drake	Robinson	Crawford
Main	Tide Water	G. L. Thompson	Robinson	Crawford
Main	Wilson	Hughes-Walker	Robinson	Crawford
Martinsville	J. B. Buchman	-	Carper	Clark
Martinsville	Magnolia	Carper	Carper	Clark
Martinsville	Magnolia	Casey	Casey	Clark
Mattoon	Carter	Mattoon	Cypress & Rosiclare	Coles
Mattoon	Phillips	Mattoon	Rosiclare	Coles
Maunie South	Magnolia	Tar Springs Unit	Tar Springs	White
Maunie South	Magnolia	Tar Sørings Unit #2	Tar Springs	Nhite
Mill Shoals	Sohio	B. R. Gray, Trustee	Aux Vases	Hamilton
Mt. Carmel	G. S. Engle	G. Dunkel	Biehl	Wabash
Mt. Garmel	First National Petroleum Trust	Shaw Courter	Biehl	Wabash
Mt. Carmel	Superior	North Mt. Carmel	Biehl	Wabash
Mt. Carmel	Texas	Stein	Tar Springs	Wabash
New Harmony Consolidated	l Luboil	Helm	Aux Vases	Wabash
New Harmony Consolidated	l Luboil	Helm	Benoist	Wabash
New Harmony Consolidated	l Luboil	Helm	Waltersburg	Wabash
New Harmony Consolidated	l Phillips	Schultz	Upper Cypress	Wabash
New Harmony Consolidated	Phillips	Schultz	Lower Cypress	Wabash
New Harmony Consolidated	l Skiles	East Maud	Benoist	Wabash
New Harmony Consolidated	l Skiles	East Maud	Cypress	Wabash
New Harmony Consolidated	l Skiles	Siegert Bottoms	Benoist	Wabash
New Harmony Consolidated	1 Skiles	West Maud	Benoist	Edwards Wabash
New Harmony Consolidated	i Sun	Ford "A"	McClosky	White
New Harmony Consolidated	i Sun	Greathouse	Bethel	White
New Harmony Consolidates	1 Sun	Greathouse	McClosky	White
New Harmony Consolidates	d Superior	Waltersburg	Waltersburg	∥hite, 111.
New Harmony Consolidated	i Tide Water	E. S. Dennis ''A''	Bethel	Posey, Ind White
New Harmony Consolidated	1 Tide Water	O. R. Evans	Aux Vases	White
Odin	Ashland	Odin	Cypress	Marion
Olney Consolidated	Texas	Olney, East	McClosky	Richland
Patoka	Sohio	Patoka Banalat	Revelat	Manlan

16

					PRODUCTION A	ND INJECTIO	ON STATISTICS	(Barrels)		
						Second	ary Recovery			
			Data Plant	Water L	njection	Oil Pr	oduction	Water F	roduction	
	Location	Pango	Injection	1062	12-31-53	1 0181	Cumulative	Total	Cumulative	Map
Section	1 ownship	range	Injection	17.54	12-31-32	1956	12-31-52	1952	12-31-52	No.
11	-7N	-13W	December, 1952	10,233	10,233	434*	434*	2,480	2,480	73
10	-7N	-13W	June, 1952	117,428	117,428	None	None	20,116	20,116	74
26,27	-6N	-13W	September, 1952	54,225	54,225	None	None	366	366	75
26	-6N	-13W	August, 1950	-	-	8,529*	11,366*	-	-	76
31	-10N	-13W	October, 1952	5,240	5,240	None	None	1,215	-	77
30	-10N	-13W	January, 1951	425,914	589,057	2,480*	4,890*	2,534	4,802	78
19	-10N	-13W	August, 1950	428,867	837,911	772*	1,840*	4,703	22,422	79
35	-12N	-7E	May, 1952	140,702	140,702	None	None	790	790	80
22	-12N	-7E	November, 1950	18,559	32,539	5,573*	-	41,496*	-	81
24	-6S	-10E	August, 1947	474,253	2,493,325	38,244*	723,953*	231,803	924,494	82
24	-6S	-10E	November, 1949	56,913	316,000	2,325*	59,120*	35,464	116,497	83
1	-4S	-7E	May, 1952	-	-	-	-	-	-	84
5	-15	-12W	June, 1952	22,805	22,805	6,240*	-	-	-	85
7	-1S	-12W	February, 1950	48,493	143,435	15,006	42,012	35,224	60,935	86
9	-15	-12W	June, 1949	53,940	185,853	None	None	54,000*	250,000*	87
58	-15	-12W	February, 1952	113,833	113,833	1,622	1,622	2,359	-	88
22	-3S	-14W	December, 1951	56,192	58,543	None	None	None	None	89
22	-3S	-14W	December, 1951	442,043	455,300	7,900	7,900	None	None	90
22	-3S	-14W	December, 1950	191,101	340,502	29,585	51,550	-	-	91
7	-38	-13W	May, 1952	103,040	103,040	1,302	1,302	None	None	92
7	-3S	-13W	July, 1951	278,125	363,938	49,462	49,680	48,295	48,295	93
32,33	-15	-13W	April, 1952	91,891	91,891	None	None	1,850	1,850	94
32,33	-15	-13W	November, 1952	3,869	3,869	None	None	900	900	95
14	-25	-14W	October, 1951	379,883	464,683	4,750	2,350*	1,030	-	96
1,3,10	-3S	-14W								
5	-2S	-13W	October, 1950	333,064	413,942	42,991	44,288	5,250	-	97
.8	-1S -5S	-13W -14W	May, 1948	6,158*	57,823*	921*	13,076*	36*	626*	98
13	-4S	-14W	January, 1949	346,755	1,321,513	20,013	50,992	3,036	159,850	95
3	-5S -4S	-14W -14W	August, 1947	150,233	639,598	36,877	80,236	1,421	101,687	100
,5,9,10	-5S -5S	-14W -14W	August, 1946	659,009*	3,158,371*	76,673*	534,571*	64,315*	456,504*	101
8,33	-4S	-14W	July, 1951	805,840	1,030,709	54,834	55,000	18,924	20,440	102
,5	-4S	-14W	October, 1949	121,461	266,334	25,778	39,355	7,468	7,468	103
-	-2N	-1E	October, 1949	-	-	-	-	-	-	104
3,24,25,2	6 -4N	-2E -10E	March, 1951	71,994	188,312	2,807	4,144	14,659	-	105
),21,28,2	9 -4N	-1E	September, 1943	4,127,960	27,848,919	148,645	5,871,103	3,764,547	21,158,359	106

	-
	~
	u
•	_

		DE	VELOPMEN	T AS OF 12-31	-52			INJECTION	WATER
Map No.	Number	of Wells Producers	Injection Pattern	Spacing Acres Per Input Well	Productive A Subjected To Injection	Total	Saurce	T	Avg. Bbls. Per Day Per Well
73			E. anat	10			Source	<u>1 ype</u>	Per Foot
13	,	3	5-spot	10	30	90	Pennsylvanian sand	Brine	9.1
74	6	10	5~spot	10	52	160	Pennsylvanian sand	Brine	6.1
75	2	5	5-spot	10	2.0	40	Gravel bed	Fresh	11.2
76	8*	7	-	-	30*	40	Gravel bed	Fresh	-
77	2	6	5-spot	20	40	40	Shallow sand	Fresh	0.8
78	4	1	5-spot	10	10	50	Gravel bed	Fresh	-
79	8	3	5-spot	10	23	110	Gravel bed	Fresh	-
80	4	8	5-spot	20	67	120	Pennsylvanian sand	Brine	11.8
81	1	5	-	-	10	60	Produced	Brine	5.1
82	11	13	5-spot	20	230	240	Gravel bed	Fresh	
83	3	2	5-spot	20	50	50	Gravel bed	Fresh	
84	5	8	5-spot	20	170	170	Gravel bed	Fresh	-
85	1	3	Modified	28.9	87	68	Shallow sand	Fresh	17.2
86	1	2	Spot	-	30	30	Shallow sand and	Fresh and	8.3
87	2	10	-	10	50	150	produced Produced	brine Brine	10.6
88	2	8	-	-	50	73	Shallow sand and	Fresh and	14.8
89	8	10	5-spot &	12	50	150	produced Shallow sand	brine	14.0
90	15	17	irregular 5-spot	12	180	300	Shallow sand	Fresh	5.0
91	3	4	Irregular	3.3	10	15	Shallow sand	Frach	7.0
92	1	2	-	-	9	30	Shallow sand and	Freeh and	1.0
93	2	5	Irregular	_	21	70	produced	brine	44.2
94	6	20	5-creat	20			produced	Fresh and brine	19.0
	Ŭ	20	3=spot	20	60	140	Hardinsburg	Brine	6.6
95	2	12	5-spot	20	20	100	Hardinsburg	Brine	5.9
96	17	22	5-spot	20	170	-	Gravel bed	Fresh	3.4
97	17	26	5-spot	20	340	-	Hardinsburg	Brine	4.5
98	1*	1*	Spot	-	40	40	Gravel bed	Fresh	-
99	6	10	5-spot	20	130	-	Gravel bed	Fresh	6.8
100	1	2	Spot	20	100	-	Gravel bed	Fresh	82.2
101	3	34	Line Drive	-	725	725	Shallow sand and	Fresh and	14.0
102	17	18	5-spot	10	160	185	produced Gravel bed	brine Fresh	4.3
103	4	9.	5-spot	20	140	160	Shallow sand	Fresh	3.5
04	10	22	Perimeter	-	196	290	Tar Springs	Brine	-
05	1	17	-	-	90	515	Weiler sand and	Brine	37.2
06	67	64	5-spot	10	527	-	produced Tar Springs	Brine	6.2

Avenze Wella Presir

PSI

10

22

35

30

30

6

0-50

951

956

660

1,100

ó

486

446

417

300

50

456

767

0

1,045

1,250

1,410

1,670

Vacuum

417

1,475

293

239

55

6.Z

	RESERVOIR STATISTICS (Average Values)									
Depth Feet	Net Pay Thickness Feet	Porosity Per Cent	Permeability Millidarcys	Oil Gravity API	Oil Viscosity Centipoises					
950	13	19.6	184	35.3	-					
980	15	18.2	221	33.5	-					
860	21	19.8	108	33	-					
880	25	19	83	32	-					
1,346	40	16	11	34	-					
1,334	-	-	-	-	-					
464	-	-	-	-	-					
1,750 8	. 13	16	84	39	1.7 @ 85° F.					
1,952	10	15	990	37	-					
2,270	-	-	-	37.3	4.6 @ 89° F.					
2,275	-	-	-	-	-					
3,245	11	21	-	-	-					
1,500	6.7	15.3	310	36.6	3.9 @ 104° F.					
1,375	16	-	-	40.2 .	4.7 @ 70° F.					
1,500	7	16.6	50	-	-					
2,040	11.6	18.9	221	36	4.0					
2,750	12	16	20	-	-					
2,640	14	17.1	44	-	-					
2,115	25	20.1	171	~	-					
2,500	10	-	-	-	-					
3,500	2.0	18	50	-	-					
2,520	8.5	17	57	36.1	5.1 @ 94° F.					
2,400	8	18.5	75	36.2	5.0 @ 90° F.					
2,680	18	17	75	36.5	3.8 @ 81° F.					
2,620	12	17.2	57	37	4.6 @ Reser- voir temp.					
2,900	7	-	-	38	-					
2,750	23.2	18	20	38	-					
2,900	5	-	-	35	-					
2,200	43	19.2	190	36.8	2.9 @ 86° F.					
2,700	30	16	50	39	2.2 @ 92° F.					
2,800	24	14.5	50	-	-					
1,700	15	20	78	38	8.3 @ 69º F.					
3,100	5.3	13.8	522	36	2.6 @ 99° F.					
1,410	27	19	110	39	-					

	Maj No.
Subjected to gas injection since 1935.	73
*Due to Arkansas Fuel line input well. Subjected to gas injection since 1934.	74
	75
Previously subjected to gas injection.	76
"Due to Ohio line input wells.	77
Pilot flood. *Includes primary production since start of flood.	78
Pilot flood. *Includes primary production since start of flood.	79
	80
*Due to natural water drive.	81
*Includes primary production since start of flood.	82
*Includes primary production since start of flood.	83
Pilot flood.	84
*Includes primary production.	85
	86
Previously subjected to gas injection. *Estimate.	87
	88
	89
	90
	91
	92
	93
	94
	95
1951 production 2,400 barrels below normal.	96
	97
Plugged and abandoned July, 1952.	98
Previously subjected to gas injection.	99
	100
Previously subjected to gas injection. *Includes Indiana data.	101
Previously subjected to gas injection.	102
Previously subjected to gas injection.	103
	104
	105

REMARKS

TABLE I (Continued)

GENERAL INFORMATION

Map No.	Field	Operator	Project	Formation "Sand"	County
107	Patoka	Sohio	Patoka Rosiclare	Rosiclare	Marion
108	Patoka	Sohio	Stein Unit	Stein	Marion
109	Phillipstown Consolidated	C. E. Brehm	Phillipstown Unit "A"	Pennsylvanian	White
110	Phillipstown Consolidated	British-American	North Calvin	Pennsylvanian #7	White
111	Phillipstown Consolidated	Magnolia	Schmidt-Seifried	Biehl	White
112	Phillipstown Consolidated	Phillips	Laura	Benoist	White
113	St. Marie	S. Lebow	St. Marie	McClosky	Jasper
114	Salem	Texas	Salem Unit	Benoist	Marion
115	Salem	Texas	Salem Unit	Renault-	Marion
116	Salem	Texas	Salem Unit	McClosky	Marion
117	Salem	Texas	Salem Unit	Devonian	Marion
118	Salem	Texas	Rosiclare Sand Unit	Rosiclare	Marion
119	Siggins	Bell Brothers	Flood #1	Upper Siggins	Cumberland
120	Siggins	L. Fikes	Vevay Park	Siggins	Cumberland
121	Siggins	Forest	Siggins	First Siggins	Cumberland
122	Siggins	Hammonds & Wheless	Siggins	Casey	Clark &
123	Siggins	Pure	Union Group	First & Second	Clark &
124	Storms	Mabee	-	Siggins Waltersburg	White
125	Westfield	E. Constantin	Hawkins	"Gas Sand"	Clark
126	Westfield	E. Constantin	Johnson	"Gas Sand"	Coles
127	Westfield	Forest	Parker	Pennsylvanian	Clark
128	Willow Hill, East	M. M. Spickler	-	"Gas Sand" McClosky	Jasper
129	Woburn	Arrow Drilling Company	Spindler	Benoist	Bond
130	York	Trans-Southern	York	Casey	Cumberland
131	Lawrence	H. V. Sherrill	Applegate	Jackson & Cypress	Lawrence

TABLE II

ILLINOIS PRESSURE MAINTENANCE PROJECTS USING WATER INJECTION DURING 1952

			GENERAL	LINFORMATION	
Map No.	Field	Operator	Project	Formation "Sand"	County
132	Albion Consolidated	Calvert	South Albion Biehl	Biehl	Edwards
133	Bone Gap Consolidated	Gallagher	-	Waltersburg	Edwards
134	Boyd	Superior	Boyd Repressure	Bethel	Jefferson
135	Dix	Carter	Dix	Bethel	Jefferson
136	Loudon	Carter	Loudon Devonian	Devonian	Fayette
137	Omaha	Carter	Omaha	Palestine	Gallatin

20

		-		-		and and and an	ONSTATISTICS	(Barrels)		
				Water	Water Injection Oll Productic			Accovery		
	Location		Date First	Total	Cumulati	OII Pr	roduction	Water 1	Production	
Castlen	Townshin	Passe	Ter in add an	rotar	Cumulative	Tota1	Cumulative	Total	Cumulative	24
Section	1 Ownship	Kange	injection	1952	12-31-52	1952	12-31-52	1952	12-31-52	N
21,28,29	-4N	-1E	1948	661,454	2,306,790	132,687*	1,017,101*	207,747	568,134	10
28	-4N	-1E	August, 1951	76,700	93,830	11,695*	13,327*	44,649	50,329	10
30 19,30	-4S -4S	-11E -14W	June, 1952	10,706	10,706	4,379*	4,379*	None	None	10
31	-35	-14W	June, 1951	300,372	755,475*	219,623	309,923	75,223	125,523	11
30,31	-3S	-11E	May, 1951	174,570	374,172	113,990*	208,805*	16,171	46,255	11
19	-4S	-11E	March, 1952	16,352	16,352	None	None	None	None	11
5,6,7,8	-5N	-14W	October, 1948	144,000*	986,000*	None	31,000	144,000*	344,000*	11
-	-1N -2N	-2E -2E	October, 1950	471,220	813,142	36,477	44,222	557,610	-	11
-	- 1N -2N	-2E -2E	October, 1950	247,397	735,664	None	None	350,600	-	11
-	-1N -2N	-2E -2E	Apr11, 1951	2,015,564	3,022,740	55,153	87,623	908,740	-	11
-	-1N -2N	-2E -2E	October, 1950	5,318,452	9,300,539	30,762	39,252	2,144,369	-	11
15	-1N	-2E	April, 1950	194,455	445,667	16,431	31,719	24,193	-	11
13	-10N	-10E	September, 1950	94,386	138,590	10,865	19,865	16,400(es	it.) -	11
25	~10N	-14W	December, 1950	81,782	182,725	431	977	6,000(es	st.) -	12
7 11,12,13,	-10N 14 -10N	-11E -10E	June, 1942	3,700,000	27,221,365	665,000	4,535,736	-	-	12
7 7	-10N -10N	-14W -11E	December, 1951	251,441	276,764	562	562	3,395(e:	st.) -	12
13 18	-10N -10N	-14W -11E	December, 1946	1,333,097	8,170,591	235,434	1,638,338	1,329,309	4,790,425	12
22	-6S	-9E	July, 1951	46,250	68,200	None	None	None	None	12
21	-11N	-14W	August, 1951	137,823	162,577	None	None	-	-	12
17,18	-11N	-11E	June, 1951	195,012	288,868	None	None	-	-	12
30	-11N	-14W	June, 1950	118,000	365,234	7,000	10,186	-	-	12
36	-7N	-10E	June, 1952	*	*	-	-	-	-	12
10	-6N	-2W	September, 1951	51,911	52,531	5,373*	6,640*	51,911	52,531	12
5	-9N	-11E	October, 1950	133,481	332,283	4,915	5,993	6,065	-	13
	-4N	-12W	September, 1952	44,122	44,122	None	None	-	-	131
otals				72,950,735	221,078,168	8,751,598	28,332,216			

PRODUCTION AND INJECTION STATISTICS (Barrels)

PRODUCTION AND INJECTION STATISTICS (Barrels)

				Water I	njectlon	Oil P	roduction [†]	Water	Production	
	Location		Date First	Total	Cumulative	Total	Cumulative	Total	Cumulative	Map
Section	Township	Range	Injection	1952	12-31-52	1952	12-31-52	1952	12-31-52	No.
1 35.36	-3S -2S	-10E	Aprll, 1951	60,612*	60,612*	108,321	250,471	71,668*	71,668*	132
18	-15	-14W	June, 1952	39,000	39,000	104,026	107,641	38,500	46,000	133
18,19,30	-15	-2E	June, 1945	1,110,563	5,268,103	417,927	6,173,784	860,583	5,068,197	134
3,4,9,10,	-1S -1S	-1E -2E	January, 1948	871,800	1,647,620	299,772	6,489,026	200,877	2,653,651	135
-	~8N	-3E	September, 1943	11,036,232	75,497,045	657,266	13,783,028	8,830,788	77,130,000	136
33	-75	-8E	October, 1944	102,754	671,067	97,572	1,547,103	89,364	790,629	137
*	-85	-8E		13,220,961	83,183,447	1,684,884	28,351,053	10,091,780	85,760,145	

includes both primary recovery and any additional oil obtained by pressure maintenance.

-	10	۰.
9	- 54	ð
<u></u>	6	

	DEVELOPMENT AS OF 12-31-52							
	Nuchas	of Walls	Injection	Spacing Acres Per	Productive A Subjected	creage		
Nap No.	Injection	Producers	Pattern	Input Well	To Injection	Total		
107	16	10	Perimeter	-	445	445		
108	4	6	Peripheral	-	61	61		
109	1	5	Irregular	-	90	90		
110	9	15	5-spot	10	130	130		
111	5	9	5-spot	10	60	140		
112	1	3	-	-	16	40		
113	1	14	Spot	-	400	500		
114	2	967	Peripheral	& 2 0	7,975	7,975		
115	2	616	Peripheral	-	4,881	4,881		
116	49	589	Peripheral	-	7,711	7,711		
117	20	280	Peripheral	-	5,414	5,414		
118	3	5	Flank	-	100	100		
119	9*	36	5-spot	4.4	80	80		
120	2	4	5-spot	4.4	10	-		
121	407	329	5-spot	4.4	1,800	-		
122	27	20	5-spot	4.4	135	227		
123	127	121	5-spot	4.4	468	575		
124	1	2	-	-	40	40		
125	16	5	5-spot	4.4	40	640		
126	24	11	5-spot	4.4	70	1,760		
127	9	12	5-spot	2.5	20	-		
128	1	1	-	-	20	20		
129	1	4	Spot	-	20	20		
130	3	7	Line Drive	4.4	15	125		
131	4	1	5-spot	10	10	225		
					31 330t			

†Includes only 8,800 acres for the Salem Unit.

DEVELOPMENT AS OF 12-31-52

Map No.	Map Number of Wells No. Injection Producers		Injection Pattern	Productive Acreage Subjected To Injection Total	
132	2	7	Periphery	60	119
133	1	11	-	40	120
134	3	60	Flank	750	750
135	4	64	Periphery	1,200	1,200
136	6	69	Periphery	2,600	2,600
137	1	15	Flank	260	260

	INJECTION WATER		
		Avg. Bbls. Per Day Per Well	Average Wellhead Pressur
Source	Type	Per Foot	<u>P51</u>
Tar Springs	Brine	12.6	447
Tar Springs	Brine	5.3	3 0 8
Pennsylvanian sand	Brine	2.2	-
Produced water and	Brine	3.2	750
Shallow sand	Fresh	-	963
Produced	Brine	5.4	0
Cypress	Brine	-	0
Gravel bed and	Fresh and	23.1	585
produced Gravel bed and	brine Fresh and	10.3	433
produced	brine		
Gravel bed and	Fresh and	5.6	104
produced	brine		
Gravel bed, upper	Fresh and	38.3	U
sand and produced Pennsylvanian sand	brine Brine	12.7	448
Surface and	Fresh and	1.8	200
produced	brine		
Surface and	Fresh and	6.5	212
produced	brine		
Gravel bed and	Fresh and	0,8	200
produced	brine Essablered	0.6	60
Fresh water and	Fresh and	0.5	• • • •
Gravel bed	Fresh	0.9	245
Pennsylvanian sand	Brine	8.4	-
Carper	Brine	-	198
Westfield lime	Brine	-	125
Gravel bed	Fresh	1.4	120
-	Brine	-	-
Produced	Brine	10.2	219
Shallow sand and	Fresh and	12.2	301
produced	brine		
Gravel bed	Fresh	6.2	310

	INJECTION	INJECTION WATER	
		Average Wellhead Pressure	
Source	Type	PSI	
Produced	Brine	556	
Produced	Brine	Vacuum	
Produced	Brine	66	
Tar Springs and	Brine	103	
Produced	Brine	200	
Produced	Brine	225	

		at fold 517	TIDTICS (Aver	age Valu	es)
Depth Feet	Net Pay Thickness Feet	Porosity Per Cent	Permeability Millidarcys	Oil Gravity API	Oil Viscosity Centipoises
1,550	9	18.8	223	40	4.1
1,280	10	21	32	39	3.5 @ 60° F.
1,912	23	13	36	38	4.5 @ 84° F.
1,550	29	17,6	86	29	20 @ Reser-
1,830	-	-	-	32.2	voir temp. 11.2 @ 78º F.
2,800	10	15	46	-	-
2,860	7	-	-	-	-
1,770	28	17.9	150	37	3.9 @ 93° F.
1,825	7	16.5	18	37	4 8 @ 029 5
1.050	26	16.3	28	5.	4.4 @ 93° F.
1,950	20	15.8	700	37	-
3,400	19	16.8	300	36,5	-
2,093	14	11.5	43	36.5	-
320	16	18.9	73	34	12 @ 63º F.
600	16	20.3	349	30.1	-
400	32	17.5	56	36.6	8 @ 60° F.
447	56	21.5	40.2	33.8	10.5 @ 69° F.
404	25	18.5	45	36	880400
464	6	18.3	66		0.0 @ 00 1.
2,241	15	-	-	-	-
-	-	22	120	30	28 @ 62° F.
-	-	21.5	86	29	-
270	25	17.9	153	28.1	54 @ 60° F.
2,615	10+	-	-	-	-
1,006	14	-	-	-	-
590	10	21.9	231.2	30,3	10 @ 75° F.
,320	22.7	20.1	62	34.7	4.3 @ 81° F.

REMARKS

	Map No.
*Includes primary production since start of flood.	107
*Includes primary production since start of flood.	108
*Includes primary production since start of flood.	109
*Includes estimated 300,000 barrels in pilot flood from	110
*Includes primary production since start of flood. Pilot flood (1-input) from 9-47 to 5-51.	111
	112
Dump flood. *Estimated.	113
	114
	115
	116
	117
	118
Previously subjected to gas injection. *15 line wells operated jointly with Forest.	119
	120
Previously subjected to gas injection.	121
Previously subjected to gas injection.	122
	123
	124
	125
	126
Previously subjected to gas injection.	127
Dump flood.	128
Includes primary production since start of flood.	129
	130
Pilot flood,	131

RESERVOIR STATISTICS (Average Values)

Depth Feet	Net Pay Thickness Feet	Porosity Per Cent	Permeability Millidarcys	Oil Gravity AP1	Oil Viscosity Centipoises
2,080	9.2	16.8	384	32.3	10.4 @ 85° F.
2,310	20	18	120	34.6	5.6 @ 85° F.
2,065	19	17.5	175	-	-
1,950	12	16.4	128	39	2.5 @ 87° F.
3,100	-	-	-	29	6.5 @ 96° F.
1,700	17	18.9	427	27	17 @ 76° F.

REMARKS

	Map No.
Since May, 1952.	132
	133
reviously subjected to gas injection.	134
	135
	136
	137

