
c⃝ 2013 Jian Guan



OPENMP-CUDA IMPLEMENTATION OF THE MOMENT METHOD
AND MULTILEVEL FAST MULTIPOLE ALGORITHM ON

MULTI-GPU COMPUTING SYSTEMS

BY

JIAN GUAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

Professor Jianming Jin



ABSTRACT

In this thesis, the method of moments (MoM) and the multilevel fast mul-

tipole algorithm (MLFMA) are implemented for GPU computation based

on the hybrid OpenMP-CUDA parallel programming model. The resultant

algorithms are called the OpenMP-CUDA-MoM and the OpenMP-CUDA-

MLFMA, respectively. Both of the proposed methods are applied to compute

electromagnetic scattering by a three-dimensional conducting object.

For the OpenMP-CUDA-MoM, the multi-GPU parallelization of system

matrix assembly, iterative solution, and fast evaluation of radar cross section

(RCS) are discussed in detail. The parallel efficiency versus number of devices

is investigated through the calculation of a conducting sphere on different

number of GPUs. The parallel efficiency of the total computation is over

87%. The total speedup for the monostatic RCS calculation of a NASA

almond by 4 GPUs is between 80 and 260 times.

For the GPU accelerated MLFMA, the hierarchical parallelization strategy

is employed, which ensures a high computational throughput for the GPU

calculation. The resulting OpenMP-based multi-GPU implementation is

capable of solving real-life problems with over 1 million unknowns with a

remarkable speedup. The RCS of a few benchmark objects are calculated

to demonstrate the accuracy of the solution. The results are compared with

those from the CPU-based MLFMA and measurements. The capability of the

proposed method is analyzed through the examples of a sphere, an aerocraft

and a missile-like object. The total speedup achieved by 4 GPUs is between

20 and 80 times.

ii



To my parents, for their love and support

iii



ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude to my advisor,

Professor Jian-Ming Jin, who has provided me much guidance, support, help,

and encouragement, without which I would not have been able to complete

this thesis. All I have learned during the study and research under Professor

Jin’s direction will greatly benefit my future work.

Besides my advisor, I would like to thank every member in Professor Jin’s

group for their helpful discussions. My special appreciation is given to Dr.

Su Yan for his great help and suggestions on my research.

Finally, I want to express appreciation to my parents for their dedication

and their continued love and support.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 ANOUTLINE OFMOMANDMLFMA FOR ELEC-
TROMAGNETIC SCATTERING . . . . . . . . . . . . . . . . . . . 4
2.1 Integral Equations of Electromagnetic Scattering . . . . . . . . 4
2.2 Geometrical Modeling and Domain Discretization . . . . . . . 5
2.3 Curvilinear RWG Basis Functions . . . . . . . . . . . . . . . . 6
2.4 Solution of Integral Equations . . . . . . . . . . . . . . . . . . 7
2.5 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 3 HYBRID OPENMP-CUDA PARALLEL PROGRAM-
MING MODEL AND GPU ARCHITECTURE . . . . . . . . . . . 12
3.1 Hybrid OpenMP-CUDA Parallel Programming Model . . . . . 13
3.2 GPU/CUDA Architecture . . . . . . . . . . . . . . . . . . . . 13
3.3 Computational Efficiency and Parallel Efficiency . . . . . . . . 15
3.4 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

CHAPTER 4 MULTI-GPU PARALLELIZATION OF MOM . . . . . 18
4.1 System Matrix Assembly . . . . . . . . . . . . . . . . . . . . . 19
4.2 Iterative Solution . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 RCS Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

CHAPTER 5 MULTI-GPU PARALLELIZATION OF MLFMA . . . 30
5.1 Near-Field System Matrix Assembly . . . . . . . . . . . . . . 30
5.2 Parallelization on Far-Field Interaction . . . . . . . . . . . . . 31
5.3 Multi-GPU Implementation Using Pinned Memory . . . . . . 32
5.4 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 33

v



5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.7 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

CHAPTER 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . 48

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



LIST OF TABLES

4.1 Speedup of system matrix assembly of a PEC sphere with
diameter of 4λ (single GPU) . . . . . . . . . . . . . . . . . . . 28

4.2 Speedup of BiCGstab solution of a PEC sphere with diam-
eter of 4λ (single GPU) . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Speedup of RCS calculation of a PEC sphere with diameter
of 4λ (single GPU) . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Speedup of total computation of a PEC sphere with diam-
eter of 4λ (single GPU) . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Speedup of monostatic RCS calculation of a NASA almond
at 3 GHz (CFIE, 4 GPUs) . . . . . . . . . . . . . . . . . . . . 29

4.6 Speedup of monostatic RCS calculation of a NASA almond
at 9 GHz (CFIE, 4 GPUs) . . . . . . . . . . . . . . . . . . . . 29

5.1 Speedup of the global memory strategy for bistatic RCS
calculation of a missile-like object at 3 GHz . . . . . . . . . . 46

5.2 Speedup of the pinned memory strategy for bistatic RCS
calculation of a missile-like object at 3 GHz . . . . . . . . . . 46

5.3 Speedup of the bistatic RCS calculation of a PEC sphere
with diameter of 30λ . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Speedup of the bistatic RCS calculation of an aerocraft at
1.5 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



LIST OF FIGURES

2.1 The sketch of a curvilinear triangular element. (a) The
curvilinear triangle in the rectangular coordinate system.
(b) The curvilinear triangle in the parametric coordinate
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The definition of a CRWG basis function. . . . . . . . . . . . . 10
2.3 The process of the far-field interaction. Si and Bi stand

for the radiation pattern and receiving pattern at level i
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Speedup achieved for a matrix-matrix multiplication using
NVIDIA Quadro FX5800 graphics card versus Intel’s Xeon
W3520 CPU (2.66 GHz). . . . . . . . . . . . . . . . . . . . . . 16

3.2 A typical OpenMP-CUDA parallel programming model. . . . . 16
3.3 A typical CUDA-capable NVIDIA GPU architecture [1, 2]. . . 17
3.4 Memory accessibility of the thread divisions [1, 2]. . . . . . . . 17

4.1 System matrix assembly in the OpenMP-CUDA-MoM. (a)
Data fetch from basis stream. (b) Data fetch from testing
stream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 BiCGstab solution in the OpenMP-CUDA-MoM. . . . . . . . 25
4.3 HH-polarized bistatic RCS for the PEC sphere with diam-

eter of 4λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Parallel efficiency of the OpenMP-CUDA-MoM versus num-

ber of devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 HH-polarized monostatic RCS for the NASA almond at 3 GHz. 26
4.6 HH-polarized monostatic RCS for the NASA almond at 9 GHz. 27

5.1 Near-field system matrix assembly. (a) Pattern of near-
field system matrix. (b) Process of matrix filling. . . . . . . . 38

5.2 Thread allocation for the aggregation phase at the (L-2)th level. 38
5.3 Implementation of far-field interaction on Multi-GPU. (a)

Parallel scheme for aggregation. (b) Parallel scheme for
translation. (c) Parallel scheme for disaggregation. . . . . . . . 39

viii



5.4 Scattering analysis of a cone-sphere with a gap at 3 GHz.
The total length of this object is 0.689 m. (a) The HH-
polarized monostatic RCS in the xz-plane. (b) Real part
of the current density with the incidence angle θ = 0◦ and
ϕ = 0◦ (in linear scale). . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Scattering analysis of a NASA almond at 9 GHz. The
size of this object is 25.24 cm × 9.75 cm × 3.25 cm. (a)
The HH-polarized monostatic RCS in the xy-plane. (b)
Real part of the current density with the incidence angle
θ = 90◦ and ϕ = 180◦ (in linear scale). . . . . . . . . . . . . . 41

5.6 Scattering analysis of a missile-like object. The length of
the body is 3 m, and the thickness of the wing is 1 cm. A
3 GHz plane wave is incident from the angle θ = 0◦ and
ϕ = 0◦. (a) The HH-polarized bistatic RCS in the xz-
plane. (b) Real part of the current density induced on the
surface of the scatterer (in linear scale). . . . . . . . . . . . . . 42

5.7 Scattering analysis of the PEC spheres with diameters of
4λ, 6λ, 12λ, and 30λ. (a) The four devices speedup of the
OpenMP-CUDA-MLFMA versus the number of unknowns
(unknowns = 18162, 41316, 158333, 1063155). (b) The
HH-polarized bistatic RCS of the 30λ PEC sphere. . . . . . . 43

5.8 Scattering analysis of the aerocraft at frequencies of 200
MHz, 400 MHz, 780 MHz and 1.5 GHz. (a) The four de-
vices speedup of the OpenMP-CUDA-MLFMA versus the
number of unknowns (unknowns = 20319, 70413, 269859,
1001946). (b) The VV-polarized bistatic RCS in the yz-
plane at 1.5 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.9 Real part of the current density at 1.5 GHz with the inci-
dence angle θ = 60◦ and ϕ = 270◦ (in linear scale). . . . . . . . 45

ix



CHAPTER 1

INTRODUCTION

Numerical methods for electromagnetic analysis have been developed rapidly

since the 1960s. Many well-known numerical methods have been introduced,

including the finite element method (FEM), the finite-difference time-domain

method (FDTD), and the method of moments (MoM) [3]. Compared with

the FEM and FDTD, the MoM can avoid the truncation errors introduced by

absorbing boundary conditions and the numerical dispersion errors due to the

discretization of propagation spaces. These properties make MoM an ideal

method for solving electromagnetic radiation and scattering problems. How-

ever, the major disadvantage of the MoM is that it has O(N2) computational

and storage complexities, which result in a large memory requirement and

a tremendous amount of computation time. To accelerate the computation

and reduce the memory requirement, the multilevel fast multipole algorithm

(MLFMA) has been developed and widely used in electromagnetic scattering

analysis due to its O(N logN) computational complexity [3, 4].

Even with a near optimal computational complexity, the computational

cost of the MLFMA is still prohibitively high when it is used for large elec-

tromagnetic problems. In practical application, many of those problems are

required to be solved within a very short time. In order to further accelerate

the computation, parallel computation has been applied to the traditional

MLFMA [5–9] to take advantage of computer hardware advancement. In

2005, a hybrid parallel MLFMA based on the distributed memory system

using the message passing interface (MPI) was proposed [6]. The strategy

is rather straightforward. For the finer levels in MLFMA, the groups at

the same level are partitioned into different processors and each processor

gets approximately the same number of groups. For the coarser levels, the

far-field patterns (FFPs) at the same level are partitioned equally among

all processors and all groups are replicated for every processor. However,

when the number of processors increases, this parallel strategy does not

1



work well around the transition level where neither the number of groups

nor the number of FFPs is large enough to get a good parallel efficiency. To

alleviate this problem, a hierarchical partitioning strategy was later proposed

by simultaneously partitioning the groups and their FFPs at all levels [8].

More recently, a hybrid MPI-OpenMP-MLFMA method was implemented

based on the hybrid shared/distributed memory architecture to solve the

problems with over one billion unknowns [9].

All the preceding parallel strategies are implemented using the CPU par-

allel programming models such as MPI and OpenMP. Recently the graphics

processing unit (GPU), which is basically a many-core computing system,

has received more and more attention from computational electromagnetics

(CEM) community due to its low price and high computational throughput

[1, 2]. There has been intensive research dedicated to developing the GPU

parallelized algorithms. The differential-equation-based methods such as the

finite-difference time-domain (FDTD) and the discontinuous Galerkin finite

element (DGTD) methods have been implemented on GPUs [10–12]. The

integral-equation-based methods such as the method of moments (MoM) and

the time-domain integral equation (TDIE) method have also been accelerated

by GPUs [13–16]. Besides, many GPU-incorporated fast algorithms for effi-

cient evaluation of electromagnetic fields have been presented [17–19], such as

the non-uniform grid interpolation method (NGIM), the box-based adaptive

integral method (B-AIM), the multilevel plane-wave time-domain (PWTD)

method, and the fast multiple method (FMM). For the GPU-accelerated

MLFMA, the CUDA (compute unified device architecture) implementation

of low-frequency MLFMA on a single GPU was proposed with the essential

idea of “one thread per observer” [20]. The observer stands for the parent

group in the aggregation phase, the child group in the disaggregation phase,

and the destination group in the translation phase, respectively. However,

that implementation strategy results in a low parallel efficiency when the

number of groups decreases at coarse levels.

In order to improve the parallel efficiency and solve large problems, this

thesis first proposes a multi-GPU accelerated MoM, called the OpenMP-

CUDA-MoM, which is developed by hybridizing the OpenMP and the CUDA

parallel programming models. To be specific, the parallelization of sys-

tem matrix assembly, iterative solution, and RCS calculation on multi-GPU

computing systems are discussed in detail. To solve larger problems and

2



further speedup the computation, an OpenMP-CUDA based implementation

of MLFMA, called OpenMP-CUDA-MLFMA, is proposed. For the com-

putation of far-field interaction, the groups and the FFPs are parallelized

hierarchically. A global memory strategy and a pinned memory strategy are

proposed for different application situations. This algorithm is shown to have

a high computational efficiency when solving large electromagnetic scattering

problems.

The remainder of the thesis is organized as follows. In Chapter 2, the for-

mulations and implementations of MoM and MLFMA are outlined, followed

by an introduction to the hybrid OpenMP-CUDA parallel programming

model and GPU/CUDA architecture in Chapter 3. In Chapter 4, the multi-

GPU parallelization of MoM is presented. Then we discuss the OpenMP-

CUDA-MLFMA in Chapter 5. The conclusion is drawn in Chapter 6.

3



CHAPTER 2

AN OUTLINE OF MOM AND MLFMA FOR
ELECTROMAGNETIC SCATTERING

In order to present the implementation strategies of the OpenMP-CUDA-

MoM and the OpenMP-CUDA-MLFMA clearly, it is necessary to have a

brief review of the formulations and their numerical implementations. In this

chapter, the integral equations of electromagnetic scattering are presented.

In order to numerically solve those integral equations, the geometrical model-

ing, domain discretization, and the curvilinear Rao-Wilton-Glisson (CRWG)

basis functions are first discussed in detail. Then the MoM is applied to

translate the integral equation into a system of linear equations. Finally, the

basic idea and numerical implementation of MLFMA are presented to speed

up the matrix-vector products and reduce the memory requirement.

2.1 Integral Equations of Electromagnetic Scattering

Consider a three-dimensional (3D) conducting object illuminated by an in-

cident field (Ei,H i). The electric-field integral equation (EFIE) and the

magnetic-field integral equation (MFIE) are given by

ηT (J)=−n̂×Ei(r) r ∈ S (2.1)

−1

2
J +K(J)=−n̂×H i(r) r ∈ S (2.2)

respectively, where J denotes the unknown surface current density and the

integral operators T and K are defined as

T (J)=ikn̂×
∫
S

(
I +

∇∇
k2

) eikR

4πR
· J(r′)dr′ (2.3)

K(J)=n̂× P.V.

∫
S

∇ eikR

4πR
× J(r′)dr′ (2.4)

4



where P.V. stands for the Cauchy principal value integration, S denotes the

surface of the conducting object, k and η denote the free-space wavenumber

and impedance, n̂ is the outwardly directed normal unit vector, I represents

the identity operator, and R = |r−r′| denotes the distance between the field

and source points.

Both the EFIE and the MFIE can be solved for J . However, for a given

closed surface, both of them will suffer from the problem of interior resonance

at certain frequencies when the exterior medium is lossless [3]. To eliminate

this problem, we can combine (2.1) and (2.2) together to form the combined-

field integral equation (CFIE) which is given by

αn̂× ηT (J) + (1− α)η

[
1

2
J −K(J)

]
= −αn̂× [n̂×Ei(r)] + (1− α)ηn̂×H i(r) r ∈ S

(2.5)

where α ∈ [0, 1] is the combination parameter. The numerical method to

solve the EFIE, MFIE, and CFIE is discussed specifically in the following

sections.

2.2 Geometrical Modeling and Domain Discretization

In order to solve the unknown surface current density from integral equations,

the geometry of the object needs to be described mathematically, which is

called geometrical modeling. The quality of the geometrical modeling will

directly affect the accuracy of the numerical solution. Because it is impossible

to find the basis functions defined on the entire solution domain, the object

is usually discretized into subdomains which are referred as elements. The

subdomain basis functions are employed to provide an approximation of the

unknown solution within an element.

The curved surface of an object can be modeled by curvilinear triangular

elements. As shown in Figure 2.1, a curvilinear triangle can be defined by

six nodes, three of which are the vertices of the triangle, and the other three

are the midpoints of the three curved edges. A curvilinear triangle in the

rectangular coordinate system can be mapped onto a triangle in a parametric

5



coordinate system using the coordinate transformation as

r(ξ1, ξ2) =
6∑

j=1

φj(ξ1, ξ2, ξ3)rj (2.6)

where rj are the rectangular coordinates of the six controlling nodes in Figure

2.1(a), ξ1, ξ2, ξ3 are the parametric coordinates, which satisfy the relation

ξ1 + ξ2 + ξ3 = 1. Hence only two of these three are independent. The shape

functions φj are defined in the parametric coordinates

φ1 = ξ1(2ξ1 − 1) (2.7)

φ2 = ξ2(2ξ2 − 1) (2.8)

φ3 = ξ3(2ξ3 − 1) (2.9)

φ4 = 4ξ1ξ2 (2.10)

φ5 = 4ξ2ξ3 (2.11)

φ6 = 4ξ1ξ3. (2.12)

By using the presented curvilinear triangular elements, the arbitrarily curved

surfaces can be modeled with good accuracy and high flexibility.

2.3 Curvilinear RWG Basis Functions

After the surface discretization of the object using curvilinear triangular

elements, the CRWG basis functions can be defined on these triangular

elements, as shown in Figure 2.2. The definition of the CRWG basis functions

can be expressed mathematically as

fn(r) =


Λ+ r ∈ T+

n

−Λ− r ∈ T−
n

0 otherwise.

(2.13)

Here, Λ+ and Λ− are the basis functions related with the edge n, defined in

the triangles T+
n and T−

n which share the common edge n (n is the global index

of the basis function). The Λ+ and Λ− can be represented locally using the

basis function Λi defined on the edge li of the curvilinear triangular element

6



shown in Figure 2.1, where li is the edge which is opposite to the ith vertex of

the triangle (i is the local index of the vertex in the triangle). The expression

of Λi can be written as

Λ1 =
1

J
(ξ2l3 − ξ3l2) (2.14)

Λ2 =
1

J
(ξ3l1 − ξ1l3) (2.15)

Λ3 =
1

J
(ξ1l2 − ξ2l1) (2.16)

where J is the Jacobian

J =

∣∣∣∣ ∂r∂ξ1 × ∂r

∂ξ2

∣∣∣∣ (2.17)

and li(i = 1, 2, 3) are edge vectors defined as

l1 = − ∂r

∂ξ2
, l2 =

∂r

∂ξ1
, l3 = l1 + l2. (2.18)

The divergence of the CRWG basis function can be derived as

∇ ·Λi =
2

J
, i = 1, 2, 3. (2.19)

The charge density represented by the divergence of the CRWG basis function

has the same magnitude but the opposite signs over the adjacent triangle pair,

which means no artificial charges accumulated on the pair of triangles.

2.4 Solution of Integral Equations

The EFIE, MFIE, and CFIE can be solved by numerical methods. One of the

most commonly used methods for solving integral equations is the method

of moments (MoM) introduced by R. F. Harrington in 1968 [21]. Since both

the EFIE and the MFIE can be considered as the special case of the CFIE,

the MoM solution of the CFIE is considered here. In order to numerically

solve the CFIE, the unknown current density can be expanded as

J =
N∑

n=1

Infn (2.20)

7



where N is the number of unknowns, fn denotes the vector basis functions,

and In is the expansion coefficient yet to be determined. In this thesis, the

CRWG functions [22, 23] are used as the basis functions. The application of

Galerkin’s method to (2.5) results in a system of linear equations

N∑
n=1

ZmnIn = Vm m = 1, 2, ..., N (2.21)

in which

Zmn =α

∫
S

fm · [n̂× ηT (fn)]dr (2.22)

+(1− α)η

∫
S

fm ·
[
1

2
fn −K(fn)

]
dr

Vm=

∫
S

[αEi + (1− α)ηn̂×H i] · fmdr. (2.23)

In the MoM, the system matrix Z is a full matrix, which results in O(N2)

memory requirement and computational complexity when (2.21) is solved

iteratively. To speed up the matrix-vector products and reduce the memory

requirement, MLFMA is extensively applied to MoM [4]. The basic idea of

the MLFMA is to decompose the computation of matrix-vector products into

the near-field and far-field interactions. To achieve such a decomposition, the

entire object is first enclosed by a large cubic box, then divided into non-

empty subcubes called groups, each subcube is further subdivided into small

cubes recursively until the length of non-empty cubes at the finest level is

about 0.25λ to 0.5λ. After the decomposition, the system of linear equations

can be written as

ZnearI +ZfarI = V (2.24)

in which Znear is a block matrix, and each block represents the interaction

between the testing functions in a group at the finest level and the basis

functions in the same group or a neighboring group. Zfar is the remaining

part of the MoM matrix which represents the interaction between groups

that are well separated [6]. The Znear can be calculated directly using the

ordinary MoM at the finest level, and the computation of ZfarI can be done

in three phases called aggregation, translation, and disaggregation. Figure

2.3 shows the basic idea for the computation of the far-field interaction,

8



where Si and Bi stand for the radiation pattern and receiving pattern at

level i, respectively. The uphill process represents the aggregation phase,

the downhill process is the disaggregation phase, and the transverse process

stands for the translation phase. In the aggregation phase, the fields radiated

by the sources fnIn in each group at the finest level are first projected into

the spectrum space to obtain the radiation pattern, which is then aggregated

to the center of the parent group at the parent level. This procedure is

executed repeatedly until it reaches the coarsest level. It is easy to notice

that the number of the groups becomes smaller while the size of the spectrum

sampling becomes larger in the aggregation phase. In the disaggregation

phase, the receiving patterns at each level comes from two sources: one

is the translation of the radiation patterns at the same level; the other is

the disaggregation of the receiving pattern from the parent level. Thus, the

translation and disaggregation can be executed concurrently as follows [6,24].

At the coarsest level, the radiation pattern is first translated to the receiving

pattern for each group, which is then distributed to the centers of child

groups at the child level. At the same time, the radiation pattern at the

child level is translated to the receiving pattern at the same level. Then

the total receiving pattern can be achieved at the child level by summing

up the above two receiving patterns. After the total receiving pattern is

achieved, the next level’s disaggregation and translation can be processed.

This procedure is executed recursively until it reaches the finest level.

9



2.5 Figures

(a) (b)

Figure 2.1: The sketch of a curvilinear triangular element. (a) The
curvilinear triangle in the rectangular coordinate system. (b) The
curvilinear triangle in the parametric coordinate system.

Figure 2.2: The definition of a CRWG basis function.

10



Figure 2.3: The process of the far-field interaction. Si and Bi stand for the
radiation pattern and receiving pattern at level i respectively.

11



CHAPTER 3

HYBRID OPENMP-CUDA PARALLEL
PROGRAMMING MODEL AND GPU

ARCHITECTURE

Parallel computing is an important technique to accelerate electromagnetic

computation due to the fast development of advanced microprocessors in

which multiple threads cooperate to complete the work faster. Many compu-

tational methods for electromagnetics have been parallelized on distributed

and shared memory systems using the message passing interface (MPI) and

OpenMP, respectively. Besides the well-developed shared memory multi-core

CPUs and distributed memory cluster architectures, the graphics processing

unit (GPU), as one of many-cores computing system, has received more and

more attention from the scientific computing community due to its low price

and high computational efficiency. Compared with multi-core computing sys-

tems, GPU focuses more on the execution throughput of parallel computing

which can be illustrated in terms of floating-point calculation and memory

bandwidth. As an example to demonstrate the significant computational

horsepower, Figure 3.1 shows the speedup achieved for a matrix-matrix

multiplication using NVIDIA Quadro FX5800 graphics card versus Intel’s

Xeon W3520 CPU (2.66 GHz), in which the speedups achieved by using

global memory and shared memory are over 100 and 1000 times, respectively.

Before the OpenMP-CUDA-MoM and the OpenMP-CUDA-MLFMA are

presented in detail, we first review the key features of the hybrid OpenMP-

CUDA parallel programming model and the GPU/CUDA architecture. Then,

we define the computational efficiency and parallel efficiency to describe the

performance of GPU computation.

12



3.1 Hybrid OpenMP-CUDA Parallel Programming

Model

Multi-GPU parallelization can be developed using hybrid parallel program-

ming techniques. The most popular approaches to implement multi-GPU ap-

plication are using the MPI-CUDAmodel and the OpenMP-CUDAmodel. In

this section, we introduce the multi-GPU implementation using the OpenMP-

CUDA model. The OpenMP programming model is based on the shared

memory multi-core CPUs architecture [25], and CUDA is developed for the

shared memory many-core GPUs architecture [2]. A typical OpenMP-CUDA

programming model is shown in Figure 3.2. In general the program consists of

one or more phases [2, 25]. The serial phase of the program is first executed

by the master thread on the host (CPU). Then multiple GPUs labeled as

devices take over the work in the parallel phase. Specifically, multiple CPU

worker threads are allocated by an OpenMP instruction, and each worker

thread manages one device. The data-parallel functions called kernels are

executed on each device. When a kernel is launched, a large number of

GPU threads are generated to exploit data parallelism. Those threads are

organized into a two-dimensional (2D) grid of blocks, with each block built

by a 2D or 3D array of threads. All of those threads generated by the kernel

will carry out the same instructions during the parallel phase. With enough

threads in a kernel to execute the same code simultaneously, the latency

hiding mechanism [1,2,20] can be fully utilized to make the parallelism highly

efficient. After every device finishes its parallel computation, the CPU will

pick up the runtime and execute the instructions in the serial phase.

3.2 GPU/CUDA Architecture

It should be emphasized that the significant computational efficiency of

GPU results from its specific hierarchical architecture and excellent memory

bandwidth. To elaborate the GPU acceleration of the MoM/MLFMA, the

understanding of the hardware architecture of GPUs is necessary. Figure 3.3

shows the architecture of a typical CUDA-capable NVIDIA GPU [1,2], which

is organized into an array of streaming multiprocessors (SMs). Off the chip,

all the SMs in one device share a very high bandwidth memory called global

13



memory and a high speed read-only memory called constant memory. The

lifetime of variables in the global memory and constant memory is the entire

application unless they are freed by the programmer. On the chip, each SM

contains a number of streaming processors (SPs) which share control logic,

cache, and shared memory. Each SP has its own small number of registers

which usually store the private and frequently accessed variables because

they can be accessed very fast.

For the CUDA software architecture, the method of allocating different

types of memory on the GPU varies by the hierarchy of threads in the

kernel. As shown in Figure 3.4, multiple threads form a thread block and

multiple thread blocks form a grid. Registers and shared memory are on-chip

memories which can be read and written with short latency. Each thread

owns a number of registers which can be accessed by the respective thread.

Registers usually store the private and frequently accessed variables. Shared

memory is allocated to thread blocks. The threads in a block can access

variables stored in shared memory which is allocated to the block. The

cooperation between threads in a block is taken through the shared memory.

As for the grid, the global memory and constant memory are allocated to the

grid of threads. Before a kernel is invoked, the programmer needs to allocate

memory on the device and transfer the data from host memory to device

memory. After a kernel finishes the calculation, the programmer needs to

copy back the results to the host memory and free the device memory.

Usually the size of device memory and on-chip memories are not enough

to solve large problems. One remedy is to use multi-GPU, and the other

is to use pinned memory. Pinned is a special host memory, which is also

called page-locked memory. One important property of this memory is that

the operating system guarantees pinned memory never be paged out to disk.

Besides, the pinned memory has approximately twice the performance of the

standard pageable memory when it is used for transferring data between the

host and device. However, the transfer speed is restricted by the peripheral

component interconnect express (PCIe) transfer speed and the system front-

side bus speed [26]. Therefore, the full utilization of the hierarchical memory

and the reduction of data communication are crucial in GPU computation.

Recognizing that the GPUs are well suited in dealing with massive data

parallelism and weak at executing with logical instructions while the CPUs

are optimized for sequential instruction performance, one should expect that

14



CEM codes execute the numerically intensive parts on the GPUs and the

sequential parts on the CPU. A well-investigated coordinating strategy can

make the GPU-incorporated algorithm much more efficient than the purely

CPU implemented algorithm.

3.3 Computational Efficiency and Parallel Efficiency

In order to describe the performance of GPU computation, the computational

efficiency and parallel efficiency are defined. Let Tc and Tg be the time for

CPU and GPU computation respectively. The computational efficiency s is

defined as

s =
Tc

Tg

. (3.1)

The computational efficiency is the speedup using GPU versus CPU, which

is simply referred to efficiency.

The parallel efficiency is defined as the speedup using multi-GPU versus

single GPU. Let p be the number of devices, and let T1 be the time for single

GPU computation and Tp be the time for p GPUs computation. Then, the

parallel efficiency η is defined as

η =
T1

Tp × p
× 100. (3.2)

The ideal parallel efficiency is 100%. Usually the parallel efficiency is referred

as the efficiency versus number of devices.

15



3.4 Figures

Figure 3.1: Speedup achieved for a matrix-matrix multiplication using
NVIDIA Quadro FX5800 graphics card versus Intel’s Xeon W3520 CPU
(2.66 GHz).

Figure 3.2: A typical OpenMP-CUDA parallel programming model.

16



Figure 3.3: A typical CUDA-capable NVIDIA GPU architecture [1, 2].

Figure 3.4: Memory accessibility of the thread divisions [1, 2].

17



CHAPTER 4

MULTI-GPU PARALLELIZATION OF
MOM

The MoM has been developed and widely used for solving electromagnetic

radiation and scattering problems due to the following merits: the surface

discretization results in fewer unknowns compared with the volume dis-

cretization; the Sommerfeld radiation condition is automatically satisfied

without an additional absorbing boundary. However, the major disadvantage

of the MoM is that it has O(N2) computational and storage complexities,

which result in a large memory requirement and a tremendous amount of

computation time. Thus, it is critical for practical application to speed up

the computation and reduce the memory requirement. In order to take the

advantage of GPU parallel computing, GPU parallelization of the MoM has

been investigated in the computational electromagnetics community. A GPU

accelerated MoM using Brook was first proposed in [13]. Later on, there has

been intensive research focusing on the GPU implementation of MoM using

CUDA [14–16]. To the best of our knowledge, all the research is focused

on single GPU implementation, and the multi-GPU implementation of MoM

using OpenMP-CUDA parallel programming model has not been published

in literatures. In this chapter, a multi-GPU implementation of MoM is

proposed. We first present the parallelization of system matrix assembly.

Then we propose a multi-GPU accelerated iterative solution. Moreover, fast

evaluation of radar cross section (RCS) using multi-GPU is detailed. In order

to investigate the numerical accuracy and computational efficiency of the

OpenMP-CUDA-MoM, the RCS of a few benchmark problems are evaluated

in the section of numerical analysis.

18



4.1 System Matrix Assembly

The most time-consuming part in the 3DMoM is the system matrix assembly.

To accelerate MoM using GPU, replacing this intensive computation part

with GPU calculation is the first consideration. Because storing a system

matrix requires O(N2) memory, and hence a single GPU cannot provide

sufficient memory when problems are very large, therefore, the multi-GPU

strategy is considered to remedy this problem.

In order to illustrate the process of system matrix assembly, we consider

2 GPUs here. Figure 4.1 shows the process of system matrix assembly on 2

GPUs. First the system matrix is equally divided into the two devices, with

each device getting the approximately same number of rows to calculate.

Then we use the OpenMP technique to allocate 2 CPU threads which are

labeled by ID indices. By calling the function cudaSetDevice(ID), each device

is managed by the corresponding CPU thread, and all the CUDA based

instructions are executed on the corresponding device. On each device,

the massive number of threads are assigned to assemble a portion of the

system matrix. Specifically, a 2D grid of threads is generated on the device

according to the size of the submatrix to be filled, and each thread calculates

one element in the submatrix. The work for each thread is first to fetch

the essential data such as the geometry data from the basis stream and

testing stream on the global memory, then to calculate the system element

by following the standard steps of the MoM, and finally to store the results

back into the global memory. Since each device keeps a portion of the system

matrix locally, there is no data communication between the host and device

or the device and device in the procedure described. It is easy to see that

the calculation of each matrix element is independent, which leads to a high

parallel efficiency regardless of the geometrical shape of the object.

4.2 Iterative Solution

Accelerating the solution of the system equation will further speed up the

MoM application. Both the direct and iterative solutions are considered for

the GPU acceleration. For the direct solution, CUDA Lapack (CULA) is used

on GPU. However, the direct solver has an O(N3) computational complexity;

19



hence, cannot be applied to solve large problems. In order to solve large

electromagnetic problems, we mainly discuss the multi-GPU implementation

of the iterative solution in this section.

The matrix-vector multiplication (MVM) is the most time-consuming step

in the iterative solution. Figure 4.2 shows the procedure of MVM using

multi-GPU. Holding a portion of the system matrix and the whole source

array, each device calculates MVM separately to obtain two arrays, which

are then combined to a whole array on CPU. After that, the whole array is

transferred to each GPU for the next MVM. For example, suppose we have

two devices available and the problem to be solved has 2N unknowns. Hence,

the size of the system matrix is 2N × 2N , and the length of the source array

is 2N . Each device stores a submatrix with a size of N × 2N and the whole

source array with a length of 2N . After a MVM is finished, each device

obtains an array with a length of N . Those two arrays are transferred to

fill in an array with a length of 2N on CPU. During this procedure, the

OpenMP thread synchronization is used to guarantee that all devices have

finished copying before they execute the next step. After the whole array

has been constructed on CPU, the array is transferred from the host to each

device. So far one MVM is completed. Based on the preceding discussion,

it is easy to see that the acceleration of an iterative solution is limited by

the thread synchronization and the data communications between the host

and device. However, the time of data transfer is proportional to O(N),

while the computational complexity of MVM is O(N2); hence, the speedup

of the iterative solution should become larger when solving larger problems,

because in that case the MVM will take a larger portion of the execution

time in the iterative solution.

4.3 RCS Evaluation

Fast evaluation of RCS is critical to the application of electromagnetic scat-

tering such as target tracking. In this section, the multi-GPU accelerated

RCS evaluation is presented. Because basis functions can be regarded as

current sources, by which the scattering field is radiated, a 1D grid of threads

is allocated and each of them is related with one basis function. The work for

each thread is to calculate the scattering field radiated by the corresponding

20



basis function. The RCS at a specific observation angle can be obtained

by the superposition of those scattering fields. In order to avoid the thread

writing conflict on GPU, the superposition is completed on CPU. To further

accelerate the RCS evaluation, the OpenMP parallel technique is employed to

generate multiple CPU threads, and each CPU thread manages one device to

calculate the RCS at one specific observation angle. Because the calculations

of RCS at different observation angles are independent of each other, the RCS

evaluation can be parallelized effectively.

4.4 Numerical Analysis

In this section, a conducting sphere and a NASA almond are solved to

demonstrate the numerical accuracy and computational efficiency of the

OpenMP-CUDA-MoM. The CRWG [22, 23] functions are used as the basis

and testing functions to discretize the EFIE, MFIE, and CFIE (α = 0.5).

All the numerical examples are solved by the biconjugate gradient stabilized

method (BiCGStab) with a targeted relative residual error of 10−3. The

single-precision floating-point arithmetic is used. The CPU-MoM and the

OpenMP-CUDA-MoM are executed respectively on a single CPU (Intel Xeon

W3520) using one thread and a 4-GPU system equipped with 4 Nvidia Tesla

C2050 GPUs.

4.4.1 Scattering by a Conducting Sphere

The problem of scattering by a perfect electrically conducting (PEC) sphere

with a diameter of 4λ is first considered. The object is illuminated by a plane

wave with a frequency of 300 MHz, and is discretized into 17820 unknowns.

The single GPU acceleration of the system matrix assembly, iterative

solution, and RCS calculation is first considered. As shown in Figure 4.3,

the bistatic RCS calculated by the CPU-MoM and the OpenMP-CUDA-

MoM agree well with the Mie series solution. Table 4.1 shows the speedup

of the system matrix assembly, and it can be seen that the MFIE has the

highest speedup among the three integral equations, while the EFIE has the

lowest acceleration, which results from the different treatments of singularity.

The Duffy transformation is performed to evaluate the singular integral in

21



the EFIE; while in the MFIE, the singular points are simply bypassed in the

Gaussian quadrature. Hence the thread divergence of the EFIE is larger than

the one of the MFIE. For the acceleration of solution, the high performance

CUDA Basic Linear Algebra Subprograms (BLAS) is utilized in the iterative

method. As shown in Table 4.2, the speedup achieved in the BiCGstab

solution is between 70 and 130. For the RCS calculation, 35 times speedup

is achieved by using a single GPU, which is shown in Table 4.3. Table 4.4

shows that over 45 times total speedup is achieved for the EFIE, MFIE, and

CFIE.

The preceding acceleration is based on a single GPU. For the multi-GPU

acceleration, the parallel efficiency of the OpenMP-CUDA-MoM is shown in

Figure 4.4. It is found that the parallel efficiency is over 87% for the total

computation. For a different number of devices, the system matrix assembly

and RCS calculation have the parallel efficiency over 95%. The parallel

efficiency of the BiCGstab solution becomes lower as the number of devices

grows, which is due to the thread synchronization and data communications

between the host and devices.

4.4.2 Scattering by a NASA Almond

The second benchmark object is a NASA almond with a size of 25.24 cm ×
9.75 cm × 3.25 cm. The object is illuminated by 3-GHz and 9-GHz plane

waves, respectively. For the 3-GHz case, the object is discretized into 3984

curvilinear triangular patches, leading to 5976 unknowns. The monostatic

RCS calculated by the CPU-MoM and the OpenMP-CUDA-MoM agree well

with the measurement, as shown in Figure 4.5. Table 4.5 shows the speedup

of the computation at 3 GHz. The speedup of the system matrix assembly

is 190 times. The monostatic RCS at 181 angles are calculated, leading to

82 times speedup. The total speedup achieved is over 80 times. For the 9-

GHz case, the object is discretized into 11134 curvilinear triangular patches,

resulting in 16701 unknowns. As shown in Figure 4.6, the results from the

CPU-MoM and the OpenMP-CUDA-MoM agree well with the measured

data. The total speedup achieved is over 260 times.

22



4.5 Summary

In this chapter, an OpenMP-CUDA based implementation of the MoM is

presented for computing wave scattering problems of 3D conducting objects

on multi-GPU computing systems. The multi-GPU parallel strategies of

the system matrix assembly, iterative solution, and RCS evaluation are dis-

cussed in detail. To demonstrate the numerical accuracy and computational

efficiency of the OpenMP-CUDA-MoM, the electromagnetic scattering of a

PEC sphere and a NASA almond are simulated respectively. The RCS results

show that the accuracy of the proposed method is guaranteed. The efficiency

versus the number of devices is investigated through the computation of a

PEC sphere. The system matrix assembly and RCS evaluation have the

parallel efficiency over 95%, which is significant. The parallel efficiency of

the iterative solution is not as good as the one of the matrix assembly and

RCS evaluation, which is due to the thread synchronization and the data

communications between the host and devices. For the total computation,

the parallel efficiency is over 84%. The total speedup for the monostatic RCS

calculation of a NASA almond by 4 GPUs is between 80 and 260.

23



4.6 Figures

(a)

(b)

Figure 4.1: System matrix assembly in the OpenMP-CUDA-MoM. (a) Data
fetch from basis stream. (b) Data fetch from testing stream.

24



Figure 4.2: BiCGstab solution in the OpenMP-CUDA-MoM.

0 20 40 60 80 100 120 140 160 180
-20

-10

0

10

20

 

 

B
is

ta
tic

 R
C

S 
(d

B
sm

)

Observation Angle (Deg.)

 Mie Series
 CPU-MoM
 OpenMP-CUDA-MoM

Figure 4.3: HH-polarized bistatic RCS for the PEC sphere with diameter of
4λ.

25



1 2 3 4

60

70

80

90

100

 

 

Ef
fic

ie
nc

y 
(%

)

Number of Devices

 Matrix Assembly
 BiCGstab Solution
 RCS Calculation
 Total Computation

Figure 4.4: Parallel efficiency of the OpenMP-CUDA-MoM versus number
of devices

0 50 100 150
-50

-40

-30

-20

 

 

M
on

os
ta

tic
 R

C
S 

(d
B

sm
)

Angle (Deg.)

 Measurement
 CPU-MoM
 OpenMP-CUDA-MoM

Figure 4.5: HH-polarized monostatic RCS for the NASA almond at 3 GHz.

26



0 20 40 60 80 100 120 140 160 180
-70

-60

-50

-40

-30

-20

 

 

M
on

os
ta

tic
 R

C
S 

(d
B

sm
)

Angle (Deg.)

 Measurment
 CPU-MoM
 OpenMP-CUDA-MoM

Figure 4.6: HH-polarized monostatic RCS for the NASA almond at 9 GHz.

27



4.7 Tables

Table 4.1: Speedup of system matrix assembly of a PEC sphere with
diameter of 4λ (single GPU)

CPU-MoM
(sec.)

OpenMP-
CUDA-MoM

(sec.)

Speedup

EFIE 1364 40 34.1

MFIE 3021 57 53.0

CFIE 4427 98 45.2

Table 4.2: Speedup of BiCGstab solution of a PEC sphere with diameter of
4λ (single GPU)

CPU-MoM
(sec.)

OpenMP-
CUDA-MoM

(sec.)

Speedup

EFIE 1470 10 147.0

MFIE 130 1 130.0

CFIE 146 2 73.00

Table 4.3: Speedup of RCS calculation of a PEC sphere with diameter of
4λ (single GPU)

CPU-MoM
(sec.)

OpenMP-
CUDA-MoM

(sec.)

Speedup

Bistatic RCS 35 1 35.0

28



Table 4.4: Speedup of total computation of a PEC sphere with diameter of
4λ (single GPU)

CPU-MoM
(sec.)

OpenMP-
CUDA-MoM

(sec.)

Speedup

EFIE 2869 51 56.3

MFIE 3186 59 54.0

CFIE 4608 101 45.6

Table 4.5: Speedup of monostatic RCS calculation of a NASA almond at 3
GHz (CFIE, 4 GPUs)

CPU-MoM
(sec.)

OpenMP-
CUDA-MoM

(sec.)

Speedup

System Matrix 381 2 190.5

Monostatic RCS 27882 338 82.5

Total Computation 28263 350 80.8

Table 4.6: Speedup of monostatic RCS calculation of a NASA almond at 9
GHz (CFIE, 4 GPUs)

CPU-MoM
(sec.)

OpenMP-
CUDA-MoM

(sec.)

Speedup

System Matrix 2972 21 141.5

Monostatic RCS 118610 435 272.7

Total Computation 121582 456 266.6

29



CHAPTER 5

MULTI-GPU PARALLELIZATION OF
MLFMA

To speed up the computation of the MoM, the fast multipole method (FMM)

has gained widespread use in solving a variety of electromagnetic problems.

The FMM was originally proposed by Rokhlin to quickly evaluate particle

interactions and to rapidly solve static integral equations [27, 28]. It was

extended to solve acoustic wave scattering problems, and then to solve 2D

and 3D electromagnetic scattering problems [29, 30]. The FMM reduces the

storage and computational complexities from O(N2) to O(N1.5). In order

to further speed up the computation and reduce the memory requirement,

the recursive variant, the multilevel fast multipole algorithm (MLFMA) was

proposed and implemented with O(N logN) complexity [24]. In this chapter,

a multi-GPU implementation of MLFMA is proposed to take the advantage

of GPU advancement. The implementation of the OpenMP-CUDA-MLFMA

contains two main parts. One is the calculation of the near-field system

matrix Znear. The other is the evaluation of the far-field interaction ZfarI,

which includes aggregation, translation and disaggregation phases. In this

chapter, we first discuss the multi-GPU implementation of the near-field

system matrix assembly. Then we present the parallel strategy for the

calculation of the far-field interaction. Finally, we describe the multi-GPU

implementation using pinned memory strategy.

5.1 Near-Field System Matrix Assembly

In the MLFMA, the computational intensive parts before the iterative solu-

tion include the calculation of radiation patterns of the basis functions Vs and

receiving patterns of the testing functions Vf, the calculation of translator T ,

and the assembly of the near-field system matrix Znear. In this section, we

mainly discuss the parallelization scheme for the assembly of the near-field

30



system matrix.

Since the order of basis indices in each group at the finest level is sorted

so that the indices of basis functions in each group are continuous, the near-

field system matrix Znear has the pattern shown in Figure 5.1(a). This block

matrix can be separated into two block matrices. The solid ones in blue

represent a block diagonal matrix which comes from self-group interactions.

The ones marked by red dash lines represent a block off-diagonal matrix

which comes from neighboring-group interactions.

The block matrices are stored as COO format (coordinates list) which

is shown in Figure 5.1(b). The nonzero elements are stored in the array

A. The testing stream IA and the basis stream JA contain the information

of the testing and basis functions respectively. To implement the matrix

assembly on GPU, the nonzero array A is first separated equally into different

devices. A one-dimensional (1D) grid of threads is allocated for each device to

compute a portion of nonzero elements. During the execution, each thread

first fetches the data from the testing stream and the basis stream in the

global memory, then calculates a nonzero element following the standard

steps of the MoM, and stores the value back to the global memory. The

independence of the nonzero elements ensures the efficiency of the hierarchical

parallelization regardless of the geometrical shape of the object.

5.2 Parallelization on Far-Field Interaction

The parallelization strategy on far-field interaction ZfarI can be implemented

by parallelly computing the radiation patterns and receiving patterns of the

groups, denoted as S and B, in the aggregation, translation and disaggre-

gation phases. The basic idea is “one thread per spectrum sampling” and

“one/several block(s) per group.” The hierarchical parallelization by simul-

taneously partitioning groups and their FFPs ensures a high computational

throughput for the GPU calculation.

To be specific, take the aggregation phase, for example. The 2D grids

and blocks are allocated for the calculation at each level. The block size is

set as the size of the spectrum at the finest level. If the mode number is a

function of kd, where d denotes the maximum diameter of a group and k is

the wavenumber, the spectrum size at the (L−1)th level (finest level) is 6×12

31



if the length of the cubes at the finest level is set to 0.3λ. Figure 5.2 shows

the thread allocation at the (L−2)th level in the aggregation phase. The size

of the spectrum at this level is 12× 24, where 12 and 24 are the numbers of

spectrum in the θ and φ direction respectively. Thus four blocks should be

organized to represent one parent cube, in which one thread is corresponding

to one spectrum. At the (L−3)th level the spectrum size is 24 × 48, then

16 blocks are assigned to represent one parent cube and so on. In this way,

there will be a sufficient number of threads allocated at each level for parallel

computation, which leads to a high computational efficiency.

There are two strategies to implement this parallel idea. One is called

global memory strategy; the other is called pinned memory strategy. The

global memory strategy requires the radiation and receiving patterns to be

calculated and stored at all levels on a single GPU. Such a strategy avoids

data transfer between the host and device during aggregation, leading to a

very high computational efficiency. However, the size of the global memory

will limit the size of problems that can be solved. The pinned memory

strategy calculates the radiation and receiving patterns on multiple GPUs,

and stores the results to the pinned memory on the host. The benefit of

using pinned memory is that we can solve larger problems because the size

of the pinned memory is much larger than the global memory. But the data

communications between the host and device is unavoidable. To show the

capability of solving large problems, the pinned memory strategy is presented

and discussed in detail.

5.3 Multi-GPU Implementation Using Pinned Memory

Consider Si−1 at level i− 1 aggregated from Si at level i as shown in Figure

5.3(a). The Si stands for the array lined up with all the groups’ radiation

patterns at level i. To facilitate the computation, Si−1 is equally partitioned

into different devices by the number of the groups. The thread allocation

in each device is determined by the size of spectrum at level i − 1 and the

number of parent groups stored in the device. Each device accesses the

data from Si stored in the pinned memory, and calculates a part of Si−1.

Then the results from all the devices are stored back to the pinned memory

consecutively. Each matrix-vector product using pinned memory has the

32



implicit data transfer between the host and device.

The multi-GPU implementation in the translation phase is similar to that

in the aggregation phase. Consider Si translating to Bi at the same level

i as shown in Figure 5.3(b). The Bi stands for the array which consists

of all the groups’ receiving patterns at level i. Si is equally divided into

different devices by the number of groups. The thread allocation in each

device is determined by the size of spectrum at level i and the number of

groups stored in the device. Similarly, each device accesses the data from

Si stored in the pinned memory, and calculates a portion of Bi. Then the

results are stored back to the pinned memory for the use of disaggregation.

The disaggregation phase of MLFMA is very similar to the aggregation

phase. As shown in Figure 5.3(c), the partition strategy, thread allocation

rule and data communication process are all similar to the ones in the

aggregation phase.

5.4 Numerical Analysis

In this section, a variety of numerical examples are presented to demonstrate

the accuracy and efficiency of the OpenMP-CUDA-MLFMA. The CRWG [22,

23] functions are used as the basis and testing functions to discretize the CFIE

(α=0.5). All the numerical examples are solved by the BiCGStab method

with a targeted relative residual error of 10−3. The single-precision floating-

point arithmetic is used. The CPU-MLFMA and the OpenMP-CUDA-

MLFMA are executed respectively on a single CPU (Intel Xeon W3520)

using one thread and a 4-GPU system equipped with 4 Nvidia Tesla C2050

GPUs.

5.4.1 Validation of the OpenMP-CUDA-MLFMA

Example A: Scattering by a Cone-Sphere with a Gap

A benchmark model, which is a metallic cone-sphere with a gap at the joint,

is simulated to validate the OpenMP-CUDA-MLFMA. The object is 0.689-

m long, oriented in the z-direction, and illuminated by a 3-GHz incident

wave. Its surface is discretized into 5006 curvilinear triangular patches with

33



7509 unknowns. The HH-polarized monostatic radar cross section (RCS)

in the xz-plane are computed, and as can be seen in Figure 5.4(a), a good

agreement between the CPU-MLFMA, the OpenMP-CUDA-MLFMA, and

the measured data is achieved. Figure 5.4(b) shows the real part of the

current density induced on the surface of the scatterer. The variation of the

current density can easily be observed.

Example B: Scattering by a NASA Almond

The next testing benchmark object is a NASA almond with a size of 25.24

cm × 9.75 cm × 3.25 cm. Illuminated by a 9-GHz incident wave, the almond

is discretized into 11134 curvilinear triangular patches, resulting in 16701

unknowns. Figure 5.5(a) shows the HH-polarized monostatic RCS in the xy-

plane calculated by the CPU-MLFMA and the OpenMP-CUDA-MLFMA.

The measured data are used as reference. Both results agree well with the

measured data. The real part of the current density induced by the incident

wave is shown in Figure 5.5(b). Through the investigation of the benchmark

problems, it is obvious that the accuracy of the OpenMP-CUDA-MLFMA is

guaranteed.

In both the cone-sphere and almond examples, the OpenMP-CUDA-MLFMA

and CPU-MLFMA results are nearly identical to each other, which indicates

that there is no loss of accuracy in the GPU computation.

5.4.2 Capability of the OpenMP-CUDA-MLFMA

Example A: Scattering by a Missile-like Object

First we consider the electromagnetic scattering of a missile-like object which

has a 3-m-long body and 1-cm-thick wings. The nonuniform mesh is em-

ployed to discretize the object into 228158 curvilinear triangular patches,

leading to 342237 unknowns. Figure 5.6(a) shows the HH-polarized bistatic

RCS in the xz-plane, which demonstrates a good agreement between the

results from the OpenMP-CUDA-MLFMA and the CPU-MLFMA. The real

part of the current density induced on the surface of the missile-like object

is shown in Figure 5.6(b), in which the wave phenomenon can be observed

34



clearly. The speedups of the OpenMP-CUDA-MLFMA are summerized in

Tables 5.1 and 5.2. The same parallelization scheme is applied to the calcu-

lation of Vs and Vf, the translator factor T , and the assembly of Znear, which

leads to the same speedups for the pinned memory and global memory cases.

For the acceleration of the near-field system matrix assembly, a 180 times

speedup is achieved. The BiCGstab solver is parallelized using the pinned

memory and the global memory strategies respectively, which leads to 75.0

and 19.4 times speedup for the corresponding strategies. The global memory

strategy is faster than the pinned memory strategy because there are no data

communications between the host and device when calculating the far-field

interaction. However, the global memory has the limited size on GPU so

that it cannot solve larger problems. Therefore, our discussion is based on

the pinned memory strategy in the following larger examples.

Example B: Scattering by Conducting Spheres

In order to demonstrate the capability and efficiency of the OpenMP-CUDA-

MLFMA, the scattering from PEC spheres with diameters of 4λ, 6λ, 12λ,

30λ are calculated. The multi-GPU acceleration of the different parts in

the MLFMA are investigated as shown in Figure 5.7(a). As can be seen,

the excellent speedup is achieved in the near-field system matrix assembly,

which increases as the number of unknowns grows. For the different num-

bers of unknowns, the acceleration in the BiCGstab solution remains the

same because the data communications between the host and device take

the majority of the time, which is determined by PCIe and front-side bus

speed. The total speedup decreases a little bit as the number of unknowns

increases, because the BiCGstab solver will take larger portion of the total

time. The total speedup achieved is between 30 and 50 times. The HH-

polarized bistatic RCS for the 30λ sphere with over 1 million unknowns is

shown in Figure 5.7(b). The results calculated by the CPU-MLFMA and

the OpenMP-CUDA-MLFMA agree well with the Mie series solution. The

detailed speedup for the 30λ sphere is presented in Table 5.3. The speedup for

the near-field system matrix assembly is over 160 times, which is significant.

The acceleration of the BiCGstab iterative solution is about 14 times, which

is restricted by the data communications between the host and device.

35



Example C: Scattering by an Aerocraft

To further illustrate the capability and efficiency of the proposed method,

a more realistic target, which is an aerocraft, is considered. The aerocraft,

with a length of 12.74 m, a width of 15.06 m, and a height of 2.95 m, is

illuminated by plane waves with frequencies of 200 MHz, 400 MHz, 780 MHz

and 1.5 GHz respectively. The speedup versus number of unknowns is shown

in Figure 5.8(a). In the figure, the similar speedups with those for the PEC

sphere can be observed. The total speedup is around 20 times. Figure 5.8(b)

shows the VV-polarized bistatic RCS calculated by the CPU-MLFMA and

the OpenMP-CUDA-MLFMA respectively. The results are on top of each

other. The real part of the current density induced on the surface of the

aerocraft is shown in Figure 5.9 from three different view angles. It is easy to

observe the current density variation on the surface of the aerocraft. Table

5.4 gives the detailed speedup performance for the aerocraft at 1.5 GHz. The

speedup for the near-field system matrix assembly is over 160 times, and the

speedup of the BiCGstab iterative solution is about 13 times. Comparing

Table 5.4 with Table 5.3, it is easy to notice that for the problems with

similar number of unknowns, the speedup for each part is similar. In other

words, the parallelization scheme is insensitive to the geometrical shape of

the object.

5.5 Summary

In this chapter, an OpenMP-CUDA based implementation of the MLFMA is

presented for computing wave scattering problems of 3D conducting objects

on GPU computing systems. For parallelization on a single GPU, a hierar-

chical parallelization scheme is used by partitioning groups and their FFPs

simultaneously. For multi-GPU implementation, a hybrid OpenMP-CUDA

parallel programming model is employed. The OpenMP-CUDA-MLFMA

is first validated by calculating the monostatic RCS for several benchmark

problems. Larger problems are then solved to demonstrate the capability and

efficiency of the proposed algorithm. The near-field system matrix assembly

using multi-GPU has an excellent efficiency, which has a speedup independent

of the object geometry. For the parallelization of the far-field interaction, by

the analysis of the GPU architecture and the numerical results, it is revealed

36



that the global memory strategy is suitable for the fast solution of small

problems, and the pinned memory strategy can be employed effectively to

accelerate the computation of large problems. The total speedup of the

OpenMP-CUDA-MLFMA achieved is between 20 and 80 times, which can

be quite important for practical applications.

37



5.6 Figures

(a)

(b)

Figure 5.1: Near-field system matrix assembly. (a) Pattern of near-field
system matrix. (b) Process of matrix filling.

Figure 5.2: Thread allocation for the aggregation phase at the (L-2)th level.

38



(a)

(b)

(c)

Figure 5.3: Implementation of far-field interaction on Multi-GPU. (a)
Parallel scheme for aggregation. (b) Parallel scheme for translation. (c)
Parallel scheme for disaggregation.

39



0 20 40 60 80 100 120 140 160 180
-70

-60

-50

-40

-30

-20

-10

0

10
 

 

M
on

os
ta

tic
 R

C
S 

(d
B

sm
)

Angle (Deg.)

 Measurement
 CPU-MLFMA
 OpenMP-CUDA-MLFMA

(a)

(b)

Figure 5.4: Scattering analysis of a cone-sphere with a gap at 3 GHz. The
total length of this object is 0.689 m. (a) The HH-polarized monostatic
RCS in the xz-plane. (b) Real part of the current density with the
incidence angle θ = 0◦ and ϕ = 0◦ (in linear scale).

40



0 20 40 60 80 100 120 140 160 180
-70

-60

-50

-40

-30

-20

 

 

M
on

os
ta

tic
 R

C
S 

(d
B

sm
)

Angle (Deg.)

 Measurement
 CPU-MLFMA
 OpenMP-CUDA-MLFMA

(a)

(b)

Figure 5.5: Scattering analysis of a NASA almond at 9 GHz. The size of
this object is 25.24 cm × 9.75 cm × 3.25 cm. (a) The HH-polarized
monostatic RCS in the xy-plane. (b) Real part of the current density with
the incidence angle θ = 90◦ and ϕ = 180◦ (in linear scale).

41



0 20 40 60 80 100 120 140 160 180
-50

-40

-30

-20

-10

0

10

20

 

 

B
is

ta
tic

 R
C

S 
(d

B
sm

)

Observation Angle (Deg.)

 CPU-MLFMA
 OpenMP-CUDA-MLFMA

(a)

(b)

Figure 5.6: Scattering analysis of a missile-like object. The length of the
body is 3 m, and the thickness of the wing is 1 cm. A 3 GHz plane wave is
incident from the angle θ = 0◦ and ϕ = 0◦. (a) The HH-polarized bistatic
RCS in the xz-plane. (b) Real part of the current density induced on the
surface of the scatterer (in linear scale).

42



104 105 106
100

101

102

 

Sp
ee
du

p

Number of Unknowns

 Total Speedup
 System Matrix Assembly
 Calculation of Vs & Vf
 BiCGstab Solver

(a)

0 20 40 60 80 100 120 140 160 180

-10

0

10

20

30

40

 

 

B
is

ta
tic

 R
C

S 
(d

B
sm

)

Observation Angle (Deg.)

 Mie Series
 CPU-MLFMA
 OpenMP-CUDA-MLFMA

(b)

Figure 5.7: Scattering analysis of the PEC spheres with diameters of 4λ,
6λ, 12λ, and 30λ. (a) The four devices speedup of the
OpenMP-CUDA-MLFMA versus the number of unknowns (unknowns =
18162, 41316, 158333, 1063155). (b) The HH-polarized bistatic RCS of the
30λ PEC sphere.

43



104 105 106
100

101

102

 

Sp
ee
du

p

Number of Unknowns

 Total Speedup
 System Matrix Assembly
 Calculation of Vs & Vf
 BiCGstab Solver

(a)

0 60 120 180 240 300 360
-40

-20

0

20

40

60

 

 

B
is

ta
tic

 R
C

S 
(d

B
sm

)

Observation Angle (Deg.)

 CPU-MLFMA
 OpenMP-CUDA-MLFMA

(b)

Figure 5.8: Scattering analysis of the aerocraft at frequencies of 200 MHz,
400 MHz, 780 MHz and 1.5 GHz. (a) The four devices speedup of the
OpenMP-CUDA-MLFMA versus the number of unknowns (unknowns =
20319, 70413, 269859, 1001946). (b) The VV-polarized bistatic RCS in the
yz-plane at 1.5 GHz.

44



Figure 5.9: Real part of the current density at 1.5 GHz with the incidence
angle θ = 60◦ and ϕ = 270◦ (in linear scale).

45



5.7 Tables

Table 5.1: Speedup of the global memory strategy for bistatic RCS
calculation of a missile-like object at 3 GHz

CPU-MLFMA
(sec.)

OpenMP-
CUDA-MLFMA

(sec.)

Speedup

Calculation of Vs & Vf 243 7 34.7

Calculation of T 19 1 19.0

Assembly of Znear 9946 55 180.8

BiCGstab Solution 35180 469 75.0

Total Computation 45388 539 84.2

Table 5.2: Speedup of the pinned memory strategy for bistatic RCS
calculation of a missile-like object at 3 GHz

CPU-MLFMA
(sec.)

OpenMP-
CUDA-MLFMA

(sec.)

Speedup

Calculation of Vs & Vf 243 7 34.7

Calculation of T 19 1 19.0

Assembly of Znear 9946 55 180.8

BiCGstab Solution 35180 1811 19.4

Total Computation 45388 1879 24.2

46



Table 5.3: Speedup of the bistatic RCS calculation of a PEC sphere with
diameter of 30λ

CPU-MLFMA
(sec.)

OpenMP-
CUDA-MLFMA

(sec.)

Speedup

Calculation of Vs & Vf 756 19 39.8

Calculation of T 116 0.5 232.0

Assembly of Znear 7118 42 169.5

BiCGstab Solution 4710 334 14.1

Total Computation 12700 400 31.7

Table 5.4: Speedup of the bistatic RCS calculation of an aerocraft at 1.5
GHz

CPU-MLFMA
(sec.)

OpenMP-
CUDA-MLFMA

(sec.)

Speedup

Calculation of Vs & Vf 710 19 37.3

Calculation of T 230 1 230.0

Assembly of Znear 5047 30 168.2

BiCGstab Solution 8631 653 13.2

Total Computation 14618 703 20.8

47



CHAPTER 6

CONCLUSION

In this thesis, the OpenMP-CUDA based implementations of the MoM and

MLFMA are presented for electromagnetic simulation on multi-GPU com-

puting systems.

In order to better describe the multi-GPU parallelizations of MoM and

MLFMA, the formulations and implementations of MoM and MLFMA are

first reviewed. Then the OpenMP-CUDA parallel programming model and

GPU architecture are introduced.

MoM, as a basic algorithm, is first accelerated by the use of multi-GPU.

The multi-GPU parallel strategies of system matrix assembly, iterative solu-

tion and RCS evaluation are discussed in detail. To demonstrate the accuracy

and efficiency of the proposed method, electromagnetic scattering of a PEC

sphere and a NASA almond are simulated. The accuracy of the proposed

method is confirmed by comparing the numerical results with the Mie series

solution or measured data. The parallel efficiency versus the number of

devices is investigated through the computation of a PEC sphere. As the

number of devices increases, the system matrix assembly and RCS evaluation

have parallel efficiencies over 95%, while the efficiency of the iterative solution

becomes lower. The parallel efficiency of the total computation is over 87%.

The total speedup for the monostatic RCS calculation of a NASA almond by

4 GPUs is between 80 and 260 times.

To further speed up the computation of large scattering problems, the

OpenMP-CUDA-MLFMA is proposed. The hierarchical parallelization scheme

is employed for the implementation by partitioning groups and their FFPs

simultaneously. The multi-GPU implementation is developed by hybridizing

OpenMP and CUDA parallel programming models. To validate the proposed

algorithm, the monostatic RCS for the benchmark problems is calculated.

Further, larger problems are solved to demonstrate the capability and ef-

ficiency of the proposed algorithm. The near-field system matrix assembly

48



using multi-GPU has an excellent efficiency, which has a speedup independent

of the object geometry. For the multi-GPU accelerated far-field interaction,

the global memory strategy is suitable for the fast solution of small problems,

and the pinned memory strategy can be employed effectively to accelerate the

computation of large problems. The total speedup of the OpenMP-CUDA-

MLFMA achieved is between 20 and 80 times, which can be significant in

engineering applications.

49



REFERENCES

[1] NVIDIA CUDA C Programming Guide, May 2011.

[2] D. B. Kirk andW. W. Hwu, Programming Massively Parallel Processors.
Burlington, MA: Morgan Kaufmann, 2010.

[3] J.-M. Jin, Theory and Computational Electromagnetic Fields. Hoboken,
NJ: John Wiley & Sons, 2010.

[4] W. C. Chew, J.-M. Jin, E. Michielssen, and J. M. Song, Eds., Fast
and Efficient Algorithms in Computational Electromagnetics. Norwood,
MA: Artech House, 2001.

[5] S. Velamparambil, W. C. Chew, and J. M. Song, “10 million unknowns:
Is it that big?” IEEE Antennas Propag. Mag., vol. 45, no. 2, pp. 43–58,
2003.

[6] S. Velamparambil and W. C. Chew, “Analysis and performance of a
distributed memory multilevel fast multipole algorithm,” IEEE Trans.
Antennas Propag., vol. 53, no. 8, pp. 2719–2727, 2005.

[7] X.-M. Pan and X.-Q. Sheng, “A sophisticate parallel MLFMA for
scattering by extremely large targets,” IEEE Antennas Propag. Mag.,
vol. 50, no. 3, pp. 129–138, June 2008.

[8] Ö. Ergül and L. Gürel, “A hierarchical partitioning strategy for an
efficient parallelization of the multilevel fast multipole algorithm,” IEEE
Trans. Antennas Propag., vol. 57, no. 6, pp. 1740–1750, 2009.

[9] X.-M. Pan, W.-C. Pi, M.-L.Yang, Z. Peng, and X.-Q. Sheng, “Solving
problems with over one billion unknowns by the MLFMA,” IEEE Trans.
Antennas Propag., vol. 60, no. 5, pp. 2571–2574, 2012.

[10] D. D. Donno, A. Esposito, and L. C. L. Tarricone, “Introduction to
GPU computing and CUDA programming: A case study on FDTD,”
IEEE Antennas Propag. Mag., vol. 53, no. 3, pp. 116–122, June 2010.

[11] V. Dang, “An implementation of time domain integral equation solution
for finite conducting bodies using GPU,” in The 28th International

50



Review of Progress in Applied Computational Electromagnetics (ACES
2011), Columbus, Ohio, Apr. 2011.

[12] N. Goedel, T. Warburton, and M. Clemens, “GPU accelerated
discontinuous Galerkin FEM for electromagnetic radio frequency
problems,” in 2009 IEEE AP-S Int. Symp. and URSI Radio Sci. Mtg.,
Charleston, SC, June 2009.

[13] S. Peng and Z. Nie, “Acceleration of the method of moments calculations
by using graphics processing units,” IEEE Trans. Antennas Propag.,
vol. 56, no. 7, pp. 2130–2133, July 2008.

[14] T. Topa, A. Noga, and A. Karwowski, “Adapting MoM with RWG basis
functions to GPU technology using CUDA,” IEEE Antennas Wireless
Propag. Lett., vol. 10, pp. 480–483, 2011.

[15] T. Topa, A. Karwowski, and A. Noga, “Using GPU with CUDA to
accelerate MoM-based electromagnetic simulation of wire-grid models,”
IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 342–345, 2011.

[16] E. Lezar and D. B. Davidson, “GPU-accelerated method of moments by
example: Monostatic scattering,” IEEE Antennas Propag. Mag., vol. 52,
no. 6, pp. 120–135, Dec. 2010.

[17] S. Li and V. Lomakin, “Fast iterative electromagnetic integral equation
solvers on GPUs,” in The 28th International Review of Progress
in Applied Computational Electromagnetics (ACES 2011), Columbus,
Ohio, Apr. 2011.

[18] Y. Liu, V. Lomakin, and E. Michielssen, “Graphics processing unit-
accelerated implementation of the plane wave time domain algorithm,”
in The 28th International Review of Progress in Applied Computational
Electromagnetics (ACES 2011), Columbus, Ohio, Apr. 2011.

[19] N. A. Gumerov and R. Duraiswami, “Fast multipole methods on
graphics processors,” J. Computational Physics, vol. 227, no. 18, pp.
8290–8313, Sep. 2008.

[20] M. Cwikla, J. Aronsson, and V. Okhmatovski, “Low-frequency MLFMA
on graphics processors,” IEEE Antennas Wireless Propag. Lett., vol. 9,
pp. 8–11, 2010.

[21] R. F. Harrington, Field Computation by Moment Methods. New York:
Macmillan, 1968.

[22] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic
scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas
Propag., vol. 30, no. 3, pp. 409–418, May 1982.

51



[23] R. D. Graglia, D. R. Wilton, and A. F. Peterson, “Higher order
interpolatory vector bases for computational electromagnetics,” IEEE
Trans. Antennas Propag., vol. 45, no. 3, pp. 329–342, Mar. 1997.

[24] J. M. Song, C. C. Lu, and W. C. Chew, “Multilevel fast multipole
algorithm for electromagnetic scattering by large complex objects,”
IEEE Trans. Antennas Propag., vol. 45, no. 10, pp. 1488–1493, Oct.
1997.

[25] T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for Parallel
Programming. Boston, MA: Addison-Wesley, 2004.

[26] J. Sanders and E. Kandrot, CUDA by Example. Boston, MA: Addison-
Wesley, 2010.

[27] V. Rokhlin, “Rapid solution of integral equations of classical potential
theory,” J. Computational Physics, vol. 60, no. 2, pp. 187–207, Sep.
1985.

[28] L. Greengard and V. Rokhlin, “A fast algorithm for particle
simulations,” J. Computational Physics, vol. 73, no. 2, pp. 325–348,
Dec. 1987.

[29] V. Rokhlin, “Rapid solution of integral equation of scattering theory in
two dimensions,” J. Computational Physics, vol. 86, no. 2, pp. 414–439,
Feb. 1990.

[30] R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method
for the wave equation: A pedestrian prescription,” IEEE Antennas
Propag. Mag., vol. 35, no. 3, pp. 7–12, June 1993.

52


