Geophysical Exploration for Potential Groundwater Resources Near Bloomington, Illinois Timothy H. Larson and Vickie L. Poole ISGS Contract/Grant Report 1989-2 Technical Completion Report to the City of Bloomington Illinois State Geological Survey Morris W. Leighton, Chief Natural Resources Building 615 East Peabody Drive Champaign, Illinois 61820 Sidways a NOV 2 2 1989 ### Contents Abstract 1 Introduction 1 Geologic Setting Hydrogeologic Setting 3 Resistivity Investigations 5 Methods 5 Results 6 Seismic Refraction Investigations 9 Methods 9 9 19 Summary Acknowledgments 19 19 20 References Appendix A Appendix B 37 ## **Figures** | 1 | Study area in central Illinois 1 | |----|--| | 2 | a. Stratigraphic section showing relationships among shallow bedrock units | | | encountered in the study area 2 | | | b. Stratigraphic section showing relationships among glacial sediments encountered | | | in the study area 4 | | 3 | Schematic diagram of electrical earth resistivity method 5 | | 4 | Detailed site map of resistivity study area showing location of VES stations | | | and three sub-areas 7 | | 5 | Representative elevation slice maps for resistivity area 1 8 | | 6 | Representative elevation slice maps for resistivity area 2 10 | | 7 | Representative elevation slice maps for resistivity area 3 12 | | 8 | Site map of seismic refraction study area showing location of seismic lines | | | and cross sections 14 | | 9 | Representative well logs for shallow wells within the study area 15 | | 10 | Estimated elevation of bedrock surface in feet above msl 17 | 18 11 Idealized north-south cross-sections through the Danvers Bedrock Valley ## **Table** 1 Results of seismic refraction survey 13 Figure 1 Study area in central Illinois. ## **Abstract** The 1988-90 drought in central Illinois resulted in alarmingly low water levels in reservoirs supplying water to the City of Bloomington. At the request of the city, the Illinois State Geological Survey conducted geophysical investigations to locate potential groundwater resources in the vicinity of the Lake Bloomington and Evergreen Lake reservoirs. An electrical earth resistivity survey was conducted in the Mackinaw River Valley to delineate a possible sand and gravel aquifer within the alluvium. Resistivity data indicate that some sand and gravel is present, but it is limited in extent and probably contains a significant amount of fine-grained material. A seismic refraction survey was conducted to delineate the geometry of the Danvers Bedrock Valley known to be present at depths of 200 to 400 feet beneath the ground surface. Refraction data successfully located the buried bedrock valley and revealed the presence of either a bedrock knob or island lying approximately beneath Lake Evergreen. This bedrock high separates the valley into northern and southern channels. The western extent of the northern channel is not known. #### Introduction Bloomington (population 44,200) obtains its water supply from the Lake Bloomington and Evergreen Lake Reservoirs (fig 1). The adjacent city of Normal obtains its supply from shallow wells drilled in surficial and shallow sand and gravel deposits within the Sugar Creek Valley and basal deposits within the Mackinaw Bedrock Valley near the McLean-Tazewell county line. A severe drought led to a drop in the water levels at Lake Bloomington and Evergreen Lake, causing water shortage and restrictions in the summers of 1988 and 1989. Bloomington needs a temporary, emergency supplement and a long-term supplement to the current supply of reservoir water. The city contracted with the Illinois State Geological Survey to provide geophysical assistance in the effort to locate a long-term supplemental municipal groundwater supply. The Survey's responsibility has been to investigate the shallow alluvial sand and gravel aquifer and the basal sand and gravel aquifer within the region. Figure 2a Stratigraphic section showing relationships among shallow bedrock units encountered in the study area. Two regional aquifers that may yield adequate water occur in the vicinity of Lake Bloomington and Evergreen Lake. Alluvium in the Mackinaw River Valley, located north of Bloomington, may contain extensive deposits of water-bearing sand and gravel. The Danvers Bedrock Valley, which lies 200 to 400 feet below land surface, may contain sufficient basal sand and gravel deposits to yield adequate water for the city's needs. Electrical earth resistivity profiling was conducted in section 6 of Hudson Township within the Mackinaw River Valley to map possible deposits of alluvial sand and gravel. Seismic refraction profiling was conducted in the northern half of Hudson Township (T25N, R2E, McLean County) between Lake Bloomington and Evergreen Lake to delineate the geometry of the Danvers Bedrock Valley. The geophysical investigations conducted by the Survey are part of a more extensive study being conducted by Bloomington. The results of the geophysical investigations provide background information to that larger study. Further geological work required to confirm the geophysical results may be conducted by the City of Bloomington within the larger framework of their study. ## Geologic Setting Bedrock surface in this region is composed of sedimentary rock of Pennsylvanian age (fig. 2a). In Hudson Township, the younger Modesto Formation has been parlly eroded so that rocks of the underlying Carbondale Formation are at the bedrock surface throughout much of the region. In this area, the rocks of these two formations are quite similar, primarily shales with thin layers of sandstone, coal, and limestone. The most striking feature of the bedrock surface is the buried bedrock valley, known as the Danvers Bedrock Valley, which was established sometime before Pleistocene glaciation. The exact configuration of the valley is not certain. However, it appears to enter Hudson Township from the northeast in sections 1, 2, and 3 and continue beneath the northern half of the township, before leaving somewhere in sections 18, 19 or 30. The town of Hudson lies over the southern rim of the valley, and Lake Bloomington appears to be over the eastern margin. Between the land surface and bedrock is 200 to 400 feet of unconsolidated glacial and alluvial sediments (fig 2b). Deposits associated with the most recent glaciation, the Wisconsinan, form a thin veneer, 20 to 50 feet thick over most of the region. Only within the modern stream valleys, Six Mile Creek, Money Creek, and the Mackinaw River, are there significant nonglacial, alluvial deposits. Most of the glacial deposits are clayey sediments called till. Some coarser deposits of glacial outwash are also known to be present at several locations in the area. It is not known if these outwash deposits are continuous. At the base of the glacial deposits is an unknown thickness of outwash and alluvium, some of which may be preglacial in origin. ## **Hydrogeologic Setting** The Pennsylvanian bedrock is not considered an aquifer in this region. The shales and limestones encountered within 100 ft of the bedrock surface do not produce appreciable amounts of water. The State Geological Survey has no records of wells finished in the Pennsylvanian bedrock within this area. Three aquifers occur within the unconsolidated deposits above the bedrock surface. Two aquifers are potentially suitable for development of large groundwater supplies, the third aquifer is not likely to yield large amounts of water. The basal deposits within the Danvers Bedrock Valley could potentially yield large amounts of water. Unfortunately, the character and thickness of these deposits is unknown. Similar bedrock valleys in central Illinois do yield large amounts of water from basal sand and gravel Figure 2b Stratigraphic section showing relationships among glacial sediments encountered in the study area. Figure 3 Schematic diagram of electrical earth resistivity method. deposits; however, other bedrock valleys contain fine-grained basal deposits that do not yield large amounts of water. The water-bearing potential of the basal deposits of the Danvers Bedrock Valley can only be determined from test drilling. Alluvium within the Mackinaw River Valley may contain large deposits of sand and gravel; sand deposits have been quarried in the vicinity. However, the character and extent of alluvial sand in the Mackinaw Valley along the north end of Hudson Township are unknown. If present, alluvial sands and gravels could yield substantial amounts of water, sufficient for large groundwater supplies. Outwash sand and gravel occurs at several locations within the glacial deposits. These aquifer materials yield small amounts of water sufficient for domestic purposes, but not adequate for large groundwater supplies. They were not considered for exploration in this project. ## Resistivity Investigations The potential for significant deposits of alluvial sand and gravel deposits within the lowlands of the Mackinaw River Valley was investigated using the electrical earth resistivity (EER) method. Coarse-grained glacial deposits that may occur beneath the alluvium or surrounding uplands were not investigated. Regional data on file at the State Geological Survey indicate that glacial deposits at intermediate depth are not likely to yield significant amounts of water. The method does not directly locate groundwater resources, only the possible presence of coarse-grained sediments. Test drilling is necessary to confirm the presence and thickness of sand and gravel deposits and to determine their water-yielding potential. #### Methods In the EER procedure, an electric current is applied to the ground through two current electrodes, and the potential difference is measured across a pair of potential electrodes. Apparent resistivity is calculated on the basis of the measured potential drop, applied current, and electrode spacing
(Dobrin, 1976, chapter 17). As the distance of the electrode pair from the center point is systematically increased, changes in apparent resistivity can be related to variations in resistivity of earth materials with depth (fig. 3). Units of resistivity reported in this study are in ohm-feet. For this study, the Wenner electrode configuration was employed, using a Terrameter ASA 300B resistivity meter. The electrodes were laid out in a line with the current electrodes (I_1 and I_2) positioned at the outside ends and the potential electrodes (P_1 and P_2) forming the was expanded from the center point. Originally, the Schlumberger electrode configuration was considered for application during this study. It is very similar to the Wenner array, except that the current electrode spacing is allowed to increase more rapidly than the potential electrode spacing. The Schlumberger configuration tends to focus the electrical response at shallow depths relative to the Wenner configuration. Because of the depths investigated, the configuration was changed to the Wenner configuration. The method of expanding the electrode configuration systematically from the center point, measuring the current and potential differences, and calculating the apparent resistivity values is called vertical electrical sounding (VES). A plot of apparent resistivity values versus electrode spacings is a VES curve (Heigold et al., 1985). The VES data obtained during this study were analyzed quantitatively using an inversion technique developed by Zohdy and Bisdorf (1975). The inversion technique converts VES curves into a sequence of layers representing types of earth materials of varying thickness and calculated "true" resistivity. These "true" resistivities and thicknesses are called layering parameters. This technique provides only one of many geoelectrically equivalent, layering-parameter solutions for a given VES curve (Heigold et al., 1985). Prior knowledge of the general geologic conditions in the study area can eliminate this ambiguity. #### Results Sixty-three VES stations were occupied. Locations of the soundings and elevation slice maps are shown in figure 4. Appendix A contains apparent resistivity and layering parameter data. For this discussion, the resistivity survey area is divided into areas 1, 2, and 3 (fig. 4). Results of the resistivity survey are presented in elevation slice maps, which are areal maps depicting the "true" resistivity values at specified elevations. Areal maps aid in visualizing the extent of relatively high resistivity values. Land surface elevation of the VES stations were estimated from topographic maps accurate to ±5 feet. Resistivity area 1 is located in the northern half of section 5, Hudson Township, McLean County, and includes 26 VES profiles: 1 through 16, 30 through 35, and 59 through 62 (fig. 4). Geologic control for this area was provided by engineering reports on borings for a bridge (Route 51) over the Mackinaw River. Thin, silty sand and gravel deposits (usually less than 10 ft thick) were reported in these borings at elevations ranging from slightly greater than 640 to approximately 630 feet above mean sea level (msl). Elevation slice maps of area 1 (fig. 5) indicate a small area west of the bridge along the south side of the Mackinaw River where "true" resistivity values are more than 200 ohm-feet. Past experience with using EER surveys to locate sand and gravel in the unconsolidated sediments of Illinois suggests that 200 ohm-feet is the minimum value for indicating the possible presence of silty sand and gravel (Heigold, personal communication). Correlation of resistivity values obtained during this study with data from the bridge borings confirms the 200 ohm-feet rule of thumb for this project. VES data do not indicate the presence of an extensive area of earth materials with "true" resistivity values greater than 200 ohm-feet. Resistivity area 2 extends roughly east-west across the center of section 6 in Hudson Township (fig. 4). Twenty-three VES profiles, 36 through 58 and profile 63, are included in this area. Elevation slice maps (fig. 6) delineate an area of approximately one-eighth square mile where "true" resistivity values are greater than 200 ohm-feet. Highest "true" resistivity values in this area are obtained in the vicinity of an old gravel pit. Extremely high resistivity values (greater than 500 ohm-ft) obtained at very shallow depths predominantly north and east of the gravel pit may indicate dry, rather than saturated coarse-grained sediments. Figure 4 Detailed site map of resistivity study area showing location of VES stations and three sub-areas. Figure 5 Representative elevation slice maps for resistivity area 1. Resistivity area 3 is located along a part of Six Mile Creek in sections 1 and 2 (T25N, R1E), Woodford County (fig. 4). Eleven VES profiles were located in area 3: profiles 19 through 29. Although sandy soil was noted at land surface for some profiles, elevation slice maps of the resistivity data (fig. 7) do not indicate any significant areas of 200 ohm-feet or greater resistivity values at shallow depths. Highest values, recorded at greater depths, may represent a channel deposit of coarse-grained sediments, but are more likely to represent glacial outwash deposits below the alluvium. The extent of these possible deposits appears to be limited. Due to restricted access and problems attendant on developing a possible supplemental supply outside the McLean County boundaries, resistivity survey work was limited in these sections. ## Seismic Refraction Investigations The seismic refraction method was chosen to delineate the configuration of the bedrock surface and the location of the Danvers Bedrock Valley. The method cannot be used to determine the thickness or character of basal sands; however, if sand is present, it is expected to occur along the axis of the bedrock valley. Once the axis of the bedrock valley has been determined from seismic refraction, test drilling will be needed to confirm the presence or absence of basal sand. Shallower sand and gravel aquifers may also be present in the area. Seismic refraction is not intended to determine the presence or character of these shallower aquifers. Regional data suggest that these shallower aquifers are not sufficient for large municipal water supplies. #### Methods A seismic refraction survey is a program to map geologic structure by using seismic waves. Seismic waves involve energy that enters a high-velocity medium (refractor) near the critical angle of refraction. They travel in the high-velocity medium nearly parallel to the refractor surface before returning to the ground surface where they are detected by special sensors called geophones. Refracted wave arrivals are identified in terms of time after the shot and distance from the shot. The objective is to determine the arrival times of the refracted seismic waves in order to map the depth to the refractors in which they traveled. Shots are recorded from both ends of the detector line in the reversed refraction configuration. The information provided from the reversed line allows calculation of both the depth to the refractor and its seismic velocity (Dobrin, 1976, chapter 9). All seismic refraction lines obtained in this study were reversed. Dynamite charges weighing 0.5 to 1.5 pounds buried in 5-foot-deep boreholes provided seismic energy. The shots were normally offset a distance of 50 feet from the first geophone; 24 geophones were spaced at 100-foot intervals in each line. The records were obtained with an EG&G model 2415 signal enhancement seismograph. Where possible, adjacent seismic lines overlapped 50 percent. A graphic interpretation method used intercept times and inverse slopes obtained from least squares regression of first arrival times at each geophone. First arrival times were picked manually from the seismic records to a precision of 0.001 second (s), with an accuracy of about 0.002 s. This resulted in an uncertainty in depth determinations of about 10 feet. The method assumes three seismic layers, including a very shallow upper layer assigned a constant velocity of 1250 feet per second (ft/s). The method, described by Mota (1954), results in two types of information: (1) seismic velocities are determined for the middle and lower seismic layers; and (2) depths are calculated to the interfaces between seismic layers and plotted beneath the shot points. An error in the calculated depth to bedrock is expected when thick, clean basal sands are present in the bedrock valley. The sand usually has a seismic velocity lower than either the Figure 6 Representative elevation slice maps for resistivity area 2. Figure 6 continued Figure 7 Representative elevation slice maps for resistivity area 3. bedrock or glacial till. In this case, no critical refraction occurs at the interface between the till above and the sand below. The seismic waves continue to the bedrock surface where they can be critically refracted. However, the entire section above the bedrock takes on the seismic character of till and appears to be thicker than it actually is. This type of error aids in locating the valley axis by accentuating its depth. The lower seismic layer represents bedrock. Elevations of the bedrock surface were plotted as the difference between surface elevation (estimated to within 5 ft, using topographic maps) and calculated depths. An average value was plotted when more than one depth value was determined for any location. A final map was based on refraction and well data. #### Results Twenty-seven reversed seismic refraction lines were obtained (Appendix B). Locations of lines and shotholes are shown in figure 8. Table 1 gives calculated seismic velocities of seismic layers 2 and 3 for each line, depths to the layer interfaces, and elevations of the bedrock surface beneath each shot point. Representative well records are shown in figure 9. Table 1
Results of seismic refraction survey. Locations of seismic lines and shot points are shown in figure 8. Velocities (ft/s) are calculated for each seismic line. Depths (ft) and elevations (ft) are calculated at both shot points, labeled A and B, on each seismic line. | | | cities | Dep | | Dep | | Ground | surface | Bedrock | surface | |---------|---------|---------|--------|----|----------|-----|--------|---------|-----------|---------| | Seismic | Layer 1 | Layer 2 | base (| | top of b | | elevat | | elevation | | | line | | | Α | В | A | В | Α | В | Α | В | | 1 | 6264 | 10954 | 9 | 9 | 335 | 336 | 756 | 755 | 421 | 419 | | 2 | 6071 | 11110 | 8 | 10 | 347 | 328 | 757 | 754 | 410 | 426 | | 3 | 6024 | 10727 | 11 | 8 | 315 | 326 | 755 | 756 | 440 | 430 | | 4 | 6434 | 10406 | 14 | 14 | 314 | 268 | 756 | 753 | 442 | 485 | | 5 | 6293 | 10732 | 11 | 12 | 294 | 289 | 756 | 748 | 462 | 459 | | 6 | 6738 | 10390 | 14 | 13 | 331 | 230 | 753 | 753 | 422 | 523 | | 7 | 6348 | 10306 | 9 | 11 | 344 | 313 | 758 | 762 | 414 | 449 | | 8 | 6576 | 10232 | 11 | 10 | 342 | 339 | 763 | 760 | 421 | 421 | | 9 | 6634 | 10753 | 11 | 10 | 363 | 341 | 760 | 760 | 397 | 419 | | 10 | 6750 | 10498 | 10 | 11 | 365 | 315 | 755 | 765 | 390 | 450 | | 11 | 6771 | 10278 | 15 | 10 | 308 | 338 | 760 | 758 | 452 | 420 | | 12 | 6981 | 10272 | 13 | 11 | 396 | 353 | 752 | 744 | 356 | 391 | | 13 | 6575 | 10282 | 10 | 11 | 299 | 364 | 752 | 747 | 453 | 383 | | 14 | 6622 | 10485 | 11 | 13 | 324 | 335 | 748 | 740 | 424 | 405 | | 15 | 6617 | 10349 | 12 | 9 | 315 | 349 | 747 | 738 | 432 | 389 | | 16 | 6762 | 10620 | 9 | 7 | 350 | 331 | 752 | 735 | 402 | 404 | | 17 | 6339 | 9770 | 9 | 12 | 289 | 340 | 773 | 751 | 484 | 411 | | 18 | 6133 | 10493 | 6 | 8 | 322 | 345 | 760 | 742 | 438 | 397 | | 19 | 6395 | 10539 | 8 | 11 | 376 | 254 | 751 | 750 | 375 | 496 | | 20 | 6732 | 11194 | 12 | 11 | 388 | 386 | 746 | 758 | 358 | 372 | | 21 | 6723 | 10323 | 6 | 12 | 267 | 389 | 735 | 747 | 468 | 358 | | 22 | 6709 | 10474 | 13 | 11 | 380 | 355 | 746 | 753 | 366 | 398 | | 23 | 6583 | 10365 | 11 | 14 | 358 | 352 | 758 | 752 | 400 | 400 | | 24 | 6415 | 10049 | 11 | 10 | 299 | 369 | 753 | 753 | 454 | 384 | | 25 | 6922 | 10596 | 9 | 10 | 362 | 330 | 757 | 752 | 395 | 422 | | 26 | 6996 | 10017 | 12 | 11 | 295 | 346 | 755 | 758 | 460 | 412 | | 27 | 6922 | 10596 | 9 | 10 | 362 | 330 | 759 | 757 | 397 | 427 | | min | 6024 | 9770 | 6 | 7 | 267 | 230 | 735 | 735 | 356 | 358 | | max | 6996 | 11194 | 18 | 20 | 396 | 389 | 773 | 765 | 484 | 523 | | avg | 6591 | 10457 | 11 | 11 | 336 | 334 | 754 | 752 | 418 | 418 | Figure 8 Site map of seismic refraction study area showing location of seismic lines and cross sections. Figure 9 Representative well logs for shallow wells within the study area. The seismic velocity of layer 2 ranges between about 6,000 and 7,000 ft/s, averaging 6,600 ft/s. These velocities are higher than typical Wisconsinan tills (averaging about 5,000 ft/s) but are typical of compacted Illinoian and older tills (Heigold, personal communication). These higher velocities are consistent with the assumption that the Wisconsinan deposits form only a veneer over older Illinoian and pre-Illinoian deposits that constitute most of the valley fill. The seismic velocity of layer 3 ranges between about 9,800 and 11,200 ft/s, averaging 10,500 ft/s. These values are typical velocities for predominantly clastic Pennsylvanian bedrock. Drilling reports from the region indicate the upper bedrock is shale, but some evidence suggests thin limestone beds are also present. This latter interpretation is consistent with the average seismic velocity, which is an intermediate value between shale (8,000 ft/s) and limestone (16,000 ft/s). Seismic layer 1 ranges in thickness between 6 and 20 feet with an average thickness of 11 feet. This seismic layer is not easily correlated with any stratigraphic horizon. Rather, it represents a shallow, weathered soil zone. This zone may represent the unsaturated soil above the water table, but we have no direct evidence to confirm this interpretation. The primary usefulness in calculating the thickness of this seismic unit is in the improved accuracy obtained for deeper seismic interfaces. Seismic layer 2, interpreted as unconsolidated glacial sediments, ranges between about 260 and 380 feet thick, averaging about 325 feet. These values are consistent with Piskin and Bergstrom's (1975) estimate of 200 to 400 feet of glacial drift within Hudson Township. The seismic data can be used to refine Piskin and Bergstrom's estimate, which was based on regional well data. Bedrock surface elevations estimated from seismic refraction data range from about 355 to 525 feet above mean sea level (msl), averaging about 420 feet. The higher values of bedrock elevation are consistent with available well control, in which bedrock is encountered above an elevation of 400 feet. Through much of the study area, however, well control is inadequate, particularly where the bedrock surface is calculated from seismic data as below 400 feet in elevation. Wells in these areas tend to be finished in sand and gravel at an elevation of about 450 feet and do not penetrate the full thickness of the glacial sediments. Estimated bedrock surface elevations, based on seismic and well data, are shown in figure 10. This map depicts the buried Danvers Bedrock Valley trending southwest through the study area. The valley is relatively narrow when it enters the area from the north-northeast, opens to a fairly wide and flat plain in the center, and then becomes more restricted in the southwest. The southeast valley wall is well defined and can also be seen in the two cross sections of figure 11. The cross sections are based primarily on seismic data. Locations of the seismic lines, projected onto the bedrock surface, indicate the available control. Seismic data suggest that the axis of the buried Danvers Bedrock Valley may be at an elevation of less than 400 feet in sections 19 and 20 and possibly section 16. This is 40 to 60 feet below the bedrock surface encountered on the slopes of the valley to the southeast in section 21 and to the northwest in section 18. Both wells along the flanks of the valley encountered sand at an elevation of about 460 feet. If this sand is continuous across the valley, it may indicate the presence of a significant volume of sand. However, the well in section 21 encountered clay beds within the basal deposits. The relative volume of sand and clay in the deepest part of the valley can only be determined by test drilling. A bedrock high, lying approximately beneath Lake Evergreen, separates the southern channel from a northern channel located in the northwest quadrant of the area. Both seismic Figure 10 Estimated elevation of bedrock surface in feet above msl. Elevations are based on seismic and available geologic data. Figure 11 Idealized north-south cross sections through the Danvers Bedrock Valley. and well data indicate the presence of the bedrock high. This high is depicted in the cross sections of figure 11. Bedrock was encountered in a well in section 18, on the south side of the high at an elevation of 460 feet. Contrary to earlier interpretations (Horberg, 1953), which depict the bedrock surface continuing to rise to the northwest, several wells in sections 4 and 6 failed to encounter bedrock at comparable elevations. These wells terminate in sand and gravel at elevations of about 440 to 450 feet. North-south and east-west seismic lines in sections 8 and 16 indicate that the bedrock high dips abruptly to the north in sections 17 and 18. It is not known whether the bedrock high is an island or is connected to the bedrock uplands to the west. Seismic operations were restricted by Lake Evergreen and the Mackinaw River. The northern channel appears to have a steep southern wall. The east-west orientation of the northern channel where it crosses the two seismic lines supports the hypothesis that the bedrock high is an island within the Danvers Bedrock Valley. The lowest bedrock elevations encountered in this study consistently occurred along the southern margin of the northern channel. The channel profile flattens to the north. The northern wall of the valley is not well defined, but probably rises much more gently than the southern valley wall. The eastern edge of the Danvers Valley is determined primarily from well data in the vicinity of Lake Bloomington and one long east-west series of seismic lines ending at the southeast corner of section 14. Seismic data suggests that the valley widens in sections 10, 11, and 15 and in places may reach elevations below 400 feet. The configuration of the channel beneath sections 2 and 3 is not well defined. The few well logs in these sections terminate within the glacial sediments at elevations greater than 450 feet, and the presence of Money Creek restricts collection of seismic data. The water-bearing character of the basal sediments within the Danvers Valley cannot be precisely defined without further information. Two very different scenarios can be imagined depending on the western configuration of the northern channel. If this channel continues west and south, it is probably part of the main Danvers Valley system; and it is more likely that the deeper portions of the channel may contain thick sand and gravel. If the channel terminates to the west, however, it is more likely to be a tributary to the main Danvers Valley and less likely to contain thick sand and gravel deposits. In either case, a test hole is necessary to determine the thickness and character of deposits within the channel. The basic outline of the buried Danvers Bedrock Valley is evident from well data. The seismic data provide additional detail. In particular, the seismic data suggest the presence of two channels separated by a narrow bedrock high centered on Lake Evergreen. South and east of the bedrock high the valley is relatively narrow. Immediately east and north
of the bedrock high, at the location of the confluence of the two channels, the valley becomes broader and perhaps deeper. According to the seismic data, the deepest portions of the valley are immediately north of the bedrock high. It is not certain whether the two channels form one continuous valley system or whether the northern channel is a tributary valley. ## Summary Electrical earth resistivity investigations within the Mackinaw River Valley indicate that some alluvial sand and gravel deposits are present. However, these deposits appear to be limited in extent and are either not very coarse or contain a significant percentage of silt or clay. Seismic refraction investigations successfully located the southern and southeastern boundary of the Danvers Bedrock Valley within Hudson Township. Refraction data also reveal the presence of a second bedrock channel separated from the previously known southern channel by a bedrock high in the vicinity of Lake Evergreen. It is not known whether the two channels form one continuous system, or whether the northern channel is a tributary channel of the southern channel. In either case, seismic refraction data indicate that the thalweg of each channel is deeper than any existing drilling data. The character of the basal deposits within these channels is unknown and can only be determined by test drilling. ## Acknowledgments This project was supported in part by funds provided through the University of Illinois by the City of Bloomington, Illinois, Herman Dirks, City Manager. We thank the citizens of Hudson Township for their cooperation in this study, especially Michael O'Grady, Township Supervisor, and Vance Emmert, Township Road Commissioner. Paul C. Heigold, Lead Geophysicist, and Beverly L. Herzog, Acting Head of Groundwater Resources Section, designed and supervised the project. We particularly appreciate the work of Philip G. Orozco, seismic field crew chief, and the members of the field crews. #### References - Dobrin, M. B., 1976, Introduction to Geophysical Prospecting (3rd ed.), McGraw-Hill Book Co., New York. 630 p. - Heigold, P. C., V. L. Poole, K. Cartwright, and R. H. Gilkeson, 1985, An electrical earth resistivity survey of the Macon-Taylorville ridged-drift aquifer: Illinois State Geological Survey Circular 533, 23p. - Horberg, Leland, 1953, Pleistocene deposits below the Wisconsin drift in northeastern Illinois: Illinois State Geological Survey Report of Investigations 165, 61 p. - Mota, Lindonor, 1954, Determination of dips and depths of geological layers by the seismic refraction method: Geophysics 19, p. 242-254. - Piskin, Kemal, and R. E. Bergstrom, 1975. Glacial drift in Illinois: Thickness and character: Illinois State Geological Survey Circular 490, 35p. - Zohdy, A.A.R., and R. J. Bisdorf, 1975, Computer programs for the forward calculation and automatic inversion of Wenner sounding curves: U.S. Department of Commerce, PB-247 265, 47p. ## Appendix A. Resistivity Data The following tables are taken from computer output generated by the resistivity inversion routine described by Zohdy and Bisdorf (1975). In these tables, AB/2 refers to one-half the distance between the two potential electrodes (fig. 3), and OBS corresponds to apparent resistivity (ohm-feet). These are the input parameters to the program for each station. Output parameters are the layering parameters: THICKNESS (of each layer, in feet), DEPTH (to layer bottom, in feet), RESISTIVITY ("true" resistivity, in ohm-feet). The program assumes the bottom layer approaches infinite thickness. Station locations are shown on figure 4, and station elevations, reported in feet above msl, were estimated from topographic maps. | VES STATION # | ELEV: 664 | | | | |---|---|---|--|--| | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 73.950
101.000
120.600
132.400
140.700
148.900
154.300
151.500
150.100
149.900 | 7.47803
78.66100
99999910.00000 | 7.47803
86.13903
100000000.00000 | 58.06569
167.33720
133.02640 | | VES STATION # | 2 ELEV: 664 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
110.000 | 98.510
137.500
159.800
171.600
174.300
167.300
161.400
156.300
154.300
153.300
150.600 | 6.90988
33.12666
9999950.00000 | 6.90988
40.03654
99999990.00000 | 70.70109
229.00120
123.11990 | | VES STATION # | 3 ELEV: 664 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 111.700
144.500
159.400
166.100
168.000
166.600
163.100
155.800
154.900
152.000
150.600 | .55143
.63258
4.83025
37.18379
24.49266
99999930.00000 | .55143
1.18402
6.01427
43.19806
67.69072
99999990.00000 | 60.21048
141.71960
86.99506
189.78930
123.82410
142.60060 | | VES STATION # | £ 4 ELEV: 664 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
110.000 | 87.080
120.100
145.100
155.300
160.200
160.500
162.200
158.800
154.900
151.400
147.200 | 8.26515
60.00389
99999910.00000 | 8.26515
68.26904
99999980.00000 | 73.84682
193.58920
95.73998 | | VES STATION | # 5 ELEV: 6 | 65 | | | |--|--|---|---|---| | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 92.290
122.100
144.700
155.000
151.100
149.600
146.400
144.200
145.300
143.200 | 8.64638
35.31688
48.35961
9999900.00000 | 8.64638
43.96326
92.32286
9999990.00000 | 77.57518
195.83210
98.94446
184.54580 | | VES STATION | # 6 ELEV: 6 | 62 | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 124.400
160.800
175.400
178.900
177.500
173.400
171.000
166.300
160.500
152.700 | 7.02689
56.50795
99999930.00000 | 7 . 02689
63 . 53483
9999990 . 00000 | 113.90540
194.73770
108.53740 | | VES STATION | # 7 ELEV: 6 | 64 | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 110.000 | 84.500
115.800
145.300
161.000
161.700
159.400
153.000
149.700
148.200
146.300
144.400 | 7.61909
33.86639
40.15845
99999910.00000 | 7, 61909
41, 48548
81, 64394
99999990, 00000 | 64.74970
208.47290
129.12710
115.84070 | | VES STATION | # 8 ELEV: 6 | 64 | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000
110.000 | 82.240
117.200
137.200
144.700
150.400
156.000
153.900
152.300
147.500
145.100 | 5.45446
6.75758
24.74522
99999960.00000 | 5.45446
12:21204
36.95726
100000000.00000 | 55.12244
156.10880
191.10890
139.21230 | | VES STATION # | 9 ELEV: 664 | | | | |--|---|---|---|--| | A8/2 | 08S | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 84.690
116.400
142.800
154.300
159.900
161.400
154.300
154.300
154.400
147.600
143.000 | 8.51689
59.39304
99999910.00000 | 8.51689
67.9093
9999980.0000 | 71.75315
197.34170
86.83418 | | VES STATION # | 10 ELEV: 664 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000 | 100.200
129.900
151.300
153.500
156.100
149.200
145.100
142.200
141.300 | 6.34672
33.14946
99999960.00000 | 6.34672
39.49618
100000000.00000 | 77.90123
174.83780
129.67480 | | VES STATION # | 11 ELEV: 662 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000
110.000 | 150.700
181.900
194.100
184.700
181.500
172.600
167.100
160.300
156.000
155.800
155.500 | 6.84508
30.57193
55.45997
99999900.00000 | 6.84508
37.41701
92.87698
99999990.00000 | 131.79460
223.61570
112.93850
198.34560 | | VES STATION # | | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 |
130,000
167,100
185,000
181,200
181,200
171,500
164,000
156,800
157,700
154,500
154,800 | 6.92181
30.33371
54.96864
99999900.00000 | 6.92181
37.25552
92.22417
99999990.00000 | 104.93610
230.44950
108.02600
210.36280 | | VES STATION # | 13 | ELEV: | 664 | | | | |---|---|-------|-----|--|--|------------------------------------| | AB/2 | OBS | | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 | 99.270
142.800
160.400
165.300
165.500
160.500
157.000
150.700
147.500
142.600
145.100 | | | 7.17722
2.51442
19.83583
62.35623
99999890.00000 | 7.17722
9.69164
29.52747
91.88370
99999980.00000 | 112.27200
292.20490
95.70876 | | VES STATION # | 14 | ELEV: | 664 | | | | | A8/2 | OBS | | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 104.000
133.800
152.100
155.500
154.800
150.700
144.700
144.200
143.600
143.800
142.300 | | | 6,71147
37.95238
49.44605
99999900.00000 | 6.71147
44.66386
94.10991
100000000.00000 | 176.79580
118.90380 | | VES STATION # | 15 | ELEV: | 664 | | | | | AB/2 | OBS | | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 | 88.590
122.100
140.800
150.700
149.500
142.000
138.700
134.000
131.900
130.600 | | | 8.8188
28.90723
56.33694
99999900.00000 | 8.81888
37.72611
94.06305
99999990.00000 | 218.19610
97.74141 | | VES STATION # | 16 | ELEV: | 662 | | | | | AB/2 | 085 | | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 | 161.400
182.500
187.700
182.700
182.500
176.800
172.800
167.300
162.800
158.300
155.500 | | | 7.97428
35.67788
46.89272
99999900.00000 | 7.97428
43.65216
90.54488
9999990.00000 | 200.98280
145.87220 | | VES STATION | # 17 | ELEV: | 660 | | | | |--|---|-------|-----|--|---|---| | AB/2 | OBS | | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000
110.000 | 559.800
403.300
386.400
314.100
272.100
228.200
196.500
157.000
150.600 | | | .60000
.07069
1.07451
1.87097
4.95154
5,41909
99999930.00000 | .60000
.67069
1.74520
3.61617
8.56771
13.98680
99999940.00000 | 1314.25400
9977.36900
790.95360
2446.18300
145.48610
2093.11500
131.02970 | | VES STATION | # 18 | ELEV: | 660 | | | | | AB/2 | OBS | | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
110.000 | 191.000
234.700
225.800
221.900
209.500
180.300
168.300
151.500
142.600
140.300 | | | 5.14097
33.23558
99999950.00000 | 5.14097
38.37655
99999990.00000 | 159.27660
260.49620
115.25530 | | VES STATION | # 19 | ELEV: | 667 | | | | | AB/2 | OBS | | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 167.100
162.400
152.400
135.200
127.500
118.300
113.900
114.200
114.300
118.100 | | | 30.71955
60.70288
99999820.00000 | 30.71955
91.42243
99999900.00000 | 166.94300
74.16592
334.38720 | | VES STATION | # 20 | ELEV: | 665 | | | | | AB/2 | OBS | | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 309.100
196.400
181.500
148.000
132.200
123.200
116.500
114.600
113.000
114.900
117.400 | | | 7,96845
18,59528
63,20333
99999900,00000 | 7.96845
26.56374
89.76707
99999990.00000 | 376.51930
162.79610
102.03790
149.06650 | | VES STATION # | 21 ELE | EV: 665 | | | | |---|---|---------|--|--|---| | AB/2 | OBS | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 | 177.100
159.500
143.200
134.400
124.700
115.600
115.600
115.900
118.100
123.000 | | 23.14142
32.80973
21.12425
17.38640
99999770.00000 | 23.14142
55.95114
77.07539
94.46179
99999860.00000 | 182.51610
83.45307
63.19795
110.80300
432.61900 | | VES STATION # | 22 ELE | EV: 665 | | | | | AB/2 | OBS | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 | 192.800
180.900
173.000
146.700
127.500
120.600
118.700
112.000
110.800
111.200
116.700 | | 30.04468
8.67126
43.14616
99999740.00000 | 30.04468
38.71593
81.86210
99999820.00000 | 194.66520
73.50621
55.09751
483.63740 | | VES STATION # | 23 ELE | EV: 668 | | | | | AB/2 | OBS | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 228.000
148.200
117.900
119.600
123.100
123.500
125.100
125.100
126.900
127.800 | | 6.55612
2.84597
22.13243
9999964.00000 | 6.55612
9.40209
31.53452
9999996.00000 | 297.79520
207.0020
99.54055
135.18830 | | VES STATION # | 24 ELEV: 6 | 563 | | | | | AB/2 | OBS | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 144.200
129.600
132.600
132.100
132.300
129.300
129.300
131.100
135.100
137.500
135.400 | | 7.64889
16.11032
69.44824
99999900.00000 | 7.64889
23.75920
93.20744
100000000.00000 | 150.75980
124.20770
136.19430
122.19080 | | VES STATION # | 25 ELEV: 665 | | | | |---|---|---|---|--| | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 98.450
104.200
111.200
116.800
119.600
123.600
124.400
129.100
128.900
125.000
123.800 | 17.56664
74.94563
99999900.00000 | 17.56664
92.51227
100000000.00000 | 97.47478
135.92360
105.94670 | | VES STATION # | £ 26 ELEV: 667 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 | 114.000
110.200
114.900
118.300
119.300
124.700
123.100
125.100
125.500
125.600
125.700 | 10000000.00000 | .00000 | 118.74230 | | VES STATION # | 27 ELEV: 666 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 | 138.200
143.200
147.700
147.700
146.700
142.100
139.800
133.700
128.300
126.900
124.400 | 13.10973
33.69054
42.89543
99999900.00000 | 13.10973
46.80027
89.69569
99999990.00000 | 138.21260
159.15780
116.99230
99.38177 | | VES STATION # | # 28 ELEV: 665 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 170.800
160.800
127.700
119.100
121.500
124.000
128.400
131.600
131.700
131.700
137.800 | .80000
.09162
2.65348
11.64003
11.94077
39.12109
99999890.00000 | .80000
.89162
3.54509
15.18512
27.12589
66.24698
99999950.00000 | 199.04560
14.83696
144.43740
221.42470
49.88651
241.70450
68.51552 | | VES STATION | # 29 ELEV: 662 | | | | |---|---|--|--|--| | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | |
10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 | 175.200
164.700
153.000
157.000
162.100
157.200
154.300
150.700
147.500
144.500
140.900 | 10.90313
16.07034
47.34659
9999920.00000 | 10.90313
26.97348
74.32007
9999990.00000 | 178.02800
149.05360
168.64370
105.10360 | | VES STATION | # 30 ELEV: 659 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 118.100
129.300
141.300
149.500
149.600
149.600
148.200
145.200
143.600
140.100
138.900 | 8.63629
66.82900
99999920.00000 | 8.63629
75.46529
9999990.00000 | 112.54040
155.58600
117.42290 | | VES STATION | # 31 ELEV: 659 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 100.000 110.000 | 148.900
123.900
135.700
141.200
140.100
139.800
139.200
138.500
139.200
140.900 | 4.42140
.58574
9.96342
27.74550
45.2918
9999900.00000 | 4.42140
5.00714
14.97056
42.71606
87.92525
99999990.00000 | 243.09790
133.60370
103.47050
156.87960
119.93630
173.03450 | | VES STATION | # 32 ELEV: 660 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 71.750
81.300
96.310
103.500
105.800
107.000
108.100
108.500
109.700
111.800 | 12.13715
82.88587
99999900.00000 | 12.13715
95.02302
100000000.00000 | 69.78114
114.17260
140.30630 | | VES STATION | # 33 ELEV: 660 | | | | |---|---|--|--|--| | AB/2 | 08S | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 58.370
76.400
86.700
91.730
96.750
101.000
104.200
107.000
111.300
111.800 | 11.86334
71.67422
99999910.00000 | 11 . 86334
83 . 53757
99999990 . 00000 | 52.71797
120.14440
142.83220 | | VES STATION | # 34 ELEV: 660 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 78.530
96.380
105.900
108.500
111.500
114.600
115.200
114.100
113.000
114.300
116.100 | 5.98739
89.13116
99999900.00000 | 5.98739
95.11855
100000000.00000 | 63.64975
115.73210
138.96260 | | VES STATION | # 35 ELEV: 660 | | | | | AB/2 | 088 | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 94.810
108.600
115.100
111.000
109.000
114.600
115.600
118.100
119.300
120.200 | 5.0089
26.29005
27.36554
9999940.00000 | 5.00899
31.29905
58.66458
99999990.00000 | 81.24050
115.03570
108.34970
131.70240 | | VES STATION | # 36 ELEV: 670 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 458.600
412.700
341.500
276.700
244.600
219.900
197.000
184.300
173.400 | 24.14921
26.77665
38.15314
99999890.00000 | 24.14921
50.92587
89.07901
99999980.00000 | 505.43680
207.86900
122.03210
153.50520 | | VES STATION | # 37 | ELEV: | 670 | | | | |---|--|--|-----|---|---|---| | AB/2 | OBS | | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 266.30
343.00
373.20
359.30
314.10
263.50
239.20
214.10
199.60 | 00
00
00
00
00
00
00 | | 8.86001
17.72044
15.29592
24.39773
99999890.00000 | 8.86001
26.58046
41.87638
66.27411
99999950.00000 | 194.00490
50.94256 | | VES STATION | # 38 | ELEV: | 690 | | | | | AB/2 | OBS | | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 | 216.7(
233.7(
193.2)
148.7(
140.1)
136.8(
140.3(
144.7(
141.3(
138.8(
140.3) | 00
00
00
00
00
00
00
00 | | 1.0000
.27877
3.69729
13.48095
23.65528
43.25249
9999900.00000 | 1.00000
1.27877
4.97606
18.45701
42.11329
85.36578
99999980.00000 | 41.32101
181.74730
340.59400
65.38470
221.95020 | | VES STATION | # 39 | ELEV: | 690 | | | | | AB/2 | OBS | | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 873.44
1060.00
889.60
583.00
348.70
242.00
186.90
164.80
159.40 | 00
00
00
00
00
00
00
00 | | .80000
.22936
1.29573
21.48999
7.07174
3.63561
2.66795
6.53417
99999860.00000 | .80000
1.02938
2.32509
23.81508
30.88681
34.52242
37.19037
43.72454
99999900.000000 | 2496.63400
584.54660
1003.95400
468.77760
115.53650
60.28965
26.65431 | | VES STATION | # 40 | ELEV: | 668 | | | | | AB/2 | OBS | | | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 | 123.70
145.80
164.50
166.60
164.90
162.44
163.60
158.80
155.10 | 00
00
00
00
00
00
00
00 | | 7.13767
45.45749
43.95752
99999900.00000 | 7.13767
52.59517
96.55268
100000000.00000 | 176.37210
139.15570 | | VES STATION # | 41 ELEV: 665 | | | | |--|---|--|--|---| | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 107.600
142.200
154.900
149.500
145.100
140.900
137.600
132.100
127.200
128.100
129.200 | 7.48823
21.76468
61.25554
99999880.00000 | 7.48823
29.25292
90.50845
99999970.00000 | 85.54686
226.04630
86.59437
223.68710 | | VES STATION # | 42 ELEV: 665 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 88.020
130.300
147.300
136.700
135.000
132.700
135.000
135.100
131.900
130.600 | .89853
.59720
5.27664
4.97808
99999980.00000 | .89853
1.49573
6.77238
11.75046
99999990.00000 | 56.64484
31.62265
58.07855
419.23310
127.08340 | | VES STATION # | 43 ELEV: 665 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 179.600
187.600
188.300
183.200
174.000
163.600
156.500
152.800
148.100
148.200
144.400 | .11219
4.20939
5.23312
24.39382
99999960.00000 | .11219
4.32158
9.55469
33.94852
99999990.00000 | 200.33700
176.89850
169.19300
212.37590
126.68980 | | VES STATION # | 44 ELEV: 665 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000
110.000 | 99.270 133.700 158.800 162.300 165.800 159.400 159.600 152.600 150.400 148.900 145.800 | 8.23985
40.91499
99999940.00000 | 8.23985
49.15483
99999990.00000 | 82.20049
208.12970
112.21200 | | VES STATION # | # 45 ELEV: 665 | | | | |---|--|---|---|---| | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 | 194 .100
213 .600
207 .900
204 .000
189 .700
176 .400
166 .600
150 .800
155 .000
151 .300 | 6.41119
26.32569
61.92643
99999900.00000 | 6.41119
32.73688
94.66330
99999990.00000 | 172.64150
242.51410
119.78120
180.79910 | | VES STATION # | ¥ 46 ELEV: 667 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 868. 900
428. 500
233. 100
190. 500
173. 400
167. 300
160. 000
154. 800
149.
200
147. 200 | 9.40505
7.79120
3.56914
50.26783
99999900.00000 | 9.40505
17.19625
20.76540
71.03322
9999970.00000 | 1144.31200
268.05390
71.63665
159.38120
138.66450 | | VES STATION # | | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 | 290, 900
272, 600
308, 700
256, 000
236, 800
200, 900
182, 000
166, 800
166, 200
163, 300
162, 400 | 32.91641
99999960.00000 | 32.91641
99999990.00000 | 288.53450
138.80430 | | VES STATION | # 48 ELEV: 690 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
90.000
100.000 | 617 . 600
706 . 200
625 . 700
595 . 600
524 . 600
423 . 100
375 . 400
301 . 900
258 . 200
232 . 200 | 4.31633
29.41146
38.44043
13.44357
99999580.00000 | 4.31633
33.72778
72.16821
85.61178
99999660.00000 | 442.82520
779.75610
339.85400
98.18905
46.83229 | | VES STATION | 49 ELEV: 658 | | | | |---|---|---|---|--| | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
110.000 | 91.480
113.700
128.100
140.200
144.800
145.800
140.300
139.700
136.800
134.400
134.000 | 7.99542
51.01255
99999940.00000 | 7.99542
59.00797
99999990.00000 | 79.33683
155.98790
123.21340 | | VES STATION # | # 50 ELEV: 663 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000 | 128.800
158.900
173.200
185.700
185.600
183.500
177.600
174.900
169.000 | 7.00286
61.05562
99999920.00000 | 7.00286
68.05848
99999990.00000 | 116.20770
197.58340
114.92170 | | VES STATION # | \$ 51 ELEV: 655 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 152.000
188.800
185.800
172.900
161.400
164.700
160.000
161.800
160.000
164.600
163.800 | .6000
.02878
.98337
2.03491
1.25498
2.11768
9999990.00000 | .60000
.62878
1.61215
3.64706
4.9020
100000000.00000 | 192.94450
3.58862
137.63540
63.29283
259.59050
613.15800
157.57700 | | VES STATION # | # 52 ELEV: 655 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000 | 342.400
290.200
249.300
223.900
199.400
188.100
179.800
167.800
165.100
159.500 | 16.30725
56.74193
99999920.00000 | 16.30725
73.04917
99999990.00000 | 368.96520
163.43570
133.39830 | | VES STATION # | 53 ELEV: 664 | | | | |---|---|--|---|--| | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000 | 129.400
156.600
162.800
160.300
152.900
148.100
146.400
141.700
136.800 | 4.90365
44.71863
99999940.00000 | 4.90365
49.62228
99999990.00000 | 112.48840
169.51450
104.25460 | | VES STATION # | \$ 54 ELEV: 664 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 229.900
210.400
233.700
213.800
194.400
181.300
172.800
164.300
163.400
158.900
155.500 | 3.19696
6.88461
22.05218
99999960.00000 | 3.19696
10.08157
32.13375
99999990.00000 | 294.78790
208.81720
237.35040
143.75180 | | VES STATION # | 55 ELEV: 664 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 125.600
168.300
179.800
180.100
178.100
168.500
149.000
149.200
142.500
143.200
141.600 | 5.47106
31.60618
54.39030
9999900.00000 | 5.47106
37.07724
91.46754
9999980.00000 | 86.33028
227.89770
97.95407
157.86380 | | VES STATION # | # 56 ELEV: 664 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000 | 128.800
153.300
171.100
165.800
159.200
152.600
149.900
145.200
144.100 | 1.38362
1.10064
44.91088
999950.00000 | 1.38362
2.48427
47.39515
9999997.00000 | 154.08210
69.63349
164.71230
125.77440 | | VES STATION | # 57 ELEV: 670 | | | | |--|---|---------------------------------------|--|-------------------------------------| | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 233.700
202.300
177.900
167.100
161.700
156.800
153.900
152.300
152.100
148.200
146.500 | 12.80746
9999984.00000 | 12.80746
9999997.00000 | 249.92020
146.76040 | | VES STATION | # 58 ELEV: 675 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 143.200
192.200
211.100
210.600
206.300
198.600
183.400
181.900
170.200
163.300
160.300 | 6.94986
23.17689
99999970.00000 | 6.94986
30.12674
100000000.00000 | 113.47090
272.59120
149.63020 | | VES STATION | # 59 ELEV: 665 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 87.010
118.100
145.800
152.800
153.900
150.700
146.800
140.200
132.800
133.200
127.800 | 8.14478
51.04893
99999910.00000 | 8.14478
59.19371
99999970.00000 | 72.53461
192.26750
73.87632 | | VES STATION | # 60 ELEV: 665 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000
110.000 | 107.000
125.700
141.700
151.000
148.900
150.400
150.200
145.800
148.200
145.800 | 7.02605
67.83124
99999920.00000 | 7.02605
74.85728
9999990.00000 | 97.42168
157.12320
120.57210 | | VES STATION # | 61 ELEV: 664 | | | | |---|---|--|---|--| | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 154.500
177.900
171.500
173.200
188.800
167.000
156.500
153.800
151.500
147.000 | 7.41818
37.07000
45.86110
99999900.00000 | 7.41818
44.48818
90.34929
9999990.00000 | 154.96090
182.84810
138.30570
121.36700 | | VES STATION # | 62 ELEV: 664 | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000 | 419.000
346.800
292.100
241.700
201.300
177.500
163.100
159.300
155.500
151.400
147.900 | 12.72878
21.43693
48.30168
99999900.00000 | 12.72878
34.16571
82.46739
9999980.00000 | 455.42110
234.62390
125.15230
143.66840 | | VES STATION # | | | | | | AB/2 | OBS | THICKNESS | DEPTH | RESISITIVITY | | 10.000
20.000
30.000
40.000
50.000
70.000
80.000
100.000 | 118. 100
122.000
129. 600
136. 700
135. 700
134. 900
134. 500
137. 700
135. 000 | 14.20742
59.71202
99999930.00000 | 14.20742
73.91944
100000000.00000 | 116.96810
143.56450
120.59560 | ## Appendix B. Seismic Refraction Data The following graphs depict the time-distance relationship for each shot recorded during this survey. Locations of each line are shown in figure 8. East-west lines are oriented so that the distance axis increases towards the west end of the line. North-south lines are oriented so that the distance axis increases towards the north end of the line. Solid lines drawn through the datum points were calculated by linear regression analysis. The reciprocal of the slope of the regression lines provides the velocity information; the time-intercept of the regression lines provides the depth information. Liberta J NOV 2 2 1989 ALL CLUTE GEOFOGICVI CHARE.