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ABSTRACT 

Noncommunicable diseases (NCD) are currently the leading cause of death 

worldwide. Over 57 million deaths occur globally each year, with close to 36 million of 

them attributed to NCD’s, and 80% of those in low and middle income countries. Most of 

these were due to such chronic illnesses as cancer, cardiovascular disease, diabetes, and 

lung disease. Moreover, the prevalence of these diseases is rising fastest in low-income 

regions which have little resources to combat these large, yet avoidable costs. In 

particular, over 1.6 million cases of cancer are caused each year in the United States, with 

nearly 600,000 of these cases being fatal. Cancer is an uncontrolled growth and spread of 

abnormal cells in the body, and unfortunately, can exist in many different cell types. The 

complexity in the causes of cancer has made it tougher to diagnose since several factors 

may weight into its prevalence such as: genetic factors, lifestyle factors, certain types of 

infections, and different environmental exposures. As a result, the protocols for the most 

cost-effective intervention are available across four main approaches to cancer prevention 

and control: primary prevention, early detection, treatment, and palliative care.  Early 

diagnosis based on awareness of early signs and symptoms and, if affordable, population-

based screening improves survival, particularly for breast, cervical, colorectal, skin and 

oral cancers.  

If primary prevention of cancer fails, secondary prevention (early detection) may 

be the difference between irreversible spread of a malignant cancer, and the patient’s 

survival. Early detection commonly refers to the diagnosis of a disease before individuals 

show obvious signs or symptoms of illness. With cancer, RNA and protein biomarkers of 
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cells are currently assayed to determine their serums level and if they have deviated from 

the normal ranges. However, these assays commonly require large centralized lab 

facilities, frequent monitoring during treatment, and expensive equipment and/or 

supplies. This has led to point-of-care diagnostics becoming a $16 billion global market, 

aimed at miniaturizing technology and making it cost-effective for individual patient 

testing and treatment without the use of centralized lab facilities. A main point-of-care 

testing platform being pursued utilizes Complementary Metal Oxide Semiconductor 

(CMOS) technology. CMOS-based products can enable clinical tests to be conducted in a 

fast, simple, safe, and reliable manner, with improved sensitivities. Moreover, CMOS 

products offer portability and low power consumption, in large part due to the explosion 

in the semiconductor and communications markets. 

Silicon nanowires are of great interest for point-of-care testing as they are a 

CMOS compatible structure, require the use of no labels, and are highly sensitive to the 

binding of molecules to their surfaces. This is due to the large surface area to volume 

ratio afforded to nanowires. Moreover, arrays of silicon nanowires have demonstrated 

multiplexed, label-free sensing of cancer markers from undiluted serum samples. 

However, the research going into CMOS for point-of-care is in its infancy compared to 

other optical (surface plasmon resonance, fluorescence) or electrochemical methods 

(glucose sensors), although the technology for CMOS has been around for decades. Thus, 

the protocols for optimization of the sensors and their bioconjugation have not matured to 

the point DNA microarrays and ELISA’s have. The protocols for creation of a 

dependable silicon nanowire biosensor revolve around three main aspects: semiconductor 

processing, device functionalization, and choice of analytes. 
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In this dissertation, I discuss our efforts to create a stable, silicon nanowire based 

sensor using CMOS compatible techniques and optimization processes. Moreover, I talk 

about our efforts into creating a device functionalization protocol using monofunctional 

silanes which affords the best sensitivity and specify for an electronic based biosensor. 

Finally, I discuss our look towards the future in silicon nanowires by using high-k 

dielectrics in our fabrication process, as well as an alternative monolayer deposition 

method which utilizes sub-nanometer thickness poly-l-lysine monolayers, for sensing 

clinically relevant targets of microRNA.  

Using a special type of silane, called a monofunctional silane, and a vapor based 

deposition method, we were able to achieve sub-nanometer levels functional monolayers 

on thermally oxidized silicon surfaces. We employed a variety of characterization 

techniques (XPS, AFM, ellipsometry) to determine the densities of the monolayer, 

uniformity, topography, and their point of saturation. Furthermore, we demonstrate this 

method’s applicability to biosensors by using it to functionalize substrates for silicon 

nanowires, gold nanoparticles, and protein microarrays.  

In tandem with this work, we constructed a “top down” silicon nanowire 

processing protocol which yielded nanowires capable of long-term, stable measurements 

in aqueous solutions. The combination of anneals, dry etching, and final wet etching gave 

mV standard deviations in device threshold characteristics. This protocol combined with 

the monolayer protocol above allowed an in-depth characterization of the pH sensitivity 

of bare devices, ones with silanes, and ones conjugated with proteins to be determined. 

Similarly, different oxide thicknesses and their effect on device sensitivity for proteins 

were also explored. Using a bunch of different linker chemistries and characterizing their 
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conjugation of antibodies through fluorescence and the device, allowed for a chemistry to 

be chosen which was used to sense mouse immunoglobulins in pg/mL levels with high 

specificity. 

Finally, we take the fabrication of nanowires to the next level by using high-k 

dielectrics (HfO2) as the gate insulator. We deposit HfO2 through ALD (atomic layer 

deposition) and optimize the anneals to provide nanowires with ~200mV subthreshold 

slopes, sub-mV threshold deviations, and sub nanoampere gate leakages. All these 

characteristics exceed the processes for thermal oxide gated silicon nanowires, some by 

an order of magnitude. Since HfO2 is a high-k material, reaction of silanes and its density 

were unknown, but high-k materials do form stable amide linkages. Thus, we optimized a 

wet deposition of small molecular weight poly-l-lysine to provide a sub-nm conjugation 

layer for proteins and nucleotides by using AFM, XPS, and ellipsometry to understand 

the process. Using these combined protocols, we were able to conjugate probe 

oligonucleotides to surfaces and detect target microRNA’s down to 100fM 

concentrations, with a dynamic range over 4 orders of magnitude. With these ranges well 

within the clinical levels (1pM-100pM), we believe silicon nanowires have the capability 

to become a well-established point-of-care diagnostic platform. 
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“I don't understand. Why the legend about the city of gold? Well, the Ugha word 

for 'gold' translates as 'treasure.' But their treasure wasn't gold, it was knowledge. 

Knowledge was their treasure.” 

- Indiana Jones and the Kingdom of the Crystal Skull
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CHAPTER 1: INTRODUCTION 

Currently, cancer is a leading cause of death worldwide with over 7.6 million 

deaths in 2008. This number is expected to rise to over 13 million by 2030. Furthermore, 

the medical expenditures in the United States due to cancer are expected to reach $158 

billion- and increase of over 27% from 2010.[1] Cancer usually arises from one single 

cell. The transformation into tumor cell is a multistage process, typically a progression 

from a pre-cancerous lesion to malignant tumors. Unfortunately, classical testing 

methodologies such as ELISA (Enzyme Linked Immunosorbent Assay) for biomarkers 

often provide sensitivities in the ng/mL range, which are quite often at a late stage of the 

disease where metastasis has already occurred. These changes in biomarker levels are the 

result of a complex interaction between a person's genetic factors and physical, chemical, 

or biological carcinogens. Thus, knowledge about the causes of cancer, and interventions 

to prevent and manage the disease is imperative to achieving a high chance of cure. In 

order to reduce costs of treatment as well as increase the chance of survival, several 

routes are currently being taken: 

 Early detection of cancer, commonly using more frequent screening and 

education of symptoms, has shown to be directly correlated to the survival 

of patients 

 Trending patient care away from the hospital by removing the need for 

costly centralized lab facilities, which commonly utilize large support 

staffs and multi-million dollar pieces of equipment 

 More frequent monitoring of disease treatment to prevent relapses and 

chemotoxicity due to treatment 
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Point-of care (POC), or lab on a chip, devices essentially bring the lab to the site 

of patient care. POC testing shows promise for revolutionizing the way diagnostic testing 

is performed, not only for cancer but for all chronic diseases. Several drivers are pushing 

the analytical applications of POC devices forward. The flexibility of the platform and 

the compact design allows for the technology to be rapidly adopted since production 

costs are less. And with the discovery of more molecular biomarkers for diagnostic 

testing, the multiplexing capability and automation of processes make POC devices 

particularly enticing. The portability of POC devices removes the need for transport of 

samples to centralized facilities, while providing faster medical decisions. Moreover, 

POC devices are being manufactured to be disposable and easy to use, yet be cost 

effective. An example integrated silicon biochip device for PCR (polymerase chain 

reaction) of target genes is shown in Figure 1.1.[2,3] This device is made by ST 

Microelectronics, which is one of the many players in the POC testing market. It consists 

of a sample loading area of 1-4 ports (i), which then leads through microfluidics to a PCR 

amplification area with heaters for thermal cycling (ii), then through microfluidics (iii) to 

an arrayed detection area for targets (can be 120-400 probes). 

Even though the POC market has grown considerably in the last decade, there is 

still much opportunity to improve the technology. Some issues which continuously 

plague the industry are: fabrication and increasing miniaturization of the devices, 

increasing sensitivity to low serum level biomarkers, and competing with the already 

automated practices (such as optical microarrays). CMOS technology has the possibility 

to alleviate many of these issues, as transistors are now passing the 32nm node, due to the 
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aggressive scaling of Moore’s Law. This makes multiplexing and automation for 1000’s 

of biomarkers plausible. In this dissertation we shall discuss the currently available 

technologies for biosensors and POC devices, as well as our efforts into improving the 

technologies using a CMOS compatible platform. 

Figure 1.1. Architecture of the Lab-on-Chip: (i) Input microfluidics ports for sample 

loading, (ii) PCR DNA amplification region, (iii) microfluidics interconnection, (iv) 

DNA microarray region(ST Microelectronics), from [3]. 

In Chapter 2 a thorough review of the fundamentals of biosensors, the types of 

biosensor outputs, FET based sensors, the functionalization of these sensors, and the 

opportunities are covered. The beginning section discusses the main elements which 

make up biosensors and the types of output they provide, as well as the types of analytes 

they can process. We also go over the “classical” biosensing methods of DNA 

microarrays and ELISA as a beginning comparison. Furthermore, we discuss the two 

main types of sensor platforms in place at present: optical and non-optical detection. 
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Optical detection modalities such as surface plasmon resonance, waveguides, photonic 

crystals, and fluorescence will be the primary focus of this section. The current 

advantages, detection limits, and assaying principles will be covered. Similarly, the non-

optical method of detection will be highlighted, focusing on electrochemical and 

impedance methods, quartz resonators, and micro-electromechanical devices. The 

advantages and variety of analytes detected will also be reviewed. The next section we go 

over the theory of field-effect transistor (FET) based sensors, a specific type of electrical 

sensor, and the types of analytes which have been sensed using classical FET’s and 

silicon nanowires. Finally, we discuss the opportunities silicon nanowire CMOS 

technology holds for POC diagnostics. 

Chapter 3 focuses on the interfacing of biological analytes to single molecule 

linking layers, commonly referred to as self-assembled monolayers, for high density 

linkage to silicon oxide surfaces, a common sensing interface for FET-based devices. 

Since the sensitivity of electrical and photonic based devices decays exponentially with 

the distance the antigen is to the surface, achieving uniform sub-nanometer layers for 

device functionalization is critical. In this chapter we discuss our characterization and use 

of monofunctional silanes to form high density, sub nanometer thick linking layers on 

SiO2 surfaces. We determine a protocol using vapor based depositions for epoxy and 

amino functionalized silanes by characterizing the layers using x-ray photoelectron 

spectroscopy (XPS), atomic force microscopy (AFM), and ellipsometry. We finally 

demonstrate the use of these layers for conjugation to a wide variety of functional groups 

and to silicon nanowire FET devices using immunoglobulins for the antibody-antigen 

assay. 
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In chapter 4 we discuss the fabrication of SiO2 based silicon nanowire devices and 

the design of protocols for their use as a protein biosensor. Protocols for functionalization 

of ELISA’s, DNA microarrays, and other fluorescence assays have been well established, 

but are lacking when it comes to electronic based devices. In this chapter we use silicon 

nanowire devices, in conjunction with the vapor based deposition of silanes, to sense 

immunoglobulins at different concentrations and generate a dose response curve. We 

investigated different linking chemistries for antibodies to the amine modified surfaces 

through fluorescence and the nanowire devices, choosing a polyethylene glycol (PEG) 

based linker that gave the best signal-noise ratio. Since many FET based biosensors, such 

as enzyme FET’s (EnFET’s)[4] and the new DNA sequencing technologies[5], utilize pH 

as their readout sys We characterize the pH response of each of the layers as well, since 

many sensors rely on pH changes generated by enzymes for their response. Using this 

PEG based linker and vapor based aminosilane monolayer, we demonstrate this protocol 

to give negligible non-specific binding of similarly structured antigens. Moreover, we 

characterize the sensitivity of the devices based upon dielectric thickness, as thicker 

dielectrics are known to give poorer response. 

In chapter 5 we discuss the next generation of CMOS compatible silicon 

nanowires which utilize high-k dielectrics to sense microRNA targets. The fabrication of 

the nanowire devices using hafnium oxide (HfO2) is overviewed and the optimization of 

the gate dielectric. Capacitance-Voltage (CV) curves and wet etch tests were used to 

monitor the effect of anneals on the devices to passivate interface traps. This optimized 

process was able to give us ~200mV/decade subthreshold swings, which was %100 better 

than previous SiO2 based processes. Since HfO2 has different properties and binding of 



6 

 

normal silanes may be less than a SiO2 layer, we use a monolayer of low molecular 

weight poly-l-lysine which can first be electrostatically adsorbed then crosslinked. We 

characterized and optimized this layer for binding of probe DNA to the poly-lysine 

surface. Using these devices and their corresponding functionalization, we were able to 

have a detection limit (3σ) of miRNA target (miR-10b) down to ~10fM, which is 3 times 

the standard deviation (3σ) generated from the non-specific target (miR-21).  

In chapter 6 I briefly discuss the main conclusions of this dissertation and our 

future work. Currently, this work takes chapter 5 a step further, where we are now 

collaborating with semiconductor foundries for the fabrication of CMOS chips with 

extended metal gates for sensing. These chips contain various gate lengths and widths, as 

well as n-type and p-type devices. Furthermore, they are capped with HfO2 sensing 

dielectrics on top of the gate for pH testing and device functionalization. We have 

optimized anneals on these devices to achieve excellent stability in fluid and are currently 

testing their sensing properties with RNA and proteins. By monitoring the device current 

vs. time in the most sensitive regime (subthreshold), we hope to achieve pg/mL limits of 

detection for both oligonucleotides and proteins. These detection limits are within range 

of most clinical cancer biomarkers, and would give credence to CMOS devices and 

silicon nanowires as a plausible molecular diagnostics platform. 
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CHAPTER 2: BACKGROUND AND 

LITERATURE REVIEW 

2.1 BIOSENSOR BASICS 

The field of biosensor technology originally developed in the 1960’s from 

electrochemical sensors to detect glucose[1] and urea[2]. These sensors immobilized 

enzymes (namely urease and glucose oxidase) onto an electrode and measured the 

concentration of the analyte by the current produced through enzymatic reaction.  A 

biosensor is defined by The National Research Council (part of the U.S. National 

Academy of Sciences) as a detection device that incorporates a) a living organism or 

product derived from living systems (e.g., an enzyme or an antibody), b) a transducer to 

provide an indication, signal, or other form of recognition of the presence of a specific 

substance in the environment, and c) an output for statistical processing of the data 

generated. Ideally, biosensors must be designed to detect molecules of analytical 

significance, pathogens, and toxic compounds to provide rapid, accurate, and reliable 

information about the analyte of interrogation. A generalized schematic of a biosensor is 

in Figure 2.1, highlighting the flow of how a biosensor works.[3,4] Overall, there are 

several detection devices (recognition elements) which are utilized for analyte detection, 

and nearly as many transduction methods in practice to generate a measurable signal. A 

list of common recognition elements and transducers is highlighted in Figure 2.1, and 

will be reviewed below. 
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Figure 2.1. Generalized schematic of a biosensor setup, from [4]. 

RECOGNITION ELEMENTS 

Most biological processes implement the use of small molecules, proteins, and 

DNA/RNA in complex reactions so life can proliferate. Thus, the recognition elements 

for biosensors are geared towards sensing these biomolecules of interest. Since the 

beginning of the biosensor field in the 1960’s, enzymes have been very popular, 

primarily due to the need for monitoring glucose in the blood, and the development of the 

glucose sensor. Enzymes are proteins which act as highly efficient catalysts, lowering the 

activation energy barrier for precursor molecules (substrates) to react and transform into 

products. Most reactions essential to life use enzymes so that they may occur at a 

reasonable rate. One particular type of biosensor, the enzyme electrode, is an 

electrochemical type of sensor which has a thin-film enzyme layer attached to it. The 

embedded enzymes produce a variety of products such as H
+
, O2, CO2, NH4

+
, and H2O2, 

and these products can generate amperometric signals on conductive substrates through 

redox reactions (Figure 2.2) .[5] Some enzymes which have been used commonly to 
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generate output include oxidoreductases, glucose oxidase, horseradish peroxidase, and 

alkaline phosphatase. Several types of small molecules have been able to be detected 

utilizing enzyme catalysis in clinically relevant levels. Well studied molecules of interest 

have included glucose[6-11], bilirubin[12-14], lactose[15-17], urea[18-20], malate[21-

24], NADH[25-29], acetycholine[30-32], and glutathione[33-35].  

Other targets relevant to biologically processes typically include proteins and 

DNA/RNA. Changes in the expression levels of these analytes may signal onset of a 

variety of genetic or infectious diseases, as well as cancer. The detection of proteins relies 

around a class of biosensors known as immunosensors. Immunosensors are affinity 

ligand-based biosensor devices in which the immunochemical reaction is coupled to a 

transducer. Because of their high affinity and widespread availability, antibodies have 

become the prime choice for a recognition element in affinity biosensors.[36] Commonly, 

the antibodies or receptor proteins are immobilized on the sensor using covalent linking 

methods or physisorption, and have affinities to the antigen or ligand of interest. A 

certain type of antibody class, known as immunoglobulin G, are very similar in structure 

between variants, however, their affinities for antigens may vary widely. These 

differences in antigen specificity and binding affinity originate from the variations in 

amino acid sequence at the antigen binding site.[37] The antibody binding sites are 

located at the ends of two arms (Fab units) of this “Y-shaped protein.” The base of the 

“Y” referred to as the Fc unit is less variant and contains species-specific structure, which 

is commonly used as an antigen for production of species-specific (anti-IgG) antibodies. 

The binding to this region is commonly employed in sandwich ELISA assays. The 
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differences in antibody–antigen binding characteristics influence the wide range of 

detection limits observed for antibody-based biosensors.  

 

Figure 2.2. Integrated enzyme electrodes for bioelectronic applications: A) 

bioelectrocatalyzed oxidation of a substrate, B) electrochemical reduction of H2O2, which 

is formed upon the O2-biocatalyzed oxidation of the substrate, from [5]. 

Another type of antigen for proteins in use, albeit more recently, is DNA and 

RNA aptamers. Aptamers are single stranded DNA or RNA analogues which can fold 

into unique tertiary structures in order to form high affinity and high specificity binding 

sites for ligands of interest.[38] One of the major fallbacks of antibodies is that an antigen 

has to be injected into a host animal, and this is not received well if the antigen is 

especially toxic. Aptamers, also known as “chemical antibodies”, sidestep this because of 

their artificial process of generation called Systematic Evolution of Ligands by 
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EXponential enrichment (SELEX), which is described in Figure 2.3.[39] Briefly, random 

oligo libraries are generated and flown with the target analyte, with the unbound 

molecules separated from bound molecules afterwards. The bound nucleic acids are 

eluted, amplified by PCR (polymerase chain reaction) and serve as an enriched library for 

the next cycle. For every target, 6–12 consecutive cycles are performed and the final 

enriched library is cloned and sequenced. The breadth of targets now able to be sensed by 

aptamers rivals antibodies in detecting proteins and peptides, whilst also demonstrating 

abilities to sense metal ions, small organics, and even whole cells.[40]  

 

Figure 2.3. Scheme for the Systematic Evolution of Ligands by EXponential (SELEX) 

enrichment process for aptamer generation, from [39]. 

Nucleic acid sensing modalities have been around since the advent of DNA 

microarrays. Typically, oligonucleotides composing of RNA, DNA, or more recently, 

locked nucleic acids (LNA) [41] and peptide nucleic acid (PNA) [42], are covalently 
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bound to the sensor surface, and the target DNA or RNA is allowed to interact with these 

bound oligonucleotides. The oligo’s are commonly referred to as probes. The 

hybridization of the complementary target to the oligo probe induces a response on the 

sensor either through optical or electrochemical means. In particular LNA’s and PNA’s 

have become popular since they create high stability duplexes through either, 1) a locked 

ribose ring, which stabilizes base stacking (LNA) or 2) a neutral backbone composed of 

peptide linkages, which removes electrostatic phosphate backbone repulsion (PNA). All 

of these recognition elements are currently utilized in biosensors today, with new 

recognition elements being conjured daily in the hopes of creating truly all-in-one 

immunoassays. 

TRANSDUCTION MECHANISMS 

Biosensors can typically be grouped based upon their detection principle, or 

transduction method. The most common ones investigated are electrochemical, optical, 

and microgravimetric methods. A brief overview of the different types will be given in 

this section, followed by a more detailed review of optical and electrochemical 

technologies in subsequent sections. Typically with electrochemical methods, the 

reaction under investigation would generate a measurable current (amperometric), a 

measurable potential or charge accumulation (potentiometric), or measurably alter the 

conductive properties of a medium (conductometric) between electrodes.[43] Each of 

these methods has been thoroughly reviewed by several sources in excellent detail.[44-

49]. Potentiometric sources measure the accumulation of surface charge, leading to a 

surface potential, on a working electrode vs. a reference electrode when zero to little 

current is allowed to flow between them. Thus, potentiometry essentially measures the 
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activity of the analyte or ion of interest. This potential is governed by the Nernst 

equation[50], which relates the concentration dependence of the measured potential to a 

standard reference potential (taken at a fixed analyte concentration). Amperometric 

devices constantly measure the current of an oxidation or reduction of an electroactive 

species at the surface of the electrode. Typically, the potential remains constant and the 

change in current is proportional to the concentration of the analyte. Capacitive or 

conductometric transducers measure the changes in electrical conductivity between two 

electrode nodes, typically caused by enzymatic reactions which remove or generate ions. 

However, this method has not achieved a large popularity due to the high salt 

concentrations in biological solutions, and the comparative minimal change in 

conductance by the enzymatic reactions.[51] 

Optical methods of detection are still the most widely adopted biosensor 

transducer to this day. Currently the two most popular methods revolve around 

fluorescence based detection and label free detection, whereby a brief overview will be 

given below. In fluorescence based detection, a fluorescent tag is attached to either the 

target or the recognition molecule, and the intensity of the fluorescence emitted back to 

the detector is a measure of the concentration of the target analyte. Some major 

drawbacks, which have led to the development of label-free sensors, are the non-

uniformity of the fluorophore labeling on molecules[52] and the degradation of 

target/analyte binding specificity due to the labels being in the binding site[53]. 

Fluorescence based methods have allowed the detection down to single molecules[53], 

but immunoassays rely upon statistics and ensemble measurements to make a diagnosis, 

and at this point in time measuring 10
9
 molecules individually, yet simultaneously has not 
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come to fruition. In label free based optical detection, the molecules are detected in their 

natural forms. Most commonly, the change in refractive index (RI) of the surface of the 

sensor is monitored, and will shift based on the concentration of target molecules in 

solution binding to the interface or changing the surface density. A few of the methods 

which will be discussed in detail are surface plasmon resonance, fiber optics, and 

photonic crystals. These methods claim a lion’s share of the optical based, label-free 

market.  

Microgravimetric sensors directly measure mass changes based upon the binding 

of target analytes to the sensor surface. The principle of operation is based on the 

propagation of acoustic shear waves in the substrate of the sensor. The velocity and phase  

of the propagating wave are influenced by the specific adsorption of target molecules 

onto the sensor surface. Piezoelectric materials, such as quartz (SiO2), zinc oxide (ZnO) 

or others resonate mechanically at specific ultrasonic frequencies (in the order of tens of 

megahertz) when excited in an oscillating electrical field. The resonant frequency is 

determined by the distance between the electrodes on both sides of the quartz plate, 

which is equal to the thickness of the plate and the velocity of the acoustic wave within 

the quartz material.[54] Most microgravimetric sensors are based on quartz crystal 

microbalance (QCM), divided into thickness shear mode (TSM) and standing acoustic 

wave modes (SAW), each which will be discussed in subsequent sections. An excellent 

review of these sensors is given by Cavic [55] and by Janhshoff [56]. All these sensors 

are based upon the Sauerbrey equation, which states the change in mass is directly 

proportional to the change in frequency and the intrinsic properties of the crystal.[57] 
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2.2 CLASSICAL BIOASSAYS 

DNA MICROARRAYS 

Ever since the 1990’s, DNA microarrays (DNA chips) have been a major topic of 

research, becoming thoroughly developed and characterized. These type of devices have 

allowed for DNA and RNA hybridization to surfaces in miniaturized, highly parallel 

formats. As a result, they have been widely applied to genotyping expression and single 

nucleotide polymorphism (SNP) detection in target oligo strands. More recently, such 

microarray technologies have been branching away from typical genomics applications 

and towards pharmacogenetic research and cancer diagnostics. Since the platform uses 

substrates typically used in lab-on-a-chip devices, microarray diagnostics are being 

integrated with such platforms more and more frequently.  

Typically these devices are fabricated on glass, plastic or silicon platforms. 

Moreover, they contain test sites which are 10-500um in size and are capable of having 

over 10
6
 binding sites/cm

2 
of space. The principle of DNA microarray technology is 

based on the fact that complementary sequences of DNA can be used to hybridize to 

immobilized probe DNA molecules. This process involves three main steps[58]:  

a. Manufacturing of the microarrays. There are currently two main 

approaches to microarrays being 1) pre-synthesized probe 

oligonucleotides or DNA are spotted onto the surface in nL/pL volumes 

using high density methods such as piezoelectric pin spotting or inkjet 

techniques[59] and 2) target oligo’s are synthesized in situ on glass 

biochips using photolithographic techniques[60]. 
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b. Sample Preparation and hybridization. The RNA or DNA targets must 

be specifically labeled or converted to a cDNA (complementary DNA) 

which is labeled, then hybridized to the surface. 

c. Data Analysis. The microarray hybridization is scanned for the reporter or 

fluorescently labeled target and analyzed using highly-parallel software 

programs to interpret the data.  

An example of both types of DNA microarray methods is shown in Figure 2.4.  

Although both types of manufacturing techniques have their advantages, the high density 

oligonucleotide arrays offered by Affymetrix, known as the GeneChip
©

, use this in situ 

technology of manufacturing and will be the main topic of discussion in the microarray 

field and its use in gene profiling as an example of how a microarray works. The 

Affymetrix GeneChip is currently the industry leader in microarray technology, with over 

6.5 million features per array possible. The fabrication of an Affymetrix Genechip is 

shown in Figure 2.5.[61] Briefly, a silane layer containing hydroxyl groups is deposited 

on a quartz substrate, which a then reacted with linker groups that are photolabile. Using 

techniques from the semiconductor industry, photomasks are constructed which represent 

the sequence information and define the areas of the linker molecules which are to be 

deprotected by UV light. After deprotection, a phosphoroamidate nucleotide is reacted to 

that particular surface area and then oligonucleotide synthesis can continue through 

protection and deprotection to create ~25mer probe oligo strands directly on chip. 

A typical sample preparation is shown in Figure 2.6. Most sample methods use in 

vitro transcription methods originally described by Eberwine.[62] In this method cDNA 

is generated from RNA using a T7 RNA polymerase primer composed of oligo dT’s. the 



18 

 

synthesis of cDNA then starts adjacent to the polyA tail common to all messenger RNA 

(mRNA). After this, another transcription is carried out to generate a biotinylated RNA 

analogue. After overnight hybridization of these targets to the genechip, a fluorescent 

streptavidin is flown through the device to bind to the biotinylated targets on the chip, 

and can then be scanned using the appropriate photospectroscopic equipment. 

 

Figure 2.4. Outline of approach for spotted microarray (A) vs. high-density 

oligonucleotide microarray (B). Sample A: control; sample B: test. From [58] 

The current technology is capable of scanning for over 100,000 single nucleotide 

polymorphisms on a single chip. Since the human genome on average contains over 3 

million nucleotide differences from person to person, being able to measure over 100,000 

SNP’s has proven invaluable into mapping the human genome and discovering genes 

responsible for diseases. This technology has elucidated gene areas responsible for 
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predispositions to such diseases as lung cancer [63], ovarian cancer [64], and macular 

degeneration [65].  

 

Figure 2.5. Manufacture of a GeneChip probe array. (A) Photolithography. (Left) Near‐
ultraviolet light is passed through a mask containing open windows. The size and the 

location of each open window delineate the surface on the quartz wafer that will be 

activated for chemical synthesis. The use of sequential masks in conjunction with the 

chemical synthesis creates a cycle that directs the precise sequence synthesis of 

oligonucleotides that compose the array. (Right) The photolithographic process. (B) 

(Left) Schematic representation of the nucleic acid synthesis cycle. Light removes 

protecting groups (squares) at defined areas on the array. A single nucleotide is washed 

over the array and couples to the deprotected areas. (Right) The chemical synthesis 

station, where nucleotide binding occurs. (C) (Left) Complete synthesis on the wafer 

results in many (49–400) identical high‐density oligonucleotide microarrays in one wafer. 

Dicing of the wafer into individual microarrays occurs, and each microarray is inserted 

into a plastic cartridge. (Right) Machinery used to incorporate the diced microarray into 

the plastic cartridge. Taken from [61].  
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Figure 2.6. One‐cycle sample preparation for gene expression profiling using RNA. 

Briefly, total RNA or poly(A)–RNA is isolated. A primer that includes a poly(T) tail and 

a T7 polymerase‐binding site [T7–oligo(dT) primer] is used for reverse transcription, 

resulting in synthesis of cDNA. The second cDNA strand is completed, resulting in a 

double‐stranded cDNA. In the one‐cycle method, the double‐stranded cDNA is used as a 

template with biotinylated ribonucleotides, resulting in a biotin‐labeled RNA sample. 

After cRNA fragmentation, the sample is ready to be hybridized to the array, from [61]. 
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ENYZYME LINKED IMMUNSORBENT ASSAY (ELISA) 

The ELISA is a classical bioassay method which detects specific antigen 

concentrations using antibodies and colorimetric or fluorescence changes. ELISA’s are 

routinely used in scientific research, healthcare, and environmental applications. The 

fundamental principle of ELISA’s is that the target analyte is recognized with high 

specificity by antibodies, which are proteins produced by the immune system of animals. 

The typical steps in an ELISA are shown in Figure 2.7. Briefly, the antigen is 

immobilized to the surface of polystyrene plate, then washed and blocked. A detection 

antibody is then added, which will bind to the antigen. A secondary antibody is then 

added, which recognizes the antibody-antigen complex, and it is labeled with a substrate 

modifying enzyme. The unbound antibody is then washed away and a substrate is added, 

which becomes chemiluminescent or fluorescent upon its catalysis by the enzyme.  

 

Figure 2.7. Protocol for a direct ELISA. In 1) antigen is applied to the surface then 

blocked. The detection antibody is then added in 2) and washed away. The secondary 

antibody with the enzyme attached is added in 3) and the excess rinsed away. Finally, the 

substrate for the enzyme is added and the amount of antigen depends the magnitude of 

the signal from the enzyme-substrate reaction. Taken from [194] 

One of the greatest advantages of ELISA tests is the ability to obtain quick and 

accurate results. All that is normally required is a blood sample, and no further post 

processing is necessary. Since ELISA’s test for the presence of antibodies or antigens, 
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they have found large applicability towards HIV infection, as well as cardiac biomarkers 

and other infectious diseases like Dengue virus, malaria, and rotavirus. Moreover, the 

ELISA platform has been geared down toward the size of microarrays to form protein 

chips instead of DNA chips. [66,67] These protein microarrays can be spotted with up 

30,000 spots per slide using the same robotic printing methods as DNA chips, and have 

wide applications[68] The microarrays are not just restricted to protein-protein 

interactions but can be used to analyze protein-lipid[69], protein-carbohydrate[70], and 

enzyme substrate interactions[71]. An example of the different types of assays is shown 

in Figure 2.8.[72]   

 

Figure 2.8. Different applications for protein chip and/or microarrays, from [72]. 
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The ELISA protein chip is now becoming popular with modern lab-on-a chip 

devices and coupled into the latest diagnostic technology. Recently, Fan et. al. [73] 

demonstrated this protein chip technology integrated with microfluidics for sensing 

prostate specific antigen (PSA) along with 11 other cytokines at the same time. This 

technology coupled with a fluorescent readout was able to use single droplets of blood or 

serum to detect these biomarkers down to ~30pM in a time frame of only 10 minutes. 

Using protein microarray technology, Wu. Et. al.[74] came up with a fast, cheap, 

electrochemical immunoassay which could render a response within 5 mins. They spotted 

horseradish peroxidase antibodies coupled to gold nanoparticles onto an carbon electrode 

chip and embedded in a sol-gel matrix (Figure 2.9), where the HRP can generate an 

electrochemical response. By using electrophoresis of antigen to the antibodies, the assay 

incubation could be completed in under two minutes. The successfully used this 

technology to monitor carcinoembryonic antigens down to 30pg/mL, well within the 

clinical range. 

2.3 LABEL-FREE OPTICAL TECHNOLOGIES 

In this section I will highlight the latest technology in label-free optical 

biosensors. I will cover the most highly researched areas, mainly surface plasmon 

resonance, waveguides, and photonic crystals. Each of these techniques are based upon 

the binding of analytes creating a change in the refractive index of the surface, which will 

change either 1) the maximum angle of reflectance at a constant wavelength, or 2) the 

wavelength where the reflectance is maximum using a broadband source of excitation 

(white light). Each of these methods will be discussed below.  
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Figure 2.9. Schematic Representation of the Electrochemical Multiplexed Immunoassay 

with an Electric Field-Driven Incubation Process. (a) Nylon Sheet, (b) Silver Ink, (c) 

Graphite Auxiliary Electrode, (d) Ag/AgCl Reference Electrode, (e) Graphite Working 

Electrode, and (f) Insulating Dielectric. 

 

SURFACE PLASMON RESONANCE 

Surface plasmon resonance as a technology for immunoassays has been 

thoroughly explored, and is currently commercialized by companies such as BiaCore 

International (GE Healthcare). A thorough review of SPR technology and its application 

has been done by Homola et. al. [75], and I refer the reader to this review if they wish for 

an in depth discussion of the topic. I will currently go over the basic theory of SPR, its 

latest configurations, and some of the most recent applications. 

SPR is based on the concept of surface plasmons, which are electron oscillations 

that exist between materials of opposite refractive index, such as metals and a dielectric. 

When these surface plasmons couple with a photon, they form what are called surface 
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plasmon polaritons (SPP). These SPP’s then may propagate in a parallel direction to the 

metal/dielectric interface until the energy is lost. In SPR, each metal has a particular 

photon energy which these surface plasmons may couple to, and may be referred to as a 

certain frequency or wavelength. Optical excitation of the surface plasmon can be 

achieved in the so-called Kretschmann configuration, where collimated light beam 

undergoes total internal reflection at a glass/thin-metal-film/dielectric interface. The 

angle at which the resonance occurs is extremely sensitive to any change in the refractive 

index (RI) of the medium adjacent to the metal surface, and such changes can be 

monitored by recording intensity of reflected light when the system goes out of 

resonance, or what the angle change of resonance is. Although the Kretschmann 

configuration, which commonly uses a prism, has the best limits of detection, it is quite 

bulky and tough to integrate. Thus, other methods outside of prism coupling [76] have 

surfaced, such as using waveguide coupling [77], fiber optic coupling[78], and grating 

coupling[79]. An outline of these types of configurations is shown in Figure 2.10. [80] 

 

Figure 2.10. Various SPR sensor configurations. (A) Prism coupling, (B) waveguide 

coupling, (C) optical fiber coupling, (D) side-polished fiber coupling, (E) grating 

coupling and (F) long-range and short-range surface plasmon (LRSP and SRSP). From 

[80] 
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Commercialized systems from BiaCore typically yield sensitivities in the ng/mL 

for protein biomarkers, and can currently do about 100 protein evaluations/day. However, 

the systems are bulky and costly (~$500,000) and it is usually hard to detect proteins and 

carbohydrates <5000 MW. Despite these setbacks, it has still been successful in the 

healthcare field for cancer, neuroscience, and infectious disease research, with over 3000 

publications attributed to it.[81] Currently SPR is being merged with microfluidics and 

fiber optics to create miniaturized sensors for multiplexed detection. A recent example 

comes from the work of Bhatia et. al.[82], where an SPR fiber optic based sensor 

demonstrated detection of urea, using the enzyme urease, coupled to a silicon/silver 

surface. They were able to demonstrate sensitivities from 1uM to >160mM which are all 

within the clinical levels found in the blood. Another example by Srivastava et. al. [83] 

monitors glucose levels in the blood, as an alternative to the electrochemical methods of 

detection using in industry today. The sensor is coated with glucose oxidase, and the 

catalysis of the glucose causes a change in the refractive index of the film. The dynamic 

range was well within the clinical range for glucose monitoring of diabetic patients. 

WAVEGUIDES 

Optical wavelengths operate off the principle that light is reflected when traveling 

between materials of different refractive indices, with the refractive index of material 

A>B. At a certain angle the light is reflected with nearly zero loss, and this is known as 

total internal reflection (TIR). The principle of TIR is particularly important to fiber optic 

biosensors. Planar optical waveguides are usually comprised of a high refractive index 

guiding layer, and when the excitation light is coupled with this layer, TIR can occur over 

long distances. Although most of the light is confined within the guiding layer, there is an 
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small amount which penetrates into the medium (biological sample), known as the 

evanescent field. This evanescent field falls off exponentially as the distance from the 

waveguide surface increases, and is effectively zero at a distance less than one-half the 

wavelength of the coupled light. A schematic of this processed is in Figure 2.11.[84] 

Moreover, a thorough review of this technology was done by Mukundan et. al. [84]with 

reference to many clinical applications.  

 

Figure 2.11. Waveguide cross-section schematic illustrating the zig-zag model of 

propagation, from [84]. 

A recent example towards immunosensing was performed by Im et. al. [85], using 

a metal clad waveguide sensor. Using nm scale thickness metal films, changes in 

refractive index were able to be measured down to 3x10
-6

 RIU. As a clinical example, 

human interleukin 5 was measured with limit of detections down to ~10ng/mL. Albeit the 

detection limit is much higher than SPR, coupling it with SPR may lead to even better 

limits of detection well within the clinical range. 
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PHOTONIC CRYSTALS 

Photonic crystal (PC) based biosensors are a novel type of label-free biosensor 

which has been presented in literature using multiple 1D and 2D configurations. [86-94] 

The underlying concept for all PC’s is that each PC has a periodic dielectric structure on 

the order of a wavelength. This periodicity then forms a photonic bandgap (or disallowed 

wavelengths), whereby incident light within the bandgap cannot penetrate. Wavelengths 

that can penetrate are typically called modes, and the periodicity of the crystal, or cavity 

defect, must be on the order of half a wavelength to be maximally reflected. Some typical 

photonic crystal configurations are in Figure 2.12.[80]  

 

Figure 2.12. Photonic crystal biosensor configurations. (A) Photonic crystal microcavity 

based biosensor. (B) Photonic crystal waveguide based biosensor. (C) Photonic crystal 

fiber based biosensor. (D) 1D photonic crystal resonators array for parallel detection. 

From [80]. 
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The microcavity configuration for an optical biosensor, shown in Figure 2.12A, 

has been used in a variety of clinical screening applications. It is formed by introducing a 

point defect into the periodic microstructure, either by increasing or decreasing the 

central hole. The presence of molecules inside the central hole and the first layer of 

surrounding holes will cause a local RI change, which can be monitored as the spectral 

shift of the resonant wavelength of the PC microcavity.[86] An example for protein 

detection was demonstrated by Lee and Fauchet [89] using a silicon based microcavity 

platform operating at a resonance wavelength of 1.58um. They demonstrate that the size 

of proteins changes the resonance of the hole, and detect BSA down to ~2.5fg inside the 

hole. Moreover, they verify his sensitivity experimentally and theoretically.  

Another type of PC biosensor, which was developed by Cunningham et. al.[87], 

behaves as a narrowband reflectance filter, whereby nearly %100 of the incident at the 

resonant wavelength is reflected. This technology was then commercialized in the BIND 

scanner by SRU biosystems, with an excellent review of the capabilities by Cunningham 

et. al. in 2004 [95]. When molecules are attached to the surface, the reflected wavelength 

(color) is shifted due to the change of the optical path of light that is coupled into the 

grating. By linking receptor molecules to the grating surface, complementary binding 

molecules can be detected without the use of any kind of fluorescent probe or particle 

label. This detection principle allowed for monitoring of changes down to 0.1nm 

thickness of binding protein. Moreover, this technique can be applied wet or dry, and a 

schematic of the operating platform is shown in Figure 2.13.  This method has been used 

in a label-free mode for screening of pharmaceutical targets on cell lines, by monitoring 

the attachment of cells to different antigens.[92] 
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Figure 2.13. Schematic diagram of the optical grating structure used for the colorimetric 

resonant reflectance biosensor, from [87]. 

2.4 LABEL-FREE ELECTROCHEMICAL METHODS 

In this section I will discuss the main types of electrochemical sensors, with 

emphasis on amperometric and potentiometric based sensors. In particular, I will discuss 

the operating principles of the amperometric sensor using the most widely accepted 

device (the glucose sensor), as an example. For potentiometric sensors, I will focus 

mainly on the ones based upon field-effect transistor (FET) technology, discussing ion 

selective field effect transistors (ISFET’s) and the more recent nanoscale FET’s. 

Furthermore, I will discuss their capabilities and potential applications to healthcare.  

THE GLUCOSE SENSOR: AN AMPEROMETRIC EXAMPLE 

The glucose enzyme electrode is probably the most studied biosensor method to 

date, with its roots buried in the original patents by Clark and Lyons in 1962. Moreover, 

it is the ideal example for a point-of-care device already in high demand. An excellent 

review of the history of electrochemical glucose sensor was done by Joseph Wang in 

2008 [96], and goes into depth about all the generations of glucose sensor up to the latest 

technologies. The basic mechanism of the glucose sensor uses the enzyme glucose 
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oxidase (GOx) and its reaction products to generate a measurable current. the 

immobilized GOx catalyzes the oxidation of β-D-glucose by molecular oxygen producing 

gluconic acid and hydrogen peroxide. In order to perform this, GOx need a redox catalyst 

–flavin adenine dinucleotide (FAD) to work as an electron acceptor, which then gets 

reduced to FADH2 by the reaction below: 

    (   )                            (     )  (1) 

The GOx(FADH2) complex then reacts with oxygen, which regenerates the cofactor and 

produces hydrogen peroxide: 

    (     )         (   )       (2) 

This hydrogen peroxide is then oxidized at a catalytic, Pt electrode (anode). The electrode 

recognizes the amount of electron transfers as a current, and this current is proportional to 

amount of glucose in the blood [6] with the reaction as follows: 

                   -  (3) 

The first generation of glucose sensors was built upon this principle, but later it 

was realized oxygen depletion was causing large drifts in the sensors responses which 

was hard to correct for and interference with competing oxidizers such as ascorbic acid 

[97] . The interference was in part due to the large anodic potentials (+0.6V vs. Ag/AgCl 

electrode) that had to be applied in order to oxidize the hydrogen peroxide. Thus, the 

second generation glucose sensors started using artificial electron carriers to substitute for 

oxygen in shuttling electron from the enzyme redox center to the electrode, as well as 

using the enzyme glucose dehydrogenase (GDH), which removes the need for oxygen in 

the reaction.[98] First, oxygen was replaced with an electron acceptor called a redox 

mediator. The mediator was reduced instead of oxygen being converted to hydrogen 
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peroxide, which then was reoxidized at the platinum electrode to regenerate the mediator. 

An example of this is in Figure 2.14B, whereby most glucose sensors operate on these 

principles today. Several types of redox mediators are in play, with most of them 

derivatives of ferrocene, ferricyanide, or quinines, with ferrocene derivatives being the 

most popular for current devices.[7] However, the Abbott Freestyle devices use an 

osmium based mediator, which has been the stable for all three generations of the 

technology.[99-101] GDH belongs to the class of quinoproteins, which use 

pyrroloquinoline quinone (PQQ) as cofactor to convert glucose to gluconolactone.  GDH 

is also a dimeric enzyme composed of two identical protein monomers with each 

monomer binding a PQQ molecule and three calcium ions. These calcium ions activate 

the PQQ cofactor, and the reaction mechanism is similar to GOx with FAD, except PQQ 

is the cofactor and does not require oxygen in the reduction.  

 

Figure 2.14. Three generations of amperometric enzyme electrodes for glucose based on 

the use of natural oxygen cofactor (A), artificial redox mediators (B), or direct electron 

transfer between GOx and the electrode (C), from [96]. 
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An excellent review by Vashist et. al.[102] highlights the latest type of 

electrochemical glucose sensors in thorough detail. A table of the current technologies is 

shown in Table 2.1 below, along with the largest manufacturers of glucose point-of-care 

sensors. The main one which I will discuss as an example electrochemical platform is the 

Abbott Freestyle, which relies on an osmium redox mediator and GDH-PQQ enzyme 

complex.  

 

Table 2.1. Comparison of recent commercially available glucose meters, from [102].  

Each blood glucose meter (BGM) test strip has aimed to have high 

reproducibility, high accuracy, low-cost, rapid results, and low sample volume amounts. 

These values for the most widely used BGM’s are in Table 2.1 as well. The three main 

components of the BGM strip are the working, counter, and reference electrodes. 

Additionally, fill electrodes are put on the device to make sure a proper amount of sample 

has filled the chamber. A small capillary chamber is located on the electrode substrate to 

work as reaction container and draw the blood into the device through capillary action. A 

mixture of enzymes, mediators and other chemical components is coated within the 

capillary chamber in dry form. This setup is discussed in Figure 2.15A, and is part of the 

Abbott Freestyle system. A working electrode, where the enzymes and mediators are 

dried, is typically composed of carbon ink or vapor deposited gold or palladium, and 
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auxiliary and reference electrode are usually combined and made of the same material. 

The auxiliary and reference electrode are usually composed of Ag/AgCl and are 

assembled facing the working electrode at a distance of 50 microns in modern devices. 

Previously, a large potential of 400-500mV must be applied to the working electrode vs. 

Ag/AgCl in coplanar electrode devices, but this would cause “redox shuttling” from the 

mediator back and forth, causing high background noise.  
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Figure 2.15. The expanded views of Abbott’s (A) FreeStyle BGM test strip, (B) 

subcutaneous wired GOx electrode, and (C) FreeStyle Navigator sensor chip, from [102].  
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However, using osmium mediators, its oxidation potential is negative with respect 

to other interfering agents, making the other reactions impossible. Moreover, it decrease 

the diffusion time to the working electrode, and can give readouts within 5 seconds. Most 

electrochemical devices for various analytes work off the principles of the glucose 

sensor, but with different enzymes, electrodes, or redox mediators, to generate their 

signal. 

FIELD EFFECT TRANSISTOR BASED SENSORS 

In this section I will discuss the most relevant literature and background into the 

operating theory of FET’s and how they have been applied to biosensors. FET based 

devices operate on the principle that changes in the electric field across a dielectric (the 

gate) cause changes in the source-drain current of the underlying device. Since most 

biomolecules are charged, their binding to the gate causes a change in the electric field 

due to their charge density, making FET devices particularly enticing as a biosensor. A 

few of the benefits of using FET technology as a biosensor include: 

 High sensitivity due to the current gains inherent in FET devices based on 

small surface potential changes 

 Low cost due to the mass scaling and integration of FET devices in most 

electronics 

 Label-free since it is able to use the intrinsic charge of a molecule as it 

detection principle 

Each FET device is based upon a two-terminal device called a metal-oxide-

semiconductor capacitor, or MOSCAP. This structure typically contains a top metal gate, 

an insulating oxide as the dielectric, and a p-type silicon body. A MOS structure, when a 
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bias is applied to the gate, can operate in three regimes, i) accumulation, ii) depletion, and 

iii) inversion. The three regimes are outline in Figure 2.16. When a negative bias is 

applied to the gate, holes (the majority carrier) from the p-type substrate collect at the 

silicon/oxide interface and the device is said to be in accumulation. Depletion starts to 

occur when positive voltages are applied to the gate and holes are repelled from the 

interface into the silicon, with the voltage between accumulation and depletion modes 

called the flatband voltage (VFB). When negative charges (the minority) carrier start to 

collect at the interface the device is said to be at inversion, and the voltage where this 

occurs is called the threshold voltage. The equations which dictate the threshold voltage 

(VT) are: 

             - 
  

   
 (3) 

Where ɸf is the Fermi level of the silicon, Cox the capacitance of the oxide, and QB the 

effective total charge in silicon body. The flatband voltage (VFB) can be further expressed 

as: 

         - 
  

   
- 

   

   
- 

  

   
- 

   

   
  (4) 

where:  

     represents the workfunction difference between the metal and the 

semiconductor 

 QF represents the fixed charge in the oxide, considered to all be at the 

semiconductor/oxide interface 

 QIT represents the interface oxide trapped charge, which is a function of the 

surface potential 
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 QM is the mobile charge density, which is distributed throughout the oxide and 

change position due to applied biases over time 

 QOT is the oxide trapped charge, which is distributed throughout the oxide 

 

 

Figure 2.16. A MOS capacitor and schematic of its three different operation modes. 

Ideally the flatband voltage should only rely on    , but all devices contain some amount 

of the charge densities above. As will be discussed, it has been the goal to minimize these 

charges as much as possible in the CMOS industry, as they lead to non-ideal device 

characteristics and degradation of device integrity. Fixed charge is important because it 

can cause large shifts in threshold voltage, increasing the voltages needed to turn the 

device on. For transistors exposed to fluids, it is especially important to keep this as low 

as possible because applying higher voltages leads to higher possibilities of dielectric 

breakdown and gate leakage. Interface oxide trapped charge can lead to degradation of 

device turn-on, and mobile charge to device hysteresis when the voltage is swept. 
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Similarly, with fluid based devices these charges can lead to device drift and instability. 

The most efficient way to study the effect of these defects is using a MOSCAP and 

looking at the capacitance of the device vs. the gate voltage, most commonly referred to 

as C-V analysis. Using high frequency C-V’s of a MOSCAP, the effect of these charges 

on the curve are overly apparent. Interface traps will draw the curve out, leading to 

poorer sensitivity to applied voltages, while fixed charges will shift the curve left or right 

from ideal, depending on the charge. A demonstration of how these charges affect C-V 

characteristics is in Figure 2.17.[103]  

 

Figure 2.17. Capacitance-Voltage curve examples of a MOSCAP. The basic parameters 

that can be extracted are in A and how interface traps affect a curve are in B. The effect 

of fixed charge on a MOSCAP from the ideal are in C. From [103] 

A B

C
C-V Overview Effect of Interface Traps

Effect of Fixed Charge
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Several methods to remove these charges are currently in process. Removal of 

fixed charges revolves around very clean depositions of the gate oxide, commonly 

achieved by very clean high temperature furnaces or thin film dielectrics by atomic layer 

deposition. Similarly, interface traps have been passivated using several types of 

annealing conditions, which typically include oxygen and forming gas (N2 /5% 

H2).[104,105] The use and characterization of both of these methods into creating a more 

stable device are a core part of this dissertation, particularly for silicon nanowires. The 

characterization on ultrathin body MOSFET’s[106,107], which are quite similar to our 

silicon nanowires, has been studied before. Yet, very little has been done in optimizing 

for nanowire with the newest high-k dielectrics, which is a main topic of discussion in 

Chapter 5.  

A MOSFET is essentially a MOSCAP, but with a 3
rd

 terminal added, known as 

the source and drain, which forms a conducting channel underneath the MOSCAP. When 

the surface potential of the oxide (ϕs) reaches a critical value (threshold voltage), the 

underlying channel will conduct and this is dependent on the gate voltage. The equation 

for the drain current of a MOSFET is well known: 

         
 

 
 (      )   

 

 
  

    (5) 

for the triode region when VDS < VDS(sat), where: 

    (   )            (6) 

For the saturation region, when VDS > VDS(sat), the drain current can be represented by: 

         
 

 
(      )   (7) 

where Cox is the insulator capacitance, µ is the mobility of the carriers, W is the width of 

the active area, L is the length of the device, VGS is the Gate voltage and Vt is the 
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threshold voltage, which was described in Equation 3. An important note here is that in 

the triode region, ID is proportional to (VGS-VT), whereas in the saturation region, it is 

proportional to (VGS-VT)
2
. Another case to address is when VGS is less than the threshold 

voltage. This is called the subthreshold region, and here the source -drain current is given 

by: 

    
 

 
 (      ) (8) 

where S is the subthreshold slope, which has a physical limit of 60mV/decade. It is 

worthy to note that, as compared to the triode and saturation regions, this region is 

exponentially dependent on VGS-VT. For any MOSFET or device which operates on a 

FET principle, these equations will hold. More importantly, they demonstrate the 

advantages each regime has to offer.  The change in device current is most sensitive to 

voltage in the subthreshold regime, yet it is not linear and its dynamic range is greatly 

dependent on the subthreshold slope. The triode region the device current is linearly 

dependent on the gate voltage, and gives a larger dynamic range. These regimes have 

been used by FET based sensors for a wide range of biological analytes. 

Ion Selective Field Effect Transistors, or ISFET’s, are a particular type of FET 

where the top metal has been removed, and has been replaced by an electrolyte and an 

electrode, as shown in Figure 2.18. The ISFET was originally developed by Bergveld in 

1970 [108], and since then over 600 papers have been published in regards to the ISFET. 

The main difference between the MOSFET and ISFET is the removal of the metal and 

replacing it with an electrolyte and an electrode. By doing this, we expose the gate 

insulator to the solution, and remove the workfunction of the metal, replacing it with a 

reference electrode potential. The new equation for the threshold voltage of an ISFET is:  
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     (9) 

where EREF is the reference electrode potential, and X
SOL

 + Ψ is the interface potential. 

The Ψ is the surface potential at the electrolyte/oxide interface, and is a pH dependent 

parameter due to its charged groups. The X
SOL

 is the surface dipole potential of the 

solvent and has a constant value. A schematic of these parameters is shown in Figure 

2.19. The pH and ion selective nature of the dielectric layer allows for Ψ to change due to 

the interaction of the ions with the surface, this in turn changing the threshold voltage of 

the device and providing the devices sensing mechanism.  

 

Figure 2.18. Schematic representation of MOSFET (a) and ISFET (b), from [195]. 

The pH and ion sensitivity of ISFET’s can be described using a site-binding 

model specific to the electrolyte/insulator interface. An in-depth description for ISFET’s 

using this model was done by Van Hal et. [109]. In this model, the oxide surface sites are 

said to be amphoteric, meaning the surface hydroxyl groups can be neutral, protonated, or 

deprotonated depending on the pH of the bulk solution. Moreover, Van Hal and Eijkel 

showed how the equation could be related to the equation for capacitors, Q=CV. 

Essentially, Q is the surface charge in the form of protonated (OH2
+
) or deprotonated (O

-
) 
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OH groups of the oxide surface, C is the double-layer capacitance at the interface and V 

is the resulting surface potential, denoted as the familiar Ψ. The capacity for the surface 

to take up or release protons, in conjunction with the capacitance of the double layer, 

with a change in pH can be accounted for in a sensitivity factor ,α , and its influence on 

the surface potential is given by the following equation: 

    -    
  

 
         (10) 

with 

   
 

(       ⁄ )(    ⁄ )  
  (11) 

where BS symbolizes the surface buffer capacity, or the ability of the oxide surface to 

deliver or take up protons, and CS is the differential double-layer capacitance, of which 

the value is mainly determined by the ion concentration and the Debye length due to that 

concentration. It can be seen that as α approaches 1, near Nernstian sensitivity of the 

device can be achieved.  

 

Figure 2.19. Schematic of the ISFET operating interface, as well as charged surface 

groups. 
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 Different gate oxides contain different α values, and the effect of the dielectric properties 

on their sensitivities to pH and NaCl is shown in Figure 2.20. Since α is also dependent 

on the number of surface groups, according to the site binding model, the highest 

sensitivities should occur with the oxides with the highest surface group density. As we 

can see, Al2O3 and Ta2O5 contain the best pH sensitivity in Figure 2.20, and this is in part 

due to them having the highest density of OH groups for association and dissociation.  

 

Figure 2.20. ISFET responses (a) to electrolyte pH and ISFET responses (b) to NaCl 

electrolyte, from [196]. 
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The first use of ISFET’s as a biosensor came with the use of enzymes and 

measuring their products, creating enzyme FETs (EnFET’s). EnFET’s contain 

immobilized enzymes which create products that can change the surface potential of the 

oxide insulator by interacting with OH groups. Thus, the basic equations governing the 

function of the ISFET still hold for EnFET biosensors. Enzyme FET’s have been used to 

sense a variety of chemical analytes, most notably being penicillin [110-112], 

urea[19,113,114], creatinine [115,116], and organophosphates [117-120].  An excellent 

review of biological field effect devices was done by Schoning in 2006, highlighting the 

main types of FET based biosensors and the current challenges they face. [121] Briefly, 

ISFET’s geared towards measuring biological reactions, or BioFET’s, have utilized 

several types of signal generation such as: 

 a pH or ion-concentration change due to an enzymatic reaction 

 the adsorption of charged macromolecules (e.g., polyelectrolytes, proteins, 

DNA) 

 the affinity binding of molecules (e.g., antigen-antibody affinity reaction, 

or DNA hybridization); 

 potential changes that are coming from living biological systems as a 

result of complex processes, such as nerve action potentials or cell 

metabolism 

The basic mechanism underlying biological FET’s and their output response is shown in 

Figure 2.21. By using an ion selective or charge sensitive layer, which can be the native 

gate dielectric, polymer, or protein/DNA, this makes the device electrically sensitive to 

the changes induced by the type of mechanisms highlighted. Changes in the chemical 
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composition surrounding the charged layer will induce an electrical response by changing 

the surface potential of the device, and thus modulating the current of the channel 

underneath. A landmark report by Rothberg in 2011, introducing Ion Torrent’s new 

semiconductor sequencing technology [122], uses a true CMOS process to fabricate 

ISFET’s which are able sequence DNA instead of optical based methods. How this 

technology works using an ISFET platform will be highlighted below, and this has been 

one of the largest commercial successes to date of the ISFET sensor. 

 

Figure 2.21. Structure and typical response of an ISFET (ion-sensitive field-effect 

transistor). A gate and bias voltage are applied via a reference electrode (e.g., Ag/AgCl 

liquid-junction electrode), to set the working point of the FED as well as to provide a 

stable potential in solution. Changes in the analyte concentration cause a change in the 

threshold voltage. 
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In this report they describe the fabrication of a 0.35um node CMOS based FET 

with an extended metal gate, which has a Ta2O5 ion sensitive layer. This type of ISFET is 

called and extended gate FET or EGFET. The metal layer is advantageous since it 

protects the main underlying dielectric from fluid, while still maintaining pH sensitivity 

by using a pH sensitive oxide deposited on top of the metal. Several papers explaining the 

use of EGFET’s for sensing are available, and I refer the reader to them for a more 

extensive explanation.[123-128] When performing sequencing by synthesis, the whole 

process revolves around the addition of bases to a template strand by an enzyme known 

as DNA polymerase. Traditional sequencing technology has used optical detection of the 

fluorochromes released during the nucleotide incorporation process, but the Ion Torrent 

system rather uses the protons released from the addition of a nucleotide, sensing them 

with the EGFET.  

The semiconductor sequencing chip made by Ion Torrent contains an integrated 

circuit of over 1.2 million sensors, and a schematic of the layout of an individual pixel is 

shown in Figure 2.22. How the device works will now be discussed. First, DNA is 

fragmented, ligated to adapters, and adaptor-ligated libraries are clonally amplified onto 

beads. These beads are then concentrated using magnetic enrichment, and polymerase 

attached template added. This is then pipetted onto the chip and spun on a centrifuge to 

allow the beads to settle into the opening wells, as shown in Figure 2.22. The remaining 

undeposited beads are flushed out and the sequencing can begin. Each base is flown in 

sequentially, and if a base is incorporated a pH shift of ~0.02 units will occur (two or 

more sequential bases will proportionally increase the signal 0.02 units/base) and be 

sensed on the underlying Ta2O5 layer as a shift in surface potential. The signal detection 
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on average takes 4s, allowing for enough time for data processing on all 1.5 million 

sensors before flowing in the next base. Using this methodology, the authors sequenced 

the genome of Gordon Moore, co-founder of Intel Corp. and author of “Moores Law”. 

 

Figure 2.22.  Simplified drawing of a single well in the Ion Torrent semiconductor chip 

containing the well, a bead with the template DNA, and the underlying electronic, from 

[122]. 

Although this technology has been applicable to DNA sequencing using pH 

changes, the surface charge densities of biomolecules (proteins, carbohydrates, 

DNA/RNA) are usually 10-100 times lower than that of oxide dielectrics. According to 

Fritz et. al in 2002 [129], a maximal change on the surface of a FET for DNA 

hybridization is 3mV, which would correspond to ~0.05 pH shift given the sensitivity of 

Ta2O5, which would be binding in near 1-10uM concentrations. This is essentially not 
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sensitive enough for sensing in clinically relevant levels, which are commonly in fM-pM 

ranges for targets like micro RNA.  

Nanoscale FET’s are a branch off of standard ISFET and FET based technology. 

Here the device dimensions are scaled down to the magnitude of the sizes of proteins and 

DNA (nanometers), and this has led to vastly improved sensitivities for biomolecule 

detection. The eventual goal of using nanoscaled FET’s is to sense individual molecules 

by shrinking the dimensions down even further to this order. Currently two types of 

approaches have been demonstrated for fabricating nanoscale FET’s : “bottom up” 

approaches and “top down” approaches. Bottom up approaches generally refer to devices 

which are grown by vapor liquid solid (VLS) methods using nanoclustered metals as the 

catalyst. The products are typically flow aligned onto a substrate and metal contacts 

defined on them afterwards, usually by e-beam lithography. A major group which has 

advanced this type of technology is Charles Lieber’s group at Harvard. An example of 

the sensing capabilities of bottom up silicon nanowire with reference to their work will be 

discussed. Top down approaches usually start with a substrate, such as a silicon-on-

insulator wafer (SOI), which can be lithographically defined and stepwise processed, 

dubbing the name “top down”. There have been many advancements and progress in top-

down fabrication processes and biosensing by multiple groups, however as an example of 

the latest work I shall use the results of the Reed group at Yale.  

A landmark report by Cui et. al. in 2001 demonstrated the use of “bottom up” 

nanowires as a biosensor, which was published in Science.[130] Silicon nanowires of 

20nm width were grown using a VLS method, and flow aligned a silicon oxide substrate, 

being contacted afterwards with Al/Au using e-beam lithography as a patterning agent. 
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By functionalizing the native oxide of the nanowires with aminopropyltriethoxysilane 

(APTES), they were able to demonstrate linear response to changes in pH over values 

from 2-9 by measuring the conductance of the device with an AC measurement technique 

and a lock-in amplifier. This conductance will change when a change in the surface 

charge occurs, whether from pH or binding of a biomolecule.  

To demonstrate the preliminary biosensing ability of the devices, a model biotin-

streptavidin detection scheme was employed, and shown in Figure 2.23.  They show the 

detection of 25pM of streptavidin binding to the surface. What is important is that they 

perform several controls to make sure the binding is specific. They first monitor the 

device in pure buffer solution, then add 250nM streptavidin, which causes a large change 

in the conductance. To make sure the change was not due to the fluid, they performed a 

wash afterwards and showed it was a true binding event. Next, they showed the binding 

was specific to biotin by flowing streptavidin that had already been saturated with biotin. 

Introduction of the fluid yielded little change in the conductance of the device.  

In 2004, Hahm demonstrated the ultrasensitive detection of DNA using these 

silicon nanowires. [131] The devices were functionalized with peptide nucleic acid 

(PNA) probes, which are electrically neutral. The DNA under question was a sequence in 

the cystic fibrosis transmembrane receptor gene, which had a wild type and mutant type. 

The PNA-DNA hybridization complexes were able to be detected down to 10fM levels 

with high levels of discrimination between the wild type and the mutant strand. Figure 

2.24 shows the results of this experiment. Since then, silicon nanowires using bottom up 

methodologies have been able to sense whole viruses [132], enzymatic reactions [133], 

cancer markers [134], and action potentials from hearts [135].  
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Figure 2.23. Schematic showing the real-time detection of protein-binding on a silicon 

nanowire. A general drawing of protein binding is shown in (A) Conductance versus time 

where region 1 is a buffer solution, region 2 shows the addition of 250 nM streptavidin, 

and region 3 is a buffer wash is in (B). Conductance versus time for an unmodified FET 

is in (C), showing no response to the streptavidin. Conductance versus time for a biotin-

modified FET, but where the streptavidin has already been saturated with biotin is in (D). 

Conductance versus time for 25 pM streptavidin addition is in (E). From [130] 

In 2007 the work of Stern et. al from Mark Reed’s group published the first top 

down, CMOS-compatible nanowire process for the detection of proteins in Nature. [136] 

They used silicon-on-insulator (SOI) wafers and defined their nanowire sensors with e-

beam lithography. They then etched the silicon patterns with an anisotropic wet etchant, 
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tetra-methyl-ammonium-hydroxide (TMAH). The gating oxide used was only the native 

oxide on top of the silicon. Although this method was the easiest to apply, the longevity 

of the devices in fluid suffered as a result. Nevertheless, they were able to demonstrate 

sensing of streptavidin down to 10fM and immunoglobulins to 100fM (Figure 2.25) as a 

proof of concept. Similar to the protocols by Lieber’s group, several controls were 

implemented to make sure the sensing was real. The sensing experiments used 1nM 

concentrations to demonstrate the binding, based both on specificity and on charge. They 

demonstrate in a pH 7.4 solution that streptavidin yields a response, while the quenched 

streptavidin and PEG control do not. Moreover, they add avidin, which has a positive 

charge at pH 7.4 instead of negative (such as streptavidin), and this leads to an opposite 

response.  

In 2010 they take this work even further by detecting biomarkers from whole 

blood using top down nanowires. In this approach they separate the microfluidic chip for 

protein isolation from the sensing platform. The microfluidic chip was functionalized 

with antibodies specific to the antigen of interest, and the blood was flown through the 

chip, binding the antigens. A wash was done to remove the excess blood and non-specific 

entities. Afterwards, a photolabile linker was cleaved by UV irradiation to release the 

proteins and these were flown over the device to be sensed. An example of this process is 

shown in Figure 2.26.  They chose two proteins of interest for sensing, PSA (prostate 

specific antigen), and CA15.3 (carbohydrate antigen). Devices were functionalized with 

antibodies specific to these antigens, and detection limits of 2ng/mL for PSA and 

15U/mL for CA15.3 were achieved, with minimal crosstalk between devices. 
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Figure 2.24. (A) Conductance graphs obtained from 100 fM of WT (solid line) and MU 

(dashed line) fragments on the same subject NW. (B) Net conductance changes vs time 

for 100 fM (1), 30 fM (2), 10 fM (3) and 1 fM (4) DNA samples. (C) Conductance vs 

DNA concentration where data points shown as squares and circles were obtained from 

two independent SiNW devices. From [131]. 
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Figure 2.25. Demonstration of immunodetection using CMOS-compatible silicon 

nanowires. Devices were either functionalized with goat anti-mouse IgG (a) or goat anti-

mouse IgA (b). The responses to 100 fM of Mouse IgG (red) and Mouse IgA (blue) are 

shown in each graph, with a PEG control. From [136] 

Although I have specifically chosen these as example works, there are a plethora 

of results for both bottom up and top-down process nanowires for biosensing. In terms of 

biomolecules, sensing of DNA [137-142], RNA [143], cancer markers[144-148], and 

cellular processes [147,149-151] have been demonstrated. Extensive studies have also 

gone into different types of dielectrics, such as Al2O3 [152,153] and HfO2 [154-159] for 

pH sensitive layers and gating dielectrics. Moreover, lots of work has gone into 

understanding the principles of how nanoscale FET’s operate, such as what region gives 

the best sensitivity [160], the effect of device width [161], and the effect of the Debye 

screening length on the sensitivity [162,163].  
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Figure 2.26. Schematic of the microfluidic purification of whole blood for sensing. 

Primary antibodies to multiple biomarkers are bound with a photocleavable crosslinker to 

the chip (a). The chip is placed in a plastic housing and a valve (pink) directs fluid flow 

exiting the chip to either a waste receptacle or the nanosensor chip (b). Whole blood is 

then injected into the chip and allowed to incubate. If the antigens are present in the 

sample they bind to the antibodies. Washing steps follow the blood incubation, and the 

chip volume (5 ml) is filled with sensing buffer before UV irradiation (orange arrows) 

(c). The photolabile crosslinker cleaves, releasing the antibody–antigen complexes into 

solution. The valve is set to the nanosensor reservoir (black arrow shows the direction of 

fluid flow) and the 5 ml volume is transferred for fluid flow over the sensor (d). From 

[197]. 
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Figure 2.27. Simulated electron concentration profiles for a 100nm width wire (a-b) and 

a 1um width wire (c-d). The simulations in (a) and (c) use a constant charge density of -

3.2 x 10
10

 /cm
2
 and (b) and (d) use a charge density of -3.1x 10

10
/cm

2
. 

One of the main reasons into the pursuit of nanoscale FET’s is the sensitivity 

achieved with such sensors. This is usually attributed to the improved electrostatics 

owing to the high surface area to volume ratio of the sensors. Also, such nanowire 

sensors have the potential to act as an electronic hose, in which depletion of only a 

segment of the wire will result in a dramatic decrease of total current through the wire. 

This was experimentally verified using pH by Elfstrom et. al. in 2007.[161] In this work 

they created top down nanowires of various widths using e-beam lithography, and 

measured their pH sensitivity and Id-Vg characteristics. They also performed simulations 

of carrier densities in the nanowires as a function of their width. Their simulation results 
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are discussed in Figure 2.27.  The simulations demonstrate how the effect of applied 

charge density modulates the smaller width wire much more than the larger one. 

Moreover, they show that wires with widths <150nm show enhanced sensitivities to 

charge, and this is shown in Figure 2.28. An attempt to understand the scaling laws was 

investigated by Nair et. al. [164] and a set of design rules outlined for nanowire 

development. I refer the reader to this manuscript if they would like to peruse the theory 

of nanowire sensitivity further.   

 

Figure 2.28. Conductance ratio vs width for nanowires in the range 50-100 nm and for a 

microwire (a). The conductance reference was a bare device, then a buffer solution of pH 

3.0 was introduced. Threshold voltage shift vs. width for nanowires in the range 50-100 

nm and for a microwire (b). The shift occurred when the pH value of the buffer solution 

added to the surface was changed from 3.0 to 7.4. From [161]. 
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2.5 SURFACE FUNCTIONALIZATION OF ISFET’S 

It is has been widely accepted that the interfacing of biological recognition 

elements to the surfaces of FET’s or to any transducer is critical in achieving the highest 

sensitivities possible with the biosensor. In this section I will discuss the types of 

functionalization techniques which are utilized today on ISFET’s for biomolecule 

immobilization. In general, a surface functionalization technique for any type of 

biosensor should adhere to a few guidelines which ensure optimized performance: 

 A highly uniform surface coverage of the linking layer, as to maximize the 

biomolecule receptor density. 

 A thermodynamically stable layer, which will help minimize dissociation 

and unintended removal of the layer. 

 Proper orientation of the biological recognition element, as to maximize 

the efficiency of target binding. 

 Minimal non-specific binding, meaning the surface can be blocked easily 

or inherently does not bind non-specific analytes appreciably. 

In terms of surface functionalization, FET based devices with and without metal gates 

have tried to follow these guidelines by using a variety of different chemistries. The main 

two immobilization techniques have been assembled polymer layers and self-assembled 

monolayers (SAM’s), which will both be addressed briefly in this section as they are 

thoroughly covered in the remaining chapters. An excellent review of both these types of 

technologies is available by Senarate et. al. [165] and their use in biosensors to date. A 

figure displaying some of the common surface chemistries used for sensor layers is 

shown in Figure 2.29.  
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Figure 2.29. Schematic depicting SAMS (a) alkanethiols on gold, (b) alkylsilanes on 

silicon oxide (X terminal functional group) and (c) high-density grafted polymer brushes 

where d is the average distance between the tethering points and L is the thickness of the 

brush. From [165].  

Polymer layers, sometime called polymer brushes, are typically formed from 

block copolymers or end grafted polymers, where the functional surface is exposed at the 

head.[166] They are typically deposited using physisorption to the surface, or by surface 

initiated polymerization (SIP).  The SIP method has attracted much interested since it can 

be directly started from a monolayer or an electrode. This has made it attractive for FET 

with metal gates, since it can be directly deposited by applying a voltage. However, 

several other methods of polymerization have been used, such as free radical [167] and 

“living” polymerizations [168-170] for surface functionalization as well. For biosensors, 

electroactive polymerization of films have been the most popular of this field, and 

commonly use monomer agents such as anilines, thiophenes, and pyrroles. [171] The 

monomers align to the metal substrate, and when a voltage is applied, they will 

polymerize, and the amount of polymerization can be controlled by the voltage applied 

(typically using cyclic voltammetry). The immobilization of proteins or DNA to these 

layers used to be by chemical grafting of a linking group [172,173], but more recently 
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polymerizations already including these groups have surfaced [174,175]. They have had 

tremendous use in amperometric electrode based enzyme sensors[176-183] However, it is 

notoriously difficult to control the roughness and exact binding geometry of these films, 

which is why they have been less popular for direct interface based sensors 

Self-assembled monolayers have received wide attention as a biointerfacing 

mechanisms due to their ability to form single molecular layers on substrates and have 

high versatility, easy deposition processes, and overly simple compared to polymerized 

films. Many systems undergo self-assembly, including long-chain carboxylic acids on 

metal oxides, organosilane species on hydroxylated glass, silicon oxides (SiOx) and 

aluminum oxides (AlxOy), and organosulfur-based species on noble metal surfaces. A 

more detailed description can be found in an excellent review by Ulman [184] 

highlighting the intrinsic binding mechanisms. Organosulfur compounds, such as 

disulfides and thiols, are well known to coordinate to noble metals quite strongly, the 

most notable metal being gold. Moreover, the alkanethiol-gold linkage is probably the 

most studied monolayer of all time, and its binding structure detailed in several articles. 

[185,186]. It is no surprise then that thiol based monolayers have found their way into 

being regularly utilized on extended gate field effect transistors. Extended gate FET’s 

with thiol based monolayers have been used to detect protein complexes [187] and DNA 

[188]. 

Alkoxysilanes have typically been utilized to functionalize oxide surfaces such as 

silicon oxide, aluminum oxide, and hafnium oxide. The reactive silane groups first 

undergo a fast hydrolysis to form silanols, followed by slow condensation to oligomers, 

which then hydrogen bond to the surface hydroxyl groups and lead to the formation of 
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covalent siloxane bonds. Moreover, the secondary functional groups can be tailored post-

deposition or attached pre-deposition for the functionalization of surface that can react 

with a variety of functional groups. Tailoring the surface of the alkoxysilane monolayer 

with groups such as n-hydroxysuccinimide (NHS), cyano, azide, bromide, epoxides, and 

amines is thoroughly reviewed by Haensch et. al..[189] They provide and excellent in-

depth discussion of how to modify these surfaces accordingly.  

Moreover, these silanes can be mono-functional, bi-functional, or trifunctional for 

reacting with surfaces, and there tribological properties have been studied over two 

decades.[190-193] This means that one, two, or three groups are available for anchoring 

to the surface. Additionally, they can have different chain lengths, which have also been 

studied thoroughly. However, one thing which has not been thoroughly studied is how 

these types of monolayers interface with oxide covered FET devices and how to 

functionalize them for biosensing. This is a core part of this thesis and our advances into 

uncovering how these mechanisms work is presented in the coming chapters of this 

thesis. 

2.6 WHAT’S NEEDED 

In order for FET based sensors, in particular silicon nanowires, to become a 

reliable point-of-care device, several issues must be addressed: 

 Increasing the lifetime of the electronic based sensors in fluids. This is 

imperative if the device it to be integrated into a sensing platform. 

 Produce repeatable and accurate results. This is often glossed over in 

literature as it tough to obtain device with similar characteristics to 

compare. 
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 Contain protocols which provide repeatable, reproducible results. A 

thorough understanding of how to functionalize and fabricate sensors for 

multiplexing is currently lacking. 

 Reduction of non-specific binding and false positives, which is 

particularly important when samples containing a multitude of analytes 

(serum, whole blood, genomic DNA) are to be analyzed. This will allow 

for efficient multiplexing. 

 Demonstration of analyte sensing over a dynamic range which 

encompasses the clinical relevant levels of targets. 

The rest of this thesis discusses our efforts to address each one of these issues in order to 

create a true point-of-care device based on top down silicon nanowires. 
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CHAPTER 3: VAPOR PHASE 

DEPOSITION OF MONOFUNCTIONAL 

ALKOXYSILANES FOR SUB-

NANOMETER LEVEL 

BIOINTERFACING ON SILICON OXIDE 

SURFACES 

3.1 ABSTRACT 

Improving the performance and lowering the analyte detection limits of optical 

and electronic biosensors is essential for advancing wide ranging applications in 

diagnostics and drug discovery.  Most sensing methods require direct linkage of a 

recognition element and a sensor, which is commonly accomplished through an organic 

monolayer interface.  Alkoxyorganosilanes are typically used to prepare sensor surfaces 

on dielectric oxides. However, many silanes lead to roughened or thick interfaces that 

degrade device sensitivity.  We have found that controlled vapor phase deposition of 

monoalkoxysilanes leads to monolayers resistant to elevated temperatures and extreme 

pH conditions. The formation of high density, subnanometer monolayers is demonstrated 

by ellipsometry, XPS, and AFM. We demonstrate the uniform attachment of these 

monofunctional silanes to such biosensing platforms as microarrays, field effect devices, 

and the formation of SERS substrates. The advantages of using this silane deposition 

protocol for the above technologies are also discussed.  
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3.2 INTRODUCTION 

A typical biosensor contains three components; a receptor element, which 

recognizes or captures the biological or chemical analyte; the transducer, which converts 

the stimulus to an output signal; and an output system, which translates the output  signal 

to an interpretable format.  In the construction of biosensors, a variety of chemistries have 

been used to link receptor elements to surfaces, however this step remains a limiting 

factor in device sensitivity, reliability and reproducibility.[1,2]The output signal relies on 

transduction by optical[3-7], electrochemical[8-10], piezoelectric techniques[11], or other 

methods, and hence sensitivity increases with proximity of the analyte to the surface. 

Consequently the linkage distance from the surface to the receptor elements must be 

reduced in order to maximize the contributions to the signal from the bound analyte.  

Self-assembled monolayers (SAMs) are commonly employed for interfacing biological 

receptors to a transducer. Many optical and electrochemical methods contain oxides as 

part of the transducer, which are effective substrates for conjugation of alkoxy- and halo-

substituted organosilanes. The mechanism of their reaction with oxide surfaces has been 

well studied[12], and their aqueous and thermal stabilities have been 

established[1,2,13,14].  

Self assembled monolayers are commonly deposited through either liquid or 

vapor based methods. There has been some success in the formation of trialkoxysilane 

monolayers in solution phase[15] and by using dip pen lithography[16,17], but there 

exists much room for improvement. There is a need to make the deposition processes 

simpler and more reliable, to reduce the generation of contaminated effluents and 

polymerized products, and to lower the production costs.[18] Processes which utilize 
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vapor phase deposition can eliminate some of the problems that are seen in liquid-based 

deposition and also make themselves amenable to be used in batch and microelectronics-

compatible processes.[19,20] In these vapor-phase processes, the precursor chemistry is 

easily controlled and efficient mass transport ensures coating of high-aspect-ratio 

structures (such as those found in MEMS devices). Moreover, it has been shown that the 

performance of SAM coatings that are grown in vapor phase is comparable or superior to 

SAMs that are grown in liquid phase [21], and the vapor phase methods can be applied at 

the wafer scale level [22]. Indeed, vapor phase deposition of trialkoxysilane SAM’s with 

a variety of terminal functional groups has been achieved on oxide surfaces 

previously.[23-28] However, these trifunctional silanes are also known to polymerize in 

either aqueous or vapor phase deposition methods over a wide range of temperatures and 

environmental conditions.[29-33] Consequently, high quality monolayer formation may 

require very stringent and specialized processing conditions, making them more 

challenging to integrate with VLSI or wafer scale microelectronics devices and processes.  

Organosilanes with trifunctional reactive groups, such as octadecyltrichlorosilane 

and aminopropyltriethoxysilane, have been frequently conjugated to devices by vapor 

and liquid methods[34-37] , with the latter silane of particular importance because the 

amino group allows simple conjugation to reactive functional groups, including active 

esters, aldehydes and ketones and isocyanates.[38] However, the possible difficulties 

with trialkoxysilanes mentioned earlier may compromise device performance by having 

nonuniformities on the active areas of the sensor or by increasing the length of the 

interfacial region . Monofunctional silanes possess the ability to alleviate these issues 

since only one functional group is available to react with the surface and since these films 
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have been shown to successfully be deposited on oxide surfaces[39,40] Other added 

advantages include a higher vapor pressure than equivalent trifunctional silanes and the 

fact that these monofunctional silanes do not displace amine catalysts unless covalent 

linkage occurs. These advantages allow for extended high temperature deposition and 

curing times, variables known to influence the quality and robustness of the films, as well 

as facilitate vapor phase deposition which is the preferred passivation method in the 

semiconductor industry. However, to-date only limited characterization has been 

performed on monofunctional silanes and little is known about their performance in 

solution and applicability to biosensing platforms.  

In the present study, we evaluate vapor phase deposition of two 

monoethoxysilanes, one amino-terminated and another glycidoxy-terminated, and 

demonstrate their applicability to biosensor fabrication. The kinetics of monolayer 

formation was measured with ellipsometry and found to follow a diffusion-limited 

Langmuir model. X-Ray photoelectron spectroscopy (XPS) confirmed the elemental 

compositions of completed monolayers. Atomic Force Microscopy (AFM) images of the 

complete monolayers contain roughness values close to that of silicon, and the 

topography indicated high density coverage. A critical issue surrounding these 

monolayers is their aqueous stability under stressed conditions, particularly at elevated 

temperatures, and extreme pH values. To assess the stability, the aminoalkyl-derived 

surface was first allowed to react with an amine-reactive fluorophore.  The fluorescent 

intensities were then compared for monolayers subjected to temperatures of 25 ˚C and 60 

˚C, and aqueous solution pH values ranging from 1 to 13 for time periods up to 6 hours.  



83 

 

No measureable changes in fluorescence intensity and fluorescence uniformity were 

observed.  

Subsequently, we applied this deposition method to optical and electrochemical 

biosensing platforms, including microarrays, field-effect devices, and SERS-active 

substrates.  We show the high deposition uniformity and decreased background noise 

when applied to microarrays.  We also demonstrate that the conjugation technique can be 

applied to field effect devices for possible applications in potentiometric sensing. Finally, 

we demonstrate high coverage densities of Au nanoparticles for the formation of surface 

enhanced raman spectroscopy (SERS) active substrates for Raman detection capabilities. 

Overall, the ease of this functionalization method and its high stability show promise for 

increasing the performance and longevity of biosensors. As a result, this silanization can 

be widely applied across many biosensing platforms. 

3.3 EXPERIMENTAL 

MATERIALS 

3-Aminopropyldimethylethoxysilane (APDMS) and 3-

glycidoxypropyldimethylethoxysilane (GPDMS) were purchased from Gelest, Inc. and 

used without further purification. Triethylamine, toluene, and methanol were obtained 

from Sigma and dried with 3A molecular sieves. The fluorescent dyes 7-amino-4-

methylcoumarin, rhodamine B isothiocyanate, and 4-carboxyfluorescein NHS-ester were 

purchased from Sigma-Aldrich and used without further purification. Phosphate buffered 

saline (PBS), pH 7.4 was purchased from Gibco and degassed at 30 Torr in a dessicator 

for 10 minutes prior to use. All glassware prior to use was soaked in a NaOH:EtOH base 

bath for at least one hour and rinsed in DI water. The glassware was then dried at 150°C 
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in a convection oven. Four inch Si(100) wafers from SiliconQuest Intl. were diced into 

4x7 mm chips for AFM, XPS, and ellipsometry experiments. A 4-inch Si(100) wafer was 

thermally oxidized at 1050°C for 24 hours to an SiO2 thickness of ~1µm, which was 

confirmed by ellipsometry, and then diced into 4x7 mm chips for fluorescence stability 

measurements. Low autofluorescence Nexterion B microscope slides purchased from 

Schott were used for deposition uniformity experiments. Streptavidin-Cyanine-5 (SA-

Cy5) for microarray spotting was purchased from Invitrogen. Silicon field effect devices 

were fabricated in our lab using SOI wafers and a VLSI compatible process.[63,64] 

Colloidal Au nanoparticles (Au-NP’s) of 5 nm mean diameter were purchased from 

Sigma and used as received.   

SILANE DEPOSITION 

Before silane depositions, each substrate was degreased in acetone and methanol, 

then immersed in H2SO4:H2O2 (7:3) for 30 minutes. The substrates were then rinsed in DI 

water, dried under a stream of N2, and then subjected to a 300W O2 plasma at a pressure 

of 500 mTorr for 10 minutes. The deposition of silanes on 4x7 mm chips was performed 

in 20cm
3
 glass vials at a temperature of 100 °C and at a pressure of 30 Torr. Silanes were 

mixed with TEA to a 1% v/v solution, kept at 100 °C and 30 Torr, and transferred into 

the vials by a glass syringe using an 18 gauge stainless steel hypodermic needle through a 

viton septum. The reactions were quenched by purging the vials with N2 at least 3 times. 

Chips were removed from the vials and then sonicated in vials containing toluene and 

methanol for 2 minutes each, respectively. The chips were then dried under a stream of 

N2 for 5 minutes and stored in a vacuum desiccator until use.  



85 

 

Microscope slides and 6” Si wafers were prepared in a 0.75 ft
3
 vacuum oven 

equipped with an N2 and a vacuum port, preheated to 100 
o
C. The slides were mounted 

horizontally in a glass rack which contained a rectangular bottom well for the silane 

solution.  A volume of 1 mL silane solution was deposited in the bottom well and the 

rack was evacuated to a pressure of 30 Torr. The slides were subjected to the silane vapor 

for 12 hours. After 12 hours, the reaction was quenched by 3 purges with N2 and then 

vacuum. The slides were then removed from the glass rack and sonicated in baths of 

toluene and methanol for 2 minutes, respectively. The slides were then rinsed with 

deionized water and dried under a stream of N2 for 5 minutes. 

The 6” Si wafers were silanized using the same vacuum oven setup and same 

conditions , except the N2 inlet port was modified with a t-junction for carrying the silane 

vapor from outside the oven. The silane was put in a fused silica vial with a vacuum port 

to a total volume of 1 mL, connected to the t-junction via polytetrafluoroethylene (PTFE) 

tubing, and heated   on a hot plate. A copper heating tape was put around the PTFE 

tubing to ensure isothermal conditions for the vapor leading into the chamber. The 

vacuum oven, PTFE tubing and the silane were both preheated to 100 °C, and the 6” 

wafer inserted into the vacuum oven. The oven was purged with N2 and then vacuumed 

out 3 times. The t-junction was then opened to allow the silane to flow into the vacuum 

oven for 12 hours. After the deposition, the t-valve was closed to the silane and N2 was 

cycled in to quench the reaction 3 times. The wafer was then removed from the oven and 

sonicated in toluene and methanol for 2 minutes each.The wafers were then carefully 

dried with a stream of N2 to avoid spotting.   
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SILANE CHARACTERIZATION 

The ellipsometry measurements were taken on a Rudolph FE-III ellipsometer at 

an angle of 70 degrees and a wavelength of 6328 Å. The refractive indices utilized were 

1.46 for the native oxide and 1.43 for the silanes. The chips were measured before and 

after silanization at 5 different spots. The native oxides for each dye ranged from 10-14 Å 

in thickness as determined by ellipsometry and X-ray Photoelectron Spectroscopy (XPS). 

Contact angle measurements were taken on a KSV CAM200 system in static mode using 

the sessile drop technique. A 10 uL drop of ultrapure water (18.2 MΩ-cm) was allowed to 

stabilize for 10 minutes before the measurement was taken. Error for each measurement 

is approximately ± 0.5 degrees. TOF-SIMS  XPS analysis was done on a KRATOS AXIS 

ULTRA at a take-off angle of 90 degrees. Monochromatic Alkα X-Rays were used as the 

source. The control sample was carefully cleaned to remove carbonaceous material 

according to Seah et. al.[67] Silanized samples were subjected to a similar treatment, but 

without the use of O2/plasma to keep the monolayer intact. Survey spectra were taken at a 

pass energy of 120 eV and high-resolution spectra at a pass energy of 40 eV. Each dye 

was mounted using a conductive copper tape and the C1s, N1s, and Si2p spectra recorded 

at a dwell time of 200 ms and 10 passes. All spectra were processed using CASA XPS 

software. The spectra were fitted with a modified Gaussian-Lorenztian algorithm using a 

Shirley background.  

Atomic Force Microscopy (AFM) images were taken on an Asylum Research 

MPF-3D AFM with a silicon tip at 300 kHz in AC Mode. The amplitude and phase 

images were both recorded and image sizes ranged from 1x1 um
2
 to 5x5 um

2
. Microarray 

spotting was done using a non-contact piezoelectric spotter (Perkin Elmer Piezoarray) 
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with a pattern containing 350 pL spots of 10 pg/mL SA-Cy5 in phosphate buffered saline 

(PBS) at pH 7.4 with 0.05% trehalose to prevent spot drying. This SA-Cy5 concentration 

and volume equates to 70 attomol/spot. The spots were incubated at 4°C for 12 h, rinsed 

in 0.1% Tween in PBS for 5 min with agitation, then briefly with dH20. The spots were 

imaged with a fluorescence laser scanner (Tecan LS Reloaded) at a gain of 190 and a 

collected images was done using ArrayPro software 

to calculate trimmed-mean (10%) intensities of a 14 pixel diameter region inside each 

spot. Background intensities were calculated as a trimmed-mean (10%) of the local 

corners around each spot. Images of silicon field effect devices were taken on a Nikon 

TE20 fluorescent microscope with a Pixera 16 bit CCD camera. The integration time for 

each fluorescent image was 5 seconds. 

3.4 RESULTS 

Since monofunctional silane reaction kinetics has seldom been studied[39], we 

deposited silanes for various time intervals in the vapor phase using the procedure 

described in the experimental section and then removed any physisorbed material by 

sonication. This allows for a more accurate determination of the extent of silane reaction 

as compared to real time measurements such as quartz crystal microbalance (QCM) or 

surface plasmon resonance (SPR), since fluidic rinses or gaseous purges may not desorb 

excess reagents leading to an overestimation of silane attachment.[41] The ellipsometric 

thickness of the silane layer versus the deposition time is displayed for 3-

aminopropyldimethylethoxysilane (APDMS) and (3-

glycidoxy)propyldimethylethoxysilane (GPDMS) in Figure 3.1. Assuming that the film is 

uniform, the adsorbed mass can be correlated to the thickness if the molar refractivity and 
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refractive index of the film are known.[42]  The molar refractivity (A) of molecular 

species may be calculated by summation of the individual atomic bond refractivities 

which comprise the molecule. The molar refractivities for APDMS (A=35.4) and 

GPDMS (A=49.1) were calculated using the individual bond refractivites by Vogel[43], 

and the adsorbed mass was calculated for each point. The right axis in Figure 3.1 shows 

the theoretical adsorbed mass for each silane. For both silanes, the thickness results 

indicate the deposition follows Langmuir kinetics. The first hour is dominated by rapid  

and as the adsorption sites become occupied, the deposition slows and finally saturates 

between 6-12 hours. Using trifunctional silanes with epoxy and amino functionalities, we 

performed the same deposition procedures, which readily gave multi-layers with 

thicknesses in agreement with recent literature values (Figure 3.2).[30] Contact angle 

measurements were also taken at the same deposition times (Figure 3.3), and the values 

saturate at 49.5 and 58.0 degrees for APDMS and GPDMS, respectively. 

Although the early stages of monolayer adsorption are known to be described well 

by Langmuir kinetics[44,45], extended depositions have been known to follow second-

order or diffusion-limited forms of the Langmuir model with several growth process 

regimes[46]. In order to gain insight into the deposition mechanism, the data was fit using 

three Langmuir models: a first order process, a second-order process, and a diffusion 

limited process. By analyzing the residuals of the fit, the kinetics appear to follow a 

diffusion limited process which is described well by Rahn & Hallock.[47]  
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Figure 3.1. The thickness of APDMS (A) and GPDMS (B) versus deposition time as 

measured by ellipsometry. The points are fit to a diffusion limited Langmuir equation 

(red line) for each molecule. 
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Figure 3.2. The trifunctional silanes APTES and GPTES were deposited using the same 

protocol as the monofunctional analogues and monitored versus time using ellipsometry 

(A). Multiple layers are formed as time progresses. AFM images of the APTES 

deposition (B) and the GPTES deposition (C) after a 12 hour time period. The average 

heights correlate well with ellipsometry. 
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Figure 3.3. Static contact angle measurements taken for APDMS and GPDMS versus 

deposition time. A 10 uL drop of ultrapure water was allowed to stabilize on the substrate 

for 10 minutes before measuring.  

 

Using this model, the maximum thickness and diffusion limited rate constant 

(k1D) were calculated and are displayed in Table 3.1 for the aminosilane and epoxysilane. 

A purely diffusion limited process should be described by equation 1: 
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where τD is the diffusion limited time constant and f is the final thickness. To evaluate 

the validity of the model, the power exponent of ½ in the equation was turned into a 

stretched exponential creating the exponent variable α. By allowing α to be a parameter 

in the fit, the optimal values of α were determined for APDMS and GPDMS. The values 

are displayed in Table 3.1, and both are close to ½ indicating a true diffusion limited 

process for the vapor deposition. The theoretical adsorbed masses saturate at 101.6 
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ng/cm
2
 and 69.8 ng/cm

2
 for the GPDMS and the APDMS, respectively. Taking the 

molecular weights of the compounds, this corresponds to 5.8 molecules/nm
2
 for the 

epoxysilane and 6.1 molecules/nm
2
 for the aminosilane. The high densities described for 

both silanes are not unreasonable, given the density of silanols achievable on crystalline 

silicon surfaces.[48,49] By cleaning the substrates properly and depositing the silanes at 

100˚C, we are able to inhibit dehydroxylation at the surface, and maximize surface 

silanol density. 

The vapor deposition of these silanes in vacuum and at temperature above their 

boiling points allow for simultaneous deposition and curing, with curing known to play 

an important role in stabilizing the attachment of the silane to the surface.[1,50] The 

ellipsometry results indicate saturated values for both monolayers by 12 hours deposition 

time. To confirm the compositions of the monolayers and correlate the ellipsometry 

thicknesses, XPS was taken for each silane after 12 hours deposition time.  
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Figure 3.4. XPS high resolution spectra of C1s (A-C) and N1s (D-F) peaks after 12 

hours deposition time. A blank substrate (A, D) shows little carbon or nitrogen 

contamination. The APDMS spectra for C1s (B) are curve fitted to show the peak 

assignments C-C (red), C-N (blue), and C=N (green) regions. The APDMS N1s spectra 

(E) show the peak assignments NH2 (red) and silicon bound nitrogen (blue). The GPDMS 

spectra for C1s (C) shows the peak assignments C-C (red), C-O (blue), and C=O (green), 

while the N1s spectra (F) shows traces of adsorbed nitrogen gas (red) and protonated 

nitrogen (blue). 

Figure 3.4 shows the C1s and N1s high resolution spectra for a native oxide 

control, APDMS, and GPDMS, respectively. Within each spectrum, the curves were 
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fitted to extract the localized bonding of each carbon or nitrogen atom. The native oxide 

shows very little carbon or nitrogen contamination, confirming that the signal results 

from the C1s and N1s of the attached silanes. The C1s spectra for each of the silanes 

contain binding energies for aliphatic (284.5-285.5 eV), slightly polar (286-287 eV), and 

highly polar (288-290 eV) carbons. The N1s spectra are split into NH2 (399 eV) and 

NH3
+
 (401 eV) domains, which suggests that the amino groups of APDMS exist in both 

neutral and protonated form under the conditions of XPS analysis.  

 

Figure 3.5. AFM Tapping Mode images of a native oxide substrate (A), an APDMS 

coated substrate after 12 hours deposition (B), and a GPDMS coated substrate after 12 

hours deposition (C). The scale bar for all images is located on the right. The root mean 

square roughness (RRMS) values for the substrates are displayed below each image. 

The ratios of each of the elements and the ratios of the carbon types are displayed 

in Table 3.1. The C1s:N1s ratio provides information about the elemental composition of 

the silanes. For APDMS, the ratio is close to the stoichiometric value of 5:1, while 

GPDMS, which does not contain nitrogen, has a very high C1s:N1s ratio. Similarly, the 

ratio of aliphatic carbons (Ca) to slightly polar carbons (Cp) can give us insight into the 

chemical composition of the sample. Slightly polar carbons may be regarded as O-C-O, 

C-O, or C-N bonded, while aliphatic carbons are assigned as C-C or C-H bonded. The 

Ca:Cp for GPDMS and APDMS are very close to the stoichiometric values of 1:1 and 4:1, 
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respectively. Most importantly, if the silane layer was damaged or oxidized during the 

long deposition time, the highly polar C1s peaks, indicating C=O or C=N, would be quite 

large. There is no evidence of this in the C1s spectra of either silane, indicating intact 

functional groups after the 12 hour deposition/curing period.  

 

Table 3.1. Table of values for a 12 hour deposition period of APDMS and GPDMS. The 

various parameters gathered from ellipsometry, XPS, AFM, and contact angle are 

tabulated above.  

The N1s spectrum for APDMS shows greater than 97% NH2 terminations. This is 

an important result, since it indicates that the silanes on the surface are covalently 

attached instead of absorbed in the inverted state. In an inverted state, the silane would 

form an NH3
+
Si-O

-
 ion pair, which commonly occurs in trifunctional silanes such as 

APTES.[51,52] Moreover, the data also indicates that triethylamine is not absorbed on 

the surface, which would block binding sites. The N1s spectra of GPDMS show peaks 

close to the noise of the control spectrum, as would be expected. The thickness (t) of the 

monolayers was calculated by equation 2 from the intensity of the Si2p electrons from the 

substrates (I) and the attenuation length of a hydrocarbon monolayer (λ): 

    















o
I

I
ln sin -t 

           (2) 

where, Io is the Si2p electron intensity from a blank sample and sinθ reflects the take-off 

angle, which is 90
°
, making sinθ equal to 1. The attenuation length for the electrons in the 

hydrocarbon layer is dependent upon the kinetic energy of the electron being ejected, 

 Ellipsometric Thickness  

(Å) 

XPS Thickness  

(Å) 

k1D  

(min -1/2) 
α 

N1s

C1s  
NO/CC

CC



  RRMS  

(Å) 

Contact Angle  

(θ) 

APDMS 8.2 ± 0.4 8.6 ± 0.8 0.15 0.52 5.08 4.11 1.6 49.5 

GPDMS 11.1± 0.5 11.7 ± 1.1 0.11 0.48 192.12 1.12 2.1 58.0 

 



96 

 

which for an Si2p electron is 1388 eV. The attenuation length as a function of kinetic 

energy λ(KE) was estimated for a hydrocarbon layer based upon the equation by Laibinis 

et. al[53], i.e. KEKE 022.09)(  . Using this equation, the attenuation length was 

estimated at 39.5 Å for the monolayer. The thicknesses were then calculated using 

equation 2, and are displayed in Table 3.1. For both silanes, the XPS appears to 

overestimate, but within error, the thickness of the silanes, in comparison to ellipsometry. 

However, both techniques complement each other and support the formation of a true, 

high density monolayer.  

The morphologies of the formed monolayers were visualized using AFM in 

tapping mode after 12 hours deposition. The results of the AFM are displayed in Figure 

3.5 for the control oxide, APDMS, and GPDMS, respectively. The morphologies look 

quite similar to the control image, lacking island domains which would be indicative of 

incomplete monolayers or solution phase depositions. Below each image is the RMS 

roughness (Rrms) for that image, and the values may also be found in Table 3.1. The 

control oxide contains an Rrms of 1.2 Å, which is well known to be the case for native 

oxides on silicon, while APDMS and GPDMS contain Rrms values of 1.6 Å and 2.1 Å, 

respectively. The fact the Rrms values are so close to the control and less than the heights 

of the molecules affirm the formation of homogeneous layers.  Although the GPDMS 

Rrms is larger than APDMS, this is to be expected since the overall length of the molecule 

is longer and has a greater tendency to aggregate. AFM images were also taken for the 

same deposition times for their trifunctional analogues, showing large multilayer domains 

and Rrms values larger than the lengths of the molecules (Figure 3.2).  
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Figure 3.6. The ellipsometric thickness (d) and contact angle (θ)  for APDMS (A) and 

GPDMS (B) were mapped on 2 different 6” Si wafers which were silanized for 12 hours. 

The wafers were measured at 25 different points for both thickness and contact angle and 

are displayed above. The mean value and standard deviation is below each wafer map in 

the figure. 

To demonstrate applicability of this vapor based method to the semiconductor 

industry, both APDMS and GPDMS were deposited on 6” Si wafers with <100>  silicon 

orientation . The deposition time for each silane was also 12 hours and took place in a 

0.75 ft
3 

vacuum oven with 1mL of silane for each deposition. The ellipsometric thickness 

and static contact angle was taken over 25 spots on each wafer, and the wafer maps for 

APDMS and GPDMS can be found in Figure 3.6. The values indicate a thickness of 8.3 ± 

0.4 Å and a contact angle of 50.3 ± 2.1° for APDMS, while GPDMS had a thickness of 

11.0 ± 0.8 Å and a contact angle of 58.9 ± 2.6°. These values over entire 6” Si wafers 
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match, within the standard deviation, the values determined with 4x7mm test chips. 

Moreover, the standard deviations are less than 10% the mean value, indicating highly 

uniform depositions over large areas are achievable using this process.To gain insight 

into the resistance of the monolayers to hydrolysis, APDMS was subjected to various 

conditions over a period of 6 hours, and then allowed to react with a ROX-NHS ester. 

The fluorescence was then measured and is displayed over a period of 6 hours in Figure 

3.7. Figure 3.7A shows the fluorescent intensity after incubation in 0.1M HCl and 0.1M 

NaOH.. There is little decrease in fluorescent intensity over 6 hours for both solutions, 

and is within the error of each measurement. A similar experiment was performed but 

with the silanes incubated in PBS, pH 7.4 at 60°C and 90°C and is shown in Figure 3.7B. 

Again, the fluorescent intensity decay is within the errors of the measurement for both 

solutions. Overall, Figure 3.7 demonstrates the resistance of the monolayers to harsher 

conditions than one would encounter in the ambient. This behavior of monofunctional 

silanes has been observed before, and is believed to be due to increased reactivity with 

surface hydroxyl groups.[54] 
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Figure 3.7. Substrates coated with APDMS over a 12 hour deposition period were 

subjected to 0.1M HCl and 0.1M NaOH (A) for up to 6 hours, allowed to react with 

rhodamine NCS for 1 hour, and then the fluorescent intensity measured. Similarly, 

substrates were immersed in PBS, pH 7.4 buffer at 60 ˚C and 90 ˚C (B) for up to 6 hours, 

allowed to react with rhodamine NCS for 1 hour, and then the fluorescent intensity 

measured. The integration time for each measurement was 5 seconds.  
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Figure 3.8. Low-autofluorescence microscope slides were coated with GPDMS over a 12 

hour period and then spotted with Streptavidin-Cy5 in a volume of 350 pL. A 

representative slide spotted in a 3x8 array is shown in A showing a single column (white 

rectangle) and a magnified image of an individual spot (yellow square). The fluorescence 

intensity of each column and its surrounding background are shown for 3 slides in B. The 

intensity is plotted on a logarithmic scale. The background of a bare slide versus a 

GPDMS slide is shown in C, indicating no difference in background within experimental 

error. 

Next, the monolayers were applied to biosensing devices to demonstrate their 

versatility and application. Figure 3.8A shows a GPDMS coated microscope slide spotted 

with streptavidin-Cy5 (SA-Cy5) in a 3x8 array format. The columns are boxed in white, 

with a zoomed-in area of an individual spot in yellow. Each pixel of the scan was 10 µm 

square. Three slides were spotted in the same manner and scanned to obtain the 

fluorescence intensity of the spots and the background. Figure 3.8B shows the intensity 

of the background and of the SA-Cy5 spots for each slide versus the column number. The 
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intensity distribution of fluorescence and uniformity of background noise from the 

columns across all three slides is very uniform. The background noise of a silane-

derivatized slide and an underivatized slide were also measured, and are displayed in 

Figure 3.8C. The silane adds no background fluorescence, within error, to the 

measurement.  Given the high gain of the photomultiplier tube at which these 

measurements were taken, it is likely that background noise due to substrate 

autofluorescence and the detection electronics will dominate over background 

contributions from the silane layer for any fluorescence assay. The low autofluorescence 

of these layers is an important advantage in ultimately maximizing the signal-to-noise 

ratio of fluorescence assays performed using this chemistry, and apparently leads to 

better background intensity than other slide formats[55]. The coefficient of variation 

across the slides is 8%, which includes effects from the variability of the spotting 

procedure as well as the surface chemistry.  

The application of ion selective field effect transistors (ISFET’s) and silicon 

nanowires to biosensing has become pronounced in recent years.[56-58] Silicon oxide is 

the most common dielectric due to its ease of growth and integration.However, silicon 

oxide performance is known to degrade extensively over time, due to factors such as 

dissolution and ion diffusion.[59-62] Organic monolayers have proven to provide 

resistance to this phenomena[38], but the effect of polymerization degrades the device 

sensitivity by adding to the dielectric thickness and trapping charges within the 

polymerized matrix. Moreover, functional group density may be affected due to groups 

being buried in the matrix. These variables may affect the ability of the silane chemistry 

to conjugate recognition agents, such as primary antibodies or DNA, close enough to the 
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surface to regulate the devices surface potential. Here, we demonstrate the applicability 

and versatility of monoalkoxysilylation chemistry to biosensors. We have constructed 

silicon field effect devices based upon silicon-on-insulator ( SOI) technology in our 

lab[63,64] with 30 nm silicon thickness, 2 µm device width, and 20 µm device length. A 

bright field top-view micrograph of a device is displayed in Figure 3.9 (top left). We 

allowed the devices to react with the monofunctional silylating reagents according to the 

aforementioned protocol, and then with fluorophores of varying functionalities, including 

an amine, an NHS ester, and an isothiocyanate. Each device was then fluorescently 

imaged for 5 seconds (Figure 3.9). The presence of the fluorophores is demonstrated by 

the uniformly strongly intensity across the device. Since device response can depend on 

the distribution of recognition molecules on the surface[65], this is an important step to 

optimizing silicon nanowire sensitivity and repeatability.  
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Figure 3.9. Silicon field effect devices were silanized and then reacted with fluorophores 

of varying chemistries. The bright field image shows a silanized device (metallic yellow) 

in the center of the release window, which shows the buried oxide (blue-violet). The 

devices were then allowed to react with various fluorophores, which are indicated atop 

each fluorescence image, along with the silane utilized for conjugation. The fluorophores 

reacted include an amino-coumarin (top, right), carboxyfluorescein-NHS ester (bottom, 

left), and rhodamine B-isothiocyanate (bottom, right). 
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Figure 3.10. A 5µm tapping Mode AFM image of an APDMS coated substrate is shown 

in A. An APDMS substrate was then coated with citrate capped 5nm Au nanoparticles 

over a period of 1hr and a 5µm image taken in B, showing very high coverage. A 1µm 

image of the same area is shown in C with a line section taken (green). The section 

analysis shows a height difference of 5.7 nm, indicating a true monolayer of particles on 

the surface. 

Another important technique widely used today for biomolecule detection is 

Surface Enhanced Raman Scattering (SERS). Interactions of analytes with enhanced 

optical fields are known to increase Raman scattering by 10
5
-10

6
. In some cases, 

scattering enhancements of 10
12

-10
14

 have been encountered, which may be sensitive 

enough for single molecule detections. Former SERS substrates were made out of 

electrochemically roughened metal surfaces, but in recent years noble metal nanoparticles 

have become a method of choice. Nanoparticle substrates offer the advantage of being 

renewable and having a high density of particles on the surface, which can lead to areas 

of intense field enhancement known as “hot spots”[66].  In Figure 3.10, we demonstrate 

the formation of high density Au nanoparticle surfaces via electrostatic adsorption with 

an APDMS monolayer. AFM images were taken before (Figure 3.10A) and after (Figure 

3.10B) a 1 hour deposition of 5 nm Au particles in DI water. Figure 3.10A shows a 

smooth monolayer over a 25 um
2
 area. After deposition (Figure 3.10B), the surface 

shows a high density of Au nanoparticles on the surface over the same area scale. A 1um
2
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image of the same area shows particles in tight clusters, with occasional gaps. A line scan 

across one of these small gap areas shows a height difference of 5.7 nm, indicating a 

homogeneous monolayer of nanoparticles. 

3.5 CONCLUSIONS 

We have developed a versatile, vapor-based method for the deposition of 

monofunctional silanes. By characterizing the system using ellipsometry, XPS, and AFM 

we were able to optimize the procedure to ensure a uniform, high density, true 

monolayer. The technique was shown to be successful not only on small substrates, such 

as ISFET’s, but also on entire 6” Si wafers, leaving the possibility for incorporation into 

VLSI semiconductor processes.Subjecting the monolayers to conditions of elevated 

temperatures and extreme pH showed no decay of the monolayers through fluorescent 

attachment. We demonstrate the applicability of this subnanometer monolayer technology 

to various sensing platforms. The very high uniformity of the monolayers makes them 

ideal for applications in sensing, whether optical or electronically based. The low 

background noise and coefficient of variation make it attractive for microarrays and 

fluorescence applications. Moreover, the chemistry indicates recognition analytes would 

bind in high density to field effect sensors, enhancing the sensitivity of the devices. 

Finally, the high coverage of electrostatically adsorbed nanoparticles on the silane surface 

would make an ideal SERS substrate for detection of analytes and minimize background 

scattering. Overall, the deposition of monofunctional silanes is very versatile and robust, 

and is applicable to multiple biosensing platforms to help optimize their performance.  
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CHAPTER 4 : EFFECT OF 

BIOINTERFACING LINKER 

CHEMISTRIES ON THE SENSITIVITY 

OF SILICON NANOWIRES FOR 

ANALYTE DETECTION 

4.1 ABSTRACT 

As demands on the healthcare industry increase, a real need has developed for 

quicker and cost-effective diagnostic testing. Point-of-care diagnostics show promise in 

removing reliance on centralized lab testing facilities, and may help increase both the 

survival rate for infectious diseases as well as monitoring of chronic illnesses. CMOS 

compatible diagnostic platforms are currently being considered as they can be easily 

miniaturized and be cost-effective. Top-down fabricated silicon nanowires are a CMOS-

compatible technology which demonstrate great sensitivities in detecting biological 

analytes, such as proteins, DNA, and RNA. However, the output response of nanowires 

to these analytes has varied widely across the field with several different protocols being 

tried, but with little characterization and understanding. Here we report protocols for 

fabrication and functionalization of silicon nanowires which yield highly stable 

nanowires in aqueous solutions, and limits of detection to ~1pg/mL of our model protein. 

A thorough characterization was done into optimizing the release of the silicon nanowires 

using combined dry and wet etch techniques, which yielded nanowires that could be 

directly compared to increase output statistics. Moreover, a range of different linker 

chemistries were tried for reacting the primary antibody, and its response to target and 
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non-specific antigens, with polyethylene glycol based linker BS(PEG) providing the best 

response. Consequently, this chemistry was used to characterize different oxide 

thicknesses and their responses to the mouse IgG antigen, which with the smallest oxide 

thickness yielded 0.1-1pg/mL limits of detection and a dynamic range over 3 orders of 

magnitude. 

4.2 INTRODUCTION 

The prevalence of chronic diseases such as diabetes, cancer, and obesity, are 

increasing globally at a daunting rate. According to the World health organization, 75% 

of death worldwide will be due to chronic illness by 2020.[1,2] Moreover, the growing 

population has put undue stress on healthcare organizations to simultaneously reduce 

costs while increasing clinical outcomes, allowing for point-of-care (POC) diagnostics to 

become a $16.5 billion market by 2016 (BCC reference). Point-of-care testing allows for 

decentralized diagnostic analysis, essentially bringing the laboratory to the patient. In 

order to realize this, point of care devices should be cost-effective, sensitive yet specific, 

easy to use, have rapid turnaround times, and contain minimal additional equipment. [3] 

The technology revolution which has occurred over the past decade, in large part due to 

the aggressive scaling of semiconductors dictated by Moore’s Law[4],  has allowed for 

Complementary Metal-Oxide Semiconductor (CMOS) technology to become a plausible 

platform to meet many of the above point-of-care requirements, especially when it comes 

to cost and miniaturization.[5]  

Metal oxide semiconductor field-effect transistors (MOSFET’s), the workhorse of 

CMOS technology, are typically composed of three terminals: the source, drain, and gate. 

A voltage is applied between the highly doped source and drain regions, which are 
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isolated from the gate metal by an insulating dielectric, to direct the flow of current in the 

transistor. When voltages are applied to the gate, an electric field develops across the gate 

dielectric, creating a charge density in the channel. When a large enough voltage is 

applied to the gate, a conducting channel forms between the source and drain, with this 

critical voltage being called the threshold voltage (Vt). Ion selective field effect 

transistors (ISFET’s) have been in use as pH sensors for over 30 years, and are essentially 

MOSFETs with the top metal layer removed and the gate dielectric exposed to an 

electrolyte solution.[6] These properties of FET’s, in conjunction with ISFET’s, can be 

configured as a biosensor by modifying the gate dielectric with biological entities specific 

to the analyte of interest, creating bioFET’s. The charge density (σ) in the conducting 

channel of the FET is related to the capacitance (C) of gate insulator and the potential at 

electrolyte-insulator interface (Ψo ) by the equation      . Thus, binding of a charged 

biomolecule results in a change of electric charges on the gate terminal, making FET’s 

good candidates for electrical biosensors because the electric field generated from the 

binding of a charged biomolecule to the gate is analogous to applying a voltage to a gate. 

[7] Attachment of chemical and biological species to the gate surfaces has allowed for a 

wide variety of analytes to be detected such as metal ions[8-15], small molecules[16-25], 

proteins[26-32], and DNA[33-37].   

However, the detection limits of biological analytes on planar bioFET’s are 

usually not low enough to detect many cancer biomarkers in serum levels. Silicon 

nanowire FET’s have proven to sense biomarkers in clinically relevant levels[38-45], and 

more recently demonstrated using CMOS compatible processing techniques[46-48].  The 

extraordinary sensitivities of nanowires have often been attributed to their high surface 
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area to volume ratio, as well as their widths being similar in dimension to biological 

species such as proteins and DNA.[49,50] Even though nanowires promise incredible 

sensitivity, the variety of device configurations (floating gates, with and without 

reference electrode, enhancement or depletion mode) in conjunction with the different 

functionalization and sensing protocols have led to large discrepancies in the magnitude 

of signal output. For example, FET devices for DNA detection have reported signals 

ranging from a few mV to close to 1.9V for successful DNA hybridization, the reasons 

for which are all still poorly understood and rarely coincide with theory.[51] Similar 

discrepancies have been observed with immunoFET’s and other antibody-antigen 

interactions.  One of reason for these discrepancies is the manner in which the devices are 

functionalized and passivated. 

The optimization and characterization of surface functionalization protocols for 

protein detection using optical methods has been well established[52-57], with a 

multitude of protocols which yield detection limits in the pg-ng/mL range of 

analytes[58,59].  However, very little has been done in regards to understanding sensing 

protocols for electronic-based, label-free sensors.  In contrast to optical based methods, 

such as fluorescence, the sensitivity depends more on the surface charge density and 

corresponding proximity to the dielectric interface, making protocols which contain 

polymers and multilayers not optimal. Moreover, solutions which contain high salts may 

be suitable for optical sensors based on refractive index, but are detrimental to the 

sensitivity of FET-based sensors.  

In this work we characterize and provide possible solutions for two important 

problems in silicon nanowire sensing: the fabrication and device release of silicon on 
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insulator (SOI) based nanowire FET’s, and the surface functionalization of nanowire 

FET’s. Silicon nanowire FET’s of different gate oxide thicknesses were fabricated and 

released using combined dry and wet etch techniques, yielding devices with threshold 

stabilities in the single mV range in aqueous solution. Previously we showed that 

monofunctional silanes could be used for high density, sub-nanometer interfacing to 

oxide surfaces, providing attractive qualities for interface dependent sensors.[60] Here we 

use these monofunctional silanes with different linkers to elucidate protocols for 

attaching primary antibodies to surfaces which yield high specificity and sensitivity, 

while adhering to mainstream functionalization techniques. Using mouse 

immunoglobulins as the model antigen, goat-antimouse IgG’s were functionalized to the 

surfaces using an optimized protocol, which yielded sensitivities between 0.1-1 pg/mL 

for a 50Ǻ gate oxide thickness. Moreover, sensitivities achieved against other similar 

IgG’s from rabbits and different isotypes yielded minimal signal change. Current work 

involves using these protocols on foundry-grade CMOS chips to sense a wide variety of 

cancer biomarkers, in hope to improve the understanding of how to generate repeatable 

results on electronic-based biosensor platforms. 

4.3 EXPERIMENTAL 

MATERIALS 

The metals for e-beam evaporation and device fabrication (99.999% or greater 

purity) as well as the FABMATE e-beam crucibles were purchased from Kurt Lesker and 

used according to the manufacturer’s instructions. Photoresists for optical lithography 

were acquired from Rohm and Haas (Shipley 1805), AZ Electronic Materials (AZ1518), 
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MicroChem (LOR1A and LOR3A), and stored at 4C before use. All buffered oxide etch 

(BOE), TMAH, and rinsing solvents were acquired from J.T Baker.  

Dissucinimidyl Carbonate (DSC), glutaraldehyde (grade I, 50% in H2O), 1x PBS 

(molecular biology grade), Tween-20, and sodium cyanoborohyrdide were purchased 

from Sigma-Aldrich. The linker BS(PEG)5 was acquired from Pierce Scientific and a 

septum applied to the vial for air-free extraction using a syringe. The molecule was stored 

at -20C until use.  

DEVICE FABRICATION 

The fabrication of the SiO2-based, accumulation mode silicon nanowire and 

nanoplate devices has been described previously. Briefly, the process flow starts with 

bonded silicon-on-insulator (SOI) wafers (SOITEC) with a buried oxide thickness of 

1450Ǻ and a top silicon thickness of 550Ǻ. The top silicon is dry oxidized at 1050C, then 

wet etched in 10:1 BOE to thin the silicon layer to 300Ǻ. Afterwards, the nanowire 

patterns are defined with e-beam lithography using a PMMA/LOR1A resist layer, and 

chrome evaporated on top with a subsequent lift-off to form the first hard mask. The 

nanoplates and other larger features are then defined using optical lithography, with a 

second evaporation of chrome and lift-off to form another hard mask. Finally, a TMAH 

etch of the exposed silicon layer is performed to define the active silicon devices, with a 

removal of the chrome hard mask using CR-14 etchant (CYANTEK Corp.).  The source 

and drain regions were then boron-doped via ion implantation (simulations show 

~10
19/

cm
2
) using a 1um thick photoresist mask. Dry oxidation to form the SiO2 gate 

dielectric, as well as simultaneous dopant activation, was performed at 1050C in a 

vertical furnace to a thickness of ~175 Ǻ (confirmed by AFM step height analysis). 
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Following oxidation, a forming gas anneal at 400C in 5%H2/N2 was performed to 

passivate interface traps and dangling bonds.  Via holes were etched into the contact 

regions, followed by patterning of 250ǺTi/750Ǻ Pt to make the metal contacts to the 

source/drain regions of the devices. A 550C rapid thermal anneal was then performed to 

lower the contact resistance. Afterwards, a 4000Ǻ thick PECVD silicon nitride 

passivation layer was deposited over the wafer. Optical lithography was used to define 

the release window areas for the devices and CF4 reactive ion etching (90W, 35mTorr, 

60sccm) with subsequent 50:1 BOE to etch the underlying passivation layer and release 

the devices for testing. Finally, the devices undergo a second forming gas anneal to 

alleviate any RIE induced gate oxide damage. 

MONOLAYER FORMATION AND BIOCONJUGATION 

The formation of APDMS monolayers on the nanowire surfaces has also been 

described in previous literature. Briefly, the devices were cleaned in a H2SO4:H2O2 

solution (7:3) for 30mins, then in a 300W O2 plasma at 500mTorr for 1 minute. The 

devices were placed in a septum vial, modified with a well for the silane solution and 

flushed with N2, then evacuated to a pressure of 10 Torr. A solution of APDMS/1% TEA 

(v/v) was then injected via hypodermic needle into the well and the vial place in a 

convection oven at 100C overnight.  The devices were rinsed with acetone and methanol, 

then blown dry with N2 gas and stored in a vacuum dessicator until use.  

The linker chemistries were then reacted onto the chips before primary antibody 

attachment.  The DSC, BS(PEG), and glutaraldehyde linker chemistries were reacted 

with the APDMS monolayer at 2% (w/v) in dry DMF for 2 hours, according to similarly 

published protocols. The glutaraldehyde layer was then reduced with a 1% sodium 
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cyanoborohydride solution to remove Schiff bases. All chips were finally rinsed in 

acetone and methanol, then blown dry with N2. The primary antibody was then reacted on 

the chips in 150mM sodium bicarbonate buffer, pH 8.5 and rinsed with 1x PBS/0.05% 

Tween-20 for 1min, then 0.1x PBS for 1min. Devices were blocked with a 1x solution of 

BioFx Casein blocker for 30 mins, rinsed in 1xPBS/0.05% Tween-20 for 1min, then 0.1x 

PBS for 1min.  

MEASUREMENT DETAILS 

Measurements were carried out using a Keithley SCS-4200 semiconductor 

characterization system and Agilent multiplexer. Devices were anchored to ceramic 

packages and wire bonded to leads on the outside of the package, and backfilled with 

epoxy for isolation. For fluidic measurements, the device was biased using an Ag/AgCl 

reference electrode in an aqueous electrolyte solution, and a PDMS fluidic well (volume 

~10uL) was bonded on top of the chip (Figure 4.1). The platinum on-chip electrode was 

not utilized for measurements since its stability in solution was worse than the Ag/AgCl 

electrode and led to larger drifts.[61] A Harvard Apparatus syringe pump was used at a 

flow rate of 20uL/min to deliver analytes through microbore PTFE tubing (Upchurch 

Scientific) attached to micromanipulators, while a dry vacuum pump (Chemglass) was 

utilized to exchange solutions from the well. The ceramic package was put into a PC 

board linked to a switch matrix unit, which was hooked to the Source Measuring Units 

(SMU’s) inputs of the Keithley SCS-4200 system. For a particular device, the source-

drain current (IDS) was measured while the gate voltage (Vg) was swept, and the IDS-Vg 

curves recorded. Each device was swept 5 times, with the average curve and standard 

deviation of each measurement being extracted.  
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Figure 4.1. Pictures of silicon nanowire array device inside a ceramic pin package wired 

bonded (A), with a tilted picture illustrating the wire bonds in (B). A close up image of 

the center of the package is in (C). The image shows the conducting carbon tape which 

holds the chip to the package, the wire bonds attaching the device leads to the package 

outside, and the PDMS well bonded to the chip for holding the fluid. The device and top 

of the package is then epoxied in (D) to protect the wire bonds and prevent fluid leakage, 

while leaving the well area open to fluid transfer. 

For electronic studies of primary antibody adsorption , the antibodies were flowed 

at a rate of 20uL/min for 5 min, then stopped and allowed to react with the given surface 

chemistries for 1 hour using the conjugation protocol above, and finally were measured in 

0.01x PBS, pH 7.4. For target analyte detection using nanowires, the analytes were 

dissolved in 1x PBS/ 0.05% Tween-20 to their respective concentrations and flowed over 

the devices using a flow rate of 20uL/min for 5 minutes. The antibodies were allowed to 
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bind for 30 mins, then rinsed in 1x PBS/0.05% Tween-20 for 1min, 0.1x PBS for 1min, 

and finally measured in 0.01x PBS, pH 7.4. 

FLUORESCENCE IMAGING 

Optical and fluorescent images for the binding specifities and primary antibody 

adsorption were taken with a Nikon Eclipse FN-1 microscope using a DS-R1 CCD 

camera and Mercury lamp. Texas Red labeled antibodies were conjugated to thermally 

oxidized silicon wafer pieces (1um thick via wet oxidation at 1000C) using the 

bioconjugation and rinsing procedures highlighted above, and imaged using a Y2E/C 

filter cube at an exposure of 400ms and gain of 1.5x. Similarly, Texas Red modified 

target immunoglobulins (4 moles dye/mole antibody) were imaged on nanowires and 

thermal oxide substrates using the same exposure as above for direct comparison. 

4.4 RESULTS  

Each chip was fabricated with different device widths and structures for sensing 

and application of biases to the solution. Figure 4.2A and 4.2B show optical micrographs 

of the device release window areas and the platinum (Pt) electrode before etching, with 

photoresist patterned to expose the device areas for etching. Scanning electron 

micrographs of the device geometries and zoomed in dimensions have been published 

previously by our group.[62,63] The color of the device release window area is due to the 

constructive and destructive interference of incident wavelengths of light through the 

dielectric layers, giving us a pink color before starting the device release. A schematic of 

the etching process with the device release window is shown in Figure 4.2C. Briefly, a 

CF4 RIE etch is used to remove the passivation layer, and a 50:1 BOE wet etch applied to 
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thin the gate oxide. Using a wet etch for the final few nanometers helps remove any RIE 

damage the gate oxide may have been exposed to. 

 

Figure 4.2. Optical micrographs of the device release windows and surrounding Ti/Pt 

leads for silicon nanowires (A), nanoplates, and the Pt electrode (B). The light hue 

surrounding the release window areas is due to the thickness of the patterned photoresist. 

A schematic of the device cross section is shown in (C) illustrating the etching process to 

release the devices. The legend for the different layers is below the cross sections. 

In order to determine the time duration of the RIE etch for device release, the 

different etch rates of SiN, SiO2, and Pt were determined.  Sacrificial chips were etched 

for various times in CF4, and the etch depth measured with a stylus profilometer. 

Moreover, optical images were taken of the release window to document the color at each 

etch depth. Figure 4.3A shows the etch depth vs. etch time for the device release window 

(blue circle) and the Pt electrode release window (black square). On top of the graph are 

optical micrographs of the nanoplate devices to indicate the color observed at each etch 
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step.  It is well know the etch rates of SiN, thermal SiO2, and Pt are quite different in CF4 

plasmas, leading to three different etching regimes, with their order of etching displayed 

in Figure 4.3C. For the device release window, PECVD nitride (regime 1) and thermal 

SiO2 (regime 3) are encountered, while for the platinum electrode release window only 

PECVD nitride and platinum (regime 2) are encountered. We linearly fit each of the 

etching regimes in Figure 4.3A and extracted the etching rates, which are in Table 4.1.  

Table 4.1. Table of extracted etch rates and standard deviations of CF4 based RIE etching 

for silicon nanowire device release. 

PECVD silicon nitride is known to etch quite fast in CF4, with a selectivity against 

thermal SiO2 between 3:1 and 4:1, and platinum is known to act as an etch stop. These 

etch rates agree well with our findings. Moreover, the different release window areas etch 

at similar rates for PECVD nitride, indicating minimal issues due to loading effect. By 

linearly extrapolating the fits of the different etching regimes, we can estimate an RIE 

stop point time (dashed black line) before beginning the wet etch of the SiO2 gate oxide, 

which is close to 300s.  

Etching Regime Etch Rate (nm/min) Std. Dev (nm/min) 

Regime 1 ( SiN) 78.2 2.3 

Regime 2 ( Pt) 0.2 1.9 

Regime 3 (SiO2) 19.6 1.8 
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Figure 4.3. The etch depth of the device and platinum electrode release windows vs. RIE 

etch time is plotted in (A) with linear fits (dashed lines) to each of the etching regimes. 

The etch depth of the device and platinum electrode release windows for the 50:1 BOE 

etch is plotted in (B) with the extracted gate oxide thickness. Optical images illustrating 

the color of the underlying nitride/oxide for each release time step is on top of the graphs 

for (A) and (B). 

After a 300s CF4 RIE etch, 50:1 BOE was used to remove any local RIE damage 

and thin the gate oxide. The etch depth was monitored with a stylus profilometer as 

before, and the etching information displayed in Figure 4.3. The color of the device 

release window is also monitored, and displayed on top of Figure 4.3B. Similar to the 

CF4 RIE etch, platinum (black square) does not etch in BOE and acts as a good reference 

etch stop, displayed in Figure 4.3B as no change in height above the platinum electrode is 

observed. The approximate gate oxide thickness (green diamond) is extrapolated from the 

depth change from the profilometer and the grown oxide thickness of 175Ǻ, determined 

by AFM. These protocols were used successfully to determine the etch depth and 

approximate gate oxide thickness for further experiments.  
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Figure 4.4. Chemical structures of the monolayer and the different linking chemistries 

used in the functionalization protocols. The acronyms used in the manuscript are in 

brackets next to the chemical name. 

For immunological sensing of various protein analytes, the surface must be 

functionalized with a primary antibody and blocked effectively in order to maximize the 

signal to noise. With regards to ISFET’s this point is particularly important, since 

maximizing the charge density to interface while minimizing steric hindrance is 

paramount to the efficiency of the device. In order to determine an optimum linking 

protocol, a monofunctional aminosilane was vapor deposited and various linker groups 

(Figure 4.4) containing NHS esters or aldehydes were reacted to link amine or 

sulfahydryl containing groups on the primary antibody. The antibodies were then reacted 

and chips blocked according to the procedures outlined in the experimental section. In 

order to determine the best linker chemistries, fluorescence images were taken on 

functionalized blank SiO2 surfaces and corresponding electrical response on the silicon 

nanowires, displayed in Figure 4.5.  
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Our model system was composed of Goat Anti-Mouse IgG with mouse IgG as the 

target and Rabbit IgG as the nonspecific binder. Each was either labeled with Texas Red 

(4 moles dye/per mole protein) or left unlabeled. The intensity of primary antibody 

attachment was first investigated using a concentration of 10ug/mL, a common coating 

concentration for ELISA assays.  The binding specificity of the antibody to the target was 

determined using unlabeled primary antibody, then either the specific or nonspecific 

binder (Texas Red labeled) was added at a concentration of 1ug/mL. The fluorescence 

intensities for each of the linker chemistries are in Figure 4.5A.  

 

Figure 4.5. Fluorescence intensity bar graph (A) on thermally oxidized silicon surfaces 

showing the effect of conjugation linker on primary antibody fixation (Goat anti-mouse 

IgG) and subsequent analyte binding specificity (Mouse IgG vs. Rabbit IgG). Each 

antibody and immunoglobulin was Texas Red labeled in order for direct comparison. The 

threshold voltage shift (Vt) of the silicon nanowires with respect to the primary antibody 

concentration and the linker chemistry is shown in (B). Fluorescence micrographs of 

silicon nanowires after Texas Red labeled antibodies were deposited at 100ng/mL on the 

various linker chemistries are in (C). 

From the intensities, we calculated the binding specificity and the percent 

coverage of the target analyte, which is displayed in Table 4.2. Even though the 
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fluorescent intensity for the DSC linker is the greatest, the specificity is the highest with 

the BS(PEG) linker. The glutaraldehyde linker displayed the worst specificity and 

antibody linkage, outside of the bare APDMS surface. We attribute the high specificity of 

the BS(PEG) to the inert nature of the poly(ethylene glycol) spacer units. We believe the 

poor linkage density of the glutaraldehyde layer is due to labile nature of the Schiff base 

formation for primary antibody coverage. As a result more aldehyde groups are 

accessible, even after blocking, for reacting with nonspecific analytes. The maximum 

percent coverage of the specific analyte is within error for each of the reaction 

chemistries, indicating the primary antibodies attach in similar conformations on the 

surface with the same binding affinities. 

Since the coating conditions for large scale areas (100um-1mm) may vary at 

nanoscale dimensions, we characterized the response of the silicon nanowires to 

concentrations of reacted primary antibody with each linker. Each primary antibody 

concentration was reacted for 1 hour, which has been demonsrated to be enough time to 

reach saturation points for protein adsorption to monolayers. The devices were rinsed 

after incubation, and the threshold voltage extracted.  The change in threshold voltage 

was then plotted for each of the linker chemistries in Figure 4.5B. From the curves we 

observe that saturation is nearly achieved at 100ng/mL antibody concentration for all 

layers, justifying 10ug/mL as being more than enough to reach a saturation linkage 

amount for the sensor in a 1 hour reaction time. When the threshold voltage shifts are 

normalized similar to the fluorescent intensities (Table 4.2), we notice how important the 

distance to the surface becomes, as the normalized electrical response of the varying 

linker chemistries is greater than the fluorescence. Moreover, the effect doesn’t scale 
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proportionally to the fluorescence, although on average greater. We attribute this to the 

surface charge density having a more pronounced effect, leading towards saturation 

faster, than does fluorescence. This effect has been observed with DNA FET’s, as probe 

adsorption densities can change an order of magnitude (10
11

molecules/cm
2
 to 10

12
 

molecules/cm
2
) with only 10-20mV changes due to ion concentration redistribution 

around the layer. [51] As a control, we took fluorescence micrographs after 100ng/mL 

adsorption for 1 hour of each of the different linker chemistries near the release windows. 

The fluorescence micrographs are displayed in Figure 4.5C. The fluorescence intensity 

trend correlates with the electrical response, with the highest fluorescence indeed being 

observed with DSC and tailing off towards the APDMS. The difference in the 

fluorescence intensity near the nanowires is not due to a change in the linkage density, 

but rather to fluorescence interference contrast by the underlying silicon layer.[64] 

Table 4.2.  Table of values for primary antibody and target fluorescence on blank SiO2 

surfaces and primary antibody electrical response on silicon nanowires. 

Silicon nanowires are known to display higher pH sensitivities than planar 

ISFET’s due to their increased surface area to volume ratio and are of high interest to 

enzyme modified reactions which generate hydrogen ions as the metabolic product. The 

sensing based upon pH changes on FET’s is currently being used in genomics and 

semiconductor sequencing by such companies as DNA Electronics[65] and Ion 

Torrent[66]. For enzyme modified nanowires this requires access to pH sensitive groups 

Linker 

Primary 

Antibody 

(A.U) 

Primary 

Antibody 

(Normalized) 

Mouse IgG 

(A.U) 

Rabbit 

IgG (A.U) 
Specificity % coverage ΔVt (V) 

ΔVt (V) 

(Normalized) 

DSC 

120.10 

(2.34) 1.0000 

97.74 

(3.55) 

18.61 

(0.91) 5.252 81.38% 

-0.720 

(0.012) 1.000 

BS(PEG) 

98.10 

(2.21) 0.8169 

78.83 

(3.83) 

3.084 

(0.95) 25.563 80.36% 

-0.646 

(0.006) 0.897 

glutaraldehyde 

77.93 

(6.16) 0.6489 

61.27 

(2.34) 

36.33 

(3.66) 1.687 78.63% 

-0.608 

(0.010) 0.845 

APDMS 

10.02 

(0.05) 0.0834 

6.34    

(0.08) 

6.84    

(0.09) 0.927 63.28% 

-0.258 

(0.003) 0.358 
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on the surface, the linkage monolayer, or the protein, which will alter the surface 

potential. We have looked at pH sensitivity of the silicon nanowires before monolayer 

deposition, after monolayer deposition, and after protein deposition and blocking. The 

threshold voltage was monitored vs. the pH of a 1mM Robinson buffer and the results 

displayed in Figure 4.6A. The range is quite linear for the bare SiO2 dielectric and the 

APDMS monolayer, but there is a distinct inflection point in the protein curve between 

pH 6 and 7. We attribute this to the protein being near the isolectric point, with different 

buffering capacities above and below the isoelectric point, leading to different pH 

sensitivities.[67,68] We linearly fit the curves starting at pH 7 (Figure 4.6B) and 

constructed a table of the pH sensitivities (Figure 4.6, inset).  Overall, the highest pH 

sensitivity was conferred by the APDMS layer, as amines are known to have a higher 

buffering capacity than hydroxyl groups. However, the primary antibody had the lowest 

sensitivity, with only 32mV/pH unit. The advantage of this decrease in pH sensitivity is 

less drift of the device due to slight pH changes in the buffer solution, while the 

disadvantage being decreased signal for proton generating enzymes. In our case, the 

change is beneficial since our detection is strictly due to antibody-antigen binding. 
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Figure 4.6. The threshold voltage (Vt ) vs. the solution pH for different layers in the 

nanowire functionalization process is shown in (A). The change in threshold voltage 

(ΔVt) from pH 4.0 vs. the pH is in (B) with linear fits for each of these layers starting 

from pH 7.0. A table with the extracted parameters from the linear fit for pH sensitivity in 

(B, inset). 

The high specificity of the silicon nanowires was demonstrated using competing 

antigens of similar structure to the analyte of interest, namely Mouse IgG. As negative 

controls, polyethylene oxide (PEO) MW 100,000 and the sensing buffer (0.01x PBS) 

were used. The competing antigens utilized in the experiments included Human and 

Rabbit IgG, as well as Mouse IgA. The Id-Vg curves for silicon nanowires were taken in 

0.01x PBS after incubating the devices with 10ng/mL of the antigens for 1 hour, and are 

in Figure 4.7A. The corresponding shift in the threshold voltages with respect to the 

curve for 0.01x PBS is in Figure 4.7B, with the calculated device specificity towards 

Mouse IgG in Figure 4.7C. The Id-Vg curves show very little shift due to the nonspecific 

binding entities, with a high uniformity as these curves are averaged over 5 nanowires 

(N=5). The specificity towards the analyte of interest ranges between 15-26 times 

depending on the competing immunoglobulin. This result agrees well with the 



131 

 

fluorescence specificity in Figure 4.5, verifying that nanowires can provide specificities 

as good if not better than standard ELISA or fluorescent assays. 

 

Figure 4.7. The Id-Vg response of nonspecific binding analytes vs. mouse IgG at a 

concentration of 10ng/mL is in (A). The change in the threshold voltage using 0.01x PBS 

as a reference for each of the biological analytes is plotted in (B) and the extracted 

specificity towards mouse IgG in (C). 

The aforementioned protocols for functionalizing nanowires have shown they can 

be lead to highly stable measurements and provide high binding specificity. However, the 

limit of detection for nanowires using this BSPEG protocol or similar linking chemistries 

has been seldom studied. Moreover, the dependence on the gate oxide thickness has been 

poorly characterized. The gate oxide thickness, and thus gate capacitance, directly affects 

the amount the surface potential changes the current through the underlying conducting 

silicon channel. In Figure 4.8A we plot the normalized Id-Vg curves of nanowire devices 

with different gate oxide thicknesses. The extracted subthreshold slope (S.S.) for each 

gate oxide thickness is included as a table in Figure 4.8A. As the gate oxide thickness 

increases, the subthreshold slope becomes poorer and the devices threshold becomes 

more positive. This is in accordance with classical models for subthreshold swing in 

accumulation mode SOI MOSFET’s. [69,70] The shift to the right of the threshold 

voltage with thicker gate oxides is due to extra fixed negative charge and interface traps 
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in the SiO2 dielectric. We set the threshold voltage at 1x 10
-3

 on the normalized curve, 

denoted by a dashed line.  

The sensitivity of the devices versus the thickness of the gate oxide is shown in 

Figure 4.8B. Concentrations of mouse IgG were titrated in for 30 min binding periods, 

then rinsed and measured in 0.01x PBS. The threshold voltage was extracted at the 

normalized value in Figure 4.8A for each gate oxide thickness, and plotted vs. the mouse 

IgG analyte concentration. The average of three devices was used for each gate oxide 

thickness. In agreement with theory, the largest gate oxide thickness showed the poorest 

sensitivity, with devices only starting to shift above the noise between 1-10ng/mL.  

However, the two thinner gate oxides begin to display sensitivity between the 0.1-

1pg/mL range. The 90Ǻ and 50Ǻ gate oxide’s also appear to have a Vt response which 

scales linearly with respect to a logarithmic increase in mouse IgG concentration. This 

response appears to span 3 orders of magnitude from 0.1-100pg/mL for the 50Ǻ gate 

oxide, while the 90Ǻ oxide has a linear response from 1-1000pg/mL.  These differences 

in the response of the devices vs. gate oxide thickness are encouraging, as the gate oxide 

thickness can be tailored to detect the range of the biomarker of interest.  
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Figure 4.8. The representative Id-Vg curves of three different silicon oxide gate 

dielectric thicknesses (normalized) are shown in (A) . The subthreshold slopes (S.S) of 

each of the devices (inset table) show better S.S. with decreasing oxide thickness, and 

where the VT for the device is taken at 1x10-3, indicated by the dashed line. The change 

in the threshold voltage versus Mouse IgG concentration is shown in (B) for the three 

different oxide thickness devices shown in A. 

4.5 CONCLUSIONS 

In this work we successfully demonstrated a functionalization and device release 

protocol for silicon nanowires which is capable of sensing large immunoglobulins to sub 

pg/mL levels. By using a combined dry and wet etch technique, we were able to tailor the 

thickness of the gate oxide, thus changing the working dynamic range of the sensor. This 

method also yielded highly stable nanowires in solution capable of long-term 

measurements, with several wires yielding the same chracteristics. We evaluated several 

different linking chemistries which may be utilized for protein attachment by amine and 

thiol groups, both by fluorescence and the electrical response of silicon nanowires. The 

maximum amount of primary antibody and target antigen binding occurs with 

disuccinimidyl carbonate (DSC) linker, yet the best specificity is conferred with the 

BS(PEG) linker. The differences between the normalized fluorescence response and 
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electrical response were also characterized, demonstrating the electrical output is more 

sensitive than the fluorescent output using the same reaction conditions. In order to verify 

the results, fluorescence images were taken on the nanowires of the primary antibody 

reaction and showed a similarly scaling trend. 

Using BS(PEG) as the model linking chemistry, the affinity of the nanowires for 

nonspecific binding was also explored. The silicon nanowires demonstrated excellent 

resistance to non-specific binders, yielding specifities (calculated from the threshold 

voltage shift) similar to those extracted from fluorescence. This result, given the output 

sensitivity being more on the nanowires, is quite encouraging and indicates the specificity 

being even better than that confirmed optically. Finally, the dose response of the 

nanowires to the target antigen (mouse IgG) versus the gate SiO2 thickness was explored. 

The subthreshold slope of the devices demonstrated the proper scaling trend for 

increasing gate oxide thicknesses, and was used as a control to verify the oxide thickness. 

We demonstrate the sensitivities of the different oxide thicknesses to the antigen, 

showing the device sensitivity changes with the oxide thickness, as does the dynamic 

range of the sensor. The thinnest gate oxide demonstrated limits of detection to 1pg/mL 

using the BS(PEG) functionalization protocol, with a dynamic range spanning 3 orders of 

magnitude.  

To our knowledge this is the first time an in-depth analysis of linker chemistries 

on silicon nanowires has been undertaken. Utilizing the best protocol, chosen from these 

findings, another study into different gate oxide thicknesses and their dose response to a 

model protein was undertaken, giving an even better in-depth perspective into the 

capabilities of nanowires as a point-of-care diagnostic platform. Gate dielectrics have 
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now turned towards high-k platforms, which can offer even better sensitivities without 

sacrificing device characteristics, such as increasing gate leakage. We hope by using new 

high-k platforms we can achieve even better sensitivity and more stable devices in the 

future, in hopes of bringing CMOS compatible platforms to the point-of-care market.  
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CHAPTER 5: SILICON NANOWIRES 

WITH HIGH-K HAFNIUM OXIDE 

DIELECTRICS FOR SENSITIVE 

DETECTION OF SMALL NUCLEIC 

ACID OLIGOMERS  

5.1 ABSTRACT 

Nanobiosensors based on silicon nanowire field effect transistors offer advantages 

of low cost, label-free detection, and potential for massive parallelization. As a result, 

these sensors have often been suggested as an attractive option for applications in Point-

of-care (POC) medical diagnostics. Unfortunately, a number of performance issues such 

as gate leakage and current instability due to fluid contact, have prevented widespread 

adoption of the technology for routine use. High-k dielectrics, such as hafnium oxide 

(HfO2), have the known ability to address these challenges by passivating the exposed 

surfaces against destabilizing concerns of ion transport. With these fundamental stability 

issues addressed, a promising target for POC diagnostics and SiNWFET’s has been small 

oligonucleotides, more specifically microRNA (miRNA). MicroRNA’s are small RNA 

oligonucleotides which bind to messenger RNA’s, causing translational repression of 

proteins, gene silencing, and expressions are typically altered in several forms of cancer. 

In this paper, we describe a process for fabricating stable HfO2 dielectric based silicon 

nanowires for biosensing applications. Here we demonstrate sensing of single stranded 

DNA analogues to their microRNA cousins using miR-10b and miR-21 as templates, 

both known to be upregulated in breast cancer. We characterize the effect of surface 
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functionalization on device performance using the miR-10b DNA analogue as the target 

sequence and different molecular weight poly-l-lysine as the functionalization layer. By 

optimizing the surface functionalization and fabrication protocol, we were able to achieve 

<100fM detection levels of miR-10b DNA analogue, with a theoretical limit of detection 

of 1fM. Moreover, the non-complementary DNA target strand, based on miR-21, showed 

very little response, indicating a highly sensitive and highly selective biosensing 

platform.  

5.2 INTRODUCTION 

Point-of-care (POC) diagnostics has emerged as an exciting field where devices 

can provide rapid, cheap, and accurate results in a portable format. Such diagnostic 

devices have the potential to provide critical patient information more rapidly at cheaper 

costs than instruments in centralized lab facilities, reducing the turnaround time for 

results in critical care situations.[1,2] Moreover, POC diagnostics can present patients 

with more control of their own therapy[3], leading to greater patient satisfaction and 

improved clinical outcome[4]. In particular, treatment for various forms of cancer could 

benefit greatly from such POC devices. As our knowledge of cancer pathways rapidly 

grows, important indicators of cancer have been revealed, including changes in the 

genome, exome, transcriptome, and expression levels of several cancer biomarkers such 

as proteins and microRNA (miRNA). Devices that can rapidly detect cancer biomarkers 

in a rapid, accurate, multiplexed, and cost-efficient fashion would revolutionize cancer 

treatment, allowing for better evaluation of the efficacy of treatment, earlier detection of 

cancer, and de-convolution of the complex pathways that result in cancer. 
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Adaption of the ubiquitous field effect transistor (FET) technology has been 

proposed as a possible core technology for the sensing component of POC devices, due to 

the potential for low per unit cost, label-free detection, and amenability for scale-up and 

integration with signal processing electronics. Electrochemical detection methodologies 

based upon ion sensitive field effect transistor’s (ISFETs)  have been studied 

extensively[5], including its use as  biosensors (bioFET)[6-10]. The performance of 

ISFET and bioFET relies on the charge of a binding biological analyte over the gate 

insulator of the FET, which induces changes in the source-drain current of the device. 

This allows for label-free, ultrasensitive, and rapid detection of relevant biological 

analytes.  

Silicon nanowire FET devices (SiNWFETs), where the silicon channel has 

thicknesses and diameters in the tens of nanometers or less have further enhanced 

properties. Using SiNWFETs, researchers have demonstrated detection of biological 

analytes such as proteins[11-16], DNA[17-20], RNA [21], ions[22], and other small 

molecules[23] down to fM concentrations. The increased sensitivity of these devices is 

mainly attributed to the increased gate control of the silicon channel due to a higher 

surface area to volume ratio. Thus, silicon nanowires show promise in cancer diagnosis, 

since various cancer biomarkers may exist in small concentrations throughout the disease 

pathogenesis. Silicon nanowire FETs fabricated with “top-down” techniques[17,24-30] 

are particularly attractive, due to CMOS compatibility and high amenability for scale-up. 

However, though nanowire technology has existed for over a decade, several issues have 

prevented the technology from maturation into fully fledged POC products. Various  

issues have arisen regarding device stability in fluid such as measurement drift[31], 



144 

leakage paths through the sensing dielectric, high background l/f noise[32-34], and lack 

of repeatability. Silicon oxide, the traditional top gate dielectric, is one of the main 

culprits behind several of these issues, due to its relatively low dielectric constant, low 

pH buffering capacity, and susceptibility of gradual charge incorporation by ion diffusion 

when exposed to fluid. [35,36]  To circumvent some of these issues, researchers have 

turned to high-k materials, including aluminum oxide (Al2O3)[37], hafnium oxide 

(HfO2)[38], and tantalum oxide (Ta2O5)[39]. High-k materials enable high gate oxide 

capacitance values even with physically thicker gate oxides, allowing a reduction in 

leakage current. HfO2 has arisen as a particularly promising dielectric for ISFET’s and 

MOSFET’s due to its stability on silicon and its acceptable bandgap and conduction band 

offset values. It can be deposited by chemical vapor deposition and yields improved pH 

sensitivity.[40,41]  

To date, however, there have been very few reports that offer detailed 

characterization and application of hafnium oxide-based FETs for biosensing 

applications. Annealing of HfO2 has been shown to improve pH sensitivity in a two 

terminal EIS (electrolyte-insulator-semiconductor) capacitor using capacitance-voltage 

curves.[42] However, such a structure does not take advantage of the main desirable 

property for a FET, its intrinsic high current gain (high transconductance). In addition, 

HfO2 deposited at high CVD temperatures for ISFETs lead to leakage paths in the silicon 

in high aspect ratio areas and results in higher roughness[43], which is undesirable for a 

charge based biosensor. The demonstrated sensitivity for this structure was very low 

(biotin and streptavidin detected down to ~50ug/mL).[44] pH sensing has been 
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demonstrated with a FET structure with encouraging near-Nernstian results, but no 

molecular sensing has been reported to date.[38] 

Here we describe a process for fabricating robust HfO2 based silicon nanoFET 

sensors for biological applications. We use atomic layer deposition (ALD) to form the 

hafnium oxide dielectric and a wet etch based process for releasing the device structures. 

Unlike CVD methodologies, ALD is more conformal and can be performed at lower 

deposition temperatures with better process control. Additionally, the wet etch based 

process for device release eliminates the possibility of RIE induced damage to the 

delicate dielectric layer. We have characterized in detail the properties of this low 

temperature deposition process and optimized subsequent annealing conditions to create a 

high quality dielectric. Moreover, we discuss the electrical and chemical advantages of 

the process, which include HfO2 becoming an excellent wet etch stop for acid, alkali, and 

oxidizing chemistries. By thoroughly characterizing the HfO2-silicon interface, we were 

able to produce a high quality gate dielectric layer, resulting in a device with high 

repeatability and low hysteresis in fluid. The devices are highly stable and robust, and 

show minimal drift over hours in fluid. As a result, we were able to achieve ~56mV/pH 

unit response for nanowire devices.  We then demonstrate the sensitive detection of a 

DNA analogue sequence of microRNA, which can be highly important cancer 

biomarkers. MicroRNA’s (miRNA’s) are small RNA oligonucleotides which bind to 

messenger RNA’s, causing translational repression of proteins and gene silencing. In this 

work we focus on sensing DNA analogues of miRNA’s, with templates based upon miR-

10b and miR-21, miRNA’s commonly upregulated in breast cancer.[45-49] Moreover, 

miR-21 is found in a 4 fold higher concentration than miR-10b in normal tissue[50], 
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making miR-10b a harder analyte to detect even when upregulated. The devices were 

functionalized with different molecular weight poly-lysine strands and DNA probes 

specific to the miR-10b DNA analogue sequence. Different sensitivities for the different 

molecular weight poly-lysines were achieved for miR-10b, with lower sensitivity being 

achieved on the higher molecular weight polymer. Analysis of the layers showed lower 

probe density and higher roughness for the higher molecular weight layer of poly-l-

lysine. The devices were able to achieve 100fM detection limits for the miR-10b DNA in 

comparison against a miR-21 non-complementary target, with a theoretical limit of 

detection of 1fM. Various characteristic features of these systematic set of experiments 

are interpreted and supported by well calibrated theoretical models. 

5.3 EXPERIMENTAL 

MATERIALS 

All metals for e-beam evaporation were of 99.999% purity and purchased from 

Lesker Co. DNA and miDNA strands were purchased from Integrated DNA 

Technologies and purified using HPLC. Poly-l-lysine (PLL) of MW 9,000-14,000 and 

MW 70,000-150,000 were purchased from Sigma in powder form and used without 

further purification. Robinson buffer solutions composed of 1mM acetic acid, 1mM 

phosphoric acid, and 1mM boric acid were titrated with NaOH/HCl from pH’s 4-12. All 

buffer components were purchased from Fisher Scientific. A leak-free Ag/AgCl reference 

electrode was used to apply bias to the fluid on top of the devices and was purchased 

from Warner Instruments. 
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DEVICE FABRICATION 

A detailed top down fabrication flow has been described previously for creating 

similar silicon nanoFET devices.[40] The fabrication flow began with bonded Silicon on 

Insulator (SOI) wafers, doped p-type at 10
15

/cm
2
 with a buried oxide thickness of 1,450 Å 

and top silicon thickness of 550 Å. The top silicon was thinned to approximately 300 

Angstroms by dry oxidation and stripping of the oxidized layer with 10:1 buffered oxide 

etch. The wires were then defined via electron beam lithography and wet etched with 

25% TMAH to define the active silicon area. The source and drain regions were doped 

with boron (doping ∼10
19

/cm
3
) by ion implantation, and annealed at 1000C for 5 minutes 

to active the dopants. The wafer was then dipped in 50:1 BOE for 20s to remove any 

native oxide, and an SC1/SC2 clean performed. The wafer then underwent a rapid 

thermal anneal at 1000C for 60s to help densify the native oxide layer. The HfO2 gate 

dielectric was deposited by ALD at a temperature of 120 Celsius for 100 cycles. 

Following the gate dielectric formation, via holes were etched into the contact regions 

with 10:1 BOE, and a 100 Å Ni/50 Å TiN layer was deposited in the contact regions by 

RF sputtering. A rapid thermal anneal was performed at 500°C in Ar to form NiSi and 

reduce the contact resistance at the source and drain regions of the devices, while also 

densifying the HfO2 and creating a wet etch stop. Next, 150nm of Al was sputtered and 

patterned over the contact areas. A 450C furnace anneal in Ar/H2 was performed for 30 

min to anneal the contacts and remove interface traps in the oxide. Afterwards, a 5,000 Å 

thick passivation layer of PECVD SiOxNy was deposited over the entire wafer. Metal 

pad areas on the outside of the Al leads were defined by optical lithography and 10:1 

BOE was used to etch the passivation layer. Metal pads composed of 50nm Ti/ 300nm 
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Ni/ 500nm Au were then deposited by e-beam evaporation. The final passivation layer 

etchback to release the HfO2 devices was done using 10:1 BOE. Subsequently, the wafer 

is diced (American Precision Dicing) into chips of 1.5x1.5cm for testing. 

MATERIALS CHARACTERIZATION  

For thickness characterization, HfO2 of varying thicknesses was deposited by 

ALD onto polished Si wafers and annealed according to the device fabrication above. 

The wafer was then covered with photoresist and diced into 1x1cm dies. Ellipsometry 

measurements were taken using a Rudolph FEIII ellipsometer at a wavelength of 

632.8nm and an angle of 70 degrees. Each measurement was taken over ten different 

areas of a chip and averaged together to get a thickness and standard deviation. For 

fluorescence measurements, a 1um thick thermal oxide was grown on a polished Si and 

then 100 cycles ALD HfO2 deposited on top. The thick grown oxide was to limit signal 

degradation due to fluorescence interference contrast (FLIC).[64]  The HfO2 was 

subsequently annealed according to the device fabrication above. Fluorescent images 

were taken with a Nikon microscope at an exposure of 800ms and a gain of 1.3x. Atomic 

force microscopy images of the HfO2 and PLL layers were taken with an Asylum Cypher 

AFM using a Force Modulation AFM probe tip (Budget Sensors) with a resonant 

frequency of 75kHz and a force constant of 1-3 N/m. Force applied to the substrates 

during contact mode was calibrated by taking the inverse optical lever sensitivity 

(invOLS) of the cantilever deflection on a bare HfO2 surface and calculating the spring 

constant of the cantilever by fitting the thermal fluctuations. X-ray photoelectron 

spectroscopy of the HfO2, DNA, and PLL layers were taken with a KRATOS Axis Ultra 

XPS at a take-off angle of 90 degrees. Survey spectra were acquired at a pass energy of 
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160eV with 2 sweeps collected. High resolution spectra of Hf4f, P2p, O1s, C1s, and N1s 

peaks were collected at a pass energy of 40eV with a total of 25 passes per peak.  

ELECTRICAL MEASUREMENTS  

High frequency C-V measurements of HfO2 MOS capacitors were performed at 

1MHz using a Keithley semiconductor parameter analyzer (Keithley 4200) and corrected 

for series resistance. The capacitors had a top contact of 30nm TiN/100nm Al, and a back 

contact of 100nm Al, which were DC sputtered. Electrical current measurements and 

applied biases were controlled by the Keithley 4200 as well. Fluid gate biases were 

applied with a leak free Ag/AgCl reference electrode (Warner Instruments) that made 

contact to the solution. Back gate biases were applied using the conductive platform of 

the probing station which made contact to the backside of the FET dies. At any other 

times, the conductive platform served as the ground for the FET dies while biases were 

applied to the fluid gate electrode. The Robinson buffer pH solutions were made using 

1 mM acetic, 1 mM phosphoric, and 1 mM boric acid with titrated HCl/NaOH to obtain 

the desired pH. All pH solutions were measured at the conclusion of the experiment to 

ensure that the pH had not changed significantly during the course of the experiment.  

PREPARATION OF DEVICES FOR DNA SENSING 

Before depositing poly-l-lysine, chips were degreased with acetone and methanol, 

then rinsed in DI water for 1min. The chips then underwent an O2 plasma at 500mTorr 

and 200W for 5 minutes. Poly-l-lysine solutions were made to 0.2mg/mL concentration 

in 5mM Na2B4O7, pH 8.5. Chips are soaked in PLL solution for 2 hours, then taken out 

of the solution and rinsed in DI water for 1 min. Chips are then blown dry with N2 and 
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dessicated for 10min. The chips are baked at 85C in a vacuum oven for 4 hours 

afterwards. 

DNA probe and targets were obtained from Integrated DNA Technologies and 

diluted to a stock concentration of 100uM in DI water. All stock solutions were stored at 

-20 Celsius until used. DNA probe solution (10uM in 3X SSC buffer) was spotted on the 

device in a 10uL volume and allowed to sit for 2 hours in a humidity chamber. The chip 

was then rinsed in 2X SSC, 0.2X SSC, and 5% EtOH for 1 min each, and blown dry with 

N2. To crosslink the DNA to the PLL, chips were baked at 85C for 2 hours in a 

convection oven. A PDMS well with an adhesive bottom tape was attached to the chip 

afterwards. Each well had a circular diameter of 5mm and a fluid volume of ~50uL. The 

target solutions for varying concentrations of miR-10b and miR-21 were made in 2X SSC 

buffer and put in the PDMS well for 30 mins to hybridize. The target was then rinsed off 

3 times in 2X SSC buffer and 3 times in 0.2X SSC buffer before measuring in 0.02X SSC 

buffer.  

THEORETICAL MODEL FOR PH RESPONSE AND NOISE OF 

SINW SENSOR 

  The sensitivity of ISFET to pH fluctuations in the buffer is determined by the 

protonation/de-protonation kinetics of –OH functional groups at the gate oxide-

electrolyte interface and the electrostatics of the system, as described by the equations in 

Table 5.1. For reaction kinetics of –OH functional groups, we use the site binding model 

with reasonably calibrated parameters (Ns, Ka, and pKb in Table 5.2) regarding HfO2 

surface due to unavailability of experimentally observed values in the literature. The 

model equations are discretized using finite difference scheme and self-consistently 
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solved using Newton iteration due to the strong non-linear nature of the equations. For 

the relevant device dimensions used in our experiments (tSi ~55nm, tox~4nm), the 

cylindrical gate oxide capacitance, Ccylind=2εox/(tSi×ln(1+2tox/tSi)) is comparable to the 

corresponding planar gate oxide capacitance, Ccylind=εox/tox. This allows us to reduce the 

computational complexity and solve the system of equations for the equivalent planar 

system. We assume Boltzmann distribution for the ions in the electrolyte and long 

channel with small drain bias to simply estimate the conductance of Si channel.  

For the estimation of voltage noise in ISFET, we consider two major sources of 

noise: low frequency noise (1/f) and the electrolyte noise, as summarized in Table 5.2. 

We assume they are uncorrelated thus the total noise is given by 
2 2

1/ f eV V V   
. 



152 

Table 5.1. Model equations of ISFET electrostatics 

 

Region Model Equations 
 

Description of variables 

Si  

Poisson Equation          
( ) ( )si Aε ψ q p n N    

 

( )/f Bq ψ ψ k T

ip n e
 


,

( )/f Bq ψ ψ k T

in ne


  

  -electrostatic potential,  εsi = 11.9ε0, 

ε0 dielectric permittivity of vaccum, q- 

electronic charge, NA-doping of Si (1015 

cm-3),  ni = 1010 cm-3, f -Fermi level 

in Si.
 

Gate 

dielectric 

     Poisson Equation             
( ) 0oxε ψ  

 

(Acceptor like interface traps (Dit) are assumed at Si/Gate oxide 

interface. For SiO2/HfO2 gate oxide stack, a fixed interface charge 

is assumed.)  

     εox = 3.9ε0 (SiO2) or 20.1ε0 (HfO2) 

Dit: interface trap density at Si/Gate 

dielectric interface (Dit ~ 4x1011cm-2/eV). 

QF: fixed charge density at SiO2/HfO2 

interface.
 

 

 

Gate 

dielectric-

electrolyte 

interface 

Protonation/de-protonation               sAOH AO H  
 

of OH groups                             2 sAOH AOH H           
 

OH surface density                    
2[ ] [ ] [ ]sN AOH AO AOH     

Reaction constants              
-[ O ][ ]

[ ]

s
a

A H
K

AOH



  
2

[ OH][ ]

[ ]

s
b

A H
K

AOH




  

Boundary condition  

+ -

20 0
( ) ( ) ([ OH ] [ O ])ox wε ψ ε ψ q A A       

Hs
+ - H+ concentration at gate-

oxide/electrolyte interface. Hb
+: H+ 

concentration at the bulk electrolyte. 

B

qψ

k T

s bH H e


   10log bpH H
 

 

Ns = 8e14 cm-2 for HfO2 

 10log ,a apK K   10logb bpK K 
 

 

 (pKa, pKb) = (6, 10) for HfO2 

εw =80ε0,  

 

Electrolyte 

Poisson-Boltzmann Equation 

                                       

0( ) 2 sinh( ( ) / )w FG Bε ψ qn q ψ V k T     

n0- buffer ion concentration (3mM, 

corresponding to 0.02X SSC buffer),  

VFG: fluid gate bias 

kB: Boltzmann constant, T-Temperature
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Table 5.2. Model equations for noise estimation. 

5.4 RESULTS  

One of the most important components of any silicon based FET is the gate 

dielectric and its interface with silicon. We chose HfO2 because it currently satisfies the 

requirements demanded for CMOS integration. Atomic layer deposition was chosen as 

the method for forming the gate dielectric because of its self-limiting growth process, 

meaning the thickness is controlled by the number of deposition cycles, allowing accurate 

thickness control and uniform step coverage. Moreover, due the reactive nature of the 

precursors, the temperature window for deposition is wide. However, the electrical and 

chemical properties of the film are temperature dependent as well. Before using HfO2 as 

our gate dielectric we characterized the properties of the hafnium oxide layer as deposited 

and how the thermal treatments taken during our process affect the gate dielectric.  

Region Model Equations 
Description of Variables 

Si-NW 

     Low-frequency voltage noise             
 

2

1

2

2
1/ 2

1

ln
FB

f
B t

f V
f

eff

q k TN f
V S df

WLC f
 




 

where 

2

2FB

B t
V

eff

q k TN
S

fWLC



 

(Acceptor like interface traps (Dit) are assumed at Si/Gate oxide 

interface. For SiO2/HfO2 gate oxide stack, a fixed interface charge 

is assumed.)  

W = 0.1µm, L = 20 µm 

f1 = 1Hz, f2 = 1kHz (f1, f2: low and high 

cutoff frequency) 

α = 1.5×105 V s/C (Coulomb scattering 

coefficient) 

 λ = 0.5 Å (tunneling parameter) 

Nt = 3×1016 eV-1 cm-3, (trap density) 

Ceff = (1/CSiO2+1/CHfO2)
-1 = 8.17×10-7 

F/cm2 

T=300K 

 

Electrolyte 

Electrolyte bulk resistance 

                                       

2

1
2 14 ( )

e

f

e V B b
f

V S df k TR f f  
 

where 
4

eV B bS k TR
s and 

/bR WL   

κ = 0.124×10-3 S/cm (electrolyte 

conductivity),  

kB: Boltzmann constant, T-Temperature
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During the nanowire fabrication process, the hafnium oxide must be amenable to 

hydrofluoric acid wet etching in order to create the contact vias over the source-drain 

regions of the FET. The concentration of HF also must be gentle enough as to not 

deteriorate the photoresist leading us to use a 10:1 BOE as the reagent. During the course 

of characterization, we observed ALD deposition temperatures >200C resulted in a layer 

which would not etch in BOE solution. Layers deposited at <80C etched very quickly and 

had deposition rates much larger than the limiting rate of ~1Ǻ/cycle. In our process we 

use a temperature of 120 Celsius, which gave us a good compromise between etching rate 

and deposition rate.  

The characterization of the deposition thickness vs. number of cycles was done 

using ellipsometry and is shown in Figure 5.1A.  Here we assumed a simple bilayer stack 

of HfO2 and Si, with refractive indices taken from the Sopra Material Library. By 

depositing ALD films between 10 and 90 cycles and measuring the thickness we were 

able to verify the deposition rate per cycle and estimate the interfacial oxide thickness. 

The overall thickness (T) of the film on silicon is related to the HfO2 deposition cycle 

number (NHfO2) by: 

 (  )                  

where Rdep is the deposition rate and tsio2 the native oxide thickness. By fitting a 

line to the data in Figure 5.1A we get a deposition rate of 1.23 Angstroms per cycle and, 

if we extrapolate back to zero cycles, a native oxide thickness of 9 Angstroms. These 

results are within range of the reported growth rates of HfO2[51,52] and thickness of a 

chemically grown native oxide[53].  
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Figure 5.1. Characterization of the HfO2 gate dielectric deposited by atomic layer 

deposition. The thickness of HfO2 versus the amount of ALD cycles is shown in A with 

the slope inset. The effect of annealing the HfO2 against chemical etchants is shown in B 

with the ellipsometric thickness versus etching time. High frequency capacitance-voltage 

curves for varying steps in the annealing procedure are in C with extracted values inset. 

The equivalent oxide thickness extracted from the C-V analysis versus the ALD cycle 

amount is plotted in D with the extracted dielectric constant inset. 

After ALD of the hafnium oxide films, we investigated how annealing would 

affect the chemical and electrical properties of the gate dielectric. Annealing of the films 

is an important parameter in optimizing the electrical performance of the gate dielectric. 

HfO2 begins to crystallize at temperatures >500C, and the crystallization temperature is 

thickness dependent, increasing with decreasing thickness.[54] Crystallization, although 
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helps increase the dielectric constant, is known to increase the leakage current through 

grain boundaries in MOS structures as well. Thus, leakage would be amplified even more 

in an aqueous setting where ions are even more mobile than with a top metal.  During our 

process we decided to keep our anneal steps below 500C in order to avoid excess leakage 

affects. First, we perform a rapid thermal process in Ar at 500C for 60s to densify the 

gate dielectric. Then, after the deposition of the leads, we do a forming gas anneal 

(Ar/10%H2) at 450C for 30 minutes to passivate interface traps and anneal the leads. 

This constitutes our basic annealing procedure on the gate dielectric.  

To examine how the anneal steps affected the gate dielectric chemically, we 

subjected the annealed and unannealed films to various strong acid etchants such as acid 

piranha and SC2, as well as in 10:1 BOE. The etch rates for hafnium oxide annealed vs. 

unannealed are presented in Figure 5.1B. The films deposited at 120C show etch 

susceptibility for all the etching solutions. Etch rates between 15-40 Angstroms per 

minute are achieved with the various etching parameters. After the rapid thermal anneal 

and forming gas treatments, the hafnium oxide becomes chemically inert. The 

ellipsometric thickness of the films only changes by ~5 Angstroms for each of the 

etchants. We attribute the thickness change to a thin carbonaceous layer on top of the film 

which is subsequently removed during exposure to the etching solutions. 

In order to determine how the annealing affects the system electrically, MOS 

capacitors were formed by sputtering 30nm TiN then 100nm Al on the HfO2 and 100nm 

Al on the back of p-type silicon contact to create a capacitor with a structure shown in 

Figure 5.1D. High frequency capacitance-voltage curves were taken for as-deposited, 

RTP only, and RTP+forming gas HfO2 substrates. The results for a 100 cycle ALD HfO2 
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film are shown in Figure 5.1C. Each device was swept ten times to give insight into its 

stability. Using the high frequency capacitance we can extract parameters such as the 

oxide thickness, dielectric constant, effective charge, and flatband voltage. For a p-type 

MOS-C, the accumulation region of the C-V curve is observed when negative voltages 

are applied to the gate. The oxide capacitance (COX) is the high frequency capacitance 

when the device is biased for strong accumulation. If we assume the oxide is one entity, 

MOS-C acts like a single parallel-plate capacitor and COX is related to the total oxide 

thickness (Tox) by: 

    
       

   
  

where    is the permittivity of free space, A the capacitor area, and      the 

relative dielectric constant. From Figure 5.1C, we can see that     increases as we 

perform the annealing procedures, indicating that Keff is increasing and thus producing a 

higher quality HfO2 layer.  As we anneal the samples, we also notice the flatband voltage 

of the MOSCap’s shifts to more positive potentials and the drift (or variance) becomes 

minimized for the RTP and forming gas system. The flatband voltage (Vfb) for 

MOSCap’s can be expressed as: 

         
    

   
 

where ϕMS is the work function difference between the metal and the 

semiconductor and      is the effective oxide charge density, given by the sum of the 

oxide fixed charge (  ), oxide mobile charge (  ), and oxide trapped charge (   ) with 

              . We extract the flatband voltage from the flatband capacitance 

by interpolating between the closest voltages around the flatband capacitance value. We 
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then extract the variance and Qeff for each MOSCap under study from the flatband 

voltages for each curve.  The Qeff and variances for each of anneals is found in the inset 

in Figure 5.1C. By annealing the substrates we eliminate most of the effective charge and 

variance in the system. This is probably due to the removal of dangling bonds in the 

oxides and passivation of interface traps at the HfO2-SiO2 and SiO2-Si interfaces.[55]  

To determine the dielectric constant of the annealed HfO2, different cycles 

amounts of HfO2 were deposited and Cox determined. If we assume the dielectric is 

composed entirely of SiO2 (since the dielectric constant is known) we can replace the 

Keff in equation 1 with the dielectric constant of SiO2 (3.9) and extract an equivalent 

oxide thickness (EOT) for the layer. An example of this is found in the inset of Figure 

5.1D, along with the stack for the MOS capacitors. The EOT of the HfO2 MOSCap’s was 

plotted versus the ALD cycle number (N) and is shown in Figure 5.1D. The EOT is a 

combination of the HfO2 thickness and dielectric constant with the interfacial oxide 

thickness and dielectric constant. It can be expressed in a linear form by: 

   ( )  (
   

 
)            

The dielectric constant can be extracted from the slope of the line (
   

 
)      

assuming the deposition rate is known, which we extracted from ellipsometry. The 

interfacial oxide thickness is equivalent to the y-intercept of the line, or by extrapolating 

the fit back to zero cycles. By fitting the points in Figure 5.1D we determine a dielectric 

constant of 20.1 for the deposited ALD film, which meets expectations for a high-quality 

ALD HfO2 film.[56] The extrapolated interfacial oxide thickness is ~17 Angstroms, 

which agrees well with literature.[57] This value is substantially higher than the extracted 

value from ellipsometry of ~9 Angstroms. We attribute this to the high diffusivity of 
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oxygen in HfO2, which commonly increases the interfacial oxide thickness during 

anneals.[58,59] 

 

Figure 5.2. Scanning electron micrographs of the silicon nanowires are in A. Image 1 

shows an overview of the nanowire sensing area, with the source-drain metal leads (green 

arrows) and release window (yellow arrows) highlighted. A high magnification top-down 

image of the nanowires is shown in 2. A cross-sectional image of a nanowire is in 3 while 

a top down image a nanoplate is in 4. A horizontal cross sectional schematic of sensing 

setup is represented in B. The relevant structures are color coded to the left, with an 

example electrical measurement setup for the source drain (Vds), fluid gate (Vfg), and 

back gate (Vbg). 

Top down and cross section images of the nanowires and nanoplates are shown in 

Figure 5.2A. Part 1 of Figure 5.2A shows an overall top down image of the nanowires. 

The release window is in the center (highlighted by the yellow arrows) while the metal 
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leads connecting to the nanowires is highlighted by a green arrow. A high magnification 

image of the nanowires in (1) is shown in Figure 5.2A (2). The brighter areas represent 

the nanowires as silicon lies below the beam, increasing the secondary electron emission. 

The nanowires appear to be ~150nm in width from the top down image in (2), but the 

cross section in (3) shows them to be ~100nm wide. The cross section in (3) shows the 

trapezoidal nature of the nanowires from the TMAH anisotropic etch, as well as the 

surrounding HfO2 gate dielectric. The thickness of the HfO2 is approximately 13nm from 

the image, although it is hard to measure it precisely due to the grain size of the metal 

sputtering. This thickness agrees well with the thickness information obtained from 

Figure 5.1. A top down image for a nanoplate inside the release window is in (4), and 

shows a nanoplate of ~2um width.  

A schematic showing the full cross section of a nanowire and the setup for device 

testing is in Figure 5.2B. For fluid testing, a leak free Ag/AgCl reference electrode is 

biased and swept, with a constant source-drain bias applied. The back of the handle wafer 

is grounded, and the Id-Vg transfer curve measured. 

 The stability of the device under operation in 0.02X SSC buffer is shown in 

Figure 5.3. Id-Vg curves were swept from positive to negative bias with the Ag/AgCl 

electrode and cycled 5 times, shown in Figure 5.3A. The subthreshold slope extracted for 

the device is 112mV/decade, comparatively on the low end for nanowire devices in fluid 

testing. Detailed numerical simulations were performed to validate experiment data 

(transfer characteristics in Fig. 3a) and to further explore the sensitivity of our devices for 

pH sensing. In this numerical model, we solve the non-linear Poisson-Boltzmann 

electrostatics for the sensor system (see Methods section for details). The simulation in 
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Figure 5.3B show that our detailed numerical simulation interprets the experimental 

results (red circles) consistently from subthreshold to super-threshold regime. The 

simulations accurately reproduce experimental transfer curves with the following 

parameters: Interface trap densities (Dit) of 4×10
11

 cm
-2

eV
-1

, and fixed (negative) charge 

located at SiO2/HfO2 interface with density of ~ 5×10
11

 cm
-2

.  These values of interface 

trap density are consistent with widely accepted density of dangling Si bonds at 

unpassivated Si/SiO2 interface and the estimate of fixed trap density is also consistent 

with those reported the literature.  

The standard deviation for threshold voltage on the devices is 2.7mV. The 

combination of a low standard deviation and a low subthreshold slope indicate the 

combination of a high stability device and low drift reference electrode in electrolytic 

solutions. Moreover, the fluid is exposed to a ~ 0.2 cm
2
 area on the chip, which if not 

passivated properly would cause leakage current much higher than the measured device 

current. The leakage throughout this area ranged from 300pA to 1nA, or 1.5 nA/cm
2
 to 

5nA/cm
2
. An example of long term device stability in 0.02X SSC buffer is shown in 

Figure 5.3C. The threshold voltage after each sweep and the time was recorded and 

repeated over an hour. The change in threshold voltage over time decreases rapidly for 

the first 10 minutes, then stabilizes. The overall change is 65mV/hour, with only 10mV 

change happening after the first 10 minutes. In planar ISFETs, the gate voltage instability 

can be described by a stretched exponential that is characteristic of dispersive transport in 

disordered materials expressed by: 

   ( )       
(     (

  

 
)
 

) 
(

1) 
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where   
  

 is the maximum VT change, τ is the time constant, and β is the dispersion 

parameter that takes a value between 0 < β < 1.  As shown in Figure 5.3C, the theoretical 

fits according to this model (Eq. 1) agree well with the experimental data. By rearranging 

Eq.1 and plotting the natural logarithm versus the natural log of time (Figure 5.3D) we 

are able to extract the time constant (τ) and the dispersion parameter (β), which are also 

inset in Figure 5.3D. The values for     
 , β, and τ are 55 mV, 0.7935, and 76.75 

seconds, respectively. The standard deviation of the device over 5 sweeps surrounding 

each time point was also plotted. Briefly, the standard deviation for sweep 15 would 

include points from sweep 13-17.  The standard deviation shows a ~1mV standard 

deviation per 5 sweeps over the period of the hour. As the device equilibrates, the 

standard deviation between sweeps goes down. The solid red line indicates the 

theoretically estimated voltage noise of SiNW pH sensor composed of low-frequency 

noise and electrolyte noise (See Method section for the details), showing that the 

sensitivity is limited by the noise from measurement instrument (red triangles), not by the 

device’s intrinsic noise. The leakage to the fluid gate, plotted over the course of an hour, 

stays relatively stable near 800pA (Figure 5.4). This indicates little degradation to the 

HfO2 dielectric or passivation layer over that time period. 
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Figure 5.3. Representative source-drain current verse fluid gate voltage for a nanowire is 

shown in A. The nanowires were swept for 5 cycles with the fluid gate leakage also 

measure (right side of graph) and an enlarged view of the curve repeatability is inset in A. 

The numerical simulation (black line) of the average of the experimental transfer curves 

in A (red circles) is shown in B with the simulation parameters (inset).The change in the 

threshold voltage (left side) and standard deviation in threshold (right side) versus time 

for a nanowire is in C. The equation for modeling the gate voltage instability is inset in 

C, with the fit to the experimental data represented as the black line. The theoretically 

estimated low frequency voltage noise is represented as a dashed red line. The 

experimental ΔVt data in C was rearranged according to the equation in C to extract the 

time constant and dispersion parameter. The natural log of the rearrangement is plotted in 

D versus the natural log of the time (red circles), with the linear fit to the data (black line) 

and the extracted parameters (inset).   
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Figure 5.4. The measured leakage current from the device to the fluid gate (Ifg) over time 

for a nanowire. 

The response and stability of the devices to changes in pH was demonstrated 

using Robinson buffers for the nanowires and nanoplates. The changes in pH will cause a 

change in the surface potential on the device due to the proton reactive groups on top of 

the HfO2 surface. Robinson buffer solutions ranging from pH’s of 4.3-10.5 were used and 

the threshold voltages of nanowires and nanoplates extracted from the Id-Vg curves. The 

change in the surface potential with respect to the pH 7.4 solution, set at zero, was plotted 

vs. pH for 3 nanowires and 3 nanoplates, and is shown in Figure 5.5. We achieve a 55.8 

mV/pH sensitivity for the nanowires and 51.0 mV sensitivity for the nanoplates, with the 

Nernstian limit being 59mV/pH. The sensitivity of nanowires being higher than 

nanoplates or microwires agrees well with literature[16], as does the range of pH 

sensitivities found for the HfO2 sensing dielectric. Our numerical simulations that applied 

a self-consistent solution of Poisson-Boltzmann electrostatics coupled with OH 

functional group site-binding model (Eqs. 5-6, see Methods section for details) 

reproduces key experimental trends (see insets on the right side of Fig. 5). Specifically, 
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the model predicts a pH sensitivity of 51mV/pH, which is very close to the experimental 

results. 

 

Figure 5.5. The change in surface potential of the HfO2 sensing dielectric versus solution 

pH for nanowires (black) and nanoplates (red) is shown in A. The pH sensitivity for 

nanowires and nanoplates was extracted through linear regression and is displayed inset. 

Numerical simulations (black line) of the nanoplate data (red triangles) using self-

consistent Poisson-Boltzmann electrostatics and an OH group site binding model is 

shown in B, with the extracted pH sensitivity inset. 

The sensing of DNA target was done with different molecular weight PLL 

functionalizations using the same probe molecule. The procedure for modifying the 

surface is explained in detail in the Experimental section, but outlined in Figure 5.6A. 

Briefly, the poly-l-lysine is electrostatically adsorbed onto the HfO2 surface and baked on 

a hotplate at 85C to ensure a good linkage. Then, the ssDNA probe is electrostatically 

bound to the HfO2 surface and excess rinsed off. The ssDNA probe is then baked, which 

covalently links part of the sugar and phosphate backbone to the poly-l-lysine through 

free radical generation. The target is then hybridized with the probe and sensed on the 

device. Poly-l-lysine was chosen since it can be deposited from aqueous solution and 
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electrostatically bound to both the HfO2 and phosphate backbone of probe DNA. This 

allows for the probe DNA, and binding target, to be in a horizontal conformation.[60] As 

opposed to a vertical conformation, a horizontal conformation allows for charge density 

to be closer to the surface, thus creating a larger shift in the surface potential. A 

horizontal conformation allows for more charge to be felt in the channel at a certain 

Debye length of electrolyte solution. 

The sensitivities for the devices with different molecular weight poly-l-lysines are 

quite different, which we discuss in Figure 5.7. A lower sensitivity would occur if the 

overall effective charge density during binding is less, or the charges were farther 

removed from the surface. A few possibilities which would lead to this are the 

morphology of the poly-lysine layers as well as the probe density. Thus, we characterized 

the poly-lysine layers and probe attachment to understand the underlying reasons for this 

discrepancy.  

We used a combination of ellipsometry, AFM, and XPS to look into the 

morphology, thickness, and probe densities (Table 5.3). When the PLL layers were 

deposited, the ellipsometric thicknesses came out to be within error of each other at ~11Ǻ 

each. This indicates the formation of a polylysine monolayer on the surface. The ssDNA 

probe attachment came out to be within error as well, at ~20.5Ǻ each, which leads us to 

believe the DNA rests in a horizontal configuration. The similar thicknesses for both 

indicate we should get similar sensitivity levels for target detection.  
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Table 5.3. Characterization of the thickness, roughness, and probe density of the HfO2 

surface functionalization process.  

Thus, we utilized atomic force microscopy (AFM) to characterize the morphology 

of the 100 cycle ALD HfO2 layer and the PLL layers. The tapping mode images in Figure 

5B are numbered 1-3 in the image set for the untreated HfO2, PLL (9-14k), and PLL (70-

150k), respectively. The images for the untreated HfO2 and PLL (9-14k) indicate very 

smooth and uniform layers. The roughness values extracted for the HfO2 and PLL (9-

14k) are 1.1 and 1.6Ǻ RMS, respectively. The morphology of the PLL (70-150k) is much 

rougher and has a porous, spongelike appearance. These pores, represented by the darker 

spotted areas in the image, appear to be the thickness of the monolayer or close to it. 

Moreover, we were able to determine the thickness of the films by applying a 50nN force 

to the tip in contact mode and scratching away the PLL layers, then reimaging a larger 

area in tapping mode. A 50nN force is known to be more than enough to remove organic 

monolayers and silane layers, without damaging the underlying surface.[61] The images 

after a 50nN force are 4-6 in the image set. The untreated HfO2 shows no changes in 

height, indicating a hard surface. The PLL layers show distinct changes in thickness, 

indicated by the square scratched area visualized in images 5 and 6. Taking a section 

analysis across the scratched areas gives us the thickness of the PLL films, and is shown 

in Figure 5.6C. The images 4-6 in 5B are color coded to match up with section analyses 

in Figure 5.6C. The section analyses showed a similar thickness for the PLL layers 

  Ellipsometric Thickness (Ǻ) AFM Thickness (Ǻ) Roughness (Ǻ) XPS P 2p Peak Area 

HfO2 layer 120.1 ± 3.2 ─ 1.1 ─ 

PLL 9-14K  11.3 ± 1.5 11.2 1.6 ─ 

PLL 70-150K 12.1 ± 2.1 9.8 3.4 ─ 

ssDNA (PLL 9-14K) 21.6 ± 2.3 ─ 1.9 145.7 

ssDNA (PLL 70-150K) 19.8 ± 2.7 ─ 2.9 74.2 

 



168 

compared to ellipsometry and are in Table 5.3. However, the buildup of material on the 

side of the scratched away area was much greater for the lower molecular weight layer 

(data not shown). This indicates the amount of material for the higher molecular weight 

PLL on the substrate was less, leaning towards the evidence of a more porous and 

incomplete layer. 
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Figure 5.6. A schematic of the surface functionalization of the HfO2 surface for 

microRNA (DNA analogue) sensing is shown in A. AFM images of the HfO2 and poly-l-

lysine layers of different molecular weights are shown in B. Tapping mode images with 

no force applied (upper) for the different layers, and after a 50nN scratching force 

(bottom) are displayed. The scale bar for all AFM images is on the right. A cross section 

for the images with 50nN force applied is in part C. The cross sections are color coded to 

images in B with an inset representing the cross sectional area. 

Attachment of the probe DNA to the PLL layers was measured using two 

techniques: (1) XPS for the P2p peak intensity from the DNA backbone and (2) 

fluorescence with a Texas Red labeled miR-10b probe. The XPS P2p signal intensity for 
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the HfO2 and probe DNA on the two PLL layers is in Figure 5.7A. The peak for the 

ssDNA on PLL(9-14k) is much larger than the one on PLL (70-150k), indicating a higher 

probe density. The peak intensities are in Table 5.3, with a ratio of approximately 1.8:1 

for the PLL(9-14k):PLL(70-150k). The fluorescently labeled micrographs of bare HfO2 

and PLL layers, both with and without probe are in Figure 5.7B. The quantification of the 

fluorescent intensity is in the bar graph in Figure 5.7C.  Images 1 and 2 show the bare 

HfO2 layer with and without the probe attachment procedure. The amount of background 

fluorescence for the HfO2 with and without probe is about the same. Thus, DNA has very 

little non-specific adsorption to HfO2, which should make for better selectivity and less 

issues with blocking. Images 3 and 4 show the background fluorescence for the PLL 

layers. The PLL (9-14k) layer shows slightly higher background, as to be expected since 

there are more optically active surface groups according to AFM. The images for the 

attachment of the miR-10b probe DNA show slightly greater than a two-fold intensity 

difference between the PLL layers, with PLL (9-14k) containing the higher probe density. 

This reaffirms the XPS results in Figure 5.7A, indicating the probe density is much 

higher on the lower molecular weight PLL layer. 
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Figure 5.7.  P2p peak intensities from XPS are shown in A for ssDNA adsorption onto 

the poly-l-lysine layers of different molecular weights, and onto the bare HfO2 surface. 

Fluorescent micrographs of ssDNA probe immobilization are shown in B for HfO2 and 

the different molecular weight poly-l-lysines, both with and without exposure to ssDNA 

probe. Fluorescent intensities for images 1-6 in B are plotted in column format in C. 
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The demonstration of sensing of miR-10b DNA analogue target on the HfO2 

silicon nanowires is in Figure 5.9, with the DNA probe and target sequences in Table 5.4. 

To make sure the devices were being functionalized properly, Id-Vg curves at key steps 

during the probe attachment process were taken to examine the changes in threshold 

voltage (Figure 5.8). First, a reference of the bare HfO2 was taken in the 0.02X SSC 

sensing buffer. The deposition of PLL then shifts the threshold voltage to the left by 

~160mV. The direction of change is proper since the PLL is positively charged and the 

device operates in accumulation mode, thus creating a more negative threshold to 

compensate for the positive increase in surface potential. In contrast, when we adsorb the 

probe DNA we cause a shift in the opposite direction of ~90mV relative to the PLL, 

which is also expected due to the negative charge density of the phosphate backbone.  

 

Table 5.4. Nucleic acid sequences for the immobilized probe and DNA targets. 

  Sequence  

DNA probe 5'-CACAAATTCGGTTCTACAGGGTA -3' 

miR-10b DNA complementary target 5'-TACCCTGTAGAACCGAATTTGTG-3' 

miR-21 DNA non-complementary target 5'-TAGCTTATCAGACTGATGTTGA-3' 
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Figure 5.8. Id-Vg transfer curves of the surface functionalization process with PLL (9-

14K) and probe DNA. The changes in surface potential from the reference HfO2 ( inset) 

show a negative shift for the PLL deposition and a corresponding positive shift for the 

probe immobilization. The deposition of PLL shifts the threshold voltage to the left by 

~160mV, relative to the HfO2 reference. The probe DNA immobilization shifts the 

threshold voltage back to the right by ~90mV, relative to the PLL functionalization. 

After conjugating the ssDNA probe to the PLL surface, various concentrations of 

miR-10b target were allowed to interact with the sensor for 30 mins (to offer sufficient 

time for diffusion limited transport down to 100 fM concentration[62]), then rinsed off 

and Id-Vg curves recorded in the .02X SSC sensing buffer. The threshold voltage change 

with varying RNA target concentrations was then measured relative to the ssDNA probe 

reference (shown in Figure 5.9A). The signal-to-noise ratio (SNR) for the measurements 

was computed and a blue line drawn for 3xSNR, assumed to be the limit of detection for 

the device. For the lower molecular weight poly-lysine, at least 100fM of miR-10b target 

was able to be sensed, with an extrapolated limit of detection of 1fM. However, for the 

higher molecular weight poly-lysine, the limit of detection at 3xSNR is close to 1nM, 

close to 6 orders of magnitude higher. When the mismatch miR-21 target was allowed to 

hybridize with the miR-10b probe, the signal was very small and steady from 100fM all 
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the way to 1uM concentrations. Most of the miR-21 signals were close to or between 0-

5mV change in signal. Error bars for the standard deviation of sweeps over the 

measurement are also presented on the graph for each case.  

 
Figure 5.9. The change in surface potential versus the concentration of target in solution 

is plotted in A for the two different poly-l-lysines. The change in surface potential for the 

mismatched target is shown to be negligible (red squares) and a theoretical limit of 

detection line is drawn in blue. The change in surface potential versus the DNA 

concentration for the PLL (9-14K) data was also theoretically calculated, and is shown in 

B. The change in the surface potential (black circles) matches the theoretical prediction 

(black line) well. The analytical expressions used for the calculation are inset in B. The 

parameters used in the theoretical calculation of  Ψ0 are: tSi = 55nm, tox (EOT) = 4.22nm, 

NA = 10
15

cm
-3

, and I0   3mM. The device specific parameters are Ψ0,0 = 58.3mV and 

c2=40.63. 

An important feature of the DNA detection sensitivity of NW sensor is that it 

follows the logarithmic dependency on the molecular concentration due to screening by 

the salt (i.e.,  Ψ0~ln(ρ0), where ρ0 is the DNA concentration).[63] The black solid line 

represents (Figure 5.9B) the corresponding theoretical estimation of  Ψ0 = Ψ0,0×c1[ln(ρ0) 

‒ ln(I0)/2 + c2] where c1 = 4εoxkBT/(q
2
tSi

2
NAln(1+tox/tSi)) Ψ0,0 and c2 are parameters that 

depend on device properties, pH and duration of sensing (e.g. 30 min). 

The fact that the lower molecular weight PLL shows such higher sensitivity may 

be attributed to differences in the monolayers. Most important, the overall probe 
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attachment density is much less on the higher molecular weight layer. This will decrease 

the total amount of binding target, thus causing smaller shifts in surface potential. 

Moreover, the roughness of the high molecular weight PLL is larger and looks porous 

compared to the other layer. If the pore sizes are of the width of the nanowires or smaller, 

this would lead to large void spaces over the nanowire area without probe, making the 

microscopic amount of probe DNA even less than in the case for a macroscopic image. 

5.5 CONCLUSIONS 

In this paper, we have presented a process for the fabrication of HfO2 based top 

down silicon nanowires and nanoplates with high stability and robustness in fluid. The 

ALD process for creating the HfO2 gate dielectric was thoroughly characterized by 

ellipsometry, AFM, and CV measurements to assure us of a high quality layer. The 

devices respond to pH in accordance to sensitivities of other HfO2 ISFET’s, with 

nanowires slightly more sensitive than plates. Moreover, we characterized the difference 

between different molecular weight layers of PLL in terms of their surface morphology, 

thickness, and probe attachment densities. The average thicknesses of the layers were 

found to be about the same by AFM and ellipsometry, however the probe density of the 

lower molecular weight PLL was about twice as much as the higher molecular weight 

one. This was confirmed by both fluorescence and XPS. Moreover, the AFM indicated 

the higher molecular weight PLL was much rougher and porous, perhaps contributing to 

the lower response to DNA target using this polymer. Using these different layers for 

sensing of single stranded DNA oligomers on a nanowire yielded limit of detection 

differences over 5 orders of magnitude, with the lower molecular weight PLL having 

higher sensitivity. By using the lower molecular weight poly-l-lysine, we were able to 
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detect down to 100fM of miR-10b DNA analogue with a theoretical limit of detection of 

1fM.  
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CHAPTER 6: CONCLUSIONS AND 

FUTURE WORK 

To conclude this thesis I would like to summary our work and the contributions 

we have made to the field. In the beginning we addressed the fundamental problems of 

functionalizing the interfaces of oxide based FET’s, and how a pristine interface is key 

into achieving optimum sensitivity. We describe a method of vapor based deposition of 

monofunctional silanes for biointerfacing molecules to oxide substrates. These 

monofunctional silanes erased the issue of added roughness and polymerization, a 

common problem with other linking chemistries, and provided a highly uniform and 

dense interface for bioconjugation. Moreover, we thoroughly characterized the system 

and demonstrated its application not only to silicon nanowires, but to microarrays, and 

nanoparticle depositions.  

Second, we tackled the issues of fabricating repeatable devices and developing 

protocols for their functionalization buy using the devices as the standard. We 

demonstrate effective protocols for releasing devices and annealing them to provide 

highly stable systems, and describe them in detail so others may follow. Additionally, we 

characterize the functionalization process on the FET’s electrically, using the above 

silane monolayer process with different linkers, and develop a protocol for 

bioconjugation which give optimum sensitivity and specificity. We demonstrate this 

protocol using immunoglobulins on multiple devices which can be compared due to 

similar characteristics, and with different oxide thicknesses. The devices demonstrate 

detection limits down fM levels, with dynamic ranges that can cover 4 orders of 

magnitude, and depends on the oxide thickness.  
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Finally, we take the fabrication of devices a step further by using hafnium oxide 

as a gate dielectric for sensing. This was able to provide us with capacitances higher than 

the previous device structures, without sacrificing device integrity. We characterized the 

fabrication of these devices in detail using classic semiconductor methods, and the 

functionalization protocols. We fabricate devices of different widths and show the 

differences in there sensitivities towards clinically relevant microRNA targets on multiple 

devices. Using an optimized high-k silicon nanowire process, we demonstrate the 

detection of a clinically relevant microRNA strand (mir-10b) with detection limits down 

to 10fM, against a similar competing microRNA strand (mir21), which shows minimal 

binding over 6 orders of magnitude. 

In the future, we are hoping to bring this technology to the foundry level, so it 

may be scaled up and provide even higher quality devices. We are currently collaborating 

with foundries to make this process a reality. Moreover, we are attempting to integrate 

this fabrication process where monitoring multiple devices at once is easier. We are in the 

process of attempting to create packages for chips where leads can be wire bonded to a 

PCB, and the package inserted into a multiplexor, so that device reading may be taken, 

and then cycled to the next device instead of manual probing. We hope these steps we 

have taken bring the concept of silicon nanowires FET as a biosensor to becoming a 

reality. 

 


