
c� 2013 Zisheng Chen

TOPICS ON OPTION VALUATION AND MODEL CALIBRATION

BY

ZISHENG CHEN

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Industrial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Doctoral Committee:

Associate Professor Liming Feng, Chair
Associate Professor Ramavarapu S. Sreenivas
Professor Renming Song
Assistant Professor Enlu Zhou

Abstract

This dissertation is devoted to high performance numerical methods for option valuation and model

calibration in Lévy process and stochastic volatility models. In the first part, a numerical scheme

for simulating from an analytic characteristic function is developed. Theoretically, error bounds

for bias are explicitly given. Practically, different types of options in commonly used Lévy process

models could be priced through this method fast and accurately. Also, sensitivity analysis could be

conducted through this approach effectively. Numerical results show that the schemes are effective

for both options valuation and sensitivity analysis in Lévy process models. In the second part, a

numerical scheme for Asian option pricing in jump-diffusion models is analyzed. Approximation

errors are shown to decay exponentially. Numerical results show the speed and accuracy of the

scheme. In the third part, for calibration purpose, certain numerical schemes are studied to price

European and American options. For European options, error bounds are explicitly given. For

American contracts, multiple options with different strikes and maturities could be priced simulta-

neously. Numerical results show that the combination of the above schemes with state-of-the-art

optimization schemes makes efficient calibration of option pricing models possible.

ii

To the son of man, for where transgression abounded, grace abounded much more.

iii

Acknowledgments

I would like to express profound gratitude to my advisor Dr. Liming Feng, a respectable mentor,

caring elder brother and beneficial friend. Without his detailed instruction and endless support, I

could not have completed my doctoral study. He has not only provided me with academic knowledge,

but also shown me his noble personal characters. Leading by example, he has taught me the value

of diligence, self-motivation and self-sufficiency. I enjoyed greatly the inspiring discussions with him

and have always rejoiced in being his student.

I would like to thank my doctoral committee members, professor Ramavarapu S. Sreenivas,

Renming Song and Enlu Zhou for their precious time, effort and suggestions. With their selfless

help, my last year in University of Illinois working on my dissertation was truly a wonderful journey.

I am very fortunate to be a member of Industrial and Enterprise Systems Engineering department

family. I am delighted to know dedicated faculties, such as Jiming Peng, Uday Shanbhag, Enlu Zhou,

Xin Chen, Jong-shi Pang and many others. Their professional knowledge, brilliant intelligence as

well as enthusiasm for their research have been a great encouragement for me. For my six years in

IsE, I was also blessed by professional staff including Holly Michelle Kizer, Donna Eiskamp, Randall

Elkins, Amy Summers and many others.

I am very thankful for having excellent peer students around, growing and learning together,

such as Ao Chen, Fan Ye, Fuyuan Wang, Hao Jiang, Jing Li, Jingnan Chen, Limeng Pan, Ping Liu,

Peng Hu, Rui Yang, Shuoyuan He, Tao Zhu, Xiao Li, Ying Xiao, Yiqun Wang, Yu-Ching Lee, Yuhan

Zhang, Zhi Yin and many others. Especially, I would like to thank Xiong Lin and Qiang Zeng, who

have provided me with many good insights in research. Also, I am grateful to know brilliant friends

in Quant group such as Rui Yang, Yufei Liu, Quan Geng and Chi Wang.

With great appreciation, I thank my church friends for their years of prayers and love, Xiaokang

and Ping, Xiaofeng and Sarah, Yejun and Jinzhi, Jiajia and Jane, Han and Lixuan, as well as Kaiyan,

Hui Liu, Mingyuan, Daniel, Hui Wen, Xiaolei, Yuan, Joseph, Lian, Qiong, Sherry and many others.

Especially, I want to give thanks to Elder Wei-Laung Hu, who treats me as his spiritual son. And I

iv

want to thank Xiaoyun, my girlfriend, for her faithful support.

In the end, I am greatly indebted to my parents, for their endless love and uncountable sacrifice.

I know no matter rain or shine, they will be there.

v

Table of Contents

List of Abbreviations . viii

Chapter 1 Introduction . 1

Chapter 2 Analytic Characteristic Function . 6

2.1 An Analytic Class Of Functions . 6
2.2 Analyticity and Tail Behavior . 7

Chapter 3 Simulation From Analytic Characteristic Functions 15

3.1 The Inverse Transform Method . 15
3.1.1 Simulating From Tabulated CDF . 16
3.1.2 Hilbert Representation for CDF . 18
3.1.3 Randomized quasi Monte Carlo . 20

3.2 Bias Estimation . 21
3.2.1 The total error bound . 22
3.2.2 Error bound when using Hilbert representation 24
3.2.3 The multidimensional case . 26

3.3 Numerical example of option pricing . 29
3.3.1 Kou’s jump diffusion model . 29
3.3.2 The Normal Inverse Gaussian model . 32
3.3.3 CGMY model . 36

Chapter 4 Sensitivity Estimation . 41

4.1 The likelihood ratio method . 41
4.1.1 LRM estimator and score function . 41
4.1.2 The inverse transform method and approximation to LRM estimator 43
4.1.3 Hilbert transform . 46

4.2 Bias analysis . 47
4.2.1 The general case . 48
4.2.2 Class with analyticity property . 50
4.2.3 The multidimensional case . 51

4.3 Numerical results . 52
4.3.1 The CGMY process . 53
4.3.2 Sensitivity Analysis of CGMY model . 53
4.3.3 European and Asian delta . 60

Chapter 5 Discrete Asian Options in Jump Diffusion models 61

5.1 Discrete Asian Options . 61
5.1.1 Basic Algorithm . 61
5.1.2 Recentered Algorithm . 63

5.2 A New Scheme . 64
5.2.1 Modified Algorithm . 65

vi

5.2.2 Discrete Approximation . 67
5.3 Error Estimation . 68

5.3.1 Numerical Error Analysis . 69
5.3.2 Main Results . 73

5.4 Numerical Results . 75
5.4.1 Exponential Convergence Result . 75
5.4.2 Comparison with other methods . 77
5.4.3 Automatic parameters determination . 78

Chapter 6 Model Calibration with European and American option Data 81

6.1 Pricing European Options . 81
6.1.1 Transform method for European options . 82
6.1.2 A new scheme . 83
6.1.3 Error bound for discretization error . 88

6.2 Pricing Bermudan options . 91
6.2.1 Bermudan options . 91
6.2.2 Valuation of Bermudan options . 91
6.2.3 Simultaneous computing of multiple Bermudan vanilla options price 93
6.2.4 Approximating American option price by Bermudan option price 96

6.3 Model Calibration . 97
6.3.1 Inverse optimization . 97
6.3.2 The optimization problem without penalization 98
6.3.3 The convex optimization problem . 99

6.4 Numerical results . 102
6.4.1 Choosing N1 and N2 . 103
6.4.2 Calibration using simulated data . 106
6.4.3 Calibration using market data . 108

References . 115

vii

List of Abbreviations

R: set of real numbers;

C: set of complex numbers;

�: real part of complex variable;

�: imaginary part of complex variable;

p.v.: principle value;

T : option maturity;

K: option strike price;

St: underlying asset price at time t;

r: risk free interest rate;

q: dividend of underlying asset;

viii

Chapter 1

Introduction

Derivative securities have become standard tools in today’s financial world. According to a recent

report by Bank of International Settlement, total notional amounts outstanding of over-the-counter

(OTC) derivatives reached $638.9 trillion at the end of June 2012. Accurate valuation and effective

risk management of derivative securities are thus essential for maintaining the stability of the global

financial industry. Options are among the most actively traded derivative securities.

The first breakthrough of option pricing was the publication of the works by Fischer Black, Myron

Scholes and Robert C. Merton in 1970s. Their classic Black-Scholes-Merton (BSM) model [11; 56]

has become popular since then. However, although widely used in the financial industry, the BSM

model is known to have severe limitations. The main drawbacks of the BSM model include failing to

capture fat-tail behaviors of asset returns, omitting the possibility of jumps in asset prices, as well as

assuming constant volatilities. Many alternative models have been proposed. The most popular ones

among them include: affine jump-diffusion models proposed by Duffie, Pan and Singleton in [30],

Heston’s model [47], Merton’s jump diffusion model [57], Kou’s double exponential jump diffusion

model [49], Normal inverse Gaussian (NIG) process model proposed by Barndorff Nielsen [7] and

the CGMY model proposed by Carr, Geman, Madan and Yor [14]. The first two belong to the class

of stochastic volatility models, and the rest belong to Lévy process models, which includes the BSM

model as a special case.

Lévy process models and stochastic volatility models became popular because they allow jumps

and stochastic volatility in asset prices, and are hence able to capture the fat tail structure. Moreover,

empirical studies show that these models agree with market data well. Moreover, these models often

admit explicit characteristic functions. This makes such models computationally tractable.

Some of the most important tasks that are associated with options include: option pricing, sensi-

tivity estimation and model calibration. When we switch to the above more realistic models, closed-

form solutions are not available any more, and efficient numerical methods are needed. Commonly

used numerical methods include transform methods, numerical solution of partial integro-differential

1

equations and variational inequalities and Monte Carlo simulation. Among these methods, Monte

Carlo simulation is very attractive because it handles multi-dimensional problems better. Also, it

is easier to adjust for different payoff structures of different contracts. Transform methods are also

often applicable when the characteristic functions of the stochastic processes underlying the alter-

native models are known explicitly. This is the case for many affine stochastic volatility models

and for most of Lévy process models. In particular, transform methods become highly efficient

when the analyticity of the characteristic functions are explored. However, transform methods are

usually only applicable for low-dimensional problems. It is thus interesting to investigate whether

Monte Carlo simulation can be combined with transform methods to handle more difficult problems.

Moreover, it is interesting to study how Monte Carlo simulation can be conducted for models where

only characteristic functions are known.

In this dissertation, we study transform methods as well as Monte Carlo simulation from distri-

butions where only characteristic functions are given. The dissertation is divided into three main

parts.

In the first part, we study Monte Carlo simulation for options pricing and sensitivity estimation in

Lévy process models. When the transition density function or the cumulative distribution function

(CDF) of the Lévy process is known explicitly, simulation could be conducted through traditional

methods easily. Otherwise, simulating a Lévy process is not trivial. Generally, there could be

infinitely many jumps in an arbitrary finite time horizon. One way to solve this issue is to either

discard small jumps or replace small jumps with a Brownian motion and hence approximate the

Lévy process by a jump diffusion process [5; 22]. However, in these methods, it is difficult to

determine the threshold for small jumps for a given level of estimation bias. Another method is to

simulate from infinite series representations of a Lévy process [12; 63]. Also, if a Lévy process has

certain subordination structure, we only need to simulate the subordinator and a Brownian motion

[66]. However, these approaches require the process to have certain structures, and hence are not

applicable to general Lévy processes.

In our applications, due to the structures of the financial contracts, we are only interested in the

values of a Lévy process on an evenly spaced time grid. Because a Lévy process admits independent

and stationary increments, we only need to simulate from a Lévy increment. However, the probability

density and CDF of the Lévy increment are usually not known explicitly. On the other hand, due

to the Lévy -Khintchine formula for infinitely divisible distributions, the characteristic function of

a Lévy process is often known explicitly. We thus need to simulate from the characteristic function

2

of the Lévy increment. One way to simulate from a characteristic function is shown in [64] where

a connection between a quantile function and a characteristic function is established. The quantile

then solves a nonlinear integro-differential equation. Another method is proposed by Devroye in

[29], where a bound for the density function is obtained from a characteristic function, and then the

acceptance-rejection method is applied. The idea of tabulating the CDF was also discussed in [29].

However, this was not pursued further. Glasserman and Liu [44; 45] study the inverse transform

method with tabulated CDF for simulating and sensitivity estimation from a characteristic function.

They use the inverse Laplace transform to calculate the CDF from a characteristic function [1]. They

also demonstrate that the interpolation error incurred by using the tabulated CDF is of O(η2), where

η is the fineness of the table. Also, the bias introduced by the numerical Laplace inversion is of

O(e−c/h), where c is a positive constant and h is the discretizaiton step size used for discretizing

the inverse Laplace transform. In order to get the desired accuracy, they begin with initial guess of

the parameters η and h. Then, they adjust the parameters in a way such that the above two types

of errors decrease proportionally. Convergence is achieved by running the simulation several times.

In this dissertation, we use the Hilbert transform to calculate the CDF. Due to a powerful tool

based on the sinc expansion of analytic functions [38], when the characteristic function belongs

to a certain analytic class, the Hilbert transform method becomes remarkably accurate. When

the trapezoidal rule with step size h is used, the discretization error is explicitly given and decays

exponentially in 1/h. Moreover, when the characteristic function has certain tail behavior, the

truncation error is also explicitly given and decays very fast. Based on this, we are able to derive an

explicit bound for the estimation bias when the inverse transform method based on tabulated CDF

is used to simulate from a given characteristic function. For any given bias tolerance level, we can

choose the numerical parameters in a way such that the total bias is less than the given tolerance

level. In particular, for one dimensional problems we only need to run the simulation once.

Advantages of our method are also reflected in the following aspects: the inverse transform

method does not require specific structures of the Lévy process; variance reduction techniques and

quasi Monte Carlo schemes could be easily incorporated. We also compare our method with alter-

native schemes for processes with specific structures to test the numerical performance. For Kou’s

double exponential jump diffusion model [49], we compare our method with the direct implementa-

tion, which simulates the jump diffusion process by simulating a Brownian motion, a Poisson process

and double exponential jump sizes separately. For the Normal inverse Gaussian (NIG) process model

[7], we compare with the methods in [66] and [62], where the Brownian subordination structure of

3

the NIG process and inverse Gaussian bridge are used. The method in [66] is implemented, which

simulates Brownian motion and inverse Gaussian subordinator; when multi dimensional problem is

considered, the method in [66] is implemented together with inverse Gaussian bridge [62]. Numerical

results show that, even for processes with special structures, the inverse transform method remains

competitive.

This method could also be easily extended to perform sensitivity analysis. Sensitivity measures

the relative rate of change between two variables. It plays a significant role in financial risk manage-

ment. For example, to conduct delta hedging, one must compute the rate of change in the derivative

price when the underlying asset price changes. Monte Carlos simulation is a very useful tool to esti-

mate sensitivities [18; 43; 45]. We consider the likelihood ratio method (LRM) in particular. Again,

the sinc based methods are applicable and allow us to derive explicit bounds for the estimation bias.

Discrete Asian options are priced using Monte Carlo simulation in the first part. To obtain

accurate benchmark prices, in the second part, we study a transform based scheme for pricing Asian

options. Asian options are actively traded in the natural resource derivatives market, especially on

crude oil and heating oil. Asian options can be categorized by sampling frequency into continuously

monitored and discretely monitored ones, or by how the average is calculated, into arithmetic

Asian and geometric Asian options. We focus on discretely monitored arithmetic Asian options.

Continuously monitored Asian option prices can be approximated by increasing the monitoring

frequency. Geometric Asian options can usually be priced easily and used as control variates. Various

numerical methods have been proposed for pricing Asian options. Methods based on numerical

solution of PIDEs are studied in [3; 69]. One problem with these methods is that, the discrete

sampling structure will impair the convergence rate in time horizon. Another type of methods relies

on the Fourier transform and the so called Carverhill-Clewlow or Steward-Hodges factorization,

which was first applied in pricing Asian options by Carverhill and Clewlow in [17]. Since then,

Benhamou [8] proposed a re-centering scheme to alleviate the density shifting issue in backward

induction, and hence reduced the computational cost. Fusai and Meucci [42] further improved

their method using Gaussian quadrature and provided bounds for errors. Cerny and Kyriakou [68]

reversed the backward induction and analyzed the approximation error.

In the above Fourier transform based approaches, only polynomial convergence was achieved. In

this dissertation, we study a Fourier transform based approach for pricing discrete Asian options

in jump-diffusion models. In particular, exponential convergence is established theoretically and

illustrated numerically. In the theoretical part, we revisit results on the relationship between the

4

analyticity of a function and the tail behavior of its Fourier transform [34; 54; 61]. Then, we take

advantage of the powerful approximation theory for analytic functions [38; 65]. Numerical results

show that Asian options could be priced with very high accuracy. We are then able to use these as

benchmark prices when Monte Carlo simulation is used to price Asian options.

So far, we have assumed that the parameters of the option pricing models are given. In the third

part, we calibrate Lévy process models from both European and American options. The calibration

problem could be divided into two sub-problems: the forward problem, which is the option pricing

problem; and the inverse problem, which is an optimization problem. The calibration problem is

usually numerically very demanding, since the forward problem itself can only be solved numerically.

In the forward problem, a large number of options should be priced repeatedly for the purpose of

model calibration. Unless the pricing scheme is sufficiently fast and is able to price multiple options

simultaneously, the computational cost is usually too large for practical use. In this regard, Dupire

[31] type structures are particularly useful, where options with different strikes and maturities could

be priced simultaneously. Dupire type structures were initially studied for European options in

local volatility model [27; 28]. See also [25] and [50]. In this dissertation, we utilize a Dupire type

structure for American options in Lévy process models.

The inverse problem is also computationally challenging. When the least square formulation is

used, the objective function is nonlinear and non-convex. We consider global optimization methods

as well as regularization techniques. Popular regularization methods include Tikhonov regularization

and relative entropy regularization. The former one was used in calibrating local volatility models

in [26] and [50]; the latter was applied in non-parametric calibration of jump diffusion models in

[22], [23] and [24]. For more works on regularization techniques for model calibration problems, see

[32; 35; 46; 48].

In this dissertation, for the forward problem, we study a sinc based scheme for pricing European

options [65], which is fast and accurate. For American options, we revise the algorithm by Feng and

Lin in [39] for pricing Bermudan options. More specifically, we obtain multiple option prices with

different strike prices and maturities by one run of backward induction. For the inverse problem, we

use a two-step procedure, combining the global search for the original problem and the local search

for the problem with Tikhonov regularization. Finally, we carry out empirical studies to exhibit the

effectiveness of the calibration scheme.

5

Chapter 2

Analytic Characteristic Function

In this part, we first introduce an analytic class. For functions in the analytic class, very powerful

numerical approximation result could be applied to integration type of calculation for those functions.

Corresponding theory is shown in detail in [65]. When the function is characteristic function, we

could take advantage of the result in obtaining either cumulative distribution function (CDF) [38] or

probability density function (pdf) fast and accurately. Moreover, analytic characteristic function also

implies some interesting tail behavior of corresponding CDF, as shown in [54]. Furthermore, in [34]

and [61], they talk about Fourier transform theory and provide some relative result on relationship

between tail behavior of a function and the analyticity of its (inverse) Fourier transform. Besides

quote and moderate revise of the known results, new findings are also added in this part to set up

the theoretical framework serving later application purpose.

2.1 An Analytic Class Of Functions

For d± satisfying −∞ < d− < 0 < d+ < +∞, we consider the horizontal strip in the complex plane

D(d−,d+) = {z ∈ C : �(z) ∈ (d−, d+)}, where �(z) is the imaginary part of complex variable z.

Definition 2.1.1. ψ is in H(D(d−,d+)) if it is analytic in the horizontal strip D(d−,d+), absolutely

integrable on R, and satisfies:

�
d+

d−

|ψ(ξ + iy)|dy → 0, ξ → ±∞, (2.1a)

||ψ||± := lim
�→0+

�

R
|ψ(ξ + i(d± ∓ �))|dξ < +∞. (2.1b)

For the integration and transformation of functions in this analytic class, there is a powerful

approximation theory that could be applied. Here we quote three results from [38]. Readers may

refer to [38] for more details.

6

Lemma 2.1.2. (Trapezoidal rule, Theorem 2.3 in [38]) Suppose ψ ∈ H(D(d−,d+)). Then

|ET

h
(ψ, a = 0)| :=

���
� ∞

−∞
ψ(x)dx−

∞�

l=−∞
ψ(lh)h

���

≤
e−2π(−d−)/h

1− e−2π(−d−)/h
�ψ�− +

e−2πd+/h

1− e−2πd+/h
�ψ�+.

Lemma 2.1.3. (Fourier transform, Corollary 2.4 in [38]) Suppose ψ ∈ H(D(d−,d+)). Then

|EF

h
(ψ, a = 0)(x)| :=

���
�

R
eixyψ(y)dy −

∞�

l=−∞
eixlhψ(lh)h

���

≤
e−2π(−d−)/h

1− e−2π(−d−)/h
e−xd−�ψ�− +

e−2πd+/h

1− e−2πd+/h
e−xd+�ψ�+.

Lemma 2.1.4. (Hilbert transform, Corollary 2.9 in [38]) Suppose ψ ∈ H(D(d−,d+)). Then

|EH

h
(ψ, a = 0)(0)| =

���
1

π
p.v.

�

R

ψ(x)

0− x
dx−

∞�

l=−∞,l �=0

ψ(lh)
1− (−1)l

−lπ

���

≤
e−π(−d−)/h

π(−d−)(1− e−π(−d−)/h)
�ψ�− +

e−πd+/h

πd+(1− e−πd+/h)
�ψ�+.

As we can easily observe from the previous lemmas, the discretization error bounds are explicitly

given and decay exponentially in terms of 1/h, by using simple numerical schemes. These results

would be used throughout the thesis. Also, when the tail behavior of the function is known, it

is also possible to obtain error bounds for truncation errors. When combining these two types of

error bounds, we are able to compute the integrals and transforms fast and accurately using simple

numerical schemes with explicit approximation error estimates.

2.2 Analyticity and Tail Behavior

The analyticity of a function is connected to the tail behavior of its (inverse) Fourier transform.

Related results have been obtained for a long time and shown in different forms in many publications.

Here we summarize some of the results and make certain modifications of the original proofs to

serve our purpose. We begin with showing a lemma, which is an interesting and useful result: the

regularity of characteristic functions is equivalent to the finiteness of exponential moments of the

corresponding distributions. Notice that, a characteristic function φ(ξ), ξ ∈ R, is said to be analytic

if φ(z), z ∈ C, is analytic in some region, and φ(z) and φ(ξ) agree on the real line.

7

Lemma 2.2.1. The characteristic function φ(z) of a random variable X is analytic in the strip

{z ∈ C,−α < �(z) < β}, α, β > 0, if and only if E[e−yX] exists and is finite for any −α < y < β.

Proof. ”=⇒”: By analyticity, φ(z) =
�∞
−∞ eizxdF (x) exists and is finite at any point in the strip

{z ∈ C,−α < �(z) < β}. Let z = iy, where −α < y < β. Then

� ∞

−∞
eizxdF (x) =

� ∞

−∞
e−yxdF (x) = E[e−yX]

exists and is finite.

”⇐=”: Suppose E[e−yX] exists and is finite for any −α < y < β. For any z = t + iy, t ∈ R,−α <

y < β,
���
� ∞

−∞
eizxdF (x)

��� =
���
� ∞

−∞
ei(t+iy)xdF (x)

��� ≤
� ∞

−∞
e−yxdF (x) = E[e−yX].

Hence, φ(z) =
�∞
−∞ eizxdF (x) exists and is finite for −α < �(z) < β. In order to show φ(z) is

analytic in the strip, we only need to show it is differentiable. Note that

lim
z→z0

φ(z)− φ(z0)

z − z0
= lim

z→z0

� ∞

−∞

eizx − eiz0x

z − z0
dF (x),

where z0 is an arbitrary point in the analytic strip and z is in a small enough neighborhood of z0.

To change the order of limit and integration, we need to use the dominated convergence theorem.

And here we need to take advantage of the complex mean-value theorem as shown in [36], which

states that, suppose Ω is an open convex set in C, then for holomophic function f : Ω → C, suppose

a and b are distinct points in Ω . Then there exist points z1 and z2 on the straight line connecting

a and b not containing the endpoints, such that

�(
f(b)− f(a)

b− a
) = �(f �(z1)), �(

f(b)− f(a)

b− a
) = �(f �(z2)).

In our case, f(z) = eizx, and if we define z = u+ iv, then

f �(z) = ixeizx = ixei(u+iv)x = ix[cos(ux) + i sin(ux)]e−vx

= −x sin(ux)e−vx + ix cos(ux)e−vx.

And

eizx − eiz0x

z − z0
= �(

eizx − eiz0x

z − z0
) + i�(

eizx − eiz0x

z − z0
) = −x sin(u1x)e

−v1x + ix cos(u2x)e
−v2x,

8

for some z1 = u1 + iv1 and z2 = u2 + iv2 in the line segment of z and z0. Hence,

|
φ(z)− φ(z0)

z − z0
| ≤

� ∞

−∞
|
eizx − eiz0x

z − z0
|dF (x) ≤

� ∞

−∞
(|x|e−v1x + |x|e−v2x)dF (x) < ∞.

Now we explain why the last inequality holds. For any z0 fixed, if we let y0 = �(z0), since −α <

v1, v2 < β, we can choose a δ > 0 small enough, for example, δ = min(|α− y0|, |β− y0|)/2, such that

when z is in the δ neighborhood of z0, we know v1 − δ, v1 + δ, v2 − δ, v2 + δ are still in (−α, β).

Then we can use e±δx to control |x| while the rest part is still be controlled by F (x). To be more

specific, consider
�∞
0 |x|e−v1xdF (x). We divide e−v1x by two parts: e−δx is used to control |x|, and

e−(v1−δ)x is controlled by F (x). Then, the integral
�∞
0 |x|e−v1xdF (x) is finite. We can deal with

other three cases in the same manner. Then we know φ(z) is differentiable and hence represents an

analytic function in the strip −α < �(z) < β.

Now we states the first theorem, which shows the relationship between the tail behavior of a CDF

and the analyticity of the corresponding characteristic function. It is originally from Theorem 7.2.1

in [54]. Here we follow their proof and extend it to more general situation by allowing asymmetric

analytic strip.

Theorem 2.2.2. The characteristic function φ(ξ) of a distribution function F (x) is an analytic

characteristic function if and only if there exists two positive constants α and β such that

(i) 1− F (x) = o(e−rx) as x → ∞

holds for all 0 < r < α, and

(ii) F (−x) = o(e−rx) as x → ∞.

holds for all 0 < r < β. The strip of regularity of φ(z) contains then the strip −α < �(z) < β.

Remark 2.2.3. The condition is equivalent to

(i) 1− F (x) = O(e−(α−�)x) as x → ∞;

(ii) F (−x) = O(e−(β−�)x) as x → ∞.

for any positive �.

Proof. We first prove the sufficient condition. Let y, r in R such that −α < −r < y < 0, and let

9

k ≥ 1 be a positive integer. By condition (i) we know 1−F (k− 1) = o(e−r(k−1)) as k → ∞. Hence,

there exists a constant C and K large enough, such that 1−F (k−1) ≤ Ce−rk for any k ≥ K. Then

�
k

k−1
e−yxdF (x) ≤ e−yk[1− F (k − 1)] ≤ Ce−k(r+y) for k ≥ K.

We choose a real number x0 ≥ K. Then for any M > 0,

�
x0+M

x0

e−yxdF (x) ≤
∞�

k=K

�
k

k−1
e−yxdF (x) ≤ C

∞�

k=K

e−k(r+y) =
Ce−(r+y)K

1− e−(r+y)
.

The last term can be made arbitrarily small when K is sufficiently large. Therefore, the integral

� ∞

0
e−yxdF (x)

exists and is finite for −α < y < 0. And it is obvious that the integral exists and is finite for all

y ≥ 0. To sum up, for all y > −α, we have the integral exists and is finite.

Similarly, for any 0 < y < β, we have:

� −k+1

−k

e−yxdF (x) ≤ eykF (−k + 1),

And for y < r < β, from (ii) we know that for large enough C � and K �, when k > K �, we have

F (−k + 1) ≤ C �e−rk. Then for x�
0 > K � and M � > 0,

� −x
�
0

−x
�
0−M �

e−yxdF (x) ≤
C �e−(r−y)K�

1− e−(r−y)
.

By the same argument, we know the integral

� 0

−∞
e−yxdF (x)

exists and is finite for 0 < y < β. Also, it is obvious that the integral exists and is finite for any

y ≤ 0. Hence, it also exists and is finite for all y such that y < β.

Combining this with the earlier result, we know
�∞
−∞ e−yxdF (x) exists and is finite for any y such

that −α < y < β. Hence, by lemma 2.2.1, φ(z) represents a regular analytic function.

Then we prove the necessary condition. Suppose the characteristic function φ(z) =
�∞
−∞ eizxdF (x)

10

is a characteristic function analytic in the strip −α < �(z) < β. Let x > 0, then by lemma 2.2.1

the two integrals � ∞

x

e−yudF (u) and

� −x

−∞
e−yudF (u)

exist and are finite for all −α < y < β. Moreover, the first integral also exists and is finite for all

y > 0 and hence is finite for all y > −α (or −y < α). The second integral also exists and is finite

for all y < 0 and hence is finite for all y < β. If we choose r, δ > 0, such that 0 < r < r + δ < α.

Then ∃C > 0 such that:

C >

� ∞

x

e(r+δ)udF (u) ≥ e(r+δ)x[1− F (x)] ≥ 0,

which implies 1− F (x) ≤ Ce−(r+δ)x. Hence

0 ≤ [1− F (x)]erx ≤ Ce−δx.

The last expression goes to zero as x → ∞, so that 1−F (x) = o(e−rx) as x → ∞. Hence, (i) holds.

Similarly, we can prove (ii) also holds. Take 0 < r < r + δ� < β, then

C � >

� −x

−∞
e−(r+δ

�)udF (u) ≥ e(r+δ
�)xF (−x) ≥ 0

Hence

0 ≤ F (−x)erx ≤ C �e−δ
�
x.

so, F (−x) = o(e−rx) as x → ∞, for any 0 < r < β.

Not only distribution functions but also probability density functions have close relationship with

their characteristic functions. And in a more general setting, here we introduce the tail behavior

and analyticity relationship between functions and their Fourier transforms. Following we quote

partial results and proof of theorem 26 in [34] without modification.

Theorem 2.2.4. Let z = x+ iy, f(z) be an analytic function, regular for −a < y < b, where a > 0,

b > 0. If f(z) satisfies the following

f(z) =






O(e−(λ−�)x) as x → ∞;

O(e(µ−�)x) as x → −∞

11

for any −a < y < b and every positive �, λ and µ. Then f̂(ω) =
�∞
−∞ f(x)eixωdx satisfies conditions

similar to those imposed on f(z), with a, b, λ, µ replaced by λ, µ, b, a.

Proof. Let ω = u+iv, then the integral f̂(ω) =
�∞
−∞ f(x)eixωdx converges uniformly for −λ < v < µ.

Hence f̂(ω) is analytic in this strip. By Cauchy’s theorem, the integral on real axis could be replaced

by corresponding integral on any parallel line. Then:

f̂(ω) =

� ∞

−∞
f(x+ iy)ei(x+iy)(u+iv)dx = O(e−yu),

and then take y close to −a or b, we know the tail behavior of f̂(ω).

Remark 2.2.5. Notice that in order to show f̂(ω) is analytic in a strip, exponentially decaying tail

behavior of f(z) on real axis would be sufficient. And the proof can be easily derived following same

argument used in Lemma 2.2.1.

The following theorem shows that the analyticity of functions could imply exponentially decaying

tail behavior of their inverse Fourier transforms if some minor integrability conditions are posed.

Theorem 2.2.6. Let ω = u + iv, if (i) f̂(ω) is analytic in −α < v < β; (ii) f̂(· + iv) ∈ L1(R) in

the analytic strip; (iii) limu→±∞
�
β

−α
|f̂(u+ iv)|dv = 0. Then

f(x) =






O(e−(α−�)x) as x → ∞;

O(e(β−�)x) as x → −∞

Proof. Since f̂(ω) is analytic in −α < v < β, by Cauchy’s theorem and the fact that

lim
u→±∞

�
β

−α

|f̂(u+ iv)|dv = 0

we have:

f(x) =
1

2π

� ∞

−∞
f̂(u)e−iuxdu =

1

2π

� ∞

−∞
f̂(u+ iv)e−i(u+iv)xdu

=
1

2π

� ∞

−∞
f̂(u+ iv)e−iuxevxdu = O(evx)

The last equality is true because �f̂(· + iv)�1 < ∞. If we let x → ∞ and take v → −α, then we

have f(x) = O(e−(α−�)x); if we let x → −∞ and take v → β, then we have f(x) = O(e(β−�)x).

12

Remark 2.2.7. Since

f(x) =
1

2π

� ∞

−∞
f̂(u+ iv)e−iuxevxdu =

1

2π

�� ∞

−∞
f̂(u+ iv)e−iuxdu

�
· evx,

we know

|f(x)| ≤
1

2π

�� ∞

−∞
|f̂
�
u+ i(−α+ �)

�
|du

�
· e(−α+�)x

and

|f(x)| ≤
1

2π

�� ∞

−∞
|f̂
�
u+ i(β − �)

�
|du

�
· e(β−�)x

are satisfied for ∀� > 0. Take � → 0, we have |f(x)| ≤ 1
2π�f̂�

−e−αx and |f(x)| ≤ 1
2π�f̂�

+eβx.

Remark 2.2.8. In above deductions, we only require f̂(·+ iv) ∈ L1(R) for v close to β and −α. In

this case, the conditions posed on f̂(ω) is essentially f̂(ω) ∈ H(D(−α,β)).

If we add stronger condition by further assuming f̂(·+iv) has exponentially decaying tail behavior

near its analytic boundary, then we can obtain more general result on tail behavior of f(z), where

z = x+ iy is a complex variable, as shown in the following proposition.

Proposition 2.2.9. Let ω = u+ iv, then if (i) f̂(ω) is analytic in −α < v < β; (ii) in the analytic

strip (close to its boundary), we have

f̂(u+ iv) =






O(e−(a−�)u) as u → ∞;

O(e(b−�)u) as u → −∞;

(iii) limu→±∞
�
β

−α
|f̂(u + iv)|dv = 0. Then, for any z = x + iy, where −a < y < b, a, b > 0, we

have:

f(z) =






O(e−(α−�)x) as x → ∞;

O(e(β−�)x) as x → −∞.

Proof. Since f̂(ω) is analytic in −α < v < β, by Cauchy’s theorem, we have:

f(z) =
1

2π

� ∞

−∞
f̂(u)e−iuzdu =

1

2π

� ∞

−∞
f̂(u+ iv)e−i(u+iv)(x+iy)du

=
1

2π

� ∞

−∞
f̂(u+ iv)euye−iuxe−ivyevxdu = O(evx)

The last equation holds because the fact that f̂(u+iv)euy is absolutely integrable for any −a < y < b

(when v close to −α or β). If we let x → ∞ when v → −α, then we have f(z) = O(e−(α−�)x); if we

13

let x → −∞ when v → β, then we have f(z) = O(e(β−�)x) are satisfied for any −a < y < b.

To summarize, the results we presented here are essentially about functions which are analytic

in a strip in the complex plane. The analyticity condition of those functions is usually equivalent to

the exponentially decaying tail behavior of their (inverse) Fourier transforms. If stronger condition

for those functions is provided, for example, the original functions may have compact support, then

the resulting Fourier transforms would be entire in the complex plane. The related theory is called

Schwartz’s Paley-Wiener theorem and is mentioned in [61].

14

Chapter 3

Simulation From Analytic
Characteristic Functions

As well as its application in science and engineering, Monte Carlo (MC) simulation plays an impor-

tant role in computational finance these years. Comparing with other popular methods like PDE

or transform methods, MC simulation can be applied in solving high dimensional problems. Also,

in its application on derivative pricing, only minor modifications is required to fit different type of

contracts. In contrast, large amount of extra work is inevitable if other methods are used. On the

other hand, the main drawback of MC simulation is its computational speed, which is due to its

slow convergence rate. Monte Carlo simulation is known to converge in a rate of square root, which

is very slow comparing with the second order convergence of PDE methods and at least polynomial

or even exponential convergence rate of transform methods. However, there are certain techniques

could be applied to accelerate the computation of MC simulation, for example, variance reduction

techniques or quasi-Monte Carlo.

In this chapter, we will propose a method by which we could effectively simulate from analytic

characteristic function. We will show that this method could be easily combined with various

variance reduction techniques to reduce computational cost. Moreover, a theoretical framework

will be developed for error estimation, by which explicit error bound for the bias can be derived.

Then, we illustrate our method by pricing different type of options in Lévy process models, where

comparison with other simulation methods is demonstrated.

3.1 The Inverse Transform Method

Options in derivative market can usually be categorized by vanilla type options like European option

as well as exotic ones. Path-dependent options are even more difficult to price among their exotic

peers. As the name shows, the path-dependent option prices depend not only on the underlying

asset price at maturity, but also on the whole path of price trajectory. However, in real world

market, it is not possible to generate and keep track of continuous price path, hence instead, only

15

prices at discrete monitoring dates are taking into account. In order to do option pricing, we are

trying to estimate the following type of expectation:

E[f(Xt1 , ..., Xtd)] (3.1)

where t1, ..., td are d monitoring dates. And Xt is a stochastic process. Here, for illustration purpose,

we assume it follows Lévy process. European option is then a trivial example where d = 1 and td = T

the option maturity.

Monte Carlo simulation takes advantage of the LLN (law of large number) by simulating N

paths of the underlying asset price. Hence, N sample of f(Xi

t1
, ..., Xi

td
) are generated. And the

approximation to the expectation (3.1) is given by:

E[f(Xt1 , ..., Xtd)] ≈
1

N

N�

i=1

f(Xi

t1
, ..., Xi

td
)

For Lévy process, since it has independent increments property, the path dependent problem could

be easily reduced to simulate individual Lévy increments. To be more specific, since Lévy process

Xt begins at X0 = Xt0 = 0, if we define ∆Xtk = Xtk −Xtk−1 , then, we only need to simulate Lévy

increments ∆Xtk , k is from 1 to d.

3.1.1 Simulating From Tabulated CDF

First, we introduce the inverse transform method for simulation, which is a classic method has

long been used. Assume random variable X has distribution function F (x). Then, in order to

simulate from X, one only need to simulate standard uniform random variable Ui ∼ [0, 1]. Then,

Xi = F−1(Ui) follows F (x). Here then the difficulty comes from the derivation of F−1, which is

often unavailable. We will then follow the same approach by Glasserman and Liu in [44; 45]. They

utilized a traditional method by storing the CDF value in the following type of table:




x0 x1 · · · xK

F̂0 F̂1 · · · F̂K



 . (3.2)

Here is the procedure of doing that: first, the domain of the CDF is truncated to the close interval

[x0, xK]. Then, this finite domain is divided into K equally spaced subintervals [xk, xk+1], k =

0, 1, ...K − 1. Each interval is η = (xK − x0)/K in length. Then, the CDF value at those K + 1

16

points are estimated by numerical methods. And the approximated CDF value F̂k is stored in the

table coupled with the corresponding xk value, for k = 0, 1, ...K.

Since F−1 and/or F is usually unknown, instead of applying inverse transform method directly

on distribution F , we consider using an approximation distribution F̂ instead. Here F̂ is derived

from the stored table (3.2):

F̂ (x) =






0, x < x0

F̂k−1 +
F̂k−F̂k−1

η
(x− xk−1), xk−1 ≤ x < xk, 1 ≤ k ≤ K

1, x ≥ xK

. (3.3)

We first generate random sample from standard uniform random variable Ui ∼ [0, 1]. Then we

search in the increasing probability sequence F̂k, k = 0, 1, ...,K to find a fitting for Ui such that

F̂k ≤ Ui < F̂k+1. Once the fitting interval is found, the random sample Xi could be generated by

Xi = xk +
xk+1 − xk

F̂k+1 − F̂k

(Ui − F̂k). (3.4)

For the special cases when 0 ≤ Ui < F̂0, we set Xi = x0; when F̂K ≤ Ui < 1, we set Xi = xK .

In this case, Xi follows distribution F̂ instead of F . It is apparent that bias has been introduced

during this process. And there are three types of error:

1. The truncation error introduced from truncating the domain of the CDF, which is related to

x0 and xK ;

2. The interpolation error introduced when we use linear interpolation scheme (3.4), which de-

pends on η (or K), the subinterval length;

3. the approximation error introduced when using F̂k to approximate F (xk), which depends on

the numerical scheme used.

In the next section, we will introduce the Hilbert representation we used to approximate the prob-

ability values. And we will further discuss the bias estimation later.

Remark 3.1.1.

• Binary search could be used to find the fitting interval, and the computational complexity is

approximately log2(K).

17

• When we are trying to estimate E[f(X)] in applications, some of the function f would have

the following property: f(x) = 0 for x ≤ z0 or x ≥ z0. In this case, we can safely take x0 = z0

or xK = z0. For example, in option pricing, for European options, z0 = ln(K/S0).

3.1.2 Hilbert Representation for CDF

In our application, the CDF F (x) is usually unknown, not even mention its inverse function F−1.

However, thanks to the dedicated Lévy -Khinchine formula for infinitely divisible distributions, the

characteristic function is usually explicitly given. There are many existing method to obtain CDF

values by inverting characteristic function. Here we use the one proposed by Feng and Lin in [38].

Their method is based on the following Hilbert representation for CDF:

F (x) =
1

2
−

i

2
H(e−iξxφ(ξ))(0). (3.5)

And the representation could be approximated by using Trapezoidal’s rule with discretization step

h and truncation level M :

Fh,M (x) =
1

2
+

i

2

M�

m=−M

e−ix(m−1/2)hφ((m− 1/2)h)

(m− 1/2)π
. (3.6)

The most important advantage of this scheme is that its numerical error decays very fast under

certain conditions. When the corresponding characteristic function φ falls in the analytic class

H(D(d−,d+)) as we introduced in section 2.1, its discretization error decays exponentially in 1/h.

And its truncation error depends on the tail behavior of φ. Usually, there are two typical tail

behaviors that are imposed on φ in our application, the exponential tail:

|φ(ξ)| ≤ κ exp(−c|ξ|ν), ξ ∈ R. (3.7)

or the polynomial tail:

|φ(ξ)| ≤
κ

|ξ|ν
, ξ ∈ R. (3.8)

Here c, ν, κ are all positive constants. For the former type, the truncation error is of orderO(e−c(Mh)ν);

and for the latter type, the truncation error is of order O((Mh)−ν). We summarize and end this

section by quoting the following theorem in [20], where it was presented without proof. And the

idea of the theorem was originally from [38], with a little modification.

18

Theorem 3.1.2. Let F (x) and φ(ξ) be the cdf and the characteristic function of a continuous

distribution. Suppose that φ ∈ H(D(d−,d+)). Then

F (x) =
1

2
−

i

2
H(e−iξxφ(ξ))(0). (3.9)

For any a ∈ (d−, 0),

1− F (x) = eax
�

R

e−ixξφ(ξ + ia)

2πi(ξ + ia)
dξ. (3.10)

For any a ∈ (0, d+),

F (x) = eax
�

R

e−ixξφ(ξ + ia)

−2πi(ξ + ia)
dξ. (3.11)

If φ satisfies (3.7) for some c, ν, κ > 0, then for any h > 0 and integer M ≥ 1,

|F (x)− Fh,M (x)| ≤
e−2π|d−|/h+xd−

2π|d−|(1− e−2π|d−|/h)
||φ||− +

e−2πd+/h+xd+

2πd+(1− e−2πd+/h)
||φ||+

+
κ

2π

� 1

M
+

2

νc(Mh)ν

�
e−c(Mh)ν . (3.12)

If φ satisfies (3.8) for some ν, κ > 0, then for any h > 0 and integer M ≥ 1,

|F (x)− Fh,M (x)| ≤
e−2π|d−|/h+xd−

2π|d−|(1− e−2π|d−|/h)
||φ||− +

e−2πd+/h+xd+

2πd+(1− e−2πd+/h)
||φ||+

+
κ

π

� 1

M
+

2

ν

� 1

(Mh)ν
. (3.13)

Proof. Representations (3.9)-(3.11) follow from Theorem 3.1 in [38]. The discretization error in

(3.12) and (3.13) follows from the proof of Corollary 2.9 in [38]. And the truncation error bound in

(3.12) can be derived through the following:

|Fh,∞(x)− Fh,M (x)| =
� ∞�

m=M+1

+
−M−1�

m=−∞

�
|φ((m− 1/2)h)|

π|m− 1/2|

≤

∞�

m=M+1

κe−c((m−1)h)ν

(m− 1)π
+

−M−1�

m=−∞

κe−c(−mh)ν

−mπ

=
κe−c(−mh)ν

Mπ
+

∞�

m≥M+1

2κe−c(−mh)ν

mπ

≤
κ

π

� 1

M
+

2

νc(Mh)ν

�
e−c(Mh)ν .

19

Then, the truncation error in (3.13) is obtained by:

|Fh,∞(x)− Fh,M (x)| =
� ∞�

m=M+1

+
−M−1�

m=−∞

�
|φ((m− 1/2)h)|

π|m− 1/2|

≤

∞�

m=M+1

κ

π(m− 1)((m− 1)h)ν
+

−M−1�

m=−∞

κ

−πm(−mh)ν

=
κh

π(Mh)ν+1
+

∞�

m=M+1

2κh

π(mh)ν+1

≤
κh

π(Mh)ν+1
+

2κ

π

� ∞

Mh

1

xν+1
dx =

κ

π

� 1

M
+

2

ν

� 1

(Mh)ν
.

We thus obtain the results in the theorem.

Then, with this result, we are able to quantify the third one among those three type of errors

introduced before. And even more interesting, the error decays very fast and is explicitly given.

Hence, we can control the error to be less than any given tolerance level by choosing h and M

properly.

3.1.3 Randomized quasi Monte Carlo

In our problem, in order to estimate (3.1), we apply Monte Carlo simulation in the following way:

E[f(Xt1 , ..., Xtd)] ≈
1

N

N�

i=1

f(Xi

t1
, ..., Xi

td
) ≈

1

N

N�

i=1

gi(U
i

1, ..., U
i

d
).

Here for each sample of gi, d standard uniform random variables U i

1, ..., U
i

d
need to be generated.

Instead of using pseudo-random number sequence, quasi Monte Carlo sequences could be applied.

In fact, both quasi and ordinary Monte Carlo methods try to estimate the integral of a function by

an average function value:
�

[0,1]d
f(u)du ≈

1

N

N�

i=1

f(ui).

Hence, more evenly uis are scattering in the [0, 1]d space, better the approximation result should

be. Since the quasi Monte Carlo is predetermined, usually it is designed in such a way that it has

lower ”discrepancy”: a mathematical term used to estimate how evenly the sequence lying in the

target space. To be more specific, as shown in [43]:

D(u1, ..., uN ;A) = sup
A∈A

|
#{ui ∈ A}

n
− vol(A)|,

20

where #{ui ∈ A} denotes the number of sample ui contained in A. And vol(A) is the measure of A.

This explains the fact that quasi Monte Carlo sequence is usually called low discrepancy sequence.

According to [4], one of the most important advantage of low discrepancy sequence is that it has a

convergence rate close to O(1/N), much faster than O(1/
√
N) for ordinary Monte Carlo.

On the other hand, quasi Monte Carlo also has certain drawbacks, for example, the variance is

hard to estimate since the sequence is predetermined. In this case, randomized quasi Monte Carlo

method could be applied to alleviate this problem. And in this view of point, quasi Monte Carlo

methods could be taken as a variance reduction technique [43]. Among methods in randomized quasi

Monte Carlo, we choose digital shift method in our implementation [51; 52]. The idea of digital

shift method is very simple, for a generated low discrepancy sequence {ui

1, ..., u
i

d
}, we generate

an i.i.d standard uniform random variable sequence {vj1, ..., v
j

d
} by ordinary method. And then,

the exclusive-or operation ⊕ is conducted between each (u, v) pair to generate the following new

sequence:

{ui

1 ⊕ vj1, · · · , u
i

d
⊕ vj

d
}, 1 ≤ i ≤ N0.

For each j fixed, we obtain one estimation by taking average of N0 samples. And we repeat this

process for L times, that is j = 1, 2, ..., L. Then the standard error could be estimated from the L

estimations. And to sum up, N = N0L samples in total are generated to estimate the expectation

(3.1). Here we would like to mention that Sobol’s sequence is used as our low discrepancy sequence

to generate {ui

1, ..., u
i

d
} for 1 ≤ i ≤ N0. And it is verified in [43] the good performance of Sobol’s

sequence in financial applications.

3.2 Bias Estimation

In this part, we further discuss the error introduced when we replace F with F̂ . First we provide

a error bound for the total bias, which depends on those three error sources we discussed before

in section (3.1.1): (i) the truncation level x0 and xK ; (ii) the number of subinterval K or the

subinterval length η, which could be also explained as the fineness of the grid; (iii) the estimation

error caused by using F̂k to approximate F (xk). After that, we discuss the specific situation where

the Hilbert representation is used to calculate the CDF values. In this case, we are able to provide

an explicit and computable error bound for the bias, which will be applied in our further discussion

of numerical results. We will also consider the situation in high dimensional setting.

21

3.2.1 The total error bound

The main result is provided in the following theorem, which was developed by Chen, Feng and

Lin in [20]. Before that, we introduce the notations used in the theorem. The approximation of

distribution function F is F̂ , which was defined in (3.3). Then the corresponding probability density

function has the following form:

p̂(x) = F̂0 · δ(x− x0) + (1− F̂K) · δ(x− xK) +
1

η

K�

k=1

(F̂k − F̂k−1) · 1(xk−1,xk)(x). (3.14)

And we use the following notations:

|X | = xK − x0, ||f ||X = sup
x∈X

|f(x)|,

||f �
||X = ess sup

x∈X |f �(x)|, ||p�||X = ess sup
x∈X |p�(x)|,

EX = sup
x∈X

|F (x)− F̂ (x)|.

The theorem is listed below:

Theorem 3.2.1. Consider a continuous random variable X with cumulative distribution function

F (x) and density p(x). Let {x0, x1, · · · , xK} be a uniform grid with step size η = (xK − x0)/K

for some positive integer K. Let X̂ be a random variable with distribution function F̂ (x) defined

as in (3.3). Suppose f(x) is differentiable in
�

K

i=1(xi, xi−1) except at nf points, and ||f �||X < ∞,

||f ||X < ∞. p(x) is bounded on X , differentiable in
�

K

i=1(xi, xi−1), and ||p�||X < ∞. Then

|E[f(X)]− E[f(X̂)]| ≤ |f(x0)|F (x0) + |f(xK)|(1− F (xK)) +
��

x0

−∞
+

� ∞

xK

�
|f(x)|p(x)dx

+
1

K2
||f �

||X ||p�||X |X |
3 (3.15)

+
�
|f(x0)|+ |f(xK)|+ 2(K + nf)||f ||X + 2||f �

||X |X |
�
EX .

22

Proof. The bias is given by

E[f(X)]− E[f(X̂)] =

�

R
f(x)p(x)dx−

�

R
f(x)p̂(x)dx

=

�

R
f(x)p(x)dx−

�
xK

x0

f(x)p̂(x)dx− f(x0)F̂0 − f(xK)(1− F̂K)

=
K�

k=1

�
xk

xk−1

f(x)(p(x)− p̂(x))dx+
��

x0

−∞
+

� ∞

xK

�
f(x)p(x)dx

−f(x0)F̂0 − f(xK)(1− F̂K). (3.16)

If f(x) is differentiable in (xk−1, xk), then for any x ∈ (xk−1, xk), by the mean value theorem, there

exists ξk(x) ∈ (xk−1, x) such that

���
�

xk

xk−1

f(x)(p(x)− p̂(x))dx
��� =

���
�

xk

xk−1

(f(xk−1+) + f �(ξk(x))(x− xk−1))(p(x)− p̂(x))dx
���

≤ ||f ||X · |Fk − F̂k − (Fk−1 − F̂k−1)|

+ ||f �
||X · η ·

�
xk

xk−1

|p(x)− p̂(x)|dx

≤ 2 · ||f ||X · EX + ||f �
||X · η ·

�
xk

xk−1

|p(x)− p̂(x)|dx.

Here f(xk−1+) is the right limit of f at xk−1, which is finite by the assumptions. In general, if f(x)

is not differentiable at nf

k
points in (xk−1, xk), where

�
K

k=1 n
f

k
= nf , it can be shown in the same

way as above that

���
�

xk

xk−1

f(x)(p(x)− p̂(x))dx
��� ≤ 2(nf

k
+ 1) · ||f ||X · EX + ||f �

||X · η ·

�
xk

xk−1

|p(x)− p̂(x)|dx.

Note that

�
xk

xk−1

|p(x)− p̂(x)|dx =

�
xk

xk−1

|p(x)−
Fk − Fk−1

η
+

Fk − Fk−1

η
−

F̂k − F̂k−1

η
|dx

≤ |Fk − F̂k − (Fk−1 − F̂k−1)|+

�
xk

xk−1

|p(x)−
Fk − Fk−1

η
|dx

≤ 2EX +

�
xk

xk−1

|p(x)−
Fk − Fk−1

η
|dx.

However, we have the following:

�
xk

xk−1

|p(x)−
Fk − Fk−1

η
|dx =

1

η

�
xk

xk−1

���
�

xk

xk−1

(p(x)− p(y))dy
���dx.

23

Since p(x) is differentiable in (xk−1, xk), using the mean value theorem again, for any x �= y in

(xk−1, xk), there exists ξk(x, y) ∈ (x, y) such that

p(y) = p(x) + p�(ξk(x, y))(y − x).

Therefore, �
xk

xk−1

|p(x)− p̂(x)|dx ≤ 2EX + ||p�||X · η2.

Consequently,

���
K�

k=1

�
xk

xk−1

f(x)(p(x)−p̂(x))dx
��� ≤ 2EX

�
(K+nf)||f ||X +||f �

||X (xK−x0)
�
+||f �

||X ||p�||X (xK−x0)η
2.

As for the last two terms in (3.16), we have

|f(x0)F̂0| ≤ |f(x0)|(EX + F0), |f(xK)(1− F̂K)| ≤ |f(xK)|(EX + 1− FK).

Combining the above, we obtain (3.15).

Remark 3.2.2. The total error bound is separated into three parts by three different lines in (3.15).

To control the total bias less than any given tolerance level �, we can do the following: first, we

choose x0 and xK properly so that the first line is less than �/3; then fix the chosen x0 and xK , we

can choose the corresponding K such that the second line in (3.15) is less than �/3; finally, for the

given set of x0, xK and K, we can decide the value of EX to make the third error line less than �/3.

3.2.2 Error bound when using Hilbert representation

In this part, we consider using the Hilbert representation method to approximate the CDF value.

More specifically, (3.6) is used. And hence, F̂k = Fh,M (xk), and EX is now replaced by:

Eh,M,X = sup
x∈X

|F (x)− Fh,M (x)|.

And of course, we assume the characteristic function φ falls in certain analytic class H(D(d−,d+)),

and one of the tail behavior requirement (3.7) or (3.8) is satisfied as well. The following theorem

summarizes the result we have, and was originally shown in [20].

Theorem 3.2.3. Consider a continuous random variable X with characteristic function φ. Let

24

{x0, x1, · · · , xK} be a uniform grid with step size η = (xK − x0)/K for some positive integer K.

Suppose φ ∈ H(D(d−,d+)) for some −∞ < d− < 0 < d+ < ∞, and satisfies (3.7) for some ν > 0

or (3.8) for some ν > 2. Let X̂ be a random variable with distribution function F̂ defined in (3.3),

where F̂k is given by Fh,M (xk) defined in (3.6). Suppose f is differentiable in
�

K

i=1(xi, xi−1) except

at nf points, and ||f ||X < ∞, ||f �||X < ∞. Then

|E[f(X)]− E[f(X̂)]| ≤
||φ||−

2π

�� ∞

xK

|f(x)|exd−dx+
1

|d−|
|f(xK)|exKd−

�

+
||φ||+

2π

��
x0

−∞
|f(x)|exd+dx+

1

d+
|f(x0)|e

x0d+

�
(3.17)

+
1

2πK2
||f �

||X |X |
3

�

R
|ξφ(ξ)|dξ

+
�
|f(x0)|+ |f(xK)|+ 2(K + nf)||f ||X + 2||f �

||X |X |
�
Eh,M,X .

Proof. Let F be the cdf of X. According to Theorem 3.2.1, the bias is bounded by (3.15). If

φ ∈ H(D(d−,d+)), from (3.11), for any a ∈ (0, d+), we have

f(x0)F (x0) = f(x0)

�

R

e−ix0(ξ+ia)φ(ξ + ia)

−2πi(ξ + ia)
dξ = f(x0)

� +∞+ia

−∞+ia

e−ix0zφ(z)

−2πiz
dz.

Since the integrand above is analytic in {z ∈ C : �(z) ∈ (0, d+)}, using the condition (2.1) and

Cauchy’s integral theorem, for any � > 0 such that d+ − � > a, we have

f(x0)F (x0) = f(x0)

� +∞+i(d+−�)

−∞+i(d+−�)

e−ix0zφ(z)

−2πiz
dz = f(x0)e

(d+−�)x0

�

R

e−ix0ξφ(ξ + i(d+ − �))

−2πi(ξ + i(d+ − �))
dξ.

Let � ↓ 0, we obtain

|f(x0)F (x0)| ≤
||φ||+

2πd+
|f(x0)|e

x0d+ .

Note that the probability density p(x) admits the following inverse Fourier transform representation:

p(x) =
1

2π

�

R
e−izxφ(z)dz.

By Cauchy’s integral theorem and the condition (2.1), for any � > 0 such that d+ − � > 0, we have

p(x) =
1

2π

� +∞+i(d+−�)

−∞+i(d+−�)
e−izxφ(z)dz = e(d+−�)x

�

R

1

2π
e−ixξφ(ξ + i(d+ − �))dξ.

25

Consequently, �
x0

−∞
|f(x)|p(x)dx ≤

||φ||+

2π

�
x0

−∞
|f(x)|exd+dx.

Similarly, using the representation (3.10), we have the following:

|f(xK)|(1− F (xK)) ≤
||φ||−

2π|d−|
|f(xK)|exKd− ,

� ∞

xK

|f(x)|p(x)dx ≤
||φ||−

2π

� ∞

xK

|f(x)|exd−dx.

Since ξφ(ξ) is absolutely integrable on R by the assumptions on φ,

p�(x) =
1

2π

d

dx

�

R
e−iξxφ(ξ)dξ =

1

2πi

�

R
e−iξxξφ(ξ)dξ,

where the interchange of the integration and differentiation is valid due to the dominated convergence

theorem. Therefore,

||p�||X ≤
1

2π

�

R
|ξφ(ξ)|dξ.

Combining the above, we obtain the bound for the bias in (3.17).

Remark 3.2.4.

• We can see that the first line in (3.15) has been separated into two lines in (3.17). And actually,

the first line only depends on xK and the second line only depends on x0. In this case, we can

choose x0 and xK separately such that both terms are less than a predetermined tolerance

level, for example �/4.

• When certain condition of φ is satisfied, as listed in the theorem, the Hilbert representation

method shown in theorem 3.1.2 is very accurate. Hence, Eh,M,X could be smaller than 1E-10.

In this case, we can set the third term in the error bound to be less than 0.01�, so as to give

more freedom to the first two types of error, say, instead of �/3, we can set them to be less

than �/2.

3.2.3 The multidimensional case

For the multidimensional case, we can still work out an error bound for the total bias, which has

similar form as the single dimensional case. However, constants in the error bound is hard to

calculate in practice when the dimension d is very large. To solve this problem, we can try different

26

values of � until we observe the desired convergence. We will see later in numerical examples that

this procedure works very well. As before, we first quote the result from [20] directly:

Theorem 3.2.5. Let Xi, 1 ≤ i ≤ d, be d independent random variables with distributions F (i) and

densities pi. For 1 ≤ i ≤ d, let {x(i)
0 , · · · , x(i)

Ki
} be a uniform grid with step size ηi = (x(i)

Ki
−x(i)

0)/Ki

for some integer Ki > 0. Let X̂i, 1 ≤ i ≤ d, be d independent random variables with distributions

F̂ (i) defined in (3.3) on Xi = [x(i)
0 , x(i)

Ki
]. For any 1 ≤ i ≤ d, f(x1, · · · , xd) as a function of xi is

differentiable in Xi except at up to nf points, and both |f(x1, · · · , xd)| and |df(x1, · · · , xd)/dxi| are

bounded by g1(x1)g2(x2) · · · gd(xd) for some gi ≥ 0. For 1 ≤ i ≤ d, gi is differentiable in Xi except

at up to nf points and

||gi||
∗
Xi

= max
�
sup
x∈Xi

|gi(x)|, ess supx∈Xi
|g�

i
(x)|

�
< ∞.

Denote ||pigi||1 =
�
R pi(x)gi(x)dx, 1 ≤ i ≤ d. Define

Bi = gi(x
(i)
0)F (i)(x(i)

0) + gi(x
(i)
Ki

)(1− F (i)(x(i)
Ki

)) +
��

x
(i)
0

−∞
+

� ∞

x
(i)
Ki

�
gi(x)pi(x)dx

+
1

K2
i

||gi||
∗
Xi
||p�

i
||Xi |Xi|

3 (3.18)

+
�
gi(x

(i)
0) + gi(x

(i)
Ki

) + 2(Ki + nf)||gi||
∗
Xi

+ 2||gi||
∗
Xi
|Xi|

�
EXi ,

where ||p�
i
||Xi , |Xi|, EXi are defined similarly as in Theorem 3.2.1. Let B = max(B1, · · · , Bd). Then

there exist constants ai > 0, 0 ≤ i ≤ d− 1, independent of B such that

|E[f(X1, · · ·Xd)]− E[f(X̂1, · · · , X̂d)]| ≤ B(a0 + a1B + · · ·+ ad−1B
d−1). (3.19)

Proof. Denote the density of F̂ (i) by p̂i. From Theorem 3.2.1, we have the following for any 1 ≤ i ≤ d:

�

R
gi(x)p̂i(x)dx ≤ ||pigi||1 +Bi,

���
�

R
f(x1, · · · , xd)(pi(xi)− p̂i(xi))dxi

��� ≤ Bi

d�

j=1,j �=i

gj(xj).

27

Following [45], |E[f(X1, · · ·Xd)]− E[f(X̂1, · · · , X̂d)]| is bounded by the following:

���E[f(X1, X2, · · · , Xd−1, Xd)]− E[f(X1, X2, · · · , Xd−1, X̂d)]
���

+
���E[f(X1, X2, · · · , Xd−1, X̂d)]− E[f(X1, X2, · · · , X̂d−1, X̂d)]

���+

...

+
���E[f(X1, X̂2, · · · , X̂d−1, X̂d)]− E[f(X̂1, X̂2, · · · , X̂d−1, X̂d)]

���

≤ Bd

d−1�

j=1

||pjgj ||1 +Bd−1

d−2�

j=1

||pjgj ||1||p̂dgd||1 + · · ·+B1

d�

j=2

||p̂jgj ||1

≤ B
� d−1�

j=1

||pjgj ||1 +
d−2�

j=1

||pjgj ||1(||pdgd||1 +B) + · · ·+
d�

j=2

(||pjgj ||1 +B)
�
,

where ||p̂igi||1 =
�
R p̂i(x)gi(x)dx, 1 ≤ i ≤ d. The conclusion then follows immediately.

Remark 3.2.6.

• As we stated before, it is usually very hard to determine the positive constants ai for i =

0, ..., d − 1 when d is large. However, at least we know the total error bound is a polynomial

function of B, which we are able to bound. Hence, by trying different error bound for B, we

should be able to observe the convergence.

• When φ satisfies certain conditions, we can also apply the Hilbert method in high dimensional

case, and we will have new representation for Bi, where :

Bi =
||φ(i)||−

2π

�� ∞

x
(i)
Ki

gi(x)e
xd

(i)
− dx+

1

|d(i)− |

gi(x
(i)
Ki

)ex
(i)
Ki

d
(i)
−
�

+
||φ(i)||+

2π

��
x
(i)
0

−∞
gi(x)e

xd
(i)
+ dx+

1

d(i)+

gi(x
(i)
0)ex

(i)
0 d

(i)
+

�
(3.20)

+
1

2πK2
i

||gi||
∗
Xi
|Xi|

3

�

R
|ξφ(i)(ξ)|dξ

+
�
gi(x

(i)
0) + gi(x

(i)
Ki

) + 2(Ki + nf)||gi||
∗
Xi

+ 2||gi||
∗
Xi
|Xi|

�
Ehi,Mi,Xi .

• Although in general, distribution function F (i), 1 ≤ i ≤ d could be different, but in finan-

cial applications, they are usually the same. For example, when pricing options, discretely

monitored path-dependent options are often evenly monitored and hence has the same Lévy

28

increments. Then, all gis are the same. This result could save us great time and computational

effort since (3.18) and (3.20) are all the same for different 1 ≤ i ≤ d.

3.3 Numerical example of option pricing

In this part, we will verify previous theory and demonstrate the efficiency of our method by pricing

various option contacts in Lévy process models. Here we will consider three Lévy process models.

The first one is Kou’s jump diffusion model [49], which is a finite activity jump diffusion process.

The process can be simulated in a very natural way, which we will show later. The second one is

NIG (Normal inverse Gaussian) process [7], which is an infinite activity pure jump process. There

are two methods for simulating NIG process: by its subordination structure [66] or through bridge

sampling [62]. We will implement both and compare with our method. And for this part, we will

price both European vanilla option and path-dependent lookback option. The third one is CGMY

model [14] which is also an infinite activity pure jump process. And we did not find a natural way to

simulate CGMY process except simulating from its characteristic function. In this part, we will price

discretely monitored Asian option and verify the power of various variance reduction techniques like

RQMC and control variate. The computer we use to implement is Lenovo laptop T61p with Intel

Core 2 Duo 2.5GHz CPU and 3GB RAM.

3.3.1 Kou’s jump diffusion model

Kou’s jump diffusion model is very much like Merton’s jump diffusion model [57]. The process can

be written as:

Xt = µt+ σBt +
Nt�

i=1

Zi,

where µ = r− q− 1
2σ

2 −λ(p/(η1 − 1)− (1− p)/(η2 +1)) is determined by the martingale condition.

Also, random processes Bt, Nt and Zi are independent, where Bt is a standard Brownian motion,

Nt is a Poisson process with positive jump intensity λ. And Zi are i.i.d double exponential process

with intensity:

pη1e
−η1x1{x>0} + (1− p)η2e

η2x1{x<0},

where 0 ≤ p ≤ 1. Moreover, the characteristic function of Kou’s model is given by:

φt(ξ) = exp
�
−

1

2
σ2tξ2 + iµtξ + iλtξ

� p

η1 − iξ
−

1− p

η2 + iξ

��
,

29

which is in H(D(d−,d+)) with d+ = η2 and d− = −η1. Also, it has the exponential tail behavior

we assumed previously, for κ = 1, c = 1
2σ

2t, ν = 2 as in (3.7). The algorithm for simulating Kou’s

double exponential jump diffusion process is very intuitive, as the one provided in [20]:

Algorithm 3.3.1 (Simulating Kou’s jump diffusion process).

For t > 0, simulate Xt = µt+ σBt +
�

Nt

i=1 Zi

1. Use inverse transform method to generate Poisson process Nt, as shown in p.128 of [43].

2. For 1 ≤ i ≤ Nt, generate Zi by:

• Generate standard uniform random variable Ui,

• If Ui ≤ p, Zi ∼ exp(η1); Otherwise, Zi ∼ −exp(η2).

3. Generate G ∼ N(0, t).

4. Set Xt = µt+ σG+
�

Nt

i=1 Zi.

Remark 3.3.2. We can see that on average 2+2λt random variables are generated, which leads to

much heavier computational cost than the method we carry out, since we only need to generate one

single random variable for each iteration.

We implement algorithm 3.3.1 and our method to price European put option, with the following

parameters:

σ = 0.1, λ = 3, p = 0.3, η1 = 40, η2 = 12, r = 0.05, q = 0.02, S0 = K = 100, T = 1.

In this case, z0 = ln(K/S0) = 0, hence, we can set xK = 0 directly. And for x0, we can obtain it by

considering the following in (3.17):

||φT ||
+

2π

��
x0

−∞
|f(x)|exd+dx+

1

d+
|f(x0)|e

x0d+

�
=

||φT ||
+

2πd+
ex0d+

�
2−

2d+ + 1

d+ + 1
ex0

�
,

where f(x) = (0,K/S0 − ex)+ for European put. For �b = 1E-2, 1E-3, 1E-4, we choose a x0 such

that the above quantity is less than �b/2. Then, from the third line in (3.17), we are able to choose

an proper K such that the error term is also less than �b/2. And the corresponding K can be easy

calculated as:

K =
� 1

π�b
||f �

||X |X |
3

�

R
|ξφT (ξ)|dξ

�1/2
.

30

�b x0 xK K Eh,M,X h M
10−2 -0.715 0 31 3.0× 10−6 3.651 13
10−3 -1.029 0 167 4.6× 10−8 2.803 19
10−4 -1.332 0 774 8.8× 10−10 2.295 27

Table 3.1: Grid parameters used for European put in Kou’s model

It is easy to see that ||f �||X = 1, then we can calculate K accordingly. And after that, we can obtain

the desired value of Eh,M,X , such that the fourth line in (3.17):

(|f(x0)|+ |f(xK)|+2K||f ||X +2||f �
||X (xK −x0))Eh,M,X = ((2K+1)(1−ex0)+2(xK −x0))Eh,M,X .

should be less than 0.01�b. When we obtain the desired value of Eh,M,X , we can choose the corre-

sponding h and M according to (3.12). We record all those values in table 3.1.

Also, with these parameters, we are able to compare our method with algorithm 3.3.1. The

result is provided in table 3.2. Here N is number of samples (in thousands), SE is the standard

error, CPU is the computational time in seconds, Error stands for the absolutely pricing error,

where we obtain the benchmark price 5.98007999 by the Hilbert transform method in [38]. For the

Gain, it is defined by
σ2
A
· tA

σ2
B
· tB

,

where σA and σB are the standard errors. A is for algorithm 3.3.1 and B is for our method. And

tA, tB are corresponding computational times.

From the numerical result, we can see that our inverse transform method is about 3 to 4 times

better than algorithm 3.3.1 in terms of the gain. Another observation is about the absolute pricing

error, which has two parts, the bias and standard error. When N is getting larger, the standard

error is getting smaller and converging to zero. Hence, when N is large enough, the absolute pricing

error basically comes from bias. For the case �b = 1E-2, the absolute pricing error stops to decrease

at around 1.1E-2 and begin to oscillate around this number. For the case �b = 1E-3, the stopping

point is 1.4E-3. It is worth noting that the targeted total bias for option price is actually S0e−rT �b

rather than �b. Since the latter is the tolerance level for bias of the expectation E[f(X)].

31

Algorithm 3.3.1 �b = 10−2

N (×103) SE Error CPU Gain SE Error CPU Gain
64 4.0E-2 3.5E-2 0.021 4.0E-2 7.1E-3 0.008 2.6
256 2.0E-2 3.8E-2 0.082 2.0E-2 2.8E-2 0.022 3.7
1024 1.0E-2 5.1E-3 0.335 1.0E-2 1.6E-2 0.075 4.5
4096 5.0E-3 4.7E-3 1.332 5.0E-3 1.1E-2 0.297 4.5
16384 2.5E-3 2.2E-3 5.380 2.5E-3 1.4E-2 1.201 4.5
65536 1.3E-3 2.0E-3 21.270 1.2E-3 1.3E-2 4.846 5.2

�b = 10−3 �b = 10−4

64 4.0E-2 5.0E-2 0.008 2.6 4.0E-2 2.6E-2 0.015 1.4
256 2.0E-2 2.8E-2 0.024 3.4 2.0E-2 3.2E-2 0.033 2.5
1024 1.0E-2 3.3E-2 0.089 3.8 1.0E-2 1.5E-3 0.105 3.2
4096 5.0E-3 9.9E-3 0.341 3.9 5.0E-3 8.1E-3 0.394 3.4
16384 2.5E-3 1.4E-3 1.349 4.0 2.5E-3 2.8E-3 1.512 3.6
65536 1.3E-3 3.4E-3 5.377 4.0 1.3E-3 4.0E-4 6.029 3.5

Table 3.2: European vanilla put in Kou’s model: inverse transform method vs Algorithm 3.3.1.

3.3.2 The Normal Inverse Gaussian model

The normal inverse Gaussian (NIG) process is given by

Xt = µt+ βzt +Bzt

where zt is an inverse Gaussian processes, Bt is a standard Brownian motion. And they are inde-

pendent with each other. It worths noting that zt has the same distribution as the first passage time

of a Brownian motion BM(γ, 1) to the level δt [4]. The characteristic function of of NIG process is:

φt(ξ) = E[eiξXt] = exp
�
iµtξ − δt(

�
α2 − (β + iξ)2 −

�
α2 − β2)

�
.

where α =
�
β2 + γ2, and µ = r − q + δ(

�
α2 − (β + 1)2 −

�
α2 − β2) is determined by martingale

condition. As Kou’s model, the characteristic function of NIG process is in H(D(d−,d+)), where

d− = β − α and d+ = β + α. Also, it has the exponential tail behavior we assumed previously, for

κ = exp(δt
�
α2 − β2), c = δt, ν = 1 as in (3.7).

Hence, it is very natural to simulate NIG process by its subordination structure: generate zt first

and then generate a standard normal random variable with variance zt. The following algorithm is

provided in [4] and [66], then used by Chen, Feng and Lin in [20] :

Algorithm 3.3.3 (Simulating NIG process by its subordination structure).

For t > 0, simulate Xt = µt+ βzt +Bzt

32

1. Generate G1 ∼ N(0, 1) by Beasley-Springer-Moro algorithm in [43].

2. Set Z = G2
1/γ, and ζ = 1

γ
(δt+ 1

2Z −
�
δtZ + Z2/4).

3. Generate U ∼ U(0, 1). If U < δt/(δt+ γζ), zt = ζ. Otherwise, zt = δ2t2/(γ2ζ).

4. Generate G2 ∼ N(0, 1). Let Xt = µt+ βzt +
√
ztG2.

For single dimensional problem, like pricing European options, the above algorithm could be

used. For multi-dimensional case, one can employ inverse Gaussian bridge together with quasi

Monte Carlo as shown in [62]. This method could possibly decrease the effective dimension and

could be used for pricing path-dependent options like lookback option. Still, we quote the following

algorithm from [20]:

Algorithm 3.3.4 (Simulating a NIG process using inverse Gaussian bridge).

For 0 = t0 < t1 < · · · < td, simulate Xtj = µtj + βztj +Bztj
, 1 ≤ j ≤ d

1. Generate ztd by following steps 1-3 in Algorithm 3.3.3. Generate a standard normal random

variable Gd and obtain Wztd
= βztd +

√
ztdGd.

2. Construct the bridge as below: for 0 ≤ ti < tj < tk ≤ td,

(a) Inverse Gaussian bridge: conditional on zti and ztk , generate a standard normal random

variable G1j , and compute

λ =
δ2(tk − tj)2

ztk − zti
, θ =

tk − tj
tj − ti

, Q = G2
1j , s1 = θ +

θ2Q

2λ
−

θ

2λ

�
4θλQ+ θ2Q2.

Generate a uniform random variable Uj on (0, 1). If Uj <
θ(1+s1)

(1+θ)(θ+s1)
, s = s1; otherwise,

s = θ2/s1. Then

ztj = zti +
ztk − zti
1 + s

.

(b) Brownian bridge (see [43] Chapter 3): conditional on Wzti
and Wztk

, generate a standard

normal random variable G2j , and compute

m =
(ztk − ztj)Wzti

+ (ztj − zti)Wztk

ztk − zti
, σ2 =

(ztj − zti)(ztk − ztj)

ztk − zti
, Wztj

= m+ σG2j .

3. Let Xtj = µtj +Wztj
, 1 ≤ j ≤ d.

33

�b x0 xK K Eh,M,X h M
10−2 -0.477 0 22 5.5× 10−6 4.926 11
10−3 -0.736 0 133 7.1× 10−8 3.630 20
10−4 -0.983 0 645 1.2× 10−9 2.903 30

Table 3.3: Grid parameters used for European put options in the NIG model

Algorithm 3.3.3 �b = 10−2

N (×103) SE Error CPU Gain SE Error CPU Gain
64 3.0E-2 3.0E-2 0.036 2.9E-2 7.1E-3 0.007 5.5
256 1.5E-2 3.6E-2 0.139 1.5E-2 7.2E-3 0.026 5.3
1024 7.4E-3 1.4E-2 0.545 7.3E-3 7.8E-3 0.096 5.8
4096 3.7E-3 1.1E-2 2.191 3.7E-3 7.6E-3 0.387 5.7
16384 1.9E-3 1.8E-3 8.640 1.8E-3 7.1E-3 1.576 6.1
65536 9.3E-4 5.9E-4 34.382 9.2E-4 7.4E-3 6.162 5.7

�b = 10−3 �b = 10−4

64 3.0E-2 4.8E-2 0.009 4.0 3.0E-2 3.2E-2 0.016 2.3
256 1.5E-2 3.2E-4 0.029 4.8 1.5E-2 6.3E-3 0.040 3.5
1024 7.4E-3 6.8E-3 0.111 4.9 7.4E-3 1.3E-3 0.132 4.1
4096 3.7E-3 5.9E-3 0.444 4.9 3.7E-3 5.1E-4 0.494 4.4
16384 1.9E-3 1.7E-3 1.777 4.9 1.9E-3 1.1E-4 1.965 4.4
65536 9.3E-4 1.5E-3 7.108 4.8 9.3E-4 2.8E-4 7.745 4.4

Table 3.4: European vanilla put in the NIG model: inverse transform method vs Algorithm 3.3.3.

Now, we price European option using NIG model. The parameters are the same as in [40]:

α = 15, β = −5, δ = 0.5, r = 0.05, q = 0.02, S0 = K = 100, T = 0.5.

Follow the same process as previous in Kou’s model, we are able to obtain those grid parameters

used, as in table 3.3. For more detail, please refer to [20]:

And we are also able to compare algorithm 3.3.3 with our method. The result is shown in table

3.4. In this case, the gains, which are around 5, are even better than Kou’s model.

Now we consider pricing floating strike lookback put options in NIG model. Here we assume the

discrete monitoring dates are equally spaced, each with length ∆. Hence, if there are d monitoring

dates and denote the maturity by T , then ∆ = T/d. The floating strike lookback option price is

given by:

V = e−rTE[max(S0, S∆, · · · , Sd∆)− Sd∆] = S0e
−rTE[f(Y1, · · · , Yd)],

where Yi = Xi∆ −X(i−1)∆, 1 ≤ i ≤ d are the Lévy increments. Also,

f(y1, · · · , yd) = max(1, ey1 , ey1+y2 , · · · , ey1+···+yd)− ey1+···+yd .

34

�b x0 xK K Eh,M,X h M
10−2 -0.721 0.340 273 8.8× 10−8 3.127 76
10−3 -0.977 0.461 1546 1.2× 10−9 2.456 123
10−4 -1.233 0.582 7875 1.8× 10−11 2.028 180

Table 3.5: Grid parameters used for Lookback put options in the NIG model

Algorithm 3.3.4 with RQMC �b = 10
−2

N (×10
3
) SE Error CPU Price Gain SE Error CPU Price Gain

16 1.5E-2 1.2E-2 0.049 10.1985 1.8E-2 2.4E-3 0.024 10.1837 1.4

64 1.2E-2 9.0E-3 0.186 10.1951 6.4E-3 7.6E-3 0.085 10.1937 7.7

256 3.5E-3 3.3E-3 0.737 10.1828 2.6E-3 1.9E-3 0.332 10.1880 4.0

1024 1.9E-3 1.4E-3 2.847 10.1847 6.3E-4 1.2E-3 1.320 10.1873 19.6

4096 4.9E-4 7.0E-4 11.446 10.1854 1.8E-4 2.8E-3 5.290 10.1889 16.0

16384 2.0E-4 8.2E-5 45.787 10.1862 7.4E-5 2.6E-3 21.221 10.1887 15.8

65536 9.5E-5 7.0E-5 183.005 10.1862 4.3E-5 2.5E-3 84.185 10.1886 10.6

�b = 10
−3 �b = 10

−4

16 1.3E-2 3.6E-2 0.028 10.1500 2.3 1.6E-2 1.4E-2 0.040 10.1717 1.1

64 5.8E-3 2.0E-3 0.100 10.1842 8.0 4.9E-3 1.8E-3 0.113 10.1879 9.9

256 2.0E-3 1.1E-3 0.373 10.1873 6.1 1.3E-3 1.7E-3 0.423 10.1844 12.6

1024 9.6E-4 4.1E-4 1.464 10.1857 7.6 8.0E-4 7.5E-4 1.650 10.1869 9.7

4096 3.2E-4 3.9E-4 5.818 10.1865 4.6 1.6E-4 2.4E-4 6.574 10.1864 16.3

16384 7.5E-5 3.9E-5 23.307 10.1862 14.0 5.0E-5 4.6E-5 25.973 10.1862 28.2

65536 4.1E-5 1.2E-4 94.097 10.1862 10.4 3.6E-5 1.0E-5 103.713 10.1861 12.3

Table 3.6: Discrete floating strike lookback put in the NIG model: inverse transform method with RQMC vs Algorithm

3.3.4 with RQMC.

One can verify that taking gi(x) = e|x| for all 1 ≤ i ≤ d satisfies the assumption of theorem 3.2.5,

and in this case nf = 1.

Now we take T = 1 year, d = 8. Since the monitoring dates are equally spaced, for all φ(i) in

(3.20), we can use the same φ∆. Following the same idea as for the European option case, we can

obtain the grid parameters as in table 3.5.

Notice that in this case, x0 and xK are chosen so that the first two terms in (3.20) are less

than �b/4. We show the numerical result in table 3.6. Here both methods are implemented with

digital shift RQMC as shown in section 3.1.3. We use L = 10, following the suggestion in [51].

Here the benchmark price is 10.18611401, calculated by the method proposed in [41]. We would

like to mention that, in this case, K + 1 = 7876 is very large. To reduce the computational cost in

calculating the CDF, we use FFT with Teoplitz matrix vector multiplication algorithm. Without

FFT, the computational time for �b = 1E-2, 1E-3 and 1E-4 are 0.008, 0.071 and 0.528 seconds

respectively. When FFT is implemented, the computational time reduce to 0.002, 0.004, 0.012

seconds, which is a significant improvement. Also, it can be easily observed that our method is

around 10 times better than the RQMC method (with bridge) in terms of Gain.

35

3.3.3 CGMY model

For CGMY process Xt, there is no explicit formula for its density. Also, there is no specific structure

like subordination to simulate from. Hence, simulating from characteristic function seems inevitable.

The c.f. of CGMY process is given by:

φt(ξ) = exp(iµtξ − tCΓ(−Y)(MY
− (M− iξ)Y +GY

− (G+ iξ)Y)),

where C > 0, G > 0,M > 0, 0 < Y < 2, and µ = r− q−CΓ(−Y)((M− 1)Y −MY +(G+1)Y −GY)

is determined by martingale condition. Similar as Kou’s and NIG model, the characteristic function

of CGMY process is in H(D(d−,d+)), where d− = −M and d+ = G. Also, it has the exponential tail

behavior we assumed previously. For example, when 0 < Y < 1, κ = exp(−tCΓ(−Y)(MY + GY)),

c = 2tC|Γ(−Y) cos(πY/2)|, ν = Y as in (3.7). For more detail, one can refer to [14] and [37].

We now price (arithmetic average) discretely monitored Asian options. Similar as the previous

case for lookback option, we assume the monitoring dates are equally spaced with length ∆, and we

will have ∆ = T/d, where T is the option maturity and d is number of monitoring dates. The Asian

option price is:

V = e−rTE[max(0,
1

d

d�

i=1

Si∆ −K)] = S0e
−rTE[f(Y1, · · · , Yd)],

where Yi = Xi∆ −X(i−1)∆, 1 ≤ i ≤ d are the Lévy increments. Also,

f(y1, · · · , yd) = max
�
0,

1

d
(ey1 + ey1+y2 · · ·+ ey1+···+yd)−

K

S0

�
.

One can verify that similar as in the lookback option case, we can choose gi(x) = e|x| for all 1 ≤ i ≤ d,

and in this case nf = 1.

Moreover, it is well known that geometric average Asian option price is a very good control

variate for pricing arithmetic average Asian option. Also, due to its special structure, geometric

average Asian option is usually much easier to price. In fact, the pricing structure of the geometric

average Asian option is very much like an European option when a variable change is conducted.

And hence can be priced by Hilbert transform method very fast and accurate. Please refer to [20]

section 5.6.1 and [38] for more detail.

Now let us denote the (benchmark) geometric average Asian option price by V g. Notice that the

geometric average Asian option could also be priced by Monte Carlo simulation: after we generate

36

a sample path of the underlying asset price, we can use it to get an arithmetic average Asian option

price V a

i
as well as a geometric average Asian option price V g

i
. It is easy to observe that, due to

the similar structure, two options tend to be over-priced or under-priced together. Hence, we could

adjust the arithmetic average Asian option price accordingly if we assume their pricing error has

certain linear relationship:

V b

i
:= V a

i
+ b(V g

− V g

i
).

Here b is a positive constant estimating the ratio of pricing errors between arithmetic and geometric

average Asian price. If N sample paths are generated, the adjusted arithmetic average Asian price

is given by:

V̄ b

N
=

1

N

N�

i=1

V b

i
.

It is easy to prove that V̄ b

N
is an unbiased estimator of arithmetic average Asian option. And also,

if we let b = ρσa/σg, where σa, σg and ρ are standard deviation of arithmetic average Asian option

price, geometric average Asian option price and the correlation coefficient between them respectively.

And if we further define

V̄N =
1

N

N�

i=1

V a

i

Then, it is not hard to show that:

var(V̄ b

N
) = (1− ρ2)var(V̄N),

which shows that the control variate has variance reduction effect, especially when ρ → 1, there

should be a deep reduction in variance.

Here we take the same set of parameters as in [40]:

C = 4, G = 50,M = 60, Y = 0.7, r = 0.05, q = 0.02, S0 = K = 100, T = 0.5.

And we price two sets of option with different monitoring dates, one with d = 6, which is monthly

monitoring; and the other with d = 26, which is weekly monitoring. The benchmark prices are

4.00703627 and 3.65349339, which we compute by the method in Chapter 5. Similar as what we did

before, given tolerance level �b for B in theorem 3.2.3, we are able to compute the parameters for

CDF grids. The result is listed below in table 3.7.

Then we can use the grids to price corresponding Asian options. In table 3.8, we priced discrete

37

Asian call in CGMY model by using RQMC as well as control variate. We can see that for both d = 6

and d = 26, the pricing error is very small. Moreover, the convergence result can be observed for

different �b value. In table 3.9, we set �b = 1E-3, and compare different methods, which include: pure

Monte Carlo simulation, MC with control variate, RQMC as well as RQMC with control variate. As

we can see, using quasi Monte Carlo method itself could already improve the simulation result. And

when control variate is incorporated, this new combined method is very powerful, which contributes

gain values of several thousands or even tens of thousands.

38

Asian call in the CGMY model (d = 6)

�b x0 xK K Eh,M,X h M
10−2 -0.213 0.205 44 8.7× 10−7 10.899 21
10−3 -0.260 0.244 188 2.0× 10−8 9.107 28
10−4 -0.307 0.283 771 4.8× 10−10 7.822 35

Asian call in the CGMY model (d = 26)
�b x0 xK K Eh,M,X h M

10−2 -0.129 0.111 45 9.3× 10−7 15.748 31
10−3 -0.176 0.150 226 1.8× 10−8 12.187 49
10−4 -0.223 0.189 1039 3.8× 10−10 9.954 73

Table 3.7: Grids and parameters for CGMY model.

d = 6

�b = 10−2 �b = 10−3 �b = 10−4

N (×103) SE Error Price SE Error Price SE Error Price
1 1.5E-3 2.4E-4 4.0068 1.8E-3 2.0E-3 4.0090 2.4E-3 3.7E-4 4.0067
4 4.9E-4 5.9E-4 4.0076 4.7E-4 1.7E-3 4.0088 7.8E-4 1.6E-4 4.0072
16 2.5E-4 7.3E-5 4.0071 3.4E-4 3.6E-4 4.0067 3.8E-4 3.0E-4 4.0073
64 1.2E-4 1.4E-4 4.0072 7.8E-5 1.6E-4 4.0072 1.4E-4 1.9E-4 4.0072
256 3.5E-5 2.6E-4 4.0068 5.9E-5 5.9E-6 4.0070 4.0E-5 7.9E-5 4.0070
1024 3.0E-5 3.0E-4 4.0073 2.5E-5 1.5E-5 4.0070 2.8E-5 3.9E-5 4.0071
4096 1.6E-5 9.7E-4 4.0080 8.6E-6 2.4E-5 4.0071 8.2E-6 1.7E-5 4.0070
16384 4.6E-6 8.7E-4 4.0079 3.9E-6 2.2E-5 4.0071 2.9E-6 3.6E-6 4.0070
65536 1.6E-6 9.4E-4 4.0080 1.9E-6 4.9E-6 4.0070 2.3E-6 1.0E-6 4.0070

d = 26

�b = 10−2 �b = 10−3 �b = 10−4

N (×103) SE Error Price SE Error Price SE Error Price
1 2.1E-3 1.8E-3 3.6553 2.5E-3 2.6E-4 3.6537 2.6E-3 5.2E-3 3.6587
4 8.4E-4 1.2E-3 3.6547 8.8E-4 8.3E-4 3.6527 1.1E-3 2.1E-4 3.6537
16 6.3E-4 2.6E-4 3.6537 5.2E-4 1.6E-4 3.6537 4.8E-4 4.1E-4 3.6539
64 1.9E-4 5.5E-5 3.6534 1.9E-4 1.4E-4 3.6534 1.6E-4 8.1E-5 3.6534
256 5.2E-5 9.0E-5 3.6536 8.5E-5 3.4E-4 3.6532 7.0E-5 3.6E-5 3.6535
1024 3.4E-5 6.3E-5 3.6536 2.2E-5 4.5E-5 3.6535 2.2E-5 5.5E-6 3.6535
4096 1.6E-5 1.2E-4 3.6536 1.9E-5 2.4E-5 3.6535 1.7E-5 9.8E-6 3.6535
16384 4.1E-6 1.8E-4 3.6537 9.7E-6 1.2E-5 3.6535 8.7E-6 7.7E-6 3.6535
65536 3.9E-6 5.8E-5 3.6536 4.3E-6 5.5E-6 3.6535 2.6E-6 4.5E-6 3.6535

Table 3.8: Discrete Asian call in the CGMY model: randomized quasi-Monte Carlo (L = 10) with control variates.

39

Monthly monitoring (d = 6)

MC MC-CV

N (×10
3
) SE Error CPU Gain SE Error CPU Gain

1 1.8E-1 5.8E-2 0.004 3.2E-3 2.4E-3 0.004 3164

4 9.2E-2 8.1E-2 0.006 1.7E-3 2.3E-3 0.006 2929

16 4.6E-2 3.1E-2 0.015 8.7E-4 8.9E-4 0.016 2621

64 2.3E-2 3.8E-2 0.046 4.5E-4 8.4E-5 0.054 2225

256 1.2E-2 2.6E-2 0.173 2.3E-4 1.7E-4 0.204 2308

1024 5.8E-3 1.0E-2 0.687 1.1E-4 9.2E-5 0.805 2373

4096 2.9E-3 4.1E-3 2.757 5.6E-5 4.9E-5 3.215 2300

16384 1.4E-3 4.7E-4 10.906 2.8E-5 1.9E-5 12.764 2136

65536 7.2E-4 8.1E-4 43.234 1.4E-5 2.6E-5 50.907 2246

RQMC RQMC-CV

N (×10
3
) SE Error CPU Gain SE Error CPU Gain

1 5.8E-2 7.5E-2 0.004 10 1.8E-3 2.0E-3 0.005 8000

4 2.1E-2 2.9E-2 0.007 16 4.7E-4 1.7E-3 0.009 25544

16 6.7E-3 4.4E-5 0.017 42 3.4E-4 3.6E-4 0.019 14451

64 2.1E-3 2.8E-3 0.054 102 7.8E-5 1.6E-4 0.064 62495

256 5.1E-4 7.3E-5 0.208 460 5.9E-5 5.9E-6 0.241 29695

1024 1.4E-4 4.7E-4 0.864 1365 2.5E-5 1.5E-5 0.959 38558

4096 7.1E-5 3.3E-4 3.288 1399 8.6E-6 2.4E-5 3.835 81747

16384 3.1E-5 4.1E-4 13.017 1709 3.9E-6 2.2E-5 15.302 91843

65536 1.2E-5 3.9E-4 51.935 2997 1.9E-6 4.9E-6 61.222 101409

Weekly monitoring (d = 26)

MC MC-CV

N (×10
3
) SE Error CPU Gain SE Error CPU Gain

1 1.7E-1 6.1E-2 0.009 3.0E-3 6.3E-4 0.016 1806

4 8.6E-2 8.3E-2 0.021 1.6E-3 1.6E-3 0.022 2758

16 4.2E-2 1.4E-2 0.053 7.8E-4 1.5E-4 0.061 2519

64 2.1E-2 1.3E-3 0.187 4.0E-4 1.6E-4 0.209 2466

256 1.1E-2 3.4E-3 0.736 2.0E-4 2.2E-4 0.825 2699

1024 5.2E-3 2.0E-3 2.993 1.0E-4 4.2E-5 3.279 2468

4096 2.6E-3 4.0E-4 11.776 5.0E-5 1.4E-5 13.032 2443

16384 1.3E-3 1.2E-3 46.944 2.5E-5 8.5E-6 51.760 2452

65536 6.6E-4 1.2E-3 186.393 1.2E-5 2.0E-5 207.167 2722

RQMC RQMC-CV

N (×10
3
) SE Error CPU Gain SE Error CPU Gain

1 9.0E-2 5.4E-2 0.011 3 2.5E-3 2.6E-4 0.010 4162

4 3.7E-2 4.5E-3 0.020 6 8.8E-4 8.3E-4 0.021 9551

16 1.2E-2 6.4E-3 0.062 10 5.2E-4 1.6E-4 0.066 5239

64 2.8E-3 2.6E-3 0.219 48 1.9E-4 1.4E-4 0.268 8524

256 1.0E-3 3.9E-4 0.862 103 8.5E-5 3.4E-4 0.974 12655

1024 6.5E-4 5.5E-4 3.464 55 2.2E-5 4.5E-5 3.866 43252

4096 2.5E-4 5.6E-4 13.882 92 1.9E-5 2.4E-5 15.446 14276

16384 1.4E-4 4.5E-5 54.602 74 9.7E-6 1.2E-5 61.938 13613

65536 4.0E-5 2.1E-4 218.003 233 4.3E-6 5.5E-6 244.542 17957

Table 3.9: Discrete Asian call in the CGMY model: standard and quasi-Monte Carlo methods with or without control

variates.

40

Chapter 4

Sensitivity Estimation

Previously, we introduced how to simulate from characteristic function and its application in pricing

financial derivatives. In this chapter, we further discuss this method and apply it in sensitivity

estimation problem, which has equal importance in financial industry, if not more, as derivatives

pricing. In order to apply simulation method, sensitivity is transformed into a probability ex-

pectation through likelihood ratio method (LRM). And similar as the case in derivatives pricing,

Glasserman and Liu’s Laplace transform method in [45] could also apply, yet so does the weakness

of their method. Again, through the analysis of the error terms, our method is able to provide an

explicit error bound for the total bias in single dimensional problem, by taking advantage of the

powerful approximation theory we introduced before. The sensitivity estimation problem is actually

more sophisticated than derivative pricing, and some good theoretical result we had before could

not be extended to sensitivity estimation. Hence, for multidimensional problem, no simple explicit

bound could be provided. However, certain procedure could be set up to guarantee the convergence

of bias. Another difference between derivative pricing and sensitivity estimation is that, besides the

CDF table used in derivative pricing, one more table need to be generated to store the values of the

corresponding partial derivative function, which we will introduce later in detail. Finally, although

we illustrate our method in Lévy process models, it could be applied to more general class where

the characteristic functions have the analyticity property .

4.1 The likelihood ratio method

4.1.1 LRM estimator and score function

We start with the one-dimensional case. For an option pricing problem, we are interested with

evaluating expectation E[f(X)], where f is a payoff function and X is a random variable following

41

geometric Lévy process. If we denote the probability density function of X by p(x), then we have:

E[f(X)] =

�
f(x)p(x)dx.

For sensitivity analysis, we move one step further to deal with the partial derivative of the expectation

above. Here we assume that the sensitivity parameter interested only appearing in p(x), denote it

as θ. We further assume the partial derivative of p(x) with respect to θ exits and denote it as ṗθ(x).

For LRM, we assume the following identity holds:

d

dθ
E[f(X)] =

d

dθ

�
f(x)p(x)dx =

�
f(x)

d

dθ
p(x)dx =

�
f(x)ṗθ(x)dx. (4.1)

The key of the above identity is changing order of differentiation and integration, which is not always

just to do. However, it can be validated under certain regularity conditions, as shown in Proposition

7.3.5 in [4]. Formula (4.1) can be further developed to:

d

dθ
E[f(X)] =

�
f(x)ṗθ(x)dx =

�
f(x)

ṗθ(x)

p(x)
p(x)dx = E[f(X)

ṗθ(X)

p(X)
]. (4.2)

The expression

Sθ(x) = ṗθ(x)/p(x) (4.3)

here is called score function. Incorporating this, the LRM estimator is given by f(X)Sθ(X) and we

have:
d

dθ
E[f(X)] = E[f(X)Sθ(X)]. (4.4)

It is very important to note here that random variable X has probability density function p(x),

however, in identity (4.2), we are free to choose any distribution and not restricted to p(x). We will

later see that, the choice of the distribution has nothing to do with the bias of simulation, and can

only affect the variance.

For the multi-dimensional case, we are interested with the following expectation:

E[h(Yt1 , · · · , Ytd)], (4.5)

where function h depends on the values of a Lévy process Y = {Yt, t ≥ 0} on equally spaced time

grids 0 = t0 < t1 < · · · < td = T . By the independent and stationary increment property of Lévy

42

process, {Ytk+1 − Ytk , 0 ≤ k ≤ d− 1} are i.i.d random variables. If we define Xk = Ytk+1 − Ytk , 1 ≤

k ≤ d, then the target expectation (4.5) can be rewritten as:

E[f(X1, · · · , Xd)]. (4.6)

Similarly, we can obtain the LRM identity as:

d

dθ
E[f(X1, · · · , Xd)] = E[f(X1, · · · , Xd)Sθ(X1, · · · , Xd)]. (4.7)

The corresponding LRM estimator is hence f(X1, · · · , Xd)Sθ(X1, · · · , Xd). By the independent and

stationary property, the join density function is nothing but the product of marginal densities, and

the score function is thus a summation with the following expression:

Sθ(x1, · · · , xd) =
d�

i=1

ṗθ(xi)

p(xi)
. (4.8)

Remark 4.1.1. While the independent property is necessary for the above analysis, we only use

the stationary property so as to simplify the notation for illustration purpose. Similar result can

be easily derived without the stationary property. In that case, X1, ..., Xd are independent but have

different distributions. Denote the probability density function of Xi by p(i)(x). Then we only need

to change the formula of Sθ(x1, · · · , xd) a little to get similar result, where

Sθ(x1, · · · , xd) =
d�

i=1

ṗ(i)
θ
(xi)

p(i)(xi)
. (4.9)

4.1.2 The inverse transform method and approximation to LRM

estimator

Now let us first discuss the one-dimensional case. We have already reformed the sensitivity analysis

problem into the problem of calculating the LRM estimator. The transform we did in (4.2) is just

like importance sampling technique. And this gives us a lot flexibilities in choosing the distribution

of X. Although the choice of the distribution will not affect the bias, we tend to choose a distribution

that is similar to X in some respects, in order to make the variance small.

Denote the cumulative distribution function of random variable X by F (x). And our choice of

the distribution is a piecewise linear CDF function F̂ (x), which is a very good approximation of

F (x). And hence they are very ”similar”. We denote the corresponding random variable by X̂.

43

Adopting the notation from previous chapter, we take a large enough interval X = [x0, xK] on real

axis, then divide the interval into K equally spaced subintervals each with length η = (xK −x0)/K.

Denote the nodes of X by xk, then xk = x0 + k · η with 0 ≤ k ≤ K. Denote Fk = F (xk) for

0 < k < K. Assume F̂k is an approximation of Fk, store the pairs (xk, F̂k) in the following table:




x0 x1 · · · xK

F̂0 F̂1 · · · F̂K



 . (4.10)

Then we choose to simulate from the following function F̂ (x), which is a piecewise linear function

very similar to F (x):

F̂ (x) =






0, x ≤ x0

F̂k−1 +
F̂k−F̂k−1

η
(x− xk−1), xk−1 < x < xk, 1 ≤ k ≤ K

1, x ≥ xK

. (4.11)

Here we made a sloppy notation at those joint points xk. The reason is that how we define the func-

tion values at those points does not matter at all. When simulates from a continuous distribution,

one gets those points with zero probability. Now X̂ can be generated through inverse transform

method:

X̂ =






x0, 0 ≤ U < F̂0

xk−1 +
xk−xk−1

F̂k−F̂k−1
(U − F̂k−1), F̂k−1 ≤ U < F̂k, 1 ≤ k ≤ K

xK , F̂K < U ≤ 1

. (4.12)

Once we have X̂, we still need to estimate values of the score function (4.3). To do this, we

define Ḟθ = ∂F/∂θ, and we have the following identity:

ṗθ =
∂p

∂θ
=

∂2F

∂x∂θ
=

∂Ḟθ

∂x
.

Similarly, we can find a piecewise linear approximation ˆ̇Fθ(x) for Ḟθ(x). We choose an interval

Ẋ = [ẋ0, ẋK], divide it into K̇ equally spaced subintervals each with length η̇. Denote the nodes on

the interval as ẋk and denote Ḟk = Ḟθ(ẋk) for 0 ≤ k ≤ K̇. Assuming ˆ̇Fk is an approximation of Ḟk,

we can also generate a similar table as (4.10) :




ẋ0 ẋ1 · · · ẋ

K̇

ˆ̇F0
ˆ̇F1 · · ·

ˆ̇F
K̇



 . (4.13)

44

Slightly different from the definition of F̂ (x), we define ˆ̇Fθ(x) by:

ˆ̇Fθ(x) =






ˆ̇Fk−1 +
ˆ̇
Fk− ˆ̇

Fk−1

η̇
(x− ẋk−1), ẋk−1 ≤ x < ẋk, 1 ≤ k ≤ K̇

0, otherwise.
(4.14)

Further, if we denote the partial derivative of F̂ (x) and ˆ̇Fθ(x) w.r.t variable x by p̂(x) and ˆ̇pθ(x)

respectively, then we can obtain the following equations:

ˆ̇pθ(x) =






(ˆ̇Fθ(ẋk)−
ˆ̇Fθ(ẋk−1))/η̇, if x ∈ (ẋk−1, ẋk)

0, otherwise,
(4.15)

p̂(x) =
1

η

K�

k=1

(F̂k − F̂k−1) · 1(xk−1,xk)(x), (4.16)

where 1A(x) is the indicator function takes value one if x ∈ A and zero otherwise.

Then, we can approximate the score function Sθ(x) = ṗ(x)/p(x) by Ŝθ(x) = ˆ̇p(x)/p̂(x) and

approximate our target expectation EX [f(X)Sθ(X)] by E
X̂
[f(X̂)Ŝθ(X̂)]. Notice that we use the

lower index for these two expectations to address the fact that they are for different random variables.

Then the approximation error or the bias, is thus given by:

��EX [f(X)Sθ(X)]− E
X̂
[f(X̂)Ŝθ(X̂)]

�� =
��
�

f(x)Sθ(x)p(x)dx−

�
f(x)Ŝθ(x)p̂(x)dx

��

=
��
�

f(x)ṗ(x)dx−

�
f(x)ˆ̇p(x)dx

��.
(4.17)

We leave the bias analysis in detail to Section 4.2. And this formula makes it clear that the choice

of X̂ has nothing to do with the estimation bias.

To compute E
X̂
[f(X̂)Ŝθ(X̂)], we only need to generate N samples of {X̂n : 1 ≤ n ≤ N} and

estimate the above expectation by the following:

1

N

N�

n=1

f(X̂n)Ŝθ(X̂
n).

Similarly, for multi-dimensional case, we approximate EX[f(X1, ..., Xd)Sθ(X1, ..., Xd)] in (4.7)

by

EX̂[f(X̂1, ..., X̂d)Ŝθ(X̂1, ..., X̂d)], (4.18)

where X = (X1, ..., Xd) and X̂ = (X̂1, ..., X̂d) are d-dimensional random variables. And we use the

45

following approximation for Sθ(x1, · · · , xd) in (4.9):

Ŝθ(x1, · · · , xd) =
d�

i=1

ˆ̇p(i)
θ
(xi)

p̂(i)(xi)
. (4.19)

We first generate X̂
n = (X̂n

1 , ..., X̂
n

d
), 1 ≤ n ≤ N , then compute Ŝθ(X̂n

1 , ..., X̂
n

d
), and finally use the

following to approximate the expectation.

EX̂[f(X̂n

1 , ..., X̂
n

d
)Ŝθ(X̂

n

1 , ..., X̂
n

d
)] ≈

1

N

N�

n=1

f(X̂n

1 , ..., X̂
n

d
)Ŝθ(X̂

n

1 , ..., X̂
n

d
).

For the multi-dimensional case, the grids we use might be different in each dimension. But in most

applications, those are the same. In order to make the theory more general, at this moment, we

assume we would obtain different grids and denote the corresponding parameters by xi

0, x
i

Ki
, ηi for

1 ≤ i ≤ d.

Remark 4.1.2. In this part, we set different grids for approximating F (x) and Ḟ (x) to show they

could be different theoretically. While in practice, we may set the grids the same and combine two

tables into one to save computational cost, as shown in [19].

4.1.3 Hilbert transform

In section 4.1.2, we use F̂k and ˆ̇Fk to denote approximation of Fk and Ḟk respectively. Function

Ḟ (x) can be approximated by the following Hilbert transform representation:

Ḟ
ḣ,Ṁ

(x) =
1

2
φ̇θ(0) +

i

2

Ṁ�

m=−Ṁ

e−ix(m−1/2)ḣ φ̇θ((m− 1/2)ḣ)

(m− 1/2)π
, ḣ > 0, Ṁ ≥ 1. (4.20)

If we assume the following property holds for some constants κ̇, ċ, ν̇ > 0,

|φ̇(ξ)| ≤ κ̇ exp(−ċ|ξ|ν̇), ξ ∈ R, (4.21)

which is true in many applications, then we will obtain exponentially decaying errors. Now we

summarize it in the following theorem without proof:

Theorem 4.1.3. Let Ḟθ and ṗθ be defined as previously, then suppose that φ̇θ ∈ H(D(ḋ−,ḋ+)). we

have

Ḟθ(x) =
1

2
φ̇θ(0)−

i

2
H(e−iξxφ̇θ(ξ))(0).

46

For any a ∈ (ḋ−, 0),

φ̇(0)− Ḟθ(x) = eax
�

R

e−ixξφ̇(ξ + ia)

2πi(ξ + ia)
dξ.

For any a ∈ (0, ḋ+),

Ḟθ(x) = eax
�

R

e−ixξφ̇(ξ + ia)

−2πi(ξ + ia)
dξ.

If |φ̇| ≤ κ̇ exp(−ċ|ξ|ν̇) for some κ̇, ċ, ν̇ > 0, then for any ḣ > 0 and integer Ṁ ≥ 1,

|Ḟθ(x)− Ḟ
ḣ,Ṁ

(x)| ≤
e−2π|ḋ−|/ḣ+xḋ−

2π| ˙d−|(1− e−2π|ḋ−|/ḣ)
�φ̇θ�

− +
e−2πḋ+/ḣ+xḋ+

2π ˙d+(1− e−2πḋ+/ḣ)
�φ̇θ�

+

+
κ̇

2π
(
1

Ṁ
+

2

ν̇ċ(Ṁḣ)ν̇
) exp−ċ(Ṁḣ)ν̇ .

(4.22)

If |φ̇| ≤ κ̇|ξ|−ν̇ for some κ̇, ν̇ > 0, then for any ḣ > 0 and integer Ṁ ≥ 1,

|Ḟθ(x)−Ḟ
ḣ,Ṁ

(x)| ≤
e−2π|ḋ−|/ḣ+xḋ−

2π| ˙d−|(1− e−2π|ḋ−|/ḣ)
�φ̇θ�

−+
e−2πḋ+/ḣ+xḋ+

2π ˙d+(1− e−2πḋ+/ḣ)
�φ̇θ�

++
κ̇

π
(
1

Ṁ
+

2

ν̇
)

1

(Ṁḣ)ν̇
.

Remark 4.1.4. The proof of the theorem is straightforward following the proof of Theorem 3.1 in

[20]. One thing different from the original proof that worth mention is the following identity:

Ḟθ(x) =

�
x

−∞
ṗθ(y)dy =

�

R
ṗθ(y)1(−∞,x)(y)dy

= F(1(−∞,x) · ṗθ)(0) =
1

2
φ̇θ(0)−

i

2
H(e−iξxφ̇θ(ξ))(0).

Also, in this proof, we need to justify

ṗθ(x) =
1

2π

�

R
e−izxφ̇θ(z)dz = F

−1(φ̇θ)

which is basically changing order of differentiation and integration. It is easy to validate given the

following assumption: for all θ in a small region V , φ is continuous differentiable w.r.t θ, and there

is an integrable function H for which |φ̇θ(z)| < H(z) for all real z. And this assumption is naturally

satisfied in our case.

4.2 Bias analysis

In this section, we analyze the bias incurred by using E
X̂
[f(X̂)Ŝθ(X̂)] to approximate our target

expectation EX [f(X)Sθ(X)].

47

4.2.1 The general case

Now we discuss the estimation bias in (4.17) in detail. Denote

|Ẋ | = ẋK − ẋ0,

||f ||Ẋ = sup
x∈Ẋ

|f(x)|, ||f �
||Ẋ = ess sup

x∈Ẋ |f �(x)|,

||ṗ�
θ
||Ẋ = ess sup

x∈Ẋ |ṗ�
θ
(x)|,

ĖẊ = sup
x∈Ẋ

|Ḟ (x)− ˆ̇F (x)|.

Then we have the following upper bound for the estimation bias.

Theorem 4.2.1. Consider a continuous r.v.X with cdf F (x) and pdf p(x). Let {ẋ0, ..., ẋK̇
} be a

uniform grid with step size η̇ = (ẋ
K̇
− ẋ0)/K̇ for some positive K̇. Let X̂ be a random variable with

probability density function p̂(x) defined as in (4.16). ṗθ, the partial derivative of p(x), is bounded on

Ẋ , differentiable in
�

K̇

i=1(ẋi−1, ẋi), and �ṗ�
θ
�Ẋ < ∞. ˆ̇pθ(x), Sθ(x), Ŝθ(x) are as defined previously .

Suppose f is differentiable in
�

K̇

i=1(ẋi−1, ẋi) except at nf points, and �f ��Ẋ < ∞, �f�Ẋ < ∞. Then

��E[f(X) · Sθ(X)]− E[f(X̂) · Ŝθ(X̂)]
�� ≤ (

�
ẋ0

−∞
+

� ∞

ẋK

)|f(x)| · |ṗθ(x)|dx

+
1

K̇2
�f �

�Ẋ · �ṗ�
θ
�Ẋ |Ẋ |

3

+ 2((K̇ + nf)�f�Ẋ + �f �
�Ẋ · |Ẋ |)ĖẊ .

(4.23)

Proof. The bias is given by

E[f(X) · Sθ(X)]− E[f(X̂) · Ŝθ(X̂)] =

�

R
f(x)

ṗθ(x)

p(x)
· p(x)dx−

�

R
f(x)

ˆ̇pθ(x)

p̂(x)
· p̂(x)dx

=

�

R
f(x) · ṗθ(x)dx−

�

R
f(x) · ˆ̇pθ(x)dx

=

�

R
f(x) · ṗθ(x)dx−

�
ẋK

ẋ0

f(x) · ˆ̇pθ(x)dx

=
K̇�

k=1

�
ẋk

ẋk−1

f(x) · (ṗθ(x)− ˆ̇pθ(x))dx

+ (

�
ẋ0

−∞
+

� ∞

ẋK̇

)f(x) · ṗθ(x)dx.

(4.24)

48

Assume f(x) is differentiable in (ẋk−1, ẋk), then

|

�
ẋk

ẋk−1

f(x) · (ṗθ(x)− ˆ̇pθ(x))dx|

=
��
�

ẋk

ẋk−1

�
f(ẋk−1+) + f ��ξk(x)

�
(x− ẋk−1)

�
· (ṗθ(x)− ˆ̇pθ(x))dx

��

≤ �f�Ẋ · |Ḟk − Ḟk−1 − (ˆ̇Fk −
ˆ̇Fk−1)|+ �f �

�Ẋ · η̇ ·

�
ẋk

ẋk−1

|ṗθ(x)− ˆ̇pθ(x)|dx

≤ 2�f�Ẋ · ĖẊ + �f �
�Ẋ · η̇ ·

�
ẋk

ẋk−1

|ṗθ(x)− ˆ̇pθ(x)|dx.

In general, if f(x) is not differentiable at nf

k
points in (ẋk−1, ẋk), where

�
K

k=1 n
f

k
= nf , it can be

shown in the same way that

|

�
ẋk

ẋk−1

f(x) · (ṗθ(x)− ˆ̇pθ(x))dx| ≤ 2(nf

k
+ 1)�f�Ẋ · ĖẊ + �f �

�Ẋ · η̇ ·

�
ẋk

ẋk−1

|ṗθ(x)− ˆ̇pθ(x)|dx.

And since �
ẋk

ẋk−1

|ṗθ(x)− ˆ̇pθ(x)|dx

=

�
ẋk

ẋk−1

|ṗθ(x)−
Ḟk − Ḟk−1

η̇
+

Ḟk − Ḟk−1

η̇
−

ˆ̇Fk −
ˆ̇Fk−1

η̇
|dx

= |Ḟk − Ḟk−1 − (ˆ̇Fk −
ˆ̇Fk−1)|+

�
ẋk

ẋk−1

|ṗθ(x)−
Ḟk − Ḟk−1

η̇
|dx

≤ 2ĖẊ +

�
ẋk

ẋk−1

|ṗθ(x)−
Ḟk − Ḟk−1

η̇
|dx.

Then, �
ẋk

ẋk−1

|ṗθ(x)−
Ḟk − Ḟk−1

η̇
|dx =

1

η̇

�
ẋk

ẋk−1

|

�
ẋk

ẋk−1

(ṗθ(x)− ṗθ(y))dy|dx.

Assume ṗθ(x) is differentiable in (ẋk−1, ẋk), then since ṗθ(y) = ṗθ(x) + ṗ�(ξk(x, y))(y − x), we have

�
ẋk

ẋk−1

|ṗθ(x)− ˆ̇pθ(x)|dx ≤ 2ĖẊ + �ṗ�
θ
�Ẋ · η̇2.

Then

��
K̇�

k=1

�
ẋk

ẋk−1

f(x)·(ṗθ(x)− ˆ̇pθ(x))dx
�� ≤ 2ĖẊ ((K̇+nf)�f�Ẋ+�f �

�Ẋ (ẋ
K̇
−ẋ0))+�f �

�Ẋ �ṗ�
θ
�Ẋ (ẋK−ẋ0)·η̇

2.

49

And
��E[f(X) · Sθ(X)]− E[f(X̂) · Ŝθ(X̂)]

�� ≤ (

�
ẋ0

−∞
+

� ∞

ẋK̇

)|f(x)| · |ṗθ(x)|dx

+
1

K̇2
�f �

�Ẋ · �ṗ�
θ
�Ẋ |Ẋ |

3

+ 2((K̇ + nf)�f�Ẋ + �f �
�Ẋ · |Ẋ |)ĖẊ .

4.2.2 Class with analyticity property

We use the same notations as we did previously by denoting the c.f. of X as φ and denoting the

partial derivative of φ w.r.t θ as φ̇. Then φ̇ is actually the Fourier transform function of Ḟ (x) under

some mild condition. In the following, we assume that φ̇ ∈ H(D(ḋ−,ḋ+)). And values of the partial

derivative functions are computed through the Hilbert transform representation by (4.20), that is,

ˆ̇Fk = Ḟ
ḣ,Ṁ

(ẋk). We further define

E
ḣ,Ṁ,Ẋ = sup

x∈Ẋ
|Ḟ (x)− Ḟ

ḣ,Ṁ
(x)|.

Then we can update our results of estimation bias from previous chapter:

Theorem 4.2.2. Besides the assumptions given in Theorem 4.2.1, we further assume that φ̇θ ∈

H(D
ḋ−,ḋ+

) for some −∞ < ḋ− < 0 < ḋ+ < ∞, and φ̇θ satisfies (4.21). Moreover, for all θ in

a small region V , φ is continuous differentiable w.r.t θ, and there is an integrable function H for

which |φ̇θ(z)| < H(z) for all real z, then

��E[f(X) · Sθ(X)]− E[f(X̂) · Ŝθ(X̂)]
�� ≤ �φ̇θ�

+

2π

�
ẋ0

−∞
|f(x)|exḋ+dx+

�φ̇θ�
−

2π

� ∞

ẋK̇

|f(x)|exḋ−dx

+
1

2πK̇2
�f �

�Ẋ · |Ẋ |
3

�

R
|ξφ̇θ(ξ)|dξ

+ 2((K̇ + nf)�f�Ẋ + �f �
�Ẋ · |Ẋ |)Ė

h,M,Ẋ .

(4.25)

for all θ ∈ V .

Proof. The probability density function p(x) of X admits the following inverse Fourier transform

representation:

p(x) =
1

2π

�

R
e−izxφ(z)dz.

Then, give φ(z) is continuous differentiable w.r.t θ in V . By dominated convergence theorem, we

50

have:

ṗθ(x) =
∂p(x)

∂θ
=

1

2π

�

R
e−izx

∂φ(z)

∂θ
dz =

1

2π

�

R
e−izxφ̇θ(z)dz.

By Cauchy’s integral theorem, for any � > 0 such that ḋ+ − � > 0, we have

ṗθ(x) =
1

2π

� +∞+i(ḋ+−�)

−∞+i(ḋ+−�)
e−izxφ̇θ(z)dz = e(ḋ+−�)x

�

R

1

2π
e−ixξφ̇θ(ξ + i(ḋ+ − �))dξ.

Then �
ẋ0

−∞
|f(x)||ṗθ(x)|dx ≤

�φ̇θ�
+

2π

�
ẋ0

−∞
|f(x)|exḋ+dx.

Similarly, � ∞

ẋK̇

|f(x)||ṗθ(x)|dx ≤
�φ̇θ�

−

2π

� ∞

ẋK̇

|f(x)|exḋ−dx.

Since ξφ̇θ(ξ) is absolutely integrable on R given the assumptions on φ̇θ,

ṗ�
θ
=

1

2π

d

dx

�

R
e−iξxφ̇θ(ξ)dξ =

1

2πi

�

R
e−iξxξφ̇θ(ξ)dξ,

where the interchange of the integration and differentiation is valid again by the dominated conver-

gence theorem. Therefore,

�ṗ�
θ
�Ẋ ≤

1

2π

�

R
|ξφ̇θ(ξ)|dξ.

Combine the previous results, we are done with the proof.

4.2.3 The multidimensional case

Multidimensional case in sensitivity analysis is much harder. We approximate

EX[f(X1, ..., Xd)Sθ(X1, ..., Xd)]

in (4.7) by

EX̂[f(X̂1, ..., X̂d)Ŝθ(X̂1, ..., X̂d)].

We are trying to find a bound for the difference between the two terms. Although we can follow

the idea as in the proof of theorem 3.2.5, the computational process is very complex. In fact, the

51

estimation bounds can be decomposed into d2 terms, each of them has the following format:

�

R
f(x1, ..., xd)p

(i)(xi)dxi −

�
x
i
Ki

x
i
0

f(x1, ..., xd)p̂
(i)(xi)dxi (4.26)

�

R
f(x1, ..., xd)ṗ

(i)
θ
(xi)dxi −

�
x
i
Ki

x
i
0

f(x1, ..., xd)ˆ̇p
(i)
θ
(xi)dxi (4.27)

We can then take advantage of theorem 4.2.2 and corresponding theorem in previous chapter. If

we further assume the following bounds

|f(x1, ..., xd)| ≤ g1(x1) · gd(xd), |
d

dxi

f(x1, ..., xd)| ≤ g1(x1) · gd(xd),

are satisfied for all 1 ≤ i ≤ d, then we only need to bound the following two terms as shown in [19]:

Bp

i
=

||φ(i)||−

2π

� ∞

x
(i)
Ki

gi(x)e
xd

(i)
− dx+

||φ(i)||+

2π

�
x
(i)
0

−∞
gi(x)e

xd
(i)
+ dx

+
1

2πK2
i

||gi||Xi |Xi|
3

�

R
|ξφ(i)(ξ)|dξ

+2
�
Ki + nf + |Xi|

�
||gi||Xi · Ehi,Mi,Xi .

Bṗ

i
=

�φ̇θ�
+

2π

�
ẋ0

−∞
gi(x)e

xḋ+dx+
�φ̇θ�

−

2π

� ∞

ẋK̇

gi(x)e
xḋ−dx

+
1

2πK̇2
�gi�Ẋ · |Ẋ |

3

�

R
|ξφ̇θ(ξ)|dξ

+2((K̇ + nf + |Ẋ |)�gi�Ẋ Ė
h,M,Ẋ .

Then we can control a tolerance level �b for B = max{Bp

i
, Bṗ

i
} for 1 ≤ i ≤ d. In practice, we adjust

the grids {ẋ(i)
0 , · · · , ẋ(i)

K̇i
}, {x(i)

0 , · · · , x(i)
Ki

} and other parameters as well to decrease B sequentially.

And by doing this several times, we are able to control the bias to our desired level.

4.3 Numerical results

In this section, we verify the theoretical results in Section 4.2, and illustrate how to determine the

grid (4.13) and the numerical parameters for Hilbert transform method. We then provide sensitivity

analysis for both European and Asian option in CGMY model [14] and illustrate the efficiency of

our method. Computations are done on a Lenovo laptop T61p with Intel Core 2 Duo 2.5GHz CPU

52

and 3GB RAM.

4.3.1 The CGMY process

A CGMY process Xt is a pure jump Lévy process with drift µ and the following Lévy density

CeGx

|x|1+Y
1{x<0} +

Ce−Mx

|x|1+Y
1{x>0}

for some C > 0, G > 0,M > 0, 0 < Y < 2. The martingale condition requires µ = r − q −

CΓ(−Y)((M− 1)Y −MY + (G+ 1)Y −GY). Explicit expressions for the density and the cdf of Xt

are not available. However, the characteristic function of Xt is known explicitly:

φt(ξ) = exp(iµtξ − tCΓ(−Y)(MY
− (M− iξ)Y +GY

− (G+ iξ)Y)),

where Γ(·) is gamma function. φ is in H(D(d−,d+)) with d− = −M, d+ = G. When 0 < Y < 1, φ

satisfies (3.7) with κ = exp(−tCΓ(−Y)(MY +GY)), c = 2tC|Γ(−Y) cos(πY/2)|, and ν = Y .

When taking partial derivatives of φt(ξ), the derivative function φ̇θ(ξ) = φt(ξ)P (ξ), where P (ξ)

is a power function of ξ with order no more than Y + 2. Hence, the exponential tail of φt(ξ)

dominates. Please refer to [19] for more detail. Also, φ(ξ) and φ̇θ(ξ) have the same analytic strip.

Hence, the same analysis can be adopted without much change as in [20].

4.3.2 Sensitivity Analysis of CGMY model

In this section, we consider the sensitivity analysis for CGMY model. The parameters are the same

as those in [40]:

C = 4, G = 50,M = 60, Y = 0.7, r = 0.05, q = 0.02, S0 = Ks = 100, T = 0.5.

For the sensitivity of European call option, we take ẋ0 = ln(Ks/S0) = 0 and determine ẋ
K̇

> 0

according to the second term in (4.25):

||φ̇θ||
−

2π

� ∞

ẋK̇

|f(x)|exḋ−dx =
||φ̇θ||

−

2π
eẋK̇ ḋ−

� 1

ḋ−
−

1

ḋ− + 1
eẋK̇

�
.

For three tolerance levels of total bias �b = 10−2, 10−3, 10−4, we find the smallest ẋK so that the

above is bounded by �b/2. With the root finding approach, we obtain ẋK as reported in Table 4.1.

53

Sensitivity of European call in the CGMY model w.r.t C

�b ẋ0 ẋ
K̇

K̇ Ė
ḣ,Ṁ,Ẋ ḣ Ṁ

10−2 0 1.011 49 5.6× 10−7 2.882 78
10−3 0 1.050 166 1.6× 10−8 2.744 83
10−4 0 1.089 566 4.5× 10−10 2.617 88

Sensitivity of European call in the CGMY model w.r.t G

�b ẋ0 ẋ
K̇

K̇ Ė
ḣ,Ṁ,Ẋ ḣ Ṁ

10−2 0 0.943 11 2.5× 10−6 3.022 73
10−3 0 0.982 35 8.1× 10−8 2.874 78
10−4 0 1.022 119 2.3× 10−9 2.735 83

Sensitivity of European call in the CGMY model w.r.t M
�b ẋ0 ẋ

K̇
K̇ Ė

ḣ,Ṁ,Ẋ ḣ Ṁ
10−2 0 1.005 10 2.4× 10−6 3.053 72
10−3 0 1.044 33 7.7× 10−8 2.902 77
10−4 0 1.084 111 2.3× 10−9 2.761 82

Sensitivity of European call in the CGMY model w.r.t Y

�b ẋ0 ẋ
K̇

K̇ Ė
ḣ,Ṁ,Ẋ ḣ Ṁ

10−2 0 1.055 217 2.4× 10−6 2.726 85
10−3 0 1.094 738 7.7× 10−8 2.601 91
10−4 0 1.134 2513 2.3× 10−9 2.486 96

Asian call in the CGMY model (d = 6) w.r.t C
�b x0 xK K Eh,M,X h M

10−2 -0.213 0.205 44 8.7× 10−7 10.899 21
10−3 -0.260 0.244 188 2.0× 10−8 9.107 28
10−4 -0.307 0.283 771 4.8× 10−10 7.822 35

�b ẋ0 ẋ
K̇

K̇ E
ḣ,Ṁ,Ẋ ḣ Ṁ

10−2 -0.211 0.207 23 1.7× 10−6 10.890 32
10−3 -0.258 0.246 99 3.8× 10−8 9.101 41
10−4 -0.305 0.285 404 9.1× 10−10 7.818 51

Asian call in the CGMY model (d = 26) w.r.t C
�b x0 xK K Eh,M,X h M

10−2 -0.129 0.111 45 9.3× 10−7 15.748 31
10−3 -0.176 0.150 226 1.8× 10−8 12.187 49
10−4 -0.223 0.189 1039 3.8× 10−10 9.954 73

�b ẋ0 ẋ
K̇

K̇ E
ḣ,Ṁ,Ẋ ḣ Ṁ

10−2 -0.190 0.141 17 2.5× 10−6 18.636 164
10−3 -0.144 0.126 98 4.4× 10−8 13.777 269
10−4 -0.191 0.165 478 8.6× 10−10 10.969 398

Table 4.1: Grids and parameters for Fourier transform inversion.

54

We then select the step size (ẋK − ẋ0)/K̇ of the grid according to the third term in (4.25):

1

2πK̇2
||f �

||Ẋ |Ẋ |
3

�

R
|ξφ̇θ(ξ)|dξ.

The smallest positive integer K̇ so that the above is bounded by �b/2 is given by:

K̇ =
� 1

π�b
||f �

||Ẋ |Ẋ |
3

�

R
|ξφ̇θ(ξ)|dξ

�1/2
.

It is easy to find that ||f �||X = eẋK . The corresponding values for K̇ are reported in Table 4.1. We

then control the last term in (4.25):

(2K̇||f ||Ẋ + 2||f �
||Ẋ (ẋ

K̇
− ẋ0))Ėh,M,Ẋ = (2K̇(eẋK̇ − 1) + 2(ẋ

K̇
− ẋ0)e

ẋK̇)Ė
h,M,Ẋ .

We make the above term equal to 0.01�b, which is negligible when compared to �b. The corresponding

values for E
ḣ,Ṁ,Ẋ can be found in Table 4.1. According to (4.22), since ẋ0 = 0, we have

E
ḣ,Ṁ,Ẋ ≤

e−2π|ḋ−|/ḣ

2π|ḋ−|(1− e−2π|ḋ−|/ḣ)
||φ̇θ||

− +
e−2πḋ+/ḣ+ẋK̇ ḋ+

2πḋ+(1− e−2πḋ+/ḣ)
||φ̇θ||

+

+
κ

2π

� 1

Ṁ
+

2

νc(Ṁḣ)ν

�
e−c(Ṁḣ)ν . (4.28)

We then solve for ḣ and Ṁ so that the summation of the first two terms above is equal to one half

of the value in the fifth column of Table 4.1. And so is the third term above. The resulting ḣ and

Ṁ are reported in Table 4.1. For the choice of grids used for simulating X̂, we take the same values

used in [20].

With the settings in Table 4.1, we estimate the sensitivity of European vanilla call option. The

benchmark value is computed using the Hilbert transform method of [38] combined with finite

difference. The results are shown in Table 4.3. “N” refers to the sample size in thousands. “SE”

represents the standard error. “Error” represents the actual estimation error. “CPU” represents the

computational time in seconds. The pre-simulation time for computing the matrix is around 0.01

second for �b = 10−2, and around 0.02 second for �b = 10−4, which is very fast. It can be observed

that when the sample size N is large enough, the bias dominates. And this phenomenon is rather

obvious for M and G’s case, since their SE is smaller than the case of C. Take θ = G as an example,

when �b = 10−3, while N is decreasing, the absolute error decreases at first but keeps stable around

2E-4 and does not decrease anymore. On the other hand, SE is decreasing to the level of 1E-5,

55

N (×103) RMSE Error CPU(s) Delta
1 4.1E-2 2.9E-2 0.017 0.5373
4 2.1E-2 6.2E-3 0.018 0.5606
16 1.0E-2 1.6E-3 0.020 0.5652
64 5.1E-3 6.7E-3 0.025 0.5601
256 2.6E-3 1.7E-3 0.043 0.5651
1024 1.3E-3 1.9E-3 0.123 0.5649
4096 6.4E-4 1.4E-3 0.455 0.5654
16384 3.2E-4 8.8E-4 1.770 0.5659
65536 1.6E-4 6.5E-4 6.926 0.5661

Table 4.2: European call option delta in the CGMY model. �b = 0.001. Exact value: 0.566793

which implies the absolute error is dominated by the bias, which should be about 2E-4. Notice that

the bias is smaller than the target level we set for, which is S0e−rT �b. The same reasoning remains

for �b = 10−2, the bias is around 1.5E-3 in this case. But for �b = 10−4, it is hard to tell whether

the absolute error dominates by bias or SE or even both, since SE is around 1E-5, about the same

level as its absolute error.

Now we consider the sensitivity of fixed strike Asian option with respect to parameter C. We

use the same parameter as used for European call option. The average price is based on either

monthly monitoring (d = 6) or weekly monitoring (d = 26). Benchmark prices are computed

using the Fourier transform method [8; 17] combined with finite difference. For d = 6, 26 and

�b = 10−2, 10−3, 10−4 (the tolerance level for B in section 4.2.3), we determine the grids X , Ẋ and

the numerical parameters for Fourier transform inversion . The results are also reported in Table

4.1. With this settings, we compute the sensitivity w.r.t C and report the result in Table 4.4. “N”

refers to the sample size in thousands. “SE” represents the standard error. “Error” represents the

actual estimation error. “SV” represents the sensitivity values. We can see that, for both d = 6 and

d = 26, as �b decrease, the absolute error decrease accordingly. It can be observed that, with the

same bound �b, the absolute error for d = 6 is actually smaller than for d = 26. This agrees with

the rule of dimension curse: as the dimension increase, the problem becomes harder to solve.

In table 4.5, we report the sensitivity values of different options w.r.t parameter C . We can

observe that, European option is more sensitive than Asian option, and Asian option with less

monitoring dates is more sensitive than Asian option with more monitoring dates. This result

agrees with the fact that Asian options price would suffer less from financial market changes when

comparing with European options, which is more volatile.

56

θ = C

�b = 10−2 �b = 10−3 �b = 10−4

N (×103) SE Error CPU SE Error CPU SE Error CPU
1 1.4E-1 1.0E-1 0.011 1.2E-1 1.0E-1 0.013 1.3E-1 2.4E-2 0.027
4 5.8E-2 1.0E-1 0.012 6.5E-2 5.1E-2 0.014 6.3E-2 4.1E-2 0.027
16 3.2E-2 1.6E-2 0.013 3.6E-2 2.7E-2 0.016 3.3E-2 3.7E-2 0.029
64 1.7E-2 1.3E-2 0.020 1.7E-2 5.6E-3 0.024 1.7E-2 1.6E-2 0.039
256 8.7E-3 1.3E-3 0.045 8.4E-3 1.2E-2 0.052 8.7E-3 8.7E-3 0.078
1024 4.4E-3 1.1E-3 0.160 4.3E-3 4.9E-3 0.229 4.3E-3 6.8E-4 0.232
4096 2.2E-3 1.6E-3 0.599 2.1E-3 2.5E-3 0.650 2.1E-3 2.1E-4 0.831
16384 1.1E-3 3.1E-3 2.384 1.1E-3 1.2E-4 2.589 1.1E-3 6.5E-5 3.289
65536 5.4E-4 1.3E-3 9.420 5.4E-4 1.4E-4 10.237 5.4E-4 3.1E-4 12.903
262144 2.7E-4 1.1E-3 37.720 2.7E-4 2.0E-4 40.741 2.7E-4 2.3E-5 51.635

θ = G

�b = 10−2 �b = 10−3 �b = 10−4

N (×103) SE Error CPU SE Error CPU SE Error CPU
1 6.6E-3 1.1E-3 0.009 8.9E-3 1.6E-2 0.009 6.4E-3 2.5E-3 0.012
4 3.6E-3 1.3E-3 0.010 3.5E-3 7.9E-4 0.010 3.2E-3 4.4E-3 0.013
16 1.9E-3 7.1E-5 0.011 1.7E-3 1.0E-3 0.012 1.6E-3 9.2E-4 0.015
64 9.8E-4 1.8E-3 0.018 8.5E-4 4.8E-4 0.020 8.3E-4 6.8E-4 0.022
256 5.0E-4 1.5E-3 0.043 4.2E-4 2.0E-4 0.048 4.1E-4 1.3E-4 0.050
1024 2.5E-4 9.6E-4 0.143 2.1E-4 4.6E-4 0.157 2.1E-4 4.8E-5 0.182
4096 1.3E-4 1.4E-3 0.613 1.1E-4 6.0E-5 0.584 1.0E-4 2.0E-5 0.701
16384 6.2E-5 1.6E-3 2.192 5.3E-5 1.7E-4 2.334 5.2E-5 3.2E-5 2.474
65536 3.1E-5 1.5E-3 8.726 2.6E-5 1.2E-4 9.208 2.6E-5 9.7E-6 9.877
262144 1.6E-5 1.5E-3 34.970 1.3E-5 1.3E-4 37.049 1.3E-5 1.3E-5 39.515

θ = M

�b = 10−2 �b = 10−3 �b = 10−4

N (×103) SE Error CPU SE Error CPU SE Error CPU
1 6.0E-3 4.1E-3 0.009 7.7E-3 6.1E-2 0.009 5.1E-3 5.7E-3 0.015
4 3.7E-3 8.9E-4 0.010 3.7E-3 7.4E-4 0.011 2.7E-3 5.2E-3 0.016
16 1.8E-3 1.5E-3 0.011 1.5E-3 2.0E-3 0.012 1.5E-3 1.1E-3 0.017
64 9.6E-4 1.4E-3 0.018 7.8E-4 5.5E-4 0.019 8.0E-4 3.2E-5 0.027
256 4.9E-4 1.8E-3 0.043 4.1E-4 3.7E-4 0.046 4.2E-4 1.1E-4 0.063
1024 2.7E-4 1.4E-3 0.140 2.1E-4 1.9E-4 0.175 2.0E-4 2.9E-4 0.189
4096 1.4E-4 1.4E-3 0.558 1.0E-4 8.5E-5 0.625 1.0E-4 7.5E-5 0.633
16384 6.7E-5 1.4E-3 2.159 5.2E-5 3.4E-5 2.301 5.1E-5 5.4E-5 2.432
65536 3.3E-5 1.4E-3 8.608 2.6E-5 1.3E-4 9.331 2.5E-5 2.7E-6 9.779
262144 1.7E-5 1.4E-3 34.570 1.3E-5 1.3E-4 36.737 1.3E-5 9.5E-6 38.95

Table 4.3: European Vanilla call in the CGMY model, derivative of option price w.r.t θ

57

d = 6

�b = 10−2 �b = 10−3 �b = 10−4

N (×103) SE Error SV SE Error SV SE Error SV
1 1.3E-1 2.3E-1 0.672 1.1E-1 2.9E-2 0.474 1.1E-1 8.5E-2 0.360
4 6.1E-2 4.8E-2 0.493 6.1E-2 9.9E-2 0.544 6.4E-2 6.4E-2 0.509
16 3.0E-2 4.3E-3 0.449 2.9E-2 6.0E-4 0.444 3.0E-2 1.1E-2 0.456
64 1.5E-2 3.5E-2 0.410 1.5E-2 7.2E-3 0.452 1.5E-2 2.6E-3 0.442
256 7.2E-3 4.4E-2 0.401 7.3E-3 1.4E-2 0.431 7.3E-3 2.5E-4 0.445
1024 3.6E-3 4.9E-2 0.396 3.6E-3 5.6E-3 0.439 3.7E-3 8.8E-4 0.444
4096 1.8E-3 4.5E-2 0.400 1.8E-3 7.5E-3 0.438 1.8E-3 7.2E-4 0.446
16384 9.0E-4 4.4E-2 0.402 9.1E-4 6.9E-3 0.438 9.2E-4 9.1E-4 0.444
65536 4.5E-4 4.4E-2 0.401 4.6E-4 7.0E-3 0.438 4.6E-4 8.1E-4 0.444

d = 26

�b = 10−2 �b = 10−3 �b = 10−4

N (×103) SE Error SV SE Error SV SE Error SV
1 1.7E-1 2.1E-1 0.194 1.8E-1 2.0E-2 0.427 1.7E-1 7.4E-2 0.481
4 8.4E-2 4.0E-1 0.010 9.2E-2 2.5E-2 0.382 9.0E-2 9.8E-2 0.506
16 4.1E-2 3.7E-1 0.034 4.6E-2 1.2E-2 0.419 4.4E-2 1.6E-2 0.391
64 2.1E-2 3.7E-1 0.036 2.2E-2 3.0E-2 0.377 2.2E-2 2.7E-2 0.380
256 1.0E-2 3.6E-1 0.048 1.1E-2 3.6E-2 0.372 1.1E-2 3.0E-3 0.404
1024 5.3E-3 3.6E-1 0.048 5.5E-3 2.8E-2 0.379 5.6E-3 2.1E-3 0.405
4096 2.6E-3 3.6E-1 0.048 2.8E-3 3.1E-2 0.376 2.8E-3 2.5E-4 0.407
16384 1.3E-3 3.6E-1 0.050 1.4E-3 3.2E-2 0.376 1.4E-3 1.1E-3 0.406
65536 6.6E-4 3.6E-1 0.051 6.9E-4 3.3E-2 0.375 7.0E-4 2.1E-3 0.405

Table 4.4: Sensitivity of Discrete Asian call w.r.t C

Option European Call Asian Call d = 6 Asian Call d = 26
Sensitivity w.r.t C 0.685 0.444 0.400

Table 4.5: Sensitivity of Discrete Asian call w.r.t C

58

θ = Y

�b = 10−2 �b = 10−3 �b = 10−4

N (×103) SE Error CPU SE Error CPU SE Error CPU
1 2.1E-0 5.7E-2 0.015 2.4E-0 3.3E-1 0.033 2.8E-0 4.0E-0 0.096
4 1.4E-0 1.7E-0 0.016 1.1E-0 9.0E-1 0.033 1.2E-0 5.3E-1 0.098
16 6.1E-1 1.9E-3 0.018 5.6E-1 2.6E-1 0.036 5.6E-1 2.7E-1 0.102
64 2.9E-1 1.5E-1 0.026 2.8E-1 3.9E-1 0.046 2.9E-1 4.7E-1 0.122
256 1.5E-1 1.6E-1 0.147 1.4E-1 2.9E-1 0.086 1.4E-1 1.5E-1 0.199
1024 7.2E-2 3.7E-2 0.178 7.2E-2 6.1E-2 0.259 7.2E-2 7.6E-2 0.499
4096 3.6E-2 4.6E-3 0.671 3.6E-2 3.3E-2 0.919 3.6E-2 3.8E-3 1.719
16384 1.8E-2 4.5E-3 2.638 1.8E-2 5.6E-3 3.631 1.8E-2 1.4E-2 6.656
65536 9.0E-3 4.0E-3 10.581 9.0E-3 7.1E-3 14.277 9.0E-3 6.9E-3 26.257
262144 4.5E-3 4.6E-3 44.608 4.5E-3 2.2E-3 56.997 4.5E-3 1.4E-4 105.141

Table 4.6: European Vanilla call in the CGMY model, derivative of option price w.r.t θ = Y

d = 6

�b = 10−2 �b = 10−3 �b = 10−4

N (×103) SE Error SV SE Error SV SE Error SV
1 4.3E-3 1.1E-2 -0.0138 5.1E-3 2.3E-3 -0.0230 5.5E-3 1.5E-3 -0.0268
4 2.1E-3 1.3E-2 -0.0119 3.1E-3 6.1E-4 -0.0259 2.7E-3 2.7E-4 -0.0256
16 1.1E-3 1.2E-2 -0.0133 1.4E-3 2.7E-3 -0.0226 1.3E-3 8.1E-4 -0.0245
64 5.6E-4 1.2E-2 -0.0129 6.7E-4 3.4E-3 -0.0219 6.5E-4 1.6E-3 -0.0237
256 2.8E-4 1.2E-2 -0.0129 3.3E-4 4.1E-3 -0.0212 3.4E-4 3.1E-4 -0.0250
1024 1.4E-4 1.3E-2 -0.0127 1.6E-4 3.2E-3 -0.0221 1.7E-4 3.6E-4 -0.0249
4096 6.8E-5 1.2E-2 -0.0128 8.1E-5 3.7E-3 -0.0216 8.3E-5 7.2E-4 -0.0246
16384 3.4E-5 1.2E-2 -0.0128 4.1E-5 3.6E-3 -0.0217 4.1E-5 6.7E-4 -0.0246
65536 1.7E-5 1.3E-2 -0.0128 2.0E-5 3.6E-3 -0.0217 2.1E-5 6.1E-4 -0.0247

d = 26

�b = 10−2 �b = 10−3 �b = 10−4

N (×103) SE Error SV SE Error SV SE Error SV
1 8.8E-3 2.2E-1 0.1955 8.5E-3 3.2E-2 0.0084 8.6E-3 1.3E-3 -0.0244
4 4.3E-3 2.2E-1 0.1932 4.1E-3 3.3E-2 0.0098 4.3E-3 1.8E-3 -0.0213
16 2.1E-3 2.2E-1 0.1953 2.0E-3 3.1E-2 0.0075 2.1E-3 4.7E-3 -0.0185
64 1.1E-3 2.2E-1 0.1947 9.9E-4 3.0E-2 0.0068 1.0E-3 3.0E-3 -0.0201
256 5.4E-4 2.2E-1 0.1936 4.9E-4 3.1E-2 0.0075 5.3E-4 2.6E-3 -0.0206
1024 2.7E-4 2.2E-1 0.1932 2.4E-4 3.1E-2 0.0074 2.6E-4 2.5E-3 -0.0207
4096 1.3E-4 2.2E-1 0.1932 1.2E-4 3.0E-2 0.0071 1.3E-4 2.5E-3 -0.0206
16384 6.7E-5 2.2E-1 0.1931 6.1E-5 3.1E-2 0.0074 6.6E-5 2.6E-3 -0.0205
65536 3.4E-5 2.2E-1 0.1932 3.1E-5 3.0E-2 0.0073 3.3E-5 2.6E-3 -0.0206

Table 4.7: Sensitivity of Discrete Asian call w.r.t G

59

4.3.3 European and Asian delta

Delta is one of the most Greeks used in financial industry for hedging and pricing purpose. It is

define as the sensitivity of the option price with respect to the underlying asset price. To simulate

the delta, we need to rewrite the characteristic function of CGMY model into the following form:

φt(ξ) = exp(iξ(ln(S0) + µt)− tCΓ(−Y)(MY
− (M− iξ)Y +GY

− (G+ iξ)Y)),

Then, the partial derivative is given by

φ̇t(ξ) =
iξ

S0
φt(ξ).

For European delta, we only need to design one set of grid since it is single dimensional. For Asian

option, although it has d dimension, S0 only appears in X1. Hence, we only need to compute two

set of grids instead of d sets since X2, ..., Xd are i.i.d..

We can calculate the parameters for the grids then and also obtain the delta, which is listed in

table 4.2.

60

Chapter 5

Discrete Asian Options in Jump
Diffusion models

In this chapter, a new scheme is proposed to price fixed strike Asian options. Although not as

heavily traded as European and American options, Asian option still has a large share in natural

resource derivative market, like crude oil and heating oil derivative market. However, due to the

difficulty inherited from its structure, very few efficient methods have been developed so far to price

Asian options in Lévy process models, especially for discretely monitored arithmetic average Asian

options. On the one hand, the simulation method we mentioned in the first part of the thesis could

be adopted. On the other hand, in this chapter, we propose a new numerical scheme based on

transform method. For the new scheme, exponential convergence of its numerical error could be

achieved both theoretically and practically.

5.1 Discrete Asian Options

5.1.1 Basic Algorithm

We first introduce the method proposed by Carverhill and Clewlow in [17]. We assume the underlying

asset price St follows a geometric Lévy process:

St = S0e
Xt .

In this case, the Asian call option price with strike price K is given by:

E[e−rT (AT −K)+],

61

where AT is the average asset price on d+1 monitoring dates {t0, t1, ..., td} (t0 = 0 and td = T) and

has the following mathematical expression:

AT =
1

d+ 1

d�

n=0

Stn .

Note that in some reference, the average is on d asset prices excluding St0 or S0. Although the

option price varies for different definition, all pricing methods introduced here should be able to

adapt to both situations.

If we further define the Lévy increment by ∆Xn = Xtn − Xtn−1 , for n = 1, 2..., d, and assume

X0 = 0. Then, we have the following expression for AT through the Steward-Hodges factorization:

AT =
1

d+ 1

d�

n=0

Stn =
1

d+ 1
(S0 + S0e

X1 + S0e
X2 + ...+ S0e

Xd)

=
S0

d+ 1
(1 + e∆X1 + e∆X1+∆X2 + ...+ e∆X1+...+∆Xd−1 + e∆X1+...+∆Xd)

=
S0

d+ 1
(1 + e∆X1(1 + e∆X2(1 + ...+ e∆Xd−1(1 + e∆Xd))))

=
S0

d+ 1
(1 + exp(∆X1 + ln(1 + exp(∆X2 + ln(1 + ...+ exp(∆Xd−1 + ln(1 + exp(∆Xd)))))))).

Moreover, in order to simplify notation, we adopt a new set of random variable:

Bd = ∆Xd,

Bn = ∆Xn + ln(1 + eBn+1), n = d− 1, ..., 1.
(5.1)

Then, AT will have a very simple expression:

AT =
S0

d+ 1
(1 + eB1).

Beginning with Bd, a Lévy increment, Bn could be calculated recursively for n = d− 1, ..., 1. After

B1 is obtained, we are able to calculate AT and then the option price. To be more specific, if we

denote the probability density functions of ∆Xn, Bn and ln(1+ eBn) by pn, fn and gn respectively,

then we will have the following relationship for any n in {1, ..., d}:

gn(x) = fn(ln(e
x
− 1))

ex

ex − 1
, x > 0, (5.2)

62

as well as

fn(x) = (pn � gn+1)(x).

where � is the convolution operator. Notice that since ∆Xn, n = d, ..., 1 are Lévy increments, which

are independent with each other, we then have ∆Xn and ln(1+ eBn+1) are independent. And hence

as a summation of the two random variables, density function of Bn could be calculated as the

convolution of these two individual probability density functions.

To summarize, we obtain the following algorithm, which was first studied by Carverhill and

Clewlow in [17].

Algorithm 5.1.1. 1. fd(x) = pd(x) is defined as the density function of the Lévy increment;

2. For n = d− 1, ..., 1, calculate gn+1 from (5.2) and then compute fn = pn � gn+1,

3. Finally, the discretely monitored Asian call option price is given by

c = e−rT

�

R

� S0

d+ 1
(1 + ex)−K

�+
f1(x)dx.

5.1.2 Recentered Algorithm

Benhamou in [8] claims that fn will shift right as n increasing, since for every step in the recursion, a

Lévy increment ∆Xn is added, which usually comes with positive mean. And this will lead to a much

larger integration interval if numerical computation is applied. Also, he proposes an adjustment to

the original algorithm (5.1.1) to alleviate this problem by a simple re-centering. Assume the mean

estimation of Bn is denoted by bn. For the first one, bd = E[∆Xd] can be easily calculated. For the

rest bns, an intuitive way is to calculate recursively through:

bn = E[∆Xn] + ln(1 + ebn+1), n = d− 1, ..., 1.

Then, they consider the re-centered process An = Bn − bn, for n = d, ..., 1. And now, an updated

version of (5.1) becomes

Ad = ∆Xd − bd,

An = ∆Xn + ln(1 + eAn+1+bn+1)− bn, n = d− 1, ..., 1,

63

and the average asset price now have the following representation:

AT =
S0

d+ 1
(1 + eA1+b1).

Follow the same argument used in the original algorithm, if we denote the density of ∆Xn, An and

ln(1 + eAn+bn)− bn−1 by pn, fn and gn respectively, then we will have the following identity:

gn(x) = fn(ln(e
x+bn−1 − 1)− bn)

ex+bn−1

ex+bn−1 − 1
, x > −bn−1. (5.3)

And also, the following convolution equation still holds for n = d, ..., 1,

fn(x) = (pn � gn+1)(x).

To summarize, Benhamou’s algorithm as in [8] is shown as below:

Algorithm 5.1.2. 1. fd(x) = pd(x + bd) is defined as a shifted density function of Lévy incre-

ment;

2. For n = d− 1, ..., 1, calculate gn+1 from (5.3) and then compute fn = pn � gn+1;

3. Finally, the discretely monitored Asian call option price is given by

c = e−rT

�

R

� S0

d+ 1
(1 + ex+b1)−K

�+
f1(x)dx.

5.2 A New Scheme

The main drawback of the previous two schemes is that they both suffer from slow convergence rate.

For example, the rate is only quadratic if Trapezoidal’s rule is applied. While different numerical

quadratures could be applied to obtain better convergence rate, it is still restricted to polynomial

order, as the case in [42] by Fusai and Meucci. Even worse, the numerical result they obtained

can hardly achieve an accuracy of 1E-5, which is discovered by Cerny and Kyriakou and shown in

[68]. Meanwhile, Cerny and Kyriakou provided a better scheme in [68]. However, their method is

still restricted by polynomial convergence. Here, we propose a new numerical scheme. By taking

advantage of the analytic property and exponential tail behavior of characteristic functions of Lévy

process, exponential convergence could be achieved in numerical integration. Also, the numerical

64

results shows that an accuracy of up to 10 digits after the decimal point could be achieved for most

popular Lévy process models.

5.2.1 Modified Algorithm

We denote the characteristic function of the Lévy increment by φ(ξ). Then, φ(ξ) is the Fourier

transform of the density pn(x):

F(pn) = φ(ξ).

We further denote the Fourier transform of gn and fn by ĝn and f̂n respectively, where gn(x) and

fn(x) are defined as in previous section. Then, take Fourier transform on both side of

fn(x) = (pn � gn+1)(x).

According to the convolution theorem, we obtain:

F(fn) = F(pn � gn+1) = F(pn) · F(gn+1),

or

f̂n(ξ) = φ(ξ) · ĝn+1(ξ).

Instead of managing all the computations within the state space as the previous two algorithms,

we move around between the state space and Fourier space in the new algorithm to take advantage

of properties of characteristic function so as to obtain exponential convergence result. To the same

consideration, we make some modification in the last step of the previous algorithm. It is noticeable

that the integrand (S0
d+1 (1 + ex+b1) − K)+ has a discontinuous first order derivative. In this case,

Trapezoidal’s rule usually lead to a quadratic convergence. However, by taking advantage of the

Hilbert transform method proposed in [38], we are able to achieve exponential convergence result.

We state the scheme here and leave the theoretical detail to the next section. First, the integrand

can be divided into two parts:

c = e−rT

�

R
(

S0

d+ 1
(1+ex+b1)−K)+f1(x)dx = e−rT

S0

d+ 1

� ∞

z0

(1+ex+b1)f1(x)dx−e−rTK

� ∞

z0

f1(x)dx.

65

where z0 = ln((d+ 1)K/S0 − 1)− b1. Further, we have:

� ∞

z0

f1(x)dx =

� ∞

−∞
f1(x)1{z0,∞}dx =

� ∞

−∞
ei·0·xf1(x)1{z0,∞}dx

= F{f1(x) · 1{z0,∞}}(0) =
1

2
f̂1(0) +

i

2
ei·0·z0H(e−i·ξ·z0 f̂1(ξ))(0).

Here H(·) represents the Hilbert transform. Similarly, if we define h1(x) = exf1(x), then

� ∞

z0

exf1(x)dx =
1

2
ĥ1(0) +

i

2
ei·0·z0H(e−i·ξ·z0 ĥ1(ξ))(0),

where

ĥ1(ξ) =

� ∞

−∞
eiξxexf1(x)dx =

� ∞

−∞
ei·(ξ−i)·xf1(x)dx

= F{f1(x)}(ξ − i) = f̂1(ξ − i) = φ(ξ − i) · ĝ2(ξ − i).

Hence, when n = 2 in the recursion, besides values of ĝ2(ξ), we need to calculate the function

values ĝ2 at ξ − i. This will be more clear when later we discuss the discrete approximation. Now,

we summarize the new algorithm as below:

Algorithm 5.2.1. (An alternative scheme)

1. f̂d = φ(ξ).

2. For n = d, ..., 2,

fn(x) = F
−1(f̂n(ξ)). (5.4a)

ĝn(ξ) =

� ∞

−bn−1

eiξygn(y)dy =

� ∞

−∞
eiξy(x)fn(x)dx. (5.4b)

f̂n−1(ξ) = φ(ξ) · ĝn(ξ). (5.4c)

where y(x) = ln(ex+bn + 1)− bn−1 for each recursive step.

3. Compute ĝ2(ξ − i) when n = 2, and use Hilbert transform to compute the Asian call option

price

c = e−rT

�

R
(

S0

d+ 1
(1 + ex+b1)−K)+f1(x)dx.

We would like to mention that under certain conditions, the computation in (5.4a) and (5.4b)

by Trapezoidal’s rule have exponentially decaying error. Also, the computations in (5.4c) are exact.

Hence, algorithm 5.2.1 should obtain overall exponentially decaying error.

66

5.2.2 Discrete Approximation

In order to price the option numerically, we need to consider the densities in their discretization

forms. Thanks to the re-centering scheme, fn(x) is centered around y-axis. Hence, we can truncate

the domain symmetrically with respect to y-axis, say [−x̄, x̄] for a large enough x̄ > 0. And then

divide [−x̄, x̄] into 2M equal intervals, each with length ∆x = x̄/M . Denote

xm = −x̄+m∆x, m = 0, 1, ..., 2M.

Also, we need to compute some characteristic functions (Fourier transform of density functions) in

the algorithm. Again, we select a symmetric and large enough domain [−ξ̄, ξ̄] in the Fourier space.

Divide [−ξ̄, ξ̄] into 2K equal intervals, each with length ∆ξ = ξ̄/K. Denote

ξk = −ξ̄ + k∆ξ, k = 0, 1, ..., 2K.

We therefore approximate the inverse Fourier transform (5.4a) and Fourier transform alike integral

(5.4b) by the following scheme for n = d, ..., 2:

fn(xm) = F
−1(f̂n(ξ))(xm) =

1

2π

� ∞

−∞
e−iξxm f̂n(ξ)dξ ≈

1

2π

2K�

k=0

e−iξkxm f̂n(ξk)∆ξ, m = 0, ..., 2M,

(5.5a)

ĝn(ξk) =

� ∞

−bn−1

eiξkygn(y)dy =

� ∞

−∞
eiξkyfn(x)dx ≈

2M�

m=0

eiξkymfn(xm)∆x, k = 0, ..., 2K,

(5.5b)

where ym = ln(exm+bn + 1) − bn−1 in each step. Similarly, we can obtain the approximation of

ĝ2(ξk − i) by the following:

ĝ2(ξk − i) =

� ∞

−b1

ei(ξk−i)ygn(y)dy =

� ∞

−∞
ei(ξk−i)yfn(x)dx

≈

2M�

m=0

ei(ξk−i)ymfn(xm)∆x, k = 0, ..., 2K.

Moreover, we still need to discretize the Hilbert transforms, which could be done by using the scheme

in [38] section 2.4.2. Here we have:

H(e−i·ξ·z0 f̂1(ξ))(0) ≈
2K�

k=0,k �=K

e−iz0ξk f̂1(ξk)
1− (−1)−(k−K)

−π(k −K)
. (5.6)

67

Then H(e−i·ξ·z0 ĥ1(ξ)(0) can be computed correspondingly. Now, we combine all pieces in the

discretization steps and summarize the new scheme as following:

Scheme 1. (Proposed scheme)

1. f̂d(ξk) = φ(ξk), k = 0, ..., 2K.

2. For n = d, ..., 2,

fn(xm) ≈
1

2π

2K�

k=0

e−iξkxm f̂n(ξk)∆ξ, m = 0, ..., 2M, (5.7a)

ĝn(ξk) ≈
2M�

m=0

eiξkymfn(xm)∆x, k = 0, ..., 2K, (5.7b)

f̂n−1(ξk) = φ(ξk) · ĝn(ξk), k = 0, ..., 2K, (5.7c)

where ym = ln(exm+bn + 1)− bn−1 in each step.

3. When n = 2, compute

ĝ2(ξk − i) ≈
2M�

m=0

ei(ξk−i)ymfn(xm)∆x, k = 0, ..., 2K, (5.7d)

ĥ1(ξk) = φ(ξk − i) · ĝ2(ξk − i), k = 0, ..., 2K. (5.7e)

4. The Asian call option price is given by:

c =
e−rT

2

� S0

d+ 1
eb1 ĥ1(ξK) + (

S0

d+ 1
−K)f̂1(ξK)

�

+
ie−rT

2

2K�

k=0,k �=K

e−iz0ξk
� S0

d+ 1
eb1 ĥ1(ξk)− (

S0

d+ 1
−K)f̂1(ξk)

�1− (−1)−(k−K)

−π(k −K)
.

(5.7f)

5.3 Error Estimation

We will show that under certain conditions, the numerical scheme provided above, which uses

Trapezoidal’s rule, will obtain exponential convergence for both discretization error and truncation

error in the whole recursive process.

We begin with a single step calculation. As we showed in Chapter 2, functions in the analytic

class have very good numerical properties. The most important ones that we use include: the

discretization errors for integration of ψ on R, the Fourier and inverse Fourier transforms of ψ, as

68

well as the Hilbert transform of ψ, are of the order O(exp(−πda/h)) for Trapezoidal’s rule, where

h is the step size for the discretization and da is some positive constant. It is then easy to observe

that the discretization error decays exponentially in terms of 1/h.

On the other hand, we may further assume ψ(u + iv) has certain tail behavior in the analytic

strip, say v ∈ (d−, d+). For example, for many popular models in financial application, ψ has

exponentially decaying tail:

|ψ(u+ iv)| ≤ κe−c|u|ν , u ∈ R. (5.8)

here κ, c, ν are positive constants that may depend on v. But to simplify notation, we ignore the sub

index when it will not cause confusion. Then, the truncation error is in the order of O(exp(−c(Lh)ν))

when we truncate the integral region by [−Lh,Lh], where L is a positive integer, and h, the step

size, can also be denoted as ∆u.

In this case, we can follow the approach proposed by Feng and Lin in [38] to balance the dis-

cretization error and truncation error. They set exp(−πda/h) = exp(−c(Lh)ν), and then they are

able to express step size h as a function of truncation level L as:

h(L) = (πda/c)
1

1+ν L− ν
1+ν , L ≥ 1. (5.9)

Therefore, the total numerical error is in the order of O(exp(−c
1

1+ν (πdaL)
ν

1+ν)). We suggest that

readers may refer to [38] for more detail.

5.3.1 Numerical Error Analysis

Now we apply those lemmas in section (2.1) in our reasoning. When demonstrating our results,

we first make some assumptions on f̂n and fn. Later in our applications, we will verify those

assumptions. Also, we should mention that x and ξ in general are real variables, but when we

discuss the analyticity in complex plane, we may use the same notation to express complex variables

as well.

Theorem 5.3.1. (Inverse Fourier transform) Suppose f̂n ∈ H(D(d−,d+)), then,

|EIF

∆ξ
(f̂n, 0)(x)| =

1

2π

��
�

R
e−iξxf̂n(ξ)dξ −

∞�

k=−∞
e−ixk∆ξ f̂n(k∆ξ)∆ξ

��

≤
e−2π(−d−)/∆ξ

2π(1− e−2π(−d−)/∆ξ)
exd−�f̂n�

− +
e−2πd+/∆ξ

2π(1− e−2πd+/∆ξ)
exd+�f̂n�

+,

(5.10)

69

where da = 2min(d+,−d−). Also, suppose f̂n satisfies (5.8) for v = 0 and some κ, c, ν > 0, and

∆ξ(K) is selected according to (5.9). Then there exists a constant C > 0 independent of K such

that

|EIF

∆ξ(K),K(f̂n, 0)(x)| =
1

2π

��
� ∞

−∞
e−iξxf̂n(ξ)dξ −

K�

k=−K

e−ixk∆ξ f̂n(k∆ξ)∆ξ
��

≤ C(M
1−ν
1+ν + exd− + exd+) exp(−c

1
1+ν (πdaK)

ν
1+ν).

Proof. First, as mentioned in Corollary 2.4 of [38]:

F
−1ψ(x) =

1

2π

�

R
e−ixyψ(y)dy =

1

2π
Fψ(−x).

Then based on Lemma 2.1.3, the error involved in discretizing inverse Fourier transform is:

|EIF

h
(ψ, 0)(x)| =

1

2π

��
�

R
e−ixyψ(y)dy −

∞�

l=−∞
e−ixlhψ(lh)h

��

≤
e−2π(−d−)/h

2π(1− e−2π(−d−)/h)
exd−�ψ�− +

e−2πd+/h

2π(1− e−2πd+/h)
exd+�ψ�+.

And the truncation error is:

|EIF

h(L),L(ψ, 0)(x)| =
1

2π

��
� ∞

−∞
e−ixyψ(y)dy −

L�

l=−L

e−ixlhψ(lh)h
��

≤ C(M
1−ν
1+ν + exd− + exd+) exp(−c

1
1+ν (πdaL)

ν
1+ν).

Replace ψ, y, h, l, L by f̂n, ξ,∆ξ, k,K respectively, then we obtain the result.

Theorem 5.3.2. (Hilbert transform) Suppose e−iξz f̂1(ξ) ∈ H(D(d−,d+)), then,

|EH

h
(e−iξz f̂1, 0)(0)| =

�� 1
π
p.v.

�

R

e−iξz f̂1(ξ)

0− ξ
dξ −

∞�

k=−∞,k �=0

e−ik∆ξz f̂1(k∆ξ)
1− (−1)k

−kπ

��

≤
e−π(−d−)/∆ξ

π(−d−)(1− e−π(−d−)/∆ξ)
ed−z

�f̂1�
− +

e−πd+/∆ξ

πd+(1− e−πd+/∆ξ)
ed+z

�f̂1�
+.

Let da = min(d+,−d−). Also, for v = 0, suppose e−iξz f̂1(ξ) satisfies (5.8) for some κ, c, ν > 0, and

∆ξ(K) is selected according to (5.9). Then there exists a constant C > 0 independent of K such

70

that

|EH

∆ξ(K),K(e−iξz f̂1, 0)(0)| =
�� 1
π
p.v.

�

R

e−iξz f̂1(ξ)

0− ξ
dξ −

K�

k=−K,k �=0

e−ik∆ξz f̂1(k∆ξ)
1− (−1)k

−kπ

��

≤ C(K
1

1+ν + ed−z + ed+z) exp(−c
1

1+ν (πdaK)
ν

1+ν).

Proof. Just replace ψ(x) in Lemma 2.1.4 by e−iξz f̂1, and replace l, h, L by k,∆ξ, and K respectively.

Also, notice that

�e−iξz f̂1�
− = ezd−�f̂1�

−, �e−iξz f̂1�
+ = ezd+�f̂1�

+.

Then we have:

|EH

h
(e−iξz f̂1, 0)(0)| ≤

e−π(−d−)/∆ξ

π(−d−)(1− e−π(−d−)/∆ξ)
ed−z

�f̂1�
− +

e−πd+/∆ξ

πd+(1− e−πd+/∆ξ)
ed+z

�f̂1�
+

≤
e−πda/∆ξ

πda(1− e−πda/∆ξ)
(ed−z + ed+z)(�f̂1�

− + �f̂1�
+).

Then plug in ∆ξ(K), follow the same argument in Theorem 2.7 and Corollary 2.8 in [38], we can

obtain:

|EH

∆ξ(K),K(e−iξz f̂1, 0)(0)| ≤ C(K
1

1+ν + ed−z + ed+z) exp(−c
1

1+ν (πdaK)
ν

1+ν).

Remark 5.3.3. For the Hilbert transform approximation, we are able to further improve the bound.

See section 2.4.3 a special case in [38]. But here, since the main point is the exponential convergence,

we do not push the bound to its best.

Theorem 5.3.4. (Modified based on Lemma 2.1.2) Suppose eiξy(x)fn(x) ∈ H(D(d−,d+)) for some

d− < 0 and d+ > 0, where y(x) = ln(ex+bn + 1)− bn−1. Then,

|ET

∆x
(eiξy(x)fn(x), 0)(ξ)| = |

� ∞

−∞
eiξy(x)fn(x)dx−

∞�

m=−∞
eiξy(m∆x)fn(m∆x)∆x|

≤
e−2π(−d−)/∆x

1− e−2π(−d−)/∆x
eπ|ξ|�fn�

− +
e−2πd+/∆x

1− e−2πd+/∆x
eπ|ξ|�fn�

+.

(5.11)

Denote da = 2min(d+,−d−) and for v = 0, suppose ψ satisfies (5.8) for some κ, c, ν > 0, and h is

71

selected according to (5.9), then there exists a constant C > 0 independent of M such that

|ET

∆x(M),M (eiξy(x)fn(x), 0)(ξ)| = |

� ∞

−∞
eiξy(x)fn(x)dx−

M�

m=−M

eiξy(m∆x)fn(m∆x)∆x|

≤ C(M
1−ν
1+ν + e|ξ|π) exp(−c

1
1+ν (πdaM)

ν
1+ν).

Proof. First, we replace ψ and h in Lemma 2.1.2 with eiξy(x)fn(x) and ∆x. Then, we can easily

obtain:

|ET

∆x
(eiξyfn(x), 0)| ≤

e−2π(−d−)/∆x

1− e−2π(−d−)/∆x
�eiξy(x)fn(x)�

− +
e−2πd+/∆x

1− e−2πd+/∆x
�eiξy(x)fn(x)�

+.

Now we consider �eiξy(x)fn(x)�+. Here we are safe to set x = η+ id+, both η and d+ are in R, then,

y(x) = ln(e(η+id+)+bn + 1)− bn−1 = ln(s)− bn−1,

where s = eη+bn
�
cos(d+) + i sin(d+)

�
+1 is complex. If we define θ = arg(s), which is the principle

argument of s. Then

y(x) = ln(|s|)− bn−1 + iθ.

Notice that both ln(|s|)− bn−1 and θ is real. Also, here ξ is real. Hence we have:

|eiξy(x)| = |eiξ
�
ln(|s|)−bn−1+iθ

�
| = |e−ξθ

| ≤ eπ|ξ|.

Therefore �eiξy(x)fn(x)�+ ≤ eπ|ξ|�fn(x)�+. Similarly, we can obtain �eiξy(x)fn(x)�− ≤ eπ|ξ|�fn(x)�−.

Combine those two together, we have

|ET

∆x
(eiξyfn(x), 0)| ≤

e−2π(−d−)/∆x

1− e−2π(−d−)/∆x
eπ|ξ|�fn�

− +
e−2πd+/∆x

1− e−2πd+/∆x
eπ|ξ|�fn�

+.

Now we follow the same argument as Theorem 2.3 in [38] and obtain

|ET

∆x(M),M (eiξy(x)fn(x), 0)| = |

� ∞

−∞
eiξy(x)fn(x)dx−

M�

m=−M

eiξy(m∆x)fn(m∆x)∆x|

≤ C(M
1−ν
1+ν + eπ|ξ|) exp(−c

1
1+ν (πdaM)

ν
1+ν).

72

Remark 5.3.5. Since we always have ψ ∈ H(D(d�
−,d

�
+)) given ψ ∈ H(D(d−,d+)) and d− < d�− < 0 <

d�+ < d+. Then, if needed, we may set −π < d− < 0 < d+ < π. This restriction may avoid multiple

branches issue for complex logarithm in our computation.

5.3.2 Main Results

In this part, we show that for certain characteristic function φ(ξ) of Lévy process, the assumptions

in section 5.3.1 are satisfied. And hence, we are able to obtain overall exponential convergence for

our numerical error. Basically, we want to prove when considering ξ as a complex variable, f̂n(ξ),

e−iξz0 f̂1(ξ) as well as eiξy(x)fn(x), for n = d, d− 1, ...1 are all in H(D(d−,d+)). Although d− and d+

may possibly be different for different n.

First, notice that z0 in e−iξz0 f̂1(ξ) is a constant, which implies that e−iξz0 is entire if we consider

ξ as a complex variable. Also, |e−iξz0 | is bounded in the analytic strip �(ξ) ∈ (d−, d+). Hence, in

order to show e−iξz0 f̂1(ξ) is in H(D(d−,d+)), we only need to show f̂1(ξ) is in H(D(d−,d+)). Also,

it is not hard to see that |eiξy(x)| is bounded by eπ|ξ| and is analytic in the strip −π < �(x) < π.

Hence, in order to show eiξy(x)fn(x) are in some analytic class, it is suffice to show fn(x) are in

some H(D(d−,d+)) for n = d, ..., 1. Then, eiξy(x)fn(x) will be in H(D(d�
−,d

�
+)) where (d�−, d

�
+) =

(d−, d+)
�
(−π, π). We now prove that f̂n(ξ) and fn(x) are in some analytic class through the

following two theorems.

Theorem 5.3.6. If φ(z), as a complex continuation of characteristic function φ(ξ), is in H(D(d−,d+)),

then f̂n, for n = d, ..., 1, in Algorithm 5.2.1 are all in the same analytic class.

Proof. We prove this by induction. Since f̂d(z) = φ(z), the n = d case is trivial. Then assume f̂k(z)

is in the analytic class, we want to verify f̂k−1(z) is also in this analytic class.

First, we show that f̂k−1(z) is analytic in d− < �(z) < d+ given f̂k(z) is analytic in d− <

�(z) < d+. Denote the corresponding distribution function of fk(x) and gk(x) by Fk(x) and Gk(x)

respectively. Then, since f̂k is analytic in d− < �(z) < d+, by thm 2.2.2, we know:

1− Fk(x) = o(e−rx) as x → ∞

holds for all 0 < r < −d−. Then for any positive c, 1−Fk(x) ≤ ce−rx when x is large enough. Then

1−Gk(x) = 1− Fk(ln(e
x
− 1)) ≤ ce−r ln(ex−1) = c(ex − 1)−r

≤ 2rce−rx = c1e
−rx.

73

1−Gk(x) = 1− Fk(ln(e
x+bk−1 − 1)− bk) ≤ ce−r(ln(ex+bk−1−1)−bk)

= cerbk(ex+bk−1 − 1)−r
≤ 2rcer(bn−bn−1)e−rx = c1e

−rx.

And we know

1−Gk(x) = o(e−rx) as x → ∞

holds for all 0 < r < −d−. Similarly, we can show

Gk(−x) = o(e−rx) as x → ∞

holds for all 0 < r < d+. Notice that ĝk is the corresponding characteristic function of Gk. Then,

again by thm 2.2.2, we know ĝk is analytic in d− < �(z) < d+. Hence, as a product of φ(z) and ĝk,

we know f̂k−1 is also analytic in d− < �(z) < d+.

Now we verify that given f̂k satisfies (2.1), condition (2.1) holds for f̂k−1. Notice that f̂k−1(z) =

φ(z) · ĝk(z), hence we only need to show |ĝk(z)| is bounded in the analytic strip. To show this, we

need to know the tail behavior of gk. Since we already know f̂k ∈ H(D(d−,d+)), by thm 2.2.6, we

know fk has the exponential tail behavior on real axis. By similar argument used previously for Gk

and Fk, we know gk has the same tail behavior. Then

|ĝn(z)| = |

� ∞

−bn−1

eizygn(y)dy| ≤

� ∞

−bn−1

e−�(z)ygn(y)dy.

And the last integral is bounded for any −d− < �(z) < d+. Hence, we know |ĝn(z)| is bounded.

And thus f̂k−1 satisfies condition (2.1). And we know f̂k−1 ∈ H(D(d−,d+)). By induction, we know

f̂n ∈ H(D(d−,d+)) for any n = d, ..., 1.

Now we show that, for all n = d, ..., 1, fn are in analytic class:

Theorem 5.3.7. If φ(ω) is in H(D(d−,d+)), and has the following tail behavior in the analytic strip

(on the real axis as well as the boundary of its analytic strip):

φ(u+ iv) =






O(e−(a−�)u) as u → ∞;

O(e(b−�)u) as u → −∞

where ω = u+iv. Then fn computed in Algorithm 5.2.1 are all in the same analytic class H(D(−b,a)),

for n = d, ..., 1.

74

Proof. First, for n = d, ..., 1, we know f̂n are in H(D(d−,d+)). Also, since

f̂n(ω) = φ(ω) · ĝn+1(ω),

and we already showed that ĝn+1(ω) is bounded in the analytic strip, then we know f̂n has the same

tail behavior as φ does, for n = d, ..., 1. Hence, the assumptions posed on φ(ω) of this theorem holds

for all f̂n.

By the same argument used in theorem 2.2.4, we know fn(z), z = x + iy, are analytic in strip

−b < y < a. And by proposition 2.2.9, we know fn has the following tail behavior in the analytic

strip:

fn(z) =






O(e(d−+�)x) as x → ∞;

O(e(d+−�)x) as x → −∞.

Then �
b

−a

|fn(x+ iy)|dy → 0, x → ±∞,

||fn||
+ := lim

�→0+

�

R
|fn(x+ i(b− �))|dx < +∞,

||fn||
− := lim

�→0+

�

R
|fn(x+ i(−a+ �))|dx < +∞.

Hence, condition (2.1) are satisfied. And fn are in H(D(−b,a)), for n = d, ..., 1.

5.4 Numerical Results

In this section, we first verify the exponential convergence result shown in section 5.3.1 by numerical

experiments. Then we compare our method with some other methods, like Fusai and Meucci’s in [42]

and Cerny and Kyriakou’s in [68]. Also, we will design a procedure to illustrate how to determine

∆x, ∆ξ, M and K in our algorithm 5.2.1 and corresponding numerical scheme.

5.4.1 Exponential Convergence Result

We want to observe how pricing error change if we change ∆x and ∆ξ so as to find the convergence

rate. We first fix ∆ξ small enough and K large enough. By doing this, we want to ensure that the

numerical error caused by computation in Fourier space is negligible. In the meantime, we fix the

truncation level in state space large enough, that is M ·∆x, and then change the value of ∆x. By

doing this, we make sure that all the numerical error is due to the value of ∆x.

75

M 200 180 170 160 150 140 120
Pricing error 5.54E-11 1.49E-08 1.79E-07 1.79E-06 1.50E-05 1.05E-04 3.01E-03

Table 5.1: Pricing error of Discrete Asian call w.r.t ∆x in Kou’s model

K 450 425 400 380 360 350 340
Pricing error 7.30E-13 1.36E-10 1.54E-08 6.18E-07 2.21E-05 1.35E-04 8.59E-04

Table 5.2: Pricing error of Discrete Asian call w.r.t ∆ξ in Kou’s model

We first consider Kou’s model. We take the following parameters:

σ = 0.1, λ = 3, p = 0.3, η1 = 40, η2 = 12, r = 0.01, q = 0, S0 = K = 100, T = 1, d = 12.

After several trials, we take K = 6000, ∆ξ = 0.058, M = 800, ∆x = 0.00625 to get the benchmark

price 6.916117761635. Then, we fix K, ∆ξ at the same level, fix M ·∆x = 5, and decrease the value

of M , and hence ∆x will increase, and we can observe how the pricing error changes according to

the value change of M and hence ∆x. We show the result in table 5.1. The phenomena that error

decays exponentially is fairly clear from the data itself. But to make it more observable, we draw a

log-log plot with the pricing error in y-axis and 1/∆x in x-axis, as in the left graph in Figure 5.1.

We can do the same thing for ∆ξ. That is, we fix M = 800, ∆x = 0.00625, and fix K ·∆ξ = 1000.

Then, we decrease K, which has the same effect as increasing ∆ξ, and observe how accordingly

the pricing error changes. The result is shown in table 5.2. Just as the case for ∆x, we can easily

observe the exponential convergence. And the corresponding log-log plot is provided as in the right

graph of Figure 5.1.

Similarly, we can verify the exponential convergence result in CGMY model. The parameters

we take are:

C = 4, G = 50,M = 60, Y = 1.5, r = 0.05, q = 0.02, S0 = K = 100, T = 0.5, d = 12.

Here we take K = 8000, ∆ξ = 0.0125, M = 600, ∆x = 0.01 to get the benchmark price

21.54967237579. Then, we fix K, ∆ξ at the same level, fix M ·∆x = 6, and decrease the value of M .

The result in table 5.3. The phenomena of exponential decay is also very obvious. And the log-log

plot is shown as the left one in Figure 5.2. Then, we can do the same thing for ∆ξ. Fix M = 600,

76

Figure 5.1: Pricing error vs ∆x and ∆ξ in Kou’s model .

M 28 24 22 20 19 18 16
Pricing error 1.72E-10 1.40E-09 4.53E-08 3.28E-07 1.98E-06 2.88E-05 1.31E-03

Table 5.3: Pricing error of Discrete Asian call w.r.t ∆x in CGMY’s model

∆x = 0.01, and fix K ·∆ξ = 100. Then, we decrease K and observe how the pricing error changes

accordingly, as shown in table 5.4. And the corresponding log-log plot is the right one in Figure 5.2.

Although the graph is not quite a straight line, we can still observe the trend of exponential decay.

5.4.2 Comparison with other methods

Now we do two simple comparisons between our result and the one obtained by Fusai and Meucci in

[42] as well as the one by Cerny and Kyriakou in [68]. First, we compare the option prices obtained

by our method and those two methods, as listed in table 5.5. We intend to verify if our result agrees

with the other two. Computation is in BSM model with the following parameters: r = 0.0367,

σ = 0.17801, S0 = 100, T = 1 and d = 50. And we find that our price agrees with Cerny and

Kyriakou’s method to all the digits they provided. And we also confirmed the following fact as

claimed by Cerny and Kyriakou in [68]: the method in [42] can barely reach the precision of 1E-5.

And sometimes only 1E-4 could be obtained.

Then, we compare the computational time of our method with the one provided by Cerny and

K 170 160 150 138 136 134 130
Pricing error 3.26E-10 1.07E-08 1.12E-07 2.32E-06 1.63E-05 7.83E-05 1.23E-03

Table 5.4: Pricing error of Discrete Asian call w.r.t ∆ξ in CGMY’s model

77

Figure 5.2: Pricing error vs ∆x and ∆ξ in CGMY’s model .

Strike K Price of our method Price of CK Error Price of FM Error
90 11.93293820 11.9329382 ±1E-7 11.93301 7E-05
100 4.93720281 4.9372028 ±1E-7 4.93736 16E-05
110 1.40251551 1.4025155 ±1E-7 1.40264 12E-05

Table 5.5: Comparison with the numerical scheme proposed in [42] and [68]

Kyriakou in [68] as shown in table 5.6. Here BSM model is used with r = 0.04, volatility σ = 0.1,

0.3 and 0.5, S0 = K = 100. We can see that, their algorithm provides option prices with accuracy of

around ±1E5. And ours is at least ±1E8. And for the CPU time, ours is only half of theirs. And for

small volatility σ = 0.1, our CPU time is almost one tenth of their time. This indeed demonstrates

the power of exponential convergence.

5.4.3 Automatic parameters determination

One disadvantage of our method is that we have four parameters M , ∆x, K and ∆ξ to tune with.

It would be annoying if we have to choose it manually. Hence, here we come up with an automatic

procedure to choose those parameters.

First we determine a tolerance level �. Then from (5.10), we can choose an appropriate ∆ξ such

σ Price of our method our CPU Price of Cerny & Kyriakou CK Error CK CPU
0.1 3.33861711 0.12s 3.33861 ±1E5 1.0s
0.3 7.69859895 0.16s 7.69859 ±1E5 0.3s
0.5 12.09153558 0.14s 12.09153 ±1E5 0.3s

Table 5.6: Comparison with the numerical scheme proposed in [68]

78

that both the first term and the second term in

e−2π(−d−)/∆ξ

2π(1− e−2π(−d−)/∆ξ)
exd−�f̂n�

− +
e−2πd+/∆ξ

2π(1− e−2πd+/∆ξ)
exd+�f̂n�

+

are less than 0.5�. When n = d, we have f̂n = φ, then, �f̂n�± = �φ�±. For n < d, f̂n = φ · ĝn+1,

then

�f̂n�
± =

�

R
|f̂n(ξ + i(d± ∓ �))|dξ =

�

R
|φ(ξ + i(d± ∓ �)) · ĝn+1(ξ + i(d± ∓ �))|dξ.

Hence,

�f̂n�
±
≤ �φ�± ·max

ξ∈R
|ĝn+1(ξ + i(d± ∓ �))| and �f̂n�

±
≤ �ĝn+1�

±
·max

ξ∈R
|φ(ξ + i(d± ∓ �))|.

We can estimate maxξ∈R |ĝn+1(ξ+i(d±∓�))| by numerical calculation, then it is not hard to estimate

�f̂n�±.

From [38], given |e−iξxf̂n(ξ)| = |f̂n(ξ)| = |φ(ξ) · ĝn(ξ)| ≤ |φ(ξ)| ≤ κe−c|ξ|ν for real variable ξ, we

have the following bound for truncation error in inverse Fourier transform:

|C∆ξ(e
−iξxf̂n(ξ), 0)− C∆ξ,K(e−iξxf̂n(ξ), 0)| ≤ 2

�

k≥K+1

κe−c(k∆ξ)ν
≤

2κ∆ξ−1

νc1/ν
Γ(

1

ν
, c(K∆ξ)ν)

≤
2κ∆ξ−1

νc1/ν
(K∆ξ)1−νe−c(K∆ξ)ν .

By restricting the truncation error less than �, we can get a minimum K. And also, by doing this,

the total error for the Fourier inverse (5.4a) are less than 2�.

Then for the computation in (5.4b), similar procedure can be applied. From (5.11), we can

choose ∆x by setting both terms in

e−2π(−d−)/∆x

1− e−2π(−d−)/∆x
eπ|ξ|�fn�

− +
e−2πd+/∆x

1− e−2πd+/∆x
eπ|ξ|�fn�

+

to be less than 0.5�. Here �fn�± is approximated by |fn(x + id±)| at x = 0. And also, once the

characteristic function is given, we can give explicit bound for |fn(x + id±)|. Take Kou’s model as

79

an example, we have the following result:

|fn(x+ id±)| ≤
1

2π

�

R
|e−iξx+ξd± · f̂n(ξ)|dξ ≤

1

2π

�

R
eξd± |f̂n(ξ)|dξ

≤
1

2π

�

R
eξd± |φ(ξ)|dξ ≤

1

2π

�

R
eξd±e−∆t

σ2

2 |ξ|2dξ

=
1

√
2π∆tσ

e
d2±

2σ2∆t .

Here, only the exponential part
d
2
±

2σ2∆t
is relevant to us since it dominates the bound. ∆x is chosen

so that the exponential part is under control.

And also, from Remark 2.2.7 we know that |f(x)| ≤ 1
2π�f̂�

−e−αx and also |f(x)| ≤ 1
2π�f̂�

+eβx.

Hence, we have the following inequality:

|fn(x)| ≤ κne
−cn|x|νn ,

where νn = 1, κn = 1
2π max(�f̂n�+, �f̂n�−), and cn = min(−d−, d+). d− and d+ is the analytic strip

boundary for f̂n. Then, M can be chosen by restricting the truncation error

|C∆x(e
iξy(x)fn, 0)− C∆x,M (eiξy(x)fn, 0)| ≤

2κn∆x−1

νnc
1/νn
n

(M∆x)1−νne−c(M∆x)νn

to be less than �.

80

Chapter 6

Model Calibration with European
and American option Data

In this part, we intend to calibrate Lévy process models from both European vanilla option and

American option data. The calibration problem has two parts: the forward option pricing problem

and the inverse optimization problem. Both problems are very challenging. For the forward problem,

efficient pricer should be used and better with the property that multiple options with different

strikes and maturities could be priced simultaneously. For the inverse problem, the objective function

is ill-posed when the most popular least square formulation is used. And hence, regularization

techniques should be considered. In our research, for the forward problem, a new scheme for pricing

European vanilla options by sinc type method [65] is proposed, which is fast and accurate. We

use Bermudan option price to approximate American option price. For single Bermudan option,

it can be efficiently priced by the backward induction method proposed by Feng and Lin in [39].

For calibration purpose, we made modifications to the original algorithm. So that, one can obtain

multiple option prices with different strike prices and maturities through one run of the backward

induction. For the inverse problem, we propose a two steps procedure, combining the global search

and the local search. For local search, Tikhonov regularization is used. Important issues like

gradient estimation will also be discussed. Moreover, we will carry out empirical study to verify the

effectiveness of the proposed calibration method.

6.1 Pricing European Options

In this part, we propose a new numerical scheme for pricing European vanilla options and we

illustrate it by pricing European put option.

81

6.1.1 Transform method for European options

If we denote the maturity of an option by T and strike price by K. Then, the risk neutral pricing

formula gives us the following put option price:

p = e−rTE[(K − ST)
+]

Here, (K − ST)+ = K − ST if K ≥ ST , otherwise (K − ST)+ = 0.

An inverse Fourier transform representation is proposed in [16]. Notice that they used call option

as example, but we can derive the following representation for put option in the same manner:

p = −
K

2π
e−rT

�

R
e−i(ξ−i(α+1)) ln(K/S0) φ(ξ − i(α+ 1))

(ξ − iα)(ξ − i(α+ 1))
dξ, α < −1. (6.1)

Damping factor α < −1 is required to ensure integrability. In order to reduce discretization error,

Carr and Madan applied Simpson’s rule in computing the above integral in [16]. However, simpler

Trapezoidal’s rule would provide much faster convergence rate in this case, as we will discuss later.

In their later paper [15], they reported that large pricing error is found by using the above method,

especially for extreme strike prices, like deep in-the-money or out-of-the-money options. This is

very unideal for model calibration, since we need to price different options whose strike prices varies

significantly. On the other hand, the authors also proposed another method in [15] using saddlepoint

approximation. Although this method performs better than the previous one for options with

extreme strike prices, it is not the case when the strike prices are close to the initial underlying asset

price. Hence, any single method of these two could not succeed in model calibration alone. This

motivates us to propose a robust numerical scheme. We plan to do so by first modify the original

representation of (6.1) and then extend it to a more general form.

First, we set z = ξ − i(α+ 1), change variable in (6.1) and obtain the following:

p = −
K

2π
e−rT

� +∞−i(α+1)

−∞−i(α+1)
e−iz ln(K/S0) φ(z)

z(z + i)
dz, α < −1.

Assume φ ∈ H(D(d−,d+)). Then, as long as d− < −(a + 1) < d+, by Cauchy integral theorem, one

may shift the integration line to −(a+ 1)i for any a by considering contour integration and picking

up corresponding residues. The residue at the origin can be easily computed as:

−
K

2π
e−rT lim

z→0
e−iz ln(K/S0) φ(z)

z + i
= −

1

2πi
Ke−rT .

82

Similarly, the residue at −i is:

−
K

2π
e−rT lim

z→−i

e−iz ln(K/S0) φ(z)

z + i
= −

1

2πi
S0e

−qT .

Then, for arbitrary value a, we are able to obtain similar format of representations for European

put option:

p = −
1

2π
Ke−rT p0 +






Ke−rT − S0e−qT , a > 0,

Ke−rT −
1
2S0e−qT , a = 0,

Ke−rT , −1 < a < 0,

1
2Ke−rT , a = −1,

0, a < −1.

(6.2)

p0 = (p.v.)

�

R
e−i(ξ−i(a+1)) ln(K/S0) φ(ξ − i(a+ 1))

(ξ − ia)(ξ − i(a+ 1))
dξ.

When a = 0 or −1, p0 is defined by Cauchy principle value.

6.1.2 A new scheme

Now, the main issue is how to evaluate the following integral:

V (f, a) = (p.v.)

�

R

f(x− i(a+ 1))

(x− ia)(x− i(a+ 1))
.

When function f ∈ H(D(d−,d+)), we would like to propose the following numerical scheme, which is

able to approximate V (f, a) accurately:

Vh(f, a) = h
∞�

m=−∞

f(mh− i(a+ 1))

(mh− ia)(mh− i(a+ 1))

�
1 + i(mh− ia)

Ea+1(−iπ(mh− i(a+ 1))/h)− i(mh− i(a+ 1))Ea(−iπ(mh− ia)/h)
�
.

(6.3)

Here Ea(z) is defined as Ea(z) = cos(iz) − i · sin(iz) · sgn(a), which equals exp(z · sgn(a)) if a �= 0.

And also, when a = 0 or a = −1 and m = 0, we define the [·] part as 1− e−π/h by convention.

If we denote the discretization error by EV

h
(f, a) = V (f, a)−Vh(f, a), then we are able to derive

EV

h
(f, a) explicitly as shown below:

83

Theorem 6.1.1. Suppose f ∈ H(D(d−,d+)), then for any −(a+ 1) ∈ (d−, d+),

EV

h
(f, a) = lim

�→0+

�� ∞+i(d−+�)

−∞+i(d−+�)

f(z)

2 sin(π
h
(z + i(a+ 1)))

(
e−

π
h |a|

z + i
−

e−
π
h |a+1|

z
+

ie−i
π
h (z+i(a+1))

z(z + i)
)dz

−

� ∞+i(d+−�)

−∞+i(d+−�)

f(z)

2 sin(π
h
(z + i(a+ 1)))

(
e−

π
h |a|

z + i
−

e−
π
h |a+1|

z
+

iei
π
h (z+i(a+1))

z(z + i)
)dz

�
.

(6.4)

Proof. We now discuss different situations when −d+ − 1 < a < −1, a = −1, −1 < a < 0,

a = 0 and a > 0.

We first consider the case when −d+ − 1 < a < −1, or 0 < −(a + 1) < d+. Consider the

following contour integral

�

γ

f(z)

2 sin(π
h
(z + i(a+ 1)))

� e
π
h a

z + i
−

e
π
h (a+1)

z
+

ie−i
π
h (z+i(a+1))

z(z + i)

�
dz,

where γ is counterclockwise boundary of a box lying in the analytic strip. And when we

expand the box to fill the whole analytic strip region, the integration line would be contained

in the box γ. More specifically, we define γ = γ1 + γ2 + γ3 + γ4. Here γ1 = x+ i(d+ − �) is the

horizontal line segment with imaginary part d+ − �, and x goes from N > 0 (we will take the

limit N → +∞ later) to −N , for some � > 0 small enough. Similarly, γ3 is the horizontal line

segment with imaginary part d− + �, and x goes from −N to N . Then γ2 and γ4 is defined

as vertical line segment so that those four segment could together compose the directional

boundary of box γ. The integrand has poles of order 1 at {mh− i(a+ 1),m ∈ Z} (note that

z = 0 and z = −i are removable singularities). The residue of the integrand at mh− i(a+ 1)

can be computed easily as

−
hf(mh− i(a+ 1))

2πi(mh− ia)(mh− i(a+ 1))

�
1 + i(mh− ia)ei

π
h (mh−i(a+1))

− i(mh− i(a+ 1))ei
π
h (mh−ia)

�
.

By the residue theorem, letting N → +∞, we obtain that

−Vh(f, a) =

� ∞+i(d−+�)

−∞+i(d−+�)

f(z)

2 sin(π
h
(z + i(a+ 1)))

(
e

π
h a

z + i
−

e
π
h (a+1)

z
+

ie−i
π
h (z+i(a+1))

z(z + i)
)dz

−

� ∞+i(d+−�)

−∞+i(d+−�)

f(z)

2 sin(π
h
(z + i(a+ 1)))

(
e

π
h a

z + i
−

e
π
h (a+1)

z
+

ie−i
π
h (z+i(a+1))

z(z + i)
)dz.

Here since f ∈ H(D(d−,d+)), we know
�
γ2

and
�
γ4

converge to zero as N → +∞. In the second

84

integral above, since

ie−
π
h i(z+i(a+1)) = ie

π
h i(z+i(a+1)) + i

�
e−

π
h i(z+i(a+1))

− e
π
h i(z+i(a+1))

�
,

after moving the term corresponding to i
�
e−

π
h i(z+i(a+1))− e

π
h i(z+i(a+1))

�
to the left, we obtain

the following on the left hand side:

� +∞+i(d+−�)

−∞+i(d+−�)

f(z)i
�
e−

π
h i(z+i(a+1)) − e

π
h i(z+i(a+1))

�

2z(z + i) sin(π
h
(z + i(a+ 1)))

dz − Vh(f, a)

=

� +∞+i(d+−�)

−∞+i(d+−�)

f(z)

z(z + i)
dz − Vh(f, a),

which equals EV

h
(f, a) since from the Cauchy integral theorem, we have (recall that 0 <

−(a+ 1) < d+ − �)

� +∞+i(d+−�)

−∞+i(d+−�)

f(z)

z(z + i)
dz =

� +∞−i(a+1)

−∞−i(a+1)

f(z)

z(z + i)
dz = V (f, a).

Let � → 0+, we obtain the expression for EV

h
(f, a).

Secondly, when a = −1, we consider the same contour integral. The residues at {mh,m ∈

Z,m �= 0} have the same expression. The residue at mh for m = 0 can be computed to be

−
hf(0)(−e−

π
h −

π

h
+ 1)

2πi
= −

hf(0)(1− e−
π
h)

2πi
+

f(0)π

2πi
.

It is straightforward to show that:

� +∞+i(d+−�)

−∞+i(d+−�)

f(z)

z(z + i)
dz + f(0)π = p.v.

�

R

f(x− i(a+ 1))

(x− ia)(x− i(a+ 1))
dx.

Thirdly, when −1 < a < 0 (or −1 < −(a+ 1) < 0), consider the following contour integral:

�

γ

f(z)

2 sin(π
h
(z + i(a+ 1)))

� e
π
h a

z + i
−

e−
π
h (a+1)

z
+

ie−i
π
h (z+i(a+1))

z(z + i)

�
dz,

where γ is defined in the same way above. The integrand has poles of order 1 at {mh −

i(a+ 1),m ∈ Z} and z = 0, (note that z = −i is removable singularities). The residue of the

85

integrand at mh− i(a+ 1) can be computed easily as:

−
hf(mh− i(a+ 1))

2πi(mh− ia)(mh− i(a+ 1))

�
1 + i(mh− ia)ei

π
h (mh+i(a+1))

− i(mh− i(a+ 1))ei
π
h (mh−ia)

�
.

The residual at z = 0 is given by:

Res(0) =
�
exp(

π

h
(a+ 1))− exp(−

π

h
(a+ 1))

� f(0)

2 sin(π
h
(i(a+ 1)))

= −if(0).

By the residue theorem, letting N → +∞, we obtain that

−Vh(f, a) =

� ∞+i(d−+�)

−∞+i(d−+�)

f(z)

2 sin(π
h
(z + i(a+ 1)))

(
e

π
h a

z + i
−

e−
π
h (a+1)

z
+

ie−i
π
h (z+i(a+1))

z(z + i)
)dz

−

� ∞+i(d+−�)

−∞+i(d+−�)

f(z)

2 sin(π
h
(z + i(a+ 1)))

(
e

π
h a

z + i
−

e−
π
h (a+1)

z
+

iei
π
h (z+i(a+1))

z(z + i)
)dz.

Here we have used the fact that, from (2.1), the
�
γ2

and
�
γ4

terms in the contour integral

converge to zero as N → +∞. In the second integral above, we note that

ie−
π
h i(z+i(a+1)) = ie

π
h i(z+i(a+1)) + i

�
e−

π
h i(z+i(a+1))

− e
π
h i(z+i(a+1))

�
.

Moving the term corresponding to i
�
e−

π
h i(z+i(a+1)) − e

π
h i(z+i(a+1))

�
to the left, we obtain the

following plus 2πiRes(0) = 2πf(0) on the left hand side:

� +∞+i(d+−�)

−∞+i(d+−�)

f(z)i
�
e−

π
h i(z+i(a+1)) − e

π
h i(z+i(a+1))

�

2z(z + i) sin(π
h
(z + i(a+ 1)))

dz − Vh(f, a)

=

� +∞+i(d+−�)

−∞+i(d+−�)

f(z)

z(z + i)
dz − Vh(f, a),

which equals to EV

h
(f, a). Since from the Cauchy integral theorem, we have (recall that

−1 < −(a+ 1) < 0, and the residual of f(z)
z(z+i) at z = 0 is −if(0).) :

� +∞+i(d+−�)

−∞+i(d+−�)

f(z)

z(z + i)
dz + 2πiRes(

f(z)

z(z + i)
, 0) =

� +∞+i(a+1)

−∞+i(a+1)

f(z)

z(z + i)
dz = V (f, a).

Letting � → 0+, we obtain the expression for EV

h
(f, a).

Fourthly, we consider the case where 0 < a < −d−−1 (that is, d− < −(a+1) < −1). Consider

86

the following contour integral:

�

γ

f(z)

2 sin(π
h
(z + i(a+ 1)))

�e−π
h a

z + i
−

e−
π
h (a+1)

z
+

iei
π
h (z+i(a+1))

z(z + i)

�
dz,

where γ is defined in the same way as in the proof of Theorem 2.2 for some � > 0 such that

d− + � < −(a + 1) < d+ − � and integer N > 0. The integrand has poles of order 1 at

{mh− i(a+1),m ∈ Z} (note that z = 0 and z = −i are removable singularities). The residue

of the integrand at mh− i(a+ 1) can be computed easily as:

−
hf(mh− i(a+ 1))

2πi(mh− ia)(mh− i(a+ 1))

�
1+ i(mh− ia)e−i

π
h (mh−i(a+1))

− i(mh− i(a+1))e−i
π
h (mh−ia)

�
.

By the residue theorem, letting N → +∞, we obtain that:

−Vh(f, a)(f, a) =

� ∞+i(d−+�)

−∞+i(d−+�)

f(z)

2 sin(π
h
(z + i(a+ 1)))

(
e−

π
h a

z + i
−

e−
π
h (a+1)

z
+

iei
π
h (z+i(a+1))

z(z + i)
)dz

−

� ∞+i(d+−�)

−∞+i(d+−�)

f(z)

2 sin(π
h
(z + i(a+ 1)))

(
e−

π
h a

z + i
−

e−
π
h (a+1)

z
+

iei
π
h (z+i(a+1))

z(z + i)
)dz.

Here we have used the fact that, from (2.1), the
�
γ2

and
�
γ4

terms in the contour integral

converge to zero as N → +∞. In the first integral above, we note that:

ie
π
h i(z+i(a+1)) = ie−

π
h i(z+i(a+1))

− i
�
e−

π
h i(z+i(a+1))

− e
π
h i(z+i(a+1))

�
.

Moving the term corresponding to −i
�
e−

π
h i(z+i(a+1))−e

π
h i(z+i(a+1))

�
to the left, we obtain the

following on the left hand side:

� +∞+i(d−+�)

−∞+i(d−+�)

f(z)i
�
e−

π
h i(z+i(a+1)) − e

π
h i(z+i(a+1))

�

2z(z + i) sin(π
h
(z + i(a+ 1)))

dz − Vh(f, a)

=

� +∞+i(d−+�)

−∞+i(d−+�)

f(z)

z(z + i)
dz − Vh(f, a),

which equals to EV

h
(f, a). Since from the Cauchy integral theorem, we have (recall that

−d− + � < −(a+ 1) < −1):

� +∞+i(d−+�)

−∞+i(d−+�)

f(z)

z(z + i)
dz =

� +∞+i(a+1)

−∞+i(a+1)

f(z)

z(z + i)
dz = V (f, a).

Letting � → 0+, we obtain the expression for EV

h
(f, a).

87

In the last, when a = 0, we consider the same contour integral. The residues at {mh,m ∈

Z,m �= 0} have the same expression. The residue at mh for m = 0 is:

lim
z→−i

(z + i)
f(z)

2 sin(π
h
(z + i(a+ 1)))

�e−π
h a

z + i
−

e−
π
h (a+1)

z
+

iei
π
h (z+i(a+1))

z(z + i)

�

= lim
z→−i

π

h
(z + i)f(z)h

π

2 sin(π
h
(z + i))

� 1

z + i
−

e−
π
h

z
+

ie
π
h i(z+i)

z(z + i)

�
= lim

z→−i

f(z)h

2π

�z − (z + i)e−
π
h + ie

π
h i(z+i)

z(z + i)

�

= lim
z→−i

f(z)h

2π

� (z + i)(1− e−
π
h) + i(e

π
h i(z+i) − 1)

z(z + i)

�
=

f(−i)h

2π

�1− e−
π
h

−i
+ lim

z→−i

i(e
π
h i(z+i) − 1)

z(z + i)

�

=
f(−i)h

2π

�1− e−
π
h −

π

h

−i

�
= −

hf(−i)(1− e−
π
h)

2πi
+

f(−i)π

2πi
.

Since the residual of f(z)
z(z+i) at −i is f(−i)

−i
, it is straightforward to show that

� +∞+i(d−+�)

−∞+i(d−+�)

f(z)

z(z + i)
dz + f(−i)π = p.v.

�

R

f(x− i(a+ 1))

(x− ia)(x− i(a+ 1))
dx.

Hence, after discussing all five situations above, we are able to draw the conclusion.

6.1.3 Error bound for discretization error

Once we obtain the explicit discretization error, we are able to estimate the upper bound of it for

further numerical computation purpose. And the result is shown in the following theorem.

Theorem 6.1.2. Suppose f ∈ H(D(d−,d+)). Then for any −(a + 1) ∈ (d−, d+), we have an

exponentially decaying error bound in terms of 1/h:

|EV

h
(f, a)| ≤

2e−
π
hA(a)

(−1− d−)(1− e
2π
h (d−+a+1))

�f�− +
2e−

π
hB(a)

d+(1− e−
2π
h (d++a+1))

�f�+

A(a), B(a) are positive (piecewise) linear functions of a. When 0 ≤ −(a + 1) < d+, A(a) = |d− +

2(a+1)|, B(a) = min(d+, 2(d++a+1)); when −1 < −(a+1) < 0, A(a) = min(−d−−2a−1,−d−),

B(a) = min(d++1, d++2a+2); when d− < −(a+1) ≤ −1, A(a) = min(−d−− 1,−2(d−+ a+1)),

B(a) = d+ + 2a+ 1.

Proof. Here, we only prove for −(a + 1) < d+ or −d+ − 1 < a ≤ −1. For the rest situations, the

error bound could be obtained in the same way.

To begin with, let us consider the first integral in (6.4). Assume z = t + id−, then the following

88

hold:

|
e−

π
h |a|

z + i
| ≤

e−
π
h |a|

−1− d−
.

|
e−

π
h |a+1|

z
| ≤

e−
π
h |a+1|

−d−
.

|
ie−i

π
h (z+i(a+1))

z(z + i)
| = |

ie−i
π
h (t+id−+i(a+1))

z(z + i)
| ≤

e
π
h (d−+a+1)

−d−(−1− d−)
.

Then we combine these three terms together to obtain:

|
e−

π
h |a|

z + i
−

e−
π
h |a+1|

z
+

ie−i
π
h (z+i(a+1))

z(z + i)
| ≤

e−
π
h |a|

−1− d−
+

e−
π
h |a+1|

−d−
+

e
π
h (d−+a+1)

−d−(−1− d−)

=
−d−e

π
h a + (−1− d−)e

π
h (a+1) + e

π
h (d−+a+1)

−d−(−1− d−)

≤
−d−e

π
h (a+1) + (−1− d−)e

π
h (a+1) + e

π
h (a+1)

−d−(−1− d−)

=
−2d−e

π
h (a+1)

−d−(−1− d−)
=

2e
π
h (a+1)

−1− d−
=

2e−
π
h |a+1|

−1− d−
.

On the other hand,

|2 sin(
π

h
(z + i(a+ 1)))| = |ei(

π
h (z+i(a+1)))

− e−i(π
h (z+i(a+1)))

|

= |ei(
π
h (t+id−+i(a+1)))

− e−i(π
h (t+id−+i(a+1)))

|

= |ei
π
h t−π

h (d−+(a+1))
− e−i

π
h t+π

h (d−+(a+1))
|

≥ e−
π
h (d−+a+1)

− e
π
h (d−+a+1).

Hence,

��� lim
�→0+

� ∞+i(d−+�)

−∞+i(d−+�)

f(z)

2 sin(π
h
(z + i(a+ 1)))

(
e−

π
h |a|

z + i
−

e−
π
h |a+1|

z
+

ie−i
π
h (z+i(a+1))

z(z + i)
)dz

���

≤
2e

π
h (a+1)

(−1− d−)(e−
π
h (d−+a+1) − e

π
h (d−+a+1))

�f�− =
2e

π
h (d−+2(a+1))

(−1− d−)(1− e
2π
h (d−+a+1))

�f�−

=
2e−

π
h |d−+2(a+1)|

(−1− d−)(1− e
2π
h (d−+a+1))

�f�−.

89

Then for the second integral, assume z = t+ id+, then we have:

|
e−

π
h |a|

z + i
| ≤

e−
π
h |a|

1 + d+
.

|
e−

π
h |a+1|

z
| ≤

e−
π
h |a+1|

d+
.

|
iei

π
h (z+i(a+1))

z(z + i)
| = |

iei
π
h (t+id++i(a+1))

z(z + i)
| ≤

e−
π
h (d++a+1)

d+(1 + d+)
.

And just like the previous case, we can obtain:

|
e−

π
h |a|

z + i
−

e−
π
h |a+1|

z
+

iei
π
h (z+i(a+1))

z(z + i)
| ≤

e−
π
h |a|

1 + d+
+

e−
π
h |a+1|

d+
+

e−
π
h (d++a+1)

d+(1 + d+)

=
d+e

π
h a + (1 + d+)e

π
h (a+1) + e−

π
h (d++a+1)

d+(1 + d+)

≤
d+e

π
h da + (1 + d+)e

π
h da + e

π
h da

d+(1 + d+)

=
2(1 + d+)e

π
h da

d+(1 + d+)
=

2e
π
h da

d+
=

2e−
π
h |da|

d+
,

where da = max(a+ 1,−d+ − a− 1). On the other hand,

|2 sin(
π

h
(z + i(a+ 1)))| = |ei(

π
h (z+i(a+1)))

− e−i(π
h (z+i(a+1)))

|

= |ei(
π
h (t+id++i(a+1)))

− e−i(π
h (t+id++i(a+1)))

|

= |ei
π
h t−π

h (d++(a+1))
− e−i

π
h t+π

h (d++(a+1))
|

≥ e
π
h (d++a+1)

− e−
π
h (d++a+1).

Hence,

��� lim
�→0+

� ∞+i(d++�)

−∞+i(d++�)

f(z)

2 sin(π
h
(z + i(a+ 1)))

(
e−

π
h |a|

z + i
−

e−
π
h |a+1|

z
+

iei
π
h (z+i(a+1))

z(z + i)
)dz

���

≤
2e

π
h da

(d+)(e
π
h (d++a+1) − e−

π
h (d++a+1))

�f�+ =
2e

π
h (da−d+−a−1)

(d+)(1− e−
2π
h (d++a+1))

�f�+

=
2e−

π
h d

�
a

d+(1− e−
2π
h (d++a+1))

�f�+, d�
a
= min(d+, 2(d+ + a+ 1)).

Therefore,

|EV

h
(f, a)| ≤

2e−
π
h |d−+2(a+1)|

(−1− d−)(1− e
2π
h (d−+a+1))

�f�− +
2e−

π
h d

�
a

d+(1− e−
2π
h (d++a+1))

�f�+.

90

Notice that for 1 − e
2π
h (d−+a+1) and 1 − e−

2π
h (d++a+1) in the denominators, when we choose h

relatively small, we can bound them easily. For example, when a ≤ −1, d− ≤ −1, if we take h ≤ 2π,

we can bound 1 − e
2π
h (d−+a+1) by 1 − 1/e. Then we can choose a and h properly to control the

numerical error to be less than pre-selected tolerance level.

6.2 Pricing Bermudan options

For calibration purpose, we usually need to price tens or hundreds of options together. In this part,

we propose a new numerical scheme based on the original work in [39] to price Bermudan options

with different strike prices and maturities simultaneously.

6.2.1 Bermudan options

Different from European option which could only be exercised at maturity, American option has

early exercise feature. That is, the owner of American style options has the right to exercise the

option at certain pre-determined time slots or time periods. Theoretically, American options could

be exercised at any time before or at option maturity. As a discrete type of American style option,

Bermudan option can be exercised only on a discrete time set T = {t0, t1, ..., tN}. Typically, t0 = 0,

tN = T , the option maturity. In the following part, we assume tj+1 − tj = ∆ are equally spaced.

And the method could be easily extended to more general situations.

Here we still illustrate by considering put options. If we denote the strike price by K, and the

underlying asset price at time t by St, then Bermudan put option price at time 0 is given by:

V (S0) = sup
τ

E[e−rτ (K − Sτ)
+], (6.5)

where stopping time τ is in T. We will first introduce the method proposed in [39] in the following

section. And then we will extend their method to price multiple options simultaneously in later

section.

6.2.2 Valuation of Bermudan options

Here we briefly introduce the method proposed by Feng and Lin in [39]. Please refer to their original

paper for more details. As mentioned by Feng and Lin, the pricing problem (6.5) is essentially an

optimal stopping problem, which could be solved by backward induction. Because the underlying

91

asset price follows geometric Lévy process, they first conduct a variable change by setting Xt =

ln(St/K). Then if denote the payoff function at each discrete time spots tj = j∆ by f j(x), for

j = N, ..., 0 and define g(x) = (K − Kex)+, then for j = N , the payoff function of put option is

given by fN (x) = g(x), and the rest f j are defined recursively as:

f j(x) = max(g(x), e−r∆Ej∆,x[f
j+1(X(j+1)∆)]), 0 ≤ j < N,

where Ej∆,x is the conditional expectation of Xj∆ = x. And the option price is then given by

V (S0) = f0(X0). This problem is indeed solved in the Fourier space in order to save computational

cost. And to guarantee integrability, damping factor eαx is introduced. They defined damping

version of f and g by f j

α
(x) = eαxf j(x) and gα(x) = eαxg(x). Then by the convolution theorem:

F

�
Eα

j∆,x
[f j+1

α
(X(j+1)∆)]

�
= F

��

R
f j+1
α

(y)pα∆(x− y)dy
�
= f̂ j+1

α
(ξ)φ∆(−ξ + iα).

Also, by taking advantage of the following key identity of Hilbert transform:

F(∞(−∞,x
∗
j)

· h)(ξ) =
1

2
ĥ(ξ)−

i

2
eiξx

∗
jH(e−iηx

∗
j ĥ(η))(ξ)

their algorithm in the Fourier space can be written as:

f̂N

α
(ξ) = ĝα(ξ), (6.6a)

find x∗
j
such that: gα(x) =

1

2π
e−r∆

�

R
e−iξxf̂ j+1

α
(ξ)φ∆(−ξ + iα)dξ. (6.6b)

f̂ j

α
(ξ) =F(gα · 1(−∞,x

∗
j]
)(ξ) + e−r∆

�1
2
f̂ j+1
α

(ξ)φ∆(−ξ + iα)

+
i

2
eiξx

∗
jH(e−iηx

∗
j f̂ j+1

α
(η)φ∆(−η + iα))(ξ)

�
, 0 ≤ j < N

(6.6c)

f0
α
(x) = max

�
gα(x),

1

2π
e−r∆

�

R
e−ξxf̂1

α
(ξ)φ∆(−ξ + iα)dξ

�
. (6.6d)

First they compute (6.6a). Then, the early exercise boundary x∗
j
can be obtained by solving (6.6b).

And then, the computation goes back one step from N to N − 1 by solving (6.6c). And the whole

process will be repeated for N − 1 times to get f̂1
α
(x). The option price at time 0 is then given by

V 0(S0) = e−α ln(S0/K)f0
α
(ln(S0/K)).

92

6.2.3 Simultaneous computing of multiple Bermudan vanilla options

price

The above method is good enough if we only need to compute single option price given certain

parameters. However, since our goal is to calibrate American vanilla (Bermudan daily monitored)

options, for which we need to compute tens or even hundreds of option prices at one time. In that

case, the computing time would be multiplied by a factor of the number of options, which would be

very undesirable. Hence, it is ideal if we can modify the above method so that it provides us with

prices of multiple options, which written upon the same underlying asset but have different strike

prices and maturities. For example, it is well known that fast Fourier transform method could be

applied to compute option prices with different initial underlying asset prices S, see [16] for more

detail. We expect to have similar effect here, but instead for different initial underlying asset prices

S, we need different strikes K and maturities T . Similar example is Dupire type equations, which

could be applied in computing price of options with different strikes and maturities through solving

numerical PDE. However, it only works in local volatility model. Here, luckily, according to the

special structure of this backward induction and also the homogeneity property of Lévy processes,

we are able to achieve this goal with one run of backward induction. We introduce the detail as

following.

First, we consider different strikes. Recall that in the backward reduction (6.6), the whole process

is kept in the Fourier space, except the last step where we compute option price. In implementation,

we only need to discretize in the Fourier space. Let ξ denote the Fourier space variable and let x

denote the variable of natural state space. In the first N − 1 time step of the backward induction,

we do not use x at all. Only discretization in the Fourier space is needed, say ξ = {−Mh, · · · ,Mh},

and keep the computing process in the Fourier space. After that, we obtain f̂1
α
(ξ), where ξ =

{−Mh, · · · ,Mh}. And the option price could be obtained by the discretization form of (6.6d),

which is:

f0
α
(x) = max

�
gα(x),

1

2π
e−r∆

�

R
e−ξxf̂1

α
(ξ)φ∆(−ξ + iα)dξ

�

≈ max
�
gα(x),

1

2π
e−r∆

M�

k=−M

e−ikhxf̂1
α
(kh)φ∆(−kh+ iα)h

�
.

Since x = ln(S0/K) here, by putting in different x in the above equation, we can obtain different

option prices which have same maturity but different initial underlying asset price. Notice that the

extra workload increased here in the last backward induction step to compute multiple option prices

with different initial underlying asset prices takes a very small part in the total computational time,

93

comparing to the time taken in the whole backward induction process, and can even be ignored.

To make the statement easier, assume here we have a vector x = (x1, x2, · · · , xn). Then the option

prices can also be written in a vector form:

Fα(x) =





f0
α
(x1)

f0
α
(x2)
...

f0
α
(xn)





= max
�
gα(x),

1

2π
e−r∆

M�

k=−M

e−ikhxf̂1
α
(kh)φ∆(−kh+ iα)h

�
. (6.7)

Recall that put option price with initial underlying asset price S0, maturity T and strike price K is

given by:

V (S0, T,K) = sup
τ

E[e−rτ (K − Sτ)
+].

Here option strike K is a constant, hence, we can make a little modification and write it as:

V (S0, T,K) = K sup
τ

E[e−rτ (1−
Sτ

K
)+] = KV (

S0

K
,T,K �). (6.8)

Here V (S0/K, T,K �) gives a put option price with initial underlying asset price S0/K and strike

price K � = 1. Assume we have several maturities and write it as an vector K = (K1,K2, · · · ,Kn).

Then, by (6.8), we can obtain the following equation:

V(S0, T,K) =





V (S0, T,K1)

V (S0, T,K2)
...

V (S0, T,Kn)





=





K1V (S0/K1, T, 1)

K2V (S0/K2, T, 1)
...

KnV (S0/Kn, T, 1)





= K · V (S, T, 1),

where · is for vector dot product and S = (S0/K1, S0/K2, · · · , S0/Kn) is a vector. Then we obtain

the following relationship:

V(S0, T,K) = K · V (S, T, 1) = K · F(x).

Here F(x) can be obtained through Fα(x) divided by the damping factor eαx. Since we already

know how to compute Fα(x) in one run of the backward reduction, then the put option price here

with different strikes can be obtained easily by a dot product of K and F(x). (F(x) is a short

94

notation of F(x, T,K � = 1), which is equal to V (S, T, 1).)

Then, we consider how to fast compute option prices with different maturities. Here we take

advantage of the homogeneity property of Lévy process. In fact, we have already used this property

in deducing the backward induction process (6.6). In the computing process, the real time t (or

stopping time τ = T − t) never appears, instead, what matters is the length of the time step ∆ in

the backward reduction. When we compute an option with maturity of 1 year. And assume that

we use daily monitoring, i.e. ∆ = 1/252. As we introduced before, the option price with 1 year

maturity can be obtained by (6.6d) after we have the value of f̂1
α
in the backward reduction. On

the other hand, in the middle of the backward induction, we obtained f̂127
α

as a byproduct. In this

case, if putting this value into the same equation (6.6d), we are able to get the value of option price

with maturity of half year (or 6 months).

Moreover, assume we have several maturities T = (T1, T2, · · · , Tm), Ti < Tj if i < j. In the

backward induction process of computing option price with maturity Tm, we are able to derive

all other option prices with maturities T1, T2, · · · , Tm−1, and all these computation could be done

in one run of backward induction. Also, this method could be easily combined with the method

introduced before to obtain multiple option prices with different strikes. Therefore, we are able to

compute multiple option prices with different strikes and maturities by one run of the backward

induction. This saves us a huge amount of time in model calibration. For example, if we take

K = (50, 52, · · · , 150), and T = (20, 50, 100, 126, 252, 400) (days), which is 306 options in total.

Instead of the time cost for computing a single option price multiplied by 306, we can complete the

computation within 5 times of single pricing time.

Remark 6.2.1. There are also problems and restrictions with this approach. By the Lévy -Khintchine

theorem, the c.f function of Xt has the following form:

φt(ξ) = E[eiξXt] = exp{−t(
1

2
σ2ξ2 − iµξ +

�

R
(1− eiξy + iξy1{|y|≤1}Π(dy)))}.

where t is replaced by a fixed constant time step ∆ in our deduction before. And here:

µ = r − q −
1

2
σ2 +

�

R
(1− ey + y1{|y|≤1})Π(dy).

In the previous computation of multiple option prices, we take interest rate r and dividend yield q as

a constant. Otherwise, if r and q are functions of time t, the time homogeneity property would not

be valid any more. However, in real world market, interest rate and dividend yield are usually not

95

constants and usually vary a lot for different maturities. For example, in Apr. 2010, the 1 month

LIBOR rate is 0.26, 3 months rate is 0.31 while 1 year LIBOR rate is 0.94. Therefore, it is not very

persuasive to take interest rate or dividend yield as a constant. In this case, we cannot use the time-

homogeneity property to fast compute option prices with different maturities. On the other hand,

it is still effective and efficient to use the method to compute multiple option prices with different

strike prices, especially considering the fact that options usually have tens of different strikes but

only couple of maturities. And in certain conditions, we can still use the time homogeneity property.

For example, if we only consider options with short maturities, i.e. 1 month, 2 months, 3 months.

Then the interest rate would basically be the same, and it is not very controversial to take the average

interest rate as the constant.

6.2.4 Approximating American option price by Bermudan option price

According to the definition, Bermudan option is in fact the discrete version of American option.

Although it is not proved theoretically, a preliminary analysis and intensive numerical study shows

that the convergence rate is approximately O(1/N), where N is the number of monitoring intervals.

Here we use this method to compute American option prices. The Richardson extrapolation can

be applied to speed up the convergence. More specifically, given two approximations P1 (with

N1 monitoring intervals) and P2 (with N2 monitoring intervals) to the American vanilla put price

(denote by P∞), we have the following extrapolated value as a new approximation:

P∞ ≈
N1P1 −N2P2

N1 −N2
. (6.9)

There are three ways to do the extrapolation:

• Daily monitoring and half daily monitoring.

This is a comparatively slower way but easier to understand. That is, we take N1 to be the

longest maturity we have in the maturity set T. And take N2 = 2N1. In this case, we have

desired accuracy, daily monitoring is very accurate for approximating American option price.

However, it is too accurate for our calibration purpose (two digit after the decimal point.),

especially for those long maturities. And the accuracy has a tradeoff of more computation

load or longer computation time.

• Use fixed N for all options with different maturities.

Here we compute option prices with different maturities separately. For each maturity, we

96

use same N1 and N2. And their value is chosen through intensive numerical experiments, to

see whether they can provide ideal accuracy of option price. According to our experiment,

when N1 = 10, N2 = 5, we can obtain most option prices with a percentage error (absolute

error/option price) of 0.001 for different maturities, strikes even most of different parameters

in our model. Since N1 and N2 are relative small, this way is much faster than the first one.

• Interpolation way.

This way is very much alike the second way. Assuming we have the maturity set T =

(T1, T2, · · · , Tm) and Ti < Tj if i < j. We run one backward induction to get all these

prices for Bermudan options. In the backward induction, the first group of option prices we

obtain has maturity T1. While doing this, we divide the interval (0, T1) into N1 subintervals.

Later, when we do the backward induction in interval (T1, T2), we also divide the interval into

N1 subintervals and do the rest similarly. And then we proceed the whole backward induction

one more time with N1 replaced by N2. And use Richardson extrapolation to obtain American

option prices. Notice that for different backward induction intervals, we use same N , which

basically means different subinterval length ∆. Hence, this method is in fact an interpolation

method and only valid if we are able to prove the convergence of Bermudan option price to

American option price. This way is the most fast one among all three ways.

6.3 Model Calibration

6.3.1 Inverse optimization

After we are able to price multiple options efficiently, now we can talk about the inverse problem,

which is in fact an optimization problem. For the purpose of illustration, we consider the calibration

of Kou’s jump diffusion model. In this model, the Lévy density is:

ν(z) = λ[pη1e
−η1z1(z>0) + (1− p)η2e

η2z1(z<0)].

Denote the set of parameters in this model by Θ = {σ, λ, p, η1, η2}. We have five parameters in total

to calibrate. Suppose prices of I options are available, let PMkt(Ti,Ki) denote the market price of

these options, and PΘ(Ti,Ki) denote the corresponding option price under parameter set Θ. Then

97

the inverse optimization problem is formulated as following:

Θ∗ = arg inf
Θ∈Ω

I�

i=1

ωi|
PΘ(Ti,Ki)− PMkt(Ti,Ki)

PMkt(Ti,Ki)
|
2 +R(Θ). (6.10)

where Ω is the parameter set space, which is usually a box in the variable space. ωi is the weight

for the ith option pricing difference, which represents the confidence of estimating individual data,

usually determined by the liquidity of that option, i.e. volume of open interest or trading volume.

And R(Θ) is the regularization term, which we added in order to change the well know ill-posed

optimization problem into a convex optimization problem with good property. It is very important

to notice that the objective function is a very sophisticated function of parameters which we want to

calibrate. There are many computations involved such as FFT, matrix computations and iterations.

Hence, it is impossible to pursue the explicit gradient of the objective function. Therefore, most of

our optimization algorithms are in the category of Derivative Free Optimization (DFO).

6.3.2 The optimization problem without penalization

First we consider the calibration problem (6.10) without the penalization term R(Θ). Thus the

problem is indeed a nonlinear least square problem which intends to reduce the quadratic pricing

error. (See [2].) The advantage of the calibration problem is that, without the intervention of the

regularization term, all information shown in the calibrated parameter Θ∗ comes from the market

data. On the other hand, the objective function is non-convex, so a gradient method may rashly

result in a local minimum with objective value much higher than our expected fitting error, while

leaving wide variable space unexplored. Also, if a global optimization method is used in order to

obtain a ”global minimum”(a local minimum which provides ideal objective value), no matter using

heuristics methods or stochastic optimization methods, the computation time would be too large

for practical use.

In order to solve this dilemma, we propose a two-stage calibration procedure. The first stage solves

(6.10) without penalty, through a global optimization method, which would take a long time from

several hours to around a day, depending on the dimension of calibration model and starting point.

While the reward for long computing time is that we can obtain an ideal parameter set. Then, in

the second stage, we use the parameters we obtained in stage one as starting point and solve (6.10)

with penalty by DFO or traditional gradient method combining certain gradient deriving technique.

Since the dimension of the convex optimization problem (6.10) is very small, (less than or equal to

98

five in Lévy process models and around ten in SVCJ model), gradient method would give the result

within 5 to 10 minutes normally (more detail in later section). Hence, this method can be applied

to daily or even hourly model calibration in real world market. In this part, we first introduce a

global optimization method. And we put the local optimization methods in the next subsection.

There are many global optimization methods available. Most popular ones include stochastic op-

timization like simulated annealing and heuristic algorithms like evolutionary algorithm. In 1995,

inspired by social behavior of animals, Eberhart, R. C. and Kennedy proposed a new heuristic algo-

rithm, called Particle Swarm Optimization (PSO, see [33]). This method is getting more and more

popular recently, together with its variant, being used in different areas like electric engineering,

neural net work and economics. In 2007, A.I.F. Vaz and L.N.Vicente [67] incorporated PSO into

the framework of Pattern-Search, which is a classic Derivative Free optimization method (For more

information about pattern search, please see [6]). And they developed a hybrid global optimization

method, particle swarm pattern search. It is proved to be more efficient for solving certain difficult

problems than traditional methods like simulated annealing and genetic algorithm.

The two step pattern search framework includes the global search as the first step and local search

as the second step. Normally, the global search is conducted on a mesh built by a spanning set in

the variable space. The hybrid method incorporates PSO into this step. The second step for local

search is unchanged.

6.3.3 The convex optimization problem

After we solve the non-convex optimization problem for one time, we have sets of parameters which

give a very good fitting of the market data. And whenever we want to update the parameters

which incorporate new market data, we can solve (6.10) with penalty, and using the parameters

we obtained as starting point. Assume we have a penalty term R(Θ) added, it seems that (6.10)

is easy to solve since it is convex already, and any gradient decent method would apply. However,

we have one more issue left: although we are able to fast compute the function value we want

to minimize, we are unable to obtain the gradient of this function yet. Recall how we obtain

the American option price introduced before: lots of numerical computations are involved, like

interpolation, fast Fourier transform, etc... It is inapplicable to obtain the gradient analytically.

So we need to pursue numerical methods: either getting the gradient numerically or avoiding the

gradient based optimization methods and seeking gradient free optimization methods. We will show

later in numerical results that either way works and be able to finish the optimization problem

99

within ideal amount of time.

Compute gradient numerically

• Finite difference (FD). This is a well known method and introduced in every numerical analysis

book. If we have a function F : Rn → R, and a point x ∈ R
n, then we can add a perturbation

h to x and observe the function value change. According to Taylor’s theorem, we have:

∂F

∂xi

≈
F (x+ hei)− F (x)

h

where ei is the ith unit vector, the vector has 1 as the ith element and 0 for all other elements.

Here we need to consider two errors incurred. First one is the truncation error, |Err1| ≤ Mh/2,

where M is the bound for |F ��(t)|, t is in a small enough ball centering at x. The second one

is the rounding error, |Err2| ≤ 2�/h, where � is the bound for function value (machine) error.

When the total error is minimized, we have h ≈ 2
�
�/M . (See [58] for more detail.)

• Automatic Differentiation (AD). This is a technique used to calculate the derivative of certain

function numerically provided the program code of the function. The derivative calculation is

broken down into basic derivative calculation, i.e. plus, minus, multiply, dividend and then use

chain rule to combine them. The advantage of AD compared to finite difference is that, the AD

technique usually gives the derivative as the same accuracy � of the original function, while the

finite difference can only provide the accuracy of around
√
�. Of course, the advantage comes

with its payoff. Finite difference is a lot easier to implement than automatic differentiation,

and the speed of finite difference is always for AD to catch up. AD techniques can be cate-

gorized by forward accumulation and reverse accumulation. Also, the implementation of AD

techniques can be categorized by Source Code Transformation(SCT) and Operator Overload-

ing(OO). The former one automatically generates new source code computing both function

value and its derivatives. While the latter one keeps the original source code unchanged but

overloads the objects of real number and basic mathematical operators. Packages using SCT

technique include ADIFOR, TAPENADE. While packages MAD and ADOL-C use Operator

Overloading.

Once we obtained the gradient, the rest work could be done easily by applying gradient-based

optimization algorithms. Certain algorithms include trust region reflective algorithm [21], interior

point method [13], and active set algorithm using sequential quadratic programming (SQP) [59].

100

Those gradient-based optimization algorithms are sophisticated and already been used widely in

practice.

Derivative free optimization

Derivative free optimization(DFO) methods have been used in practical applications where the

derivative is unable or expensive to get due to the special structure of original function. Although it

is not a necessity to use derivative free optimization method while the FD and AD are available in

our case, we still have it in our method list for comparison purpose, since we do not know whether the

possible noise incurred by function evaluation would cause unreliable issues in our calibration. One

popular DFO method is pattern search, which we have already introduced in the previous section.

Here we introduce another DFO method, the trust-region interpolation based method which also

called model based method [10][58].

Trust-Region method is a classic method used heavily in optimization. The idea is that, at current

iterate, we choose a region within which we trust that a merit function (quadratic usually) is a

very good approximation of the objective function. Then we minimize the quadratic function in the

region instead of the original objective function.(See [58] for more detail.) According to Taylor’s

theorem, the following function would be a good choice to approximate original objective function

f(x) at point xk + p :

f(xk + p) ≈ mk(xk + p) = fk +∇fT

k
p+

1

2
pT∇2f(xk)p.

However, we do not know the gradient and Hessian here. So, we take ∇f and ∇2f as unknown

vector and matrix variables here. Since we are able to compute the function value of f(x), we can

then use those function value to approximate ∇f and ∇2f . Assuming gk and Hk approximates

∇f and ∇2f at point xk. If the dimension of the variable space is n, i.e. x ∈ Rn, then we

can choose N = 1
2 (n + 1)(n + 2) sample points, xj

k
, j = 1, 2, ...N . And solve the linear system

c+ gT
k
p+ 1

2p
THkp = f(xj

k
), for j = 1, 2, ...N . Since Hk is an approximation of Hessian matrix ∇2f ,

it is very natural to assume it is symmetric. Hence it contains 1
2n(n+1) unknown variables, plus n

unknowns in gk and variable c, we have N unknowns and N linear equations. In this case, the linear

system is actually a square system. And if choosing xj

k
properly, the system could be nonsingular,

and hence has unique solution. Hence, we can obtain a good formulation of the quadratic function

mk from N samples of original function. After that, the optimization problem can be solved by

modified trust region method. A complete description of the algorithm would be cumbersome, we

101

only give a brief description here. For more details of the algorithm, please refer to [60] and [55].

Also, in [9], the method is extended to a broader class of optimization problem with nonlinear

constrains.

1. Choose N starting points properly, denote them as an interpolation set I. Select the point in

I which gives the smallest objective value, denote that point as x0. Initialize iteration timer

k = 0. And give a trust region radius ∆0.

2. Build the merit function mk by quadratic interpolation as stated above.

3. Solve for p in

min
p∈Rn

mk(xk + p), �p�2 ≤ ∆k

If �p�2 is too small, check whether f(xk + p) − f(xk) is small enough, if not, update the

interpolation set I by delete the worst point and add a new point. Otherwise, decrease ∆k

and repeat this step.

If �p�2 is proper, compute f(xk+p). Add xk+p to set I. Also, update ∆k and xk accordingly.

4. If ∆k is small enough, stop. Otherwise, k = k + 1 and go back to step 2.

6.4 Numerical results

In this section, we compare calibration results of different optimization methods. Also, we present

numerical examples on calibration of American (Bermudan) options in various Lévy process models,

including Kou’s double exponential jump diffusion model ([49]), the CGMY model ([14]) and the

normal inverse Gaussian (NIG) model ([7]). In our numerical experiments, first we do intensive study

on the choice of N1, N2, to ensure we can achieve our desired accuracy for calibration while keep

computing time as short as possible. Then we use simulated data to compare different optimization

methods in order to choose the most ideal one for further calibration. Then, the last step is conducted

by data deriving from real world market to verify the calibration result of different models by checking

whether they can fit the market data well. We use OEX and XEO options in our calibration, who

have the same underlying asset S&P100 Index. *All the market data is obtained from Bloomberg

Terminal.

102

6.4.1 Choosing N1 and N2

For those three Lévy models we are interested, we do intensive numerical study on how to choose

N1 and N2, so that we can achieve percentage error of 0.001. We have some interesting findings

here. In our illustration, we use Kou’s model for example, the NIG and CGMY case are similar

unless mentioned otherwise.

Compare different r, q

First, we want to know how r, q will affect pricing error if we fix the other conditions. According

to the market situation, we choose four sets of r, q to compare, they are: (r, q) = (0.0026, 0.024),

(0.05, 0.024), (0.05, 0), (0.0026, 0). The first set is the market data for 40 days OEX option on

Apr.12.2010, and these values keeps at the same level recently. And for recent ten years, the 12

months interest rate is lower or approximate to the level of 5%. So, we are taking 5% as a proper

large interest rate value. In table 6.1, we show the pricing error for three typical sets of parameter

in Kou’s model. Here we take M large enough to ensure the value of M won’t incur further

pricing error. Also, we present the case N = 1 without extrapolation, we also tested other case like

N = 2, 4, 5, 10, 20... and the extrapolation case like N2 = 2N1 = 2, 4, 10, 20, ..., the situations are

similar, so we choose the simplest one to present (Similar situation for NIG and CGMY model). We

can see that in table 6.1, the value of r has tremendous influence on the pricing error. Large r would

incur large pricing error. On the other hand, the difference r − q also matters, although not in a

tremendous way. Hence, in the following test, we fix r = 0.05 and q = 0 so that if the conclusion

we draw on the upper bound of pricing error works for this r, q, it would also be valid for other r, q

values.

Table 6.1: M=1e5, α=1, T= 40, N = 1, Largest pricing error among different strike K.

para;(r,q) (0.0026,0.024) (0.05, 0.024) (0.05, 0) (0.0026 0)

(0.9, 10, 0.01, 4, 4) 1.853E-07 0.002328392 0.003341444 4.35520E-05

(0.9, 1, 0.01, 4, 80) 3.25830E-14 0.002074508 0.003321795 7.58451E-05

(0.9, 10, 0.01, 100, 4) 1.86034E-07 0.002682455 0.003746877 0.000138182

Compare different maturity T

Then we would like to know, how maturity T would affect the pricing error in our numerical

experiments. We first compare two maturities T = 40, 182 days. The pricing errors are illustrated

103

in table 6.2. We find that the pricing errors for T = 182 are larger than T = 40, although the error

difference is smaller if extrapolation is used . Also, we compare the numerical result for T = 365

and T = 182 days. Our result shows that pricing errors are on the same level. Generally, options

with long maturity would have slightly larger pricing error than those with short maturity. While

the differences are not obvious.

Table 6.2: parameter set (0.9, 10, 0.01, 100, 80), M=1e5, α=1, r=0.05, q=0

T = 40 Without extrapolation Extrapolation

N/Strike 480 545 580 480 545 580

5 0.001250846 0.001199909 0.001159857

10 0.000696225 0.000640091 0.000607702 0.000141604 0.000080273 0.000055547

20 0.000365180 0.000328934 0.000309613 0.000034135 0.000017777 0.000011525

T = 182 Without extrapolation Extrapolation

N/Strike 480 545 580 480 545 580

5 0.003162840 0.003076123 0.003028083

10 0.001671884 0.001599814 0.001563086 0.000180929 0.000123505 0.000098090

20 0.000859952 0.000815231 0.000793204 0.000048020 0.000030648 0.000023323

Compare different strikes K

Then we consider whether strike price K would affect the pricing error. It turns out that most

moderate strikes would give the same level of pricing error, especially when there is no extrapolation

used. When extrapolation is used, it seems that the lower strike prices will accompany higher pricing

error. See table 6.3 and table 6.4.

Choosing M

In calibration problem, we will encounter many different parameters in our calibration. The pricing

error largely depends on the parameters. For example, for one parameter, if we choose M = 1e3,

we will get accuracy of 1e − 6, but for some other parameter, we may need M = 1e5 to obtain

the same precision. Also, we do not want to choose a fixed large M in our calibration process.

Because if we do so, the working load may increase hundreds of time in the process. Hence, we

need to give a standard to choose M according to model parameters. However, we are unable to

derive a direct function describing M and pricing error of American options. Instead, we can only

give approximite guess on the relationship between those two and try to verify that by intensive

numerical experiments. In [39], we have the following error estimation for Hilbert transform:

�Hf −Hh(M),Mf�L∞ ≤ C1M
1/(1+ν) exp(−C2M

ν/(1+ν))

104

where C1 > 0 and C2 = (πd)ν/(1+ν)(c2)1/(1+ν). Here c2 depends on the tail behavior of the Lévy

density. (Please see [39] for more detail.) In the above error estimation, the dominated term is

E(M) = C2Mν/(1+ν) in the exponential function. Hence, we want to have this value fixed, and

solve for M accordingly. That is, we assume the error of American option price is in the form of

Ce−E(M), where C is an unknown constant. Our numerical experiments shows that, for Kou’s model

and NIG model, we can let E(M) = 10 to guarantee the precision of 1e− 4. For CGMY model, the

situation is more complex. Because for Kou’s model and NIG model, we have ν as a constant. But

in CGMY, ν = Y is a variable. And if we choose E(M) = 10 as for the other two models, we will

derive huge M (> 1e6) in certain situation. After some tests, we fix E(M) = 6 here, which ensures

the pricing error is below 4e− 3. Although larger than Kou and NIG’s case, it is still sufficient for

our calibration purpose.

Choosing N1 and N2

Since the value of N1 and N2 have significant influence on option pricing time and hence calibration

time, we prefer to have them small. On the other hand, if they are too small, we will have very large

pricing error, which would affect our calibration result. Since the market option price is given with

accuracy of 0.01, we require our pricing error caused byN1 andN2 be around 0.001. Then, combining

the error incurred by M , we can still keep the total pricing error within the range of 0.005, which

should be enough for our calibration purpose. Since we have already taken the infulence of r, q, M ,

T and K into account, now we only need to check how different model parameter sets would affect

our pricing error. After considering those possible values of parameter sets in real world market,

we restricted our parameter sets in the following bound: (σ, λ, p, η1, η2), lb = [0.01, 1.0, 0.01, 4, 3]

and ub = [0.9, 10.0, 0.99, 200, 180]. After intensive numerical experiment and comparing the option

pricing error for different parameter sets, in table 6.3 and table 6.4, we show the largest pricing error

among all different parameter sets we obtained. And we can see that, without extrapolation, we

need to choose N = 20 to achieve the accuray of 2e− 3, while on the other hand, the extrapolation

of N1 = 5 and N2 = 10 would provide the accuracy of 7e− 4. And their working load is in the same

level with the latter with extrapolation being at least 15% faster. Hence, we will take N1 = 5 and

N2 = 10 in our following numerical experiments.

105

Table 6.3: parameter set (0.9, 10, 0.01, 200, 180), M=1e5, α=1, T= 365, r=0.05, q=0

Without extrapolation Extrapolation

N/Strike 200 450 550 650 900 200 450 550 650 900

5 5.3e-3 5.1e-3 4.9e-3 4.8e-3 4.4e-3

10 3.0e-3 2.6e-3 2.5e-3 2.4e-3 2.2e-3 7.0e-4 2.1e-4 1.2e-4 6.1e-5 2.8e-5

20 1.6e-3 1.4e-3 1.3e-3 1.2e-3 1.1e-3 2.1e-4 5.3e-5 2.8e-5 1.1e-5 1.3e-5

Table 6.4: parameter set (0.9, 1, 0.01, 4, 180), M=1e5, α=1, T= 365, r=0.05, q=0

Without extrapolation Extrapolation

N/Strike 200 450 550 650 900 200 450 550 650 900

5 4.9e-3 4.8e-3 4.7e-3 4.6e-3 4.3e-3

10 2.7e-3 2.5e-3 2.4e-3 2.3e-3 2.1e-3 5.5e-4 1.4e-4 6.7e-5 1.8e-5 2.2e-6

20 1.4e-3 1.2e-3 1.2e-3 1.1e-3 1.1e-3 1.5e-4 2.4e-5 5.4e-6 6.6e-6 2.3e-5

6.4.2 Calibration using simulated data

Here, we want to find out which optimization method can serve our calibration purpose better. We

assume that the risk free interest rate is r = 5%, the continuous yield of the underlying asset is

paying q = 2%. Also, we choose our parameter sets as Θ∗ = (σ, λ, p, η1, η2) = (0.1, 3.0, 0.3, 40, 12).

We use these data to generate a bunch of option prices and assume these option prices are ”real”

market option prices. And then, the parameters we gave is the ”real” parameters. Then, we try to

find out whether our optimization method can find the parameters in the parameter space, starting

from some initial points. Also, through these numerical experiments, we want to compare different

optimization methods by their computing time and accuracy.

Compare Automatic Differentiation and Finite Difference

The advantage of Automatic Differentatiation over Finite Difference is that it provides more accurate

derivatives. However, since our calibration problem itself has not much requirement on the accuracy,

the precision of FD seems to be enough for us (around 1E-8). Hence, we care more about the time

cost of AD and FD. If they are at the same level, of course we will choose FD over AD because of

the accuracy. Otherwise, we prefer to use FD. To compare the time cost, we design some simple

tests. In the calibration problem (6.10), we take

R(Θ) = α ∗ �
Θ−Θ∗

Θ∗ �2 (6.11)

106

Here we use this penalty term to pull the parameter Θ back to Θ∗. Also, we set α = 10 big enough,

so that the optimization problem is highly convex. Then no matter where our initial parameter

Θ0 is, we can find the optimal point Θ∗ by gradient based optimization methods. We incorporated

the AD and FD with BFGS Quasi-Newton method for the following experiment. Set S0 = 100,

K = {90, 100, 110} and T = {20, 126, 252}. First we compute these option prices and use them as

benchmark price. Then we give different starting points Θ0 and compare the computing time for

AD and FD. It turns out that both methods can find the benchmark parameter. In table 6.5, we

show the time cost with number of iterations in brackets. We can see that, except the last starting

point, FD is obvious faster than AD. Also, FD being slower than AD for the last parameter might be

because the landscape between the last parameter and our benchmark parameter is very complex,

hence, the accuracy of gradient plays an important role in fast finding the target. However, in our

calibration, the gradient method is used for updating the new parameter from the previous one

when incorporating new data. Then the parameters normally have very little change. The situation

is more like calibration using the first starting point in table 6.5. Therefore, we prefer to use FD

instead of AD in our calibration.

Table 6.5: Computing time for AD and FD.

Starting point/Method Automatic Differentiation Finite Difference

1.2*(0.1, 3.0, 0.3 , 40, 12) 385.12s (4) 240.99s (6)

1.5*(0.1, 3.0, 0.3 , 40, 12) 458.46s (5) 206.09s (5)

1.8*(0.1, 3.0, 0.3 , 40, 12) 531.59s (6) 273.53s (7)

3.0*(0.1, 3.0, 0.3 , 40, 12) 765.27s (9) 340.87s (9)

(0.5, 7.0, 0.6 , 20, 45) 602.42s (7) 782.29s (19)

Compare DFO with Gradient Based method with FD

Similarly, we can do some simple tests to compare DFO method we mentioned before with Gradient

Based method combined with FD, to see which one performs better in our calibration process. Here,

we use one maturity but several different strikes {70, 75, ..., 130}. Also, we choose α = 3 to increase

the difficulty of the optimization problem. In this case, the minima of the optimization problem can

also be easily found. We show the computing time with number of function evaluated in bracket in

table 6.6. We can see that Gradient based method is faster than DFO. And interior-point method

seems to fit our calibration problem better than Active Set method.

107

Table 6.6: Computing time for DFO and Gradient based methods.

para/method DFO Active Set Interior-point

1.2*(0.1, 3.0, 0.3 , 40, 12) 163.53s (300) 68.31s (128) 78.66s (155)

2.0*(0.1, 3.0, 0.3 , 40, 12) 130.77s (279) 114.58s (145) 73.95s (158)

(0.5, 7.0, 0.6 , 20, 45) 188.25s (389) 112.25s (142) 84.89s (169)

6.4.3 Calibration using market data

After the numerical experiments we did previously, we have a general idea about our calibration

problem. Now we can use market data (S&P100 Options) to do calibration. And find out whether

these Lévy process models can fit the market data well or not. In the following numerical exper-

iments, first, we use the global optimization method introduced previously to derive some good

parameters (providing small enough objective value) in our parameter space. Then we use gradient

based method with finite difference to solve the optimization problem thoroughly. Be aware that

although the global optimization method (particle swarm pattern search) itself could give us a local

minimum, it costs large amount of time as often global optimization algorithms do. Hence, we can

run the global optimization method for a certain period of time (1000-3000 function evaluation or

1-3 hours of CPU time) so that it can sufficiently explore the surface of our parameter spaces and

provide us with some good points in the neighborhood of our ideal local minimum. Then we leave

the rest task to gradient based method, which is much faster than the global optimization method

in case of local search.

Comparison of models for fixed maturities

First, we want to calibrate a simple case with only one maturity but multi-strikes. In this part, we

use the option price data from OEX market on Apr.12.2010. In the market data, option price are

given in the form of bid-ask prices. For our benchmark prices, we use the average prices of bids

and asks. We first calibrate the models without penalty term to fully incorporate the information

in market. In table 6.7, we show the option prices obtained from calibration for T = 40 days. First

we analyze Kou’s model. We can see that, for four different sets of parameters P1, P2, P3, P4, the

calibration result are all very good. Only one option price falls out of the bid-ask spread. Also, the

four sets of parameters agrees on the volatility σ ≈ 11.5% and η2 ≈ 15.5, which means that the

average negative jump size is around 1/η2 ≈ 6.45%. These two parameters do agree with the market

situation. Then, we calibrate OEX options on the same day with a maturity of T = 250 days. The

108

result is in table 6.8. Except the prices calibrated by P4, the rest of calibrated option prices are all

in the bid-ask spread (The number of available market option price are less than that in T = 40).

From the parameters we obtained, we find that, p in the first three parameter sets are all above

0.5, which means that positive jump is more likely than negative jump. This disagrees with the

market situation. And for P4, although its p < 0.5, the calibration is not very ideal (4 prices out

of 18 are not in the bid-ask spread). The reason might be that Kou’s model fits better for short

maturity options rather than long maturity options. And this agrees with the finding of R.Cont

and P.Tankov in [22] when they use nonparametric method to calibrate European options. Also in

table 6.7, we can see that, for CGMY model, there is also only one option price out of the bid-ask

spread. Moreover, we can see that the objective value is around half of that for Kou’s model. To

some extent, it means that CGMY model fits the market data even better than Kou’s although it

has one dimension of freedom less than Kou’s model.

Table 6.7: Calibrated Option price in Levy’s model, T = 40 days

Kou’s model CGMY

Parameters bid ask P1 P2 P3 P4 P1 P2

Strike Obj value − > 1.28E-04 1.23E-04 1.25E-04 1.27E-04 6.00E-05 6.35E-05

480 0.75 0.95 0.84 0.84 0.84 0.84 0.86 0.86

485 0.90 1.10 0.99 0.99 0.99 0.99 0.99 0.99

490 1.05 1.25 1.16 1.16 1.16 1.16 1.15 1.15

495 1.25 1.50 1.36 1.36 1.36 1.36 1.34 1.34

500 1.45 1.70 1.60 1.60 1.60 1.60 1.58 1.58

505 1.75 2.05 1.89 1.89 1.89 1.89 1.88 1.88

510 2.10 2.40 2.26 2.26 2.26 2.26 2.25 2.25

515 2.55 2.90 2.72 2.72 2.72 2.72 2.73 2.73

520 3.20 3.50 3.32 3.32 3.32 3.32 3.34 3.34

525 3.90 4.30 4.10 4.10 4.10 4.10 4.13 4.13

530 5.10 5.30 5.12 5.12 5.12 5.12 5.13 5.13

535 6.10 6.60 6.44 6.44 6.44 6.44 6.41 6.42

540 7.70 8.20 8.11 8.11 8.11 8.11 8.02 8.03

545 9.60 10.20 10.17 10.17 10.17 10.17 10.01 10.02

550 12.20 12.60 12.66 12.65 12.65 12.66 12.43 12.44

555 14.90 15.60 15.58 15.56 15.56 15.57 15.28 15.29

560 18.10 19.00 18.91 18.88 18.89 18.89 18.57 18.57

565 21.90 23.00 22.61 22.58 22.59 22.60 22.27 22.26

570 26.10 27.30 26.65 26.61 26.61 26.62 26.31 26.31

575 30.60 31.70 30.95 30.91 30.91 30.92 30.65 30.64

580 35.40 36.40 35.47 35.42 35.42 35.43 35.21 35.20

(σ, λ, p, η1, η2) (C, G, M , Y)

P1 (0.1160 1.6554 0.0100 08.5929 15.5550) (0.0223 2.4965 76.4292 1.4891)

P2 (0.1164 1.6508 0.0100 21.7420 15.5341) (0.0209 2.3625 91.5745 1.5067)

P3 (0.1157 2.3041 0.2866 79.9999 15.5702)

P4 (0.1154 2.3784 0.3071 69.6223 15.5866)

109

Table 6.8: Calibrated Option price in Kou’s model, T = 250 days

Parameters bid ask P1 P2 P3 P4

Strike/Objective value 9.24E-05 9.04E-05 8.88E-05 1.65E-04

300 0.65 0.90 0.78 0.78 0.78 0.78

320 1.05 1.30 1.16 1.16 1.16 1.16

340 1.55 1.90 1.68 1.68 1.68 1.68

360 2.20 2.60 2.39 2.39 2.39 2.40

380 3.00 3.60 3.33 3.33 3.33 3.34

400 4.20 4.80 4.56 4.56 4.56 4.58

420 5.90 6.40 6.14 6.14 6.14 6.17

440 7.60 8.60 8.16 8.17 8.17 8.21

460 10.10 11.20 10.75 10.76 10.75 10.79

480 13.80 14.70 14.10 14.11 14.11 14.11

500 24.10 19.30 18.56 18.57 18.57 18.49

520 24.10 25.40 24.56 24.55 24.56 24.40

540 31.00 33.80 32.55 32.49 32.51 32.36

560 40.50 43.40 42.76 42.68 42.69 42.74

580 52.40 55.50 55.20 55.15 55.14 55.57
640 101.10 103.70 102.98 103.27 103.11 104.88
660 120.00 122.60 121.16 121.54 121.34 123.32
680 139.60 142.10 139.94 140.36 140.15 142.19

(σ, λ, p, η1, η2)
P1 (0.0920 5.1876 0.8688 33.7958 6.2544)

P2 (0.1059 1.3979 0.5147 16.1934 6.2509)

P3 (0.1034 1.9570 0.6531 20.9395 6.2515)

P4 (0.0978 1.0000 0.3069 8.4223 6.2998)

Across maturity

In this part, instead of using one maturity in calibration, we consider two maturities together in

the calibration. The data used is still from OEX option on S&P100 Index but on May.4.2010. The

two maturities we used is T = 18 days and T = 228 days. Still we take Kou’s model as example

for illustration purpose. After spend huge amount of time exploring the parameter space, we are

still unable to obtain an ideal parameter. In table 6.9 we show some of the calibration information.

The best we have is to fit half of the options we get. For comparison purpose, we also calibrated

XEO (European) options in SVCJ model. There is no fast way to compute American options under

SVCJ model, so we use European options instead. The good thing is that OEX and XEO options

are both on S&P100 Index, so they are parallel options sharing same underlying asset, maturities,

interest rate, etc... We applied Hilbert transform method proposed in [38]. As we can see in table

6.9, the calibration result is pretty satisfactory. We have more than 90% of options in the bid-ask

spread, which shows that SVCJ model successfully incorporates the rich structure of both jump and

stochastic volatility so that it can better model the index change in both short term and long term.

110

Table 6.9: Across maturity calibration

Kou’s model for T = 18 and T = 228

Parameter Objective value No. of options in bid-ask spread / No. of Total options

P1 7.90E-02 32/60

P2 7.90E-02 32/60

P3 7.43E-02 22/60

P1=(0.1551, 9.3716, 0.6098, 199.9999, 14.9431)

P2=(0.1558, 5.2443, 0.3034, 200.0000, 14.9383)

P3=(0.1149, 4.3514, 0.0989, 4.0000, 15.3943)

European Put, Kou’s model for T = 18 and T = 228

Parameter Objective value No. of options in bid-ask spread / No. of Total options

P1 1.29E-02 19/56

P2 1.29E-02 19/56

P3 1.34E-02 18/56

P1=(0.1858, 9.3207, 0.9538, 199.9996, 4.5116)

P2=(0.1863, 5.1256, 0.9161, 200.0000, 4.5108)

P3=(0.1833, 1.0000, 0.5612, 24.2228, 4.5503)

European Put, SVCJ model for T = 18, T = 46 and T = 228.

Parameter Objective value No. of options in bid-ask spread / No. of Total options

P1 8.23E-04 69/76

P2 8.01E-04 69/76

P3 7.99E-04 69/76

P4 9.59E-04 69/76

P1=(-0.4718, -0.4741, 0.7215, 2.3496, 0.0075, 1.0983, -0.0864, 0.0010, 0.1127, 0.0234)

P2=(-0.4740, -0.6849, 0.6809, 1.4633, 0.0010, 1.2429, -0.0744, 0.0010, 0.0842, 0.0224)

P3=(-0.4586, -0.5675, 0.6907, 1.8585, 0.0010, 1.2391, -0.0775, 0.0010, 0.0963, 0.0226)

P4=(-0.4911, -0.4756, 0.9437, 3.3952, 0.0221, 0.9582, -0.0847, 0.0014, 0.1220, 0.0247)

Cross Validation

In this part, we still calibrate options on single maturity. Instead of using all the available option

prices on that specific day. We divide the options into two sets. Among which, the first one is called

training set. We use all the data in the training set to calibrate. The second set is called validation

set. We use the parameters we calibrated from training set to generate option prices for validation

set and compare with the bid-ask spread. The data we used is OEX option on May.4.2010, with

maturity of T = 46 days. As shown in table 6.10, we did three tests, for each of them, we use

different training set (set1) and validation set (set2). The result seems to be very good. Except

one option, the others all fall in the bid-ask spread. Hence, we again verify that Kou’s model (Lévy

process models) fits the market data well.

Stability

For the above numerical experiments, we only calibrate options on one specific day. But for practical

purpose, the calibration should be done continuously for a period of time, like daily calibration.

111

Here, we will run the calibration on daily data and verify the stability of the calibration. In table

6.11, we present the option prices we calibrated on May.4th, May.5th and May.6th. To be specific,

first we calibrate the American option under Kou’s model on May.4.2010 by the same method we

used above, then we choose one set of parameter and use it as a starting point to calibrate the

data on May.5.2010. And then use the new parameter derived on May.5th to calibrate the data on

May.6.2010. For May.5th and May.6th, we actually calibrated the options twice for each day. The

first time is without penalty term. The calibrated parameters are denoted as P1-N and P2-N. Then

we use the same data and same starting point to do the calibration again but with the penalty term

(6.11). Then the result we got is shown in P1-W and P2-W. As can be observed, the calibration

result is satisfactory. For May.5th, there are three option prices being out of the bid-ask spread, for

May.6th, there are two options. Considering the total number of options calibrated is 32, we have

more than 90% of options fall in the bid-ask spread. On the other hand, we want to mention that,

the underlying asset price, which is S&P100 Index on these three days are 534.79, 531.45 and 513.80

respectively. On May.6th, the Index dropped 3.32%, which is a dramatic change for indexes. In this

case, the calibration process still provides us with a good result, which to a large extent shows the

stability of the calibration method. Also, we want to take a look at the objective value and penalty

term value, these information is also provided in table 6.11. Here we denote the objective value by

the function value given by (6.10) without the penalty term R(Θ). And the penalty term value is

referred to R(Θ) in (6.11). We can see that, the objective value we obtained are similar no matter

the penalty term is added or not, hence, the calibration result is similar. But on the other hand, for

the value of penalty term, P1-N > P1-W and P2-N � P2-W. This means that, with penalty term,

we can restrict our parameter sets within certain region, so that, the calibrated parameters will

not change dramatically when underlying asset price has big movement. This is good for hedging

purpose. Since a big change of parameters means a big change of hedging positions. And with

the help of the penalty term, we can keep the parameter change within control while obtain the

objective value on the same level as calibrations without penalty term.

112

Table 6.10: Cross Validation in Kou’s model, T = 46 days

Test 1 Test 2 Test 3

Strike K bid ask Set1 Set2 Set1 Set2 Set1 Set2

300 0.00 0.15 0.03 0.03 0.02

340 0.00 0.25 0.12 0.11 0.08

360 0.10 0.30 0.21 0.20 0.16

380 0.25 0.50 0.36 0.34 0.29

400 0.45 0.70 0.61 0.58 0.51

415 0.70 1.00 0.88 0.85 0.77

420 0.85 1.10 0.99 0.96 0.88

430 1.10 1.40 1.25 1.23 1.14

440 1.40 1.75 1.58 1.55 1.47

445 1.60 1.90 1.77 1.75 1.66

450 1.75 2.10 1.97 1.96 1.88

455 2.00 2.30 2.21 2.19 2.12

460 2.25 2.55 2.46 2.45 2.39

465 2.50 2.85 2.74 2.74 2.69

470 2.85 3.20 3.06 3.06 3.02

475 3.20 3.60 3.40 3.42 3.39

480 3.60 4.00 3.79 3.81 3.81

485 4.00 4.40 4.22 4.25 4.27

490 4.50 5.00 4.70 4.75 4.79

495 5.10 5.60 5.26 5.32 5.37

500 5.70 6.30 5.91 5.97 6.04

505 6.50 7.10 6.67 6.72 6.80

510 7.40 8.00 7.57 7.61 7.69

515 8.50 9.00 8.64 8.67 8.74

520 9.70 10.40 9.92 9.93 9.98

525 11.20 11.90 11.44 11.43 11.45

530 12.90 13.50 13.24 13.21 13.18

535 14.80 15.60 15.34 15.29 15.22

540 17.10 17.80 17.77 17.70 17.58

545 19.70 20.50 20.53 20.44 20.29

550 22.60 23.80 23.62 23.53 23.34

555 25.90 27.10 27.03 26.93 26.73

560 29.50 30.80 30.73 30.64 30.43

565 33.50 34.80 34.70 34.61 34.42

570 37.70 39.10 38.89 38.81 38.64

575 42.20 43.50 43.28 43.21 43.06

580 46.80 48.20 47.83 47.77 47.65

(σ, λ, p, η1, η2)
Test 1 (0.1344 2.0029 0.0100 22.8642 10.1116)

Test 2 (0.1292 3.5333 0.3830 79.4301 10.5364)

Test 3 (0.1232 2.6779 0.0100 22.3294 11.5679)

113

Table 6.11: Calibrated Option Price On Continous Days

Dates May.4th May.5th May.6th

Strike/Parameters P P1-N P1-W P2-N P2-W

415 0.13 0.17 0.17 0.69 0.70

420 0.15 0.20 0.20 0.80 0.81

430 0.22 0.28 0.28 1.06 1.07

440 0.31 0.40 0.40 1.39 1.40

445 0.37 0.47 0.47 1.59 1.60

450 0.44 0.56 0.56 1.82 1.83

455 0.53 0.66 0.66 2.08 2.09

460 0.63 0.77 0.77 2.38 2.38

465 0.74 0.91 0.91 2.72 2.72

470 0.87 1.06 1.07 3.12 3.11

475 1.03 1.24 1.25 3.58 3.58

480 1.21 1.45 1.46 4.14 4.13

485 1.42 1.70 1.71 4.82 4.80

490 1.66 1.99 2.00 5.65 5.63

495 1.95 2.33 2.34 6.69 6.64

500 2.29 2.75 2.76 7.96 7.89

505 2.70 3.28 3.28 9.52 9.41

510 3.22 3.97 3.95 11.41 11.25

515 3.88 4.86 4.83 13.65 13.44

520 4.76 6.02 5.98 16.26 15.98

525 5.94 7.54 7.47 19.25 18.89

530 7.50 9.46 9.38 22.58 22.16

535 9.53 11.85 11.75 26.24 25.76

540 12.07 14.70 14.61 30.19 29.66

545 15.15 18.02 17.93 34.37 33.82

550 18.72 21.76 21.68 38.76 38.20

555 22.72 25.86 25.79 43.30 42.75

560 27.07 30.24 30.18 47.96 47.43

565 31.66 34.84 34.80 52.71 52.21

570 36.43 39.59 39.56 57.53 57.07

575 41.30 44.44 44.42 62.39 61.97
580 46.23 49.35 49.34 67.28 66.91

(σ, λ, p, η1, η2) obj value R(Θ)

P (0.1379 4.4276 0.0100 21.7685 16.0045) 3.30E-03

P1-N (0.1614 4.5342 0.0100 21.7708 15.2684) 1.20E-03 0.0317

P1-W (0.1583 4.6459 0.0100 21.7686 15.3683) 1.20E-03 0.0259

P2-N (0.2084 8.1297 0.3273 21.7710 12.2589) 1.50E-03 1.01E+03

P2-W (0.2199 5.3777 0.0100 21.7664 12.0565) 1.50E-03 0.2227

114

References

[1] J. Abate and W. Whitt. The Fourier-series method for inverting transforms of probability
distributions. Queueing Systems, 10(1-2):5–88, 1992.

[2] L. Andersen and J. Andreasen. Jump diffusion models: volatility smile fitting and numerical
methods for pricing. Review of Derivatives Research, 4(3):231–262, 2000.

[3] J. Andreasen. The pricing of discretely sampled Asian and lookback options: a change of
numeraire approach. Journal of Computational Finance, 2(1):5–30, 1998.

[4] S. Asmussen and P. W. Glynn. Stochastic Simulation. Springer-Verlag, Berlin, Germany, 2007.

[5] S. Asmussen and J. Rosiński. Approximation of small jumps of Lévy processes with a view
towards simulation. Journal of Applied Probability, 38(2):482–493, 2001.

[6] C. Audet and J. J. E. Dennis. Analysis of generalized pattern searches. SIAM Journal on
Optimization, 13(3):889–903, 2003.

[7] O. E. Barndorff-Nielsen. Process of normal inverse Gaussian type. Finance and Stochastics,
2(1):41–68, 1998.

[8] E. Benhamou. Fast Fourier transform for discrete Asian options. Journal of Computational
Finance, 6(1), 2002.

[9] F. V. Berghen. Optimization algorithm for non-linear, constrained, derivative-free optimization
of continous, high-computing-load functions. Technical report, IRIDIA, Université Libre de
Bruxelles, Belgium, 2004.

[10] F. V. Berghen and H. Bersini. Condor, a new parallel, constrained extension of powell’s uobyqa
algorithm: experimental results and comparison with the dfo algorithm. Journal of Computa-
tional and Applied Mathematics, 181(1), 2005.

[11] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of Political
Economy, 81(3):637–654, 1973.

[12] L. Bondesson. On simulation from infinitely divisible distributions. Advances in Applied Prob-
ability, 14(4):855–869, 1982.

[13] R. Byrd, J. Gilbert, and J. Nocedal. A trust region method based on interior point techniques
for nonlinear programming. Mathematical Programming, 89(1):149–185, 2000.

[14] P. Carr, H. Geman, D. B. Madan, and M. Yor. The fine structure of asset returns: an empirical
investigation. Journal of Business, 75(2):305–332, 2002.

[15] P. Carr and D. Madan. Saddlepoint methods for option pricing. Journal of Computational
Finance, 13(1):49–61, 2009.

[16] P. Carr and D. B. Madan. Option valuation using the fast Fourier transform. Journal of
Computational Finance, 2(4):61–73, 1999.

115

[17] A. P. Carverhill and L. J. Clewlow. Flexible convolution. Risk, 3:25 – 29, 1990.

[18] M. C.Fu and J.-Q. Hu. Sensitivity analysis for monte carlo simulation of option pricing. Prob-
ability in the Engineering and Informational Sciences, 9(03):417–446, 1995.

[19] Z. Chen and L. Feng. Monte carlo estimation of sensitivities from analytic characteristic func-
tions. Working paper, University of Illinois at Urbana-Champaign, 2012.

[20] Z. Chen, L. Feng, and X. Lin. Simulating Lévy processes from their characteristic functions
and financial applications. ACM Transactions on Modeling and Computer Simulation, 22(3),
2012.

[21] T. Coleman and Y. Li. An interior trust region approach for nonlinear minimization subject to
bounds. SIAM Journal on Optimization, 6:418–445, 1996.

[22] R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman & Hall/CRC,
Boca Raton, Florida, 2004.

[23] R. Cont and P. Tankov. Non-parametric calibration of jump-diffusion option pricing models.
Journal of Computational Finance, 7(3):1–49, 2004.

[24] R. Cont and P. Tankov. Retrieving Lévy processes from option prices: regularization of an
ill-posed inverse problem. SIAM Journal on Control and Optimization, 45(1):1–25, 2006.

[25] S. Crépey. Calibration of the local volatility in a generalized Black-Scholes model using
Tikhonov regularization. SIAM Journal on Mathematical Analysis, 34(5):1183–1206, 2003.

[26] S. Crépey. Calibration of the local volatility in a trinomial tree using Tikhonov regularization.
Inverse Problems, 19:91–127, 2003.

[27] E. Derman. Laughter in the dark - the problem of the volatility smile. Available at
http://www.ederman.com, 2003.

[28] E. Derman and I. Kani. Riding on a smile. Risk, pages 32–39, February 1994.

[29] L. Devroye. On the computer generation of random variables with a given characteristic func-
tion. Computers & Mathematics with Applications, 7(6):547–552, 1981.

[30] D. Duffie, J. Pan, and K. Singleton. Transform analysis and asset pricing for affine jump-
diffusions. Econometrica, 68(6):1343–1376, 2000.

[31] B. Dupire. Pricing with a smile. Risk, pages 18–20, January 1994.

[32] D. Düvelmeyer and B. Hofmann. A multi-parameter regularization approach for estimating
parameters in jump diffusion processes. Journal of Inverse and Ill-Posed Problems, 14(9):861–
880, 2006.

[33] R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. Proceedings
of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan.,
pages 39–43, 1995.

[34] E.C.Titchmarsh. Introduction to the thoery of Fourier integrals.

[35] H. Egger and H. Engl. Tikhonov regularization applied to the inverse problem of option pricing:
convergence analysis and rates. Inverse Problems, 21(3):1027–1045, 2005.

[36] J.-C. Evard and F. Jafari. A complex rolle’s theorem. American Mathematical Monthly.,
99(9):858–861, 1992.

[37] L. Feng. Computational methods for Lévy and jump-diffusion processes: applications in financial
engineering. PhD thesis, Northwestern University, Evanston, USA, 2006.

116

[38] L. Feng and X. Lin. Inverting analytic characteristic functions and financial applications.
Revision Submitted, 2012.

[39] L. Feng and X. Lin. Pricing Bermudan options in Lévy process models. Revision Submitted,
2012.

[40] L. Feng and V. Linetsky. Pricing discretely monitored barrier options and defaultable bonds in
Lévy process models: a fast Hilbert transform approach. Mathematical Finance, 18(3):337–384,
2008.

[41] L. Feng and V. Linetsky. Computing exponential moments of the discrete maximum of a Lévy
process and lookback options. Finance and Stochastics, 13(4):501–529, 2009.

[42] G. Fusai and A. Meucci. Pricing discretely monitored Asian options under Lèvy processes.
Journal of Banking and Finance, 32:2076–2088, 2008.

[43] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag, Berlin, Ger-
many, 2004.

[44] P. Glasserman and Z. Liu. Sensitivity estimates from characteristic functions. In S. G. Hen-
derson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, editors, Proceedings of
the 207 Winter Simulation Conference, pages 932–940. 2007.

[45] P. Glasserman and Z. Liu. Sensitivity estimates from characteristic functions. Operations
Research, 58(6):1611–1623, 2010.

[46] T. Hein and B. Hofmann. On the nature of ill-posedness of an inverse problem arising in option
pricing. Inverse Problems, 19(6):1319–1338, 2003.

[47] S. L. Heston. A closed-form solution for options with stochastic volatility with applications to
bond and currency options. Review of Financial Studies, 6(2):327–343, 1993.

[48] B. Hofmann and R. Krämer. On maximum entropy regularization for a sepcific inverse problem
of option pricing. Journal of Inverse and Ill-Posed Problems, 13(1):41–63, 2005.

[49] S. G. Kou. A jump-diffusion model for option pricing. Management Science, 48(8):1086–1101,
2002.

[50] R. Lagnado and S. Osher. A technique for calibrating derivative security pricing models:
numerical solution of an inverse problem. Journal of Computational Finance, 1(1):13–25, 1997.

[51] P. L’Ecuyer. Quasi-Monte Carlo methods in finance. In R. G. Ingalls, M. D. Rossetti, J. S.
Smith, and B. A. Peters, editors, Proceedings of the 2004 Winter Simulation Conference. 2004.

[52] P. L’Ecuyer and C. Lemieux. Recent advances in randomized quasi-Monte Carlo methods. In
M. Dror, P. L’Ecuyer, and F. Szidarovszki, editors, Modeling Uncertainty: an Examination of
Stochastic Theory, Methods, and Applications, pages 419–474. Kluwer Academic Publishers,
Boston, 2002.

[53] X. Lin. The Hilbert Transform and its Applications in Computational Finance. PhD thesis,
University of Illinois at Urbana-Champaign, Urbana, IL, 2010.

[54] E. Lukacs. Characteristic Functions. Charles Griffin & Company Limited, London, second
edition, 1970.

[55] M. Marazzi and J. Nocedal. Wedge trust region methods for derivative free optimization.
Mathematical Programming, 91(2):289–305, 2002.

[56] R. C. Merton. Theory of rational option pricing. Bell Journal of Economics and Management
Science, 4(1):141–183, 1973.

117

[57] R. C. Merton. Option pricing when underlying stock returns are discontinuous. Journal of
Financial Economics, 3(1-2):125–144, 1976.

[58] J. Nocedal and S. Wright. Numerical Optimization. Springer-Verlag, Berlin, Germany, second
edition, 2006.

[59] M. J. D. Powell. A fast algorithm for nonlinearly constrained optimization calculations. In
G. Watson, editor, Lecture Notes in Mathematics. Springer-Verlag, Berlin, Germany.

[60] M. J. D. Powell. Uobyqa: unconstrained optimization by quadratic approximation. Mathemat-
ical Programming, 92(3):555–582, 2002.

[61] M. Reed and B. Simon. Methods of Modern Mathematical Physics, II, Fourier Analysis, Self-
Adjointness. Academic Press, San Diego, California, 1975.

[62] C. Ribeiro and N. Webber. A Monte Carlo method for the normal inverse Gaussian option
valuation model using an inverse Gaussian bridge. Working paper, 2003.

[63] J. Rosiński. Series representations of Lévy processes from the perspective of point processes.
In O. Barndorff-Nielsen, T. Mikosch, and S. Resnick, editors, Lévy Processes – Theory and
Applications, pages 401–415. Birkhäuser, Boston, 2001.

[64] W. T. Shaw and J. McCabe. Monte Carlo sampling given a characteristic function: quantile
mechanics in momentum space. Available from http://arxiv.org/abs/0903.1592, 2009.

[65] F. Stenger. Numerical Methods Based on Sinc and Analytic Functions. Springer-Verlag, Berlin,
Germany, 1993.

[66] T.H.Rydberg. The normal inverse gaussian Lévy process: simulation and apprximation.
Stochastic Models, 13(4):887–910, 1997.

[67] A. Vaz and L. Vicente. A particle swarm pattern search method for bound constrained global
optimization. Journal of Global Optimization, 39:197–219, 2007.

[68] A. Černý and I. Kyriakou. An improved convolution algorithm for discretely sampled asian
options. Quantitative Finance, 11(3):381–389, 2011.

[69] J. Vecer. Unified pricing of asian options. Risk, 15(6):113–116, 2002.

118

