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ABSTRACT

Bio-physical and bio-chemical factors in the local micro-environment like sub-

strate stiffness, geometry, ligand density, and topography can have strong

influences on determining the fate of cells. Mammalian cells respond to

this myriad of micro-environmental cues by an interplay between actomyosin

based cellular contractions and integrin mediated focal adhesions. A force

balance is established between the intracellular micro-environment and the

extracellular matrix. This mechanotransduction process is ultimately respon-

sible for changes in the cytoskeletal characteristics, morphology, migration,

division and gene expression of mammalian cells. The goal of this disser-

tation was to develop a platform to control the fate of mammalian cells by

engineering the cellular micro-environment.

Beating rate, force of contraction and cytoskeletal structure of embryonic

chicken cardiac myocytes was examined by varying the elasticity of the un-

derlying substrate. Cells cultured on substrates with elasticity comparable

to the native myocardium (18 kPa) exhibited the highest beating rate during

the first few days of culture. Higher percentage of mature focal adhesions

were seen on cells on stiffer substrates (50 kPa or greater), while only small

punctate focal adhesions could be noticed on soft substrates (1 kPa). As a

result, cells on the soft substrate only showed non-aligned sarcomeric stria-

tions. However, cells on the substrate which mimicked the stiffness of the

native myocardium showed highly aligned sarcomeric striations, hallmark of

a striated muscle cell. In addition, quantitative analysis was performed to

provide a bio-physical basis for understanding the affect of substrate elastic-

ity on cell-cell interactions in cardiac tissue.

Next, geometrical cues of the substrate were used to modulate the pro-

cess of myogenesis on the murine derived muscle cell line (C2C12). By using

micro-contact printing, three different protein geometries, linear, circular,

and hybrid (linear and circular) were patterned on the surface of petri dishes.
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Hybrid 30◦ geometry showed the highest fusion and maturation indices for

C2C12 cells. Myotubes on the hybrid 30◦ were highly aligned and showed

the best response to an electrical pulse stimulation. It was verified that

these differences in the myogenic parameters could not be attributed to the

differences in density of cells on the different geometrical structures. The dif-

ferent morphologies of protein micro-patterns changed the cellular tractional

stresses and cytoskeletal organization leading to the differences in myogenesis

on the different patterns.

A new class of sp2-hybridized carbon based allotrope, graphene, was then

investigated as a potential biomaterial for muscle tissue engineering. C2C12

skeletal muscle myoblasts showed a very high degree of myogenic potential

on graphene. Also, being an organic material, graphene could also provide a

similar micro-environment as the native extracellular matrix in terms of its

chemical composition and physical structure. Thus graphene could poten-

tially be used for the development of artificial synthetic muscle scaffolds.

Finally, different cues of geometry and stiffness were combined in a three

dimensional poly ethylene glycol diacrylate hydrogel to truly mimic the na-

tive tissue. Stereolithography apparatus enabled modulating the stiffness

of the substrate by controlling the degree of polymerization of the differ-

ent polymers. Dielectrophoresis helped in controlling the spatial location of

cells in these polymers. Thus by integrating stereolithography with dielec-

trophoresis, mouse embryonic stem cells were patterned and encapsulated in

three dimensional hydrogels of physiologically relevant stiffnesses. The cells

showed very high viability for both the aligned and the non-aligned sam-

ples. Since, embryoid body formation is the precursor to the differentiation

of mouse embryonic stem cells, both the viability and alignment of embryoid

bodies was verified in the hydrogels as well. Also, some preliminary results

are presented that show the differentiation of mESCs.

It is extremely important to independently control multiple cues simulta-

neously in a three-dimensional architecture to control the fate of cells. Cells

in our body do not respond to one environmental cue at a time. Rather

they simultaneously experience multiple cues like stiffness, geometry, topog-

raphy, etc. and respond to them accordingly. This work first looked at

different environmental cues in two-dimensions and then combined them in

three-dimensional cultures to fully mimic the native in vivo tissue. This

novel platform could thus open new doors in stem cell biology and enable
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applications in tissue engineering, regenerative medicine, and drug discov-

ery/screening.
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CHAPTER 1

INTRODUCTION

The demand for organ transplantation has rapidly increased over the past few

decades. However, there is a huge crisis in meeting this additional demand.

Currently, the transplantation of vital organs like kidney, heart, liver, and

lung is the only treatment for their end-stage failure. Every day, about

79 people receive some sort of organ transplant [1]. However, each day an

average of 18 people die waiting for an organ transplant because of their

shortage [1]. Currently, in the US alone, there are over 116,537 people waiting

for an organ transplant [1]. Even after organ transplantation, rejection by

the immune system remains a central issue [2]. One way around the problem

of organ transplantation is to grow tissues/organs de novo using stem cells

in the lab.

Tissue engineering and cellular therapies in combination with therapeutic

development have the potential to revolutionize modern medicine and signifi-

cantly impact human health globally [3]. The translation of basic biomedical

research into a drug that could impact and improve human health is a very

intricate process and it requires a series of complex steps starting from: target

discovery, target validation, assay development, screening and hits to leads,

lead optimization, development, clinical trials and introduction in the mar-

ket [4]. As a result of this tedious but necessary process, the average length

of time from target discovery to approval of a drug currently averages 12-15

years [5]. Fewer than 5% of all compounds that are screened enter pre-clinical

development and only 2% of these candidates enter clinical setting [5]. Of all

the drugs that make it to the Phase I trials, around 80% fail during develop-

ment [5]. Currently, animal models are used for drug testing and therapeutic

validation. This process is very time consuming, costly and many times does

not accurately predict the efficacy of the drug in humans [4, 6]. As a result

of this, the compounds that are cleared in Phase I trials, sometimes fail in

Phase II or Phase III trials [4]. Therefore, the cost of a successful drug ac-

1



counting for all failures is in excess of $1 billion [7, 8]. Therefore, there exists

a need to test the drug on entities which have a much closer representation

to humans and show a closer approximation of the native function [6, 9].

Pluripotent stem cells (PSCs) might hold the promise to shorten the screen-

ing process for drugs by providing an alternate pipeline and for growing new

tissues/organs [4]. Differentiated PSCs will be better at testing the effi-

cacy of drugs for human because of their physiological relevancy and rich

biological utility. PSCs have the capacity to differentiate into a variety of

cells of the three primary germ layers ectoderm, mesoderm, and endoderm

[10, 11, 12, 13]. Thus from a single and potentially limitless starting source,

most of the cells types in the body that could be affected by drugs could

be tested [14]. However, directing their differentiation into the desired cell

type with a high purity still remains a grand challenge [15, 16, 17]. It is

becoming increasing clear that the cellular micro-environment plays a big

role in influencing the fate decisions of these stem cells [18, 19]. Within each

of these niches, cells are presented with a myriad of biological, chemical and

mechanical cues which exert a variety of complex signals to collectively in-

fluence the two hallmark properties of mammalian cells [20, 21]. However,

it is often very difficult to simultaneously mimic the bio-chemical and the

bio-physical cues of the natural niche in an engineered three dimensional

micro-environment. This presents a major bottleneck in reconstructing the

native niche and differentiating stem cells.

This work focuses on systematically breaking down the micro-environment-

al cues of stiffness, geometry, and topography to individually study their

influence on a variety of mammalian cells and thereby controlling their fate.

Finally, all these cues are combined together in the same hydrogel construct

to build a robust platform which can be used for controlling the fate of a

variety of cells including embryonic stem cells in three dimensions. Chapter 2

will focus on the background of micro-environmental cues and its importance

in controlling the fate of mammalian cells. Some of the key relevant literature

to date on the importance of micro-environmental cues will be addressed.

Also, the grounds for using differentiated cells/tissues for drug screening

and tissue engineering applications will be established. Next, Chapter 3

will show how the elasticity (stiffness) of the substrate can be used to alter

both the morphological and cytoskeletal structure of embryonic cardiac cells.

Chapter 4 will use micro-contact printing (µCP) to constraint C2C12 muscle
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cells in specified geometries and study the influence of geometrical cues on

the process of myogenesis. Chapter 5 will introduce a new class of carbon

based organic material, graphene, for tissue engineering applications. This

chapter will also show the influence of graphene on the differentiation of

C2C12 muscle cells. Chapter 6 will then combine the different cues of stiffness

and geometry together in three dimensional (3D) hydrogel constructs. Using

two different technologies of dielectrophoresis (DEP) and stereolithography

(SL), 3D hydrogel constructs with physiologically relevant stiffnesses and

micro-scale geometry will be fabricated. These constructs will also show the

micro-scale patterning of embryonic stem cells (ESCs), C2C12 muscle cells,

mouse embryoid bodies (mEBs) and hence truly mimic the in vivo native

micro-environment. Chapter 7 will present some preliminary data on the

differentiation of ESCs using these micro-environmental cues in 3D hydrogel

constructs. Finally, chapter 8 will conclude this dissertation and present

some ideas for taking this work to the next step.
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CHAPTER 2

BACKGROUND AND LITERATURE
REVIEW

In this chapter, the relevant background information about tissue engineer-

ing and regenerative medicine will be presented in section 2.1. Since, tissue

engineering is such an enormous field; the focus of this chapter will be mostly

on muscle tissue engineering both cardiac and skeletal muscle. In section 2.2

some of the key recent work that has shown the importance of the cellular

micro-environment (stiffness, geometry, topography, roughness, and dimen-

sionality) in controlling the fate of cells in both two dimensional (2D) and

3D scaffolds will be highlighted.

2.1 Background

Currently, in the US alone, there are over 116,537 people waiting for an organ

transplant [1]. However, each day an average of 18 people die waiting for an

organ transplant [1]. These deaths are solely due to the fact there are more

people on the waiting list then there are available organs. Currently, the

transplantation of vital organs like kidney, heart, liver, and lung is the only

treatment for their end-stage failure. People waiting for a kidney transplant

have to wait many years hooked up to a dialysis machine before finally getting

a new organ. In the case of heart, patients spend months or even years on end

in a hospital bed waiting for a new heart. Furthermore, if one is above ∼75

years or so and suffering from some type of cardiovascular disease (CVD),

one might never receive a new heart. Any hearts that are donated might go

to a younger patient. But what if a new heart can be grown from your own

body cells? Then as long as one is fit enough to undergo surgery, he/she

would be able to get a new heart which would be as healthy as one had

when they were young. This technology is termed as organogenesis, de novo

growth of organs.
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Figure 2.1: Tissue engineering triad consisting of cells, biomaterial, and bio-
physical/bio-chemical cues for fabricating a 3D tissue engineering construct
and its various components.

2.1.1 What is tissue engineering?

Tissue engineering was first defined by Drs. Langer and Vacanti as “an

interdisciplinary field that applies the principles of engineering and biol-

ogy towards the development of functional substitutes for damaged tissues

[22].”Technologies like organogenesis, tissue engineering and regenerative me-

dicine have a significant overlap. These are relatively new fields where living

cells, bio-compatible materials, and bio-physical/bio-chemical cues are com-

bined together to create tissue-like structures (Figure 2.1) [23]. Each of these

(cell source, bio-materials, and cues) presents their own set of challenges and

optimization of each parameter is required to fabricate a fully functional 3D

tissue construct. Ideally, one would like to have ESCs or induced pluripotent

stem cells (iPSCs) encapsulated in a 3D biocompatible, bio-degradable ma-

terial which provides these cells with the same set of physical, chemical, and

biological cues as seen in a growing embryo. ESCs are pluripotent stem cells

and therefore able to differentiate into multiple cell types of the three primary

germ layers - ectoderm, mesoderm, and endoderm [3]. Therefore, any tissue
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Figure 2.2: (A)Specialized cells of the human body. (B) Self-renewal and
differentiation potential of ESCs and iPSCs. Image taken from [25].

of the body can be theoretically derived from these pluripotent stem cells.

iPSCs are a type of pluripotent stem cells which are derived from somatic

cells by a forced expression of a set of four genes - Oct3/4, Sox2, Klf4, and

c-Myc [24]. Figure 2.2 shows the specialized cell types in the human body

and schematic representation of self-renewal and differentiation of ESCs and

iPSCs.[25] Bio-materials can be natural (hyaluronic acid, collagen, etc.) or

synthetic (poly (lactic-co-glycolic acid) (PLGA), poly (ethylene glycol) di-

acrylate (PEGDA), etc.) and should be bio-compatible, bio-degradable and

match the physical properties of the tissue that is being fabricated [26]. In

addition, in order for the scaffold to be clinically and commercially viable,

it should be easily fabricated by a manufacturing technology that allows for

its batch production. In terms of the cues, the scaffold should be able to

mimic the micro-environment of the native tissue being fabricated in terms

of stiffness, geometry, and topography. Capturing all these cues to differen-

tiate cells in a 3D bio-compatible, bio-degradable material is therefore a very

challenging task and to date there have been no reports to develop complex

organs like heart, lungs, and kidneys de novo [27].
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2.1.2 Examples of tissue engineered constructs

Significant progress has been made in the field of tissue engineering since the

coining of this term in 1987 [23]. Researchers have tried 3D tissue engineered

constructs for a variety of tissues/organs like - heart [28], lungs [29], cartilage

[30], bone [31], skin [32], etc. An example of a tissue engineered construct for

each of the germ layers, ectoderm (skin), mesoderm (heart), and endoderm

(lung) is presented below.

Tissue engineered skin:

Skin is the largest organ of the body and critical to the survival of the organ-

ism by providing a barrier between the intra and extra cellular environment.

Every year about 450,000 people receive medical treatment for burn injuries

in the US and about 3,500 of these people die due to severe burns [33].

Engineered skin substitutes can provide critical medical treatments to the

burn victims. To date, this is the only organ for which commercially avail-

able products are available [34]. Both autografts and allografts are available,

however, for an autograft it may take upto 3 weeks before it can be im-

planted back on to the patient. Allografts are available off the shelf and have

to the cryopreserved and banked. The type of product to be used depends

on the extent of injury. The basic idea is to incorporate fibroblasts and ker-

atinocytes in a bio-compatible material to mimic the multi-layered nature of

skin. Lee et al., used a 3D bio-printer to systematically pattern multiple lay-

ers of collagen, fibroblasts, and keratinocytes resulting in two distinct layers

of inner fibroblasts and outer keratinocytes in the cell hydrogel composite

[35]. Both the fibroblasts and keratinocytes were highly proliferative in this

collagen based hydrogel. Figure 2.3A shows their schematic of layer-by-layer

printing and figure 2.3B shows a confocal stack of this multi-layered skin

construct. Commercially available skin grafts like Karoskin, Apligraf, OrCel,

PolyActive, and TissueTech can also be used to treat wound injuries [34].

Tissue engineered heart:

CVD are the leading cause of death worldwide and currently around 22 mil-

lion individuals live with a possibility of heart failure [36, 28]. Therefore, a
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Figure 2.3: (A) Layer-by-layer printing of fibroblasts and keratinocytes using
a 3D bio-printer. (B) Confocal stack of the multi-layered skin. Image taken
from [35].

bio-artificial heart can be an alternative to transplantation and will benefit a

very large population. Otto et al., fabricated a bio-artificial heart using na-

ture’s platform [28]. They decellularized a cadaveric heart using sodium do-

decyl sulphate (SDS) for 12 hours using antegrade coronary perfusion shown

in figure 2.4A. This lead to removal of cells, DNA, and intracellular struc-

tural proteins leaving behind only collagen I, III, laminin and fibronectin in

the decellularized heart matrix. As a result, the fiber composition and ori-

entation of the myocardial extra-cellular matrix (ECM) was preserved. This

served as the “nature’s scaffold” on which neonatal cardiac and endothelial

cells were seeded. First, they showed that the perfused 2D culture showed

tissue formation and maturation to a higher degree versus the control. As

early as 4 days in the culture, contracting cellular patches were seen and lead

to synchronized tissue rings by day 9. Next, whole-heart experiments were

done where the decellularized heart was mounted on a bioreactor and seeded

with freshly isolated neonatal cardiac cells shown in figure 2.4B. Sterile cell

culture conditions were maintained to simulate systolic and diastolic medium

flow through pulsatile heart perfusion. In addition to maintaining physiolog-

ical pressures, they also provided electrical stimulation through epicardial

leads to simulate the contraction of heart muscle. They maintained these
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Figure 2.4: (A) The process of decellularization of heart using SDS and the
decellularized heart. Scale bar = 1 mm (B) Recellularized heart after seeding
it with neonatal cardiac cells. Images taken from [28].

constructs under these conditions for upto 28 days. As early as 8 days in

the culture, increase in left ventricular pressure (LVP) was seen and repolar-

izations could be recorded. These bio-artificial hearts were able to generate

forces equivalent to 2% of adult and 25% of a 16-week fetal heart. Even

though very small forces were generated by these bio-artificial hearts, this

study did meet three important milestones of tissue engineering:

� Engineered a construct to provide an architecture for cell attachment.

� Populated that construct with the appropriate cell type and composi-

tion.

� Showed construct maturation with appropriate function.

This study showed the importance of the cellular micro-environemnt in main-

taining cell function. Since, nature’s own ECM was used, the material prop-

erties were highly controlled which enabled the cells to proliferate and per-

form their function of beating as early as 8 days in the bio-reactor culture.

Even though this study did not show de novo organ development, it showed

an engineered 3D heart tissue which was able to perform some of the ba-
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Figure 2.5: Schematic for lung tissue engineering. Image taken from [29].

sic functions and maintained synchronous contractions for upto 28 days in

culture.

Tissue engineered lung:

Lung diseases account for over 400,000 deaths in the US alone [37]. Adult

lung has little to no regenerative capacity and therefore lung transplant is the

only option for patients with end-stage lung failure. However, given the huge

deficiency of transplanted organ, a tissue engineered lung would be extremely

beneficial. Decellularization was used by Petersen et al. for regenerating the

lung tissue [29]. Using a zwitterionic based detergent, they decellularized the

lung tissue to remove all the cellular constituents but retaining the micro-

architecture. After this, they repopulated this ECM with mixed populations

of neonatal rat lung epithelial cells and vascular endothelial cells in correct

anatomic locations by using a perfusion based bioreactor system. The biore-

actor also enabled to enhance the viability and differentiation of the lung

epithelium. Finally, to check the functionality of the engineered lung, it was

implanted back in the rodent and the lung participated in gas exchange for

short periods of time. Figure 2.5 summarizes their approach. This study

again highlights the importance of the cellular micro-environment in con-

trolling the differentiation of cells. Since, nature’s own ECM was used, the

physical, chemical, and biological properties of the ECM matched to the na-
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tive tissue and therefore the lung epithelial cells were able to differentiate

and function efficiently.

2.1.3 Tissue engineering triad for heart

In addition to developing an entire organ (for example: heart, lungs, kidneys,

etc.), 3D tissue engineering can be used to make tissue constructs that can

re-establish the structure and function of the injured organ. This will be ex-

tremely beneficial especially in the case of myocardial infarction where inter-

ruption of blood supply resulting from a blocked coronary artery leads to the

death of heart cells [38]. The whole idea here again would be to provide the

cells - the actual “tissue engineer” highly controlled 3D micro-environment

which would allow cell differentiation and functional assembly. Specifically,

for cardiac regeneration, some of the key requirements would be a cell source,

ideally human, establishment of a cardiac specific ECM, coupling between

the cells to provide an electromechanical feedback loop, and functional vas-

cularization [38]. The choice of cell source is central to any tissue engineered

organ as cells drive regeneration based on the set of cues received by them

from the micro-environment. Since, mature cardiac myocytes have very lim-

ited capacity to divide, it is very important to choose a cell source that can

re-establish the myocardial structure and function at multiple hierarchical

levels [38, 39]. The most obvious choice is the use of ESCs as the cell source

for cardiac regeneration. Various reports have shown the differentiation of

ESCs to cardiac progenitors [40, 41, 42, 43]. With the recent advances of

the iPSC technology, these cells also emerge as a viable source for cardiac

regeneration [44, 45]. An added advantage of iPSCs would be the immune

tolerance, since, they would be derived by an autologous source. Other pre-

ferred cell choices should also have this autologous requirement to prevent

immune rejection. Bone marrow derived adult stem cells, adipose derived

stem cells, adult skeletal myoblasts, and resident cardiac stem cells can all

be used as a cell source for cardiac regeneration [38].

It would only be possible to differentiate the above mentioned cells to car-

diac specific cells by providing them the right environmental cues. Thus the

choice of biomaterial is of utmost importance. Ideally, a biomaterial should

be chosen which can mimic the properties of the cardiac matrix in terms
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Figure 2.6: The basic method for 3D stem cell based culture for 3D cardiac
tissue engineering. Image taken from [38].

of its physical composition, chemical, structural, and mechanical properties

[38]. The biomaterial should allow the cells to proliferate and differentiate

and could be natural, synthetic or a combination of both. It would how-

ever be easier to control the physical, chemical and structural properties of

a synthetic matrix. Either natural or synthetic, it will be important for the

scaffold to capture the entire milieu of the native cardiac ECM and should

be able to degrade the matrix and replace it with its own matrix [38]. The

matrix should have an elasticity close to that of the muscle (8 - 17 kPa) and

should have an ideal geometry as well which would allow the cells to match

the hierarchical structure of the cardiac muscle [38, 46]. Also, the scaffold

should allow for vascularization as the thickness of tissue increases because

the diffusion of factors would be limited to the first 200 µm of the scaffold

[47]. In vitro use of a bioreactor can be useful for enhancing the diffusion of

nutrients through the scaffold/tissue construct. Figure 2.6 summarizes the

basic strategy for a 3D stem cell culture for cardiac tissue engineering.

2.1.4 Strategies for 3D tissue engineering

There are four basic type of scaffolding approaches in tissue engineering [48]:

� Pre-made porous scaffolds
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Figure 2.7: Schematic showing the scaffolding approaches in tissue engineer-
ing. Image taken from [48].

� Decellularization

� Cell sheet stacking

� Cells encapsulated in a hydrogel

Figure 2.7 shows these four basic strategies for tissue engineering. Each

of these strategies have their own set of advantages and disadvantages and

use different bio-material (natural or synthetic) as the starting source. Fur-

thermore, each of these scaffolding techniques have different fabricating or

processing technology. This review will briefly talk about each of these tech-

niques [48].

Pre-made porous scaffolds for cell seeding:

Using pre-made porous scaffolds allows for the most diversified choices of bio-

materials and fabrication technology as the cells are seeded after the scaffolds

are completed. The scaffolds seeded with the cells can be incubated under
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cell culture conditions with specific growth factors and finally can be im-

planted in the host tissue. However, this is very time consuming and leads to

inhomogeneous cell distribution. This fabrication modality could be applied

to both soft as well as load bearing hard tissues.

Decellularized extracellular matrix for cell seeding:

This leads to the most nature-simulating scaffolds as it uses nature’s own

ECM. The scaffold mimics the physical, chemical and biological properties of

the native tissue and therefore allows for very high degree of cell proliferation

and differentiation. However, a source donor is required which makes the

technology not commercially viable because of the huge shortage of donors.

Furthermore, since the raw materials are allogenic or xenogenic, immune

rejection can be a big problem in case of incomplete decellularization. This

scaffolding strategy can be applied for tissues which have a high degree of

ECM like heart, lungs, etc.

3D cell stacking:

Generally, most of the cell culture is done on 2D cell culture plates. However,

a 3D tissue is required for re-establishing the structure and function of an

injured organ. Various techniques have been applied for creation of 3D tissue

constructs. Shimizu et al., proposed stacking of 2D cell sheets on top of each

other to create a 3D sheet [49]. By using thermo-responsive polymers like

Poly(N-isopropylacrylamide) (PNIPAAm), they were able to extract intact

cell sheets without disrupting the cellular gap junctions and other cell surface

proteins. By stacking these individual 2D sheets on top of each other they

were able to obtain 3D sheets. Electrical communication between the sheets

was verified by layering two sheets on top of one another and recording their

spontaneous action potentials. However, multiple laminations are needed for

making a thick construct. Since, no other material is involved, this strategy

is extremely bio-compatible. It can be applied for tissues which have a high

degree of cell density like epithelial and endothelial tissues.
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Cells encapsulated in self-assembled hydrogels:

This strategy allows for the most efficient functioning of cells as there is

intimate cell and bio-material interactions. It allows for the cells to use

their “tissue engineering” abilities to remodel the matrix based on their own

needs. However, being in hydrogel, this scaffolding strategy can only be used

to make soft tissues. Hard load bearing tissues like bone cannot be repaired

using this technique. However, it allows the use of both natural and synthetic

bio-materials. It also allows for multi-cell and multi-material encapsulation

during the fabrication of scaffold. Researchers have used this technology

widely just by itself or in combination with other techniques to allow for

mimicking the native tissue function. For example, Jeong et al., used this

scaffolding strategy to create “living” micro-vascular stamps that allows for

the release of multiple angiogenic growth factors and subsequently creates

neo-vessels with the same pattern as that engraved in the stamp [50]. Another

example was that of combining soft-lithography with hydrogel fabrication to

create highly aligned, differentiated skeletal muscle constructs by Bursac et al

[51, 52]. They combined cell laden fibrin hydrogel with polydimethylsiloxane

(PDMS) molds containing an array of elongated posts. The cell laden fibrin

hydrogel compacted around the PDMS posts resulting into a highly porous

network which composed of densely packed, aligned and highly differentiated

myofibers. The differentiated myofibers expressed myogenin, showed cross-

striations, and spontaneous contractions indicators of a functional 3D tissue.

Figure 2.8A shows the PDMS posts and the fibrin/cell hydrogel being seeded

on the posts. After 2 weeks in culture, fibrin gel contracts around the posts

and thus the hydrogel takes the form of a criss cross mesh. Fluorescent

images in figure 2.8B show the striations and the distribution of nuclei in

the hydrogel. In order to create a fully functional 3D tissue a combination

of these strategies would be needed to meet the needs of the native tissue.

2.1.5 Drug discovery/screening with tissue engineered
construct

In addition to repairing an injured organ, an engineered 3D tissue can also

serve as a novel tool for drug discovery and screening. The development of

new drugs is very costly and time consuming especially during the early stages
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Figure 2.8: (A) Schematic of the PDMS posts with the cell-fibrin cell being
seeded on it. Next image shows a 14 × 14 mm fibrin gel after two weeks,
scale bar = 2mm. The last image in (A) is a phase-contrast image of cells
in fibrin gel around the post, scale bar = 500 µm. (B) Fluorsencet images
showing the distribution and differentiation of skeletal muscle cells in the
fibrin gel. Images taken from [51, 52].

of research and development where in vitro models are required to screen the

activity and toxicity of thousands of compounds [14, 53]. Generally, animal

models or highly proliferative immortalized cancerous cell lines are used for

testing of compound libraries. However, they do not necessarily provide the

effect of the compound on normal human cells or the specific cell type under

normal conditions [14]. Since, ESCs can provide a close approximation of

the native function of cells, previous studies have suggested using them as a

screening platform to identify low molecular weight compounds and for drug

screening [17, 53, 54, 55]. These small molecules thus discovered can then be

used to affect endogenous stem cell populations and repair damaged tissues.

Both primary (high-throughput screening (HTS)) and secondary screening

can be performed using these stem cells [53]. A recent HTS of a library of 2.4

million compounds using an mESCs indentified novel chemical “hits” for α-

amino-3-hydroxyl-5-methyl-4-isoxazolepropionate-subtype glutamate recep-

tors and characterized the structure-function relationships of compounds

and receptors [56]. Another study screened 1040 compounds using a hu-

man ESC (hESC) colony based assay [57]. This study was an image-based,
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high-content assay to screen compounds that affect the survival and pluripo-

tency of hESCs. Several steroids that promoted the differentiation of the

hESCs were identified and the anti-hypertensive drug, pinacidil, was shown

to affect the survival of hESCs. Before a drug enters mechanistic study, the

compounds assayed by primary screens can be further confirmed by a series

of more functional secondary assays like the structure-activity relationship

and the pharmacokinetic properties on the stem cells [58, 59]. In addition to

screening these small molecules as only drugs for the treatment of degenera-

tive diseases, they can also be used to lower the oncogenic potential of iPSCs

and increase their programming efficiency [53]. These iPSCs could then be

used as an additional cell line that can be used in conjunction with ESCs as

they contain the genetic information of the patients and reflect their physio-

logical and pathological conditions. The iPSCs could also be generated from

patients with specific disease traits, thereby allowing for more relevant drug

screens and the idea of personalized medicine could be possible [14]. The

small molecules identified can also affect the fate of the hESCs themselves

as shown by Barbaric et al [57]. hESCs could also been used for toxicology

analysis [60, 61]. The ReProGlo assay allowed for screening of several test

chemicals and embryo toxicants like retinoic acid (RA) and lithium chloride

that induced the inhibition of ESC differentiation [53].

2.2 Literature review

In the last section, the field of tissue engineering was briefly discussed. Also,

some of the strategies that are currently used to make 3D scaffolds were

highlighted. This section will present a review of some micro-environmental

cues that control the fate of the cells for fabricating these 3D tissues. As

cells are the actual “tissue engineers” they need to be presented with cues

that mimics the native in vivo cues. These cues can be thought of as the

raw materials and conditions required by the cells to build a 3D tissue archi-

tecture. First, the process of mechanotransduction will be briefly explained

as this is responsible for translating the physical cues of the environment

to a biological signal inside the cell. Next, the importance of five different

cues stiffness, geometry, topography, roughness, and dimensionality will be

highlighted. This is not an exhaustive list of the cues experienced by the
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cells. Many other cues like electrical signals, growth factors (soluble and

attached), cellular density, etc. also play an important role in determining

the final state of the cell. However, this review will only focus on these five

cues as these have been widely used in the literature for controlling the fate

of cells.

2.2.1 Mechanotransduction

Cells sense their physical surroundings through the process of mechanotrans-

duction and respond by changes in adjusting their gene expression, differ-

entiation, proliferation, apoptosis, migration, and extra-cellular organization

[62]. Mechanotransduction is the translation of mechanical forces to bio-

chemical signals by activation of a variety of different signaling pathways and

changes in intracellular calcium concentration [62]. Thus this mechanosen-

sitive feedback is of critical importance for organogenesis and homeostasis.

It is ubiquitously found in nature and is present from the most primitive

to the most complex organisms. For example, skeletal muscles respond to

exercise by hypertrophy, vascular smooth muscle cells maintain a constant

blood pressure by constricting or dilating the blood vessels, the displacement

of the stereocilia in the inner ear allows hearing, etc. [62]. In all these and

many other day-to-day activities, the cells in the body are responding to a

variety of physical forces by the process of mechanotransduction. Most of the

cells in the body have stretch-activated ion-channels that respond directly to

these forces or this force sensing can also be done by the family of GTPases.

Figure 2.9 shows the molecules involved in cell in the translation of forces

from the ECM to the nucleus [62]. Focal adhesions (FAs) which are made

of transmembrane integrin receptors along with vinculin, talin connect the

ECM to the actin filaments. Depending on the affinity of the integrin recep-

tors to the scaffold/ECM complex, its configuration changes. This change

is cascaded to the nucleus through actin filaments, intermediate filaments,

and microtubules via nesprin and plectin. These nesprins then bind to SUN1,

SUN2 and nuclear lamins. Finally, nuclear lamins can bind to DNA and thus

the signal from the ECM gets propagated all the way to the nucleus [62]. FA

formation is the beginning of this elaborate mechanosensitive feedback cycle

and dictates the functional response of a cell to mechanical aspects of the
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Figure 2.9: Force transmission between the ECM and the nucleus. Image
taken from [62].

scaffold.

In cardiac cells and skeletal muscle cells, mechanotransduction plays a

huge role in determining the fate of the cell as these cells are constantly

responding to mechanical forces of stretching/contracting and fluid shear.

Specifically, in cardiac cells, the stretch activated ion-channels located in the

phospholipid bilayer act as efficient mechanosensors even in the absence of lig-

ands. These sensors activate multiple cellular pathways like the Ras/Rho and

mitogen-activated protein kinase (MAPK) that leads to calcium/calcineurin

mediated signaling and micro RNAs [62, 63]. This leads to the expression of

genes which are involved in the hypertrophy of muscles and causes increase

in the length and width of myocytes. Thus this mechanosensitive feedback

loop allows the heart to remodel its surrounding ECM which is also referred

as cardiac re-modeling [62]. Figure 2.10 shows the process of mechanotrans-

duction and the complex signaling cascade involved [62].

Figure 2.11 shows the process of stretching, migration and proliferation of

a cell and the key intracellular proteins involved [64]. This process of cell

stretch/migration is the first response of the cell after it is seeded on the
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Figure 2.10: Mechanotransduction and signaling cascade in a cardiac cell.
Image taken from [62]

surface and is heavily governed by mechanotransduction. First, the cell set-

tles on the surface of the scaffold and starts sensing its surroundings by the

filopodia. If the cues from the surroundings are positive, vinculin is recruited

to form focal complexes at the leading edge of the cell. Until this point, there

are low-affinity interactions of vinculin with talin which keeps vinculin at the

leading edge of the cell for its association with actin. Only by linking with

actin, vinculin gets activated and turns from a low-affinity interaction to a

high-affinity association [64]. This leads to a conformational change of inte-

grins in the FAs and leads to the formation of larger FAs and activation of the

focal adhesion kinase (FAK). This also leads to the activation of the Ras/Rho

family of GTPases like cdc42. From here onwards, many other downstream

signaling pathways like MAPK, Janus-activated kinase (JAK), and the signal

transducer and activator of transcription (STAT) gets activated. These lead

to the activation of mechanosensitive genes in the nucleus which causes the

cell to either spread or retract back [64]. The force generation in the cell

happens by the movement of the myosin motor on the actin filaments which

allows the stabilization of the FAs and results into cell stretching. Therefore,
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Figure 2.11: Schematic showing the model of a cell stretching on a substrate.
Image taken from [64].

on very soft substrates, very little to no cell spreading happens as there is

not enough force produced by the myosin motors to stabilize the FAs leading

to their disassembly. However, on rigid substrates, myosin motors are easily

able to walk on the actin filaments by the stiff nature of the substrate allow-

ing for larger and stable FAs causing the cell to spread. A very simple way

to look at this phenomenon is by looking at the force balance established

by a cell on the different substrates. On stiff substrates, the cells are able

to support a force balance by pulling on the substrate and the substrate re-

sisting. The soft substrate however, does not resist this pull leading to the

disassembly of the FAs and thus leaving the vinculin in a low-binding affin-

ity with talin. This does not allow the activation of any of the downstream

signaling pathways of the cell which are responsible for migration and pro-

liferation but instead it might activate the apoptotic pathway causing cell

death. Thus presence of isometeric tension (prestress) at a number of dif-

ferent levels allows this entire process of mechanotransduction which in turn

dictates the fate of the cell on a given scaffold or substrate [65]. The next

few sections will show how altering the properties of the scaffold changes this

process of mechanotransduction and thus cellular functions like migration,

proliferation, differentiation, apoptosis, and cytoskeletal organization.
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2.2.2 Stiffness

In order to understand the function of the cells like movement, migration,

and cytokinesis it is important to investigate the mechanical properties of the

cell [66, 67]. Mechanically, a cell acts both as a force and a stiffness sensor.

An example of a force sensor is a hair cell which translates the mechanical

pressure on the stereocilia to an electrical impulse which is picked up by the

nerves in the brain. This is a passive response as no work is done and the

cell merely responds to a force [67]. On the other hand, as a stress sensor

(durosensor) the cell is constantly applying a stress (force per unit area)

and measuring the strain (deformation). The cell then computes this stress

strain ratio in order to evaluate the elasticity (stiffness) of the substrate [67].

The application of the stress on the surface is done by the molecular motors

of the cell, actin and myosin. There is a constant feedback cycle and the

up/down regulation of mechanosensory genes depends on the output of this

stress-strain assay. Most of the cells, but not all respond to the stiffness of

the substrate by modulating their initial stress and strain input. Generally,

cells prefer the stiffness of their native tissue from which they were extracted

or are being differentiated. That is neurons grow and spread better on soft

matrices, myotubes prefer intermediate stiffness substrate while bone cells

show best characteristics on rigid substrates [68, 69].

Although the exact mechanism of how the cell senses the stiffness of the

substrate is unknown, research has shown that the molecular motors of the

cell generate tension at the cell-substrate interface which is sensed by the

cells durosensor [67]. This induces a change in some transmembrane proteins

(possibly integrins) which then activates a cascade of signaling pathways [67].

Some of the proteins mentioned in sub-section 2.2.1 are then responsible for

transmitting these signals to the nucleus which up/down regulates a series

of genes that allow the cell to spread, migrate, differentiate, etc. on that

substrate. Myosin is the leading candidate for the stress-strain generator in

the cell and this tension generated by myosin gets passed on through actin

filaments to flexible protiens like talin, vinculin, and other clutch proteins

[70]. This causes a conformational change to the transmembrane proteins

like integrins which link the cell to the ECM [67]. Figure 2.12A shows the

cellular components involved in sensing the stiffness of the substrate and

Figure 2.12B, C shows the schematic of a cell on a soft and rigid substrate
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Figure 2.12: (A) Cellular components involved in stiffness sensing of the
substrate. Schematic of a cell on a (B) Soft substrate. (C) Stiff substrate.
Images taken from [67, 71].

respectively. When a cell pulls on the substrate with a force P, it displaces

the substrate by a distance x. This force is equal and opposite of the force

F = −kx. On a soft gel, the cell is easily able to pull the surface because of

smaller k as shown in figure 2.12B. However, for a stiff substrate shown in

figure 2.12C, which has a larger k, a larger force is required to displace the

matrix which leads to cell spreading and higher/bigger FAs to support this

larger force [67, 71].

One of the earliest reported studies on understanding the cells’ response to

soft substrates was done by Harris et al., by seeding fibroblasts on thin sili-

cone rubber, collagen matrix and looking at the wrinkling of the underlying

substratum by the cells tractional forces [72, 73]. These studies were the first

to show that as the cells spread on the surface, they slowly pull on it and

thousands of cells moving on the soft substrata produced a striking degree of

distortion and wrinkling of these soft substrates. Later, work done by Drs.

Pelham and Wang showed that mammalian cells are highly responsive to the

stiffness of the underlying substrate [74, 75]. They used a synthetic hydrogel

which has polyacrylamide (PA) as the base polymer with bis-acrylamide as
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the cross-linker to obtain substrates with a wide range of elasticity from few

Pascals to tens of kilo Pascals thereby mimicking the range of physiologi-

cal stiffnesses. Using this synthetic hydrogel, they showed that fibroblasts

modulate their cytoskeletal organization depending on the stiffness of the

substrate. Fibroblasts show increased motility and lower spreading on flex-

ible substrates than compared with cells on rigid substrates. Furthermore,

cells on the soft flexible substrates showed irregularly shaped FAs which were

very dynamic while those on the stiff substrates had a normal morphology

and higher stability. These studies for the first time demonstrated that cells

survey their surroundings. The need to understand the intracellular changes

as the cells explore their environment and the associated signaling pathways,

developed the field of mechanobiology.

Many studies have been published since then which investigated the effect

of substrate stiffness on a variety of different cell types like neurons [76], skin

[77], muscle [78], mesenchymal stem cells (MSCs) [68], ESCs [79], fibroblasts

and endothelial cells [80], cardiac cells [81, 46, 82], etc. by using this synthetic

PA hydrogel. Some of these studies are discussed below. Engler et al., showed

that the fusion of myocytes into myotubes is independent of the stiffness of

the underlying substrate. However, the actomyosin striations, hallmark of a

skeletal muscle only emerges on substrates with stiffness typical of a normal

muscle (E ∼ 12 kPa) shown in figure 2.13A [78]. In addition, they showed

that when myotubes are grown on top of a layer of glass-attached myotubes,

the top layer of myotubes show striations (figure 2.13B). However, when the

same myotubes are grown on the softer fibroblasts no striations are visible

(figure 2.13C). This study clearly showed the importance of substrate stiffness

in determining the fate of cells, in this case, the differentiation of myoblasts

to myotubes. As actomyosin striations are the functional units of the muscle

cells, the stiffness of the underlying substrate can determine the functionality

of the cells.

Yeung et al., investigated the morphology and cytoskeletal organization of

fibroblasts, endothelial cells, and neutrophils by culturing them on PA gel

substrates with stiffness ranging from very soft (2 Pa) to stiff (55 kPa) [80].

On the soft substrates, (< 3 kPa) fibroblasts show no stress fibers (actin

filaments) and do not show much spreading. As the stiffness of the substrate

increases past 3 kPa, there is an abrupt increase in the cell area. This could

possibly be because the stiffness of a fibroblast is in the range of 2-5 kPa
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Figure 2.13: Effect of substrate stiffness on the myoblasts. (A) Myotube stri-
ation is dependent on the stiffness of the underlying substrate. (B) Myotube
underlayers provide optimal stiffness for myotube striation. (C) Fibroblast
underlayers are too soft for myotube striation. Images taken from [78].

[78]. However, when these fibroblasts are allowed to make cell-cell contacts,

even on the soft substrate, these cells show good spreading indicating that

cell-cell contact overrides cell-substrate contact.

A very interesting study done by Lo et al.,showed that cell movement is

guided by the rigidity of the underlying substrate [83]. By plating NIH/3T3

fibroblasts on PA gel substrates which had a transition in the rigidity, they

showed that cells from the soft side could easily migrate to the stiff side

of the gel while simultaneously increasing their area on the stiff side. This

directed movement of cells from the soft to the stiff side was termed as

“durotaxis” or “mechanotaxis”. However, the reverse of this phenomenon

was not true. Cells which were present on the stiff side of the gel turned
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around or retracted as they reached the boundary and never crossed the

boundary to go to the soft side of the gel. As cell migration or movement plays

a critical role in many physiological processes like wound healing, immune

response, and tissue morphogenesis this study highlighted the importance of

substrate rigidity in controlling cell locomotion.

Seminal work done by Discher et al., showed that MSCs showed extreme

sensitivity to the stiffness of the underlying substrate [68]. When cultured

on soft matrices (0.1-1 kPa) which mimicked the stiffness of the brain tissue

(∼Ebrain = 0.1-1 kPa), majority of the MSCs adhered, spread and showed

filopodia rich morphology similar to that of a neuron. When the same cells

were cultured on intermediate stiffness substrates (8-17 kPa) which mimics

the stiffness of striated muscle (∼Emuscle = 8-17 kPa), MSCs showed a spindle

shaped morphology similar to C2C12 skeletal myoblasts. Finally, by seeded

these cells on rigid substrates (25-40 kPa) which is in the range of bone

tissue (∼Ebone = 25-40 kPa), the MSCs yielded in polygonal morphology

similar to osteoblasts. Figure 2.14 shows the morphology of MSCs on the

different stiffness PA substrates. Micro-array profiling of these MSCs on

the different substrates confirmed that cells on the soft substrates showed

highest neurogenic markers, on the intermediate stiffness substrate showed

highest myogenic markers while on the most rigid substrates showed highest

concentrations of ostogenic markers. This matrix stiffness based cell lineage

specification is based on the ability of the cells to pull on the substrates. By

blocking the cellular mechanosensors (non-muscle myosin II) by blebbistatin,

they showed that the stiffness based linage specification of the cell was lost.

Similar studies done on ESCs also showed that stiffer substrates increased

the osteogenic differentiation of ESCs compared to the softer ones [79].

Cardiac cells also show a strong dependence for the stiffness of the substrate

on which they are cultured. Cardiac myocytes cultured on soft substrates

showed lowest excitation threshold but increased troponin I staining. How-

ever, the force of contraction, cell elongation and cell density was reduced.

Those cultured on stiffness which matched the stiffness of the native my-

ocardium showed reasonable excitation threshold, high contractile force and

well-developed striations [82].

The above mentioned studies have used PA hydrogels to modulate the

stiffness of the substrate. Other hydrogel based systems both synthetic and

natural like thiolated hyaluronic acid (HA) [84], collagen I [85], PDMS [86],
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Figure 2.14: Stiffness of the substrate determines the fate of naive MSCs.
Image taken from [68].

poly (ethylene glycol) diacrylate (PEGDA) [87], gelatin [88], and Poly(methyl

methacrylate) (PMMA) [89] have also been used to obtain substrates with

varying elasticity in both 2D and 3D cultures. The basic principle of tun-

ing the elasticity of the substrate relies on changing the cross-linking density

of the polymer by increasing or decreasing its concentration [90]. However,

altering the cross-linking density not only alters substrate rigidity but also

changes other material properties like porosity, surface chemistry, binding

properties of ligands, etc [91, 92]. Recently, it was shown by Kumar et al.,

that the fate of the cell is more affected by the physical properties of the

substrate than its composition [93]. In order to circumvent the problem of

changing the physical properties of the substrate while changing stiffness,

Fu et al., designed a clever experiment where the polymer concentration

(PDMS) was kept constant to create micro-posts of varied heights to tune
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Figure 2.15: Micro-molded elastomeric posts to engineer substrate stiffness.
(A) Scanning electron micrographs of hMSCs plated on elastomeric pillars
of different heights. (B) Bright-filed images showing hMSCs stained for al-
kaline phosphatase (blue) and lipid droplets (red). Quantification of (C)
Osteogenesis and (D) Adipogenesis. Images taken from [86].

the elasticity of the substrate [86]. Based on classical cantilever mechanics,

they showed that a longer post would be more flexible and hence mimic a

soft substrate shown in figure 2.15A. A shorter post would be more rigid and

hence similar to a stiff substrate. They showed that human MSCs showed

osteogenic differentiation when cultured on the rigid posts while adipogenic

differentiation was seen on the flexible posts (figures 2.15B, C and D). The

presence of micro-posts allowed the researchers to attribute the displacement

of the micro-posts directly to the FAs thus allowing tractional force mapping

of cells simultaneously with their differentiation. A strong correlation was

observed between the traction forces and the lineage specification of hMSCs.
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hMSCs that underwent osteogenic differentiation showed much higher trac-

tion forces than the control while the ones that became adipocytes showed

lower forces than the control. Thus by using the micro-posts and reading

the tractional profile of cells on the different substrates, the researchers were

able to attribute the differentiation potential of cells to the tractional forces.

To confirm their findings, they treated the cells with Y-27632 which is a

reversible Rho-kinase inhibitor (ROCK signaling pathway) for upto 1 day.

These treatments decreased the osteogenic potential of hMSCs proving the

role of tractional forces and hence substrate elasticity in determining the fate

of hMSCs.

All these studies clearly show the importance of stiffness in determining the

mechanical properties of the cell and provide an opportunity to control and

manipulate the fate of mammalian cells. As elasticity of the substrate plays

such a pivotal role in cell locomotion, wound healing, immune response, and

differentiation, this micro-environmental cue needs to be carefully studied

and optimized with different cell lines in order to realize the idea of a fully

functional 3D tissue construct.

2.2.3 Geometry

Cells are highly complex machines with defined shapes and geometry. This

geometry and structure of the cell is critical for its functioning and gives rise

to tissue morphogenesis [94]. Geometry is of critical importance in develop-

mental biology and embryogenesis as irrespective of the organism’s size, the

size of the different parts of the body remains constant [95, 96]. In addition,

geometry also creates gradients and polarity of soluble factors which in turn

defines tissue functions like migration, cell fate determination, junction for-

mation, organ development, and regulates the homeostasis of cells [95, 97].

Furthermore, geometry also plays a big role in the scaling laws for the cell

and the position of internal structures like mitochondria, nucleus, ribosomes,

etc [94]. Mitotic spindle which determines cell division, is directly related

to the geometry of the cell [94]. Therefore, by altering the geometry of the

cell, the spindle size would be rescaled proportionately thereby altering the

division of the cell into two daughter cells [94].

The shape, morphology, and geometry of the cell arises from its physical
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surroundings by establishing a mechanical equilibrium at the adhesion sites

[98]. Therefore, controlling the physical surroundings by tuning the adhesion

sites for the cells can be used to control the fate of the cell. The physical

mechanism for this goes back to the same idea as described in sub-section

2.2.1 where by altering the cellular geometry (constricting it in defined spaces

or modulating its adhesion sites), the characteristics of FAs (number, area,

maturity, etc.) and spreading area of the cells change thus changing the

intracellular signaling pathways and altering cell fate. This phenomenon is

supported by the findings that endothelial cells were able to survive and

spread on large beads (> 100 µm) but die within 10 hours when cultured on

smaller beads (4.5 µm) [99, 100]. Since, the early 1990s, efforts have been

on the way to control the geometry of the cells by engineering the substrate.

One of the earliest and most successful attempts to date was made by the

Whitesides group at Harvard where Dr. Whitesides and his colleagues intro-

duced a new technology termed as “soft lithography” which could be used to

pattern self-assembled monolayers (SAMs) of alkanethiol on gold substrates

[101, 102]. This technology shares its roots with the micro-fabrication tech-

nology which is used for manufacturing of semi-conductor devices. Using the

same set of principles, a master is created with a photoresist on silicon wafer.

This master can then be used to make a PDMS negative of the master which

can be used for coating thin SAMs (ECM protiens) on a variety of substrates.

This process is termed as micro-contact printing (µCP). Similar processes like

replica molding and hot-embossing can also be used to fabricate substrates

with specified geometries.

One of the earliest reports of controlling the geometry of cells by µCP

was reported by Chen et al [103]. In their seminal work, they showed that

the life and death of human and bovine capillary endothelial cells (ECs) can

be controlled by modulating their spreading area. ECs cultured on smaller

fibronectin squares (5 µm - 10 µm) showed a high rate of apoptosis. How-

ever, apoptosis progressively decreased when the fibronectin island size was

increased from 75 to 3000 µm2. At the same time, the rate of DNA synthesis

increased as the cells were able to spread on a larger area. Figure 2.16A

shows the cells on the different fibronectin islands and figure 2.16B shows

the rate of apoptosis and DNA synthesis on the different size islands [103].

Another study by McBeath et al., showed that the shape of the cell can be

used to control the fate decisions of hMSCs to adipocytes or osteoblasts [104].
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Figure 2.16: Geometric control of cell life and death. (A) Fibronectin islands
of different sizes. (B) Apoptotic and DNA synthesis index. Images taken
from [103].

hMSCs that were cultured on large fibronectin islands (10000 µm2) showed

osteogenic differentiation while those cultured on smaller islands (1024 µm2)

showed adipogenic differentiation. Figure 2.17A shows hMSCs on different

size fibronectin islands after 1 week. It can be seen that the cells in 50:50

induction media showed a strong preference to different lineages depending

on the island size. Figure 2.17B shows the quantification of differentiation

index for the cells on the different islands while figure 2.17C verifies that

micro-patterning did not affect the viability of hMSCs. To confirm the role

of cytoskeletal tension in lineage specification of hMSCs, the researchers cul-

Figure 2.17: (A) hMSCs after 1 week on different size fibronectin islands.
(B) Quantification of differentiation for the hMSCs on the different islands.
Images taken from [104].
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tured the cells in cytochalasin D (disrupts actin filaments) and observed that

disrupting actin lead to an increase in adipogenesis while decreasing osteo-

genesis. Since, cytochalasin D inhibits actin polymerization, treatment of

cells with it made the cells rounded. Therefore, the cultures were treated

with Y-27632 (Rho kinase inhibitor) which inhibits myosin-generated cy-

toskeletal tension. As a result of this, the cells still remained spread but it

decreased the cytoskeletal tension by inhibiting non-muscle myosin II. The

cells again showed higher differentiation to adipogenic lineage which was ver-

ified by the formation of lipid droplets in the Y-27632 treated samples. At

the same time, their osteogenic differentiation capability was reduced. This

suggests that lineage specification of hMSCs was the result of intracellular

actomyosin based cytoskeletal tension. When the cells are seeded on larger

fibronectin islands, they are able to spread and produce critical tension that

turns on/up-regulates the osteogenic genes and thereby differentiating the

cells to osteogenic lineage. On smaller islands, not enough cytoskeletal ten-

sion is produced and the cells become adipocytes. This study clearly demon-

strates the role of geometry in determining the fate decisions of hMSCs.

A study done by Gallant et al., showed that the adhesion strength, integrin

binding, vinculin and talin recruitment was a function of the cellular adhesive

area [105]. Adhesion strength exponentially increased with the bound inte-

grins and vinculin contributed 30% of the adhesion strength. However, above

a threshold area, both the adhesion strength and FA assembly reached satu-

ration. This shows that as long as that critical area is met to generate enough

cytoskeletal tension, the cells will be able to up-regulate the mechanosensory

genes and control their migration, contractility, and gene expression.

Nelson et al., showed that even in the same micro-patterned structure

but in different regions, the cells will experience different levels of tractional

stresses and this will correlate to their growth [106]. Regions with high trac-

tional stresses showed higher cellular growth. Based on the same set of idea,

Ruiz et al., and Kilian et al., showed that regions of the structure which

had high tractional stresses (edges) showed osteogenic differentiation of hM-

SCs while the center of the same structure showed adipogenic differentiation

[107, 108]. Kilian et al., patterned two different structures flower shaped and

star shaped fibronectin islands on glass. They showed that the flower shaped

structure showed smaller cytoskeletal tension (evidenced by smaller myosin

II staining) and therefore hMSCs on these structures became adipocytes.
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Stress fibers dominate at the acute corners between the petals. However, on

the star shaped structure, high level of myosin II staining was seen which

corresponded to higher cytoskeletal tension. On average, hMSCs on this

structure showed osteogenic differentiation. Figures 2.18A, B, C, D show the

immunofluorescent heat maps of actin (A, B) and vinculin (C, D) on the

flower and star shaped structure which clearly show higher concentrations of

vinculin at the edges of the star compared to the flower. Figure 2.18E shows

the quantification of differentiation on the different shapes [108]. It can be

seen that the higher cytoskeletal tension makes the hMSCs on the star to dif-

ferentiate to osteoblasts while the hMSCs on the flower become adipocytes.

Ruiz et al., showed that on different geometries, hMSCs at the edges differ-

entiate to osteogenic lineage (presence of blue colored alkaline phosphatase)

while those at the center differentiate to adipogenic lineage (presence of red

colored lipid droplets) as shown in figure 2.18F, G, H, I [107]. They also

divided the circular region shown in figure 2.18J into a number of differ-

ent concentric regions and showed that the hMSCs at the center become

adipocytes (zone 1) while those at the edges of the circle become osteoblasts

(zone 4) as seen in figure 2.18K [107]. Both the researchers used cytoskeletal

disrupting agents like Y-27632, cytochalasin D, nocodazole, and blebbistatin

to confirm the role of non-muscle myosin in this differentiation process.

Lee et al., used µCP to control the colony size of human ESCs (hESCs)

[16]. They showed that in the presence of bone morphogenic protein 2 (BMP-

2) and activin A, hESCs in large colonies (1200 µm diameter circle) gave rise

to mesoderm while smaller colonies (200 µm diameter circle) differentiated

to endoderm showed in figure 2.19A. The relative expression of T-Bry and

KDR (mesoderm specific genes) were up-regulated in larger diameter circles

while smaller circular islands showed higher expression levels of Sox17, GSC,

and Cer1 (endoderm specific genes) shown in figure 2.19B. A similar study

done by Hwang et al., showed that larger embryoid bodies (EBs) promoted

cardiogenesis (450 µm in diameter) while smaller EBs (150 µm in diame-

ter) showed endothelial differentiation of mESCs (figure 2.19C) [109]. Figure

2.19D shows the number of beating colonies per square centimeter and it can

be seen that as the colony size increases, the number of beating colonies also

increases. Furthermore, higher expression levels of early markers of cardiac

differentiation were seen in larger colonies than smaller ones. On the other

hand, smaller colonies showed higher expression levels of endothelial differ-
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Figure 2.18: Geometric control of hMSC differentiation. Immunofluorescent
heat maps of hMSCs on flower and star shaped islands (A, B) actin and
(C, D) vinculin. (E) Quantification of differentiation on the flower and star
shaped fibronectin islands. Geometrical shapes like (F) square (G) rectangle
(H) ellipse (I) half-ellipse (J) circle showing hMSCs in the center region
differentiating to adipocytes while those at the edges becoming osteoblasts.
(K) Quantification of differentiation for (J). Images taken from [107, 108].

entiation (figure 2.19E). They confirmed that differential expression levels

of WNT signaling, specifically WNT5a and WNT11, causes this size based

differentiation of mESCs.

In addition to controlling fate of mammalian cells by using geometrical

cues, it can also be used to modulate cell motility, migration, and alignment,

all of which could be used to enhance the functionality of a 3D engineered

tissue construct [110, 111, 112, 113]. Kushiro et al., patterned different types

of patterns, (tear-drop, square, and yin-yang) to understand the directional

bias of MCF-10A epithelial cells. Figure 2.20 shows the directional bias

of epithelial cells. It can be seen that most of the cells migrate from the

blunt end to the tip as seen for both the teardrop(figure 2.20A) and the yin-

yang (figure 2.20G). They confirmed that these directional biases were the

result of Rac1, a small GTPase which is involved in lamellipodial extensions.

Suppression of Rac1 significantly reduced this directional bias in the cells.

Mahmud et al., used asymmetric “ratchet’ micro-geometries to create cell

polarizations and thereby control the motility of cells. In addition, different
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Figure 2.19: Size based differentiation of ESCs. (A) hESCs seeded on differ-
ent size Matrigel islands. (B) Smaller islands showed higher expression levels
for endoderm while larger islands promoted mesodermic differentiation of
hESCs. (C) mEBs formed in different size hydrogel wells. (D) Larger EBs
show higher number of beating colonies. (E) mRNA expression levels show-
ing smaller colonies promotes endothelial differentiation of mEBs. Images
taken from [16, 109].

types of cells showed different migration patterns. Cimetta et al., used µCP

to create arrays of cardiac and skeletal muscle fibers on PA hydrogels (figure

2.20I) [112]. Flaibani et al., used µCP to enhance the differentiation of muscle

precursor cells (figure 2.20J) [113].

Recently, Bidan et al., used geometry as a factor to optimize tissue growth

[98]. They cultured MC3T3-E1 pre-osteoblasts in thick hydroxyapatite plates

containing pores with square or cross-shaped sections. First, they simulated

the growth rate in the different shapes and their simulations predicted that

higher initial growth rates would be seen in pores which were non-convex

(cross, star) compared to convex (square) pore sections (figure 2.21A, B).

Next, experimentally they showed that overall tissue deposition was indeed

twice as fast in the large cross-shaped pores than in large square-shaped

35



Figure 2.20: (A-H)Directional basis of epithelial cells on different patterns.
(I) Array of cardiomyocytes on PA gel stained for troponin I. (J) Troponin
expression in muscle precursor cell showing a high degree of alignment. Im-
ages taken from [110, 112, 113].

pores (figure 2.21C, D) [98]. Thus optimizing the shape of the pore may

improve the in growth of bone tissue which would be useful for orthopedic

tissue engineering.

Geometrical cues can alter the fate of mammalian cells, influence migra-

tion of cells and control their functionality by changing their attachment

dynamics and cytoskeletal tension. Thus optimizing the geometry of the

scaffold to optimize cellular growth and functionality is extremely important

for fabricating a 3D engineered tissue.

2.2.4 Topography and roughness

The impact of surface topography and roughness is a very important phys-

ical cue as they influence cell migration, adhesion, alignment, proliferation,

differentiation, adhesion and cytoskeletal organization [114]. Specifically,

nanoscale/microscale topography can strongly influence cellular behavior as

cells in the native tissue are constantly in contact with the nano/micro scale
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Figure 2.21: (A) The computational simulation of different shapes used for
tissue growth. (B) Predicted rate of tissue growth in the different shapes.
Rate of tissue growth on the different shapes (C) Large pores (D) Medium
pores. Images taken from [98].

features of the ECM. For example, collagen molecules are about 300 nm

long and 1.5 nm wide [115]. These collagen molecules can then form fibrils

which can be micrometers in length [116]. Cells use these collagen fibrils

as ropes and migrate on it through a phenomenon called contact guidance.

Contact guidance plays a very important role in cellular migration, wound

healing, and immune response [117, 118, 119]. Roughness at the nanoscale

is important as it increases the area of contact between the cells and the

surface [120]. Cells sensing of surface roughness is called haptotaxis, this

phenomenon is known to trigger cytoskeletal re-organization and promote

adhesion [120, 121, 122, 123].

A variety of different methods have been used to modulate the surface to-

pography for instance using grooves/ridges [124], by grinding the substrate

with absrasives [125], by using UV-lithography to micro-pattern glass [126],

two-photon polymerization [127], capillary force lithography [128], etc. Suit-

able substrate for this includes a wide range of engineering materials like poly-

mers (PDMS, PMMA, PEGDA), silicon oxide, and metals [125, 126, 129].

Generally, metals like platinum, stainless steel, titanium, etc. are used for
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Figure 2.22: Different types of nanotopographies used to modulate cell func-
tion. Image taken from [130].

engineering implants for bones and other hard tissues while polymers are

used for the tissue engineering of soft tissues.

Figure 2.22 shows three representative nanotopography geometries like

nano-grooves/ridges, nanopost arrays, nanopit arrays which are commonly

used for modulating the functions of the cell like migration, differentiation,

alignment, etc [130]. Anisotropic topographies as the name suggests depend

on the direction and provide cues along a single axis. Isotropic topographies

on the other hand provide cues uniformly in all the axes. Gradient topogra-

phies provides cues through gradual changes in physical features [130].

Teixeir et al., fabricated nono/micro scale structures on silicon oxide to

study the attachment, spreading, and migratory characteristics of human

corneal epithelial cells [131]. They found that the cells followed the contact

cues of the substrate, thereby aligning and elongating along the patterns

and grooves of the substrates with feature dimensions as small as 70 nm.
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However, cells on the smooth surface mostly remain round and did not show

any elongation or spreading (figures 2.23A, B). In addition, FAs which are

the sensory organs of the cells were dependent on the ridges of the underly-

ing substrate. On the 70 nm ridge substrates (figures 2.23C), the FAs were

much smaller and narrower compared to the FAs formed on the larger ridge

widths (figures 2.23D). However, on all patterned substrates, stress fibers

and FAs were aligned along the features of the substrate. Cells cultured on

smooth silicon oxide surface formed FAs with no preferred orientation (fig-

ures 2.23E). The distribution of filopodia and lamellipodia was affected by

the topography of the substrate. Figure 2.23F shows the filopodia aligning

along the grooves of the 400 nm pitch substrate. As the pitch size increased

(4000 nm pitch), even the lamellipodia were able to enter the groove of the

substrate and adhere to the floor (figures 2.23G, H). As cell alignment creates

polarization, these nanotopographies can be extremely useful for optimizing

the behavior and functions of epithelial cells like detection of sensation, se-

cretion, transport, etc. Another reason other than contact guidance for the

elongation of cells could be because of the roughness of the substrate. It has

previously been shown that bare silicon oxide substrate is very smooth with

an average root mean square roughness of only 0.4 nm [132]. The presence of

these ridges significantly increases the surface area available for attachment

and thus helps in spreading of cells.

Number of studies have been done to modulate the alignment and differ-

entiation of C2C12 skeletal myoblasts by using nano/micro topography and

roughness [124, 125, 126, 133, 134, 135]. Wang et al., used e-beam lithogra-

phy and dry etching to form grooves and ridges in silicon and showed that

groove depth was influential in controlling the morphology, proliferation, and

differentiation of C2C12 skeletal myoblasts than groove width [124]. Shimizu

et al., sand paper to grind iron blocks in one direction and molded PDMS

with that. They showed that for rougher substrates, C2C12 cells showed

alignment while alignment was seen for flat or smoother substrates [125].

Yamamoto et al., used UV-lithography to etch glass and showed that C2C12

cells get neatly aligned in the ridges of the glass and show both MyoD neg-

ative cells in the latter stages of differentiation [126]. Altomare el al., used

silicon wafers with different groove widths to solvent cast bio-degradable

poly-L-lactide/trimethylene carbonate copolymer (PLLA-TMC) [133]. They

showed that micro-grooved surfaces were able to influence myotube formation
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Figure 2.23: Scanning electron microgrpahs (SEM) of epithelial cells on (A)
70 nm ridge with a 400 nm pitch. (B) Smooth silicon oxide surface. Cells
stained for actin (red), vinculin (green) and nucleus (blue) on (C) 70 nm ride
with a 400 nm pitch (D) 1900 nm ridge with a 4000 nm pitch (E) Smooth
silicon oxide. SEM of the cross-section of the cells on (F) 400 nm pitch (G)
4000 nm pitch (H) Zoomed of (G). Images taken from [131].

and alignment and grooves of 2.5 and 1 µm depth with 50 and 25 µm width

presented the highest differentiation and alignment of C2C12 myotubes. Re-

cently, Wang et al., combined both chemical and topographical cues to study

the development of C2C12 myotubes [135]. Arginine-glycine-aspartic acid

(RGD) and amine (-NH2) conjugation was done on the polystyrene (PS)

substrates (both grooved and flat) to study the differentiation of C2C12

cells. In general, the grooved surfaces showed slightly higher differentiation

than flat surfaces. Moreover, the RGD modified showed the highest differ-

entiation of C2C12 cells and best alignment (figure 2.24A,B). In addition,

the amount of FA protein intensity was highest on the PS-RGD followed by

PS-NH2 while the bare PS showed the lowest vinculin intensity. This study

coupled two cues (1) surface chemisty and (2) nanotopography to study the

differentiation of myotubes and showed that substrates modified with RGD
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Figure 2.24: (A) Myosin heavy chain staining for C2C12 cells on the different
types of substrates. (B) Quantification of the myogenic differentiation index
on these substrates. Images taken from [135].

and which presented a nanotopography to C2C12 cells showed the highest

differentiation [135].

Topography and roughness have been widely used to control the fate of

ESCs, MSCs, neural stem cells, and hematopoietic stem cells by modu-

lating their attachment dynamics [136, 137, 138, 139, 140]. Chen et al.,

seeded hESCs on glass substrates with different roughness (hence different

topography) and investigated cell morphology, adhesion, proliferation, and

self-renewal capabilities of these cells [136]. Substrates with three different

roughness (1, 70, and 150 nm) were generated by using a combination of

photo-lithography and reactive ion etching (RIE). The initial roughness of

unprocessed glass wafer was 1 nm which also served as the control or smooth
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substrate. The glass with roughness, 150 nm, was designated as the nanor-

ough substrate. Interestingly, a highly branched, filopodia rich structure was

seen on the smooth glass surface while only few short extensions were seen on

the nanorough glass as seen in figure 2.25A. Interestingly, after 48 hours of ad-

hesion, un-differentiated hESCs selectively adhered to the smooth islands and

retained their “stemness” while spontaneously differentiating hESCs showed

no adhesion preference. In addition, hESCs proliferated much more quickly

with a doubling time of only 41 hours while it took almost 77 hours for dou-

bling of cells on the nanorough glass (figure 2.25C). hESCs on the smooth

glass showed vinculin-containing FAs only on the periphery of the of the un-

differentiated (OCT3/4+) hESCs but randomly distributed throughout the

area of the differentiated (OCT3/4-) hESCs. However, on the nanorough

glass both the un-differenitated and differentiated hESCs showed randomly

distributed punctate FAs (figure 2.25B). Interestingly, number of FAs per cell

were more for the nanorough glass for both the OCT3/4+ and OCT3/4- cells

(figure 2.25D). In order to better understand the phenomenon of haptotaxis,

they seeded NIH/3T3 fibroblasts on these smooth and nanorough glass sur-

faces. Unlike hESCs, fibroblasts preferred the nanorough substrate over the

smooth glass surface seen in figure 2.25E. The adhesion selectivity of fibrob-

lasts to the nanorough substrates was over 90% (figure 2.25F). Taken together

this study showed that un-differentiated hESCs prefer smooth over nanor-

ough surfaces and retain their “stemness” on the smooth surfaces. Contrary

to that, fibroblasts preferred nanorough substrates over smooth substrates.

Oh et al., used titanium oxide nanotubes to seed hMSCs and study its

behavior. It was found that smaller nanotubes (∼30 nm diameter) allowed

adhesion of cells but did not allow much cell spreading or osteogenic differ-

entiation. In contrast, hMSCs on larger nanotubes (∼ 70-100 nm diameter)

allowed extensive cell spreading and elongation. On flat titanium oxide sur-

faces, the hMSCs appeared more round and lacked filopodia extensions. The

flat surfaces showed the least cell spreading while increasing the diameter

of the nanotubes progressively increased hMSC spreading as well possibly

by increasing the roughness of the substrate (figure 2.26A). As a result of

elongation and spreading of hMSCs on the larger diameter nanotubes, the

relative transcript level for osteogenic markers like osteopontin (OPN), os-

teocalcin (OCN) and alkaline phosphatase (ALP) were higher on the larger

diameter nanotubes as seen in figure 2.26B.
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Figure 2.25: (A) hESC on smooth and nanorough glass surface. (B) Vinculin
and OCT3/4 staining on the nanorough and smooth surfaces for hESCs.
(C) Doubling time of hESCs on the smooth and nanorough substrate. (D)
Number of FAs per cell on the smooth and nanorough substrate. Red bar
is smooth surface; green bar corresponds to a surface with roughness of 70
nm while blue bar corresponds to 150 nm rough surface. (E) Fibroblast
attachment on the smooth and nanorough substrates. Fibroblasts prefer
nanorough over smooth surfaces. (F) Adhesion rate of fibroblasts on the
different substrates. Images taken from [136].

A number of studies have been done by many different research groups

to understand the interaction of different cell types with nano/micro pillar

topography [141, 142, 143, 144]. Turner et al., fabricated nanopillars and

nanowells on silicon wafers by standard photolithographic techniques and

seeded LRM55 astroglial cells to study their interactions with pillars [141].

Cells seeded on the nanowells were mostly round and showed poor attach-

ment. On the other hand, cells appeared more spread on the pillars. Over

70% of the cells adherence preference to the pillars versus the smooth sur-

face. Actin and vinculin distribution was very different for the cells on the

different surfaces. Since, cells did not spread much on the smooth surface,

diffuse vinculin immunoreactivity was seen around the nuclei (figure 2.27A).

Contrary to that, cells on the nanopillars exhibited well organized actin struc-

43



Figure 2.26: (A) SEMs of hMSCs on different types of titanium oxide sub-
strates. Red arrows indicate extraordinary cell elongation while yellow arrows
show lamellipodial extensions. (B) Relative transcripts levels of common os-
teogenic markers after 14 days on the different substrates. Images taken from
[138].

tures and dense vinculin patches were visible on the pillars as seen in figure

2.27B. Xie et al., used e-beam to fabricate arrays of 150 nm diameter, 1

µm high platinum nano-pillars directly on top of multi-electrode arrays to

pin down neurons in a non-invasive manner in order to record its electrical

activity [142]. They showed that indeed the nanopillars were able to slow

down the mobility of neurites from 57.8 µm on a flat surface to 3.9 µm on

the nanopillars over 5 days. In addition, the growth pattern of the cells did

not differ significantly from that grown on a flat surface. Figure 2.27C shows

an SEM of neuron-nanopillar interaction. Both these studies can have appli-

cations in neural tissue engineering and designing better neural prosthesis.

Ghibaudo et al., grew fibroblasts on PDMS micro-pillars of different dimen-

sions [143]. Cells grown on pillars with height 10 µm height, 5 µm diameter

and 5 µm spacing showed very long cellular protrusions (figure 2.27D) while

those grown on pillars with height 2 µm height, 5 µm diameter and 5 µm

spacing had morphology similar to that on a flat surface.

The reason for such different cell behavior on different pillar geometries

is because these pillars potentially alter the clustering of integrins. This

changes/delays the development of FAs which in turn changes the cytoskele-

ton organization of the cell. The end result being the cells’ behavior on that

substrate changes. Figure 2.28 shows a schematic of a cell perception of

different surfaces [145].
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Figure 2.27: Growth of cells on nanopillars.(A) Astroglial cell grown on flat
surface. (B) Astroglial cell grown on nanopillars of width 1.25 µm and gap
1.5 µm. Scale bar = 50 µm. Red is actin, green shows vinculin and blue
shows the nuclei. (C) Nanopillars pinning down the neurites of embryonic
cortical neurons. Fibroblasts grown on (D) Pillars with height 10 µm height,
5 µm diameter and 5 µm. (E) Pillars with height 2 µm height, 5 µm diameter
and 5 µm spacing. Scale bar = 20 µm. Images taken from [141, 142, 143].

Figure 2.28: Cells’ perception of different pillar geometries. Images taken
from [145].
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Figure 2.29: Immunofluorescent images of ECM molecules (A-E) ( In vitro)-
2D substrates (F-J) ( In vivo)-3D substrates. Scale bar = 5 µm. Image taken
from [146].

2.2.5 Dimensionality

Cells in our bodies experience a 3D micro-environment. However, most of

our understanding about the behavior of cells comes from two-dimensional

(2D) cultures. Even though these 2D studies have helped us to understand a

lot of fundamental questions about basic cell biology, there exists a need to

bridge the gap between 2D and 3D cultures in order to fully understand the

functionality of the cells and to truly mimic the in vivo cellular environment.

Previous studies have already shown that cells behave very differently in 3D

versus 2D cultures [146, 147, 148, 149, 150, 151]. Cukierman et al., compared

the growth of fibroblasts on 2D versus 3D cultures. Figure 2.29A-E shows

immunofluorescence staining of an NIH/3T3 fibroblast in vitro on a 2D fi-

bronectin coated cover slip. Figure 2.29F-J shows the transverse craniofacial

cryostat section of a mouse embryo (in vivo)[146]. It can be seen that the

morphologies of the ECM molecules and their co-localization is very differ-

ent in 2D versus 3D cultures. In 2D cultures, FAs contain integrin α5β3 and

other proteins like vinculin, paxillin, and FAK. However, they are present

separately. In 3D cultures, paxillin and α5 integrin co-localize (figure 2.29C,

H). Fibronectin localizes to fibrillar structures and it can be seen in figure

2.29J that there is a substantial overlap of all three molecules. In 2D cul-

tures, the co-localization between these molecules is not seen. Furthermore,

relative to a 2D substrate, 3D cultures show enhanced biological activities

and less of an integrin usage [146]. Bissell group demonstrated that human

breast cancer cell lines can be reverted back to morphologically normal phe-
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notype by integrin blocking in 3D cultures and this reversal was never seen

in traditional 2D cultures [147, 148]. Increased viability of human hepatoma

cell line HepG2 is seen in 3D over 2D cultures [149]. Hepatocytes grown

in 3D show enhanced drug metabolism activities than their counterparts in

2D [150]. MSCs show higher attachment, proliferation, and differentiation

to osteogenic lineage when cultured in 3D over 2D cultures [151]. These

are just few examples showing the importance of 3D micro-environment in

controlling the organization of mammalian cells.

Hydrogels are becoming increasingly popular to construct a 3D cellular

micro-environment to study the properties of mammalian cells and for tissue

engineering [152, 153]. Hydrogels are just repeating chains of polymers which

have been linked together by a cross-linker. Depending on the concentration

of the cross-linker and the pre-polymer, hydrogels can adapt a number of

different physical properties. Also, since hydrogels are hydrophilic, they can

absorb large quantities of water and thus can mimic the properties of in vivo

soft tissues. Hydrogels can be used in a variety of biomedical applications

such as drug delivery, wound management and tissue engineering [154, 155,

156, 157]. Many studies have used different techniques like solvent casting

[158], freeze drying [159], gas foaming [160], electrospinning [161], and SL

[87] for constructing the complex 3D architecture found in the body using

hydrogels. Beyond the architectural aspects of the native ECM, the scaffold

will also need to provide spatio-temporal cues to guide tissue morphogenesis

[162].Therefore, integration of multiple technologies or fabrication modalities

would be needed to provide the cells with the right set of cues to guide their

function in this 3D matrix.

In addition, many of the current techniques could actually be translated to

the fabrication of 3D constructs which would recapitulate some of the cues

that were discussed above. Figure 2.30 shows a schematic of these proposed

translations. Aligned cells on geometrically or topographically patterned sub-

strates could be rolled into a tube to create micro-vessels. These micro-vessels

could then be cultured in fibrin gels or other type of hydrogels to retain their

3D dimensionality. In order to constrict the cells in confined spaces to mimic

the differentiation of hMSCS to osteoblasts or adipocytes, the concentration

of the pre-polymer or cross-linking density could be changed to create dense

regions in hydrogel constructs. Cell-sheet engineering could also be used to

stack multiple 2D sheets on top of each other to create a 3D sheet [162].
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Figure 2.30: Schematic showing the translation of 2D techniques for creating
3D substrates. Image taken from [162].

This review provided a brief background about tissue engineering tech-

niques. Then it highlighted the importance of different micro-environmental

cues that need to be presented to the cells in order to control their fate in

a 3D tissue construct. Here, the cues were decoupled from each other and

most of the research has been done to investigate the response of cells to only

cue at a time. However, in vivo the cells are presented with all the cues of

stiffness, geometry, topography, and roughness simultaneously. Therefore, in

order to realize the goal of fabricating a 3D tissue which could be used for

regenerative medicine or drug discovery/screening, the cellular response to

multiple cues has to be studied simultaneously. Fabrication techniques will

be needed to independently control multiple cues simultaneously in a 3D ar-

chitecture so that the cells’ response to all these cues could be studied. Only

then, it would be possible to truly mimic the in vivo micro-environment and

control the fate of mammalian cells.
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CHAPTER 3

INFLUENCE OF SUBSTRATE STIFFNESS
ON THE PHENOTYPE OF EMBRYONIC

CHICKEN CARDIAC MYOCYTES

3.1 Introduction

This chapter will describe the influence of substrate stiffness on the beat-

ing rate, force of contraction and cytoskeletal structure of embryonic chicken

cardiac myocytes (ECCMs). These cells were cultured on PA hydrogels of

three different stiffnesses 1 kPa, 18 kPa, and 50 kPa to mimic the stiffness

of brain, muscle, and bone tissue respectively. Tissue culture plates served

as the control in this study. In addition, a quantitative evaluation for un-

derstanding the effect of substrate stiffness on mechanical communication

between distant cells in cardiac tissue is also presented.

Section 3.2 will describe the material and method section of this chapter.

This will include the fabrication of PA hydrogels, its activation, isolation of

cardiac cells, the parameters used for imaging and its processing. Section

3.3 will evaluate the beating characteristics of ECCMs on PA hydrogels of

different stiffnesses. Section 3.4 will quantify the FA characteristics of EC-

CMs on the different hydrogels. Section 3.4.1 will point out the differences

in the cytoskeletal structure of ECCMs on PA gels of different stiffnesses.

Section 3.5 will show the measurement of beating force of these cells using

a novel micro-electro mechanical systems (MEMS) probe. Section 3.6 will

present both simulated and measured results of mechanical communication

between these ECCMs via the hydrogel substrates. Section 3.7 will sum-

marize the major findings of this chapter and highlight the importance of

substrate elasticity for the heart (cardiac tissue) as a whole. These results

have been published in [163, 164].
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3.2 Experimental

This section of the chapter presents the experimental protocol that was fol-

lowed to undertake the study.

3.2.1 Fabrication of activated polyacrylamide hydrogels on
glass coverslips

PA gels were prepared following the protocols described by Wang et al [75].

Formation of PA gel on the glass surface is a multi-step process which involves

(1) Activation of the glass coverslip (2) Preparation of PA gels (3) Activation

of the PA gel and (4) Characterization of the PA gel surfaces.

Activation of glass coverslips:

The following procedure was used to activate the glass surface to allow for

efficient attachment of the PA gels:

• 22×22 mm coverslips were first cleaned by sonicating them successively

in pure acetone and methanol.

• These coverslips were then dried by blowing them with nitrogen gun.

In order to make the surface more reactive, these coverslips were kept

in a chamber of oxygen plasma for 60 seconds.

• ∼200 µL of 3-aminipropyltrimethoxysilane was pipetted on the acti-

vated side of the coverslip.

• Coverslips were then rinsed in deionized (DI) water for 15 minutes.

• These coverslips were then incubated in a solution of 0.5% gluteralde-

hyde in phosphate buffered saline (PBS) for 30 minutes followed by

rinsing them again in DI water twice for 15 minutes each.

• At this stage the glass coverslips were activated and ready for the at-

tachment of PA gels.
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Figure 3.1: Estimation of the Young’s modulus for PA gels for different
concentrations of [Acry] and [Bis].

Preparation of PA hydrogels:

In order to control the mechanical properties of the PA gel equations 3.1,

was used a guide [165].

E([Acry], [Bis]) = [Bis](a1[Acry] + a2[Acry]2 + a3[Acry]3) (3.1)

with a1 = 0.564, a2 = -4.487, and a3 = 12.839. The Young’s modulus

(E ) obtained from equation 3.1 is in kPa and the two concentration of

bis-acrylamide ([Bis]) and acrylamide ([Acry]) are expressed as percentages.

Also, it should be noted that, equation 3.1 is only valid in the range of

(3% ≤ [Acry] ≤ 10%) and (0.02% ≤ [Bis] ≤ 0.20%). Figure 3.1 is obtained

for different concentrations of [Acry] and [Bis]. This range of stiffness ob-

tained from the different concentrations of [Acry] and [Bis], encompasses the

entire range of physiologically relevant stiffnesses of very soft to stiff tissues

[69]. Acrylamide and bis-acrylamide were mixed in 10 mM HEPES (Sigma,

St. Louis, MO) at desirable concentrations to achieve very soft (∼ 1 kPa) to

stiff (∼ 50 kPa) PA gels. To this solution, 1/200 volume of 10% ammonium

persulphate and 1/2000 volume of tetramethylethylenediamine (TEMED)

were added as a catalyst. Table 3.1 shows the concentrations of acrylamide

and bis-acrylamide used to form the PA gels and their estimated and mea-
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[Acry] [Bis] Estimated E Measured E
(%) (%) (kPa) (kPa)
3 0.08 1.06 1.05 ± 0.17
8 0.17 17.0583 18.31 ± 0.19
10 0.2 48.738 50.62 ± 0.92

Table 3.1: [Acry] and [Bis] used for preparing the PA gels of different stiff-
nesses.

sured stiffnesses using the atomic force microscope (AFM). The process for

measuring the stiffness of the hydrogels is shown in sub-section 3.2.1. 25 µL

of this solution was pipetted on to the activated glass coverslip and sand-

wiched by a 12 mm diameter round coverslip. To mimic a wide range of

mechanical micro-environments, gels with physiologically-relevant stiffnesses

were produced [69]. Soft PA gels with stiffness 1.05 ± 0.17 kPa were used to

mimic mammary gland, brain, and breast tissue, which have psychological

stiffness from 0.1 to 2 kPa [69]. Intermediate hard gels with stiffness 18.31

± 0.19 kPa were used to mimic chicken embryonic myocardium, which have

psychological stiffness from 9 to 20 kPa [69]. Stiff gels with stiffness 50.68 ±
0.92 kPa were used to mimic cartilage and bone [69]. TC dishes served as the

control for the study (stiffness of TC ∼ 3 GPa). After about 30 minutes of

incubation at room temperature, the top coverslip was gently removed and

the gel was washed in 50 mM HEPES solution.

Activation of PA gels:

The PA gel formed here is not very conducive to the growth of cells [75].

In order to provide an adhesive surface for the growth and culture of cells,

the surface of the PA gels needs to be conjugated with extracellular matrix

(ECM) proteins like laminin, fibronectin, collagen - I, etc. However, these

proteins will not adhere to the surface of the PA gels. Therefore, the PA

gels were activated by using a photo-activatable hetero-bifunctional com-

pound sulfosuccinimidyl-6-(4’-azido-2’-nitrophenylamino) hexanoate (sulfo-

SANPAH). Sulfo-SANPAH contains a cross-linker which has an amine reac-

tive N-hydroxysuccinimide (NHS) ester group which can react to the lysine

group (ε−NH2) found in a variety of ECM proteins and a photo-activatable

nitrophenyl azide group which can be attached to the PA gel [75]. These

PA gels were thus activated with 1 mM Sulfo-SANPAH (Thermo Scientific,
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Figure 3.2: BSA attachment on the PA gels of different stiffness. The bar
graphs indicate the fluorescent intensity before and after the BSA attach-
ment. The coating concentration of BSA is independent of the substrate
stiffness. Asterisks indicate statistical significance and at p < 0.05 the means
are not statistically different. Data show is the mean ± SEM (n = 5 ).

Rockford, IL) and conjugated with 5 µg ml-1 of laminin (Sigma, St. Louis,

MO). In order to test the attachment of the protein as a function of substrate

stiffness, fluorescently-tagged bovine serum albumin (BSA, Invitrogen, Carls-

bad, CA) was coated on the gel. It was found that the protein concentration

was independent of the stiffness as seen in figure 3.2. The coating concentra-

tion has also been shown to be independent of the stiffness of the gel with

other proteins like collagen I, collagen IV, laminin, and fibronectin [166].

Characterization of PA gels:

Asylum atomic force microscope (AFM) with pre-calibrated silicon nitride

tip was used to characterize the real stiffness of PA gels in phosphate buffered

saline (PBS, Invitrogen, pH=7.4) solution. The spring constant of the AFM

cantilever was 148.14 pN nm-1 and it performed the indentation with a speed

of 0.1 m sec-1. Hertz theory (Equation 3.2) was used to extract the elastic

modulus of the indented substrates [167].

Z − Zo = d− do +

√
k(d− do)

2
π
E(1− υ2) tanα

(3.2)
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Figure 3.3: The least-square fitting of Hertz theory to experimental AFM
force-indentation data.

where k is the spring constant of cantilever calibrated by resonant frequency

counting. Z and d are cantilever’s base displacement and tip deflection,

respectively. Z0 is the piezo-controller’s vertical position as the AFM tip

touches the gel surface, and d0 is the initial cantilever deflection prior to

bending. The υ is the Poisson ratio of sample (0.5 for hydrated gels in the

present study). α = 35◦ is the half open-angle of cantilever tip and E is

the elastic modulus of sample to be found. Figure 3.3 shows a representative

example of force versus indentation of the substrate and the theoretical fitting

curve.

3.2.2 Cardiac cell isolation and culture

Cardiac cells were obtained from chicken embryos during the 32-35 Ham-

burger Hamilton stage, which is approximately 8 days after conception [168].

After sterilizing the eggshell with 70% ethanol, the embryo was removed,

placed in a petri dish containing Puck’s saline, and quickly decapitated. The

heart was removed, rinsed twice in PBS solution to remove the blood, and

incubated in a solution containing 0.05% trypsin/PBS (Invitrogen, Carlsbad,

CA) for ∼15 minutes at 37 ◦C. Following enzymatic digestion, the solution

containing the heart was pipetted gently to dissociate the tissue. About

100,000 cells cm2 were seeded on the laminin-coated substrates and cultured

in minimum essential medium with alpha modification (Sigma, St. Louis,
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MO), supplemented with 10% fetal bovine serum (FBS, Sigma, St. Louis,

MO) and antibiotics (100 U mL-1 penicillin and 100 µg mL-1) (Invitrogen,

Carlsbad, CA). During data acquisition, the gels and the culture dishes were

kept on a heated microscope stage to maintain a temperature of 37 ◦C, and a

tube releasing 5% CO2 was kept over the dishes to maintain a physiologically

relevant pH.

3.2.3 Immunofluorescence, imaging and image processing

Cells cultured on the PA gels and TC dishes were immunolabeled on the sec-

ond and the fifth day in the study. Cells were fixed with 4% paraformalde-

hyde (PFA, Electron Microscopy Sciences, Hatfield, PA) for 30 minutes and

then permeabilized with 0.2% Triton X-100 (Sigma, St. Louis, MO) for 15

minutes. Cells were then blocked with Image-iT FX (Invitrogen, Carlsbad,

CA) for 30 minutes. They were incubated in monoclonal mouse anti-vinculin

(Sigma, St. Louis, MO) at a 1:200 dilution in PBS at 4 ◦C overnight. These

cells were permeabilized again in 0.2% Triton X-100 for 15 minutes and incu-

bated in FITC-conjugated goat anti-mouse (BioRad Laboratories, Hercules,

CA) at a 1:200 dilution in PBS at 37 ◦C for 2 hours. Cells were then incu-

bated for 2 hours in 6.6 µM rhodamine-phalloidin (Invitrogen, Carlsbad, CA)

and finally in 500 nM of DAPI (Invitrogen, Carlsbad, CA) for 5 minutes at

37 ◦C. The immunolabeled cells were mounted in ProLong gold (Invitrogen,

Carlsbad, CA) antifade reagent to prevent photobleaching. The cell prepa-

rations were imaged by a Zeiss LSM 710 confocal scanning laser microscope

at 40X, NA 1.4 water immersion objective.

Images were processed using ImageJ version 1.42q [169]. Area of the cell

was found by first creating a maximum Z-projection from the confocal images

and then thresholding it so that the entire cell area was covered. Any object

smaller than 3 µm in radius was eliminated using the software to get rid of

any cellular debris and then the percentage of the area covered by the cells

was computed by the software. This percentage was converted to an area

in square microns. In order to find the percentage of FAs, one confocal sec-

tion per image was used, which is approximately 0.50 µm from the interface

between the cell membrane and the coverslip. The images were thresholded

and a Watershed segmentation algorithm was applied to the images to see
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only the FAs [170]. ImageJ was also used to create fluorescence intensity line

profiles over FAs of actin and vinculin images around different regions of the

cell. The cells were found independently for computing the FA percentage.

3.2.4 Statistical analysis

Statistical analysis was performed using one-way ANOVA in OriginPro 8.1.

Unless otherwise mentioned, the values reported are mean ± standard error

of the mean (SEM) and the results were considered statistically significant

when the p-value was less than 0.05 (p < 0.05 ).

3.3 Beating rate of cardiac cells

ECCMs were seeded on laminin-coated PA gel substrates of varying stiff-

nesses, and the beating rate of the cells was monitored as a function of time

over five days. Cells were independently chosen on all the substrates and

a 30 second video of the beating cells was taken every day for five days in

culture. Figure 3.4A shows the variation in the average beating rate of the

cardiac cells over this period. Note that the initial average beating rate varies

greatly ranging from less than 20 beats per minute on the rigid TC dishes to

100 beats per minute on the 18 kPa gel. However, the average beating rate

converges to a more narrow range around 60-80 beats per minute by the fifth

day. Figure 3.4B shows the beating rate of the cardiac myocytes as a func-

tion of substrate stiffness after one and five days post-seeding. The 18 kPa

substrate, which mimics the stiffness of the myocardium, shows the highest

beating rate on the first day of culture. This beating profile on the first day

can be approximated by a Gaussian curve for the stiffness of the substrate.

However, by the fifth day, the beating rate of the cells converge to a narrow

range of 60-80 beats per minute and no longer follows a bell curve. A plau-

sible mechanism for this is that during the initial days when the cells are

seeded on the substrate, no cell-cell interactions are possible as a confluent

cell sheet is not formed. However, by second day cells started forming cell-

cell junctions and a cell network was seen forming on the stiffer substrates

(18 kPa, 50 kPa, and TC). Fibroblasts started proliferating between neigh-

boring cardiac cells, which linked them together. It has been shown that the
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Figure 3.4: Beating rate of cardiac cells on the substrates (A) The beating
rate of cardiac cells on 1 kPa, 18 kPa, 50 kPa and TC dishes as a function
of time over five days. (B) The beating rate of cardiac cells as a function of
stiffness on the first and the fifth day of culture. Data shown is the mean ±
SEM (n = 10 ).

beating rates of cardiac cells within 300 µm can be synchronized through the

fibroblast connection [171], and a similar phenomenon was observed during

our experiment when two cardiac cells were connected via a fibroblast. It

is known that fibroblasts do not extend their processes on soft substrates (1

kPa) and remain rounded [172]. So how do the cells on the soft 1 kPa gel

beat around the same frequency as well? One of the reasons could be that

the beating frequency of the cells reverts to a natural beating frequency that

is inherent of the cell as seen in previous studies [173]. Another possible

reason could be that when the cells are close to each other, the substrate

itself may serve as a mechanical link between the substrates. Contraction

of a cell during beating results in stretching of the nearby substrate, which

in turn stretches the neighboring cells’ membrane and a cascade of signaling

mechanisms start in this neighboring cell. It would be interesting to see if

this convergence phenomenon is still seen on the stiffer substrates when an

enrichment of the cell mixture is done to limit the number of fibroblasts by

pre-plating this cell mixture before seeding them on the different substrates.
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3.4 Formation of focal adhesion complexes on

polyacrylamide gels

Formation of FAs and the cytoskeletal organization of the cell were examined

via confocal microscopy on the various substrates on the second and the

fifth day. FAs are specialized sites of adhesion developed by many cells in

culture. They serve as the pivots to assist the intracellular pre-stress build-

up and are the sites at which cell traction are transmitted to the substrate.

They link the extracellular matrix components to intracellular cytoskeleton

(actin filaments) via integrin receptors. FAs can be thought of as a sensory

organ capable of responding to a variety of diverse external features such

as ligand density [174, 175], topography [144], and rigidity [176]. FAs are

composed of many different types of proteins like paxillin, vinculin, and talin

[177]. However, it has been proposed that vinculin depletion leads to drastic

changes in the motility of cells and FA sizes [64]. Furthermore, vinculin is

the most abundant FA protein [178]. Hence, the cells on these substrates

were labeled with anti-vinculin antibody.

The formation of FAs is a highly orchestrated event starting from: (1) Rho-

stimulated contractility, (2) the generation of isometric tension in adherent

cells, (3) bundling of actin filaments, (4) aggregation of integrins, and (5)

activation of the focal adhesion kinase (FAK) [179]. To produce a more

visual illustration of the relative intensity of actin and vinculin, fluorescence

intensities in one dimensional line profiles drawn over FAs was compared and

is shown in Figure 3.5. It can be seen from the line profile that the intensity

of actin and vinculin present on the soft (1 kPa) gel is very small compared

to the other substrates. The cells are not able to form many FAs as there is

not enough actomyosin based contractions on the soft substrate [69]. As one

of the first events in the formation of FAs is reduced on the soft gel, other

downstream events are also hindered and hence very few FAs form on this

substrate. This is consistent with previously published results that a smaller

force is required to peel off cells from soft gels compared to the rigid glass

[78]. FA formation on this very soft substrate occurs by nonspecific tyrosine

hyperphosphorylation [69]. On the other hand, the pixel intensity values for

actin and vinculin is high on the stiff (50 kPa) gel and the rigid (TC dish)

substrate. Also, there is co-localization of actin and vinculin, which leads

to aggregation of integrins at the FA sites [64]. On these stiff surfaces FA
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Figure 3.5: Relative fluorescent intensity of actin and vinculin for cells on the
substrates. Sections of cardiac cells expressing vinculin and actin proteins
on the different substrates are shown. Fluorescence intensity profiles depict
the area of the line drawn in the merged images. The arrowheads show
well-defined mature FAs. Scale bar: 10 µm.

development is possible by enhanced tyrosine phosphorylation on multiple

FA proteins [74]. Also, a higher degree of organized cytoskeleton emerges

with the increase in stiffness as seen from Figure 3.5. On the soft 1 kPa

substrates, formation of tissue like aggregates can be seen and only small

nascent FAs are visible. While on the other substrates, cells acquire a more

spread morphology and show well defined prominent FAs of larger size.

Figure 3.6A shows a representative image of the FAs present on the cell

and its corresponding area. 3.6B shows that the percentage of FA increases

as a function of substrate stiffness. Both the fibroblasts and the cardiac cells

show higher percentage of FAs on the rigid (TC) substrate compared to the
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soft (1 kPa) PA gel and the 18 kPa gel. Small nascent FAs also referred as

focal complexes (FXs) are formed on very soft 1 kPa substrates [180]. These

small FAs cannot provide the necessary adhesion to propel the cell forward.

As a result, these FAs quickly disassemble and the cells on the soft 1 kPa

gel acquire a tissue like morphology, where a lot of cells are present in the

aggregate. However, on the comparatively stiffer substrates small FAs quickly

mature and form larger FAs providing the necessary traction forces for the

cells to acquire a more spread morphology [74]. There is not a statistical

difference in the percentage of FAs present on fibroblasts (p = 0.49 ) and

cardiac cells (p = 0.95 ) for the two different days, suggesting that after the

first two days, properties of FAs do not change much. This also suggests that

with time, FAs change their main function from the transmission of strong

propulsive forces to a more passive function of providing adhesion sites for

the maintenance of a well spread cell morphology [181]. Fibroblasts were

identified from cardiac cells based on the sarcomeric striation patterns seen

on the cardiac cells. Figure 3.6C shows that the number of FAs per cell (p <

0.05 ) and the FA area per cell (p < 0.05 ) are much higher on the rigid (TC)

substrate compared to the soft (1 kPa) gel substrate. The means of all these

parameters are statistically different for the rigid and the soft gels at p <

0.05. FAs are the sites of attachment from the intracellular cytoskeleton via

integrin receptors to the extracellular matrix. Formation and development of

FAs require generation of isometric tension by movement of myosin II motors

on the actin filaments. Since, cells on the soft substrate (1 kPa PA gel) cannot

develop this isometric tension by the actomyosin contractions, very few FAs

are formed on this substrate. Furthermore, the FAs that are formed on this

substrate are mostly immature since aggregation of integrins is not possible

on the soft substrate because of the reduced actomyosin contractions. As

a result, cells on this substrate resemble tissue-like morphology where a lot

of cells are present in the aggregate. On the other hand, cells on stiffer

substrates are able to generate isometric tension by actomyosin contractions

leading to their maturation. It should be noted that the morphology of cells

on the 50 kPa PA gel is very similar to that on the rigid TC dish. Also, as

seen in Figure 3.6B there is a very small increase in the percentage of FAs

from the 50 kPa substrate to the TC substrate, and the graph seems to reach

a steady value. This means that after a certain threshold, the stiffness of the

substrate is no longer the dominant factor in the formation of FAs. Any
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Figure 3.6: Quantification of FAs (A) The process used for quantification
of FAs.(B) Quantification of FA area for fibroblasts, cardiac cells and their
mixture for the 1 kPa, 18 kPa, 50 kPa PA gels and TC dishes.(C) Quan-
tification of the number of FA/cell (p < 0.05 ) and the average FA area/cell
(p < 0.05 ) for the soft (1 kPa) and the rigid (TC dish) substrates on day
two. Asterisks indicate statistical significance. At p < 0.05, the means are
statistically different. Data show is the mean ± SEM (n = 20 ). Scale bar:
10 µm.

further increase in the stiffness of the substrate after the threshold stiffness

will only lead to very small changes in the overall morphology of the cells

and growth of FAs. However, in order for the cells to perform their functions

optimally, a stiffness matching between the cell and the substrate is desired

[46].

3.4.1 Cytoskeletal organization of cardiac cells

Figure 3.7A shows the actin cytoskeleton on the very soft 1 kPa PA gel.

It can be seen that even though there are striations visible on the cells on
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Figure 3.7: Cytoskeletal structure of the cells on the substrates. Single stack
con-focal images for the cells on the (A) 1 kPa, (B) 18 kPa, (C) 50 kPa PA
gels and (D) the TC dish. The insets in the figures show a zoomed view of
the sarcomeric striations. Scale bar: 10 µm.

this soft gel, which is a hallmark of any striated muscle cell, these stria-

tions are not aligned as seen in the sarcomere in vivo. On the other hand,

highly aligned sarcomeric striations are seen in Figure 3.7B, C, and D on the

18 kPa, 50 kPa PA gel and the rigid TC substrate. Previous reports have

shown that optimum actomyosin striations were seen on substrates, which

mimic the stiffness of the myocardium [78, 81, 82]. However, even on the

rigid TC substrate we were able to see highly aligned sarcomeric patterns.

This could be because cell-cell contacts might have a similar effect as cell-on-

gel effect when a cellular network is formed. This was also seen in another

study when endothelial cells had indistinguishable morphology on the stiff

and the soft substrates when they reached confluence [80]. Also, fibroblasts

which generally cannot extend their processes and remain rounded on the

soft gels are seen to have a well spread morphology when cell-cell contacts

are established [80]. Myofibrillogenesis involves the precise stacking of mul-

tiple linear array of units into a structured sarcomere [182]. It starts with

the formation of pre-myofibrils at the periphery of spreading cardiomyocytes

and get bundled into mature myofibrils over time [183]. However, since the
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soft 1 kPa substrate cannot provide enough actomyosin based contractions

formation of aligned sarcomeric structure is not seen on this substrate. On

the other three substrates, enough tension is developed from the mature FAs

that the entire process of myofibrillogenesis is possible.

3.5 Measurement of the contraction force of cardiac

cells

A novel micro-electromechanical systems (MEMS) force sensor was used to

perform a force spectroscopy on cells that were cultured on 18 kPa PA gels

and TC dishes for the second and the fifth day. The fabrication process and

other applications of this MEMS force sensor have been described previously

[184, 185]. The resolution of the MEMS sensor was ∼0.25 nN. The MEMS

force sensor has two beams, a fixed (reference) beam and a free (measure-

ment) beam, which touches the cell cluster as seen in Figure 3.8A. The MEMS

senor was kept in a solution of 70% ethanol for two hours under UV light in

order to sterilize the sensor before starting the measurements. The MEMS

sensor was cleaned by sterilized DI water multiple times prior to experiments

in order to remove any ethanol residue or micro-physisorptions on device. To

eliminate the external mechanical indentation, the forward movement of the

beam was stopped right after contacting the cell body. The cyclic contraction

force, F, was quantitatively obtained from, F = k∆x, where, k = 48.96 nN

µm-1, is the spring constant of the force sensor and ∆x is the deformation of

the sensor spring. Figure 3.8B shows the phase-contrast image of the MEMS

probe in contact with the 18 kPa gel, with the sensor probe contacting the

cell body along direction of contraction. Figure 3.8C shows the force profile

of the cardiac cell on both the 18 kPa gel and the TC substrate as a function

of time on the fifth day. The duration for one contraction-relaxation cycle on

both substrates was about 0.6-0.8 seconds. Figure 3.8D shows a bar graph of

the force measured by the MEMS probe as a function of stiffness on both the

second and fifth days. The force exerted on the MEMS sensor by the cells

cultured on TC dish on the fifth day (F = 71.30 ± 6.38 nN) was statistically

higher than that by the cells cultured on the soft 18 kPa gel on the fifth day

(F = 30.16 ± 3.83 nN) at p < 0.05 and the same trend was seen for FAs

as well. The isometric contractile stress that cardiac myocytes applied on
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Figure 3.8: MEMS force measurement on the substrates (A) The principle
of operation (B) Phase contrast image showing a cardiac cell aggregate with
MEMS force sensor attaching from right side to measure the beating force
during contraction-relaxation cycle. Cell is on 18 kPa gel on the fifth day
of culture. (C) The force profile of the cardiac cell cluster sensed by the
MEMS force sensor as a function of time on the 18 kPa PA gel and the TC
dish. (D) Bar-graphs showing the average peak force exerted by the cardiac
cell cluster on the 18 kPa PA gel and the TC dish on the second and the
fifth day. Asterisks indicate statistical significance between the average peak
force on day five between 18 kPa PA gel and TC dish (3 GPa). At p < 0.05,
the means are statistically different. Data shown is the mean ± standard
deviation (SD). (n = 3 ). Scale bar: 50 µm.

their fibroblast surrounding can be estimated by considering that the beat-

ing force measured by the force sensor is only sampled from a portion of the

cell membrane (contact area of ∼25 m2). The value of the stress on the TC

dish was calculated to be 3.2 nN m-2 while that on the 18 kPa gel was 2.7 nN

m-2 on the second day. These values are very close to the contractile stress

of neonatal rat cardiac myocytes (5.5 ± 2 nN m-2) which has been reported

elsewhere [89].

The higher force on the rigid TC dish could be because of the formation of

higher percentage of FA on this substrate compared to the 18 kPa gel as seen

in Figure 3.6B. It should be noted that the force exerted on the MEMS sensor
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might not be the total beating force of the cardiac cell cluster. Part of the

force is lost in the displacement of the PA gels when the cell is contracting.

Also, the size of the cluster chosen might have an important affect on the

force seen by the MEMS sensor. The force seen by the MEMS probe on

the rigid TC dish on day two and five was not different as seen in Figure

3.8D. Also, the percentage of FAs remained similar during this period on

the TC dish as seen in Figure 3.6B. The sensor is based on the principle of

Hookean mechanics, F = k∆x; therefore, if the placement of the sensor is not

optimum for sensing the maximum contraction, a big difference in the force

is possible. A shortcoming for the sensor is that it is dependent on the size

of the cluster and the location of the sensor with respect to the cluster. If

both these parameters are not optimized, an error in the force measurement

is possible. While these are some of the uncertainties associated with the

MEMS sensor, it can be used effectively to give a firsthand approximation

for the force of a beating cardiac cell/cluster.

3.6 Mechanical communication between the cardiac

cells

Mechanical communication between distant cardiac cells was also investi-

gated via mutual stimulation of distant cardiac cells. If two distant cardiac

cells communicate with each other primarily via paracrine interaction, the

degree of stimulation will be independent of the elasticity of the substrate.

However, if the primary method of communication is via mechanical means,

then it will be highly dependent on the stiffness of the underlying substrate.

To that end, cell beating patterns on two different stiffnesses soft (1 kPa) and

stiff (∼50 kPa) substrate were studied. Videos were taken for cells in order

to locate beating pairs for both the soft and the stiff PA gel. For the soft

gel 246 beating pairs were identified while for the stiff gel, 52 beating pairs

were identified. Figure 3.9A shows the distributions of cell on the soft 1 kPa

PA gel. Each of these beating pairs were distributed in different bins relative

to their distance from the nearest neighbor as 0-5 µm, 5-10 µm, 10-20 µm,

20-30 µm, and 30-40 µm apart. Cells that did not have any neighbor within

60 µm were considered as single cells only. Figure 3.9B shows the percentage

of daily beating couple on the 1 kPa gel. An exponential decay can be seen
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Figure 3.9: Mechanical communication between cardiac cells on PA gels of
different stiffnesses. (A) Determination of cell pairs by measuring the dis-
tance between the nearest neighbors. (B) On 1 kPa gel, cell pairs are grouped
by distances between neighbors, such as a group consists of pairs with part-
ners 0-5 µm, 5-10 µm, 10-20 µm apart, etc. n = 246.(C) Percentages of
single cells beating VS time on 1 kPa. These cells have no partners within
60 µm. (D) On 47 kPa gel, percentage of beating pairs (both cells of the
pair beating) within mutual distance 0-10 µm is shown on day 1, 2, 3 and 4,
respectively. n = 52.

for the beating couple as a function of distance especially for the first day.

Cell-couples which had closer neighbors beat for a longer period of time. For

example, on day 4, 100% of the pairs with partners within 0-5 µm showed

beating. However, this percentage drops down to 50% as the beating pair

distance is 5-10 µm apart. Single cells lack any mechanical stimulation from

each other. Therefore, lower fraction of them beat over a longer time period.

Figure 3.9C shows the percentage of single beating cells as a function of time

on the soft 1 kPa substrate. On day 1, 2, 3, and 4, the percentages of single

beating cells are 62.5%, 50%, 34% and 18% respectively.

The stiff substrate is about 50 times more rigid than the softer one. There-

fore, mechanical deformation of the substrate past 10 µm was almost negli-
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gible. Therefore, the beating pattern of cells only till 10 µm was studied on

the stiff gel. Figure 3.9D shows that the percentage of beating-cell-couples

within 0-10 µm was only 17% on day 1 and 14% on day 2, much lower than

that seen on the soft, 1 kPa gel. By day 3 and 4, no beating-couples could

be identified.

It is well known that there exists a mechanoelectric feedback (MEF) in

cardiac cells for a variety of animals [171]. Therefore, a mechanical stimulus

applied to a cardiac cell results in an action potential by the cells which

caused the cells to contract (beat). This study showed that neighboring

cardiac cells can stretch its neighbor by mechanically deforming the soft

medium between them. Thus they can possibly stimulate each other possibly

through a MEF response. Mechanical activation of single cardiac cell has also

been shown in this study which further confirms the presence of a MEF loop

between distant cardiac cells. To answer the question, how far a cardiac cell

can see, lies in the magnitude of stretch induced by its neighbor. This in

turn depends on the stiffness of the substrate. For a stiff substrate, the same

amount of force would produce a smaller deformation compared to a softer

substrate. Following myocardial infarction (MI), the stiffness of the tissue

increases by several folds due to fibrotic rigidification [167]. Thus after an

MI, the heart gradually stops beating. In human heart failure, ventricular

fibrillation often results in the damaged cardiac region which is generally in

the millimeter-centimeter scale. Such long cell-cell separation distance can

diminish any mechanical stretching signal produced by beating cardiac cells

resulting in a de-coupling cascade.

3.7 Conclusion

This study showed the role of stiffness of the substrate in controlling the fate

of ECCMs. Cells cultured on PA substrates with elasticity comparable to

that of the native myocardium (18 kPa) exhibited the highest beating rate

during the first few days of culture. The initial beating rate of individual

cells on all the substrates varied greatly, but began to converge within five

days. Formation of FAs and cytoskeletal structure development was also

investigated on substrates of different stiffnesses via confocal microscopy. It

was found that a higher percentage of FAs formed on TC dishes compared
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to the softer PA gels. Furthermore, highly aligned sarcomeric striations were

clearly visible on 18 kPa, 50 kPa, and TC dish, whereas cells on 1 kPa

only showed non-aligned diffused striations. The force of contraction on

these substrates was measured using a MEMS force sensor, which showed

that the force of contraction for the cells on TC dishes (F = 71.30 ± 6.38

nN) was significantly larger than those cultured on the 18 kPa PA gel (F

= 30.16 ± 3.83 nN). This is most likely due to the formation of higher

percentage of FAs on the TC dishes compared to fewer FAs on the softer gels.

Also, mechanical communication between distant cardiac cells was studied

on soft and stiff PA gels. As the distance between neighboring cardiac cell

pair increases, the probability of them beating for a longer period of time

decreases. Almost 100% beating cell pairs were found at distances of 5-10

µm for the soft substrate on day two while less than 15% were found on the

stiffer substrate. The cumulative finding from this study suggests that the

elasticity of the substrate plays a vital role in controlling the fate of ECCMs.

These results can have a significant impact on the design of 3D cardiac tissue

engineered scaffolds.
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CHAPTER 4

GEOMETRICAL CONSTRAINTS
INFLUENCE THE MYOGENESIS OF

C2C12 SKELETAL MUSCLE MYOBLASTS

4.1 Introduction

This chapter looks at the affect of geometrical constraints on the differenti-

ation potential of C2C12 rat skeletal muscle myoblasts. Tissue architecture

in the body does not follow only linear or circular geometries. It is rather a

mixture of both linear and circular elements together in the same geometry.

Therefore, in this study, µCP was used to stamp fibronectin islands of three

different geometries, lines of different widths, tori of different inner diame-

ters (ID), and hybrid structures (combining linear and circular features in the

same geometry) on the surface of petri dishes. For the liner geometries, the

length of the line was kept constant at 2000 µm while its width was varied

to 300 µm, 150 µm, 80 µm, 40 µm, and 20 µm respectively. For the tori

structures, the ID was 40 µm, 100 µm and 200 µm while the outer diameter

(OD) was 200 µm, 260 µm and 360 µm respectively. The linear portion of

the hybrid structure was kept constant at 100 µm while changing the arc

angle from 30◦, 60◦, and 90◦ for the circular portion. This resulted in hybrid

30◦, hybrid 60◦, and hybrid 90◦ structures. On each of these geometries, the

differentiation parameters of fusion index, maturation index, alignment, and

response to electrical pulse stimulation (EPS) was quantified for the C2C12

skeletal myoblasts. The use of micro-patterning techniques helped to decou-

ple the geometrical (mechanical) cues experienced by the cells in vitro which

otherwise are uncontrolled under classic cell culture conditions.

Section 4.2 will outline the protocol for µCP fibronectin on the surface of

petri dishes. It will also discuss the protocol for imaging, image processing

and electrical pulse stimulation (EPS) employed in this study. Section 4.3

will summarize the finite element modeling (FEM) of the three different ge-

ometries used for generating the stress maps of the cell micro-islands. Section
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4.4 will quantify the fusion and maturation indices of C2C12 myoblasts on

the different geometries. Section 4.5 will show the alignment of myotubes of

C2C12 cells on the different micro-patterns. Section 4.6 will evaluate the ac-

tuation potential of mature C2C12 myotubes in response to an electric field.

Section 4.7 will investigate the reason for differences in the myogenic poten-

tial of these cells on the different geometries. Section 4.8 will summarize the

major findings of this chapter. These results have been published in [186].

4.2 Experimental

Micro-patterning techniques have enabled researchers to print organic

molecules on substrates thereby regulating the location and shape of cells

on them. These techniques have been widely used to mimic the complex 3D

in vivo tissue architecture and have enabled to gain deeper understanding

about the physiological micro-environment experienced by the cells. This

section will present the protocols used in this study.

4.2.1 Fabrication of micro-patterned substrates

Figure 4.1 shows a schematic overview of the entire µCP process. SU-8

(Micro Chem, Newton, MA) masters were created on a silicon wafer by us-

ing standard photolithography. The master was first silanized by dimethyl

(3,3,3-trifluoropropyl) silane (Sigma, St. Louis, MO) and PDMS stamps

were replicated from the master by casting Sylgard 184 (Dow Corning, Mid-

land, MI) on the silicon wafer. Micro-patterned substrates were prepared

by stamping the PDMS on 35 mm Falcon polystyrene petri dishes (BD Bio-

sciences, Bedford, MA). The PDMS stamp was coated with 50 mg ml-1 of

fibronectin (Sigma, St. Louis, MO) and incubated for 30 minutes prior to

stamping them on the petri dishes. The stamps were then dried with nitro-

gen and kept in conformal contact with the substrate for 20 minutes in an

incubator. After stamping the protein, the substrate was blocked with 2%

Pluronic F-127 (Sigma, St. Louis, MO) to render all unpatterned regions

non-adhesive to the cells. The substrate was rinsed three times with PBS

prior to cell seeding. Approximately, 75,000 cells were seeded on each sub-

strate and observed for nine days resulting in an initial cell seeding of 7,800
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Figure 4.1: Schematic showing the preparation of the micro-patterned sub-
strates.

cells per cm2 for the 35 mm petri dish.

Three different geometries - linear, circular, and hybrid (linear and circular

in the same structure) were patterned on the surface of the petri dishes

which also as served as a control. Figure 4.2 shows the cells on different

types of geometries after 24 hours of culture in the growth media. Skeletal

myogenesis is a highly orchestrated terminal differentiation process in which

the proliferating mono-nucleated myoblasts differentiate and fuse to form

multi-nucleated myotubes. In this chapter, the influence of 2D geometrical

cues on the differentiation of C2C12 myotubes was investigated. C2C12

myoblasts were patterned on fibronectin islands using µCP. The cells conform

uniformly to the protein micro-islands and form a confluent monolayer by the

end of 24 hours. However, cells on the smallest torus patterns (torus ID 40

µm) blend over the central hole to form a circle rather than a torus. This

effect was inversely related to the ID and was lessened for increasing ID’s

from 40 µm to 200 µm.

4.2.2 Culture of C2C12 cells

The murine-derived muscle cell line (C2C12) was purchased from Ameri-

can Type Culture Collection (ATCC, Manassas, VA). The cells were cul-

tured in Dulbecco’s modified Eagle’s medium (DMEM, Mediatech, Manas-

sas, VA) supplemented with 10% FBS (growth medium, GM). To induce
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Figure 4.2: Phase contrast images of the different micro-patterned cell is-
lands. Scale bar = 100 µm.

the differentiation of myoblasts into myotubes, C2C12 cells at 80-90% con-

fluence were shifted to DMEM supplemented with 2% horse serum (Lonza

Inc., Williamsport, PA) (differentiation medium, DM) and the medium was

replaced every other day. All the time points in the figures refer to cells being

present in the DM.

4.2.3 Immunofluorescence microscopy and quantitative
analysis of myotubes

Differentiated C2C12 cells were fixed with 4% PFA for 20 minutes and per-

meabilized with 0.2% Triton X-100 (Sigma, St. Louis, MO) for 10 minutes.

The cells were blocked with 1% bovine serum albumin (BSA, Thomas Scien-

tific, Swedesboro, NJ) solution for 30 minutes in PBS. All the previous steps

were performed at room temperature. The cells were incubated with MF-20

(anti - myosin heavy chain (MHC), Developmental Studies Hybridoma Bank

(DSHB), University of Iowa, IA) overnight at 4 ◦C followed by incubation

with fluorescein isothiocyanate (FITC) conjugated anti-mouse IgG (Invitro-

gen, Carlsbad, CA) and DAPI (Invitrogen, Carlsbad, CA) in dark at 37 ◦C.

The stained cells were imaged with a fluorescent microscope (IX81, Olym-

pus, Center Valley, PA) and the images were quantified using ImageJ. The

images obtained from the MHC and DAPI signals were pseudo-colored green

and blue respectively.
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Figure 4.3: Density of the C2C12 cells as a function of time on the different
micro-patterns.

4.2.4 Calculation of fusion index, maturation index and
density for the myotubes

Fusion index was calculated as the ratio of nuclei number in myocytes with

two or more nuclei versus the total number of nuclei [187]. The maturation

index was defined as myotubes having five or more nuclei [187]. Edges and

regions which did not show good stamping or cell adhesion were not used for

analysis. Cell density was calculated by dividing the number of cells in each

pattern (counting the nuclei) by the area of the pattern. Figure 4.3 shows

the cell seeding density on the different geometries over seven days. Two

petri dishes for each of the eight different patterns were used. At least five

patterns on each dish were used for quantitative analysis. The sample size

is also been mentioned in the figure legends. Table 4.1 shows the area of the

different patterns used in the study.

4.2.5 Electrical stimulation of myotubes

The contraction of myotubes was achieved by stimulating the cells with a

pulse train using a custom-built electrical setup. Figure 4.4 shows the setup

used for the contraction studies. Platinum electrodes (diameter = 0.762 mm)

spaced 1.2 cm apart were connected to the custom built setup and an Agilent

waveform generator (Santa Clara, CA) was used for generating the pulses.
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Pattern Type Area (µm2)
Hybrid 30◦ 195,000
Hybrid 60◦ 251,600
Hybrid 90◦ 346,300

Line 300 µm 600,000
Line 150 µm 300,000
Line 80 µm 160,000
Line 40 µm 80,000
Line 20 µm 40,000

Torus ID 200 µm 70,300
Torus ID 100 µm 45,239
Torus ID 40 µm 30,159

Table 4.1: Area of the protein micro-islands

To minimize electrolysis, a 220 F capacitor (C) was connected in series to

the circuit so that the resultant signal is produced with alternating polarity

[188]. The Nyquist criterion, which states that the sampling frequency must

be at least twice the highest frequency contained in the signal, was main-

tained during all video image acquisition. The resistance of the petri dish

with 1.5 ml of differentiation media (Rmedia) was calculated to be 475 Ω. The

reactance at 1 Hz was calculated to be 725 Ω. Therefore, the net impedance

of the equivalent circuit was calculated to be 865 Ω where the current leads

the voltage by 56.71◦. The impedance of the circuit at 1 Hz was calculated

by assuming a RC circuit in series with the previously noted values for Rme-

dia and C. The time constant (τ) of the circuit was about 105 ms and the

intensity of current in the circuit was calculated to be 15.5 mA. The resis-

tance of the Petri dish with differentiation media was calculated using the

relation τ = RmediaC. The value of τ was obtained from the oscilloscope as

one τ corresponds to the voltage dropping to 36.8% of the original (source)

voltage. To actuate and measure myotube displacement, an electrical field

pulse (amplitude 20 V, duration 50 ms and frequency 1 Hz) was applied to

the culture.

4.2.6 Analysis of alignment and cellular displacement

The alignment of myotubes in the micro-patterned cell islands was quantified

using a two-dimensional fast Fourier transform (FFT). The two-dimensional
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Figure 4.4: Setup for stimulating the contraction of C2C12 myotubes. (A)
Circuit diagram of the electrical pulse stimulation (EPS) setup. (B) Lid
with platinum (Pt) electrodes embedded on it.(C) The generation of bipolar
pulses from a monopolar pulse. This phenomenon helped to minimize the
electrolysis of the medium. (D) The entire setup for EPS (E) EPS in action
on a petri dish.

FFT function converts the information in an image from a “real” space into

a mathematically defined “frequency” space which can then be used to look

at the rate of change of pixel intensity across the entire image. The resulting

FFT output image contains pixels that are arranged in a pattern that reflects

the degree of alignment in the original image. The low frequency pixels

which also represent the background and the overall shape of the image are

placed at the center. The high frequency pixels which represent edges, finer

not repeated details and noise in the image are dispersed in a symmetrical

pattern about the origin towards the periphery. These pixel intensities are

summed along the radius for each angle of the circular projection and plotted

against the corresponding angle of acquisition to produce a two-dimensional

FFT alignment plot The height and the overall shape of the peaks represent

the degree of alignment of cells in the original image. A high and narrow peak

indicates a more uniform degree of alignment while a broad peak indicates

that more than one axis of alignment may be present. A completely random

alignment is shown by no discernible peak in the alignment plot [189].

The process of extraction of the principal frequency from the movies cap-

75



tured by the camera is as follows. First, a kymograph was generated from the

image sequence. Second, the time varying intensity of the kymograph was

recorded. Third, a FFT function was applied to the resulting gray scale inten-

sity values to generate a frequency spectrum. This spectrum represented the

principal frequencies of myotube contraction. In order to detect the displace-

ment of the myotubes, quantum dots (QDs) (Qtracker 585 Cell labeling kit,

Invitrogen, Carlsbad, CA) were loaded in the cell to create a good contrast so

that a semi-automated approach could be used for quantification. Digital im-

age correlation (DIC) was used to compute the displacement field of the cells

and a routine was written in MATLAB R2009a (MathWorks, Natick, MA).

Figure 4.5 shows the C2C12 myoblasts/myotubes loaded with QDs and the

approach used for detecting the displacement. A modified approach inspired

by Kamgoue et al. was used [190]. A series of image files was generated

from the individual frames of each movie, each separated by 0.21 seconds.

The image files displayed good contrast between the QDs of interest and the

background noise. In order to simplify the detection algorithm, noise thresh-

olding was performed; all pixels below the noise thresholding value were set

to a pixel value of 0. The first frame from each movie was used as Image 1,

while all subsequent frames were used as Image N, where N was the frame

number. A rectangular region of interest (ROI) was carefully chosen around

each QD to be interrogated in Image 1, including approximately 10 µm of

surrounding pixels to encompass displacement for the entirety of the movie.

A window (Win 1) inside this ROI was selected tightly around each QD,

chosen to minimize the amount of non-QD pixels. The coordinates and in-

tensity of each pixel in Win 1 were recorded in the matrix I1(i, j). For each

subsequent image, the same ROI was interrogated to locate the most similar

subset to Win 1. This target subset was called Win N and was represented

by the matrix IN(i + uN , j + vN), where uN and vN designate the desired

displacement values to be extracted for Image N. Win N was located by

sweeping the matrix IN(i+ u∗, j + v∗) through the ROI in Image N; each I∗N
describes a temporary window Win N∗ of the same size and shape as Win

1. Due to the very good contrast between QD pixels and non-QD pixels, we

were able to consistently locate the target Win N by selecting the Win N∗

of maximum mean intensity in the ROI given by Equation 4.1

IN(i+ uN , j + vN) = maxmean(IN(i+ u∗, j + v∗))|(u∗, v∗) (4.1)
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Figure 4.5: Technique used for the characterization of displacement of the
myotubes after stimulating them with EPS. (A) Schematic of the cell loaded
with with Qtracker 585 quantum dots (QDs) after 1 hour. (B) Phase contrast
image of the control sample after 7 days in DM. (B) Digital image correlation
(DIC) method used for quantifying the displacement of QDs and hence the
myotube in two successive images taken at initial time (t) and time (t+ ∆t).
∆t is the frame rate of the camera and was around 0.21 s or 0.05 s. The
x-component of displacement is represented by the vector u while the y-
component is shown by v. The net displacement of the QD is given by the
vector z which also shows the displacement of the myotubes (Scale bar =
100 µm).

The vectors uN and vN could then be correlated with the time value match-

ing each frame N to construct the displacement versus time curves shown in

Fig. 6.The ROI chosen in Image 1 must be chosen carefully to include the

expected displacement for all frames in the movie sequence while minimiz-

ing selection of unwanted pixels (which can be either noise or adjacent QD

not under interrogation). With proper selection of the ROI, we tested the

automated displacement measurement method with several test sequences

of images and determined the average error to be less than 1 pixel (around

0.285 µm).
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4.2.7 Statistical analysis

Statistical analysis was performed using one-way ANOVA post-hoc Tukey-

means comparison in OriginPro 8.5. All data values reported in the study

are mean ± standard error of the mean (S.E.M).

4.3 Stress map analysis of the cell micro-islands

Finite element analysis (FEA) was used to create the stress patterns of the

micro-patterned cell islands. A three-dimensional model for each type of cell

island was created using COMSOL 4.1 (Palo Alto, CA). The two components

used consist of a contractile layer and a passive layer as defined previously

[106, 191]. The bottom of the passive layer was fixed and contractility of

the cells was simulated by induction of a thermal strain on the top layer.

Both the bottom (passive) and the top (contractile) layers were assumed as

isotropic materials with Poisson’s ratio of 0.499 and Young’s modulus of 100

and 500 Pa respectively. The co-efficient of thermal expansion for the top

layer was 0.05 K and its thermal conductivity was 10 Wm-1K-1. In order

to simulate contraction, a temperature drop of 5 K was prescribed on the

top contractile layer. The ratio of the height of the contractile layer to the

passive layer was 5:1 and other dimensions were prescribed by the geometry

of the micropatterned islands. The von Mises stresses at the bottom of the

passive layer was reported. Thermal stress analysis was used as an analog to

simulate the tractional stresses experienced by the cell. Meshes of different

sizes (minimum mesh size varied from 0.4 - 8 µm) were used to confirm the

convergence of the results.

Figure 4.6 shows the von Mises stress at the fixed side of the bottom

passive layer for the three different geometries - linear (300 µm), circular (ID

200 µm, OD 360 µm) and hybrid (arc degree 30◦). The predicted von Mises

stress patterns from the FEA model matched well with previous reports on

the equivalent principal stress of similar structures [106, 191]. The linear

structure (line 300 µm) showed higher stresses at the edges than at the

center and this stress value was maximized at the corners. Similarly, the

torus (ID 200 µm, OD 360 µm) showed higher stress at the convex outer

edge of the structure than at the concave inner edge. The stress distribution

in the hybrid structure was at its maximum at the corners of the linear
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Figure 4.6: von Mises stress patterns of the three different types cell islands
determined using FEA. The von Mises stress shown here are color-coded
where red represents regions of maximum stress and blue represents the min-
imum stress. The maximum stresses are concentrated at the corners or the
periphery of the structures independent of their shape.

portion while the circular portions showed higher stresses than the center

of the structure. In general, the perimeter of the structures showed higher

stresses than the inner regions.

It has been previously shown that the mechanical stress patterns in the

micro-patterned structures corresponded to cellular growth and proliferation,

meaning, higher growth and proliferation of the cell sheet was seen where me-

chanical stress patterns were high [106, 191]. The ratio of the stress between

the convex outer edge to the concave inner edge for tori of different ID was

constant at around 0.5. Since, the circumferential area was the least in the

smaller ID torus (ID 40 µm), we see that even as early as 24 hours, the cells

proliferated to form a complete circle rather remaining as a torus. During

this time, the cells confined only to form a torus for larger ID torus (ID 200

µm) because of the larger area. However, with time (by day 7 in DM) even on

the larger torus (ID 200 µm) some of the structures were filled up to form a

circle rather than remaining a torus. As the torus ID 100 µm is intermediate

between the ID 40 µm and ID 200 µm torus, the cellular conformity results

for the ID 100 µm at 24 hours are also intermediate with some islands show-

ing central closure reminiscent of the ID 40 µm, while other islands remain

open like the ID 200 µm.
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4.4 Fusion and maturation index of C2C12 cells

C2C12 myoblasts when deprived of serum undergo cell cycle arrest and start

to fuse together to form multi-nucleated myotubes. Myotubes serve as the

building blocks for skeletal muscle, thus understanding the differentiation

process of C2C12 skeletal myoblasts in vitro has the potential to resolve

mechanisms of the myogenic differentiation process in vivo as well. Figure

4.7 shows the fluorescent images of the cells present on the different patterns

on days 1, 4 and 7 in DM; cells were cultured in GM for 24 hours and then

switched to DM. As shown here, the myocyte differentiation increased as a

function of time on all the substrates reaching a maximum by day 7 while

nearly half of the toroid patterns showed very little to no differentiation even

by day 7. Massive myotube detachment was seen on all substrates starting

from 8-9 days in the DM, a result that has been reported previously [192, 193].

To quantify the differentiation of myotubes, the fusion index from the Im-

munofluorescent images was calculated by determining the number of nuclei

in the MHC stained region (only regions with > 2 nuclei were used) to the

total number of nuclei in the field of view. Figure 4.8A shows the fusion

index of the C2C12 cells on hybrid patterns. The results show a progressive

decrease in myotube differentiation starting with the hybrid 30◦ followed by

hybrid 60◦ and hybrid 90◦. Hybrid 30◦ (45.38 ± 2.57%) showed greater than

1.5 fold differentiation compared to hybrid 60◦ (29.20 ± 1.20%) and hybrid

90o (25.71 ± 2.62%). In contrast, there was no significant difference in the

differentiation of C2C12 myotubes on the linear patterns of different widths

Figure 4.8B. However, myotubes on the linear patterns showed a significant

decrease in differentiation when compared to the control at p < 0.01. The

large width line pattern (300 µm) was used to mimic the unpatterned control.

Presumably, even thicker patterns are required so that the cells on these pat-

terns start mimicking the properties of the cells on the unpatterned control.

Similar results were observed for the circular geometry. There was no signif-

icant difference of differentiation between the toroids of different IDs; when

compared to controls, all of the toroids showed a decrease in differentiation

(Figure 4.8C, p < 0.01 ). Figure 4.8D summarizes the fusion index for all the

different geometries by incorporating the highest for each type.

The results suggest that adding a small degree of circularity to a linear

structure (hybrid 30◦ )enhances the differentiation of C2C12 myoblasts into
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Figure 4.7: Fluorescent images of the C2C12 cells on the different patterns.
Column 1 shows the C2C12 cells after one day, column 2 shows the cells after
four days and column 3 shows the cells after seven days in the differentiation
media. Row 1 shows the C2C12 cells present on the unpatterned (control)
surface, row 2 shows them on the linear cell islands, row 3 and 4 shows the
cells on hybrid patterns with different arc degrees (30◦ and 90◦) and row 5
shows the cells on toroid cell islands. Cells were stained for anti-MHC (green)
and nucleus (blue) and these were used for the calculation of the fusion index
and the maturation index (% myotubes > 5 nuclei) (Scale bar = 100 µm).

myotubes. This geometry showed the highest fusion index of all the different

patterns used. The next highest fusion index was observed for the linear

geometry while the circular geometry (torus) showed the lowest fusion index

of all the patterns in this study.

The maturation index (% myotubes > 5 nuclei) was also used as a parame-

ter to evaluate the differentiation of C2C12 myotubes. The maturation index

can also be used to quantify the size of the myotube, a higher maturation

index represents a myotube which is larger in size [187]. The maturation

index of the hybrid patterns is shown in Figure 4.9A. It can be seen that

the hybrid 30◦ pattern, which showed highest fusion index, also shows the

highest maturation index for the myotubes. The maturation index for the
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Figure 4.8: Quantification of the fusion index for the C2C12 cells on the
different micro-patterned cell islands. Fusion index was calculated as the
ratio of nuclei number in myocytes with two or more nuclei versus the total
number of nuclei. (A) Hybrid patterns with different arc degrees (30◦ 60◦ and
90◦), (B) Linear cell islands (line patterns) with different width (300 µm, 150
µm, 80 µm, 40 µm, and 20 µm), (C) Toroid cell islands (torus patterns) with
different inner diameter (40 µm, 100 µm, and 200 µm). (D) The highest from
each of the different cell islands are plotted together to show the geometry
that maximized the fusion index of C2C12 cells - hybrid 30◦. Significance
**p < 0.01, *p < 0.05, and NS = not significant. Data is represented as
mean ± S.E.M (n = 10 patterns).

hybrid 30◦ (73.09 ± 4.41%) pattern was statistically higher (p < 0.05 ) than

that for the control (60.24 ± 2.19%), hybrid 60◦ (55.11 ± 3.83%) and hybrid

90◦ (46.71 ± 3.91%) (p < 0.01 ). Figure 4.9B shows the maturation index

for the linear geometry with different widths. There was no statistically sig-

nificant difference in the size of the myotubes on line patterns of different

widths. Also, the toroid patterns showed similar results where no significant

difference could be seen in the maturation index for tori of different inner di-

ameter. However, each of them showed smaller maturation for the myotubes

when compared to the control. Again, the hybrid 30◦ pattern emerges as the

optimum geometry for myotube maturation showing higher maturation than

either the linear or the circular geometry (Figure 4.9).

It was shown in Figure 4.8 B, C and Figure 4.9 B, C that the fusion and
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Figure 4.9: Quantification of the fusion index for the C2C12 cells on the
different micro-patterned cell islands. Fusion index was calculated as the
ratio of nuclei number in myocytes with two or more nuclei versus the total
number of nuclei. (A) Hybrid patterns with different arc degrees (30◦, 60◦,
and 90◦). (B) Linear cell islands (line patterns) with different width (300
µm, 150 µm, 80 µm, 40 µm, and 20 µm), (C) Toroid cell islands (torus
patterns) with different inner diameter (40 µm, 100 µm, and 200 µm). (D)
The highest from each of the different cell islands are plotted together to
show the geometry that maximized the fusion index of C2C12 cells - hybrid
30o. Significance **p < 0.01, *p < 0.05, and NS = not significant. Data is
represented as mean ± S.E.M (n = 10 patterns).

maturation indices were not statistically different for lines of different widths

and tori of different IDs. However, within the same categories of geomet-

ric shapes, why we do not see different rates of fusion and maturation? As

pointed out by Nelson et al., cellular signals like proliferation and differen-

tiation emanate from the bulk tissue rather than the edges or length [106].

For example, they show that in their study there was a smaller proliferation

along the long edge of the rectangle as compared to the square of the same

edge length. Therefore, even though the stress values are different on the

linear geometries (different width patterns) and circular geometries (tori of

different IDs), the overall distribution in stress gradients is very similar on

these structures. This leads to very similar fusion and maturation indices on

linear (different width patterns) and circular (tori of different IDs) geome-
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tries. Hence, the data suggests that it is not a particular stress value but

the stress gradient (distribution of stress) in a structure that dictates the

differentiation process.

4.5 Alignment of C2C12 myotubes

Controlling the alignment of cells is critical for any tissue engineered graft.

In vivo, many cells/tissues like cardiac muscle [194], skeletal muscle [195],

corneal tissue [196], vascular tissue [197], have a very high degree of align-

ment associated with them which in turn enhances their functionality. In

particular, for skeletal and cardiac muscle, alignment of cells is extremely

important in order to maximize the contractile power of the tissue. The

alignment of myotubes on the micro-patterned cell islands was therefore in-

vestigated using two-dimensional FFT. For a detailed and excellent discussion

on the technique the reader is recommended to look at Ayres et al [198, 189].

Figure 4.10 shows the alignment of MHC-positive myotubes on the differ-

ent micro-patterns. The second column in the figure is the two-dimensional

FFT of the image (or the red selection) which shows the distribution of pixels

of different frequencies around the origin. Myotubes on the control (unpat-

terned) substrate shows no distinguishable peak in the 2D FFT alignment

plot indicating that there is no alignment of myotubes on this substrate.

This was further confirmed by looking at the angle of deviation of myotubes

from the principal axis and only less than 20% myotubes showed 15◦ or less

deviation. It has been shown previously that cells presenting less than 15◦

of deviation are considered aligned along the given axis [199]. As expected,

myotubes on the linear patterns showed a very high degree of cell alignment.

Myotubes on the line (width 80 µm) showed a very sharp narrow peak which

is indicative of high degree of cell alignment. More than 90% of the myotubes

showed less than 15◦ of deviation from the principal (long) axis of the linear

geometry. However, as the width of the linear geometry was increased from

80 µm to 300 µm , a sharp decrease in the alignment of myotubes was seen.

Less than 40% of the myotubes now showed 15◦ or less of cellular deviation.

Also, the 2D FFT alignment plot is now much broader which indicates more

than one axis of alignment. By quantifying the alignment of myotubes on

the hybrid patterns, we see that hybrid 30◦ patterns (width of the linear por-
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tion is about 100 µm) showed the highest fusion and maturation index for

the myotubes also showed a very high degree of myotube alignment. Almost

90% of the myotubes showed 15◦ or less of deviation while 100% of the my-

otubes were within 30◦ of deviation from the principal axis of the geometry.

The 2D FFT alignment plot also showed a narrow high peak indicating high

degree of alignment for the myotubes. However, the alignment of myotubes

for the hybrid 90◦patterns (width of the linear portion is about 100 µm) was

not very high. Less than 30% of the myotubes showed < 15◦ of deviation

from the principal axis of the geometry and the 2D FFT alignment plot did

not show peaks.

Taken together, these results suggest that as the width of the linear portion

in the geometry is increased, the degree of alignment goes down. Also, by

adding a curvature to the linear geometry, the degree of alignment decreases.

However, for small curvatures, the deviation is small as seen for the hybrid

30◦ pattern. As the arc degree of the curvature increases the alignment

decreases substantially as seen for the hybrid 90◦ pattern.

Studies have shown the alignment of myotubes by modulating the surface

topography for instance using grooves/ridges [124], by grinding the substrate

with abrasives [125], by using UV-lithography to micro-pattern glass [126],

and others [200, 201]. In this study, alignment of cells was achieved on

different geometries by using µCP in contrast to creating wells/channels for

guiding the cells in it. Alignment of cells in wells/channels is present because

of the topography of the substrate while alignment of cells on micro contact

patterned substrate is present because of the chemical patterns.

Chemical patterns differ from topographic patterns in the sense that to-

pographic features do not limit the area of for cellular extension and hence

the area of cell contact remains unrestricted [201]. Depending on the size

of the channels, cell extension can follow “gap guidance” or “contact guid-

ance”. On the other hand, in the chemical patterns the area of cell contact is

limited by the cell patterns and in general, the cells cannot cross the bound-

ary between the adhesive and no-adhesive cell islands. Alignment of cells

is extremely important for skeletal tissue engineering applications as in vivo

the skeletal muscle is formed by highly aligned structure consisting of paral-

lel arrays of multi-nucleated myotubes. This requires the remodeling of the

actin cytoskeleton such that the actin filaments are now aligned parallel to

the long (principal) axis of the micro-pattern which in turn can also affect
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Figure 4.10: Quantification of alignment of C2C12 cells on the micro-
patterned cell islands. Column 2 shows the two-dimensional FFT of the
image in the first column or the selection (red rectangle) in the image. (Scale
bar = 100 µm).

the differentiation of myotubes.

Alignment of myotubes also imparts anisotropy to the skeletal muscle tis-

sue so that the contractile power of the muscle is maximized. As expected,

linear geometries with smaller line widths showed a high degree of alignment.

However, the hybrid 30◦ geometry, which combined both linear and circu-

lar features together in a single geometry, also showed a very high degree

of alignment. This combined with the fact that hybrid 30◦ also showed the

highest fusion and maturation indices; it emerges as a promising geometry for

studies involving other cell types like hMSCs, ESCs and induced pluripotent

stem cells iPSCs where both differentiation and alignment of the cells/tissue

is required.
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4.6 Response of electrical pulse stimulation on mature

myotubes

Muscles being an electrogenic tissue, their development are closely linked

to their electrical activity. Therefore, it was interesting to look at the con-

traction of these cells using an EPS. First, the affect of frequency on the

contraction of myotubes was investigated. The myotubes contracted at the

rate at which a frequency pulse from the waveform generator was applied

to them as seen in Figure 4.11A. The data suggests that it is possible to

synchronize the frequency of contractions of myotubes to the electrical pulse

frequency.

The displacement of myotubes under the application of an electric filed

for cells on different patterns was quantified. Figure 4.11B shows the dis-

placement profile of myotubes on the different patterns on day 7. Twitch

responses of myotubes were observed at lower frequencies (1 - 10 Hz) while

tetanic contractions were observed at higher frequencies (≥ 30 Hz). It can

be seen from this that the cells showed very uniform displacement under

the application of the field. The displacement amplitude slightly increased

from day 4 to day 7 for all the different patterns as can be seen in Figure

4.11C. The highest displacement was seen for the hybrid 30◦ pattern with

the average being 1.24 ± 0.16 µm. The line pattern (width 300 µm) showed

the second highest displacement which was 0.71 ± 0.09 µm followed by the

torus (ID 200 µm) pattern which registered an average of 0.60 ± 0.09 µm

displacement. Patterns with higher fusion/maturation index show higher

displacements.

Myotubes or muscles are linear actuators where the biochemical energy

from the cell culture medium is converted into mechanical motion by the

actomyosin motors in the cell. As a result, these cells have become strong

candidates for many biological micro-electromechanical systems (BioMEMS).

There have been several examples of using cardiac and skeletal muscle cells for

“lab on a chip” applications [202, 203, 204, 205]. For all contraction studies,

the direction of the electrical field was parallel to the direction of the long

axis (longitudinal direction) of the patterns as it has been shown previously

that a smaller electrical energy is required when the electric field is parallel

to the longitudinal axis of the myotubes compared to be perpendicular to it

[193]. As shown in Figure 4.11, it is possible to synchronize the frequency
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Figure 4.11: Quantification of the C2C12 myotubes using the EPS on the dif-
ferent micro-patterns. (A) Myotubes were stimulated at different frequencies
using the EPS and their response was recorded via a kymograph. Inset shows
the spectral density of the signal obtained from the kymograph by FFT. (B)
Time course of maximum contractile displacement of the myotubes on the
control, hybrid 30◦ and line patterns. (C) Box plots showing the average dis-
placements of the patterns on day 4 (n = 3 ) and day 7 (n = 5 for the torus,
n = 7 for line (300 µm) and n = 13 for control and hybrid 30◦ patterns).
Significance, *p < 0.05, and NS = not significant. Data is represented as
mean ± S.E.M.

of contractions of myotubes to the electrical pulse frequency which can have

several applications in the field of BioMEMS like using a tissue engineered

system of myotubes as an artificial pump for “lab on a chip” applications.

4.7 Affect of density on the process of myogenesis

The same numbers of cells were seeded on each of the substrates (initial seed-

ing density was the same on all patterns), but the outcome shows different

cell densities for each pattern. This could be attributed to the different areas

and different number of patterns on each chip. Messina et al., showed that
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Figure 4.12: Influence of density on the differentiation of C2C12 myotubes
on the different micro-patterns. (A) The fusion index and density of C2C12
myotubes on the various micro-patterned cell islands on day 7. The inset
shows a scatter plot of the fusion index and the density of C2C12 myotubes.
The Pearson’s correlation coefficient (r) is 0.495 indicating a low association
between the fusion index and the density of C2C12 myotubes for day 7. (B)
The maturation index (% myotubes > 5 nuclei) and density of C2C12 my-
otubes on the various micropatterned cell islands on day 7. The inset shows
a scatter plot of the maturation index and the density of C2C12 myotubes.
The Pearson’s correlation coefficient (r) is 0.551 indicating a low association
between the maturation index and the density of C2C12 myotubes for day
7. Significance **p < 0.01, *p < 0.05, and NS = not significant. Data is
represented as mean ± S.E.M (n = 10 patterns).

myogenesis in vitro follows a phenomenon known as the “community effect”

where the initial cell density of the myoblast plating is important. [206] When

C2C12 myoblasts were seeded at low cell densities (LD, 500 cells/cm2) com-

pared to high cell densities (HD, 20000 cells/cm2) they showed very different

fusion indices where LD cultures showed less than 10% MHC positive nuclei

while HD cultures showed more than 80% MHC positive nuclei after 72 hours

in the DM.

Figure 4.12 shows the average cell density on the different patterns plot-

ted together with the fusion index for day 7. Hybrid 30◦ pattern showed

the highest average cell density and the highest fusion index. The inset for

Figure 4.12A shows cell density plotted against the fusion index of cells. The

Pearson’s correlation coefficient is 0.495 which suggests that there is a very

low level of associativity between fusion index and cell density. Even though

the highest cell density showed the highest cell fusion, density cannot be the

dominant factor because of these differences in the fusion indices are seen on

the different patterns. For example, there is a statistically significant differ-

ence between the fusion index of the hybrid 30◦ and the hybrid 60◦ pattern
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at p < 0.01. However, for the two same geometries, there is no significant

difference in the density. In contrast, the linear geometries (20 µm versus

150 µm) show no significant difference in the fusion indices while there is a

statistically significant difference in the densities between these two different

structures. The same argument also holds true for Figure 4.12B where the

cellular density and maturation index is plotted against the type of pattern

while the inset shows them plotted against each other. The Pearson’s corre-

lation coefficient is 0.551 which means that there is low associativity between

the two parameters - maturation index and cellular density. Figure 4.3 shows

the density of myotubes on the various patterns as a function of time. Un-

der our given experimental conditions it can be concluded that the effects

of maturation index and fusion index on the different patterns are not likely

to be attributed to the differences in densities on those patterns. Rather,

the data suggests that other inherent mechanisms and cellular pathways ex-

ert a dominant influence on this fusion and maturation process for different

micro-patterned geometries.

A very simple explanation why we see a greater differentiation activity on

the hybrid 30◦ pattern is that it combines the best of the linear (high degree

of myotube alignment) and circular (high density) geometries. But in order

to get a more mechanistic understating of this process it is necessary to look

at the molecular pathways and molecules that might be involved. However,

it was very difficult in this study to point out a single molecule that might

be responsible for up regulation of myogenesis on a particular geometry as

there are 32 known molecules that are involved in mammalian process of

myoblast fusion [207]. These can be broadly classified into three major types

namely - membrane-associated proteins, intracellular molecules and extra-

cellular/secreted molecules. It is well known know that there are four known

muscle regulatory factors (MRFs) - MyoD, Myf-5, myogenin and MRF4 that

are involved in vitro myogenesis [208, 209]. Since, MyoD and Myf-5 are

“commitment” or “specification” factors, myogenin is a “differentiation” fac-

tor and MRF4 has both aspects, one or more of the 32 molecules involved in

skeletal myogenesis targets these four MRFs at different stages of myogenesis

leading to differences in differentiation on the different geometries.

After performing a thorough analysis of the different parameters impor-

tant for the differentiation of C2C12 myoblasts which included - fusion index,

maturation index, alignment of myotubes and electrical actuation (displace-
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ment of myotubes), hybrid 30◦ pattern emerges as the optimum geometry in

this study.

4.8 Conclusion

Protein micro patterning can be used to mimic, at a fundamental level, the

in vivo architecture of the tissues and to study cellular differentiation in

vitro. We conclude that geometrical cues influence differentiation process

of C2C12 myoblasts. Hybrid structures with the smallest arc degree (hy-

brid 30◦) showed the best results for all four differentiation parameters. The

hybrid 30◦ pattern exhibits a ∼2-fold increase in the fusion index when com-

pared to the line patterns and ∼3-fold increase when compared to the toroid

pattern. The hybrid 30◦ also showed a higher maturation index compared

to the line or the toroid patterns. In response to electrical field stimulation

(20 V, 50 ms pulse, 1 Hz), mature myotubes on hybrid 30◦ patterns showed

a ∼2-fold increase in cellular displacement when compared to myotubes on

the line and torus patterns. The influence of C2C12 cell density on fusion

and maturation indices was also tested, and the results suggest that density

does not play a significant influence on cellular differentiation under these

conditions. Therefore, by using µCP the micro-environmental cue of geome-

try was systematically studied. These results can have applications in tissue

engineering of muscle cells and designing muscle cell bio-actuators.
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CHAPTER 5

GRAPHENE PROMOTES MYOGENESIS
OF C2C12 SKELETAL MUSCLE

MYOBLASTS

5.1 Introduction

Graphene is an atomic layer thin sheet of sp2-hybridized carbon atoms that

are arranged in a unique 2D honeycomb structure. Graphene has intrigued

researchers worldwide because of its unique physical (high specific surface

area, 2630 m2 g-1), chemical (thermal conductivity, ∼5000 K m W-1), electri-

cal (mobility of charge carriers, 200,000 cm2 V-1 s-1), and mechanical (Young’s

modulus, 1100 GPa) properties [210, 211]. As a result of these unique prop-

erties, graphene and its derivatives have found applications in a variety of

fields like nanoelectronics [212], composite materials [213], energy technology

[214], sensors [215], and catalysis [216] to name a few [217]. However, the

biomedical applications of graphene have yet not been fully explored. This

chapter will therefore explore the potential of graphene as a novel substrate

for muscle tissue engineering. Since, graphene is an allotrope of carbon; it

can easily mimic the native cellular micro-environment in terms of its phys-

ical and chemical properties. Thus graphene becomes a novel candidate for

3D tissue engineering and regenerative medicine.

Section 5.2 will outline the scheme for transferring graphene films on silicon

oxide substrates. Section 5.3 will show the fusion of C2C12 cells on silicon

oxide/graphene chips. Section 5.4 will investigate the potential of Insulin-like

growth factor (IGF-1) on the process of myogenesis. Section 5.5 will show the

fusion of C2C12 cells on graphene chips with the media being supplemented

with IGF-1. Section 5.6 will summarize the major findings of this chapter.
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5.2 Transferring graphene films on silicon oxide chips

Graphene was grown by chemical vapor deposition (CVD) method on cop-

per foil (99.8%, Alfa Aesar 0.001 inch using methane as a precursor gas. The

growth parameters were CH4:H2:Ar=100:50:1000 sccm at 1000 ◦C, growth

time 40 minutes, growth pressure 100 mTorr. The wet transfer using two

PMMA resists as a supporting film was applied with a standard clean two pro-

cess (20:1:1 H2O:H2O2:HCl) step [218]. First, PMMA 495 A2 with 495000 g

mol-1 molecular weight, 2% dissolved in anisole, was spun on graphene/copper

sample with 3000 rpm for 30 seconds and baked at 200 ◦C for 2 min-

utes and second PMMA 950 A4 with 950000 g mol-1 dissolved in 4% of

anisole, spun with 3000 rpm for 30 seconds and baked at 200 ◦C for 2 min-

utes. Copper foil was etched overnight in FeCl3 Printed Circuit Copper

Etchants 100 (Transene, CO INC). As a last step of the transfer process the

graphene/PMMA film was deposited on the substrates: SiO2 (285 nm)/Si

(100) substrate. The PMMA film was lifted off with dichloromethane:metha-

nol (1:1) solution for 50 minutes and the graphene film on substrate was an-

nealed for 1 hour at 400 ◦C in H2 (500 sccm) and Ar (500 sccm) atmosphere.

Quality of the graphene was studied by Raman spectroscopy. Raman mea-

surements were performed using a Renishaw Raman/PL Micro-spectroscopy

System with laser excitation wavelength 633 nm, a 50x long-distance objec-

tive, power 10% and the acquisition time was 30 seconds. The data were

acquired in the range from 1200 cm−1 to 3000 cm−1.Structure morphology

of graphene films was characterized with SEM an AFM techniques. SEM

was performed with Hitachi S-4800 machine and AFM was done with Dig-

ital Instruments Dimension 3000 in a tapping mode. AFM scan size was

10×10µm2. Figure 5.1 summarizes the quality characterization performed

on the graphene used for the growth of C2C12 cells. Raman spectrum is

given in the figure 5.1A for graphene transferred on SiO2/Si (100) substrate.

The characteristic graphene Raman peaks (D, G and 2D) are indicated.

The graphene growth results in the monolayer coverage as it follows from

the 2D peak shape (Lorentzian), 2D/G peak intensity ratio (≈3), G peak

shift [219, 220, 221]. The inset to Figure 5.1A shows the SEM image of the

graphene. The AFM image shows the surface morphology and is presented

in 5.1B. Root mean square (RMS) roughness obtained from the AFM data

is 5 nm for 10×10 µm2 scan.
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Figure 5.1: Characterization of graphene film on SiO2 substrate. (A)Raman
spectrum of graphene transferred on SiO2/Si (100) substrate. The principal
Raman peaks (D, G and 2D) are indicated. The inset shows the SEM im-
age of the graphene surface. (B)AFM data for the graphene transferred on
SiO2/Si(100) substrate.

5.3 Graphene enhances the myogenesis of C2C12 cells

Skeletal myogenesis is a highly orchestrated terminal differentiation process

in which the proliferating mono-nucleated myoblasts differentiate when de-

prived of serum and fuse together to form multi-nucleated myotubes [222,

223]. C2C12 cells are used as a model system to study different types of

muscular dystrophies like Duchenne muscular dystrophy (DMD), Emery-

Dreifuss muscular dustrophy (EDMD) and limb-girdle muscular dystrophy

(LGMD) in vitro [224, 225]. Since, graphene can also be used a sensor, it

therefore becomes very interesting to study the process of C2C12 myogen-

esis on graphene. To that end, the myogenic potential of C2C12 cells was

investigated on graphene.

The graphene/SiO2 chips fabricated in section 5.2 were first cleaned by in-

cubating them in 70% ethanol for 4 hours after which they were rinsed thrice

with DI water and twice with PBS. After this, these chips were placed in one

of the wells of a 6 well plate. ∼1,000,000 C2C12 cells (passage number < 10)

were then seeded in the well holding the chip. Thus leading to an initial cell

seeding density of ∼1000 cells mm-2 which is similar to the cell density used

in [186]. The protocol for the culture of C2C12 cells is described in chapter 4

sub-section4.2.2. The regular cell culture media consisted of Dulbecco’s mod-

ified Eagle’s medium supplemented with 10% FBS (growth medium, GM).
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To induce the differentiation of myoblasts into myotubes, C2C12 cells at 80-

90% confluence were shifted to DMEM supplemented with 2% horse serum

(differentiation medium, DM) and the medium was replaced every other day.

All the time points in the figures refer to cells being present in the DM. Cells

were cultured on these chips for four days and the fusion index, myotube

area and cell density was investigated on these chips on day two, four for

both the graphene and SiO2 regions of the chip. Fusion index was calculated

as the ratio of nuclei number in myocytes with two or more nuclei versus

the total number of nuclei [187]. Immunofluorescence was done as per the

protocol described in chapter 4 sub-section4.2.3. Briefly, the cells were first

fixed with 4% PFA for 20 minutes, permeabilized with 0.2% Triton X-100 for

10 minutes and blocked with 1% BSA at room temperature. The cells were

incubated with MF-20 overnight at 4 ◦C followed by incubation with fluores-

cein isothiocyanate (FITC) conjugated anti-mouse IgG and DAPI in dark at

37 ◦C. The stained cells were imaged with a fluorescent microscope and the

images were quantified using ImageJ. The images obtained from the MHC

and DAPI signals were pseudo-colored green and blue respectively. Figure 5.2

shows the fluorescent images of the cells over the period of four days and the

parameters of fusion index, myotube area and cell density on both graphene

and SiO2 regions of the chip. It can be seen that the percentage of myotubes

(green) increase as a function of time on both graphene and SiO2. However,

myotubes are mostly present on the graphene region of the chip with very

little myotube formation on the SiO2 region. Also, at the interface of SiO2

and graphene the elongation of myotubes can be seen on day 4. The higher

attachment of cells on graphene is solely based on the differences in the mate-

rial properties of SiO2 and graphene. The RMS roughness of graphene is ∼5

nm while the RMS roughness of SiO2 is ∼0.4 nm [132]. This increase in the

roughness provides a higher attachment area for the cells [226]. In addition,

SiO2 is very hydrophilic (contact angle = 30.4◦ ± 3.21◦) while graphene has a

contact angle of 79.71◦ ± 3.30◦ making it slightly hydrophilic [132, 227]. The

optimum contact angle for cell attachment is ∼64◦ with a decrease in cell

adhesion on very hydrophilic or very hydrophobic surfaces [226].These ma-

terial properties promote higher C2C12 attachment on graphene over SiO2

surfaces. Figure 5.2B shows the fusion index of C2C12 cells on graphene and

SiO2 surfaces. By day 4, graphene shows a fusion index of 21.52 ± 1.64%

while only 9.30 ± 2.50% myotubes fuse on the SiO2 surfaces and this is sta-
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Figure 5.2: C2C12 cells on graphene/SiO2 chips.(A)Fluorescent images of the
C2C12 cells on graphene and SiO2. Column 1 shows the cells on interface
of graphene and SiO2 parts of the chip for day 2 and 4. Column 2 shows
the cells on graphene and column 3 shows the cells on SiO2. Row 1 shows
the C2C12 cells on day two while row 2 shows the cells on day four. Cells
were stained for anti-MHC (green) and nucleus (blue) and these were used
for the calculation of the fusion index. The dashed white bars in column 1
are used to separate the SiO2 and graphene surfaces of the chip. (Scale bar
= 100 µm)Quantification of (B)fusion index (C) myotube area fraction and
(D) cell density, for the C2C12 cells on graphene and SiO2. Significance **p
< 0.01 and *p < 0.05. Data is represented as mean ± S.E.M (n = 5 ).

tistically significant at p < 0.01. Similar results are obtained for the myotube

area fraction and the cell density where graphene out performs SiO2 surface.

Serum protein adsorption on the substrate plays a big role in the attachment

properties of cells. Both graphene and derivatives of graphene have a high

capacity of serum protein adsorption compared to SiO2 [228]. Since, serum

proteins contain a lot of ECM proteins like albumin and fibronectin [138],

these proteins can get easily get adsorbed on the graphene surfaces. Also,

the π−electron cloud in graphene can interact with the inner hydrophobic

core of proteins enhancing cell attachment [228]. The higher density of these

ECM proteins on graphene surfaces results in higher adhesion sites for the
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cells which in turn results in higher cell density and attachment of cells on

graphene. Higher C2C12 cell density can be verified from figure 5.2C where

the graphene surface shows over twice the number of C2C12 cells than SiO2

surface. “Community effect” is a well-known phenomenon in C2C12 myoge-

nesis where higher initial cell density increases the fusion index of myotubes

[206]. Thus most likely by higher initial C2C12 cell recruitment on graphene

over SiO2 surface, graphene enhances the process of C2C12 myogenesis.

5.4 Insulin-like growth factor as a promoter of C2C12

myogenesis

Skeletal muscle is a highly dynamic tissue that can change its phenotype in

terms of mass and composition based on environmental cues like nutrition,

exercise or starvation [229]. Two molecules namely IGF-1 and Growth and

Differentiation Factor 8 (GDF8) (also known as myostatin) have been recog-

nized to be key regulators in the control of skeletal muscle size [230]. IGF-1

has been recognized to be a positive regulator for muscle growth and it was

shown that mice null for IGF-1 show large retardation in skeletal muscle mass

[231, 232], while those over-expressing IGF-1 showed significant myofiber hy-

pertrophy, increased protein synthesis and myoblast proliferation [233, 234].

On the other hand myostatin has been established as a negative regulator

for muscle growth and studies have shown that mice null for the myostatin

showed tremendous increase in muscle mass with some muscles increasing by

as much as 200-300% [235, 236]. Therefore, in this study the influence of IGF-

1 on C2C12 myoblasts was investigated to see its affect on graphene. Figure

5.3 summarizes the findings of this study. 1 ng ml-1 of IGF-1 was added to

the DM and while the control was the sample with just the DM. As expected,

the samples treated with IGF-1 show higher percentage of myotubes by the

end of five days as seen in figure 5.3A. Also, the IGF-1 treated samples show

higher fusion index and cell density compared to the control. IGF-1 acts as

an autocrine and paracrine factor and thereby up-regulates myoblast prolif-

eration and myotube differentiation via a number of pathways [230]. As one

of the pathways up-regulated by IGF-1 is mitogen-activated protein kinase

(MAPK), which is responsible for cellular proliferation and division [230],

higher cell densities were expected for the IGF-1 treated samples. This was
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Figure 5.3: Affect of IGF-1 on C2C12 myogenesis. A) Fluorescent images of
the C2C12 cells with and without IGF-1 (control). Column 1, 2, and 3 shows
the cells on day 1, 3, and 5 on the control and the IGF-1 treated sample.
Row 1 shows the cells on control and row 2 shows the cells on IGF-1 treated
samples.(Scale bar = 100 µm) Quantification of (B)fusion index and (C) cell
density on the control and IGF-1 treated samples. Significance **p < 0.01
and *p < 0.05. Data is represented as mean ± S.E.M (n = 6 ). Spontaneous
alignment of C2C12 cells in the petri dishes on day 5 for the (D) control (n
= 105 ) and (E) IGF-1 treated samples (n = 111 ).

verified from figure 5.3C, where the samples treated with IGF-1 shows more

than twice the cell density versus the control sample by the end of five days.

In addition, it was very interesting to see spontaneous myotube alignment

on the IGF-1 treated samples by day 5. Myotubes on the control show no

net alignment (figure 5.3D). However, localized regions on the IGF-1 treated

samples show a net alignment as more than 70% of the myotubes show less

than 15◦ of deviation from one common axis (figure 5.3E). It should be noted

that this alignment is highly localized and myotubes in the entire petri dish

do not show alignment along the same axis. However, in the field of view

captured by the objective, most myotubes seem to align along one common

axis. Thus by restricting the growth of cells in smaller patterns (∼2×2 mm2)
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regions, one can expect myotube alignment locally.

5.5 Graphene with insulin-like growth factor further

enhances the myogenesis of C2C12 cells

C2C12 cells were then again seeded on graphene/SiO2 chips. However, this

time the DM was supplemented with 1 ng ml-1 of IGF-1 and the same protocol

as listed in section 5.3 of this chapter was repeated. Figure 5.4A shows the

fluorescent images of C2C12 cells on the graphene and SiO2 surface of the

chip on days 2 and 4. Again, the graphene surface of the chip shows most

of the myotubes with very little myotube formation on the SiO2 surface.

Figure grapheneIGFB, C, and D show the quantification for fusion index,

myotube area fraction, and cell density on the graphene and SiO2 surfaces

of the chip. Graphene shows higher values for all the three parameters and

the values are statistically significant at p < 0.01. By the end of 4 days,

the fusion index on graphene is ∼2 larger than on SiO2, the myotube area

fraction on graphene is ∼4 larger than on SiO2 while the density of C2C12

cells on graphene is ∼3 larger than on SiO2. Thereby graphene emerges as

an ideal surface for muscle tissue engineering. The higher differentiation on

graphene could again be attributed to the surface properties of graphene like

roughness, hydropathy, and the π−electron cloud which leads to higher cell

attachment and thereby higher differentiation. Since, recently there have

been few reports of graphene field-effect-transistors (grapheneFETs) [237,

238, 239], it would be very interesting to simultaneously use graphene for

actuating and recording action potentials from these electrogenic C2C12 cells.

Furthermore, a new breed of genetically engineered C2C12 cells, optogenetic

C2C12 cells, have been recently reported [240]. These cells are genetically

encoded with the light activated cation channel, Channelrhodopsin-2. Thus

these cells can be activated by blue light of wavelength 473 nm. Future

studies can also use grapheneFETs to record the action potentials from these

optogenetic C2C12 cells and thus provide an insight about its molecular

biology. Also, currently efforts are underway to put this graphene sheet in

3D PEGDA hydrogels and look at the differentiation of both regular C2C12

cells and mESCs. Previous studies have already showed the influence of

carbon nanotube dimensions on the differentiation of hMSCs.
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Figure 5.4: C2C12 cells on graphene/SiO2 chips with IGF-1 supplemented
DM.(A)Fluorescent images of the C2C12 cells on graphene and SiO2. Column
1 shows the cells on interface of graphene and SiO2 parts of the chip for day
2 and 4. Column 2 shows the cells on graphene and column 3 shows the cells
on SiO2. Row 1 shows the C2C12 cells on day two while row 2 shows the cells
on day four. Cells were stained for anti-MHC (green) and nucleus (blue) and
these were used for the calculation of the fusion index. The dashed white
bars in column 1 are used to separate the SiO2 and graphene surfaces of the
chip. (Scale bar = 100 µm)Quantification of (B) Fusion index (C) Myotube
area fraction and (D) Cell density, for the C2C12 cells on graphene and SiO2.
Significance **p < 0.01 and *p < 0.05. Data is represented as mean ± S.E.M
(n = 5 ).

5.6 Conclusion

The differentiation potential of C2C12 cells on graphene/SiO2 chips was in-

vestigated in this study. More than two folds higher fusion index and my-

otube area fraction were recorded on graphene than the SiO2 surface of the

chip. Graphene enhances C2C12 attachment which in turn enhances the

process of myogenesis of C2C12 cells. Thus material properties of graphene

like, π−π stacking, surface roughness, and its wettability make graphene an

ideal substrate for muscle tissue engineering. Also, being organic in nature,

graphene can easily mimic the native cellular micro-environment and hence
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it becomes an interesting candidate for engineering 3D artificial tissues.
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CHAPTER 6

THREE DIMENSIONAL PATTERNING OF
EMBRYONIC STEM CELLS IN

HYDROGELS

6.1 Introduction

In this chapter, the two different cues of geometry and stiffness are combined

together to create 3D hydrogel scaffolds with micro-scale tissue architecture

and physiologically relevant stiffnesses. Traditional encapsulation of cells in

hydrogels distributes them in 3D. However, these methods typically lack spa-

tial control of multi-cellular organization and do not allow for the possibility

of cell-cell contacts as seen for the native tissue. Here, DEP is combined with

SL apparatus to achieve controlled patterning of cells in 3D PEGDA hydrogel

constructs. As a proof of concept, patterning and encapsulation of C2C12

skeletal muscle myoblasts and mESCs is shown in 3D hydrogels. In addi-

tion, using the same platform, patterning spheroids of mESCs and C2C12

cells is also demonstrated. Both cells and spheroids show good viability in

the hydrogels after DEP. This robust and flexible in vitro platform can en-

able various applications in stem cell differentiation and tissue engineering

by mimicking elements of the native 3D in vivo cellular micro-environment.

Section 6.2 will describe the phenomenon of DEP and the underlying

physics behind it. Section 6.3 will briefly describe the SL apparatus. Section

6.4 will be the experimental section of this study and will show the process

flow for achieving the controlled patterning of cells in 3D hydrogels. Also,

the protocols used for imaging and analysis will be described. Section 6.5 will

show the patterning of C2C12 cells and mESCs in physiologically relevant

stiffness 3D hydrogels. Section 6.6 will describe the process of formation of

3D aggregates of mESCs and C2C12 muscle cells. Section 6.7 will also show

the patterning for the aggregates of these cells in the hydrogels. Section 6.8

will summarize the findings of this chapter and how this platform can be

used for controlling the fate of embryonic stem cells. The results presented
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in this chapter have been published in [241, 242].

6.2 Dielectrophoresis

This section will describe the physics behind DEP, other major forces in-

volved when a particle experiences DEP, and the simulations of electric fields

to determine the relative DEP forces.

6.2.1 Physics

DEP force in the simplest form is the force exerted on the induced dipole

moment of the particle by non-uniform electric fields. The electric field polar-

izes the particle and then depending on the orientation of the dipole relative

to the electric field, the particle will either experience an attractive or a re-

pulsive force. Since, a non-uniform field is applied, the particle moves as it

responds to the direction of the greatest electric field gradient. The time-

averaged DEP force 〈FDEP (t)〉 for a spherical particle of radius R suspended

in an aqueous medium of dielectric permittivity εmis given by equation 6.1

〈FDEP (t)〉 = 2πεmR
3Re{K(ω)}|∇E2

rms| (6.1)

where K(ω) is called the Clausius Mossotti (CM) factor and Re stands for

the real part. This equation is a close approximation for the DEP forces

and is valid for most situations [243]. However, regions where the spatial

non-uniformity of the electric fields is very large like the electrode edges,

this equation breaks down. In that case, other higher order terms are also

necessary for completely describing the phenomenon of DEP [244]. The CM

factor for a homogeneous solid is given by equation 6.2

K(ω) =
ε∗p − ε∗m
ε∗p + 2ε∗m

(6.2)

The subscript p represents the particle and m represents the fluid medium

surrounding the particle. The asterisk represents a complex dielectric permit-

tivity, ε∗ = εoεr+σ/2πf where εo dielectric permittivity of vacuum (8.85e−12

Fm-1), σ is the conductivity and f is the frequency. The dielectric permittiv-
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ity for polystyrene (PS) beads was 2.5εo and for the fluid was 80εo [245]. The

real part of K(ω) is bounded between the values -0.5 ≤ K(ω) ≤ 1. Therefore,

a particle will experience positive DEP (pDEP) if the CM factor is positive

or the particle is more polarizable than suspended fluid. It will experience

negative DEP (nDEP) if the medium is more polarizable than the particle.

However, mammalian cells are much more complex than a homogeneous solid

because of the presence of internal membranes and a nucleus. Therefore, the

complex dielectric permittivity of a mammalian cell can be approximated by

a spherical shell and is given by equation 6.3

ε∗p = ε∗m

( R
R−d)3 + 2(

ε∗i−ε∗m
ε∗i+2ε∗m

)

( R
R−d)3 − (

ε∗i−ε∗m
ε∗i+2ε∗m

)

 (6.3)

Here, d is the thickness of the cell membrane and subscript i stands for the

interior of the cell. The radius of both C2C12 and mESCs was measured to

be 8 µm using the hemocytometer and the membrane thickness was found

to be 8 nm [245]. The dielectric permittivity of the cell membrane was found

to be 8εo and for the cell cytosol was found to be 50εo [245].

6.2.2 Other forces experienced by the particle

Other major forces acting on the spherical particle when it is suspended

in the liquid medium are the fluid drag (Fdrag), the buoyancy force (Fbuoy)

and the gravitational force (Fgrav). [246] These forces are given by equations

6.4, 6.5,and 6.6 [246].

Fdrag = 6πηRKv (6.4)

where η is the viscosity of the fluid medium, K is the wall-correction factor

and v is the instantaneous cell velocity.

Fbuoy = ρmVpg (6.5)

where ρm is the density of the liquid medium, Vp is the volume of the particle

and g is the gravitational constant.

Fgrav = mg = ρpVpg (6.6)
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where ρp is the density of the particle and the volume of the particle Vp is

given by Vp = 4/3πR3. These forces can be broken down in their respective x-

and y-components as FDEPX
, FDEPY

, FdragX , FdragY , Fbuoy, and Fgrav. Doing

a force decomposition and applying Newton’s law of motion, equations 6.7

and 6.8 are obtained.

FDEPX
− FdragX = m

d2x

dt2
(6.7)

FDEPY
− FdragY + Fbuoy − Fgrav = m

d2y

dt2
(6.8)

where m is the mass of the particle and t is the time. Adding equations 6.1,

6.4, 6.5, 6.6, 6.7, and 6.8 equations 6.9 and 6.10 are obtained

2πεmR
3Re{K(ω)} ∂

∂x
|E2| − 6πηRKx

dx

dt
= m

d2x

dt2
(6.9)

2πεmR
3Re{K(ω)} ∂

∂y
|E2| − 6πηRKy

dy

dt
+ (ρm − ρp)Vpg = m

d2y

dt2
(6.10)

By solving these two differential equations, the approximate location of the

particle in the chamber can be obtained. It should be noted that these forces

are dependent on a number of different parameters like chamber geometry,

fluid viscosity, gap between the electrodes, etc. Therefore, for every particular

case, these forces need to solved independently.

6.2.3 Simulations

Finite element analysis (FEA) was used to generate the distributions for the

electric field and its gradient for a simple interdigitated electrode assembly.

Since, the electrodes are much longer than their width, the system can be

reduced to a 2D analysis and COMSOL 4.2a (Palo Alto, CA) was used for

modeling. Electrical double layer, Van der Waals forces and electrothermal

effects were neglected for these simulations. Current conduction across sym-

metry planes and the boundaries was assumed to be zero, thereby applying

the Neumann boundary condition, ∂φ/∂n = 0. A constant potential φ =

10 V was prescribed at one of the electrode surface while the other was the

ground. In addition, a periodic boundary condition was applied for the sym-

metry planes. Figure 6.1 shows the setup used for generation of electric field

105



Figure 6.1: Setup for modeling the electric field distributions.

distributions.

Figure 6.2 shows the finite element model of the electric field distributions

and the CM factor for PS beads. The highest electric field is present at the

edges of the electrodes as evidenced by the high density of streamlines while

the lowest is present right at the center of the individual electrodes. Thereby

particles experiencing pDEP will be pulled to regions of electric field maxima

while those which experience nDEP will be levitated above the center of the

electrodes. Figure 6.2 B and C show the distribution of electric potential

and electric field as a function of Z-height above the electrodes. As we move

above the electrode, both the potential and electric field decreases. At 100

µm above the electrode, the electric field is only 23% of that at 5 µm above

the electrode. Figure 6.2 D shows the real part of the CM, K(ω)) factor for

PS beads. Between the frequency range of 1-10 MHz which was used for

patterning of cells in the two different polymers, PEGDA 700 and PEGDA

3400, the PS beads will experience nDEP and as a result be levitated above

the center of the gold electrodes.

6.2.4 Uses of DEP

DEP has been widely used by researchers over the past few decades for ma-

nipulating biological entities. Researchers have shown particle separation us-

ing DEP in micro-fluidic devices [247], DEP based cell electroporation [248],

patterning hepatocytes using DEP [249], selectively isolating dead cells from

live ones using DEP [250], etc. DEP is advantageous for creating massively

parallel cellular patterns as it is limited by the overall area of the underlying

electrodes. This coupled to the fact that mammalian cells can withstand
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Figure 6.2: (A) Finite element model of the interdigitated Au electrodes. The
streamlines show the gradient of electric field. Highest field gradients can be
found at the edges of the electrodes shown by higher density of streamlines.
(B, C) The electric potential and the electric field as a function of height
above the electrodes. (D) Real part of the CM factor for PS beads in the
different fluids used for DEP patterning. Between 1-10 MHz, PS beads always
undergo nDEP for the two different polymers (PEGDA 700 and 3400) used
in this study.

high frequency electrical signals for short bursts of time, DEP emerges as a

very lucrative patterning technique for mammalian cells [251]. However, one

of the limiting factors is that the DEP force is temporary and hence the cells

are free to move around once the force is removed. Therefore, DEP needs to

be combined with other immobilization techniques for long term patterned

cell culture [252, 253, 254].

6.3 Stereolithography apparatus

SL is a solid free form (SFF) technique that was first introduced in the mid

1980s by 3D Systems to create prototypes prior to the production of different

parts for the automotive, aerospace and other design industries [255]. It is

a computer aided design (CAD) based tool used for additive manufacturing

or rapid prototyping. The design of the structure for manufacturing can

be developed using 3D computer drawing software or it can be acquired by

imaging technologies like magnetic resonance imaging (MRI) [255]. After the
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Figure 6.3: Overview of the process for fabricating structures using the SL
(Figure adapted from Melchels et al. [255]).

design is developed, the structure is sliced in to a number of different layers

(25-100 µm) by software and this data can then be passed to the SL machine

for manufacturing [242]. Figure 6.3 shows the basic overview of the process

that is used to make parts by SL. Many different types of resins can be used

with the SL machine. For an acrylate resin system, usually a free radical is

used as a catalyst. This radical is photochemically generated using a pho-

toinitiator and then the acrylate polymer with the help of photoinitiator goes

through different stages of addition like - initiation, propagation and termi-

nation [256]. Although, the exact kinetics of this polymerization reaction are

quite complicated, much simpler equations have been developed to describe

the fabrication of structures using Beer-Lambert’s law. This law describes

the exponential decay of light intensity as it passes through a medium and

it can be used to generate a semi-empirical equation known as the “working

curve” equation, which is absolutely fundamental to the SL machine [256].

Cd = Dpln(
Emax
Ec

) (6.11)
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Equation 6.11 relates the thickness of the solidified layer (Cd, cure depth

(µm)) to the maximum light irradiation Emax (mJ cm2). A semi-log plot of Cd

versus Emax is a straight line and the slope of this line gives the penetration

depth (Dp (µm)) which is the depth at which the irradiance becomes 1/e

(0.367) times that at the surface. The abscissa (x-intercept) of this line is

the critical energy (Ec (mJ cm2)) or the energy required to convert the liquid

polymer to a solid layer. Both the parameters, Dp and Ec are unique to a

resin and are independent of the laser power of the SL machine. The Ec of the

resin however does depend on a variety of other factors like the concentration

of the photopolymer, photoinitiator and the amount of dissolved oxygen. It

should be noted that the working curve equation is only valid for a confined

cure depth range Dp < Cd < 4Dp [256]. If Cd < Dp than the partially cured

photopolymer is very weakly developed and if Cd > 4Dp the working curve

shows a super-logarithmic behavior [256]. After the two parameters for the

resin are extracted from the working curve, structures can be fabricated using

the SL and that resin system. For the current SL system, PEGDA polymer

of different molecular weights (Mw) was used as the resin. PEGDA has been

found to be biocompatible with mammalian cells and when polymerized,

forms a hydrogel [257]. The stiffness of this hydrogel depends on the Mw of

the polymer and SL parameters.

Hydrogels have attracted much attention recently because of their use in a

variety of biomedical applications such as drug delivery, wound management

and tissue engineering [154, 155, 156, 157]. Many studies have used different

techniques like solvent casting [158], freeze drying [159], gas foaming [160],

electrospinning [161], and SL [87] for constructing the complex 3D architec-

ture found in the body using hydrogels. Among these techniques, SL offers

several unique advantages like multi-cell, multi-material fabrication and the

capability to encapsulate cells during the process of structure fabrication

[258]. Also, unlike other photo-polymerization techniques which require a

physical mask, SL is a maskless CAD based rapid prototyping (RP) tech-

nology. Such merits of SL apparatus make it a great technology for tissue

engineering applications and regenerative medicine [255]. However, micro-

scale tissue organization, a hallmark of in vivo tissues, cannot be achieved by

conventional SL apparatus due to limitations in the beam width. Commer-

cially available lasers typically have beam widths in the range of few hundred

microns, which is much larger than size of single cells [259]. Figure 6.4 shows
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Figure 6.4: Gaussian beam of the laser in SLA 250/50 machine. (A) 3D Gaus-
sian beam profile of the Helium Cadmium laser. (B) Two dimensional profile
of the beam showing the intensity distribution in the x- and y-component

the Gaussian beam profile of the SLA 250/50 system that was used for this

study. The wavelength (λ) of this laser system is 325 nm. From this 3D beam

profile, it was found that the beam waist was 125 µm, thereby the diameter

of the being 250 µm. This beam is however focused about 3 mm under the

SL machine’s stage. Therefore, the diameter of the beam at the surface of the

stage where the polymerization happens is ∼255 µm, much bigger than the

size of individual cells. Therefore, in order to achieve single cell patterning

in 3D, SL apparatus has to be combined with another technology.

In this study, we combine the merits of SL apparatus and DEP together

to create hydrogels of physiologically relevant stiffnesses with micro-scale

organization as seen for in vivo tissues. We show the patterning and encap-

sulation of mESCs and C2C12 skeletal muscle myoblasts in the hydrogels.

However, as cell clusters (spheroids of cells) of different sizes can also locally

alter the cellular micro-environment via differential gene expression [109],

we also show the patterning of mouse embryoid bodies (mEBs) and C2C12

spheroids in the hydrogels. Previous studies have only focused on patterning

individual cells via DEP forces in hydrogels [245, 260]. This platform can

thus be used to create hydrogels with micro-scale tissue architecture and en-

able applications in tissue engineering, regenerative medicine, and stem cell

differentiation.
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6.4 Experimental

This section will present the protocols used for patterning and encapsulating

cells in 3D.

6.4.1 Cell culture

Murine-derived muscle cell line (C2C12 cells), was purchased from Ameri-

can Type Culture Collection (ATCC, Manassas, VA) and was cultured in

Dulbecco’s modified Eagle’s medium (DMEM, Mediatech, Manassas, VA)

supplemented with 10% FBS ( Atlanta Biologicals, Lawrenceville, GA) and

1% penicillin-streptomycin (Invitrogen, Carlsbad, CA) in standard cell cul-

ture conditions. W4129S6 mESCs (Taconic, Hudson, NY) were cultured

in high glucose DMEM (Invitrogen, Carlsbad, CA) supplemented with 15%

FBS, 1% penicillin-streptomycin, 1 mM sodium pyruvate, 2 mM glutamine,

100 µM non-essential amino acids, 10 ng ml-1 of mouse Leukemia Inhibitory

Factor (mLIF) and 100 µM of mono-thiogycerol (Sigma, St. Louis, MO) on

0.1% gelatin coated petri dishes in standard cell culture conditions. Unless

otherwise mentioned, all products for the culture of mESCs were purchased

from Stem Cell Technologies, Vancouver, BC, Canada.

6.4.2 Cell patterning in the polymer mixture and hydrogel
fabrication

PEGDA 700 (Sigma, St. Louis, MO) and PEGDA 3400 (Laysan Bio, Arab,

AL) polymers were mixed with 0.5% 4-(2-hydroxyethoxy) phenyl-(2-hydroxy-

2-propyl) ketone (Irgacure 2959, Ciba) in a low conductivity media (LCM).

Irgacure 2959 served as the photoinitiator for this hydrogel system. 10mM

HEPES (Mediatech, Manassas, VA), 100 nM CaCl2 (Sigma, St. Louis, MO),

59 mM D-glucose (Sigma, St. Louis, MO) and 236 mM sucrose (Sigma,

St. Louis, MO) were mixed in DI water to make the LCM [245]. Three

parts of the polymer was added to one part of the cell mixture such that

the final concentration of the cell-polymer solution was 10%, 15% and 20%

respectively. 50-200 µL of this polymer-cell mixture was pipetted on the

glass slide with gold (Au) micro-electrodes and was sandwiched by 18×18

mm coverslip. Sub-section 6.4.3 describes the process flow for fabricating
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Figure 6.5: Process flow for the fabrication of the Au electrodes.

the Au electrodes. The waveform generator (Agilent, Santa Clara, CA) was

turned on to provide 10 Vpp, 1-10 MHz sinusoid to achieve cell patterning.

After the patterning, SL apparatus was used to polymerize the cell-polymer

mixture to form the hydrogel.

6.4.3 Fabrication of the gold electrodes

Corning glass microscope slide (TedPella Inc, Redding, CA) was used as the

substrate for electrode fabrication. Glass slides were first piranha cleaned

for 10 minutes (1:1 H2O2-H2SO4) followed by a 1 minute of oxygen plasma

treatment (500 mTorr, 300 W). AZ1518 photoresist (AZ Electronic Materi-

als, Branchburg, NJ) was then spin coated to form a 2 µm layer. Photoresist

was soft baked for 8 minutes at 110 ◦C and electrode features were exposed in

the photoresist using an ultraviolet lamp and a high-resolution transparency

mask (FineLine, Raleigh, NC). Exposed regions were then removed by devel-

oping the glass slide in MIF AZ300 (AZ Electronic Materials, Branchburg,

NJ) for 2 minutes. After the second oxygen plasma treatment for 30 sec-

onds (500 mTorr , 300 W), 50 Å of titanium (Ti) followed by 2000 Å of Au

was deposited using e-beam evaporation (CHA SEC-600, CHA Industries,

Fremont, CA). The glass slide was then immersed in 80 ◦C bath of remover

PG (MicroChem, Newton, MA) for 1 hour to lift off undesired metal leaving

patterned Au electrodes on the glass slide. Figure 6.5 shows the process flow

for the fabrication of the gold electrodes.

6.4.4 Immunofluorescene microscopy and viability testing

In order to track the cells in the hydrogels after patterning and encapsula-

tion, the cells were incubated with 1/1000 of cell tracker dyes (green or red,
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Liquid used for Concentration σ η
DEP patterning [%] [mS m-1] [cP]

DI water 100 0.105 1.04
Cell culture medium 100 1504 1.11

LCM 100 23.55 1.31
10 15.78 2.05

PEGDA700 in LCM 15 13.16 2.62
20 10.64 3.46
10 36.9 3.69

PEGDA3400 in LCM 15 39.9 5.83
20 41.2 9.97

Table 6.1: Electrical and viscous properties of the fluids.

(Invitrogen, Carlsbad, CA)) before mixing it with the polymer. Viability

testing was done by employing the live/dead (Invitrogen, Carlsbad, CA) as-

say. The cells were incubated with 2 µM calcein AM (green, live) and 4 µM of

ethidium homodimer (red, dead) for 15 minutes in phenol free DMEM. After

15 minutes, the hydrogels were washed twice in PBS ( Invitrogen, Carlsbad,

CA) and immediately used for imaging. Green indicates that the cells are

viable while red shows dead cells. ImageJ was used for counting the cells by

taking their images in the respective channels. In order to check the viability

of mEBs, the integrated density of EBs in the FITC (green, live) and the

TRITC (red, dead) channel was found. The ratio of integrated density in

the FITC to TRITC channel was reported as the viability of mEBs.

6.4.5 Characterization of DEP solution

The electrical conductivity of the different medium used for patterning the

cells/spheroids of cells was measured by using an Orion 4 star conductivity

meter (Thermo Electron Corporation, Waltham, MA). The viscosity of the

solution was measured by using a DV II Pro Plus viscometer (Brookfield

Engineering Laboratories, Middleboro, MA). Table 6.1 shows the electrical

conductivity (σ) and viscosity (η) of DEP liquid used in this study and some

standard solutions.

113



6.4.6 Statistical analysis

Statistical analysis was performed using two sample t-test in OriginPro 8.5.

All data values reported in the study are mean ± standard deviation (SD).

6.4.7 Process for patterning mammalian cells in 3D hydrogels

Figure 6.6 shows the schematic of the overall process of simultaneous pat-

terning and encapsulation of mammalian cells and PS beads on Au micro-

electrodes. The scheme for fabricating gold electrodes can be seen in figure

6.5. Cells and beads were first patterned by means of DEP forces to achieve

spatial patterning. They were then encapsulated in the hydrogel by the SL

apparatus. In order to achieve efficient DEP patterning, the DEP liquid

medium needs to have low conductivity and low viscosity [243]. Low conduc-

tivity minimizes Joule heating while low viscosity decreases the drag force

and patterning time. Table 6.1 shows the properties of the DEP liquid used

in this study and some standard solutions. Albrecht et al., derived an equa-

tion which showed that the patterning time scales linearly with the viscosity

of the medium. Therefore, lower the viscosity of the medium faster the pat-

terning time [243]. Although, the viscosity of regular cell culture medium

(RM) is low (1.11 cP), it has a relatively high electrical conductivity, 1504

mS m-1. As a result, RM will cause excessive Joule heating which could

be detrimental to the viability of cells [261]. Therefore, a different medium

was used for patterning of cells and beads. This new medium had both low

viscosity (1.31 cP) and low conductivity (23.55 mS -1). It not only allowed

efficient DEP patterning but also maintained very high cell viability (Figure

6.7). Two different Mw PEGDA polymers, 700 and 3400, at three different

concentrations (10%, 15% and 20%) were used to form hydrogels. The low

conductivity medium (LCM) was used as the solvent for the polymers. By

varying the Mw and the concentration of the polymer, we were able to obtain

hydrogels of physiologically relevant stiffnesses [87, 69, 262]. For both the

polymers used in the study, the viscosity increases with an increase in the

polymer concentration. As a result of this, the fastest patterning time (τ) was

achieved in 10% PEGDA 700 (τ < 10 seconds), which is the lowest viscosity

polymer. It took close to 240 seconds to pattern cells in 20% PEGDA 3400,

the highest viscosity polymer. Also higher voltages were required to pattern
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cells in this polymer. Unless otherwise specified, all the results presented in

this study were obtained in 15% PEGDA 3400 (τ ∼ 90 seconds). mESCs

show a good viability in LCM for holding time up 30 minutes (Figure 6.7).

Given the patterning time of cells in the different solutions, multiple hydrogel

constructs could be easily fabricated while maintaining good viability. As the

same polymer solution was used for fabrication of multiple constructs, batch-

to-batch variability in terms of material properties was eliminated. The size

of the assembly that could be patterned using DEP is dependent on the area

of electrodes, the spacing of electrodes, and the area that could be polymer-

ized by the SL apparatus. It is independent of the liquid medium used for

patterning. In this study, cells were patterned and encapsulated in a 10×10

mm area of the hydrogel. Thus this platform can be used for constructing

very large arrays of micro-scale cellular patterns in three dimensions.

Figure 6.6B shows the real part of the CM, K(ω)) factor for mammalian

cells in the different liquid medium. It can be seen that for the polymers

used in the study, the cells will experience both nDEP and pDEP depending

on the frequency. Specifically, for PEGDA 3400, at frequencies lower than

0.12 MHz or at frequencies higher than 115 MHz, cells will experience nDEP.

Between these frequency ranges, the cells experience pDEP. Since, it is well

documented that patterning via pDEP is faster than nDEP, pDEP was used

for patterning of cells [243]. Furthermore, CM factor which also determines

the relative DEP force is also larger in the pDEP regime. Therefore, for

PEGDA 700 and PEGDA 3400, a frequency range of 1-10 MHz was chosen.

This maximized the CM factor and hence the relative DEP force experienced

by the cells. At the same frequency range, the PS beads experienced nDEP

(Figure 6.2D).

Mammalian cells have a large differential of ions between its interior and

exterior leading to the development of a resting membrane potential. The

maintenance of this resting membrane potential is of utmost importance for

the proper functioning of the cellular activities. When an alternating sinu-

soidal electric field is applied to a cell, this new field gets superimposed to

the resting membrane potential. If the resultant resulting membrane poten-

tial is sufficiently high, it might lead to an asymmetric breakdown of the

cellular membrane causing cell death [263]. Irreversible cellular electropo-

ration occurs at field strengths of 1-1.3 kV cm-1 [264]. This means that a

potential difference of approximately 1 V can be potentially lethal for a cell
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Figure 6.6: Fabrication of spatially patterned 3D hydrogel constructs. (A)
Schematic showing the overall process of creating 3D spatially patterned hy-
drogel constructs. A mixture of cells and PS beads is first introduced on
the glass slide with patterned gold electrodes. After this the electrodes are
energized with a 10 Vpp (3.535 Vrms) 1-10 MHz signal which leads to pDEP
patterning of the cells and nDEP patterning of the PS beads. The SL appa-
ratus then polymerizes the PEGDA polymer and patterned cells and beads
get encapsulated in the 3D hydrogel. (B) Real part of the CM factor for
mammalian cells in the different fluids used for DEP patterning. Between
1-10 MHz, mammalian cells always undergo pDEP for the two different poly-
mers (PEGDA 700 and 3400) used in this study. (C) TMV of the cells as a
function of applied frequency.

of diameter 10 µm. Figure 6.6C shows the transmembrane voltage (TMV) in

the cell as a function of the applied electric field from 1 kHz to 1 GHz. For

the frequency range used for patterning of cells in the polymers (1-10 MHz),

the transmembrane voltage is around 0.12-0.013 V respectively. Since, this

value is much smaller than the threshold voltage of 1 V, the cells will not

undergo irreversible electroporation as a result of dielectrophoretic manipu-

lation. Equation 6.12 was used to calculate the TMV across the cell. Here,

E is the external field in the liquid medium (123828 V m-1) at a height of 3

µm above the electrode, R is the radius of the cell (8 µm), ω is the angular

frequency (ω = 2πf and f = 104 - 109), Cm is the membrane capacitance per
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Figure 6.7: Live/dead assay showing the viability of mESCs after trypsiniza-
tion, and after suspension in the LCM and RM for 30 and 60 minutes respec-
tively (n = 5 ). There is no statistical difference in the viability of mESCs in
LCM and RM at 30 minutes at p < 0.05.

unit area (10-2 F m-2) [263] and ρi (1 Ω m) [263] and ρa (42.46 Ω m) are the

resistivity of the cell interior and the electrolyte respectively. Since, both the

CM factor and the TMV are optimized between 1-10 MHz for the polymers,

this range was chosen for patterning of cells via DEP.

TMV =
1.5ER

1 + iωRCm(ρi + ρa
2

)
(6.12)

6.5 Multi-cell patterning in three-dimensional

hydrogels

Figures 6.8A-C shows the encapsulated C2C12 cells and mESCs in 15% and

20% PEGDA 700 hydrogels. Highly uniform arrays of cells and beads can

be seen encapsulated in the hydrogel after polymerization. This indicates

that DEP forces can be used for manipulating cells in the polymers. Before

patterning the cells in the polymer, their viability was checked in the LCM.

Figure 6.7 shows that mESCs show a high viability after being suspended

117



in a LCM for 30 minutes and this was not statistically different (p < 0.05 )

from that of the cells in RM. Figures 6.8A,B shows that C2C12 cells (red)

undergo pDEP and PS beads (green) undergo nDEP at 10 MHz in 15%

PEGDA 700. Figure 6.8C shows the same for mESCs (red) in 20% PEGDA

700. Lee et al., showed that incorporation of hydrophobic nanoparticles

can introduce network defects in the hydrogel while minimally affecting its

mechanical and viscous properties [265]. Therefore, controlling the position

of hydrophobic PS beads via DEP forces can be used to create network

defects at regular spatial locations in the hydrogel. This can improve the

permeability of compounds through the hydrogel and thereby improve their

viability.

Figures 6.8D-F shows the encapsulation of mESCs with two different col-

ored dyes (green and red) in 15% PEGDA 3400. By encapsulation of multiple

types of cells using conventional SL, the two different types of cells are gen-

erally present with minimal cell-cell contacts in the hydrogel (Figure 6.8D).

While these co-culture studies can be very useful for studying paracrine sig-

naling [258], cell-cell contacts which are responsible for fate decisions by

embryonic stem cells cannot be studied using this approach [266]. However,

as seen in figures 6.8E and F, DEP allows cell-cell contacts by formation of

cellular pearl chains. These pearl chains can be used for studying the fate

decisions by stem cells. Numerous studies have demonstrated the role of cel-

lular co-culture for determining the fate of ESCs [267, 268]. This combined

DEP-SL apparatus platform will enable the study of multiple cell interactions

via cell-cell contacts in 3D and can open new doors in stem cell biology.

Figure 6.8G, H shows the image of a live/dead assay for mESCs with and

without DEP on day 0 in 15% PEGDA 3400. It can be seen from these

fluorescent images that most of the cells survive patterning via DEP and

SLA encapsulation. Figure 6.8I quantifies the viability of cells with and

without DEP. The cells which were aligned in the hydrogel with DEP show

a viability of 91.79 ± 1.4% while those which were not subjected to DEP

show a slightly higher viability of 94.27 ± 0.5%. Thus these studies show

that our combined platform can be used for studying multi-cell interactions

in 3D hydrogels while maintaining their viability.
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Figure 6.8: Multi-cell patterning and encapsulation in different stiffness hy-
drogels by DEP and SL. (A) C2C12 (red) cells (pDEP) and PS beads (green)
(nDEP) in 15% PEGDA 700 (Scale bar = 100 µm) (B) Zoomed image of (A)
(Scale bar = 100 µm) (C) mESCs (pDEP) and PS beads (green) (nDEP) in
20% PEGDA 700 (Scale bar = 200 µm) by using spiral electrodes. (D-F)
mESCs with two different colored dyes (red and green) were encapsulated
in 15% PEGDA 3400. (D) Without DEP (Scale bar = 100 µm). (E) With
DEP (Scale bar = 100 µm). (F) Zoomed image of the highlighted blue box
clearly showing cell-cell interactions in the hydrogel (Scale bar = 100 µm).
(G-I) Demonstrates that high cell viability can be achieved using this plat-
form. (G) Live/dead assay at day 0 with DEP (Scale bar = 100 µm). (H)
Live/dead assay at day 0 without DEP (Scale bar = 100 µm). (I) Graph
showing the viability of cells with and without DEP.
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6.6 Formation of aggregates of embryonic stem cells

mEBs are 3D aggregates of mESCs and serve as an excellent model for study-

ing the controlled differentiation of mESCs. As previously shown, the dif-

ferentiation of cells in the EBs is extremely sensitive to a variety of factors

including the size (density of cells in the EB) of the EB. Larger EBs (∼ 450

µm) promote cardiogenesis while smaller EBs (∼ 150 µm) promote endothe-

lial differentiation [109]. Large number of uniform sized EBs were formed

using AggreWell plates. Desired numbers of cells were seeded, centrifuged,

and incubated in the plates. After 24 hours of incubation, highly uniform

EBs were seen in the micro-wells of the plate. Figure 6.9A shows the different

initial seeding densities of mESCs in the plates at 0 hours and the resultant

EBs that formed after 24 hours in one of the microwells of the plate. Each

of these plates contain anywhere from 9,600 to 28,200 micro-wells. Hence, a

large number of uniformly sized EBs can be rapidly obtained. Figure 6.9B

(i) is an SEM showing the uniformity of the EBs obtained from these plates.

Figure 6.9B (ii) shows an individual EB while Figure 6.9B (iii) shows the

close-up of an individual EB. These SEMs show that large number of highly

uniform EBs can be obtained using AggreWell plates. Figure 6.9C shows

the area of EBs as a function of the initial seeding density of the cells. In-

terestingly, the area of the EB does not double by doubling the initial cell

seeding density. This suggests that the packing properties of cells in the EBs

are a density dependent phenomenon. Figure 6.9D shows the theoretical and

the measured volume of the EBs as a function of the initial seeding density

of cells. It can be seen that the theoretical volume matches closely to the

calculated volume of the EBs. The inset of the figure shows the radius of

the EB as a function of the initial seeding density. Both the theoretical and

measured radius show good match as well. A 250 cell EB measured 68 µm

while this radius increased to only 110 µm by quadrupling the initial cell

seeding density (2000 cells). Therefore, larger mEBs show a higher packing

density which can be seen in Figure 6.9E. This could be possible because

of differences in the E-cadherin expression in the EBs. Different levels in

E-cadherin expression have been reported for EBs of different sizes and dif-

ferent time points [109]. 1000 cell EB shows the highest packing density of

approximately 425,000 cells mm-3. Also, the same EB shows the best packing

efficiency which is the ratio of measured volume to the theoretical volume.
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Future studies can explore the effect of packing density and packing efficiency

on the differentiation potential of mEBs. In addition, to further understand

the packing properties of the EBs, they can be labeled for E-cadherin which

will show cell-cell contacts in the EBs [266].

Figure 6.10 shows the characterization of C2C12 spheroids. The assump-

tions made in order to calculate the theoretical volume of the spheroid (mEB)

were as follows. The radius of the cell was measured to be 8 µm using the

hemocytometer. The cell was assumed to be a perfect sphere and its volume

was calculated to be ∼ 2214 µm3. In order to find the volume of the EB, it

was assumed that there are no voids in the EBs and hence by multiplying the

number of cells in the EBs with the volume of each cell the theoretical volume

was found. The measured volume of EB was calculated by finding the radius

of the EB from ImageJ and by using the relation V = 4/3πR3. The protocol

for the formation of C2C12 spheroids was the same as that employed for for-

mation of mEBs. Desired numbers of C2C12 cells were seeded in Aggrewell

plates. For instance, if a 1000 cell spheroid was to be formed, 1.2 million

C2C12 cells were seeded in one of the wells of the plate which contained 1200

micro-wells. Prior to seeding the cells in the wells, the plate was incubated

with 2% Pluronic F127 to prevent the attachment of cells to the wells. After

this, the plate was centrifuged and the cells were pulled to the bottom of the

micro-well in the plate. The plate was incubated for 24 hours in the incuba-

tor and uniformly shaped C2C12 spheroids (or mEBs) were formed in most

of the microwells of the plate. Mild pipetting was required to remove the

spheroids from the wells. Figure 6.10 shows the characterization of C2C12

cell spheroids obtained from the Aggrewell plates. Figure 6.10A shows the

area of the spheroids as a function of the number of cells in the spheroid.

A 50 cell spheroid was measured to be slightly over 2600 µm2 while a 1000

cell spheroid was roughly about 25000 µm2. Therefore, increasing the initial

seeding density by 20 times resulted in less than 10 times the increase in the

area. Figure 6.10B shows the radius of the C2C12 cell spheroid as a function

of the initial cell seeding density. The measured radius seems to follow a

power law behavior with power being 2.76 (1/0.362) instead of the expected

power of 3 (1/0.333). However, for the smaller spheroids (50, 100 cells) the

measured radius is in good consistency with the theoretical radius.
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Figure 6.9: Characterization of EBs of mESCs. (A) Different densities of
cells (250, 500, 1000, 1500, and 2000) seeded in AggreWell plates at 0 hours
and after 24 hours (Scale bar = 200 µm). (B) SEMs of a 1000 cell mEBs at
different resolution (i) Shows the uniformity of the EBs obtained from the
AggreWell plates (Scale bar = 200 µm). (ii) An individual EB (Scale bar =
20 µm). (iii) Close up of the EB (Scale bar = 2 µm). (C) The area of the
EBs as a function of the initial seeding density. (D) The volume of the EBs
as a function of the initial seeding density. The inset shows the radius for the
same. (E) Packing density and packing efficiency of the EBs as a function of
the initial seeding density. Packing efficiency was calculated by dividing the
actual volume by theoretical volume, n > 50 EBs for (C-E).
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Figure 6.10: Characterization of C2C12 spheroids. (A) The area of the
spheroid as a function of the initial cell seeding density. (B) The measured
and the theoretical radius as a function of the initial cell seeding density (n
= 35 ).

6.7 Patterning of aggregates of embryonic stem cells

After the successful formation of mEBs (or spheroids of C2C12 cells, for

characterization of C2C12 spheroids, see Figure 6.10), the patterning and

encapsulation of these cell clusters in the hydrogels is also shown. Figure

6.11i, ii, show the images of 500 cell C2C12 spheroids with and without DEP

in 15% PEGDA 700 respectively. The spheroids have been labeled with a

red colored cell tracker dye. For the convenience of the reader, approximate

locations of the underlying electrodes (Figure 6.11i) for the DEP sample have

been drawn. It can be seen that the spheroids of C2C12 cells undergo pDEP

in 15% PEGDA 700 at 1 MHz. Most of the spheroids can be seen touching

the edges of the electrodes (electric field maxima) and trying to form pearl

chains, a characteristic of pDEP. Figure 6.12 shows the patterning of C2C12

spheroids via DEP in 15% PEGDA 700. Presence of multiple pearl chains of

C2C12 spheroids can be clearly seen in these images further confirming that

cell spheroids undergo pDEP. The inset of figure 6.11A shows the FFT of the

raw grayscale image (without the electrodes) which was used to check the

alignment of the spheroids [186, 198]. Figure 6.11B shows the FFT alignment

plot for the spheroids encapsulated in 15% PEGDA 700 hydrogels. The FFT

alignment plot shows a major peak at 180◦ (peak FFT = 0.103) for the

sample which underwent DEP manipulation. Since FFT is a symmetric
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function, two other peaks can also be seen at 0◦ and 360◦ respectively. The

sample with no DEP shows two very small peaks at 90◦ and 270◦ (peak FFT

= 0.031) with very small signal to noise ratio of 1.47. If a circular mask is

applied to this image, peaks were also seen at 0◦, 90◦, 180◦, 270◦, and 360◦.

Therefore, this sample does not show a net alignment for the spheroids. In

this study, all the alignment quantification has been performed without using

a circular mask. The height and the overall shape of the peaks represent the

degree of alignment in the original image. A high and narrow peak indicates

a more uniform degree of alignment while a broad peak indicates that more

than one axis of alignment may be present. A completely random alignment

is shown by no discernible peak in the alignment plot or by the presence of

peaks at multiple peaks 0◦, 90◦, 180◦, 270◦, and 360◦ in the same alignment

plot [189]. Directional basis in a material develops at 0.05 units or higher

[198, 189, 269]. Hence, DEP can be used to align spheroids of cells (cellular

aggregates or clusters) in the hydrogels as well. This is the first study showing

the patterning of spheroids in 3D hydrogels via DEP. Figure 6.11C shows

the live/dead images of mEBs (500 cell spheroids of mESCs) in 15% PEGDA

3400 for days 1, 3 and 5. From these images, it can be seen that mEBs

easily survive this combined process of DEP SL apparatus and show a good

viability. Figure 6.11D show FFT alignment plots for the images shown in

Figure 6.11C. These alignment plots show that mEBs that were subjected

to DEP were patterned in the hydrogel as evidenced by the high, narrow

peak and the corresponding high peak FFT values. The hydrogels that were

not subjected DEP show more than one degree of alignment and relatively

low peak FFT values, indicative of no net alignment. Figure 6.11E shows

the viability of mEBs in the hydrogel. There is no statistical difference in

viability for the samples that were subjected to DEP and no DEP for days

1 (p = 0.703 ), 3 (p = 0.443 ) and 5 (p = 0.096 ). Viability in this plot is

the ratio of integrated density (area X mean gray value) of FITC (live cells)

filter to TRITC (dead cells) filter. Even after five days in the hydrogel both

the DEP and the no DEP sample show viability of over 1, indicating that

there are more live cells than dead cells. Hence, the platform can be used for

patterning mEBs in 3D hydrogels while maintaining their viability.
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Figure 6.11: Alignment of C2C12 spheroids and mEBs in different hydrogels.
(A) Alignment of 500 cell C2C12 spheroids in 15% PEGDA 700 labeled with
red colored cell tracker dye. (i) Sample subjected to DEP. Approximate
location of the electrodes is shown in the figure to show that the spheroids
get pulled to the edges of the electrode, a hallmark of pDEP. (ii) No DEP
sample. The inset of the plot shows the FFT of the corresponding images
(Scale bar = 100 µm). (B) FFT alignment plot obtained from the FFT of
the images. The alignment plot shows that the hydrogel sample subjected
to DEP shows a net alignment. (C) Live/dead images of 500 cell mEBs in
15% PEGDA 3400 for days 1, 3 and 5 for both DEP and no DEP samples
(Scale bar = 250 µm). (D) FFT alignment plots of the images in (C). The
alignment plot shows that the hydrogel sample subjected to DEP shows a net
alignment. (E) Viability of mEBs in the hydrogels (n > 3 ). An integrated
density of 1 or higher means that there are more live cells than dead cells.
There is no statistical difference in the viability of the mEBs for the DEP
and the no DEP samples at p < 0.05.
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Figure 6.12: (A-C) 500 cell C2C12 spheroids at different magnification on in-
terdigitated electrodes of a printed circuit board in 15% PEGDA 700 labeled
with red colored cell tracker dye (Scale bar = 250 µm).

6.8 Conclusion

Controlling the assembly of cells in three dimensions is very important for

engineering functional tissues, drug screening, probing cell-cell/cell-matrix

interactions, and studying the emergent behavior of cellular systems. Al-

though the current methods of cell encapsulation in hydrogels can distribute

them in three dimensions, these methods typically lack spatial control of

multi-cellular organization and do not allow for the possibility of cell-cell

contacts as seen for the native tissue. Here, we showed the integration

of DEP with SL apparatus for the spatial patterning and encapsulation of

mESCs, C2C12 cells and their spheroids in different types of hydrogels has

been shown and their viability after DEP has been confirmed. mESCs have

the potential to differentiate into cells of the three germ layers - ectoderm,

mesoderm and endoderm. However, controlling their differentiation to a par-

ticular lineage with high purity is extremely difficult because of the unknown

cellular interactions with each other and their environment. DEP allows us

to spatially organize the cells and their spheroids. Thus previously unknown

cellular interactions can now be studied in a high throughput fashion. SL

apparatus offers multi-cell, multi-material fabrication and allows for fabri-

cation of a variety of physiologically relevant photolabile hydrogels. This

combined platform thus takes us one step closer to mimicking the in vivo

cellular micro-environment and can have applications in tissue engineering,

regenerative medicine and stem cell differentiation.
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CHAPTER 7

VIABILITY AND DIFFERENTIATION OF
EMBRYONIC STEM CELLS IN 3D PEGDA

HYDROGEL CONSTRUCTS

7.1 Introduction

ESCs have the potential to differentiate into any cell of the body and therefore

hold the promise to revolutionize modern medicine[11]. However, controlling

their differentiation to a particular lineage is very challenging because it is

often difficult to recapitulate the myriad of bio-chemical and bio-physical cues

of the growing embryo [20]. In this chapter, some preliminary results show the

viability and differentiation of mESCs encapsulated in 3D PEGDA hydrogels

polymerized by stereolithography (SL) are presented. Section 7.2 discusses

the protocol used for running this study. Section 7.3 show the viability

of mESCs and mouse embryoid bodies (mEBs) in 20% PEGDA hydrogels.

Section 7.4 presents some preliminary data of mESC differentiation in 15%

and 20% PEGDA 3400 hydrogels.

7.2 Experimental

W4129S6 mESCs were cultured in high glucose DMEM supplemented with

15% FBS, 1% penicillin-streptomycin, 1 mM sodium pyruvate, 2 mM glu-

tamine, 100 µM non-essential amino acids, 10 ng ml-1 of mouse Leukemia

Inhibitory Factor (mLIF) and 100 µM of mono-thiogycerol on 0.1% gelatin

coated petri dishes in standard cell culture conditions. PEGDA 3400 poly-

mer was mixed with 0.5% 4-(2-hydroxyethoxy) phenyl-(2-hydroxy-2-propyl)

ketone (Irgacure 2959, Ciba) in DMEM. Irgacure 2959 served as the photoini-

tiator for this hydrogel system. Three parts of the polymer was added to one

part of the cell mixture such that the final concentration of the cell-polymer

solution was 15% and 20% respectively. 250 µL of this polymer-cell mixture
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was pipetted onto a glass bottom coverslip. The final concentration of cell

in the polymer-cell mixture was ∼10×106 cells per mL. After polymeriza-

tion via SL, the hydrogels were incubated in cell culture media and viability

studies were performed at different time intervals. In addition, mEBs were

also encapsulated in 20% PEGDA hydrogels using the above procedure. The

protocol for mEB formation and its characterization is presented in 6, section

6.6. Two different size mEBs, 250 cells and 1500 cells were encapsulated in

the same PEGDA hydrogels. For the differentiation studies, hydrogels were

incubated in a media devoid of mLIF but with all the other factors present.

mLIF is a pleiotropic cytokine which is extensively used for the maintenance

of pluripotency [270] Therefore, by culturing the cells in a media with no

mLIF allows them to spontaneously differentiate based on the cues of the

micro-environment.

Viability testing was done by employing the live/dead assay. The cells were

incubated with 2 µM calcein AM (green, live) and 4 µM of ethidium homod-

imer (red, dead) for 15 minutes in phenol free DMEM. After 15 minutes,

the hydrogels were washed twice in PBS and immediately used for imaging.

Green indicates that the cells are viable while red shows dead cells. Viability

testing was employed after days 1, 5, 7, 10, and 14. ImageJ was used for

counting the cells by taking their images in the respective channels. In order

to check the viability of both mESCs and mEBs, the integrated density (area

X mean gray value) in the FITC (green, live) and the TRITC (red, dead)

channel was found. The ratio of integrated density in the FITC to TRITC

channel was reported as the viability of mEBs.

Statistical analysis was performed using Mann-Whitney in OriginPro 8.5.

Unless otherwise mentioned, the values reported are mean ± standard error

of the mean (SEM) and the results were considered statistically significant

when the p-value was less than 0.05 (p < 0.05 )

7.3 Viability of mESCs and mEBs in PEGDA

hydrogels

Figure 7.1 shows the viability of mESCs and mEBs in 20% PEGDA 3400

over the course of 14 days. It can be seen from figure 7.1A that on day 1,

both the mESCs and mEBs show a very high viability as evidenced by the
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Figure 7.1: Viability of mESCs and mEBs in 20% PEGDA 3400 hydrogels.
Live/dead assay showing the vaibility of (A) mESCs (B) mEBs over 14 days.
Quantitative relative viability of (C) mESCs (D) mEBs over 14 days. (E)
Normalized cell viability to day 1 of mESCs (black bar) and mEBs (red
bar). Asterisks indicate statistical significance. At p < 0.05, the means are
statistically different to day 1. Data show is the mean ± SEM (n = 5 ). Scale
bar: 100 µm

live/dead assay. There are two sources of death when mammalian cells are

encapsulated via SL apparatus.

• Initial cell death because of exposure to the UV laser of the SL appa-

ratus.

• Death over the long-term because of the diffusion limitations inside the

hydrogel.

However, the high day 1 viability for both mESCs and mEBs indicate that

these cells can easily survive the UV laser of the SL apparatus. Thus it

becomes possible to explore a variety of other biologically relevant photolabile

polymers with mESCs and the SL apparatus. With time, there is an increase

in the death of cells for both mESCs and mEBs as evidenced from figure
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7.1A, B. By day 14, almost all the individual mESCs are dead. However,

the same is not true for the mEBs. A significant portion of mEBs still

survive the long-term encapsulation in PEGDA hydrogels. Figure 7.1C, D,

and E show the quantitative viability plots for mESCs and mEBs in PEGDA

3400. It is clear that by the end of 14 days, ∼22% mEBs survive the long-

term encapsulation while less than 2.5% of individual mESCs survive this

process. It should be noted that no cell-adhesion molecules were tethered

to the polymer backbone. By covalent attachment of cell-adhesive peptides

like RGDS, this viability can be further increased dramatically [87]. Similar

viability values have been reported for other cell types like fibroblasts, C2C12

cells, and PC12 cells previously [87, 258]. Thus this study showed that it is

possible to achieve long-term mESC viability in 20% PEGDA hydrogels.

However, it was very interesting to see that mEBs show almost 10 times

higher viability than individual mESCs. A cell spheroid is a homogeneous

structure, with cells even at the center of the sphere. These cells at the center

will be more starved of nutrients than the individual mESCs. However, a

higher percentage of these EBs are able to survive in the hydrogels over

the course of 14 days. The reason for this anomalous behavior could be

paracrine and autocrine signaling. The mEBs provide the cells a native 3D

cellular micro-environment which is seen in a growing embryo. It is possible

that by mimicking this 3D micro-environment even the cells at the center

of the EB are able to survive in a diffusion limited environment possibly by

lowering their metabolic demands. It will be very interesting to investigate

the metabolic activities of cells in EB and individual cells in future studies.

Another very interesting phenomenon that was observed in this study was

the formation of spontaneous EBs in hydrogels which were encapsulated with

individual mESCs. It is known that the pore size of 20% PEGDA hydrogels

is less than 10 nm [87]. Therefore, it is highly improbable that there is

movement of cells from inside the hydrogels to the outside since the diam-

eter of an individual mESC is ∼16 µm. Figure 7.2 shows the formation of

spontaneous EBs in 20% PEGDA hydrogels. It can be seen that as early as

day 3, individual mESCs spontaneously aggregate together to from spherical

looking cell spheroids similar to EBs that were formed using the AggreWell

plates. However, these spontaneous EBs do not have a fixed diameter rather

a very wide range of 100 µm to few millimeters. It was confirmed via con-

focal microscopy that there was not a statistically different number of cells
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Figure 7.2: Images showing spontaneous EB formation in 20% PEGDA 3400.
Row 1 corresponds to day 1, Row 2 corresponds to day 5, Row 3 corresponds
to day 10. Scale bar = 100 µm. Row 4 shows images of hydrogel disks in 6-
well plates showing the resultant EBs formed attached to the hydrogel disks.
The diameter of each disk is 10 mm.

from day 1 to day 14 inside the hydrogels. So most likely these EBs form

by the aggregation of cells on the surface of the hydrogels. However, this

is still very interesting for two main reasons. Generally, EB formation is

a precursor to differentiation of mESCs. Therefore, it is very possible that

these mESC cell aggregates so formed could lead to differentiation of these

cells to a different cell type. However, their differentiation potential was not

explored yet and was the topic of research of some ongoing work. Another

reason spontaneous EB formation is interesting because this phenomenon

was not observed for other cell types like C2C12 cells, fibroblasts, PC 12

cells [87, 258]. However, further studies must be done to fully understand

the basis of this phenomenon and the fate of these spontaneous EBs.
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Figure 7.3: (A) mESCs encapsulated in 15% PEGDA 3400 hydrogel with
mLIF on day 14. (B) mESCs encapsulated in 20% PEGDA 3400 hydrogel
without mLIF on day 14. (C) C2C12 cells encapsulated in 20% PEGDA
3400 hydrogel in DMEM with mLIF on day 14. One hydrogel disk is 10 mm
in diameter.

7.4 Differentiation of mESCs in PEGDA hydrogels

The previous studies were done with cells encapsulated in hydrogels and in-

cubated in media with mLIF. As mLIF is responsible for maintaining the

pluripotency of mESCs [270], studies were also run to see the affect of mLIF

removal from the media. Individual mESCs were encapsulated in 20% and

15% PEGDA 3400 and incubated in DMEM wihout mLIF but all the other

chemical factors mentioned in section 7.2. Cells encapsulated in 15% PEGDA

3400 showed a higher viability than the cells encapsulated in 20% PEGDA

3400. This is possibly because lowering the concentration of PEGDA in-

creases the pore size in the hydrogel network which allows for better diffu-

sion of chemicals in and out of the hydrogel [271, 272]. The Young’s modulus

(stiffness) of the hydrogel disks made by the SL apparatus was measured by

using a mechanial testing system by compressing the disks at a constant

rate of 1 mm s−1 in the ambient. Stiffness was calculated using the slope of

stress versus the strain curve within the first 10% of the strain. The stiffness

of the 15% PEGDA 3400 hydrogel was measured to be 72.66 ± 4.07 kPa

while the stiffness of 20% PEGDA 3400 hydrogel was measured as 397.48

± 27.00 kPa. Thus the 20% hydrogel was significantly much stiffer than

the 15% hydrogel. Figure 7.3 shows the images mESCs and C2C12 cells

encapsulated in 15% and 20% PEGDA 3400 hydrogels on day 14. It can

be seen from figure 7.3A that hydrogel disks with mESCs encapsulated in

15% PEGDA 3400 appears transparent and structurally similar to the disks

obtained right after fabrication on day 0. However, figure 7.3B shows the

hydrogel disks with mESCs encapsulated in 20% PEGDA 3400. All the 4
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disks have changed their opacity and have become almost opaque at the cen-

ter. Figure 7.3C shows C2C12 cells encapsulated in 20% PEGDA 3400 with

mLIF. These disks again look transparent and similar to disks obtained in

figurehydrogelDisksA. Since, 20% PEGDA 3400 is significantly much stiffer

than 15% PEGDA 3400 and also since the cells were cultured without mLIF,

it could be possible that the cells have differentiated to some cell type (pos-

sibly a type of bone cell) and the change in the hydrogel opacity could be

just mineral deposition. It has been previously showed that hMSCs cultured

on stiff substrates (> 100 kPa) show markers of osteogenesis and promote

bone differentiation [68]. In order to confirm mineral deposition, the hydro-

gel disks were incubated in a solution of 2% Alizarin red stain. Alizarin red

is a calcium indicator and ubiquitously used for staining calcium deposition

by osteoblasts [273]. Figure 7.4A, B shows the 20% PEGDA 3400 hydrogel

disks on day 14 with encapsulated C2C12 cells. No major staining is vis-

ible in these disks. Figure 7.4C, D shows PEGDA 15% hydrogel disks on

day 14 with mESCs in the absence of mLIF. Again, no major staining is

visbile, although the spontaneously formed EBs can be clearly seen in these

images in the hydrogel. Figure 7.4E, F shows 20% PEGDA 3400 hydrogel

disks on day 14 with mESCS in the absence of mLIF. There is a very strong

staining for Alizarin red in these disks. The center region of the disk has

been stained very strongly for Alizarin red and almost appears black (dark

red). This could possibily be calcium deposition by the mESCs in these stiff

hydrogels. From these images it can be interpreted that the 20% PEGDA

3400 hydrogel disks which had mESCs encapsulated showed possible mineral

deposition after the end of 14 days in culture. However, neither of the other

two samples, 20% PEGDA 3400 with C2C12 cells or the 15% PEGDA 3400

showed any mineral deposition after this period. It should also be noted

that here no osteogenic induction media has been used. The differentiation

is solely based on the stiffness cues received from the micro-environment of

the different stiffness hydrogels.

Furthermore, fluorescence microscopy also revealed mESC spreading on the

20% PEGDA 3400 hydrogels (without mLIF) as shown in figure 7.5A. These

gels do not have any cell adhesive peptides anchored to it. It is well known

that unmodified PEGDA does not allow cell spreading [274]. Therefore, this

mESC spreading could be attributed to the deposition of some ECM proteins

either by spontaneously formed EBs or by the cells themselves which allow
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Figure 7.4: Alizarin red staining. (A, B) Day 14 20% PEGDA 3400 hydrogel
disk with C2C12 cells. (C, D) Day 14 15% PEGDA 3400 hydrogel disk with
mESCs without mLIF. (E, F) Day 14 20% PEGDA 3400 hydrogel disk with
mESCs without mLIF. Each hydrogel disk has a diameter of 10 mm.

for the spreading of cells on it. This phenomenon was not observed on 15%

PEGDA 3400 hydrogels (without mLIF) as can be seen in figure 7.5B. This

again indicates that the micro-environmental cue of stiffness possibly leads

to differentiation of mESCs in 20% PEGDA 3400 but not in 15% PEGDA

3400.

Energy Dispersive X-ray Fluorescence (ED-XRF) was also done on these

hydrogel constructs. ED-XRF gives a finger print of the elements present

Figure 7.5: mESCs encapsulted in (A) 20% PEGDA 3400 (B) 15% PEGDA
3400 hydrogels on day 14 incubated in media without mLIF. Calcein AM
stain clearly shows mESCs spread on 20% PEGDA 3400 hydrogels but not
on 15% PEGDA 3400 hydrogels. Scale bar = 100 µm
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Figure 7.6: ED-XRF data showing higher level of Cl-Kα, K-Kα, and Ca-Kα

peaks in 20 % PEGDA 3400 hydrogels with mESCs.

in the system. ED-XRF has major applications in geology, environmental

remediation, and recycling. It was therefore used to see the presence of the

different elements in the hydrogels. An added advantage of ED-XRF is that

organic elements cannot be detected by conventional silicon based detectors

as the fluorescence photons from these elements are too low in energy. So

the results will not be overwhelmed by the organic nature of the hydrogels

but will only detect peaks from higher elements. Figure 7.6 shows the ED-

XRF data from 20% PEGDA 3400 hydrogel on day 14 with and without

mESCs. It can be clearly seen that the hydrogel disks with mESCs show

higher Cl-Kα, K-Kα, and Ca-Kα peaks compared to the control. It is known

that the osteogenic tissue is made of 1/3 organic and 2/3 inorganic matter by

weight. This inorganinc matter consists of 85% hydroxyapatite 10% calcium

carbonate, minerals like fluoride, potassium, and magnesium [275]. Higher

levels of peaks for calcium, potassium and chlorine indicate the presence

of these inorganic matters. This is again an indication of differentiation of

mESCs towards osteogenic lineage.

Much more in-depth studies like DNA micro-arrays, western-blotting, and

immunofluorescent studies are required to confirm these findings. However,

these preliminary studies give an indication of possible mESC differentiation

to osteogenic lineage because of changes in the elasticity of the hydrogels.
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7.5 Conclusion

In this study, mESCs and mEBs were encapsulated in different stiffness

PEGDA 3400 hydrogels with and without mLIF. For the hydrogels encapsu-

lated with mLIF, mEBs showed much higher viability then individual mESCs

in 20% PEGDA 3400. Removal of mESCs possibly lead to mESC differen-

tiation based on the stiffness of the hydrogels which was confirmed with

Alizarin red stain, mESC spreading on unmodified PEGDA hydrogels, and

ED-XRF data. Although, very preliminary, these studies showed that micro-

environmental cues play a huge role in controlling the fate of mammalian

cells. Future studies need to be done in order to fully understand this phe-

nomenon. In all the differentiation studies, no induction media was used.

Therefore, in future studies the hydrogels can be incubated in specific differ-

entiation media to increase both the rate and efficiency of differentiation.
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CHAPTER 8

FINAL REMARKS AND FUTURE WORK

8.1 Final Remarks

There is a big demand for organ replacement with the aging population of

the world. Currently, the transplantation of vital organs like kidney, heart,

liver, and lung is the only treatment for their end-stage failure. However,

there is a huge shortage of viable, functional organs and on average 18 peo-

ple die waiting for an organ transplant [1]. Various new technologies like

stem cell based tissue engineering, xenotransplantation, and organogenesis

all have the potential to replace or augment organ function. In addition to

regenerative medicine, tissue engineered organs could also serve as an alter-

native to traditional drug discovery/screening [4]. Doing efficacy testing of

drugs on physiologically relevant tissues could also significantly aid in re-

ducing the timeline for drug discovery. These artificially engineered would

serve as a complementary and not competing technology and it would have

the potential to revolutionize both the fields of regenerative medicine and

drug discovery. However, in vivo tissue receives a myriad of bio-physical

and bio-chemical cues from its cellular micro-environment which are diffi-

cult to mimic for in vitro tissues. Furthermore, it is getting clear that these

micro-environmental cues are responsible for controlling the fate of the cells.

Therefore, a novel platform is needed which can mimic these complex in vivo

cues simultaneously in the same scaffold so that it is possible to control the

fate decision of cells in vitro. The aim of this dissertation was developing a

platform which can be used to control the fate decision of mammalian cells,

including ESCs.

Chapter 3 showed that by modulating the stiffness of the substrate, it is

possible to control the cytoskeletal and physiological properties of the tissues.

ECCMs showed the highest beating rate on the substrate which matched the
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stiffness of cardiac tissue. Furthermore, highly aligned sarcomeric striations

were observed on the substrate which had elasticity comparable to the na-

tive in vivo cardiac tissue. Chapter 4 used soft-lithography to constraint

the growth of C2C12 cells in well-defined geometrical shapes. It was found

that hybrid structures showed the highest myogenic potential for the C2C12

skeletal myoblasts. Thus by mimicking the in vivo morphology of the native

tissue it was possible to achieve best degree of myotube formation which is a

pre-cursor to muscle development. Later, the myogenic potential of C2C12

cells on graphene was also investigated in chapter 5. Being organic in nature,

graphene was easily able to mimic the physical and chemical properties of the

native tissue and therefore showed a high degree of myotube formation on its

surface. All these previous studies were 2D cultures of cells. However, an en-

gineered tissue which is capable of mimicking the native tissue should ideally

be a 3D tissue. Therefore, the cues of stiffness and geometry were combined

together in chapter 6 by merging SL and DEP in 3D. These two technologies

were used to mimic the micro-scale architecture of the native 3D tissue in

hydrogels which also matched the stiffness of in vivo tissues. Single cell pat-

terning of mESCs over a large area was achieved by using this novel platform

while maintaining its viability. In addition, embryoid bodies, pre-cursor to

differentiation of mESCs were also patterned by using this technology and

showed good viability. Finally, chapter 7 showed some preliminary results

on the differentiation of mESCs towards the osteogenic lineage based on the

cues of the micro-environment. This work showed that by controlling the

properties of the micro-environment it was possible to control the fate deci-

sion of a variety of cell types like ECCMs, C2C12 cells and mESCs. Much

work is still needed to fabricate a 3D functioning engineered tissue for drug

screening/discovery or for de novo organ development. However, this disser-

tation developed a novel platform by independently investigating the micro-

environmental cues of stiffness, geometry, and topography in 2D and them

combining them in 3D. This platform could thus be used to control the fate

of cells and open new doors in stem cell biology, drug discovery/screening,

tissue engineering, and regenerative medicine.
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Figure 8.1: Heterogenic differentiation of ESCs into cells of three primary
germ layers by a combination of co-culture and soluble factors.

8.2 Future work

In order to achieve a construct which can be used for screening of drugs, DEP

can be combined with SL in a mechanically tuned, biodegrading 3D hydrogel

with encapsulated ESCs and EBs. This hydrogel would consist of Oxidized

Methacrylic Alginate (OMA) linked with cell adhesion peptides arginine-

glycine-aspartate (RGD) and poly(ethylene glycol) methyl ether methacry-

late (PEGMA). The Mw of the hydrogel can be altered to modulate the

stiffness of the hydrogel. Many soluble factors like basic fibroblast growth

factor (bFGF), transforming growth factor β1 (TGF-β1), activin-A, bone

morphogenic protein 4 (BMP-4), hepatocyte growth factor (HGF), epidermal

growth factor (EGF), β nerve growth factor (βNGF), and retinoic acid in dif-

ferent concentrations are known to direct the differentiation of stem cells into

different lineages [276]. EBs with poly(lactic-co-glycolic acid) (PLGA)/gelatin

microparticles (MPs) loaded with different soluble factors can be encapsu-

lated in mechanically tuned hydrogels for a highly organized, homogenous

and optimized differentiation of stem cells to different lineages. Figure 8.1

shows the envisioned hydrogel construct for differentiating the ESCs to ecto-

derm (dopamine neurons), mesoderm (cardiomyocyte) and endoderm (hep-

atocyte). The soluble factors that could be used for differentiation are 1)

Ectoderm - (dopamine neurons - stromal-derived inducing activity (SDIA2)

with PA6 stromal cell co-culture), Mesoderm - (Cardiomyocyte - BMP2 and

END2 cells co-culture), 3) Endoderm - (Hepatocyte like cells - Activin A,

bFGF, dHGF with liver nonparenchymal cells co-culture) [17].

Co-culture studies are useful since the factors released from one cell can act
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on the other cell type to influence its function/phenotype. It has already been

demonstrated that hESCs when cultured with visceral mouse endoderm cells

(END2) leads to upto 25% differentiation into cardiomyocytes while with-

out the END2 cells less than 1% cells are differentiated into cardiomyocytes

[277, 267]. mESCs co-cultured with alginate bead-encapsulated notochords

from chicken embryos in the presence of retinoic acid differentiated to motor

neurons [278]. mESCs co-cultured with human liver parenchymal cells in the

presence of Activin A, bFGF, dHGF differentiated to liver cells [268]. mESCs

co-cultured with PA6 mouse stromal cells differentiated to dopaminergic neu-

rons [279]. Similar studies could be performed in 3D with co-culturing hESCs

with different types of cells to differentiate the cells into the three germ lin-

eages. By controlling the positioning of the cells via DEP, the proposed

platform will be better at controlling the spatio-temporal release of soluble

factors. This added to the fact that the cells will be patterned in a 3D me-

chanically tuned scaffold could truly enhance the differentiation of ESCs. It

would be possible to achieve a very homogenous population of a single cell-

type which could then be used for drug screening or for development of a 3D

tissue.
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