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Abstract 
 

This dissertation summarizes experimental validation and co-design studies conducted to 

optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., 

using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the 

scalability of parallel computer systems using computational accelerators. The experi-

mental validation studies were conducted to help us understand the failure characteristics 

of CPU-GPU hybrid computer systems under various types of hardware faults. The main 

characterization targets were faults that are difficult to detect and/or recover from, e.g., 

faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources 

(Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-

level faults with specific timing features (Ch. 7). The co-design studies were based on the 

characterization results. One of the co-designed systems has a set of source-to-source 

translators that customize and strategically place error detectors in the source code of tar-

get GPU programs (Ch. 5). Another co-designed system uses an extension card to learn 

the normal behavioral and semantic execution patterns of message-passing processes ex-

ecuting on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). 

The third co-designed system is a co-processor that has a set of new instructions in order 

to support software-implemented fault detection techniques (Ch. 7). 

The work described in this dissertation gains more importance because heterogeneous 

processors have become an essential component of state-of-the-art supercomputers. 

GPUs were used in three of the five fastest supercomputers that were operating in 2011. 

Our work included comprehensive fault characterization studies in CPU-GPU hybrid 

computers. In CPUs, we monitored the target systems for a long period of time after in-

jecting faults (a temporally comprehensive experiment), and injected faults into various 

types of program states that included dynamically allocated memory (to be spatially 

comprehensive). In GPUs, we used fault injection studies to demonstrate the importance 

of detecting silent data corruption (SDC) errors that are mainly due to the lack of fine-

grained protections and the massive use of fault-insensitive data. This dissertation also 

presents transparent fault tolerance frameworks and techniques that are directly applica-

ble to hybrid computers built using only commercial off-the-shelf hardware components. 

This dissertation shows that by developing understanding of the failure characteristics 

and error propagation paths of target programs, we were able to create fault tolerance 

frameworks and techniques that can quickly detect and recover from hardware faults with 

low performance and hardware overheads. 
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Chapter 1. Introduction 
 

 

This chapter describes the reliability problem of parallel computer systems, and gives an 

overview of this dissertation’s work on that problem. 

 

 

1.1. Problem 
 

Use of heterogeneous processing engines is a trend that attempts to optimize the compu-

tational throughput vs. power consumption and the computational throughput vs. hard-

ware cost. Designers can use special-purpose processing units that are heavily customized 

for the characteristics of target application program workloads. For example, three out of 

the five fastest supercomputers in operation in 2011 (i.e., Tianhe-1A, Nebulae, and 

TSUBAME 2.0) use both CPU and GPU devices. Modern GPUs are a compelling plat-

form for executing HPC programs (e.g., science simulation and medical data processing) 

because GPUs can process large volumes of data by using many collaborating threads. 

They can do so through use of multiple cores, wide memory bandwidths, large register 

files, and many arithmetic units. Those rich hardware resources lessen structural hazards. 

The throughput-driven design of the GPU core architecture addresses data and control 

hazards (i.e., the main barriers to exploitation of the instruction-level parallelisms in CPU 

designs). The direct exposure of GPU hardware resources to programmers via the pro-

gramming model allows programmers to fully optimize their programs. 

Early adapters of such special-purpose hardware take the risk of using newly devel-

oped hardware components. The development history of large-scale computers reveals 

such risks. The ASC Q supercomputer at Los Alamos National Laboratory (LANL) expe-

rienced about 27.7 failures per week because of faults in its processors [MHH+05]. Most 

of these failures were due to faults in the processor on-chip caches. The on-chip caches 

were protected by a parity-based error detection technique without error correction capa-

bilities. The problem was addressed in later generations of machines through introduction 

of an SEC-DED ECC technique in processor on-chip caches except for the first-level 

caches. Similarly, newly designed special-purpose processors can have unknown and un-

protected reliability problems. That shows the need to perform experimental validation of 

such new hardware components and to use the experimental validation data to redesign 

fault tolerance techniques for such new components. 
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1.2. Objective 
 

The main objective of this dissertation is to develop fault tolerant systems capable of 

handling computational intensive parallel applications, e.g., large-scale simulations. 

(i) Efficiency. The first goal is to shift the scaling ceiling of parallel computer systems 

as much as possible by managing hardware faults in an efficient and organized manner. 

An efficient fault tolerance technique would have high fault detection and recovery cov-

erage, and low runtime performance, memory space, and hardware area overheads. 

(a) High coverage. Crash failure detection of a user process or OS in a single-node 

system is free and done by default, because such failures imply faults that are detectable 

by the baseline error detection techniques in the hardware, OS, middleware, or applica-

tion. Our research thus focuses on detection of hang, data omission, timing, and data cor-

ruption failures of system and application software. Although those four types of failures 

are relatively rare, missing them has large penalties in large-scale computer systems in 

terms of performance and energy efficiencies. We use the following three metrics to 

evaluate fault detection and recovery coverage. 

 Detection coverage. Detection coverage is defined as one minus the probability 

that a random hardware fault will go undetected by the used error detection tech-

niques and lead to user-visible failures. Our target detection coverage is >99% for 

permanent faults, and >95% for transient faults in any software. 

 Recovery coverage. Recovery coverage is defined as an average probability of 

tolerating detected errors with the used error recovery techniques. Our target error 

recovery coverage is >99% for errors and failures in CPUs and GPUs. 

 Detection latency. Detection latency is the time from the activation of a hardware 

fault to the detection of the activated fault by the header node of a parallel or dis-

tributed system. Our target average detection latency is 1 second for crash failures, 

10 seconds for hang failures, and 1 minute for silent data corruption (SDC)
1
 fail-

ures. Note that this detection latency definition includes the error latency (the time 

from the activation of a fault to the detection of an induced failure by software on 

the same computer node), and its average value for crash failures is small in mod-

ern computer systems, according to previous experimental studies. 

                                                           
1
 An SDC error is defined as an undetected data error that violates the output data correctness of a target 

program. Its exact definition depends on the quality-of-service (QoS) requirements of an individual pro-

gram and/or user. 
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(b) Low overhead. Computation, hardware cost, and energy efficiencies are key de-

sign requirements in any computer system. Error detection and recovery shall not harm 

any of those efficiencies in a noticeable way. We use the following three overhead met-

rics: 

 Performance overhead. Performance overhead is a ratio of the execution time of a 

program with the presented fault tolerance techniques, and the execution time of 

the same program without the presented techniques. The two execution times are 

measured in fault-free conditions (e.g., in a small-scale system). Our target per-

formance overhead is <1% for fault detection and <10% for fault recovery. 

 Memory space overhead. Memory space overhead is a ratio of the size of extra 

memory space needed to run the presented fault tolerance techniques and the total 

size of used memory space of a target system without the presented techniques. 

The target memory overhead is <3% and is <50MB per user thread. 

 Hardware area overhead. Hardware area overhead is the ratio of extra hardware 

area size needed to run the presented fault tolerance techniques and the hardware 

area size of a target system (i.e., excluding main memory size) without the pre-

sented techniques. Our target hardware overhead is <3%. 

Moreover, the performance of tightly coupled parallel programs is highly sensitive to 

small performance jitters (i.e., delay made by underlying software and hardware), espe-

cially when these programs run at a massively large scale. Because hardware faults are 

common in large-scale systems, performance jitters due to detected and corrected faults 

have a non-negligible impact. That implies that fault detection and recovery techniques 

must not become another source of noticeable performance jitter, regardless of the pres-

ence and frequency of hardware faults in the system. 

(ii) Transparency. The second goal consists of realizing the first goal in computer 

systems that were built from COTS hardware and software components. That means that 

the designed fault tolerance techniques must not require any intrusive modification to the 

target system and must be easy to deploy (e.g., pluggable architecture), regardless of 

whether the techniques are implemented in hardware or software. 

Our research focuses on minimizing changes in the hardware and software of the tar-

get system (i.e., a non-intrusive design). For hardware techniques, a chip-level modifica-

tion is less desired than a board- or system-level change. For software techniques, while 

software changes are preferred to hardware changes, it would be preferable to use an au-

tomatic binary translation rather than rely on source code annotation.  

All of our presented techniques were designed to be easily installable by administra-

tors or users in COTS-based target systems, without requiring intrusive modification of 
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the target systems. The components that form the presented techniques include an exten-

sion card, an OS kernel module, a user-level library, and a source-to-source translator. 

All of them can be plugged into the target system software or hardware. A normal user 

can compile and run his or her program by using the compilers, libraries, middleware, 

and OS installed in a target computer by administrators. The build and launch processes 

of the user will be no different from those used for other supercomputers or cloud servers. 

That shows the transparency of the presented techniques to normal users. 

 

1.2.1. Assumption 

We target parallel computer systems that use computational accelerators. We specifically 

target a hybrid computer system that uses CPUs (as main processors) and GPUs (as com-

putational accelerators). Although we assume this specific combination of heterogeneous 

processor types, the presented techniques are generic, that is, are applicable to other hy-

brid computers to the extent that their computational acceleration processors are managed 

the way GPUs are managed in our target systems.  

In our target system, a GPU program consists of CPU- and GPU-side codes. A GPU 

kernel is a part of the GPU-side code with an entry function callable from the CPU-side 

code. GPU kernels form a majority of total computation time in GPU-based parallel pro-

grams. The loop portions of GPU kernels typically dominate the GPU kernel execution 

time, because the degrees of parallelism of the software are higher than those available in 

the GPU hardware. Each GPU kernel uses the SPMD (Single Program Multiple Data) 

programming model. 

GPUs are used as computational accelerators. Thus, the microarchitectures of GPUs 

are heavily optimized to provide high computation and energy efficiencies during pro-

cessing of computation- and/or data-intensive programs. GPUs have many arithmetic 

units, large-size registers, and both hardware and software-managed on-chip caches. We 

assume that in the accelerators, computation operations are faster and more energy-

efficient than memory operations are (i.e., there is a high processor-memory performance 

gap). On the other hand, the accelerators do not support fine-grained address translation 

(e.g., a translation lookaside buffer with page-granularity translation) or strong fault iso-

lation between parallel threads (e.g., due to the shared memory model between parallel 

threads). 

We assume that a parallel programming model is used to coordinate multiple GPU 

programs. The assumed parallel programming model is MPI (Message Passing Interface). 

A user located in the header node launches multiple MPI processes on top of multiple 

compute nodes, where each compute node has a set of main processors and accelerators. 
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Each MPI process repeatedly executes similar computation operations during the majori-

ty of its execution time. In each compute node, only one MPI program runs at a time (ex-

cept for system daemons). 

 

1.2.2. Definition 

For the purposes of this dissertation, the definitions of fault, error, and failure are as fol-

lows [Lap95]. A fault is the root cause of a problem. An error is a state of a system 

changed or corrupted by a fault. A failure is a symptom or behavior of a system that has 

been exposed or revealed to a user. Depending on the perspective of that person, the ac-

tual phenomena that represent faults, errors, or failures vary. Each chain of a fault, error, 

and failure is connected to other chains in the system, where a failure in a chain (or an 

abstraction) can be a fault in another chain (i.e., in a higher layer of system abstraction or 

another system component). In this dissertation, we mainly use transient hardware fault 

models. The exact fault models used are discussed in Section 2.1. 

Failures are classified into the following types: (a) not activated, meaning that a 

faulty state is not accessed during the computation; (b) overwritten, meaning that a faulty 

state is accessed, but the access operation is a write that overwrites a new value to the 

faulty state; (c) system crash, meaning that an activated fault is detected by the baseline 

error detector and stops the system software execution; (d) system hang, meaning that an 

activated fault is not detected but makes the system software malfunction; (e) user crash, 

meaning that an activated fault is detected and causes an unexpected termination of a user 

process; (f) user hang, meaning that an activated fault makes a user process run more 

than n times the expected execution time; (g) user silent data corruption (SDC), meaning 

that an activated fault causes a corruption of application output data that violates the cor-

rectness requirement of the application; and (h) non-manifested, meaning that an activat-

ed fault causes none of the above-described failures. In this dissertation, a benign fault 

means an un-activated, overwritten, or non-manifested fault. 

 

1.3. Contribution 
 

This dissertation shows that by developing understanding of the failure characteristics 

and error propagation paths of target programs, we were able to create fault tolerance 

frameworks and techniques that can quickly detect and recover from hardware faults 

with low performance and hardware overheads. The experimental aspect of this disserta-

tion shows that by emulating errors in high layers of system abstractions, one can conduct 
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reliability validation experiments on top of commodity computer systems in a nonintru-

sive way, and efficiently quantify system characteristics under hardware faults. The ex-

perimental part also shows that the selection of targets for protection should be based on 

knowledge of recoverability rather than on error sensitivity alone. The part focusing on 

design demonstrates that by developing intelligence on the normal behavioral and seman-

tic execution patterns of application programs, external checkers can accurately and 

quickly detect non-benign hardware faults with low performance and hardware overheads. 

 

1.3.1. Experiment 

We developed a set of validation frameworks and measurement techniques, and per-

formed dependability benchmarking experiments. 

(i) Extensible fault injection framework. If the characteristics of computer systems 

can be accurately measured under various types of faults, this can give valuable insights 

into the design and operation of dependable computer systems. However, observations of 

a transient fault and resulting errors are difficult in real systems and often incur large 

overheads. Detecting a transient fault or an error event itself either requires a hardware 

modification (e.g., duplication) or causes a large performance overhead.
2
 The reason is 

that it is necessary to monitor the system state continuously in order to detect a fault or an 

error. Here, the measurement precision depends on the monitoring frequency of a target 

system, while the monitoring overhead is directly proportional to the monitoring frequen-

cy and the size of monitored state. This trade-off makes an accurate detection of a transi-

ent fault or an error impractical in real systems. 

Fault injection experiments enable accurate observations of fault, error, and failure 

events. Because a synthetic fault is injected into a target system, the experimenter knows 

when and where a fault is injected (i.e., the same as detecting the fault occurrence event). 

Using a fault injection tool, an experimenter can monitor any access to a specific system 

state that was corrupted by the injected fault (i.e., detection of an error event). That ac-

cess monitoring does not introduce a large runtime overhead, because modern processors 

support a hardware breakpoint mechanism that raises an interrupt when a predetermined 

target memory state is being accessed (i.e., executed, read, or written). The performance 

                                                           
2
 Note that it is true that faults that have the same characteristics as transient faults are still diagnosable by 

off-line testing (e.g., BIST) in practice. For example, some memory or disk transient faults are related to the 

wear-outs or other permanent defects of the devices (e.g., a memory cell with a stuck-at-‘0’ fault causes an 

error at runtime only if the value of ‘1’ is written in it). Such off-line testing does not cause any runtime 

overhead, although this off-line testing itself can still takes a long time.  
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overhead directly caused by this hardware breakpoint is just a time to set a breakpoint 

and a time to process this interrupt request. 

Several fault injection frameworks have been developed for quantitative evaluation of 

the dependability of mission-critical systems and high availability computer systems. 

However, it is still an open problem that is making an agreement on specific fault injec-

tion experimental methodology. Such an agreement would make it easy for other exper-

imenters to repeat fault injection experiments. The problem is mainly due to the use of 

different fault injection tool, which is customized for specific experimental objectives of 

an individual or a group. Some researchers have applied a framework for various fault 

injection experiments (e.g., using different target systems or fault models). Such a 

framework can be extended efficiently to the extent that the original developers are in-

volved in the extension. However, another experimenter who does not have sufficient 

information about the internal architecture of such a framework typically needs to put a 

larger amount of effort and time (relative to the amount needed to build a new framework 

from scratch) into extending the framework for his or her own target systems and exper-

imental objectives. On the other hand, the approach of building from scratch requires the 

experimenter to repeat and redevelop what has already been done by earlier researchers, 

and gives the earlier researchers the new large burden of needing to understand and vali-

date the new framework. 

In general, repeatability of experiments is a basis of all sciences, as it makes it possi-

ble to verify the validity of experimental results. The first step that the fault injection 

community can make to achieve that vision would be to build a standard, extensible, and 

open fault injection framework. The next step would be to make an agreement on fault 

injection methodologies and configurations (i.e., including fault models, target system 

hardware configuration guidelines, standard software workloads, and experiment termi-

nation conditions). The impact would be significant. Then, an experimenter would be 

able to directly compare his or her experimental results to the results of others, provided 

that both efforts used the same fault injection configurations. 

We present the Extensible Fault Injection (EFI) framework. EFI can emulate errors in 

the internal states of commodity CPU- and GPU-based computer systems (Section 4.3). 

The two types of fault injectors provided are: 

 Breakpoint-based fault injector. This software-implemented fault injector can 

emulate errors in the OS and user processes that run on CPU-based platforms 

(Sections 3.3 and 4.4). 

 Mutation-based fault injector. This source code mutation-based fault injector em-

ulates errors in programs running on GPU devices (Section 5.8).  
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(ii) Measurement methods for comprehensive fault injection experiments. Fault injec-

tion shall be done in a comprehensive way. One can easily recognize the validity of that 

statement by considering the large size of the state spaces of modern computer hardware 

and software systems. Also, there is software (e.g., OS kernel or network daemons) that 

runs continuously. In such cases, it is unclear whether a non-manifested fault would be 

continuously benign (i.e., not activated or not manifested) if we monitored the software 

for a longer period of time. We call a fault injection experiment temporally comprehen-

sive if the experiment uses a long monitoring time that is sufficient to activate as many 

faults as would likely appear when a target system is field-deployed. Not only that, if the 

variation in experimental results among different types of states or different data about 

the same type of states is large, a statistically significant number of fault injection sam-

ples is needed for each type of state. We call a fault injection experiment spatially com-

prehensive if we have high confidence in its results from a statistical point of view. 

In order to conduct comprehensive fault injection experiments, we developed two 

measurement techniques. One is an accelerated fault injection strategy that speeds up the 

fault injection experiment and thus is useful for temporally comprehensive fault injection 

experiments within a relatively short period. Temporally comprehensive fault injection 

experiments are time-consuming. If a target system is monitored for a long period of time 

after each fault injection, the total experimentation time is significantly increased. For 

example, if a system is monitored for 2.5 hours after each fault injection, the experiment 

would take 6 to 12 months (depending on the fault type) to study just 6,000 faults. We 

present an accelerated fault injection strategy that can help experimenters collect a statis-

tically significant number of fault injection samples in a relatively short time period (Sec-

tion 3.4). The presented accelerated fault injection strategy reduces the experiment time 

by 3.2 times and 7 times for the processor and memory faults, respectively, when the 

monitoring time is 2.5 hours. 

The other measurement technique we developed is a data-type-aware fault injection 

technique that allows us to classify fault injection results as a function of corrupted data 

type. Many other specific techniques have been designed that can provide either better 

measurement accuracy (e.g., distinguishing read vs. write activation of faults) or shorter 

experiment time. A spatially comprehensive fault injection experiment requires advanced 

fault injection methods. For example, a dynamic memory (e.g., heap) is allocated and 

freed at runtime. Naturally, it is difficult to know the type of data stored in a specific 

memory address of dynamic memory at the time of fault injection and at the time of sys-

tem failure. In order to be more precise, one must be able to keep track of dynamic 

memory objects that are allocated and freed over time, and associate a specific data type 
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with a memory word inside a dynamically allocated memory object. We present a data-

type-aware fault injection technique that uses a symbolic identifier to specify a fault in-

jection target (e.g., specifying the data type of a fault injection target), converts a symbol-

ic identifier to a virtual address at runtime, and uses the converted virtual address to set a 

breakpoint if the breakpoint-based injector is used (Section 3.3). 

(iii) Characterization of faults via fault injection. We conducted a set of fault injec-

tion experiments on various types of COTS-based computer systems. Based on the pre-

sented validation frameworks and measurement techniques, we quantitatively evaluated 

the following system reliability characterization metrics (Chapters 3–4). These metrics 

were also modeled as mathematical formulas (e.g., curve fitting if the data follow stand-

ard distributions) for the model-based evaluation (Section 3.7). 

 Fault and error sensitivity. We analyze the fault and error sensitivity of various 

types of CPU and GPU program states, where fault sensitivity (i.e., the non-

benign faults ratio) is a ratio of the number of non-benign faults (i.e., faults that 

lead to system or application failure) and the total number of injected faults, and 

error sensitivity is a ratio of the number of non-benign faults and the number of 

activated faults. 

 Fault and error latencies. We analyze the fault and error latencies of various 

types of CPU and GPU program states, where fault latency is the time from the 

introduction of a fault (fault injection) to its first activation, error latency is the 

time from the first activation of a fault to the first detection of an induced error or 

an induced failure, and failure latency is the sum of fault latency and error latency 

[ALR+04]. 

 Error and failure location. We analyze a distance between error location and fail-

ure location. For example, we check whether the location of an error and the loca-

tion of a failure are the same program function (or software module). By checking 

this condition on multiple pairs of errors and failures, we compute the probability 

that error and induced failure are in the same function (or software module) and 

use this probability as a distance metric. Note that the location of a fault and the 

location of an error are the same if the error is one that is immediately caused by 

the fault and the fault is a specific type (e.g., code memory fault). 

Our experiments explored the new spectrums of fault injection experiments and ana-

lyzed these metrics (see Figure 1.1). These new spectrums are long latency failures, dy-

namic memory faults, faults in GPU devices, and specific microarchitecture-level faults. 

Those four types of faults were chosen not just because they are common in commodity 
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computer systems, but also because they are either difficult to detect or difficult to recov-

er from. 

(a) Long latency failures (Chapter 3). We present a study on long latency failures us-

ing accelerated fault injection. The data collected from the experiments are used to ana-

lyze the significance, causes, and characteristics of long latency failures caused by soft 

errors in the processor and the memory. The results indicate that a non-negligible portion 

of soft errors in the code and data memory lead to long latency failures. The long latency 

failures are caused by errors with long fault activation times and errors that cause failures 

only under certain runtime conditions. On the other hand, because of a strong temporal 

locality of register values, less than 0.5% of soft errors in the processor registers used in 

kernel mode lead to a failure with a latency longer than a thousand seconds. Our study 

also shows that the obtained insight can be used to guide design and placement (in the 

application code and/or system) of application-specific error detectors. 

 (b) Dynamic memory faults (Chapter 4). We present a measurement-based analysis 

of the fault and error sensitivities of dynamic memory. We extend a software-

implemented fault injector to support data-type-aware fault injection into dynamic 

memory. The results indicate that dynamic memory exhibits about 18 times greater fault 

sensitivity than static memory does, mainly because of the higher activation rate. Fur-

thermore, we show that errors in a large portion of static and dynamic memory space are 

recoverable by simple software techniques (e.g., reloading of data from a disk). The re-
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Figure 1.1. Spectrum of fault injection experiments. 
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coverable data include pages filled with identical values (e.g., ‘0’) and pages loaded from 

files unmodified during the computation. Consequently, the selection of targets for pro-

tection should be based on knowledge of recoverability rather than on error sensitivity 

alone. 

(c) GPGPU program sensitivity (Chapter 5). The high performance and relatively 

low cost of GPU-based platforms provide an attractive alternative for general-purpose 

high-performance computing (HPC). However, the emerging HPC applications usually 

have stricter output correctness requirements than typical GPU applications (i.e., 3D 

graphics) do. We analyze the error resiliency of GPGPU platforms using a fault injection 

tool we developed for commodity GPU devices. On average, 16–33% of injected faults 

cause silent data corruption (SDC) errors in the HPC programs executing on the GPU. 

That SDC ratio is significantly higher than the one measured in CPU programs (<2.3%). 

(d) Microarchitecture-level fault (Chapter 6). We find that software-implemented er-

ror detectors have time-of-check-to-time-of-use (TOCTTOU) vulnerabilities. 

The experimental data have implications for the design of fault tolerance systems. A 

relatively small portion of faults in hardware (e.g., transistor or circuit) manifest from the 

viewpoint of the application software or user. For example, a fault in an unused transistor 

is automatically masked and does not lead to a failure. Thus, a fault tolerance technique 

does not have to protect all of its target system states if its cost efficiency is an important 

design requirement. At the same time, hardware full-duplication is conservative in the 

sense that many detected errors are benign for software. That consequently illustrates 

why error sensitivity and recoverability characteristics of target software should be con-

sidered during the design of error detection and recovery techniques. 

 

1.3.2. Design 

We present a set of fault detection frameworks and techniques for COTS-based computer 

systems (see Figure 1.2). The presented techniques have various distances to their pro-

tected program source code, from embedded error detectors automatically generated by a 

source-to-source translator to an external monitor that compares the naturally generated 

communication messages. By developing three types of spectrums of techniques (all of 

which are applicable to COTS-based systems), we are better able to understand the trade-

offs among their potential benefits, limitations, and development complexities. 

(i) Fault tolerance framework for GPUs (Chapter 5). We present a software frame-

work to provide fault tolerance services for GPUs. It is a source-to-source translator that 

derives error detection and recovery codes for target software. The derived codes are cus-

tomized and strategically placed in the target software source code following considera-
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tion of the common characteristics of GPU-based programs and specific characteristics of 

a given program (e.g., control- and data-flows). The translated codes are compiled and 

linked with a set of provided libraries that are called at runtime to perform fault detection 

and recovery operations. Using the framework, we can detect and tolerate faults in a GPU 

device without having to interfere with the executions of all other threads in the same 

program. That can significantly reduce the fault tolerance overheads in GPU-based paral-

lel programs.  

The fault detection techniques presented as a part of this framework are: 

 GPU guardian. This technique can detect GPU hang failures and timing errors by 

using a timer that is set using the execution time data of the previous runs of the 

same GPU kernels. 

 Embedded, customized error checking. We present embedded error-checking 

techniques that are embedded in the source code of the target program. The gen-

erated techniques are not only customized for the target program characteristics, 

but also capable of exploiting the unused parallelisms in target system hardware 

and the inherent memory localities of a target program. Two example techniques 

of this type are: 

o Duplication-and-checksum. This technique duplicates selected computa-

tion statements of a target program and adds checking code to compare the 

original and duplicated computation results in order to detect computa-

tional errors (e.g., faults in ALU/FPU). We apply this to variables that are 

initialized once and used as read-only for a long period of time. To protect 

errors that occur while the read-only data are kept in the register or 

CPU Software
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GPU Software

Error Detectors

CPUsCPU Bridge CPUsGPU

Pluggable
Watchdog Card

Hauberk

FDX
Voter

NIC

VHED

Static Derivation

Output data of GPU programs

Output of CPU (artifically collected)

Output of CPU (naturally monitored)  
Figure 1.2. Overview of the presented fault tolerance frameworks. 
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memory, we use a checksum that is XORed with the value of each pro-

tected variable twice: when the value is computed, and when the variable 

becomes a dead variable. We use the same checksum to protect multiple 

variables. Regardless of the protected variable count, the checksum shall 

be zero at the end of program execution. Otherwise, we detect an error in a 

part of registers or memory that kept the variables protected by the check-

sum. 

o Accumulated value range checking. This technique is specifically de-

signed to protect data computed inside a loop. Considering the small size 

of loops (i.e., as they are the main optimization targets) and the portion of 

total execution time taken by loops in parallel programs, the addition of a 

few error-checking instructions inside a loop can significantly delay the 

program execution time. This technique adds only two additional instruc-

tions to protect the computation done inside a loop. One instruction accu-

mulates the value of a selected variable (i.e., one with the largest cumula-

tive backward dataflow dependency, to which errors in other variables are 

most likely to propagate) over entire loop iterations. The other instruction 

tracks the loop iteration count. After executing the loop, each parallel 

thread divides the accumulated value by the loop iteration count (i.e., giv-

ing an average). The range of the average value is checked against the val-

ue ranges profiled in advance. False positives are diagnosed by the pre-

sented selective re-execution technique. 

(ii) Fault tolerance framework for MPI programs (Chapter 6). We present a non-

intrusive fault tolerance framework for computer nodes. The framework, named Plugga-

ble Watchdog, augments the fault detection and recovery capabilities of the existing in-

dustry standard IPMI [IPMI2]. The key enhancements made in Pluggable Watchdog are 

the detections of hang, data omission, timing, and data corruption errors of application 

software. Those detections are hard to achieve unless behavioral and semantic infor-

mation about application software is recognized. While Pluggable Watchdog fault detec-

tion and recovery operations run on a separate chip in the computer node level, the se-

mantic gap between these offloaded operations and application software is addressed 

through use of software agents on the host computer machine. 

The fault detection techniques presented as a part of the framework are: 

 Software symptom. This technique can detect crash failures of an OS (and hyper-

visor) and notify the header node about them. An OS crash is an error or failure 

that is detected by the error checkers in the OS or processor/memory hardware. 
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Naturally, there is a software function that is called when such an error or failure 

detection happens. For example, specific versions of Linux go to the panic mode 

by calling the panic() function. Our software symptom-based detection adds er-

ror-reporting code in the entry of such a function. The added reporting code only 

uses statically allocated resources (e.g., a UDP packet) and either directly or indi-

rectly reports this to the header node. Similarly, when a user process crashes, a 

specific kernel function is called that allows our technique to detect and report us-

er crash failures as well. 

 Behavioral specification. This technique derives a specification from the target 

program implementation (i.e., program binary) and enforces the specification to 

the program at runtime by monitoring the target program signatures generated at 

runtime. The specification may be, for example, a finite state automaton that cap-

tures all legal call sequences of library functions. We use that automaton to check 

the following four properties to detect the crash, hang, data omission, timing, and 

SDC failures of a target program. 

o Termination state. This property holds if all processes terminate at one of 

their final states in the specification. 

o Transition time. This property holds if any transition time between two 

states in the specification is normal. Because multiple threads execute in 

parallel, we can check whether the transition times of multiple threads be-

tween two identical states are similar. 

o Output data value. This property checks whether the values of output data 

produced while threads stay in the same state at the same time are similar 

between multiple threads in the same program. 

(iii) Fault tolerance framework for COTS-based mission-critical systems (Chapter 7). 

In mission-critical systems, it is less important to optimize the cost of fault tolerance 

techniques than it is to meet the fault tolerance design requirements (e.g., “five nines” 

availability). The growing computational demands in mission-critical systems (e.g., a 

space exploration craft that must perform on-board data processing and automatic naviga-

tion) result in the use of high-performance COTS components. Compared to the previ-

ously used components (e.g., with TMR architecture), such COTS components are more 

likely to fail when they experience hardware faults (e.g., an alpha particle strike). The 

presented framework is a voter that allows developers to build highly reliable and availa-

ble software-based NMR systems that use only COTS components. The presented voter 

is programmable and highly fault-tolerant. The fault detection techniques presented as a 

part of this framework are: 
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 Hardware-software co-designed checking. These techniques use both hardware 

and software in order to supplement the weaknesses of each. For example, all 

software-implemented error checkers have the time-of-check-to-time-of-use 

(TOCTTOU) vulnerability because of the difference between the exact execution 

times of checking and using operations (i.e., they are executed by different in-

structions). We address that vulnerability by adding an extra processor instruction 

that schedules a checking operation at a specific time and eventually makes the 

time-of-use and the time-of-check the same. We have designed some other pro-

cessor instructions either to improve the coverage or to accelerate the error-

checking operations implemented in software. 

 Software NMR. This provides a programmable and fault-tolerant voter that is 

needed to build software-based NMR systems that use only COTS components. 

The large amount of redundancies created in this approach helps this technique 

detect almost all types of hardware faults. The presented voter makes it easy to 

implement complex voting algorithms and to run the voting software in a more re-

liable way. 

(iv) Error recovery techniques. The presented detection techniques trigger error re-

covery techniques in order to tolerate detected errors. The following error recovery tech-

niques are presented as a part of our frameworks. 

 Recoverability-driven memory protection (Chapter 4). This technique reduces the 

protection costs under a high fault rate. Our study indicates that it is possible to 

recover from a significant percentage of memory errors (e.g., 70% of the static 

memory and 10–60% of dynamic memory errors
3
) through use of simple software 

techniques. For example, a large proportion of memory pages allocated by appli-

cations are filled by the same value (e.g., ‘0’). This technique recovers errors in 

these pages when the value is recorded in advance. Memory pages used for disk 

caches are replicated by default in stable storage. The technique recovers errors in 

those pages by reloading the data from the storage. Some of the user-level state 

can be excluded as protection targets. For example, errors in multimedia data are 

short-lived and quickly removed by new incoming data (e.g., the next video 

frame), without degrading the QoS. Our technique recovers errors in such data by 

                                                           
3
 In this dissertation, static and dynamic memories are defined from the viewpoint of the OS kernel. Ad-

dresses of variables in static memory are fixed at compile time (e.g., kernel global memory), while those in 

dynamic memory are dynamically assigned at runtime (e.g., heap object). Dynamic memory thus includes 

all the code, read-only data, read-write data, and stack segments of user processes and kernel modules, as 

well as the dynamically allocated kernel memory objects. 
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forcing the program to continue without any interruption. Naturally, the technique 

can tolerate multi-bit errors to the extent that they are detected. It can significantly 

reduce the error recovery overhead, because the technique is a version of forward 

error correction techniques that need neither a checkpoint nor a restart operation. 

 Selective re-execution (Chapter 5). In CPU-GPU hybrid computers, in essence, 

we use multi-level checkpoint-and-restart techniques for error recovery. A level 

of checkpoint-and-restart is created for each GPU device. Another checkpoint 

level is created for each computer node. The other level is created for the entire 

system or for a part of system; in such cases, one more level is used for the entire 

system. Such local recovery (e.g., per GPU device) is feasible thanks to the data 

error detection capabilities of the presented error detection techniques. When an 

error alarm is raised by a GPU error detection technique, the presented selective 

re-execution technique re-executes the GPU kernel not only to check whether the 

alarm is a false positive or a true positive, but also to tolerate the detected errors 

without interfering with the executions of other software instances. 

 Programmable voting (Chapter 7). This technique is intended to support software-

based NMR in mission-critical systems and extremely large-scale computer sys-

tems in which failures are so common that they are likely to occur even during er-

ror recovery operations. 
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Chapter 2.  

Background: Fault Model and Fundamental 

Concepts in Fault Tolerance 
 

 

This chapter reviews related work that measures computer fault rates, and the basic con-

cepts and techniques of error detection. 

 

 

2.1. Fault Classification 
 

In order to understand the problem, we classify various types of faults that exist in com-

puter systems. No human-made artifact is free of faults. In various engineering disci-

plines, it is important to design a system that can avoid, detect, and tolerate failures that 

occur during operation. Classifying and knowing the types of faults that can occur in a 

target system are the first steps in the design process of fault tolerant systems. We classi-

fy faults into two major types: hardware and software faults. 

(i) Hardware fault. Hardware faults are typically classified into three types based on 

the type of the root cause: transient, intermittent, and permanent. Both transient and in-

termittent faults can cause soft errors. A soft error is an unexpected change in the data 

stored in electronic circuits or transmitted between them. In contrast a hard error is 

caused by a permanent hardware fault. 

(a) Transient fault. A transient fault is caused by ionizing radiation, a particle strike, 

or other external interference. The induced soft error can propagate and corrupt a soft-

ware state, but it does not cause permanent damage to the hardware. In 1979, it was first 

reported that alpha particles can cause soft errors in DRAM and charge-coupled devices 

(CCDs) [MW+79]. An alpha particle consists of two protons and two neutrons and is 

produced in a radioactive decay process (namely, alpha decay). Note that ~10% of cos-

mic rays, which are charged subatomic particles originating from the space, are alpha 

particles, while ~89% of cosmic rays are simple protons. The majority of cosmic rays 

come from straight above the ground, according to the IBM Blue Spruce experiment 

[ORT+96]. In an experiment [CR+11], injecting 50 MeV protons into three COTS devic-
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es caused data loss and device crash, but no symptom was observed that implied perma-

nent damage to the devices (e.g., a high current condition). 

Transient faults are usually characterized as lasting up to one clock cycle. With the 

scaling of manufacturing technology, transients last longer because there is less space for 

the particle strike energy to dissipate. In current technology, transients can last up to two 

clock cycles or even longer [MM10]. If scaling continues, there is a high chance this du-

ration will become longer. Because each particle strike event is a fault, and its conse-

quences (e.g., error and failure) are captured as the corruption of transistor output data, 

we classify this type of multi-cycle error as a transient fault in the device-physics layer. 

(b) Intermittent fault. An intermittent fault has a duration that ranges between a few to 

billions of clock cycles [SSC03]. An intermittent fault is caused by various physical char-

acteristics of chips (e.g., irregularities in chip voltages and temperatures). Transistors be-

come more and more susceptible to such physical characteristics with the scaling of man-

ufacturing technology and the integration of numerous transistors into a chip (e.g., for 

multi-cores and large on-chip caches). 

(c) Permanent fault. A permanent fault occurs as a result of a manufacturing defect or 

the excessive use of transistors. Such excessive use degrades the reliability of transistor 

materials. This type of fault behaves like a long duration intermittent fault, but it perma-

nently compromises the functionality of the transistors. Both intermittent and permanent 

faults are more common in high-density chips because of their high utilization and low 

operating voltage. 

(ii) Software fault. Software fault refers to a defect or a bug in software. Software 

bugs can be introduced in various development stages of the software. For example, a 

software algorithm may have a bug. A bug can be introduced when an individual compo-

nent is implemented or when multiple software components are integrated. Such faults 

can be activated only when a user provides one of the specific sequences of input data, 

which may be intentionally generated to discover common and known software faults 

(that are called as testing or security attack). Studies have classified the types of software 

faults and measured their common occurrence probabilities [RBC+92]. Those classified 

software faults can be emulated by translating the source code, IR code [DM06], or bina-

ry code of a target program or by changing the program state at runtime [KIT93]. 

In theory, a combination of hardware faults can cause exactly the same errors or fail-

ures of a software fault, however, such a combination is unlikely in nature because multi-

ple and specific hardware faults would have to occur at the right moments. At least it is 

true that hardware faults are a superset of software faults. It is also true that the types of 

errors and failures that can be caused by software faults are similar to those that can be 
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caused by hardware faults. Only the exact occurrence probabilities of each type of error 

and failure are different. Thus, in this dissertation, we focus mainly on understanding the 

system behavior under various types of hardware faults, and on protecting from errors 

and failures caused by hardware faults. Yet the presented frameworks and techniques are 

also effective for many types of software faults. 

 

2.2. Failure Rate 
 

We survey the measured failure rates of commodity computer systems as a function of 

fault location. Here, we focus on failures caused by hardware faults. 

In general, the system failure rate due to permanent faults follows a Weibull distribu-

tion where the rate is higher when the system is first deployed and when the system is 

aged than during the rest of the system lifetime. The system failure rate due to transient 

faults typically follows an exponential distribution, as the fault rate is constant at every 

moment. 

Hardware faults can occur anywhere in the system. One of our target systems is a 

parallel computer system that uses both CPU and GPU devices. This target system has 

multiple types of computer nodes: compute node to perform computation, header node as 

an interface between users and compute nodes (to dispatch programs to compute nodes 

and control the launched programs via command line or GUI-based user interfaces), stor-

age nodes (to provide centralized secondary storage services to the compute and header 

nodes), and control node (to monitor and manage the health of compute and storage 

nodes, and to provide a control interface to administrators). All four types of nodes are 

connected via high-speed interconnection networks. 

All these nodes have all or some combination of processor, memory, and I/O devices 

(e.g., storage device and NIC). A compute node is the most likely to have heterogeneous 

computing resources. We assume that a compute node has multiple CPUs that directly 

interact with the I/O devices and has computational accelerators (GPUs) that accelerate 

the executions of CPU programs. System software on CPUs is responsible for managing 

I/O devices (e.g., to communicate with other compute nodes and to access the centralized 

file systems). GPU device drivers execute on CPUs, launch GPU kernels on GPUs by 

copying the program code and input data from the CPU memory to the GPU memory, 

and they copy the computation results back from the GPU memory to the CPU memory 

every time an execution of a GPU kernel is done. We assume that the memory address 

spaces of CPUs and GPUs are split and that the address spaces between GPUs are also 
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split. Data between a CPU and a GPU (and also between GPUs) is explicitly exchanged 

by memory copy operations (e.g., DMA or software managed I/O). A GPU device on a 

PCIe extension card meets these assumptions. A CPU-CPU integrated chip may also sat-

isfy these assumptions depending on how the cache-and-memory hierarchy is organized, 

exposed to, and managed by software. 

We survey the failure rates of aforementioned three types of hardware components 

where the failures are due to transient, intermittent, and permanent hardware faults as 

well as software faults. 

(i) Processor chips. The failure rate of the ASC Q supercomputer at Los Alamos Na-

tional Laboratory (LANL) with 13.88 tera FLOPS performance has been measured in 

2004 [MHH+05]. This supercomputer consists of 2,408 HP Alpha Server ES45 nodes. 

Each node has four Alpha 21264 1.25GHz CPUs where each CPU chip is placed on a 

separate CPU board. In total, this ASC Q supercomputer has 9,632 CPUs. The measured 

failure rate of the 9,632 CPUs is 27.7 failures per week. MTTF of a CPU chip is thus 

~6.669 years. This rate includes the soft error rate of CPU on-chip caches. These CPU 

on-chip SRAM caches are protected by a parity error checking technique but not by an 

ECC technique (i.e., unlike its main memory, protected by an ECC). Note that a parity 

technique can only detect a fault, while an ECC technique can detect and recover from a 

fault. The execution of all threads in the parallel program is blocked and a failure is 

counted whenever a data error is detected in the on-chip SRAM caches. The SRAM pari-

ty error rate is 24 failures per week. In other words, MTTF of a CPU chip due to the 

SRAM cache parity error is ~7.697 years. 

This ASC Q supercomputer was operating at an altitude of ~2,286 meters. If the same 

system is hosted at sea level, where the cosmic ray induced soft error rate is 6.4 times 

lower than ~2,286 meters [GGR04], MTTF of a CPU chip due to the SRAM parity error 

would be ~49.278 years and consequently MTTF of a CPU chip would be ~25.132 years 

(as 3.6 failures per week are not due to SRAM parity errors). Protecting the entire on-

chip SRAM caches using an ECC technique can improve the MTTF of this CPU chip up 

to ~51.312 years regardless of the altitude at which the machine is installed (assuming 

that the other 3.6 non-SRAM failures per week were not due to cosmic rays). 

In a BlueGene/L (BG/L) computer at Lawrence Livermore National Laboratory 

(LLNL) that is larger than the ASC Q computer at LANL, all CPU on-chip caches except 

for the first-level (L1) caches are protected by an SEC-DED ECC technique. The L1 

caches are protected by a parity technique due to their short access latency. MTTF of this 

BG/L computer due to the L1 parity errors is ~8 hours [GCG+07], which is the same as 

~119.7 years of MTTF per CPU and is longer than ~49.278 years of MTTF of a CPU due 
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to SRAM parity errors of an ASC Q supercomputer machine installed at sea level. This is 

likely due to the smaller L1 cache size of this BG/L computer CPU than the total SRAM 

on-chip cache size of the ASC Q computer CPU. Still this L1 cache parity error rate seri-

ously harms the computation efficiency of this BG/L computer because this computer in 

total has 131,072 CPUs (i.e., PowerPC 440 700MHz) on 65,536 nodes to provide 280.6 

tera FLOPS of Linpack benchmark [DLP03] performance.  

This history shows the importance of using an error recovery technique on all on-chip 

cache and memory devices when protecting processor chips from soft errors. Until now, 

many commodity CPUs, including the latest ones, are still using a parity technique but 

not an ECC technique to protect their L1 caches. This is mainly due to the high opera-

tional speed of the L1 caches (e.g., 1 clock cycle). Specific versions of latest GPUs for 

parallel computers, on the other hand, use some type of ECC techniques for their register 

files, all on-chip caches (including the L1 caches), and on- and off-chip interconnects. 

This significantly improves the resiliency of the ECC-protected GPUs to soft errors. 

Regardless of the uses of ECC techniques, many subcomponents of processor chips 

are still left unprotected. ECC is not directly applicable to non-memory circuits (e.g., 

ALU and FPU). ALUs and FPUs, for example, form a large portion of the silicon area in 

GPUs. It is true that transient faults in these combinational circuits are less likely to mani-

fest and propagate to flipflops and latches than those in the flipflops or latches of sequen-

tial circuits. A corrupted value successfully propagates to a flipflops or latches if and only 

if it arrives when the flipflop or latch is triggered
4
. The vulnerabilities of combinational 

circuits shall not go unnoticed, especially in large-scale parallel systems, considering the 

relatively large size of such circuits in high performance processors. 

(ii) Memory modules. The memory fault rate is measured in many systems. Both hard 

and soft errors are observed. An experiment on 26 different DRAM chips using three dif-

ferent cell technologies shows a strong correlation between cell design and sensitivity to 

particle strikes, where the most sensitivity cells are 1,500 times more sensitive than the 

least sensitivity cells [ZNS+98]. This experiment is done by irradiation with neutrons, 

protons, and pions. This fundamental work partially explains the relatively large differ-

ence in the following measured soft error rates of commodity DRAM devices used in dif-

ferent environments. 

Many early experiments report DRAM soft error rates of between 200 and 5,000 FIT 

(failures in time per billion operation hours) per megabits. For a computer node with 32 

gigabytes of DRAM, MTTF of this DRAM subsystem due to a DRAM data error is 0.78-

                                                           
4
 Latch is a level-triggered device. Flipflop is an edge-triggered device. 
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7.81 hours. These rates are reported by a semiconductor manufacturer (IBM) with state-

of-the-art design and manufacturing technologies when this data is measured 

[ZCM+96][Zie96][ORT+96]. 

A large-scale measurement experiment of the DRAM memory error rate was con-

ducted on six different hardware platforms between 2006 and 2008 [SPW09][SG06]. 

Each type of platform has several tens of thousands of nodes in production systems (i.e., 

Google datacenters). The reported average error rate of this experiment is 25,000-75,000 

FIT per megabits, which is much higher than the previous data. Many of the observed 

errors are likely to be due to hard errors. Such analysis is convincing because the ob-

served errors are strongly correlated within the same DIMM, and most of the uncorrecta-

ble errors are preceded by one or more correctable errors. Earlier work estimates that 

hard errors are less common than soft errors and form ~2% of all errors. Such a high con-

tribution of hard errors in memory can be explained by considering the difference in 

hardware devices used by cloud servers and high availability servers (e.g., errors are 

more common in memory devices for non-enterprise systems). For example, a measure-

ment that used desktop computers and commodity servers reports a relatively high hard 

memory error rate (4.2% = 9 out of 212 nodes) [LSH+07]. 

Another experiment was conducted on three distinct system environments: rack-

mounted servers, desktop computers, and geographically distributed network test beds 

[LSH+07]. A much lower data error rate is observed here than all the previous experi-

ments. The reported data error rate is 54.73 FIT per megabits. Although the found soft 

error sample count is too small (i.e., only two from 300 machines for varying multi-

month periods), an interesting analysis was made that this low error rate maybe partially 

due to the arrangement of DIMMs perpendicular to the horizontal plane and to the small 

size of memory chips, as both significantly reduce the area facing the particle strikes 

from space. 

(iii) I/O devices. Work has analyzed the disk replacement rate from a set of large pro-

duction systems [SG07]. The data is from >100,000 disk drives that use three different 

host interfaces and are produced by at least four different manufacturers. The analyzed 

annual replacement rates typically exceed 0.88%, which is guaranteed in MTTF of 

1,500,000 hours in the specification, with 2.4% to 3.7% common, and up to 13.6% and 

24.1% on some systems. Although this replacement rate is not exactly the same as the 

failure rate, the common range of MTTF of analyzed disk drivers is only from 236,757 

hours (for 3.7%) to 365,000 hours (for 2.4%). Similarly, network interface cards and the 

motherboard of the computer node can fail, but their failure rates are relatively lower than 

those of the other components, in general. 



 

 

23 

 

 

2.3. Basic Error Detection Techniques 
 

This section reviews the basic concepts and techniques used in fault detection. Many fun-

damental fault detection techniques are designed for memory and communication chan-

nels. Parity (e.g., even or odd) is a simple technique that can detect one bit error. The 

concepts in the hamming code are used to design single- or multi-bit error detection tech-

niques in a memory-space-efficient way. Hamming code has a tradeoff between the space 

overhead (e.g., to save the code) and the provided coverage. In order to detect and correct 

many more bit errors, ECC technique needs a much larger extra memory space to keep 

the ECC bits [BSS08]. This space overhead goes down as the protected data unit size in-

creases. 

Advanced EEC
5
 organizes ECC bits in a way that the same ECC can provide higher 

coverage for multi-bit errors. For example, if an ECC data word is composed of bits that 

are physically noncontiguous, a particle strike event cannot corrupt multiple bits in the 

same ECC data word. Thus, an SEC-DED technique can be still used and tolerate multi-

bit errors. It was measured that advanced ECC can reduce the uncorrectable error rate by 

a factor of 3 to 8 [SG06]. The uncorrectable error rate was from 0.25% to 0.4% per 

DIMM per year for SEC-DED protected platforms, and from 0.05% to 0.08% for 

Chipkill protected platforms. 

Advanced ECC does not completely remove uncorrectable errors. This is, for exam-

ple, due to accumulations of latent memory faults (e.g., two-particle strikes) [YKI09]. In 

such a case, multiple bits of a physically separated ECC data word can be corrupted and 

escape the protection provided by an SEC-DED technique. 

Scrubbing addresses such latent fault problems by reducing the fault latency and re-

moving the latent faults. The scrubbing technique periodically scans the memory data so 

that the used ECC technique can automatically check the integrity of data [SSP90]. 

Scrubbing is implemented either in hardware or software. The hardware-based imple-

mentation provides better performance than the software-based implementation (e.g., the 

scrubbing rate of 1 gigabyte per 45 minutes in deployed machines [SG06]). 

Regarding the presented recoverability-driven memory protection, we suggested the 

possibility of recovering code memory using storage files for static memory [YKI09], but 

                                                           
5
 Advanced ECC refers to an ECC technique that can protect single- and multi-bit errors in memory by 

for example scattering data bits protected by an ECC word to multiple memory chips. Its commercial 

names include IBM Chipkill, Intel SDDC, and former Sun Microsystems Extended ECC. 
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the size of this area was not measured. In on-chip caches, a finding similar to ours (i.e., a 

large portion of zero-filled pages in memory) is reported, and this characteristic is used to 

design a cost-efficient compressed cache [YZG00]. The low error sensitivity of visual 

data is reported [NPB08], but the memory size of these data in an integrated system is not 

measured. 

Error detection is similar to outlier or novelty detection. The existing outlier detection 

techniques are generally classified into four types. 

(i) Distribution-based. This approach uses the statistics theory. It [BL94] tries to best 

fit the given data samples to a standard distribution function (e.g., normal or Poisson). 

Discordancy tests are used to detect outlier samples where the tests support both univariate 

functions and some multivariate functions (e.g., normal [But83]). For example, a discord-

ancy test declares a sample as an outlier if it lies ≥3 standard deviations from the mean 

assuming that the data follow a normal distribution [FPP78]. This type of technique as-

sumes the underlying distribution of sample data is known and is similar to a standard dis-

tribution. However, distributions of the runtime signature data of computer software are 

not always known and not all signature data may follow standard distributions when 

mixed workloads run together. 

(ii) Depth-based. This approach [Tuk77] maps each data sample to a point in a k-

dimensional (k-d) space and computes the depth of each point. A point with the smallest 

depth has the highest likelihood as an outlier. One simple definition takes the minimum of 

the number of samples to the left of a sample x, and the number of samples to the right of 

a sample x where k = 1 (i.e., one-dimension sample space) [RR96]. Many different depth 

definitions exist that show high detection accuracy. The computation of depth relies on the 

computation of k-d convex hulls (i.e., smallest volume in the k-d space that contains all 

sample points and straight lines between any pair of sample points) that has a lower time 

complexity bound of Ω(      ) for n samples, making this approach impracticable for k > 4 

and large n. 

(iii) Distance-based. This approach declares a sample x as an outlier if at least p per-

cent of samples lie at a greater distance than D from x. If the total population is P, this 

condition is the same as where the distance between x and its k-nearest neighbor (kNN) 

[RRK00] is more than D where k is 1–p/P. This simplified condition can provide similar 

detection coverage if D is chosen properly. For example, the exact value of D can be com-

puted to check samples that lie ≥3 standard deviations from the mean, assuming the sam-

ples follow a normal distribution. Simple algorithms with the time complexity O(kN
2
) ex-

ist, where k is the dimension of a sample space, and N is the sample count. A nested-loop 

algorithm compares the distance of each pair of samples (e.g., total N
2
 pairs) and stops this 
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process for sample x when the samples with the distance less than D to x are more than p 

percent. This simple algorithm can be tuned in a way to maximize the memory locality. A 

cell-based algorithm [KN98] with the time complexity of O(c
k
+N) has good scalability for 

large data (i.e., large sample data is kept in the storage) by forming nearby samples as 

cells and increasing the memory locality. Also, there is a technique that profiles the nor-

mal behaviors of a system (e.g., system call sequences [FHS+96]). 

(iv) Classification-based. Anomaly-based detection is widely used in intrusion detec-

tion system (IDS) to detect malware and intruders in computer nodes and networks 

[FHS+96][LSC97][LSM99]. These techniques monitor a well-selected set of system-level 

software events (e.g., system call) and hardware events (hardware performance counters). 

These techniques then use various types of classification techniques to train the classifica-

tion networks in an efficient way (e.g., k-nearest neighbor, local outlier factor [AMA+11], 

and Bayesian networks for software faults). Many of these existing techniques use offline 

training because of the large amount of computing power needed to perform such opera-

tions and the difficulty of online diagnosis of security attacks. These techniques are im-

plemented as a part of the software of the monitored system (e.g., OS kernel or hypervisor 

[ALL06]) or of an external device. 
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Chapter 3.  

Long-Latency Failures: Measurement 

Technique and Characterization 
 

 

This chapter presents a measurement-based analysis of the significance, causes, and 

characteristics of long-latency software failures caused by soft errors in the processor 

and memory. The analysis is possible because we developed a software-implemented 

fault injection framework to accurately control the fault injection target, to collect the 

specific failure information (e.g., failure latency, location, and type), and to accelerate 

the fault injection experiments. The results indicate that a non-negligible portion of soft 

errors in the code and data memory lead to long-latency failures. The long-latency fail-

ures are, for example, caused by errors with long fault activation times and errors that 

cause failures only under certain runtime conditions. On the other hand, less than 0.5% 

of soft errors in the processor registers used in kernel mode lead to a failure with a la-

tency longer than a thousand seconds, mainly because of a strong temporal locality of 

the register values. Based on the results, we present a new classification of failures using 

the knees in fault and error latency distributions to provide useful insight into where to 

focus the protection mechanisms so as to provide good coverage while reducing over-

head. Moreover, we conducted a curve-fitting study to model the failure latency distribu-

tions of failures caused by four types of faults.
6
 

 

 

3.1. Motivation 
 

Soft errors in the processor and memory present a critical problem for the dependability 

of system software running on large-scale or mission-critical computer systems. A soft 

error is an unexpected change to data stored in an electronic circuit or transmitted be-

tween circuits. Its main causes include physical stimuli and variations (e.g., a particle 

strike, cosmic ray, voltage/thermal variations, and silicon wear-out). Soft errors are a 

                                                           
6
Part of this chapter was published: K. S. Yim, Z. Kalbarczyk, and R. K. Iyer, “Quantitative Analysis of 

Long Latency Failures in System Software,” in Proceedings of the Pacific-Rim International Conference 

on Dependable Computing, pp. 23-30, 2009. 
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paramount concern in the design and operation of supercomputers, large-scale cloud dat-

acenters, and aerospace computer systems. For example, the MTTF of a processor of the 

ASC Q supercomputers in Los Alamos National Laboratory was 6.7 years in 2004, and 

86.7% of the failures were due to soft errors in the parity-protected on-chip caches 

[MHH+05]. ECC protection significantly improves the MTTF of a processor (e.g., a su-

percomputer that has ECC-protected on-chip caches [GCG+07]). Note that the number of 

processors used in state-of-the-art supercomputers grew by a factor of 103 from 2004 to 

2011, making the overall system-level processor failure rate worse. Memory devices also 

are not free from soft errors. The measured failure rate of DRAM in cloud data centers 

was 25,000–75,000 FIT per billion operation hours per megabit in the years between 

2006 and 2008 [SPW09], where failures were due to both transient and permanent hard-

ware faults. The failure rate has increased mainly because the process technology of pro-

cessors and memory has reached the deep nanometer scale, and multiple dies and cores, 

as well as large-size caches and memories, are integrated into chips.  

System software (e.g., operating system) failures due to soft errors harm the availa-

bility of all application programs executing on the system. System software in high-

performance servers and mission-critical, embedded computers runs continuously with-

out restarting (e.g., for a month). That long execution time can affect error propagation 

characteristics, because the longer execution increases the chance of activating a latent 

fault. 

Not many previous fault injection experiments, however, have monitored the error 

propagation behavior for a long period of time after injecting a fault. As far as we know, 

with a modern PC one of the longest monitoring periods was 30 seconds, and it was done 

by a software-implemented injector [GKI04]. In almost all simulated fault injectors, the 

monitoring time was shorter than several milliseconds because of the slowness of simula-

tion when highly accurate models were used. There was the technical difficulty of col-

lecting a statistically significant number of long-latency failure samples. For example, if 

a target system were monitored for 2.5 hours after each fault injection, the fault injection 

experiment would take at most 12,500 hours (i.e., about 1.4 years) to examine 5,000 

faults, where only a small fraction of the examined faults would lead to long-latency fail-

ures. (See Section 3.4 for accurate evaluation models and data.) 

In previous fault injection experiments, it has repeatedly been found that most soft er-

rors cause short-latency failures. In both x86 and PPC machines, over 95% of non-benign 

soft errors in the processor registers, stack, and code and data memory caused system 

failures within 200 milliseconds (corresponding to an execution of about 1 billion in-

structions on a 3 GHz processor with 1.5 instructions per cycle) from the time the inject-
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ed fault was activated [GKI04]. Even shorter failure latency was found with hard errors 

in the processor. In processor registers, 86% of permanent errors that occurred when ap-

plications were being run and 99% of those that occurred when the OS kernel was being 

run were detected in <100 thousand instructions [LRS+08]. Similar findings were report-

ed by several earlier studies. For example, in a machine widely used in the early 1980s, 

70% of errors were detected on the day the fault was injected, and 12% on the following 

day [CI87]. Since the machine processed ~500 thousand instructions per second, one day 

in that early experiment is equivalent to 10 seconds on a 3 GHz modern processor pro-

cessing 1.5 instructions per cycle. 

In the previous work (as discussed above), failure latency is measured after fault acti-

vation, and thus fault latency is not taken into account. Note that fault latency is the time 

from the introduction of a fault (fault injection) to its first activation; error latency is the 

time from the first activation of a fault to the first detection of an induced error or an in-

duced failure; and failure latency is the sum of fault latency and error latency. 

In this study, long latency failure is defined as a failure whose latency is longer than 

the knee of a failure latency distribution of similar faults. Figure 3.1 shows the normal-

ized probability distribution of failure latency obtained by a preliminary study in which 

various types of soft errors were injected into the Linux kernel. Here, a majority of fail-

ures had latencies shorter than 2 seconds, equivalent to the execution of about 10 billion 

instructions in the machine we used. Also, a non-negligible portion of failures had laten-

cies longer than 2 seconds and formed the long tail in the probability distribution func-

tion. These long-latency failures are the target of our analysis. 

 

Figure 3.1. Probability distribution of failure latency. 
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This chapter presents a measurement-based analysis of the significance, causes, and 

characteristics of long-latency software failures caused by soft errors in the processor and 

memory. The analysis is possible because we developed a software-implemented fault 

injection framework to accurately control the fault injection target, to collect the specific 

failure information (e.g., failure latency, location, and type), and to accelerate the fault 

injection experiments.  

The main contributions of this study can be summarized as follows. 

 We developed a fault injection framework to accurately measure the occurrence 

times and locations of fault, error, and failure events (Section 3.3). 

 We designed an accelerated fault injection strategy, and optimized and evaluated the 

total fault injection experiment time of this strategy (Section 3.4). 

 We analyzed the long-latency failures in quantitative and qualitative ways using the 

monitoring time of 2.5 hours (Sections 3.6 and 3.8.1). 

 We present a new classification of failures using the knees in fault and error latency 

distributions to provide useful insight into where to focus the protection mechanisms 

so as to provide good coverage while reducing overhead (Sections 3.6 and 3.8.2). 

 We conducted a curve-fitting study to model the failure latency distributions of fail-

ures caused by four types of faults (Section 3.7). 

 

3.2. Related Work 
 

This section reviews the related fault injection tools, experimental methods, and experi-

ment results. 

 

3.2.1. Fault Injection Tools 

The existing fault injection frameworks can be classified into three basic types: 

(i) Simulated fault injectors [KIR+99][KIT93][WQR+04]. Simulated fault injectors 

use software models of hardware devices. They are essential in studying the impact of 

faults in the device-physics layer (e.g., simulating an energetic particle strike on transis-

tors). Thanks to the improved simulation power, this type of injectors is now used to sim-

ulate processor subsystems, memory subsystems, and even whole computer nodes. A 

simulated fault injector changes a state in a simulated model in order to emulate an error 

induced by a hardware fault, while executing software on top of the model. 

A system-wide simulated fault injector has to deal with a trade-off between modeling 

accuracy and simulation speed. An accelerated simulator chooses the simulation speed 
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(e.g., using a dynamic binary translation) but at the same time degrades the simulation 

accuracy. For example, in our preliminary study, we found multiple cases in which an 

accelerated simulator (i.e., QEMU
7
) crashed even before the simulated software failed. 

Many other simulated fault injectors use highly accurate models that can cover both nor-

mal and abnormal execution behaviors. Conversely, high-accuracy models slow down the 

simulation speed (e.g., to hundreds kilo instructions per second, KIPS). Thus, system-

wide simulated fault injectors are often used to monitor system behaviors up to several 

hundred milliseconds or several seconds after each fault injection. Such simulation time 

can be sufficient if the main purpose of the experiment is to analyze the impacts of faults 

in a hardware subcomponent (e.g., at the transistor, logic, or microarchitecture level). 

(ii) Hardware-implemented fault injectors [MRM+94][BGG+02][AKT+08]. Hard-

ware-implemented fault injectors either use an external tool or modify the design of a tar-

get hardware device in order to emulate an error in a target system state. If an external 

tool is used, accurate control of fault injection time and location is difficult because the 

clocks of the tool and target system need to be synchronized. Thus, in practice, those 

methods allow an experimenter to inject a random fault into a specific signal but may not 

allow it when a specific type of data is transmitted on the signal bus (e.g., if the signal 

bus transfers various types of data and has a high clock speed). 

Embedding a fault injection tool as a part of the design of a target hardware device 

addresses that control accuracy problem. For example, a method could rewrite the HDL 

code of a target hardware device. The drawbacks would be that it requires the source 

code of the target hardware device and may incur large initial development costs for the 

hardware design modification (e.g., testing and fabrication). That method is thus used for 

systems built from programmable hardware (e.g., FPGA). 

(iii) Software-implemented fault injectors (SWIFI) [SFB+00][AFR02][BCS+90] 

[CMS98][KIT93][KKA95][KA95]. A number of SWIFI tools have been deployed to 

support the characterization of software behaviors in the presence of hardware and soft-

ware faults. The use of SWIFI can speed up the fault injection experiments (as the target 

software runs at a normal speed on top of real hardware), provide highly accurate meas-

urement data, and reduce the experiment cost (as no hardware modification is necessary). 

Thus, SWIFI is now the most widely used among the three common types of fault injec-

tion tools. State-of-the-art SWIFI tools use a hardware breakpoint feature in order to 

                                                           
7
 QEMU (Quick EMUlator) is an open source computer emulator that uses a dynamic binary translation 

technique. This shows a high emulation speed because it executes the translated code on top of the native 

host machine and caches translated binary codes for future reuses. As a result, QEMU is also used as a vir-

tual machine monitor (VMM) or as a part of VMM. QEMU is available at http://qemu.org. 

http://qemu.org/
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emulate an error when a specific state of the target software is being accessed. That 

breakpoint-based fault injection does not require any modification in target hardware and 

software (so it is applicable to commodity systems) and has a small performance over-

head, at least insofar as it is supported by a target processor (which is the case in many 

modern processors). On the other hand, this breakpoint-based injection can introduce a 

large performance overhead for particular types of hardware faults (e.g., intermittent or 

permanent faults), as breakpoints need to be repeatedly set. 

 

3.2.2. Failure Latency 

The data in the previous fault injection experiments showed that a large portion of transi-

ent faults in modern computers have short failure latencies. That finding inspired the de-

sign of modern dependable computer systems. For example, Chillarege and Iyer [CI87] 

reported that 70%, 82%, and 91% of memory faults were detected the same day, by the 

following day, and by the third day, respectively. Because the used machine processed 

about 500 KIPS, one day in this early experiment is equivalent to about 10 seconds on 

current-generation hardware. That early work also showed a correlation between the fail-

ure latency of memory faults and system utilization (e.g., higher utilization resulted in 

shorter failure latency). Another experiment monitored its target system for a long period 

of time after a fault injection (e.g., 20 minutes) by using software-implemented fault in-

jectors. The experiment showed that failure latencies of memory and software faults are 

usually long (e.g., >20 minutes), while those of bus and CPU faults are short [KIT93]. 

Shorter failure latency was found with hard errors in the processor. 99% of failures due to 

processor hard errors that occurred inside an OS kernel were detected in <100,000 in-

structions when the monitoring time was 10 million instructions [LRS+08]. 

In the early 1980s, while much work focused on measuring or estimating failure la-

tency, Shin and Lee [SL86] measured fault and error latencies separately for the first time. 

Because an injected fault is dejected after a time t, if there is a failure, it can be deter-

mined whether the fault latency of the injected fault is shorter than t. Repeating that ex-

periment multiple times with different values of t gives an estimate of fault latency distri-

bution. In Shin and Lee’s experiment, fault latency was measured up to a few seconds. 

Our experiment also separately monitors the fault and error latencies of faults in various 

types of data by using a method that directly measures the fault and error latencies of 

each fault. 
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2.1.3. Fault and Failure Accelerations 

Fault injection experiments are an accelerated way to test system reliability because they 

accelerate the fault occurrences. By emulating faults or errors at a rate much higher than 

the rate at which they appear in nature (e.g., using an ion accelerator), a fault injection 

experiment can evaluate the reliability of a chip in a short time period. Using the fault 

injection data, one can build hardware reliability models that evaluate the reliability of a 

design before the chip is fabricated and released (i.e., before field measurement is possi-

ble) [ZMM+96]. 

Failure acceleration is a technique to reduce the fault injection experiment time. Ac-

cording to a definition by Chillarege and Bowen [CB89], the maximum failure accelera-

tion is realized when the fault latency is zero, the error latency is a minimum, and the 

fault sensitivity (i.e., the probability of a fault is causing a failure) is a maximum. For ex-

ample, a fault can be injected into a hot page (i.e., with a strong memory locality) to re-

duce the fault latency because the injected fault is likely to be activated in the near future. 

It is possible to reduce the error latency by running a workload under a high-utilization 

condition that in fact accelerates both the fault activation and the error propagation. By 

injecting severe faults (e.g., multi-bit errors), one can also increase the fault sensitivity. 

That earlier failure acceleration concept changes the time domain or the distribution 

of different types of faults (that is as compared to those in nature) to accelerate failures. 

Thus, it is not suitable for failure latency measurements (i.e., measuring fault and error 

latencies). In this chapter, we present a fault injection strategy that reduces the fault injec-

tion experiment time by increasing the fault activation ratio, while maintaining the ability 

to collect error and failure information accurately. 

 

3.3. Tool: Fault Injection Framework 
 

The presented framework is designed to accurately measure fault, error, and failure laten-

cies as well as the error and failure locations. 

 Fault and error latencies. We analyze the fault and error latencies of various types 

of CPU program states. 

 Error and failure location. We analyze the distance between error location and 

failure location. For example, we check whether the location of an error and the 

location of a failure are the same program function (or software module). By 

checking this condition on multiple pairs of errors and failures, we compute the 

probability that the error and the induced failure are in the same function (or soft-
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ware module), and use this probability as a distance metric. Note that the location 

of a fault and the location of an error are the same if the error is one that is imme-

diately caused by the fault and the fault is of a specific type (e.g., a code memory 

fault). 

Figure 3.2 depicts the system and software architecture of our FI framework. It con-

sists of two types of nodes: control and injector nodes. A control node provides an inter-

face between the user and the injector nodes. A fault injection experiment is conducted 

with an injector node that also reports the experiment results to the control node. 

The control node runs a GUI-based control server that allows the user to specify a fault 

injection campaign, execute the campaign on a set of injector nodes, and collect the injec-

tion results. All these operations are performed in cooperation with the control client run-

ning on the injector node. The control client generates a heartbeat signal to the server to 

notify the server about the health of the injector node. Based on the control command 

sent from the server (via a TCP/IP channel), the client configures its fault injector module 

and executes the requested benchmark applications. 

The fault injector is a kernel module residing on the injector node and is capable of in-

jecting faults into various parts of the system: the code and data memory, the stack, and 

the general- and special-purpose processor registers in the kernel and the user address 

spaces. 

A log reporter residing in the injector node is responsible for reporting the kernel crash 

information to the control server. The log reporter collects information about the excep-

tion type (raised upon a node crash) and program location that caused the failure. The 

failure location is identified through analysis of the call stack of the thread that caused the 

exception. The log reporter then sends (as a UDP packet) the collected information to the 

server.  

 

Figure 3.2. Control architecture of the presented fault injection framework. 
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The control server detects other types of failures by monitoring the messages sent from 

the control client. A kernel hang is detected through monitoring of the heartbeat message. 

If a UDP packet containing crash information does not arrive, the server infers that the 

heartbeat stopped because of a kernel hang rather than a kernel crash. When the bench-

mark application in the injector node completes, the control client sends the application 

output to the server. A prematurely reported output indicates an application crash. No 

output reported indicates an application hang. Incorrect output data imply silent data cor-

ruption. 

The injector node is rebooted after each activated fault, i.e., when the corrupted in-

struction/data is executed/used. The control server triggers the reset signal of the injector 

node by using the reset controller, a device driver of the parallel port control cards in-

stalled in the control node. The parallel port signals are connected to the hardware reset 

signals of all injector nodes, and thus the reset controller can generate a reset signal for a 

specific injector node. 

 

3.3.1. Collecting Error and Failure Information 

Our FI framework is designed to accurately collect fault, error, and failure information. 

That information is useful, for example, in studying the error propagation paths of a tar-

get system. Technically, the control node (or control nodes that relay messages between 

the master control node and a set of injector nodes) collects the type, time, and location 

information of the error and the first failure caused by an injected fault. Note that infor-

mation on an injected fault does not need to be collected, because it is already owned by 

the control node. In the rest of this subsection, we describe how we used the breakpoint-

based injector on an x86 ISA as an example to explain the error and failure information 

collection methods. 

(i) Error information. The location of an error is extracted from a fault injection 

command sent from the control server. The time and type of an error are collected 

through use of the fault activation packet. That activation packet (e.g., using UDP) is sent 

by an injector node to its control node when the injection target is accessed for the first 

time (see Figure 3.3). If the breakpoint-based injection mode is used, the packet is sent by 

the breakpoint handler. The breakpoint handler reads the bit-code of the current instruc-

tion of a preempted process (or thread) and sends this bit-code and the processor register 

context of the process to its control server. The disassembler library in the control server 

is used to analyze the activation type: read activation or overwritten. Overwritten refers to 

a case when the corrupted value is overwritten by a new value before the first use (i.e., a 
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type of error masking as the corrupted variable is being dead in a program at the time 

when the fault is activated). 

The activation time can be measured by two methods. One uses the local system 

clock of the control node. It is useful if the fault latency is significantly longer than the tit 

takes to transmit an activation UDP packet from an injector node to a control node. Fault 

latency is computed through subtraction of the fault injection time (i.e., the time when a 

fault injection command was sent by a control server) from the fault activation time (i.e., 

the time when the fault activation packet arrived at the control server). The other method 

uses performance profiling hardware available in modern processors. Performance profil-

ing hardware typically gives the number of spent cycles or executed instructions between 

two time points (e.g., at fault injection and activation). This cycle count (or instruction 

count) is sent to a control server to calculate the fault latency. The same methods are used 

to measure the error latency, which uses the fault activation time and failure time (e.g., 

the time when the first crash information packet arrived at the control server from an in-

jector node, see Figure 3.3). 

(ii) Failure information. The failure information is collected by two threads on a con-

trol node (see Figure 3.3). These UDP and TCP threads process UDP and TCP packets, 

* Fault latency = T_Error - T_Fault, error latency = T_Failure - T_Error, RTC = Current time, PC = Prog. counter
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Figure 3.3. An algorithm to collect error and failure information. 
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respectively, sent by each injector node. Four components in the breakpoint-based injec-

tor node can send these packets. They are: the control client, kernel watchdog, user heart-

beat generator, and failure reporter. 

(a) OS crash. The type and location information for OS crash failures are derived as 

follows. When the OS of an injector node crashes
8
, the call to an exception handler is in-

tercepted by the failure reporter. The failure reporter collects the type of the invoked ex-

ception handler (i.e., crash failure type), the PC register value of the crashed process (i.e., 

crash failure location), and the call stack information of the crashed process. The crash 

type and the PC value are directly read from the process control block (PCB) and kernel 

stack of the crashed process. That collected information is used to compose a crash in-

formation UDP packet that is sent to a corresponding control server. The call stack in-

formation is obtained through tracking of function frame pointers stored in the kernel or 

user stack of the crashed process. For example, in x86 ISA, the frame pointer (i.e., ebp) 

register can store the pointer to a memory word that contains the frame pointer register 

value of the caller function depending on the enabled compiler option. The address of the 

call instruction of the caller is obtained through reading of the memory value right above 

the location where the value of frame pointer register of the caller is saved. That read PC 

(i.e., eip) register value is used to find the symbol name of the caller function. The pro-

cess is repeated recursively until the bottom of the call stack is reached. That derived call 

stack information is useful for the post-mortem analysis of error propagation paths. 

(b) OS hang. The location of OS kernel hangs is not easy to measure. The first tech-

nical challenge is that of gaining control from a hanging OS kernel. We configured the 

advanced programmable interrupt controller (APIC) so that it could periodically issue a 

non-maskable interrupt (NMI). The NMI handler sends the number of timer interrupts 

that have occurred during the last NMI interval and the PC register value of a preempted 

process to its control server as a payload of a UDP heartbeat packet. The control server 

detects an OS kernel hang if no heartbeat packet is seen for a certain time interval (e.g., 5 

seconds) or the timer interrupt count accumulated for a certain time interval is zero. The 

hang location is identified through manual source code analyses using the collected PC 

values. 

                                                           
8
 For the explanatory purposes, we assume that target system directly runs the OS on top of its bare hard-

ware. This however does not mean that the presented techniques are inapplicable to systems that use sys-

tem-level (type-I) and/or user-level (type-II) hypervisors. In fact, many of them are orthogonal to the use of 

hypervisors (e.g., if applied to each guest OS). While parallel computers (e.g., many supercomputers) typi-

cally do not use hypervisors to maximize the performance, hypervisor is a standard in distributed systems 

(e.g., clouds). We thus discuss the applicability of the presented frameworks and techniques to hypervisor 

environments whenever it seems non-trivial. 
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(c) User process failure. The TCP thread (see Figure 3.3) is used to detect user pro-

cess failures. The control client in an injector node sends the output data of a benchmark 

program to its control server when the program finishes. If the output data packet does 

not arrive after the maximum expected execution time of the program, this is treated as a 

user process hang. If the output packet arrives but the execution time is shorter than the 

minimum expected execution time, we treat this as a user process crash. If the output data 

are incorrect (i.e., different from the golden output), a user process SDC error is declared. 

Note that when a fault causes a kernel crash or hang, the control node resets the injec-

tor node. If the injector node does not reboot properly after the reset (e.g., after two tries), 

the most likely cause is a file system corruption that could not be fixed by a file system 

integrity checker (e.g., fsck in UNIX and Linux). That would happen if the injected error 

was propagated to file system metadata or system file data. In that scenario, it would be 

possible to install the OS and all necessary programs of the injector remotely from the 

control node using the pre-boot execution environment (PXE). The failure of a remote 

installation implies at least one hard error in the injector node. 

 

3.3.2. Parallel Fault Injection 

Parallel fault injection uses multiple nodes for the concurrent execution of a fault injec-

tion campaign. The cost efficiency of that approach is represented by the ratio of the 

number of injector nodes to the number of control nodes. We achieved the ratio of 8 to 1 

with commodity hardware. Multiple control servers ran on a single machine, and each 

server responded to different TCP and UDP ports. A master control server generated a 

list of fault injection commands according to the user-provided fault injection campaign 

and stored the list to a file. All control servers accessed that file and dequeued a com-

mand for execution. The access was protected by a lock. As a result, we achieved a linear 

speedup directly proportional to the number of injector nodes. Note that we abstracted the 

heterogeneity of the injector nodes by using a symbol name to specify a fault injection 

target, because different machines can use different virtual addresses, even for the same 

injection target. 

 

3.4. Measurement Method 
 

The divide-and-conquer fault injection strategy is designed to quickly identify benign 

faults and non-benign faults that have short failure latencies. The strategy then studies the 

remaining faults one by one, and hence can reduce the experiment time while maintain-
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ing the ability to accurately measure the type, latency, and location information for all 

injected non-benign faults. 

 

3.4.1. Fault Injection Strategy 

A conventional fault injection strategy repeats the same fault injection process N times to 

study N fault samples (see Figure 3.4(a)). The repeated process injects a fault, monitors 

the behavior of a target system (e.g., up to a certain monitoring time), and restarts a target 

system (e.g., using the reset controller in the control node, see Figure 3.2). 

In the presented divide-and-conquer strategy, all N faults are injected one-by-one, and 

a short monitoring time (e.g., 60 seconds) is used to find non-benign faults that have short 

failure latencies
9
. The unidentified faults (e.g., neither manifested nor activated during 

the 60 seconds) are passed to the second phase. In the second phase, all passed faults (  ) 

are injected simultaneously (see Figure 3.4(b) and 3.4(c)). If a failure is observed, we di-

vide    faults into S subsets and perform a fault injection experiment for each subset. If no 

failure is observed in a subset, we treat all the injected faults as benign, although some of 

them were just not activated faults during the short monitoring time. Conversely, if a sub-

set causes a failure, it is once again divided into S subsets where each set has about   /S
2
 

faults. The procedure is repeated until the subset size becomes 1. At that point, since only 

one fault is injected, we can accurately collect error and failure information (e.g., latency, 

type, and location). 

The presented fault injection strategy is implemented in the following two phases: 

                                                           
9
 Failure latency is a time from the occurrence of a fault to the detection of an induced error or failure. 

This is the sum of fault and error latencies. 

 

Figure 3.4. Fault injection strategies (f=4). 
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(i) Early manifestation phase. Many failures have relatively short failure latencies in 

modern computer systems (e.g., [YKI09]). This phase quickly studies such failures. In 

this phase, all N faults are injected one-by-one by using the inject_one function (see line 

4 in Table 3.1) with a short monitoring time (Tshort, e.g., 30 seconds). In Table 3.1, the 

“fault” variable is an array that contains fault injection commands, and “result” is an ar-

ray that contains the fault injection results. We empirically set the short monitoring time 

value to a time where a majority of non-benign faults can manifest (see Section 3.4.2). 

If an injected fault does not manifest quickly (line 5), either the fault is benign, or it 

has a long failure latency. Its fault injection command is stored (lines 6-8) and passed to 

the next divide-and-conquer phase (line 9). The number of faults passed to the next phase 

is    (i.e., n_ll in Table 3.1).    is less than or equal to N. 

 (ii) Divide-and-conquer phase. This phase is to efficiently search the non-benign 

faults among the passed    faults. In this phase, we simultaneously inject    faults, and 

monitor the system for the long monitoring time (Tlong, line 13). If a failure is observed 

(line 14), we divide the    faults into S subsets to perform a fault injection experiment on 

each subset (lines 15-17). If no failure is observed in a subset (line 18), we assume that 

all faults in this subset are benign (lines 19-20). If a subset shows a failure, all faults in 

the subset are recursively divided into another S subsets where each set has about       

faults (S is 2 in Figure 3.4 and Table 3.1). This procedure is repeated until the number of 

Table 3.1. Algorithm of the divide-and-conquer fault injection strategy. 
01: function early_manifest(fault, result, n) 

02:   n_ll = 0 

03:   for i = 1…n 

04:   | inject_one(fault[i], result[i], Tshort); 

05:   | if result[i].failure is empty 

06:   | | fault_ll[n_ll] := fault[i] 

07:   | | result_ll[n_ll] := empty 

08:   | | n_ll := n_ll + 1 

09:   div_n_conq(fault_ll, result_ll, n_ll);  

 

10: function div_n_conq(fault, result, n) 

11:   if n is 1 

12:   |   return inject_one(fault[0], result[0], Tlong); 

13:   inject_all(fault, result_all, n, Tlong); 

14:   if result_all.failure is not empty 

15:   | pivot := n/2; 

16:   | div_n_conq(fault[1…pivot], result[1…pivot], pivot); 

17:   | div_n_conq(fault[(pivot+1)…n], result[(pivot+1)…n], n-pivot); 

18:   else 

19:   | for i = 1…n 

20:   | | result[i] := result_all; 
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faults in the subset becomes 1 (line 11). When the subset size is 1, because only one fault 

is injected (line 12), the error and failure information for this fault is accurately measured. 

This divide-and-conquer phase requires simultaneous injection of multiple faults. In 

practice, there is a limit on the number of hardware breakpoints that can be armed at the 

same time (e.g., up to 4–8). Thus, software breakpoints are used. For processor register 

faults, software breakpoints are set in all target instructions to obtain the control of a sys-

tem before each of the target instructions is executed. For memory faults, multiple faults 

are preemptively injected into the memory space just after a benchmark program is start-

ed. However, that prevents the experimenter from measuring the activation information 

of benign faults (e.g., faults excluded in any experiment that has a fault subset size of >1). 

That is the only known drawback of the presented divide-and-conquer fault injection 

strategy. 

 

3.4.2. Evaluation 

We compare three strategies: naïve, simple divide-and-conquer (i.e., using only the se-

cond phase of the presented strategy), and the presented strategy (i.e., using both the first 

and second phases). We used a trace-driven simulation with real failure latency data in 

order to evaluate the experiment time. We used this analytical approach because it can 

reduce the evaluation time relative to an alternative approach that directly measures the 

experiment times of all three evaluated strategies by using the same set of faults. 

(i) Baseline model. Figure 3.4 illustrates an example fault injection campaign in 

which 4 faults cause failures (i.e., f = 4) and S is 2. Each node in the graph depicts a sin-

gle fault injection experiment, and the number specified in the node is the number of 

faults injected simultaneously. White circles correspond to nodes with no detected fail-

ures, and gray circles represent nodes with at least one detected failure. The best case is 

when all non-benign faults are in a subset whose size is             as shown in Figure 

3b). Similarly, as shown in Figure 3.4(c), the worst-case is when all non-benign faults are 

uniformly distributed across multiple subsets. The number of required fault injection ex-

periments is given by (3.1). 

         
                                                       (3.1) 

The left term represents the sub-tree indicated by a dotted pentagon in Figure 3.4(b) and 

3.4(c) and calculates the number of nodes in a perfect binary tree with a height of logsf. 

The right term corresponds to the rest of the tree where (logsN – logsf) is its height and C 

is the number of nodes at each level of the tree. Thus, C is S in the best case, and C is Sf 

in the worst case. 
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Figure 3.5 shows the numbers of fault injection experiments needed by the naïve and 

the simple divide-and–conquer strategies for N equals 1024. The speedup ratio is deter-

mined by two parameters: the ratio and distribution of non-benign errors. The simple di-

vide-and-conquer strategy reduces the fault injection count if the non-benign error ratio is 

less than 12.5% (see Figure 3.5). For an error ratio of 1.5%, the 23x and 5x speedups 

(relative to the naïve strategy) are expected in the best case and the worst case, respec-

tively. Note that the worst case corresponds to a uniform distribution of non-benign errors. 

In practice, a uniform distribution of non-benign errors is not typically observed, because 

data of the same types are usually stored in close proximity and are likely to have similar 

fault sensitivities (i.e., at least, similar error sensitivities). 

(ii) Extended model. We then developed an extended model to evaluate the total ex-

periment time as a function of the used fault injection strategies and the type of injected 

faults. We built extended analytical models for the three strategies. The models accurate-

ly calculate the fault injection experiment time by using the failure latency distribution 

data as input. The failure latency data are collected through the fault injection experi-

ments (described in Section 3.3.1). The failure latency data came from about 6,000 fail-

ure samples. We collected the samples by injecting faults into four types of program 

states: code memory, data memory, control register, and data register. 

(a) Naïve strategy. The total experiment time of the naïve strategy (TTnaive(S1…N)) is 

given by (3.2). 

                                 
 
                             (3.2) 

Here, N is the total number of examined faults. Si is the i-th fault injection experiment. 

Tsetup is the experiment setup time, which was set to 90 seconds in our evaluation. Lfail(Si) 

is the failure latency of Si. Lfail(Si) is the same as the average execution time of a bench-

mark program if the fault Si is neither activated nor manifested, and is the same as the 

 
Figure 3.5. Experiment count of naïve vs. simple divide-and-conquer strategy. 
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maximum execution time of the benchmark if the fault causes an application hang. The 

monitoring time (Tmon) is used as the maximum execution time of the benchmark program. 

(b) Simple divide-and-conquer strategy. The total experiment time of the simple di-

vide-and-conquer strategy (TTdnc(S1…N)) is given by (3.3). 

                                                   

                                                              
                  (3.3) 

We assume that the failure latency of an experiment (that simultaneously injects multiple 

faults) is the same as the minimum failure latency of experiments for which each experi-

ment injects only one fault. Equation (3.3) is applicable if at least one injected fault is 

non-benign. If all injected faults are benign, the total experiment time is given by 

TTdnc(S1…N) = Tsetup + mini=1…NLfail(si). 

(c) Presented strategy. The total experimental time of the presented strategy 

(TTpres(S1…N)) is given by (3.4). 

                              
          

   
  

                                                                   
                     (3.4) 

Here,    is the number of faults that did not manifest in the first phase where    can be 

calculated by (2.5). P(t) is the probability of having a failure at time t when all N faults 

are injected. P(t) is derived from the measured failure latencies (Lfail) of the used failure 

samples. Tmon;short is the monitoring time of the early manifestation phase, and        is a 

set of faults with a failure latency longer than Tmon;short. In (3.4), the integral term is the 

experiment time of the early manifestation phase for the faults with a failure latency 

shorter than Tmon;short and the                term is for the rest of the faults. The TTdnc 

term is for the experiment time of the divide-and-conquer phase. 

            
          

   
                                          (3.5) 

The three models were used with the measured failure latency data. Figure 3.6 shows 

the total experiment times for the three strategies, normalized to a case in which 1,000 

faults are studied.  

The experiment time was inversely proportional to the fault sensitivity and directly 

proportional to the failure latency of the injected faults. For example, in the naïve strategy, 

the experiment time for the control register was shorter than that for the general-purpose 

register because the control register faults had a higher fault sensitivity. In the control 

register and code memory, the fault sensitivities were similar, but the control register had 

a shorter experiment time than the code memory because most non-benign control regis-

ter faults had a short failure latency (e.g., <5 seconds). Because of those characteristics, 
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data memory faults required a long experiment time (e.g., ~63 days with the naïve strate-

gy). 

The simple divide-and-conquer strategy reduced the experiment time for control reg-

ister, general-purpose register, code memory, and data memory faults by 35%, 42%, 13%, 

and 91%, respectively, relative to the naïve strategy. The reduction ratio is larger if many 

of the examined faults have a shorter failure latency (e.g., register faults) and the fault 

sensitivity is lower (e.g., data memory). If failure latency is short, the divide-and-conquer 

phase progresses quickly to small-size fault subsets. A small subset is likely to have no 

non-benign faults. Similarly, if fault sensitivity is low, the divide-and-conquer phase has 

a higher chance of having a subset without any non-benign faults. 

The two-phase divide-and-conquer strategy further reduced the experiment time over 

the simple divide-and-conquer strategy. When Tmon;short was 30 seconds, the two-phase 

strategy reduced the experiment time by 34%, 58%, 14%, and 8% for control register, 

general-purpose register, code memory, and data memory faults, respectively, relative to 

the simple strategy. A large reduction was achieved when the failure latency was short 

(e.g., register faults). The reason is that faults with short failure latencies are identified in 

the first phase and excluded in the following examinations. 

Figure 3.7 shows an optimization space of the presented strategy. Here, we controlled 

the Tmon;short parameter. There were two suboptimal points for each fault type. The first 

suboptimal point was when Tmon;short was 30–60 seconds. That point optimized the early 

manifestation phase. The second suboptimal point was when Tmon;short was 120–240 se-

conds. That point optimized the divide-and-conquer phase. Note that the y-axis of Figure 

3.7 is a log scale. Based on the optimization results, we generally recommend that 30 se-

conds be used as Tmon;short. 

 
Figure 3.6. Experiment time vs. Fault injection strategy (Simulation). 
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In summary, the presented two-phase strategy is a generic form of the naïve and the 

simple divide-and-conquer strategies. Specifically, if Tshort of the presented strategy is 0, 

then it works the same as the simple divide-and-conquer strategy. If Tshort = Tlong, the pre-

sented strategy works the same as the naïve strategy because the second step is not need-

ed (i.e.,   =0). On average, the presented two-phase strategy improved our experiment 

speed by 3.2 times and 7 times for processor register and memory faults, respectively, 

relative to the naïve strategy, when the maximum monitoring time (Tlong) was 2.5 hours. 

If the monitoring time is longer, the presented strategy can provide a higher experiment 

time speedup ratio thanks to the larger reduction in the experiment times for benign faults 

and non-benign faults with short failure latencies. 

 

3.5. Experimental Setup 
 

We have conducted a series of fault injection experiments on commodity computer sys-

tems. The data analyzed in Section 3.6 were obtained using the following fault injection 

methodology. 

For software on CPUs, we used the presented fault injector to emulate a hardware 

fault that has successfully propagated to a software-visible architecture state (e.g., proces-

sor register or memory data). The majority of our fault injection targets were selected 

from OS kernel states because of the importance of the OS reliability (because the relia-

bility of all user processes depends on it). We executed a benchmark program in the user 

space, while performing a fault injection experiment in the OS kernel space. In order to 

 
Figure 3.7. Optimization results of a parameter in the presented strategy. 
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examine various workloads we used a widely accepted kernel stress test suite (Linux Test 

Project, LTP
10

). The execution time of LTP was about 1.5 hours in the used injector 

nodes. We monitored each injector node up to 2.5 hours in order to classify the differ-

ences between the performance variations of a target system and hang failures. 

(a) Memory faults. Memory faults were injected into static text segments of the OS 

kernel, dynamic text segments of the kernel modules, and static data segments of the ker-

nel (namely rodata, data, and bss). We injected ~4,000 faults into those segments. The 

total sizes of the static kernel text and data segments were ~1.8 MB and ~1 MB, respec-

tively. Both single- and double-bit errors were used as fault models. We assumed that the 

probability of memory transient faults (e.g., soft errors) has a uniform distribution across 

the entire physical memory space. Fault injection targets were thus uniformly selected 

from the entire target memory space. For kernel code memory, we randomly selected 135 

kernel functions from all kernel functions, and injected faults into randomly chosen in-

structions of these 135 kernel functions. For kernel static data memory, faults were uni-

formly injected into the entire memory space of the selected data segment. 

(b) Processor faults. Register faults were injected into some of the most frequently 

executed kernel functions. We chose the functions by profiling the OS kernel (i.e., using 

OProfile
11

). We injected about 2,000 faults (specifically, single-bit errors) into the gen-

eral-purpose data (e.g., eax, ebx, ecx, edx, edi, and ebp in x86 ISA), control (e.g., esp, eip, 

eflags, the return address stored in the system stack, and the instruction register in x86), 

and special-purpose registers (e.g., cr2, fs, and gs in x86), while running the 100 most 

frequently used kernel functions. The 100 functions represented ~78% of the total execu-

tion time of the kernel if the LTP benchmark executed in user spaces. We used only the 

activated faults (e.g., a breakpoint is triggered) in our analyses. Note that we selected tar-

gets using execution frequency information in order to accurately reflect the probability 

of a transient fault in the processor registers. That is a frequently executing function is 

more likely to experience a processor transient fault than a less frequently executing 

function is. 

 

3.6. Result 
 

By analyzing the fault injection experiment result data, we characterize the fault and error 

latencies, and the distance between fault and failure locations. 

                                                           
10

 The LTP Benchmark, http://ltp.sf.net. 
11

 OProfile is a system-wide performance profiler for Linux and is hosted at http://oprofile.sf.net. 

http://ltp.sf.net/
http://oprofile.sf.net/
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We present a new classification of failures based on fault and error latencies. It classi-

fies failures into SFSE, LFSE, SFLE, and LFLE failures, where “S” means short, “L” 

means long, “F” means fault latency, and “E” means error latency. The threshold between 

short and long latencies is defined through consideration of the knee of the latency distri-

bution and the cost of recovering from the failure. In general, it is difficult to recover 

from long-latency failures with a checkpoint technique. In particular, long-error-latency 

failures (e.g., SFLE) are more problematic than long-fault-latency failures (e.g., LFSE). 

The reason is that long fault latencies are due to latent faults whose presence does not af-

fect the execution behavior of a system (e.g., program output). 

 

3.6.1. Fault and Error Latencies 

We analyze the fault and error latencies. Our analysis shows that thanks to the short error 

latencies it is possible to recover from many failures via a backward error correction 

technique or other simple software techniques. 

(i) Long Monitoring Time. Previous work found that a large portion of masked errors 

may be due to the use of a monitoring time that is too short to allow for activation of all 

injected faults (e.g., 30 seconds to 1 minute). In order to determine whether a masked 

fault is permanently masked or just unactivated under the used benchmark workload, we 

conducted another fault injection experiment using a longer monitoring time (2.5 hours) 

and executing a stress test case suite for the Linux OS (LTP). 

Table 3.2 shows the fault sensitivities (i.e., percentages of OS kernel failures) as a 

function of the monitoring time and the fault location. 

Observation 3.1. After sufficient time to examine the OS kernel states (e.g., >90 

minutes) had passed, the fault sensitivities were at least 9.6%, 1.6%, 1.7%, and 0.3% 

higher for code memory, data memory, control register, and data register faults, respec-

tively, than those measured when the monitoring time was 1 minute. 

Table 3.2. Fault Sensitivity vs. Monitoring Time 

Fault Location 
Monitoring Time (Minute) 

1 10 30 60 ≥90 

Memory 
Code 17.5% 23.3% 25% 26.3% 27.1% 

Static Data 1.4% 1.6% 2.2% 2.7% 3% 

General-Purpose 

Register 

Control 75% 76.7% 76.7% 76.7% 76.7% 

Data 20.1% 20.1% 20.1% 20.4% 20.4% 

 * Target system is Linux v2.6.16 on x86 processors. This experiment is done in 2009. 
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In particular, register faults had smaller differences than memory faults. For memory 

faults, as the monitoring time became longer, the increase in the rate of fault sensitivity 

decreased. Note that the used LTP benchmark is a de facto standard stress test suite for 

the Linux OS that examines a large portion of the practically accessible kernel code and 

data. 

(ii) Error Latency. Figure 3.8 shows the error latency distributions of failures caused 

by memory and processor faults. The types of data in which faults were injected were the 

code and data memory segments, and the general-purpose control and data registers. Fig-

ure 3.8 shows that a majority of failures have short error latencies if faults occur in one of 

those four locations. 

Observation 3.2. ~95% and ~97% of failures due to memory and processor faults, 

respectively, had error latencies shorter than one second. 

The phenomenon is due in part to the strong temporal localities of accessed values, 

the high clock speed of modern processors, and the use of various types of error detectors 

in modern computer systems. For example, if corrupted data are accessed, those data are 

likely to be accessed many times in a short time interval. If the corrupted data have a high 

error sensitivity, during the short time interval, there is a high chance of causing a failure. 

If there is no failure during the interval, it would indicate that the corrupted data have a 

low error sensitivity; thus, the error is likely to benign and is unlikely to cause a failure at 

its next accesses (i.e., the error has a long error latency). 

Those data imply that one of the error propagation paths of long-error-latency faults 

is through the memory state. For example, if the address operand of a memory write in-

 

Figure 3.8. Error latency distribution of processor faults. 
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struction is corrupted, it can corrupt an arbitrary address data in the memory. It may take 

a long time before the corrupted data are accessed (i.e., the corrupted address escapes the 

memory locality of the host program. We describe more detailed analyses of such error 

propagation paths in Section 3.8. 

(iii) Fault Latency. Figure 3.9 plots the fault and error latencies of failures caused by 

non-benign memory faults. The dotted lines in the figure classify these failures into the 

four types: SFSE, LFSE, SFLE, and LFLE. The data in Figure 3.9 show a long tail in the 

fault latency distribution (e.g., many LFSE type failures) but not in the error latency dis-

tribution (e.g., only a few SFLF-type failures). 

Observation 3.3. 47% of non-benign memory faults have fault latencies longer than 

10 seconds. 

Fault latency of memory faults depends on the temporal locality of corrupted memory 

data, which is determined by the characteristics of workloads (e.g., regularity of system 

calls in OSes and user inputs in applications). We found a strong correlation between the 

fault latency and the access frequency of data into which a fault has been injected (i.e., 

temporal locality). The average fault latency depended on the execution frequency of a 

function into which faults were injected. Even in the same function, fault latency of a 

fault in the code memory varied depending on the execution frequency of a basic block 

containing the faulty instruction. Because of those correlations, the workload characteris-

tics directly impact the fault latency. 

 

Figure 3.9. Fault and error latencies of memory failures. 
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3.6.2. Fault and Failure Locations 

Table 3.3 shows the percentage of failures detected in a software module in which faults 

have been activated (or where errors have occurred). Failures with long error latencies 

(i.e., > 10 seconds) were more likely than those with short error latencies to be seen in a 

different software module. Specifically, 90-92.5% of short-error-latency failures were 

detected in the same OS module in which a fault was injected [GKI04]. On the other 

hand, 25–54.5% of long-error-latency failures were detected in the same OS module as 

the fault injection. The reason was that long-latency failures were not quickly detected 

and were likely to propagate and corrupt system states that were outside the software 

module where the error occurred. 

 

3.7. Modeling 
 

Statistical data that characterize system failure behaviors offer a basis for modeling fault-

tolerant computer systems and analyzing system dependability and performance metrics 

under various operational conditions. For example, such an analytical failure model can 

be directly used as part of a system model and can also be used to derive formulas that 

directly compute certain metrics. 

We present analytical parameter models that statistically capture system failure be-

haviors. Specifically, we give an example of how the measured failure latency can be fit-

ted into known probability distribution functions. 

In Figure 3.10, the thick blue line is the failure latency distribution of four different 

types of faults studied in the experiments described and analyzed in Section 3.6. Let us 

assume that             is the probability of having a failure latency t for a fault of the 

considered type. Specifically, failure latency   means that the fault latency is   and the 

error latency is       where      . This is formulated in (3.6). 

Table 3.3. Distance between error and failure locations 

Error  

Latency 
Fault Type 

Error and Failure Locations 

Same SW Module Different SW Module 

Short 

[GKI04] 

Processor 90% 10% 

Memory 92.5% 7.5% 

Long 

>10 sec 

Processor 25% 75% 

Memory 54.5% 45.5% 
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                                (3.6) 

Here,           and is the fault latency distribution and           is the error latency dis-

tribution. Those distributions were computed by using the latency distributions of faults 

leading failures (i.e., non-benign faults and detected benign faults), because the rest of the 

faults were not detected and thus neither have an error latency nor a failure latency. Be-

cause of such normalization,               
 

 
 = 1. 

We fitted the four known probability distribution functions to the             of code 

memory, data memory, control register, and general-purpose data register faults. Figure 

3.10 shows examples in which Weibull, lognormal, exponential, and gamma distributions 

have been fitted into the measured failure latency distributions. Here, failure latency dis-

tribution is used for explanatory purposes. In practice, both fault and error latency distri-

butions can also be used (e.g., as part of model-based studies). 

 

3.8. Characterization 
 

    
                    (a) Code memory fault.                                  (b) Data memory fault. 

   
                   (c) Control register fault.                    (d) General-purpose data register fault. 

Figure 3.10. Curve fitting example of failure latency distribution. 
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This section analyzes the error propagation paths of long latency failures and their impli-

cations for error detection. 

 

3.8.1. Error Propagation Paths 

We analyze the propagation paths of undetectable errors. Many detected errors change 

the control data of a program (e.g., control flow or memory address), while many unde-

tected errors change only the non-control-data of a program. These undetected long-

latency errors are classified into two types: 

(i) Long-error-latency crashes. Failures have long error latencies if their error propa-

gation paths are unlikely to be (or are not easily) checked by the baseline error detectors. 

We classified long-error-latency failures into two types: crash and hang. 

The analyzed causes of long-error-latency crashes include the corruption of error-

insensitive data and the propagation of corrupted data to memory data that have weak ac-

cess locality. A fault in a processor register can propagate to another register when the 

corrupted register is used as an operand of an arithmetic, register-to-register move, 

branch, call, or return instruction (see Figure 3.11. for an error propagation model). The 

baseline error detectors in a processor can monitor the operands of some of these instruc-

tions (e.g., the target address of a call or return instruction). When an undetected error is 

used as an operand of a memory store or a stack push instruction, it can propagate to 

memory (see Figure 3.11(ii)). Depending on the locality of the corrupted memory data, it 

may be a long time before the corrupted data are re-accessed (e.g., fetched to a processor 

register by a memory load or a stack pop instruction, see Figure 3.11(iii)). Even if the 

corrupted memory data are loaded into a register, a failure is caused only when the cor-

rupted data are used for an error sensitive operation in which the operand integrity is 

checked by the baseline error detectors. For example, if there are multiple code fragments 

that can read the corrupted memory data, the failure latency is long if only a small num-

ber of the code fragments can execute the types of operations that are sensitive to the cor-

ruptions in their operand data. 

Following analysis of the long-error-latency crash failure samples obtained in our ex-

periment, we classify the long-error-latency crash failures into the following three types: 

(a) Errors propagating from register to memory. We found that when a register vari-

able that was going to be stored in memory was corrupted, it was likely to cause a failure 

with a long error latency. In the case of data pushed to the stack, the pushed data are typi-

cally popped to a register at the function exit. The corrupted source register in the proces-

sor is overwritten by another value just after executing the push instruction. Thus, a fail-

ure can occur only when the restored value is used for at least one error-sensitive opera-
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tion. Because the corrupted variable can have a live range similar to the function length 

(which includes all the functions called by that function), the error latency can also be as 

long as the function execution time.  

(b) Errors escaping memory access locality. Memory access locality plays an im-

portant role in the error latency. Typically, data stored in register, cache, and memory are 

accessed again in the near future, because of the temporal locality. However, when the 

address of a memory store operation is corrupted, this stores the value to an arbitrary 

memory location. If the data originally stored in this arbitrary location have a weak 

memory locality, it is likely to take a long time to access the corrupted data stored in the 

memory (e.g., the corrupted data escape the locality of the original memory data), and 

thus a long-error-latency failure can occur. 

(c) Needing multiple activations. The above two cases showed that many long-

latency failures propagate through the memory regardless of the original location of the 

fault. If the resulting corruptions in specific types of memory data (e.g., due to memory 

faults) manifest only under certain runtime conditions (e.g., depending on the caller func-
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Figure 3.11. A model of error propagation paths. 
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tion), it can take a long time to use the corrupted data, and thus a long-error-latency fail-

ure is likely. For example, if there are five functions that can use the corrupted data, and 

one of them can lead to a failure but its execution frequency is lower than that of the oth-

er four callers, it may be that the fault in the data can be activated quickly when one of 

the five functions is called, but that the induced error manifests only when that one spe-

cific function is executed (i.e., the one with a long error latency). It is also true in faults in 

the code memory. When the second je (jump equal) conditional branch instruction of the 

find_pid() function of the Linux OS on an x86 computer is changed to jo (jump overflow), 

this function can return an incorrect pid structure instance. This corrupted pid instance 

can be used by five functions, breaking the data integrity of a task_struct instance. In our 

experiment, a failure was detected when flush_old_exec() called de_thread(task_struct 

*tsk) and the de_thread() function checked whether tsk->signal->count is 1. 

(ii) Long latency hangs. Our fault injection results showed that it is important to de-

tect unconventional OS kernel hangs. In our experiments, a NMI-based preemptive hang 

detection was used. Kernel hangs were immediately detectable if the interrupt service 

was stopped. We found that not all kernel hangs disabled the vital OS services (e.g., the 

interrupt or processor scheduler) in a short time interval. Such hangs took a long time to 

detect with the hang detector we used. 

We describe two of the long latency hang cases we found: 

(a) Gradual error propagation. One type is due to errors that propagate over a long 

period of time. The propagated errors gradually disable different parts of the OS kernel 

services. The error is detected when the propagated errors harm the availability of the 

critical system services (e.g., the scheduler) or states that are checked by the used error 

detectors. 

(b) Manifestation under certain conditions. Another type occurs when an error prop-

agates and stays in memory (similar to a long-latency crash). For example, in our fault 

injection experiment, the OS kernel stuck at a while loop, while(slabp->inuse < cachep-

>num && batchcount--) defined in cache_alloc_refill() of the slab allocator of the Linux 

OS. When that hang occurred, (slabp->inuse < cachep->num) was false, and batchcount-

- was not executed. Thus, batchcount did not change and the loop condition of the outer 

while loop, while(batchcount > 0), was never unsatisfied when batchcount was higher 

than 0. In the normal case, when (slabp->inuse < cachep->num) was false, the condition 

of an if-statement (slabp->free == BUFCTL_END) inside the outer loop was true, be-

cause all slab objects were in use, and no more free objects existed in the given slab. The 

execution of the if-then paragraph eventually made the loop condition of the outer loop 

false. This hang was thus caused by the broken integrity of the memory data, slabp-
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>inuse and slabp->free, and this hang had a long error latency because of the time gap 

between the error (i.e., the corruption of the inuse or free variable) and hang failure.  

 

3.8.2. Implications for Error Detection 

We eventually detected many long-latency failures, but it was difficult to recover from 

them. From the error recovery point of a view, we classify long latency failures into two 

types. The following recoverability analysis of those types shows the importance of early 

and accurate detection of such long latency failures. 

 (a) Long error latency. One type is long-latency failures that have a long error laten-

cy (e.g., SFLE or LFLE). In this case, checkpointing techniques suffer from the large 

overheads due to the checkpoint corruption problem. That problem increases not only the 

restart and rework times of a checkpoint-and-restart technique but also the checkpoint 

storage size (to keep multiple checkpoints). Figure 3.12 illustrates a checkpoint corrup-

tion problem in which the fault, (1), can be either a soft error in memory or a fault in the 

processor that propagates to the memory. A checkpoint (or program snapshot), (3), made 

after a memory error, (2), can be corrupted and hence should not be used to correct the 

error. To guarantee a successful recovery, the application should roll back to a checkpoint 

(not shown in Figure 3.12) taken before the occurrence of the memory error (2). That in-

creases the space overhead required to store checkpoints for recovery. Unlike parallel 

programs, many distributed programs (e.g., interactive programs) have very short check-

point intervals (e.g., less than a second). In such cases, one should be cautious when em-

ploying a checkpointing technique to recover from runtime errors, especially if the 

memory is not well-protected; we found that most long-latency failures are caused by er-

rors in memory rather than in the processor registers. 

(b) Long fault latency. The other type is long latency failures due solely to long fault 

latency (e.g., LFSE). This type of failures is easier to recover from, because the incorrect 

output data are producible only after the fault activation. There is no problem associated 

with the I/O recovery. Moreover, if an incremental checkpointing technique is used, as 

 
Figure 3.12. Long latency failure vs. checkpointing. 
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long as the page that contains such a latent memory fault has not been modified since the 

last checkpoint save, the corruption does not propagate to the checkpoint storage. Such 

latent faults can be corrected through reloading of all pages at the time of the rollback (or 

restart) operation. If a non-incremental checkpointing technique is used, the checkpoint 

corruption problem still exists in this type of long latency failures.  

 

3.9. Summary 
 

We have investigated the significance, causes, and characteristics of long latency failures 

caused by transient hardware faults in processor and memory devices. 47% of non-benign 

memory faults have fault latencies longer than ten seconds. Advanced ECC and memory 

scrubbing techniques can remove such latent memory faults if the overhead of such tech-

niques is allowed in the application domain. Still, ~5% and ~3% of failures due to 

memory and processor faults, respectively, have error latencies longer than one second. 

Among them, the processor faults are neither detectable nor tolerable by the advanced 

ECC and memory-scrubbing techniques. The majority of the found long-latency failures 

are due to corrupted memory data that have been unused for a long period of time. This 

shows the importance of early detection of memory data corruption errors especially if 

high availability is required, because it is difficult to recover from long-latency failures 

by for example using a checkpoint-restart technique. 

 



 

56 

 

Chapter 4.  

Data-Type-Aware Fault Injection on Multiple 

Computer Systems 
 

 

This chapter presents a measurement-based analysis of the fault and error sensitivities of 

multiple computer systems. We develop a software-implemented fault injector to support 

data-type-aware fault injection into three different types of commodity computer systems.  

The results indicate that there are significant similarities and variations in the fault and 

error sensitivities between different versions of the same type of computer systems, and 

between different types of data in the same computer system. Furthermore, we show that 

recovery from errors in a large portion of static and dynamic memory space can be ac-

complished through simple software techniques (e.g., reloading of data from a disk). The 

recoverable data include pages filled with identical values (e.g., “0”) and pages loaded 

from files unmodified during the computation. Consequently, the selection of targets for 

protection should be based on knowledge of recoverability rather than on error sensitivi-

ty alone.
12

 

 

 

4.1. Motivation 
 

Fault injection (FI) is a well-established experimental methodology for validating, char-

acterizing, and evaluating fault-tolerant computer systems. The most effective reliability 

characterization metrics used in FI are: fault sensitivity (FS) and error sensitivity (ES), 

formulated in Eq. (4.1) and (4.2), respectively. FS shows the sensitivity of a computer 

system to a set of injected faults, and ES shows the sensitivity of a system only to a set of 

activated faults (i.e., errors). 

                  
                           

                         
 

                  

                
          (4.1) 

                  
                           

                          
 

                  

                
          (4.2) 

                                                           
12

Part of this chapter was published: K. S. Yim, Z. Kalbarczyk, and R. K. Iyer, “Measurement-based 

analysis of fault and error sensitivities of dynamic memory,” in Proceedings of the International Confer-

ence on Dependable Systems and Networks, pp. 431-436, 2010. 
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FI experiments were conducted in various system abstraction layers (e.g., device-

physics, circuits, chips, and systems). FI experiments conducted in multiple system ab-

straction layers (e.g., hierarchical FI [ZIR+99]) help us to better understand error propa-

gation paths and probabilities in target computer systems (e.g., the impact of a low-layer 

error on the entire system). 

In order to validate the findings of previous FI experiments on the latest commodity 

computer systems and to find universal patterns in error propagation, in this chapter, we 

seek answers to the following three questions: 

 How do the FS and ES of different versions of the same type of computer sys-

tems change over time (e.g., over 3 years)? 

 How much difference in the FS and ES is there between different types of data 

(e.g., dynamic memory and general-purpose register) stored in the same computer 

system? 

To answer those questions, we developed a unified FI framework and used one FI ex-

periment method to conduct FI experiments on multiple computer systems. Our Extensi-

ble Fault Injection (EFI) framework separates the controller and fault injectors. The con-

troller thus can control multiple fault injectors installed in different target systems and 

apply the same FI experiment method to all the controlled target systems. The controller 

software has an extensible architecture that makes it easy to design and automate com-

plex FI experiment campaigns. 

In order to inject faults into various types of program states, EFI implements a data-

type-aware FI technique. That data-type-aware technique allows us to classify FI results 

as a function of the type of corrupted data stored in either static or dynamic memory. For 

example, it was difficult to identify the type of the corrupted data stored in a specific dy-

namic memory address at the time of fault injection and/or at the time of system failure, 

because a dynamic memory object (e.g., a heap object) is allocated and freed at runtime. 

Faults randomly injected into the entire dynamic memory space [GKI04] can demonstrate 

the average FS and ES of the evaluated memory space but cannot characterize the ES of 

specific memory objects allocated in the dynamic memory. 

In order to be more precise, one must be able to: keep track of dynamic objects that 

are allocated and freed over time, and associate a specific data type with a memory word 

inside a dynamically allocated memory object. The presented data-type-aware FI tech-

nique uses a symbolic identifier to specify an FI target (e.g., specifying the data type of 

an FI target), converts a symbolic identifier to a virtual address at runtime, and uses the 

converted virtual address to set a breakpoint when a breakpoint-based injector is used. 
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Based on EFI and the data-type-aware FI technique, we conducted the following three 

FI experiments. 

First, we conducted FI experiments on three different versions of the Linux OS and 

x86 platforms. We found that the FS and ES changed significantly even when faults were 

injected into the same type of data on the same type of system. For example, as the OS 

kernel evolved, the FS of code memory was reduced because of the increase in its code 

size, and the ES of code memory rose because of the addition of built-in error detectors. 

That shows the importance of software (e.g., runtime error-checking code and compiler 

code generation) for system reliability. 

Second, we conducted FI and profiling experiments on various types of dynamic 

memory objects of a Linux system. Our FI experiments showed that the variations in the 

FS and ES between different types of data are significant even in the same system. Spe-

cifically, dynamic memory exhibits about 18 times greater fault sensitivity than static 

memory does, mainly because of the higher activation rate. That high fault sensitivity 

implies that selective memory protection techniques that use fault sensitivity to select 

protection targets can incur a large overhead if applied to dynamic memory space. 

Recoverability-driven memory protection can reduce protection costs under a high 

fault rate. Our study indicated that it is possible to recover from a significant percentage 

of memory errors (70% of the static memory and about 10-60% of dynamic memory) 

through simple software techniques. For example, a large proportion of memory pages 

allocated by applications are filled by the same value (e.g., “0”). Errors in these pages can 

be recovered from if the value is recorded in advance. Memory pages used for disk cach-

es are replicated by default to stable storage. Furthermore, some of the user-level state 

can be excluded as protection targets. For example, errors in multimedia data are short-

lived and quickly removed by new-incoming data (e.g., the next video frame) without 

degradation of the quality of service. Our evaluation data shows that this recoverability-

driven memory protection can handle multi-bit errors in a cost-effective way. 

The rest of this chapter is organized as follows. Section 4.2 reviews related works. 

Section 4.3 presents the extensible FI framework for multiple computer systems. Section 

4.4 describes the data-type-aware FI technique. Section 4.5 summarizes an experiment 

that used three versions of the same type of computer system, and another experiment in 

which faults were injected in various types of program states (e.g., dynamic memory). 

Section 4.6 presents a recoverability-driven protection technique for memory. Section 4.7 

describes a case study that shows the extensibility of the presented framework, and Sec-

tion 4.8 summarizes. 
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4.2. Related Work 
 

This section reviews the related works. 

 

4.2.1. Fault Injection Tools and Experiments 

Although extensive FI experimentation has been done, not much work has used the same 

FI method to conduct FI experiments on multiple computer systems. 

(i) Data-type-aware FI. Previous fault injection studies have accurately tracked the 

impacts of low-layer hardware faults on the reliability and data integrity of upper-layer 

and larger-scale systems. 

All the previous experiments on different system layers showed that not all faults in a 

layer can propagate and corrupt states that are visible to upper layers. The actual masked 

fault ratio varies depending on various configuration parameters. Historically, FI experi-

ments have been done in a bottom-up manner, as described next. 

(a) Device-physics. The early fault injection experiments in the device-physics layer 

used simulated fault injectors in order to model faults accurately (e.g., a double exponen-

tial model [Mes82] and an iterative simulation model [JIH+97]). Based on such models, 

the impact of low-layer faults on higher layers of system abstractions was studied. 

(b) Circuit. In the circuit layer, in order to emulate the output of a faulty circuit in a 

logic layer model, the mixed-mode simulation approach [CI92][IT96] uses a fault model 

of a faulty part of the circuit; the model is derived in the device-physics layer. In an alter-

native time-dimensional approach, the model of a faulty circuit is dynamically switched 

during a time interval that surrounds the fault occurrence [Yan92]. In those two ap-

proaches, the cost of supporting multi-level simulations is non-negligible in terms of the 

simulation computing power. That technical issue is addressed in the fault dictionary ap-

proach, which uses low-layer fault dictionaries to emulate low-layer fault induced errors 

in a higher layer [CI92][BGG+02][KKA95]. 

(c) Chip. The chip layer fault injection experiments used a coarse-grained simulation 

model (e.g., the hardware module was treated as normal or faulty [GIY97]), the HDL 

code of a chip to embed fault injection code [KIR+99][LRS+08], or an off-chip pin-level 

fault injector [GJ95]. (d) System. The system layer fault injection experiments used either 

cycle-accurate or approximate system simulators, or software-implemented fault injectors. 

In the early low-layer FI experiments, it was natural to classify the fault injection re-

sults as a function of hardware fault characteristics (e.g., angle and energy of particle 

strike, or location or type of a faulty circuit). That could reveal fault-sensitive (e.g., de-
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coder and reorder buffer) and less fault-sensitive (e.g., instruction register and register 

allocation table) hardware components by, for example, analyzing the architectural vul-

nerability factor (AVF) [MWE+03]. The analyzed ratio is the average sensitivity of the 

benchmark software to injected faults in specific hardware locations. Some hardware 

components store and/or manipulate various types of data (e.g., register file and ALU). 

One of our experiments was designed to collect data necessary to analyze the sensitivities 

of injected faults as a function not only of the fault location but also of the type of cor-

rupted data. 

 (ii) Dynamic memory FI. Many fault injection experiments have been conducted to 

measure and identify fault-sensitive memory states. While the error sensitivity of static 

memory has been well studied (e.g., using virtual addresses derived from debugging 

symbols of a target program binary) [GKI04][YKI09], the error sensitivity of dynamic 

memory has not been adequately characterized. Yet dynamic memory is, on average, 

about two orders of magnitude larger than static memory, according to our measurement 

of a regular Linux-based system; see Figure 4.1. That measurement ran the LTP (Linux 

Test Project) v2.0 benchmark program on an x86 machine. 

If dynamic memory has been studied, faults were randomly injected into all or specif-

ic parts of a dynamic memory space. Thus, there has been almost no analysis of the corre-

lation between data type and error sensitivity in dynamic memory space. An exception is 

the work described in [CKV+04], which analyzes the error sensitivity of various types of 

heap objects used in a JVM. This work shows the tradeoff between protection granularity 

and overhead. We present a similar technique that can analyze the error sensitivities of 

specific types of data in dynamic memory space, but our technique also supports dynamic 

 

Figure 4.1. Static vs. Dynamic memory size. 
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memory spaces of the OS kernel and user programs written in any programming lan-

guage (e.g., C/C++). Of all the previous approaches, Valgrind13 is the one most similar to 

our presented data-type-aware fault injection tool for OS and user-level dynamic memory 

objects. The main differences between those two are the granularities of object monitor-

ing, the types of objects monitored, and the design complexity of the framework. 

 

4.2.2. Profiling Tools 

There are many existing profiling tools that are useful to perform a post-mortem analysis 

(e.g., anomaly-based detection). We classify the existing profilers into three types: 

(i) Breakpoint-based technique. This type of techniques uses a breakpoint hardware 

common in modern microprocessors. A breakpoint is set at a piece of a code that is exe-

cuted when a specific type of event of interest is executing (e.g., system call entry func-

tion). When a target instruction is being executed, a breakpoint exception is raised that is 

intercepted to execute user provided codes (e.g., to count the event occurrences). A num-

ber of hardware-implemented breakpoints are supported for each kernel and user-space 

breakpoint target. This type of technique is pluggable in the sense that it neither needs 

source code modification nor recompilation. However, it can incur a large overhead if the 

profiling target is executed frequently, mainly due to breakpoint exception handling over-

head. 

(ii) Dynamic binary rewriting. This type of techniques provides similar profiling pow-

er to the embedded hook techniques, but it does not need recompilation, as such changes 

are made dynamically. Specifically, a technique can look all callers of a profiling target 

function by using the symbol information of a target OS kernel image. This technique then 

rewrites the found call instructions to make them call another profiling wrapper function. 

This wrapper function performs specific profiling operations before calling the original 

target function. In modern OS kernels and processors, if the code segments are protected 

(e.g., read-only), the page table needs to be modified before this dynamic binary rewriting 

operation. After the profiling, the original instructions are restored, and thus no more per-

formance overhead is incurred. The performance overhead of this approach is calling an 

extra function and running the profiling operations, while that of the embedded hook is 

checking a list of function pointers, calling the registered functions, and running the profil-

ing operations. 

                                                           
13

 Valgrind is an instrumentation framework for building dynamic analysis tools. This project is hosted at 

http://valgrind.org. 

http://valgrind.org/
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(iii) Performance counter. This type of technique uses the performance counter hard-

ware in modern processors to monitor a specific type of architectural events (e.g., cache 

misses and breach prediction misses) and counts them. 

 

4.3. Tool 
 

We present the Extensible Fault Injection (EFI) framework to support FI experiments on 

multiple computer systems. 

 

4.3.1. Architecture 

Figure 4.2 shows the hardware and software architecture of the EFI framework. The 

framework consists of three types of computer nodes: control, monitor, and injector. The 

control node is an interface between a user and injector nodes. In each injector node, the 

actual fault injection is done; that includes collection and reporting of injection results to 

the control node. Each monitor node is used to relay fault injection commands and results 

between the control node and a set of injector nodes. Relayed data can be preprocessed 

by the monitored node to prevent the centralized control node from being a performance 

bottleneck. The reduction in the loads of the control node enabled this offloaded pro-

cessing improves the scalability of the EFI framework (e.g., simultaneous control of mul-

tiple and different types of injector nodes). 

The latest implementation of the EFI framework supports three types of fault injectors: 

breakpoint-based injectors for CPU-based platforms (e.g., Linux OS on x86 processor, 

Solaris on SPARC, and AIX on POWER), and a source code mutation-based injector for 

GPU-based platforms (e.g., CUDA
14

 programs on NVIDIA GPUs). Support of such di-

verse target systems is feasible thanks to the following architectural properties of EFI. 

(i) Separation of control and injection. In the EFI framework, fault injection and its 

control operations are split and located in different types of computer nodes. The control 

node controls injector nodes by using application-layer protocols that run on top of the 

standard TCP/IP protocol (e.g., secure shell and secure FTP). For example, the control 

                                                           
14

 CUDA (Compute Unified Device Architecture) is a software platform that enables users to easily con-

trol NVIDIA’s GPU devices. CUDA supports a programming language similar to C++ and types of API 

where the runtime API is easier to use than the driver API, which provides more control over GPU devices. 

CUDA compiler translates the C++-style code into the PTX (Parallel Thread eXecution) pseudo-assembly 

language code, which is eventually translated into a binary to run on GPUs. Currently, CUDA supports 

only NVIDIA GPUs unlike to OpenCL (Open Computing Language) that supports AMD and NVIDIA 

GPUs, and x86-family and POWER7 CPUs. 



 

 

63 

 

node sends shell commands to injector nodes, receives the command execution result 

messages, and exchanges regular files with injector nodes. 

 (ii) Customizable controller software. The control server is the core control software 

that runs on the control node. The control server has four types of software components 

(see Figure 4.2). Commander generates a fault injection campaign and performs a fault 

injection experiment by processing the campaign. The collected fault injection result data 

are analyzed and stored in the database component. The translator component is used to 

translate the source code of the target software in order to embed error injection code in 

the source codes. It is used only for mutation-based injection in GPU-based injector 

nodes for which breakpoint-based injection is not feasible. 

All three types of components in the control server can be customizable by the other 

type of components (plug-ins). A plug-in is a user-provided executable script. A plug-in 

includes the definitions of a set of commands for the commander. These defined com-

mands can specify a fault injection target, start a benchmark program, collect fault injec-

tion result data, and clean up an injector node, for example. Each of those commands is a 

mixed sequence of shell commands, file transfer operations, and the control server plug-

in programming interface (PPI) operations. PPI operations are commonly used mecha-

nisms for conducting fault injection experiments and are served by the control server 
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Figure 4.2. Control architecture of the Extensible Fault Injection framework. 
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software framework
15

. An example control scenario could be one in which a file transfer 

operation copies a fault injection result file from an injector node to the local file system 

of a monitor node, a shell command controls a monitor server to interpret the saved result 

file, and a PPI operation parses and saves the interpreted data in the database component 

on the control server. 

 

4.3.2. Breakpoint-Based Fault Injector 

Both the OS and application software maintain large runtime states for various types of 

data. Different types of data are likely to show different failure behaviors when the data 

are corrupted by hardware faults. It is thus necessary to classify fault injection results as a 

function of corrupted data type, except for types of data that are negligibly small from a 

statistical point of view. All EFI fault injectors are designed to support data-type-aware 

fault injection; the exact set of supported data types depends on the type of fault injector. 

The EFI breakpoint-based fault injector can inject faults into OS and user programs 

on commodity CPUs. It does so with the breakpoint-based fault injector module, which 

resides in the OS kernel. When the OS kernel is hosted by a hypervisor, the same fault 

injector module can be used, although the performance overhead of fault injection opera-

tion varies depending on how the used hardware- or software- breakpoint mechanism is 

virtualized. That implies that EFI would have different performance overheads on type-I 

and type-II hypervisors (e.g., hardware-assisted virtualization vs. binary translation). 

Breakpoint-based fault injection uses a hardware- or software-breakpoint mechanism 

in order to obtain the control of a target system when a fault injection target is being ac-

cessed. Users can configure the fault injector module by using shell commands or file I/O 

operations (e.g., proc file system interface
16

 in Linux). The configuration command in-

cludes the target process identifier, breakpoint address, injection target type, injection 

target address, and error bitmask. The breakpoint-based fault injector module in an injec-

tor node (see Figure 4.2) sets a breakpoint on a specific virtual address. If the breakpoint 

                                                           
15

 We use the Jython programming language for plugins in our current implementation. Jython has a sim-

ple syntax (similar to the wide used Python script) and its programs are dynamically linkable to the EFI 

controller software written in Java. Thus, the plugin programming interface call is implemented as a proce-

dure call from the Jython plugin script to the externally exposed Java methods of the controller software. 

The Jython and Python projects are at http://jython.org and http://python.org, respectively. 
16

 Proc file system (procfs) is a special-purpose file system in UNIX-variant OSes that dynamically pro-

vides information about resources managed by the OS (e.g., hardware, kernel, and user process resources). 

Each procfs is organized as a conventional hierarchical file system structure, and is typically mapped under 

the /proc directory of the root file system. 

http://jython.org/
http://python.org/
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is triggered, the breakpoint handler emulates a soft error in a target system state. Injec-

tions into the following data types are supported for both kernel- and user-level software. 

(i) Processor register. The breakpoint-based fault injector can inject faults into gen-

eral-purpose control and data registers as well as special-purpose registers in processors. 

A breakpoint is set on an instruction in the code memory of the virtual address space of a 

target process (or any process if the target is the OS kernel for example because the Linux 

kernel resides in the 4
th

 gigabyte of virtual address space and the kernel space is shared 

by all processes in the system). We use either a hardware breakpoint feature of a proces-

sor or a software-breakpoint mechanism. Software breakpoint is implemented through 

dynamic rewriting of the OS kernel code for kernel-level injection, or through use of 

ptrace
17

 system calls for user-level injection. The fault injector module uses the context 

of a target OS kernel or user process. The context is saved at the entry of every interrupt 

handling event. Such context information (e.g., general-purpose register values) is stored 

in the kernel stack or the process control block (PCB) of a preempted process, depending 

on the OS implementation. The breakpoint handler of the fault injector module emulates 

an error by modifying the target register value saved in the stack or the PCB. The cor-

rupted context is restored to the processor hardware register just before returning from 

the breakpoint handler to the preempted target process. Thus, when the process resumes, 

the corrupted register value is visible to and can be used by the preempted target process. 

If the fault injection target is one of certain special-purpose registers (e.g., an MMX reg-

ister in x86), the target register value is directly modified by the breakpoint handler, be-

cause many special-purpose registers are neither saved at the entry of an interrupt handler 

nor modified inside an interrupt handler. 

(ii) Memory data. In memory, the supported injection targets are the code, static data, 

dynamic data, and stack memory segments. A hardware breakpoint is set on the virtual 

address of a target data and is triggered before the target address is accessed for read or 

write. The breakpoint handler changes the target memory value (e.g., by using a provided 

error bitmask) in order to emulate the effect of a fault. If the target is part of statically al-

located memory spaces, the symbol information of the binary of a target program or the 

image of an OS kernel is used to identify the actual type of data or instruction stored in 

the target virtual address. 
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 ptrace (Process Trace) is a system call that allows the caller process not only to control and monitor the 

execution of another process but also to inspect and manipulate the internal state of another process. This is 

common in most UNIX-variant OSes that includes Linux because this provides the key mechanism for 

software debuggers. 
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4.4. Measurement Method 
 

When the data-type-aware FI is being realized, the main technical difficulty comes from 

FI targets that are in dynamically allocated resources. We present a data-type-aware fault 

injection technique for dynamic memory data. This technique consists of: (i) the object 

tracker module (see Figure 4.2) that tracks dynamic memory objects and translates a 

symbolic identifier (that specifies the type of a memory object) to a virtual address, and 

(ii) the profiler module that monitors the dynamic memory regions (e.g., size and 

read/write ratio). 

 

4.4.1. Object Tracker 

The object tracker in each injector node is used to select a fault injection target in dynam-

ic memory space. The object tracker tracks various types of dynamic memory objects. 

The tracked information stored in the object location table and the OS kernel memory is 

used to translate the symbolic identifier of a fault injection target to the corresponding 

virtual address (see Figure 4.2). Symbolic identifier specifies the data type of an injection 

target and the index of an instance of data of the targeted type. Note that when the object 

tracker is used, the control server sends a symbolic identifier instead of a virtual address 

to specify a fault injection target. 

The object tracker has three different tracking granularities: 

(i) Page granularity. The object tracker tracks all physical pages belonging to each 

memory region. The following extension is made to calculate the virtual address of a spe-

cific page in a memory region. We extend the metadata of a physical page frame with 

 
Figure 4.3. Selection process of fault injection target using object tracker. 
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two fields: type of memory region and a node for a linked list (i.e., maintained for all page 

frames in each memory region). In page-granularity tracking, the symbolic identifier con-

sists of the region name and the index of a page in the region (i.e., allocation order). 

Through searching of the linked list of a target region, the page frame structure is ob-

tained, and the virtual address of the page is computed. For regions directly belonging to 

a specific memory allocator, the list is maintained by the allocation and free functions of 

the memory allocator. For the rest of the pages whose region type changes over time, we 

instrument the functions that can change the region type. Table 4.1 summarizes the in-

strumentation points.
18

 

                                                           
18

UNIX-variant OSes use similar dynamic memory management techniques. Linux kernel has four types 

of dynamic memory allocators (see Figure 4.4) [BC00][Vah96]: (i) Buddy allocator. The buddy allocator is 

the top-level allocator for physical memory. It (de)allocates a contiguous physical memory space that has a 

multiple of a page frame (e.g., 4 kB). The other allocators rely on this allocator to obtain page frames and 

return the obtained frames. The buddy allocator is used for cache regions. The page cache region contains 

pages originating from files. The buffer cache region keeps pages that are being transmitted from/to a stor-

age device. The function of the swap cache region is to hold pages read from swap areas where swap area is 

to keep pages evicted from the memory due to a memory overflow. This allocator is also directly used for 

the page table region when allocating pages for page table entries. (ii) Slab allocator. The slab allocator 

reduces the overhead of the buddy system when small-size objects are frequently allocated and freed. It has 

a set of slab caches where a cache keeps a set of slab objects that have the same size. For example, a slab 

cache can store up to 128 32 bytes objects by using a 4 kB page frame. This solves the internal fragmenta-

tion problem of the buddy allocator. This allocator serves the kmalloc allocator and the slab region that 

contains the common kernel data structures. A part of the page table region also uses the slab allocator (e.g., 

page global/middle directory). (iii) Kmalloc. The kmalloc allocator is useful in managing variable-size 

Table 4.1. Instrumentations to track allocation/free in memory region. 

Region Event  Instrumentation Location 

Buffer 

Cache 

Grow  drivers/md/raid5.c: grow_buffers(…) 

Shrink  drivers/md/raid5.c: shrink_buffers(…) 

Page 

Cache 

Grow 
 mm/filemap.c: add_to_page_cache(…)  

 mm/page_alloc.c: page_alloc_cpu_notify(…) 

Shrink  mm/filemap.c: __remove_from_page_cache_nocheck(…) 

Swap 

Cache 

Grow  mm/swap_state.c: __add_to_swap_cache(…) 

Shrink  mm/swap_state.c: __delete_from_swap_cache_nocheck(…) 

Anon 
Grow 

 mm/rmap.c: __page_set_anon_rmap(…) 

 mm/rmap.c: page_add_file_rmap(…) 

Shrink  mm/rmap.c: page_remove_rmap(…) if PageAnon(page) 

Mapped 
Grow  mm/highmem.c: kmap_high(…) 

Shrink  mm/rmap.c: page_remove_rmap(…) if !PageAnon(page) 

Page 

Table 

Grow 
 arch/i386/mm/pgtable.c: pte_alloc_one_kernel(…) 

 arch/i386/mm/pgtable.c: pte_alloc_one(…) 

Shrink 
 include/asm-i386/pgalloc.h: pte_free_kernel(…) 

 include/asm-i386/pgalloc.h: pte_free(…) 
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(ii) Object granularity. The object tracker classifies the tracked dynamic memory ob-

jects by using the type of memory allocator and the call stack signature of a function that 

called the allocator function. For example, a memory object allocated for kernel modules 

can be specified by sys_init_module() as the first-level caller of the vmalloc() allocator. In 

our framework, up to 30 nested callers can be specified to point to an object type. In >95 

% of cases, the nest call depth from the system call entry is smaller than 30 according to 

our measurement experiment. This call stack signature is obtained through tracking of the 

function frame pointers. Specifically, in x86 ISA, the program counter (EIP) and frame 

pointer (EBP) registers are stored in the call stack when call instructions are executed. 

EBP points to the old EBP in the stack. Because the old EIP of the caller is stored in the 4 

bytes above the old EBP, the virtual address of the caller function is obtained. Through 

searching of the symbol tables of the kernel and modules with the old EIP, the symbol 

name of the caller is obtained. That search is repeated up to 30 times until the bottom of 

the stack is reached. 

All allocation and free functions are instrumented. The instrumentation routines 

(which are a set of pairs of allocator and free functions) are enabled to extract the caller 

                                                                                                                                                                             
memory objects. Its interface is similar to malloc() and free().  Internally, it uses the slab allocator and cre-

ates a set of slab caches where the object sizes of the caches are geometrically distributed from 32 bytes to 

128 kB. If an object is requested, it forwards the request to a slab cache that best fits into the requested ob-

ject size. (iv) Vmalloc. The vmalloc allocator can allocate variable-size memory objects that are contiguous-

ly allocated in the virtual address space but not always in the physical address space. It gets page frames 

directly from the buddy allocator and maps the page frames into a contiguous virtual address region. It 

serves as the vmalloc region, containing buffers to copy code pages from files to kernel modules and I/O 

buffers for some device drivers and file systems. In addition, two more memory regions are identified in the 

dynamic memory of Linux. The memory-mapped region contains pages mapped into the last 128 MB of 

virtual address space, into which the physical memory above 896 MB is dynamically mapped. The anony-

mous region contains pages for user-level data. 
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Figure 4.4. Dynamic memory allocators and regions in Linux OS. 
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signature and to find an object that belongs to the specified object type. When an instru-

mentation routine finds the specified object, the allocated virtual address is sent to the 

injector for fault injection. If the object is freed before the breakpoint (set by the injector) 

fires, the breakpoint is unset, and the control client (executing in the user space) is noti-

fied of the event. 

(iii) Variable granularity. Variable granularity tracking is realized by analyzing the 

source code of callers. The analysis extracts the data types of internal variables of a target 

memory object. The extracted information is used to match the internal variable type to 

the offset in a tracked memory object. For memory regions using the slab allocator, vari-

able-granularity tracking is easily implemented. The symbolic identifier is the name of a 

slab cache and an object index. All active slab objects in a specified slab cache are identi-

fied through scanning of the data structure of the slab cache in the OS kernel memory, 

and the index is used to select a specific object. The offset inside the object reveals the 

variable type because the object data type for a slab cache is fixed. The source code anal-

ysis (considering the memory alignment by the compiler) is used to match the offset with 

the variable type. 

 

4.4.2. Profiler 

We developed three memory profiling techniques to support the data-type-aware fault 

injection and the accurate measurements of error sensitivity and the sizes of memory re-

gions: 

(i) Memory allocation/free behavior. The profiler stores the number of all memory al-

location and free events for all monitored caller signatures. A static memory area is used 

to store these event counts. Each entry in the static memory stores the caller signature, a 

parameter of the innermost call, and the total call count. In addition, the profiler keeps a 

set of variables to track the sizes of allocated memory regions. Upon a request from the 

user (e.g., upon an application completion), the valid entries are stored in a log file. A 

kernel thread is used to periodically (e.g., every second) store the profiled information to 

a log file while a benchmark program is being executed. That logging allows us to cap-

ture the variances of profiled information over time. 

(ii) Activation and read/write ratios. To measure the activation and read/write ratios 

of a target state, we capture all read and write operations performed on the target state. 

We use a breakpoint that is fired by either a read or write operation. When the breakpoint 

fires, the instruction byte code (up to 8 bytes in x86 ISA) pointed to by the current pro-

gram counter is sent to the monitor server (or to the control server if the monitor server is 
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unused). The monitor server disassembles the instruction byte code and analyzes the op-

erands to determine the type of memory operation (e.g., read or write). 

(iii) Searching pages from the entire physical memory. We have implemented a ker-

nel feature that scans the entire physical memory and finds all memory pages for which 

the entire page is filled by the same value. Both the kernel image memory (that loads the 

image of a Linux ELF file) and the address spaces maintained by the kclist linked list are 

scanned in Linux. The scanned areas are the same as the areas scanned by the kernel core 

dump module (/proc/kcore file in Linux). Our method reduces the interference on the 

memory usage pattern because our method does not copy the scanned memory to another 

memory location or a file. 

 

4.5. Experiment: Sensitivity 
 

We selected the Linux system and evaluated the FS and ES of three different versions of 

that system running on the same processor (i.e., Pentium 4). The used kernel versions 

were v2.4.22 (released at August 2003), v2.6.5 (April 2004), and v2.6.16 (May 2006). All 

faults were injected into the kernel code memory.  

Observation 4.1. In all three selected version of a specific type of commodity com-

puter system, large percentages of the transient hardware faults that propagated to the 

architectural states (e.g., ~62.6–72.8% for code memory) were benign from the point of 

view of software reliability (see Table 4.2). 

Our analysis concluded that the fault masking effect was mainly due to the following 

causes: 

 Unactivated faults. A large portion of memory data is not used by programs. For 

example, the execution of an instruction in code memory is determined by the 

program control flows. Some program functions and basic blocks are rarely or 

never called under specific program input data. That is especially true in the OS 

kernel because its control flows depend heavily on the occurrence order and time 

of asynchronous events, and the I/O data content (e.g., file system metadata). 

Similarly, strong temporal and spatial localities in the access patterns of data 

memory disprove the existence of less-frequently accessed memory data. 

 Overwritten. If the first access to the corrupted data in the register or memory is a 

write operation, this error is removed from the system before it can propagate to 

any other state. That is common in data memory. It is still possible in code 
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memory, for example, it can result from the use of dynamic binary rewriting and 

self-modifying code. 

 No impact on program execution behavior. If none of the uses of some corrupted 

data change the program behavior, this error is not manifested. For example, the 

result of the (x > y) condition does not change if x is corrupted from a value larger 

than y to another value that is still larger than y. 

 No data flow to externally-visible data. When a program execution behavior is 

changed and an incorrect state is created, it causes a user-visible failure only 

when the corrupted state propagates to program output data or shows up as an ex-

ternally visible symptom (e.g., a crash due to an access to an invalid memory ad-

dress). 

We then analyze the ES of the same three systems. 

Observation 4.2. All three systems have relatively similar error sensitivities when the 

same type of transient hardware faults is injected. 58–67% of the activated faults caused 

failures in the code memory. 

As the kernel evolved, the FS lowered, mainly because of the lower fault activation 

ratio (see Table 4.2). The reduction in the fault activation ratio was mainly a result of the 

increase in kernel code size (e.g., diverse kernel features and a rich set of device drivers). 

On the other hand, as the kernel evolved, the ES rose, mainly because of the addition of 

built-in error detection codes (e.g., assertion) in the kernel, which meant that a much 

larger portion of injected faults were caught. 

Observation 4.3. As the OS kernel evolves, the fault sensitivity to code memory faults 

goes down because of the increase in kernel code size; the error sensitivity to code 

memory faults goes up because of the continuous addition of built-in error detectors; and 

the hang failure ratio goes up because of the use of symmetric multiprocessing (SMP) 

kernels and many more processor cores. 

Table 4.2. Fault sensitivity vs. Linux kernel version. 

Fault  

Location 

Not  

Activated 

Not  

Manifested 

User  

Failure 

OS  

Failure 
Target System OS ES 

Code  

Memory 

45% 17.6% 0.6% 36.9% Linux 2.4 68.1% 

54% 15.2% 0% 30.8% Linux 2.6 67.0% 

64.7% 8.1% 0.1% 27.1% Linux 2.6 77.1% 
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4.5.2. Control vs. Non-Control Data 

We characterize faults in a Linux-based system on an x86 machine as a function of the 

corrupted data type. Evaluation of ES in various types of data naturally shows the 

strength of baseline error detectors in the hardware and software of modern computer 

systems. A large portion of errors in OS kernel programs on CPU-based systems were 

detected by basic error detectors. 

A non-benign error is likely to be detected if an induced error propagates to control 

data. Control data include: (a) data that represent a call-flow state of a program (e.g., a 

program counter, return address, frame pointer, or stack pointer), (b) data used to make a 

control-flow decision (e.g., a branch condition), and (c) data used to express a memory 

access address (e.g., an address operand of a memory load, store, or indirect jump in-

struction). Because the integrity of those control data are likely to be checked by the 

baseline error detectors, if an error propagates to control data, it is likely to be detected 

before it causes a system failure. For example, if the address operand of a memory store 

instruction is modified to an address of an invalid page, that is detected (e.g., as a seg-

mentation fault exception) in CPUs. If the condition of a conditional branch is flipped, 

that is also likely to be detected because it greatly changes the program execution behav-

iors (e.g., executing instructions and data that are irrelevant to each other). 

There is a strong correlation between the FS and the fault activation ratio. For exam-

ple, control registers have a higher sensitivity than data registers do. The reason is that 

the control registers (e.g., the program counter and stack pointer) are likely to contain live 

data, while data registers contain both live and dead variable values. Similarly, the large 

difference in the fault sensitivities of code and static data memories comes from the dif-

ference in their fault activation ratios (see Table 4.3). Factors that lead to a low activation 

ratio in data memory include weak locality (e.g., static data) and large memory size (e.g., 

dynamic data memory; see Figure 4.6). 

Table 4.3. Control data vs. Non-control data. 

Fault  

Location 
Data Type 

Not  

Activated 

Not  

Manifested 

User  

Failure 

OS  

Failure 

Fault  

Sensitivity 

Error 

Sensitivity 

Memory 
Code 64.7% 8.1% 0.1% 27.1% 27.2% 77.1% 

Data 95.3% 1.6% 0.4% 2.7% 3.1% 66.0% 

Register 
Control N/A 22.8% 6.1% 71.1% 77.2% 77% 

Data N/A 79.9% 2.0% 18.1% 20.1% 20.1% 
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Observation 4.4. A large portion of failures are detectable by the baseline error de-

tectors in the OS and CPU. In OS kernels, 87.9–99.1% and 90–100% of failures caused 

by memory and processor faults, respectively, are detected. 

Our analysis shows that the basic error detectors are strong and efficient in detecting 

many non-benign errors in OS kernel states. The reason is that those baseline error detec-

tors have been carefully designed and optimized over the last several decades. Most mod-

ern processors have a set of access control rules that raise an exception if these rules are 

violated. For example, the MMU and TLB together monitor the access permissions for all 

memory accesses (i.e., read, write, and execution). User-mode programs are prohibited 

from executing privileged instructions. Moreover, a large portion of OS kernel code is 

devoted to detecting and tolerating hardware-induced errors. Assertion-based error check-

ing is common; it checks not only the input parameters but also the software and hard-

ware states when a system call or a function call event occurs. 

 

4.5.3. Static vs. Dynamic Memory 

Fault injection is used to characterize fault/error sensitivity of dynamic memory. Over 

52,000 faults (single-bit errors) were injected into a dynamic memory region (slab region) 

on a Linux-based system. The target was monitored for 1 minute after each fault injection.  

For kernel dynamic memory, faults were injected into the slab objects with the most fre-

quently used data types. The exact count of examined data types was chosen so as to cov-

er at least 80% of the memory space of a region. A small number of data types or caller 

signatures (e.g., <10) typically form >80% of the used memory spaces (see Table 4.4). 

The reason is that the kernel has a fixed number of data types that are specified by hu-

mans (with limited memory). We select the 8 most frequently used data types, which 

cover >80% of the slab region space. 

(i) Fault sensitivity. Figure 4.5 shows the fault sensitivity of the most frequently used 

dynamic memory objects. The y-axis in Figure 4.5 is truncated at 30% because the re-

maining 70% corresponds to unactivated faults. The failure type overwritten means acti-

vated faults for which the first access was a memory-write; not manifested refers to an 

activated benign fault for which the first access was a memory-read; and disk corruption 

refers to file system corruption. 

Observation 4.5. The fault sensitivity of dynamic memory is much higher than that of 

static memory (e.g., 5.83% vs. 0.32%) mainly because of the higher fault activation ratio 

of dynamic memory (e.g., ~16.7 times higher). 
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For comparison purposes, we compute the fault sensitivity of the static memory based 

on our earlier work on error characterization of a Linux kernel [GKI04]. In that study, we 

measured a fault activation ratio of 0.5% when we inserted faults into the kernel data 

segment. For faults in dynamic memory, analyzed in this chapter, we observed a much 

higher fault activation ratio of 16.7% on average. The reason is that dynamic memory 

pages are managed by a locality-aware (e.g., LRU-variant) cache replacement algorithm, 

while static memory is placed in a fixed memory location regardless of its access fre-

quency. That high fault activation ratio leads to fault sensitivity of dynamic memory that 

is 18 times higher than that of static memory (5.83% vs. 0.32%). 

(ii) Error sensitivity. In dynamic memory, 34.8% of activated faults manifest, while 

in static memory, 65.9% of activated faults manifest (based on [GKI04]). Furthermore, in 

dynamic memory, 44.7% of not manifested faults have a memory-write operation as their 

first access. After excluding those overwritten faults, we find that 49.2% (= 5.8%/11.8%) 

of faults activated by read operations caused failures. That is lower than the ratio meas-

ured in static memory (65.9%), where the read/write ratio of not manifested faults in stat-

ic memory has not been reported [GKI04]. 

Observation 4.6. The error sensitivities of static and dynamic memories are more 

similar (e.g., 49.2% vs. <65.9%) than their fault sensitivities are. 

The relatively large variation in the error sensitivities of different dynamic memory 

objects makes it difficult to directly compare the average error sensitivities of dynamic 

memory and static memory. Specifically, we injected 800 faults into the inode structure 

one by one. There was a clear difference in the error sensitivities depending on the data 

 

Figure 4.5. Fault sensitivity of static vs. dynamic memory space. 
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types of the variables. For example, pointer variables for linked lists or associated objects 

(e.g., the next, a_ops, and backing_dev_info fields) had error sensitivities higher than 

50%. Furthermore, lock variables (e.g., the break_lock field of the rwlock_t data type in 

the inode structure) had similarly high error sensitivities. The fact that error sensitivities 

of such control data are not close to 100% indicates that not only the data type but also 

how the data are used are important factors in determining the error sensitivities. The rea-

son is that not all corrupted (and activated) pointers cause failures, and the break_lock is 

highly error sensitive despite being an integer variable. File system metadata (e.g., buff-

er_head) can cause serious failure if corrupted. For example, a single-bit error in a buff-

er_head object can change the file system to a read-only mode and corrupt the file system, 

which potentially can be recovered via fsck at the next boot-up of the system. 

 

4.5.4. Modeling 

We model the error sensitivity (i.e., the probability that an error is benign Pbenign(flo)) as a 

function of the fault location.  

We observe that measuring fault sensitivity is simpler than measuring error sensitivity. 

Below we derive an analytical expression (see (4.3)) that gives error sensitivity (ES) as a 

function of: (a) fault sensitivity (FS), (b) probability of fault activation (Pa), and (c) the 

ratio of read access count to read/write access count (Pr). Equation (4.3) also captures a 

scenario in which a fault is activated but does not manifest in the first read access, and it 

can be reactivated and manifest in the subsequent read accesses. 

Table 4.4. Most frequently used slab caches. 

Slab Cache Name 
Data Type Slab Cache Size 

Data Type Name Data Size Avg. Stddev. Percent 

buffer_head struct buffer_head 52B 3.39 MB 3.20 33.7% 

ext3_inode_cache struct ext3_inode_info 544B 1.50 MB 0.27 14.9% 

dentry_cache struct dentry 136B 1.23 MB 0.53 12.2% 

radix_tree_node struct radix_tree_node 276B 0.97 MB 0.39 9.7% 

journal_head struct journal_head 52B 0.34 MB 0.94 3.4% 

inode_cache struct inode 380B 0.32 MB 0.06 3.1% 

filp struct file 192B 0.20 MB 0.02 1.9% 

vm_area_struct struct vm_area_struct 88B 0.18 MB 0.11 1.9% 

SUM - - 8.35 MB - 80.8% 
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                        (4.3) 

To explore the possibility of statically deriving Pa and Pr, we analyzed the variations 

of the Pa and Pr of different object types in dynamic memory over time. 

(i) Variations of Pa. We found a relatively large variance in the activation ratio be-

tween different object instances of the same data type. For example, the standard devia-

tions of the activation ratios of the radix_tree_node and inode slab objects in Linux OS 

were 11.6% and 7.3%, respectively. The activation ratio of radix_tree_node objects var-

ied from 49% to 17% over time. 

(ii) Variations of Pr. The read ratio also had a large variation between object types. 

The objects belonging to the radix_tree_node data type had a high read ratio (Pr = 93.6%) 

and thus a high fault sensitivity (FS = 12.39%). Using those two parameters with the ac-

tivation ratio (Pa = 19.6%), we can calculate the error sensitivity of radix_tree_node as 

62.4%. The read ratio also had a large variation over time. 

Observation 4.7. Different variables in the same type of memory object have a large 

variation in fault sensitivity, mainly because of large variations in the fault activation ra-

tio and the probability of the first access is being read. 

Those two findings indicate that one must be cautious when estimating error sensitivi-

ty using statically derived parameters of Pa and Pr. For example, using simple averages 

may not be the best approach, and hence, experimental evaluation as discussed here re-

mains a trustworthy alternative way to derive such parameters. 

 

4.6. Experiment: Recoverability 
 

We profile the dynamic memory space and present a recoverability-driven memory pro-

tection technique. 

 

4.6.1. Software Recoverable Memory Area 

Our measurements indicate that it is possible to recover from a large percentage of 

memory errors (70% and 10-60% of static and dynamic memory, respectively) through 

simple software techniques, e.g., reloading of data from permanent storage. Thus, we 

suggest the recoverability-driven protection principle that selectively protects system 

state that is not recoverable by software. 
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(i) Static memory. Table 4.5 gives the sizes of all static kernel segments. Here, text re-

fers to kernel code other than the codes of kernel modules; rodata stands for initialized 

read-only data (e.g., strings, bitmaps, and the system call table); data denotes read-

writable data memory (e.g., symbol tables or initialized global data); and bss corresponds 

to zero-initialized data. The total size of the static kernel segments is close to 3 MB. The 

size depends on neither the hardware configuration nor the workloads, and it is deter-

mined by the compile-time kernel configuration (e.g., the kernel version, features, and 

statically linked modules). 

The text and rodata segments are recoverable if the replicas are stored on a disk. 

Those two segments form 70.3% of static kernel segments. When an uncorrectable error 

is detected by MMU, the system is not shut down; instead, the location of the fault can be 

analyzed. If the fault is in one of those two segments, the relevant parts of the boot kernel 

image can be reloaded (e.g., from a disk) to remove the error. Note that computation er-

rors cannot propagate to those segments if writes are prohibited by MMU-based memory 

protection. 

(ii) Dynamic memory. Figure 4.6 shows the sizes of the dynamic memory regions in a 

log-scale. The dynamic memory size varies greatly depending on the executed workload 

phases. On average, the total size of the dynamic memory (e.g., 248MB) is about two or-

ders of magnitude larger than that of the static memory. In high-end systems, the size of 

the dynamic memory space is close to the physical memory size because it runs multiple 

threads, and the size of the physical memory is optimized for the target workloads, ex-

pected performance, and memory cost. On average, the page cache, buffer cache, anony-

mous user, slab cache, and memory-mapped regions constitute 55.7%, 23.5%, 6.8%, 

5.5%, and 5.1%, respectively, of the entire dynamic memory space. The swap cache, 

vmalloc, kmalloc, and page table regions occupy small memory portions (<1.2% each). 

Among dynamic memory regions, we identified three sub-regions where faults can be 

recovered via simple software techniques. These regions keep data that are replicated on 

a storage device, or data initialized at allocation time but not modified during the compu-

tation. 

(a) Re-computable data. It is possible to recover from an error in a page in which all 

words contain the same value by rewriting the known value. Figure 4.7 shows the portion 

of physical memory space containing memory pages filled with the same value. In our 

Table 4.5. Volume of static kernel segments (Unit: KB). 

Segment text rodata data bss Total 

Size 1.824 0.264 0.476 0.362 2.970 
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experiments, measurement samples were taken every three minutes during execution of 

LTP. The re-computable pages formed 10–60% of the physical memory space.
19

 On av-

erage, 38% of memory space contained pages with a zero value written in every location 

over the period of 5,000s. Pages filled by other values constituted less than 1% of used 

memory. The dominant value patterns changed as the program executed (e.g., 

30303030(16) in Figure 4.7). 

Interestingly, we found that not all zero-filled pages were unused memory; most of 

them were allocated and initialized by the application. Evidence of that can be found in 

close analysis of the data presented in Figure 4.6 and 4.7. Specifically, Figure 4.6 shows a 

memory overflow that occurred around 17-20 minutes into the measurement period. For 

the same time interval, Figure 4.7 indicates an increase in the number of zero-filled pages, 

meaning the application was allocating memory. As the memory was freed (see the time 

interval at 20–24 minutes in Figure 4.6), the number of zero-filled pages decreased (see 

Figure 4.7). A second piece of evidence comes from the profiler, which indicated that 

only 10.9MB of zero-filled memory pages were allocated using three Linux API func-

tions that can allocate a zero-filled page, e.g., get_zeroed_pages(). This implies that the 

vast majority of zero-filled pages were initialized by the user programs that allocated the 

memory. 

Analysis of a common program behavior explains the presence of zero-filled pages. 

An application program typically initializes its data structure when it is launched or starts 

to process a new event (e.g., a user request). The initialization includes writing of a de-

fault value to the memory, which can be done by a loader or user-level library if the ini-

                                                           
19

In some OS (e.g., AIX), identical value pages are less likely because allocation of such pages is recog-

nized and properly handled by the OS kernel. 

 
Figure 4.6. Dynamic memory space broken down by memory region type. 
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tialized data is part of a bss section (i.e., zero-initialized). However, the application does 

not use the entire space of the initialized pages. The unused pages are freed when the 

program finishes. Furthermore, in a page that is modified during the lifetime of a program, 

it can be a long time until the first modification. As a consequence, zero-filled pages can 

stay in memory for a long time. 

In on-chip caches, a finding similar to ours (i.e., a large portion of zero-filled pages 

were found in memory) has been reported, and has been used as the basis for design of a 

cost-efficient compressed cache, as zero-filled cache lines can be compressed in a space 

efficient way [YZG00]. 

(b) Data replicated by default. It is possible to recover from errors in a memory page 

loaded from a storage device by reloading the storage page, if it was not modified. Like 

static kernel text segments, text segments for kernel modules and user programs, except 

for self-modifying code, also belong to this category. Those code pages were part of the 

page cache and vmalloc regions that constituted 55.7% and 1.2%, respectively, of the to-

tal dynamic memory space. Also, data pages read from a file are recoverable by software. 

Those data pages were mostly in the buffer cache, where the size of the buffer constituted 

23.5% of the total dynamic memory in our experiment. 

(iii) User multimedia data. Most single errors in user multimedia data pages are au-

tomatically removed as the computation moves forward. For users, it is difficult to recog-

nize the degraded QoS even if 100 faults are uniformly injected into a data buffer sent to 

the graphics processor to compute an output image. Note that that fault rate (e.g., 100 

faults per video frame) is unrealistically high. Moreover, corruptions of a single frame are 

not always noticeable to human eyes (e.g., for a frame rate of 100fps). Such multimedia 

 
Figure 4.7. Physical pages with an identical value. 
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data are a part of an anonymous region (23.5% of the dynamic memory on the host) and 

constitute most of the graphics device memory space. 

 

4.6.2. Recovery Technique 

For code memory, upon an error, an extended OS can restore the kernel code from a stor-

age device. The program code is typically read-only and is loaded from the file system at 

boot-up. Thus, it is sufficient if the hardware protection detects an error and triggers this 

basic software recovery technique. 

Still many errors in both static and dynamic memory are masked (e.g., >85%) and do 

not harm the correctness of application software. If a hardware-implemented memory 

error detection technique (e.g., duplication) is used, it can trigger many unnecessary error 

recovery operations (e.g., checkpoint-rollback) for the benign errors, unless, for example 

the error sensitivity in application software is analyzed and reported to the hardware 

technique in a timely manner. Thus, application-guided fault tolerance techniques can 

optimize the performance overhead by strategically targeting non-benign errors. Applica-

tion-guided fault tolerance must be carefully designed because of the relatively large var-

iance in the fault activation ratio (a key parameter for error sensitive estimation), even 

between memory objects of the same data type. For example, the standard deviations of 

the activation ratios of the radix_tree_node and inode data structures are 11.6% and 7.3%, 

respectively. That means that even between memory objects of the same type, the error 

sensitivities can be largely different. 

Our study also indicated that it is possible to recover from a significant percentage of 

detected memory errors (70% of static memory and about 10–60% of dynamic memory) 

via simple software techniques. For example, a large proportion of memory pages allo-

cated by applications are filled with the same value (e.g., ‘0’). It is possible to recover 

from errors in such pages if the value is recorded in advance. Memory pages used for 

disk caches are replicated by default to stable storage. Furthermore, some of the user-

level state can be excluded as protection targets. For example, errors in multimedia data 

are short-lived and can be quickly removed by new-incoming data (e.g., the next video 

frame) without degrading the quality of service. That recoverability-driven memory pro-

tection can handle multi-bit errors in a cost-effective way. Consequently, we believe that 

the selection of targets for protection should be based on knowledge of recoverability 

rather than on error sensitivity alone. 
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4.7. Case Study 
 

The following case study is designed to evaluate the extensibility of the EFI controller. In 

this case study, the EFI controller is used to build a web-based fault injection framework. 

The development task has been done by a college graduate (i.e., the subject) who majored 

in a real science and had learned the Java programming language. 

In this case study, DNA sequencing is the application domain. DNA sequencing is a 

process of determining the order of nucleotide bases (adenine, cytosine, guanine, and 

thymine) in a DNA molecule. The subject had specific interest in performing fault injec-

tion experiments on the BLAST algorithm20 that is used as part of the DNA sequencing 

process and uses a nucleotide or protein sequence read by a DNA scanner21. However, the 

DNA scanner device is prone to providing corrupted scanned sequence data (e.g., inser-

tion, deletion, and substitution errors). Although advances in DNA scanner technology 

have been continuously reducing the error rate, state-of-the-art devices in 2011 have error 

rates (e.g., >0.1% of scanned bases are incorrect) higher than the fault rates of commodity 

computer hardware. 

One of the experimental goals of the subject is analyzing the correlations between the 

patterns in input sequence data errors and the accuracy of the BLAST similarity analysis 

results. Such analyzed correlations can help the scanner designers tune the device such 

that the device is not likely to cause errors sensitive to the accuracy of the BLAST analy-

sis results and unlikely to cause errors affecting that accuracy. 

Similar to other bioinformatics software, a public web service exists that provides a 

BLAST application and a set of integrated sequence databases. The fault injection on the 

BLAST input data is done by controlling a web browser. The control operations are: nav-

igating to the target web page, entering sequence input data that contains the generated 

data errors, and parsing the BLAST similarity analysis results. The subject uses the PPI 

operations of EFI to automatically perform these control operations where the PPI opera-

tions internally use Selenium
22

 (see Section 4.3 for details). The subject used the gang 

scheduler PPI operations of the EFI controller to concurrently run multiple fault injection 

                                                           
20

 BLAST (Basic Local Alignment Search Tool) finds locally similar regions between sequences.  This 

program compares a user provided nucleotide or protein sequence to the sequences in a database of the 

same type and calculates the degree of statistically similarity. An web-based BLAST service is available at 

http://blast.ncbi.nlm.nih.gov. 
21

 DNA scanner is a tool that can read the biophysical, energy, protein interaction, protein sequence, and 

other features from a DNA. 
22

 Selenium web application testing system, http://seleniumhq.org.  

http://blast.ncbi.nlm.nih.gov/
http://seleniumhq.org/
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experiments where the degree of concurrency is left as a user-controllable parameter. The 

subject also used the existing PPI operations to summarize the experiment results on da-

tabase component of the EFI controller. However, the subject had to custom implement 

an error generator component that gets the pattern information of the data errors (e.g., 

error type and error rate) and a list of original sequence data and generates a list of the 

corrupted DNA sequences. This component was implemented as a part of the EFI con-

troller because of the familiarity of the subject with the Java programming language. In 

practice, such an extension can be made by rewriting the plugin script, since the support-

ed Jython programming language of plugin can describe as complex an algorithm as Java. 

The subject has successfully prototyped the web-based fault injection framework. The 

only technical supports we made are explaining the EFI controller interface and occa-

sionally providing design feedback on the extensions that the subject was making. The 

subject has also successfully conducted a planned fault injection experiment. Including 

the development time of the web-based fault injection framework, the subject has spent 

less than two months on it, spending a majority of that time on other course work. We 

believe that this case study clearly demonstrates the extensibility of the EFI controller. 

 

4.8. Summary 
 

We have investigated the variations in the fault and error sensitivities between multiple 

computer systems. Our data show that there are significant similarities and differences 

between different types of computer systems, between different versions of the same type 

of computer systems, and between different types of data in the same computer system. 

That shows the importance of architecture and software designs in managing the fault 

and error sensitivities of computer systems. In particular, it shows that customized pro-

tection of different types of program data can better optimize the design trade-off be-

tween cost and fault tolerance coverage. However, we have observed that the error sensi-

tivity of different dynamic memory objects has relatively large variations over, for ex-

ample, the program execution time. That characteristic makes it difficult to statically se-

lect a set of memory objects for protection. As an alternative approach, we have present-

ed a strategy for recoverability-driven protection that uses the recoverability of memory 

objects, rather than error sensitivity alone, to select the protection targets. 
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Chapter 5.  

HAUBERK: Customized, Embedded Error 

Checking for Computational Accelerators 
 

 

High performance and relatively low cost of GPU-based platforms provide an attractive 

alternative for general-purpose high-performance computing (HPC). However, the 

emerging HPC applications have usually stricter output correctness requirements than 

typical GPU applications (i.e., 3D graphics). This chapter analyzes the error resiliency 

of GPGPU platforms using a fault injection tool we have developed for commodity GPU 

devices. On average, 16-33% of injected faults cause silent data corruption (SDC) errors 

in the HPC programs executing on GPU. This SDC ratio is significantly higher than that 

measured in CPU programs (<2.3%). 

This chapter then presents embedded error checking techniques for computational ac-

celerators (e.g., GPUs). The presented framework consists of a source-to-source transla-

tor and a set of user libraries. The translator strategically places customized error detec-

tion and recovery codes in the source code of a target program so as to minimize perfor-

mance impact and error propagation, and maximize recoverability. The presented tech-

nique is deployed in seven GPGPU benchmark programs and evaluated using a fault in-

jection. The results show a high average error detection coverage (~87%) with a small 

performance overhead (~15%). Moreover, we present an isolated execution and deferred 

checking model for fault tolerance in GPUs. The presented model realizes early detection 

and local recovery of errors and failures of GPUs. Thus, a tolerated error or failure of 

accelerator is seen as a performance jitter for the rest of parallel or distributed program 

threads on the same node and all other nodes but does not need any global error recovery 

operation. We use GPU device as an example accelerator by considering its wide adop-

tions in state-of-the-art supercomputers and certain types of clouds.
23

 

 

 

                                                           
23

This chapter was published: K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. K. Iyer, “Hauberk: 

Lightweight Silent Data Corruption Error Detector for GPGPU,” in Proceedings of the IEEE International 

Parallel and Distributed Processing Symposium, pp. 287-300, 2011. 
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5.1. Motivation 
 

Graphics processing units (GPUs) are surfacing as a compelling platform for processing 

general-purpose HPC programs. HPC programs typically process large volumes of data 

using many collaborating computation tasks (e.g., science simulation or medical data pro-

cessing). Modern GPUs are effective at processing such large volumes of data because of 

their uses of multiple cores, wide memory bandwidth, large-size register files and on-chip 

memory, and many arithmetic units. These rich hardware resources lessen structural haz-

ards, and the throughput-driven design of GPU core architecture addresses both data and 

control hazards (i.e., main hurdles at exploiting instruction-level parallelisms in CPU de-

signs). Furthermore, GPU hardware resources are directly exposed to the programmer by 

the programming model (e.g., CUDA, OpenCL, Brook+
24

). 

HPC programs have strong output correctness requirements. This is in contrast to 

graphics programs where errors in computing colors of a few pixels may go unnoticed. 

Many HPC programs have quantifiable correctness requirements for their outputs. For ex-

ample, in an HPC program computing a correlation function, more than 1% of value errors 

in any of the program output elements (e.g., a floating point number) compared with that 

of a golden run is treated as a silent data corruption (SDC) error. In this dissertation, an 

SDC is defined as an undetected data error in program output that violates correctness re-

quirement of the program. SDC errors are serious problem in many HPC programs be-

cause of their long execution times and resulting high likelihood of experiencing hardware 

faults. 

GPU devices targeting graphics applications usually do not need strong fault-tolerance 

techniques, e.g., these devices do not have any error correcting codes for memory protec-

tion [SLS06]. As a result, a relatively high hardware fault rate was observed in such de-

vices. For example, evaluation of commodity GPU devices found at least one permanent 

fault in 1.8% devices [SES+09] and transient memory fault in 66% of evaluated GPUs 

[HP10]. Note that these transient errors are due to soft errors and/or software bugs in GPU 

device drivers. Recent versions of GPUs for HPC applications support memory fault toler-

ance techniques (e.g., CRC in GDDR5 or SEC-DED ECC). This is an important step 

building dependable GPU platforms for HPC domain. 

Regardless of added memory error protection, HPC programs are still vulnerable to 

certain types of GPU hardware faults. For example, it is hard to detect faults in a GPU 

core (e.g., ALU, FPU, or register file) due to the irregularity and high operational speed of 

                                                           
24

 Brook+, http://sourceforge.net/projects/brookplus/ 

http://sourceforge.net/projects/brookplus/


 

 

85 

 

GPU core logic (i.e., constitutes a large portion of the silicon area in the GPU chip). Fur-

thermore, the high-density of transistors on the die increases the likelihood of multi-bit 

errors [BSS08], and the integration of cores and memories contributes to an increase in 

hardware fault rate especially for intermittent fault [Con03]. 

Designing a technique to tolerate faults in GPU cores is challenging especially for HPC 

GPU programs because of their strong performance and cost requirements. The success of 

HPC applications on GPU platforms depends on the achieved computation efficiency in 

terms of performance versus cost or performance versus energy consumption (i.e., includ-

ing the overhead for fault tolerance). From this perspective, the HPC GPU program opens 

a new design space different from traditional fault tolerance (e.g., for mission critical sys-

tems). Software-implemented error detection can provide lightweight cost-effective solu-

tion for this design space. 

In this context, software-implemented full duplication (i.e., well-known techniques) 

can be an effective approach to detect SDC errors in GPU platforms. However, duplica-

tion usually doubles the program execution time. A naïve full duplication simply executes 

the same GPU kernel twice and compares the results from the two executions. Note that a 

GPU program consists of CPU- and GPU-side codes, and a GPU kernel is a part of the 

GPU-side code with an entry function callable from the CPU-side code. Considering the 

fact GPU kernels form a majority of total program execution time, the doubled execution 

time of GPU kernels can easily break the performance requirement of HPC GPU programs. 

Optimizing naïve full duplication has achieved a limited success in GPU programs. 

Two optimization techniques have been studied by exploiting underutilized data- and 

thread-level parallelisms. The reported performance overhead is more than 84% [DMZ09]. 

This overhead is much higher as compared with similar techniques employed for CPU 

programs (e.g., [RCV+05] reports average overhead of 41%). This is because GPU pro-

grams are typically already heavily optimized and consume most of useable parallelism 

and computing resources in GPU. 

In this chapter, we present HAUBERK, a software framework to derive lightweight error 

detection and recovery customized for target GPU programs. The derived error detection 

and recovery codes are strategically placed and customized by considering the perfor-

mance and error propagation characteristics of the target programs. The main contribu-

tions of this chapter can be summarized as follows: 

 A mutation-based, software-implemented fault injector for evaluation of commodi-

ty GPU devices.  

 Characterization of the sensitivity of GPGPU applications to SDC errors. Our fault 

injection experiments show that single event upsets (SEU) (emulated by injection 
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of single-bit errors) can seriously harm reliability and data integrity of GPU ker-

nels. For example, 18-45% of data faults cause SDC errors in evaluated GPU pro-

grams. This SDC ratio is significantly higher than that measured in CPU OS pro-

grams (<2.3%). This shows the importance of detecting and tolerating errors in 

GPU programs. 

 Design and evaluation of two types of error detectors: (i) duplication and check-

sums to protect non-loop GPU kernel codes and (ii) accumulation-based value 

range checking to protect loop portions of GPU kernels. Our profiling results indi-

cate that loops form a majority of GPU kernel execution time (>98% in 5 out of 7 

benchmark programs). 

 Design of a guardian program which re-executes GPU program in order to tolerate 

errors and to identify false alarms. Our error detectors detect the errors and failures 

of GPUs before they propagate to the CPU-side state of the same thread or states of 

any other thread and locally tolerate the detected errors and failures without relying 

on any global error recovery technique. Such local fault tolerance capability is use-

ful to improve the scalability of parallel and distributed computer systems where a 

program runs multiple nodes and each node uses multiple GPUs. 

 Evaluation of the HAUBERK approach on seven HPC GPU programs. The evalua-

tion results show that the average performance overhead is 15.3% (83% reduction 

as compared with an optimized full duplication) and the average error detection 

coverage is 86.8% for injected faults. 

 

5.2. Measurement 
 

This section evaluates the error sensitivity of HPC and graphics programs executing on 

GPU and performance characteristics of the used HPC GPU programs. The parboil 

benchmark suite
25

 is used as the source of HPC programs (six are floating-point pro-

grams and one is an integer program). Two applications (e.g., ray-trace and ocean-flow 

simulation) from an NVIDIA CUDA SDK (Software Development Kit) are used as 3D 

graphics programs. 

 

                                                           
25

 The Parboil Benchmark, http://impact.crhc.illinois.edu  

http://impact.crhc.illinois.edu/
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5.2.1. Error Sensitivity 

We characterize the sensitivity of GPU programs to SDC errors. Our fault injection ex-

periments show that SEU that is emulated by injection of single-bit errors can seriously 

harm the reliability and data integrity of GPU kernels. 

Figure 5.1 shows the error sensitivity of HPC GPU programs, graphics GPU pro-

grams, and OS software on CPUs. The GPU program state is classified into three data 

types (e.g., pointer, integer, and FP data) based on the type of data where faults are in-

jected. We inject a single-bit error into each variable in benchmark program by using the 

fault injection tool described in Section 5.8. 

Observation 5.1. In GPU devices, an SEU (or single-bit error) in the pointer, integer, 

and FP data leads to an SDC error with 18%, 45%, and 39% average probability, re-

spectively. 

The fault injection results indicate that a large portion of injected faults lead to an 

SDC error in the HPC GPU programs. This shows the importance of detecting SDC er-

rors in GPGPU. 

In the HPC GPU programs, the SDC error ratio (18-45%) is higher than that observed 

in CPU-side system software (<2.3% according to [YKI09]). On the other hand, the fail-

ure (application crash/hang) ratio in the HPC GPU programs is lower than that in CPU-

side OS programs (see Figure 5.1). The observed differences have two causes. 

(a) The lack of fine-grained error protection in GPUs. Unlike to modern CPUs, GPUs 

do not have a page-granularity memory access permission checking that can detect many 

 
Figure 5.1. Comparison of error sensitivity of HPC GPU, graphics GPU, and CPU 

programs. 
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errors (e.g., corruption of a memory address). This is because of shared memory model, 

hardware cost, and lightweight runtime software platform in GPU devices.  

(b) The massive use of FP data in HPC programs. In the benchmark HPC programs, 

FP data occupy 3-6 orders of magnitudes larger memory space than the pointer and integer 

data taken together (see Figure 5.2). Moreover, corrupted FP values are seldom detected 

by basic hardware protection mechanisms (e.g., divide-by-zero in FP value does not lead 

to an exception but returns an infinite value). On the other hand, the compared CPU pro-

grams (e.g., OS) use no FP data. When faults are injected into HPC programs on CPUs 

[LR04], up to 11.1% of faults in memory (e.g., heap data except for faults in communica-

tion messages) cause SDC errors, and 22% of faults in FP registers cause the same. This 

ratio is still lower than the SDC ratios observed in HPC GPU programs (e.g., 18%, 45%, 

and 39% on average). Note that such difference can be partially originated from the differ-

ences in the used benchmark programs and their output correctness requirements. 

Observation 5.2. A fault in an FP variable rarely leads to a GPU program failure, 

while faults (e.g., 16-33%) in pointer or integer variables are likely to cause program 

failures. 

In our measurements, we did not observe a GPU kernel failure due to corrupted FP 

value in GPUs
26

. Pointer and integer data are highly fault sensitive. This is true not only 

in HPC and graphics GPU programs but also in CPU programs. This is because many 

pointer and integer variables are used as a control data (e.g., to decide program control 

flow or to compute memory address). Thus, if such variables are corrupted, it can make a 

                                                           
26

 While perhaps rare such scenario is still possible. For example, if there is a data-flow from an FP varia-

ble to an integer or a pointer variable (e.g., FP data is used to calculate memory address), a corrupted FP 

value can propagate to a control data and cause a failure. 

 
Figure 5.2. Data type vs. Memory size. 
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large drastic change in the program execution flow that is likely to be detected by basic 

hardware protections. 

We did not notice any SDC errors caused by a single-bit error in 3D graphics pro-

grams. In graphics program, SDC error is defined as a user-noticeable corruption in video 

output data. This is because graphics program has a high frame rate (e.g., 30fps
27

) and a 

transient fault typically makes a small change in just one frame. Figure 5.3(a) shows a 

video frame of an ocean flow simulation program that is corrupted by a single-bit fault in 

its input data stream. A spike in the image is due to the injected fault. 

Observation 5.3. 3D graphics programs can experience SDC errors when exposed to 

a longer duration fault in GPU. 

The impact of an intermittent fault having a long duration time can be significant even 

in 3D graphics programs. In the ocean-flow program, corruptions of 10,000 values form a 

prominent stripe pattern in the rendered frame image (see Figure 5.3(b)). These injected 

10,000 errors emulate an intermittent fault lasting 80μs on an FPU of a 250MHz GPU 

with 1 instruction per cycle and 50% of execution instructions using the FPU. Note that 

the injected errors can also reflect impact of an intermit tent fault in a memory module or 

                                                           
27

 Frame per second 

 
(a) Transient Fault (1 Value Error) 

 
(b) Intermittent Fault (10,000 Value Errors) 

Figure 5.3. Impact of faults in a 3D graphics program on GPU. 
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bus. Adding detection for SDC errors in 3D graphics programs would allow users to elim-

inate the corrupted frames and obtain better QoS. 

Similar to the long latency failures, SDC errors are not only difficult to detect but also 

difficult to recover. In order to better explain the problem of SDC errors in large-scale sci-

entific programs, we visualize the impact of SDCs on a large-scale parallel program. 

We selected an n-body program (NAMD
28

) as the target program. This program has a 

large amount of randomness in terms of simulated particle positions for example. We ran 

the same program twice using the same parameters. Then we ran the same program twice 

                                                           
28

 NAMD is a scalable molecular dynamics program designed for parallel simulation of large bio-

molecular systems. The NAMD project is accessible at http://www.ks.uiuc.edu/Research/namd/. 

 
Figure 5.4.  Visualization of the impact of SDCs on an n-body program. 

* The intermediate simulation results of an N-body program at the same simulation time where two 

molecules at the top are fault-free executions and the two molecules at the bottom are faulty execu-

tions. 

 

http://www.ks.uiuc.edu/Research/namd/
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again and injected a large number of faults whenever a specific type of FP operation was 

performed by a selected thread. Figure 5.4 shows snapshots of these four executions. The 

top two executions are fault-free, and the bottom two are faulty. These figures are ob-

tained using the 3D visualization tool VMD
29

. 

Even for a domain expert, it was difficult to distinguish the difference between the 

fault-free and faulty executions if only such visual output data were given (i.e., not values 

that measure the internal quantities of simulated models). This is due to the non-

deterministic nature of this parallel program and the visualization program. This demon-

strates the difficulty and importance of detecting SDC errors using systematic techniques 

that check the internal states of a program and its underlying hardware. 

The SDC error of an application means the corruption of its output. An SDC error of 

an OS kernel means there is corruption of data returned to a user process (e.g., system 

call output) that leads to a user process failure or to the corruption of the user process 

output data (i.e., application SDC error). SDC errors occur if corrupted system states are 

left unchecked by the baseline error detectors or if all the errors evade the checked detec-

tors while the corrupted states propagate to the output of software. 

This implies that an SDC error generally occurs when the induced errors propagate to 

pure program data as opposed to control data. Note that such pure data are not checked 

by the baseline error detectors. For example, if an error occurs in the data operand of a 

memory store, this modifies a value stored in the memory and causes an SDC error if the 

corrupted value is a part of program output. FP-type variables are typically used as pure 

program data in HPC programs. Due to the low error sensitivity of FP data, errors in such 

states are likely to lead to SDC errors. Not all corruptions in pure program data lead to 

SDC failures, since the definition of an SDC failure is typically application dependent. 

For example, some applications tolerate many errors in their output data (e.g., multime-

dia programs). FP programs always allow a certain degree of output value error due to 

the precision and accuracy problems of FPUs. If the corruption made by an error is with-

in this allowed range, this error in the pure data does not lead to an SDC error. 

 

5.2.2. Performance 

This section characterizes the execution times of loop and non-loop portions of GPU ker-

nels (see Figure 5.5). This data is obtained by measuring the execution time of GPU kernel 

with and without loops. 

                                                           
29

 VMD stands for visual molecular dynamics and is a molecular visualization program that displays, an-

imates, and analyzes large bio-molecular systems by using 3D graphics and built-in scripting engines. The 

VMD project is accessible at http://www.ks.uiuc.edu/Research/vmd/.  

http://www.ks.uiuc.edu/Research/vmd/
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Observation 5.4: Loops (for, while, and do-while) form a large portion (>98% in 5 

out of 7 programs and 87% on average) of the total execution time spent on GPU. 

Note that many GPU kernels are implementation of loops in original CPU codes. The-

se loops executing on GPU typically have many iterations (e.g., proportional to the input 

data size) and consequently form relatively larger portions of total execution time. In con-

trast, non-loop codes are executing in parallel by exploiting thread-level parallelism. 

The profiling data suggests that a special care is required when placing error detec-

tors inside loop body. A small increase in the execution time of a loop can largely increase 

the total execution time (in accordance with Amdahl’s law). For example, adding just 5 

instructions inside a loop body can degrade the performance of a GPU-side code by 22% 

if the loop has 20 instructions and the loop forms 90% of the total GPU kernel execution 

time. For GPU programmers, loops are one of the main optimization targets and thus often 

have a small number of instructions. 

 

5.3. Related Work 
 

This section classifies and analyzes existing error detection techniques potentially appli-

cable in the context of this study (see Figure 5.6). The design goal is to find a high cover-

age detector without compromising performance. 

(i) Naïve full duplication. This basic technique has high SDC error detection ratio 

(close to 100%) but almost doubles the execution time. Duplication uses either temporal 

or spatial redundancy. Spatial redundancy is achieved by duplicating GPU hardware. The 

technique can quickly detect errors; however, synchronizing original hardware and its 

replica brings ~50% of extra performance overhead together with doubled hardware cost 

[SLS07]. Software technique can easily create temporal redundancy (e.g., by instrument-

ing the source code of a target program). R-Naïve [DMZ09] executes same GPU kernel 

 
Figure 5.5. Percent of execution time on loops in HPC GPU programs. 
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twice by using two different copies of memory data. R-Naïve has a good SDC error de-

tection ratio (~100%) but it also almost doubles the GPU execution time and CPU 

memory space used to keep input and output data (see software-implemented full dupli-

cation in Figure 5.6). We found that real GPU failure examples (e.g., long execution time 

error) where these existing full duplication approaches cannot detect and tolerate (Section 

5.10). 

(ii) Optimized full duplication. This approach utilizes idle hardware resources for pro-

cessing extra computation brought by the duplication. SWIFT [RCV+05] extends and 

applies an instruction duplication technique (EDDI [OSM02]) to a VLIW-type CPU pro-

cessor by duplicating backward computation slices for address and data values of all 

memory write operations. These duplicated instructions are reordered by compiler (or 

hardware scheduler) before execution to exploit the instruction-level parallelism in VLIW 

(or superscalar) processors. On an Itanium CPU, SWIFT shows ~100% data error detec-

tion ratio with ~41% performance overhead, on average (see optimized full duplication 

Figure 5.6). 

The study reported in [DMZ09] employs optimized full duplication and shows that 

the approach is not highly effective for GPU programs in the way it is for CPU programs 

(e.g., SWIFT). After optimizations by exploiting data- or thread-level parallelism in GPU, 

>84% of performance overhead is shown in widely-used GPU programs. This is because 

GPU programs are heavily optimized such that original program already uses most of the 

usable hardware resources in GPU, while the duplicated computation seeks same types of 

hardware resources or parallelism as the original one. 

Error
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Performanace
Overhead

100%

100%0%

For one type of applications
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Figure 5.6. Spectrum of various types of data error detection techniques. 
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(iii) Selective protection. This approach selectively protects parts of the program state 

in order to reduce the amount of extra computation to detect errors. Error detectors are 

strategically placed in highly error sensitive state. This is motivated by fault injection re-

sults, which indicate that many faults in lower-layers of the system are masked and do not 

manifest in applications [WQR+04][GKI04][YKI10]. 

(a) Fault injection. Fault injection can be used to find error sensitive program state 

[HJS02]. This is most effective if the size of the program state (e.g., code and data) is 

small. Otherwise, it can take a long time to analyze the error sensitivity of a large-size 

program. The large volume of GPU program state (e.g., several gigabytes memory data 

and several 100 or 1,000 threads) can make the fault injection approach impractical if fi-

ne-grained (e.g., a data word) sensitivity analysis is needed. 

(b) Static complier analysis. Compiler-based heuristic algorithms can quickly select 

protection target state even in large-size programs by using static source code analysis. 

For example, an early technique [PKI07] analyzes the number of possible uses of each 

program variable and selects a certain number of variables from one with the largest pos-

sible uses. This technique detects 41% of SDC errors with 33% performance overhead 

when applied to CPU programs. Another technique [FGA+10] excludes program states 

from the protection if errors in the state can quickly lead to the program crash. 

(c) Dynamic program analysis. This derives and selects likely program invariants by 

profiling and monitors selected invariants at runtime. For example, if a variable always 

contains a value between min and max during profiling [ECG+01], this generates an error 

detector to check whether the value of this variable is in the identified boundaries. Be-

cause profiling uses a limited number of input data, the derived detectors may lead to 

false positives and that can be addressed by an on-line diagnosis [SLR+08]. 

(iv) Algorithm-based fault tolerance. Error detection techniques designed and opti-

mized for a particular type of algorithm or program are usually highly efficient in terms 

of error detection coverage and performance overhead. For example, a technique [HA84] 

customized for matrix multiplication algorithms detected ~99% of SDC errors with only 

a small amount of overhead. A software technique [MNM10] customized for GPU global 

memory errors can detect memory errors with a negligible overhead in compute-intensive 

applications. 

 

5.4. GPU HAUBERK 
 
HAUBERK generates customized error detection and recovery routines for GPU programs 
by leveraging common performance and reliability characteristics of GPU programs. 



 

 

95 

 

 

5.4.1. Design Principles 

The key principles used to design error detector derivation algorithms are: 

Principle 7.1: HAUBERK customizes error detectors by using profiling information of 

common HPC GPU programs in order to minimize the impact on performance. 

HAUBERK uses three types of error detectors for loop portion of codes in GPU program, 

non-loop portions of codes, and GPU kernel output data with spatial or temporal value 

similarities. This is motivated by the loop execution time measurement data (see Section 

5.2.2). Considering the small contribution of non-loop codes to the overall execution time, 

strong error detection techniques are designed for non-loop codes. On the other hand, error 

detection techniques for loop codes are designed and optimized to minimize the perfor-

mance impact (e.g., by adding only two addition instructions inside a loop). 

Principle 7.2: HAUBERK selectively protects the program state where errors in other 

states are likely to propagate. 

The HAUBERK loop error detector selectively protects program states where computa-

tion of the state directly or indirectly uses many other variables. This means errors in these 

variables are likely to propagate to protected states and thus are likely to be detected by 

strategically placed error detectors. The detection accuracy is improved by customizing 

loop error detectors for common patterns in FP value distributions. 

Principle 7.3: HAUBERK places error detectors by considering the recoverability of er-

rors (i.e., urgency in error detection to enable and support safe error recovery). 

HAUBERK defers placements of error detectors as long as possible by taking advantage 

of inherent hardware-enforced error isolation between GPU and CPU (i.e., provided by 
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Figure 5.7. Isolated execution and deferred checking model of HAUBERK. 
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private memory and explicit communications of GPU and CPU states, see Figure 5.7). 

Many errors occurring in GPU-side programs are detected by basic hardware protection 

before propagating and harming the availability of CPU-side control software (e.g., OS). 

For example, GPU runtime can detect all GPU kernel crashes by default. Thus, we focus 

on detecting SDC errors in the output of GPU kernels because this is a practically feasible 

error propagation path from GPU kernel state to CPU-side program state. Then, in order to 

further reduce the performance overhead, we defer the placement of error detectors in 

GPU kernel code as long as possible that avoids or reduces coverage overlap between the 

basic hardware-enforced detectors and HAUBERK-generated detectors. 

Like any other error detector checking intermediate program state, error detectors in 

HAUBERK can suffer of false alarms (i.e., an error in intermediate program state does not 

propagate to final program output nor makes an observable change in the output). In order 

to enable a diagnosis of false alarms, we defer reporting detection of suspicious behavior 

until the end of a GPU kernel execution. If the kernel completes without a failure, its out-

put data is reported to the CPU code together with the error detection result. Any reported 

error triggers a recovery process in the CPU codes that can identify false alarms by re-

executing the GPU kernel and comparing the returned outputs. 

 

5.4.2. Framework 

HAUBERK library is a set of user-level C libraries. Each library defines a collection of var-

iables and functions for codes added by the HAUBERK translator. Four types of li  braries 

exist: profiler, FT (fault tolerance), FI (fault injector), and FI&FT. We generate a pro-

gram binary file using each of these libraries (see Figure 5.8). Specifically, the original 

program binary is used to measure baseline performance. A program binary with the 
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Figure 5.8. Compilation and evaluation flows in the HAUBERK framework. 
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HAUBERK profiler profiles value ranges of variables protected by loop error detectors, de-

rives all fault injection targets, and gets the output of the golden run. A program binary 

with HAUBERK FT is used to evaluate the performance overhead of placed HAUBERK error 

detection and recovery routines. A program binary with HAUBERK FI is used to analyze 

error detection coverage and error sensitivity of baseline program. Finally, a program 

with HAUBERK FI&FT is used to evaluate the error detection coverage of placed HAUBERK 

fault tolerance routines. We use a GUI-based controller program to automate this evalua-

tion process when many experiments are needed (e.g., for fault injection). 

 

5.5. Detection Technique for Non-Loop Codes 
 

This section describes the error detector derivation algorithms for non-loop codes of GPU 

kernel. Note that a GPU kernel can have one or more loops with non-loop codes before, 

after, and between these loops. Many variables defined in non-loop codes are control data 

(e.g., pointers, constant input data, and data for control-flow conditions). 

The definitions of all virtual variables defined in non-loop codes are duplicated in 

source code. In this chapter, virtual variable means a subset of the live range of program 

state where the subset has one definition and multiple uses. 

A naïve variable-granularity duplication can duplicate the definition of virtual variable 

and check the original and duplicated variables after the last use (or the immediate post-
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Figure 5.9. Duplication techniques for non-loop codes where statements marked as 
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dominator of last uses) as exemplified in Figure 5.9(b). This can largely increase the regis-

ter pressure (e.g., by two times) because the duplicated variable has the same live range as 

the original variable. Note that in the GPU, if physical registers allocated to each thread 

are insufficient, register spill operations occur, which slows down the performance due to 

memory accesses (e.g., to an on-chip cache or an off-chip DRAM). 

HAUBERK-NL (namely, duplication-and-checksum) duplicates the definition of the vir-

tual variable and immediately checks the original and duplicated variables (see Figure 

5.9(c)). This check is done to detect errors that may occur during the computation (e.g., in 

ALU or FPU). To detect errors occurring after this computation (e.g., errors in register 

file), we update the checksum variable by XORing the original variable value to it. This 

checksum update is done right before the comparison operation to prevent losing errors 

that occurred between the comparison and the checksum update (see Figure 5.9(c)). The 

checksum variable is updated (i.e., XOR) once again using the original variable after its 

last use or the immediate post-dominator of last uses (e.g., after the loop in Figure 5.9(c)). 

The checksum variable is 4 bytes. If a variable size is not 4 bytes, it is aligned by four-

bytes for XOR operations. This checksum variable is shared for all duplicated virtual vari-

ables in same kernel (i.e., even in nested functions). This variable still shall be zero at the 

kernel exit because it is XORed twice with each and every duplicated virtual variable val-

ue. 

This checksum-based duplication avoids a large increase in the register pressure. Only 

one checksum variable is added per kernel because one checksum variable is used for mul-

tiple virtual variables. The duplicated variables are alive only for two statements (i.e., one 

for its definition and the other for checking). The increase in the live range of the original 

variable in the presented technique (e.g., from last uses to the immediate post-dominator if 

there are multiple last uses) is same as that of the naïve duplication technique. Register 

pressure control in this duplication and checksum technique efficiently leverages a com-

mon characteristic in GPU architecture that memory operations are more expensive than 

computation operations. 

The derivation algorithm of non-loop error detectors has five steps:  

(i) Update checksum. After the definition of each virtual variable in non-loop codes, 

the algorithm inserts a statement to update the checksum by using the defined virtual vari-

able value. (ii) Duplicate computation. This step duplicates the definition statement of the 

target virtual variable. Another variable (i.e., temporally allocated in a register) is used to 

keep the duplicated computation result. (iii) Check computation result. This step inserts an 

if-statement to compare the original and duplicated virtual variable values. The live range 

of this duplicated variable ends here. Although this if-statement is a point of control-flow 
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divergence, because all threads in a same warp (i.e., unit of thread scheduling in GPU) 

make the same control-flow decision if there is no fault, this does not introduce a large 

performance or scheduling overhead. (iv) Update checksum. This step inserts an XOR 

statement to update the checksum variable again by using the original virtual variable. The 

inserted location depends on the number of uses of the original virtual variable. For exam-

ple, if the variable is used but not updated inside a loop, this algorithm inserts an XOR 

statement after the loop. If the variable is updated inside a loop, this XOR statement is in-

serted right before the loop (i.e., introducing an uncovered window). Note that variables 

updated inside loops are protected by error detectors for loops described in Section 5.6. (v) 

Validate checksum. This step inserts an if-statement as the last statement of the GPU ker-

nel to check whether the checksum is zero. A statement is added to set an SDC error bit at 

runtime if the checksum is non-zero. 

The described algorithm repeats the steps from (i) to (iv) for all virtual variables de-

fined outside of the loops. In the case of function parameters, the checksum is updated on-

ly (i.e., without duplication) at the entry and exit of the kernel function if the parameter is 

not modified inside the kernel. This can detect corruptions in parameters. If a parameter is 

updated inside the function, its second checksum update is done before the update state-

ment, and the updated parameter is treated as another virtual variable (i.e., protected sepa-

rately). The same derivation rule applies to memory load expressions and statements.  

The delivery of potential error detection report from GPU to CPU is done by using an 

object in memory (namely, control block). CPU-side program allocates a control block in 

its memory, copies the allocated object to GPU memory, and delivers the pointer of copied 

object as a parameter of GPU kernel. Placed error detectors (i.e., added if-statement) use 

this passed control block and marks detection results. If the GPU kernel completes nor-

mally, the CPU-side code copies this control block back to CPU memory and tosses it to 

the error recovery engine described in Section 5.7. This control block also delivers other 

information between CPU and GPU (e.g., to configure loop error detectors) as described 

in Table 5.1. 

 

5.6. Detection Technique for Loop Codes 
 

This section describes the error detector derivation algorithms for loop codes of GPU ker-

nel. Many variables manipulated inside loops are streamed input and output data. 

We present value-accumulation-based range checking for loop codes. Derivation of 

this error detector has four steps: 
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 (i) Select target variable for protection. Among all virtual variables defined inside a 

target loop, we first select self-accumulating virtual variables. This is because these varia-

bles do not need any extra code added inside the loop for protection. We then exclude vir-

tual variables that have forward dataflow dependency to these selected variables from the 

dataflow graph of all virtual variables inside the loop. 

Among the reminder of virtual variables, we select a virtual variable with the largest 

cumulative backward dataflow dependency. As shown in Figure 5.10, a cumulative back-

ward dataflow dependency means the number of virtual variables defined inside a loop 

and unprotected by non-loop error detectors that can directly or indirectly be used to com-

Table 5.1. Descriptions of Instrumentations Used for HAUBERK. 

        Location                   

Lib. 
FI (Section VII) Profiler (Section V.B) 

FT (Section V.A., V.B., 

VI) 

[CPU] Top of the 

main file 
Includes a header file for HAUBERK libraries 

[CPU] Entry of 

main() 

Initializes the control block 

The control block is for the 

location, time, and type of 

fault injection target 

The control block is for 

profiled value ranges and 

execution counts 

The control block is for 

value ranges, detection 

results, and outliers 

[CPU] Exit of 

main() 

Stores fault activation result 

to a file 

Stores profiling results to a 

file 

Stores updated value rang-

es to a file 

[CPU] Before 

launching GPU 

kernel 

Copies the control block from CPU to GPU 

- 

Notifies this to guardian 

process and calls a 

checkpoint library (option) 

[CPU] After GPU 

kernel launch 

Waits until the kernel completion and copies the control block back from GPU to CPU 

- 
Calls an error recovery 

function 

[CPU] GPU 

kernel function 

Adds a pointer variable for the control block as a function parameter in GPU kernel func-

tion prototype and its caller(s) 

[GPU] After 

definition of 

virtual variable in 

GPU non-loop 

Calls a library function with an identifier, pointer, type, and 

used hardware components of variable defined in previous 

statement 
Updates a checksum vari-

able, duplicates the defini-

tion, and checks original 

and duplicated variables 
To inject a fault into a de-

fined variable at a designated 

time of execution 

To count execution count 

per variable 

 

[GPU] After def. 

of virtual variable 

in GPU loop 

Same as “After definition of 

virtual variable in GPU non-

loop” field 

Adds two addition statements for each protected target 

virtual variable (one for target variable and the other for 

counter) and merges the counters if possible 

[GPU] Before 

loop in GPU 

kernel 

- 

Defines accumulator and counter variables for each pro-

tected loop variable 

- 
Updates the checksum var. 

if needed 

[GPU] After loop 

in GPU kernel 
- 

Profiles value ranges of 

accumulated variables 

divided by their counter 

Checks accumulated vari-

able value ranges and up-

dates the checksum var. 

[GPU] Exit of 

GPU kernel 
- - 

Checks the checksum vari-

able  
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pute the target virtual variable. Thus, a larger cumulative backward dataflow dependency 

means a higher chance of propagation of errors in other system states to the target virtual 

variable. If a technique is available that can detect even small corruption in the target vari-

able, this can cover errors in the program state by only checking a few variables. 

Figure 5.10 exemplifies a data-flow graph of a loop in a GPU kernel that is computing 

a coulomb potential function. A circle means a binary or unary operator, and both box and 

ellipse mean either a virtual variable or a temporary variable where the name of temporary 

variable starts with T. A temporary variable is used for virtual variable defined by using 

multiple binary or unary operations, and each operation has an intermediate program state 

in register or memory. In this example, two output variables (i.e., either live after the loop 

or written to memory) exist that are marked as black boxes. The cumulative backward da-

taflow dependency of energyx1 and energyx2 are 12 and 13, respectively, including the 

memory load data but not the constant (i.e., 1.0 in the figure). Here, we exclude five virtu-

al variables that are not modified inside the loop and are protected by non-loop error de-

tectors (i.e., black ellipses in the figure). Thus, we first select energyx2 for protection.  

Users can specify the maximum number of virtual variables (Maxvar) that can be pro-

tected by these loop error detectors. Note that Maxvar counts self-accumulating variables. 

If Maxvar is higher than one, this selection is repeated Maxvar times. Before repeating this 

selection process, we remove the previously selected virtual variable(s) and other virtual 

variable(s) having forward data dependency to the previously selected ones from the data-

flow graph. This is to select and protect another virtual variable that can cover the largest 

number of previously unprotected (either directly or indirectly) virtual variables. Note that 

this repetition eventually terminates because there is only a finite number of virtual varia-

bles in any loop. 

Mem. Load

dy

-

coory

dx1

Mem. Load

+

gridspacing_u

-

coorx Mem. Load

dx2

+

dyz2

energyx1energyx2

Mem. Load

atominfo atomid

X

X

Variable protected by a non-loop
error detector

Variable or computation protected by
a loop error detector for energyx2

Variable or computation unprotected

Output variable of the loop

XT2X T1

T4

sqrt +

/

1.0

X

+

/

1.0

T5

T7

T3

T9T8

T6

sqrt

 

Figure 5.10. Dataflow graph of a loop in a coulombic potential GPU kernel. 
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(ii) Generate value accumulator code. The placed error detector accumulates the data 

value of each protected virtual variable in every loop iteration. This step is skipped if a 

protected variable is a self-accumulator. For each protected virtual variable, another varia-

ble is defined with the initial value of zero (e.g., float accumulator = 0.0;) right before the 

loop. Using this accumulator variable, an accumulation statement is added right after the 

definition of the protected virtual variable (e.g., accumulator += energyx2; if the protect-

ed variable name is energyx2) inside the loop. 

(iii) Generate accumulation counter code. An addition statement is added to count the 

number of accumulation operations for each accumulator variable. The HAUBERK-L trans-

lator defines an integer variable right before the loop (e.g., int iterator = 0;) and adds an 

integer addition statement (e.g., iterator++;) inside the loop right after the placed accumu-

lator(s). Even when many accumulator variables are used, these variables often have an 

identical control-flow path (e.g., common case is accumulation count is same as the loop 

iteration count). In this case, these variables can share one accumulation counter. If the 

accumulation count is expected to be same as the loop iteration count, we maintain this 

custom accumulation counter because this is also used to detect some loop control-flow 

errors (i.e., errors in loop iterator, termination condition, or iterator manipulation opera-

tion). 

(iv) Generate error checking code. An error checking routine is added right after the 

loop code. This added routine calls a function defined in the HAUBERK FT library (i.e., 

HauberkCheckRange(…)) by using the averaged accumulator value (e.g., accumula-

tor/iterator) and the pointer to control block. The called function checks whether the cur-

rent accumulation value is within the profiled value ranges (i.e., specified in the control 

block). If the value is outside of ranges, this function calculates new ranges (i.e., assuming 

it is a false positive) and stores this to control block together with setting an SDC error bit. 

The updated ranges are used by the recovery engine as a part of its on-line learning pro-

cess. In the FT library, the function called at the entry of main() loads the profiled value 

range from a file and configures the control block for loop error detectors. Another func-

tion called at the exit of main() stores the updated value ranges to the same file if false 

alarm is detected. 

The detection code for an example in Figure 5.10 is as follows where bold texts are 

added for HAUBERK-L protection: 
float  accumulator = 0;  int  iterator = 0; 

for (atomid=0; atomid < numatoms; atomid++) { 

    … 

    accumulator += energyx2; 

    iterator++; 
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} 

HauberkCheckRange(controlblock, 0, accumulator / iterator); 

HauberkCheckEqual(controlblock, 0, iterator, numatoms); 

It also has an added code after the loop to check the loop iteration count (i.e., 

HauberkCheckEqual(…)). Often, we can calculate the loop iteration count (e.g., loop itera-

tion count is MAX for a loop, i.e., for(int i=0; i<MAX; i++) { … }). This loop iteration 

count is treated and checked as an invariant of the program. Even if the calculation of the 

loop iteration count is complex (e.g., using two conditions), we find that it is still feasible 

in many cases to drive a statement that can dynamically calculate the iteration count. For 

example, for a loop for(int x=0, y=0; x<A && y<B; x++, y++) { … }, the loop iteration 

count is same as the minimum of A and B. Also if a condition variable can be changed in-

side the loop, the iteration count is computed and stored in a variable before the loop. 

If a hardware fault makes a large change in the averaged accumulated value, this is 

likely to be detected by this value range checking. On the other hand, if an error makes 

only a small change in the value of protected variable, this will not be detected by the 

checking as far as the corrupted value is within the checked value ranges. Note that this 

 

 

Figure 5.11. Value range distributions of integer (a) and FP (b) variables in the MRI-

Q program executing on a GPU device. 
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(a) Value Ranges of Integer Variables in MRI-Q 
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(b) Value Ranges of Floating-Point (FP) Variables in MRI-Q 
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can also be a case that the error also did not significantly impact the program output so to 

cause an SDC error. 

The use of value range checking in GPU programs is motivated by our measurement 

data. A strong correlation is observed in values stored in or computed for a same program 

variable in many HPC GPU programs. This strong correlation is observed in both integer 

and FP data (see Figure 5.11). Figure 5.11 shows the value distribution of integer and FP 

variables in an HPC GPU program (MRI-Q). Each graph line represents the value distribu-

tion of a single variable, and x-axis means integer (or FP) numbers that can be encoded by 

32-bit integer (or FP) variable where 1.0E+N means 1
N
 and 1.0E-N means 1

-N
. Integer 

values computed by the same code fragments are likely to be in adjacent two units of 

power of 10s. Most of these graph lines have a sharp peak higher than >0.5. This means 

that >50% of values computed for the same variable are likely to be in a single unit of 

power of 10s. Similar characteristics are observed in other HPC GPU programs. 

Note that variables in the same program have relatively similar correlation points in 

both FP and integer data. This is because these variables have direct or indirect data flows 

to each other and thus their values are correlated. 

An important finding is that many FP variables have three correlation points. Two cor-

relation points are in negative and positive numbers with a similar magnitude, and the oth-

er point is in close to zero. Values in each correlation point are strongly correlated to each 

other (e.g., most of correlation values have same order of magnitude). Considering the 

wide value space that an FP variable can encode (e.g., approximately 2
-126

 ~ 2
128 

for sin-

gle-precision positive FP numbers), a typical FP program uses a small fraction of the 

available FP value space, making this value range checking effective in FP data. 

Based on this finding, the value range profiling algorithm is specifically designed to 

detect up to three correlation points. We set two default threshold points (e.g., at -10
-5

 and 

10
-5

) and treat any value observed between these points as a value correlated to the corre-

lation point at zero. Other values outside of these threshold points are correlated to the cor-

relation point in positive or negative numbers. We sum up the sizes of value spaces of all 

value ranges identified by this profiling. We then change the two threshold points (i.e., by 

multiplying either 10 or 0.1 to examine its neighbors) and repeat the same profiling. This 

process is repeated if the calculated total value space is smaller than that measured in the 

previous run. 

If a potential SDC error is detected, this error detector does not terminate the GPU 

kernel. This instead defers error reporting until the kernel completion. If the kernel causes 

a failure, it validates that this detection is not a false alarm. 
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Places where HAUBERK translator adds or mutates source codes are summarized in Ta-

ble 5.1. It shows the exact changes made by the HAUBERK translator depending on the type 

of used library. 

 

5.7. Recovery Technique 
 

The detected errors are not only diagnosed but also tolerated by the presented selective re-

execution technique.  

HAUBERK-L error detectors may result in both false positives and negatives. A false 

positive occurs when a new input data produces a value for accumulator variable that is 

not in the profiled value ranges. This is because used value ranges are derived by profiling 

that only uses a limited number of input samples. Especially when HAUBERK-L is used, 

using many representative samples in profiling can reduce the likelihood of false positives 

but it cannot guarantee complete removal of false positives in many real world applica-

tions. A false negative occurs for example when the averaged accumulated value of HAU-

BERK-L is within the profiled value ranges after the program experiences a fault, while the 

program output is largely corrupted and violates its correctness requirement. 

False SDC detection alarms are identified by re-execution. When loop error detector 

reports a potential SDC error, the recovery assumes this is a false positive and re-executes 

the GPU kernel for diagnosis (see Figure 5.12). 

(i) False alarm. If the re-execution also raises an SDC alarm and its output is identical 

to the original output, these two are likely to be false alarms (i.e., false positive). Here, 

identical means each value in the output of one execution is the same as the corresponding 

value of the output of the other execution if the output of GPU program is always deter-

ministic. If a nondeterministic GPU program is used, output values showing a certain de-

gree of difference (i.e., more than twice of the output correctness requirement – a con-

servative approach is used because the golden run output is not available) are still treated 

as identical. Up on a detection of a false positive, HAUBERK-L technique stores the updated 

value ranges to a file (i.e., a part of on-line learning process). 

(ii) SDC error due to transient or short intermittent fault. If the re-execution termi-

nates normally and does not raise an SDC alarm, we assume that the alarm raised in the 

first execution is due to transient or intermittent fault (i.e., removed before the second exe-

cution). In this case, the re-execution result is taken. 

(iii) SDC error due to long intermittent or permanent fault. If the re-execution also 

raises an SDC alarm but its output is not identical to the original execution output, we ex-



 

 

106 

 

ecute a GPU program that is specifically designed to produce multiple sets of output data 

by examining various parts of GPU hardware. The functionality of this program is similar 

to built-in self-test (BIST). If this program detects a hardware fault, the current GPU de-

vice is disabled and another device in the node or cluster is used for re-executing the cur-

rent GPU program. A daemon process is periodically running this program on disabled 

GPU devices with a time delay (Tbackoff). Here, Tbackoff is doubled after every execution of 

this program. If the error was due to an intermittent fault, this configuration reduces the 

utilization of GPU device, and once the fault is removed, this program can re-enable the 

GPU device. 

 (iv) Configuring error detectors. This false alarm diagnosis can calculate the false 

positive ratio. For example, if the current false positive ratio of a HAUBERK-L is higher 

than a threshold (e.g., 10%), the recovery engine increases the parameter alpha (e.g., by 

multiplying 10) for the error detector (see Section 5.6). If the false positive ratio is smaller 

than another threshold (e.g., 5%), it reduces the alpha (e.g., divides by 10) as far as alpha 

is larger than or equal to 1. Specifically, the maximum value of each value range of HAU-

BERK-L is multiplied by alpha, and the minimum value of each value range is divided by 

alpha if these maximum and minimum values are positive numbers. The use of loose val-

ue ranges can reduce false positives but at the same time can increase false negatives. This 

tradeoff between false positives (i.e., performance overhead due to re-execution) and false 

negatives (i.e., detection accuracy) is analyzed in Section 5.10.3. 
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Figure 5.12. Error diagnosis and recovery algorithm. 
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5.8. Dependability Evaluation Framework 
 

We develop another SWIFI for commodity GPUs. In order to analyze and evaluate the 

dependability of GPUs, a dependability benchmarking tool is required. However, there is 

no published fault injection tool that can be used to perform experiments on programs 

running on real GPU devices (e.g., only a simulated fault injector is publically known 

[SLS06]). We build a SWIFI toolset to emulate single- and multi-bit soft errors in GPU 

processor and memory states. This source code mutation-based fault injector does not re-

quire any modification in GPU hardware and hence is applicable to commodity GPUs. 

A source code mutation (i.e., embedding error injection code) technique is used to ef-

ficiently control fault injection target (i.e., a state of a thread on one of several 100s GPU 

cores). Although our current implementation is done for CUDA, this tool can be easily 

ported to other parallel programming languages (e.g., OpenCL). Note that we use this mu-

tation-based fault injection in GPU because many GPUs do not have suitable breakpoint 

mechanism (e.g., either lack of such hardware feature or only supporting a relatively inac-

curate breakpoint feature partially due to the offloaded nature of GPU threads from its host 

control software on CPUs). This source code mutation-based injection is also applicable 

for other commodity processors that have neither a hardware- nor software-breakpoint fea-

ture because this mutation-based method needs no hardware modification. 

The translator component in the control node embeds the fault injection code in the 

source code of target GPU program. The compiled binary of the translated source code is 

transferred to an injector node. When the copied binary runs, a fault is automatically in-

jected into a targeted state of the GPU program at runtime, and error and failure infor-

mation are printed to the console. The standard output of the GPU program is captured and 

processed by the result interpreter of a monitor node to produce a fault injection result 

file. 

The embedded fault injection code is to select both a fault injection target (e.g., a vari-

able of a thread) and an injection time (e.g., j-th loop iteration of i-th call of a function). In 

the current implementation, a function call statement is added after each program assign-

ment statement (see gray boxes in Figure 5.13). This is to call a library function that actu-

ally injects an error. For each GPU kernel statement that can change a program state, the 

source-to-source translator component derives the symbol name and data type of a varia-

ble (or a program state) that can be changed as a result of the statement execution. A func-
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tion call statement is added after each program statement
30

 to call a fault injector library 

function (see Figure 5.13). Fault injection information is delivered as arguments of this 

function call. The arguments are: the identifier of the fault injection target variable, pointer 

to the variable, identifier of the data type corresponding to the target variable, and hard-

ware components used by the preceding statement. Used hardware components are stati-

cally derived by analyzing the types of used operations (e.g., ALU for integer and FPU for 

FP operation). The provided fault injection library changes the value stored in the derived 

variable as specified by the fault type. If the derived variable is for an FPU register, this 

register value is copied to an ALU register. This is because the fault injection uses logical 

operations (e.g., XOR) that are only supported by ALU in some GPUs. The changed value 

in the ALU register is then copied back to the original FPU register. 

 Hardware faults can occur in any transistor (or component) in GPU. A fault is either 

masked (e.g., when the faulty transistor is not in use) or it propagates to a micro-

architectural state. Similarly, a fault in a micro-architectural state can propagate to upper-

layers (e.g., a software-visible architecture state). This mutation-based injector emulates 

errors in software-visible architecture states to evaluate the impacts of faults on the relia-

                                                           
30

 Although not common, adding many call statements in the source code of GPU kernel can cause a GPU 

runtime error if used GPU device does not have sufficient hardware resources. In this case, fault injection 

target is selected at compile-time. Specifically, the variable identifier of a fault injection target is given as 

input of the translator that adds only one call statement in GPU kernel source code where the added call 

statement has the given variable identifier as its parameter. This, however, increases the total fault injection 

experiment time because the target program shall be instrumented and compiled again for each fault injec-

tion target. 
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Figure 5.13. A GPU kernel with mutation-based fault injection codes. 
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bility and correctness (i.e., data integrity) of application software. These emulated hard-

ware-induced errors can be classified by using two metrics: fault location and type. 

(i) Fault location. By using the location of the fault in the software-visible architecture 

state, hardware faults are classified into four types: (a) faults in ALUs, (b) faults in FPUs, 

(c) faults in registers (e.g., streaming multiprocessor registers in NVIDIA GPUs), and (d) 

faults in GPU hardware schedulers (e.g., streaming multiprocessor schedulers). These 

faults are emulated as errors in the architecture state (i.e., a program variable or control-

flow decision). For example, a fault in an ALU is emulated by changing the value of a 

program variable that is computed by using at least one ALU operation. Here, we assume 

that the memory data transfers between GPU core and its cache/memory are reliably done. 

This assumption is valid in practice because both the cache/memory data and the data 

paths to on- and off-chip memory are protected by an ECC technique in current state-of-

the-art GPUs. 

(ii) Fault type. Fault can corrupt states of one or more transistors. An error in a single 

transistor can propagate and corrupt multiple bits in architectural states of a GPU. This 

injector can emulate both single- and multi-bit errors in architectural state (e.g., GPU reg-

ister file). Although the latest GPUs support a SEC-DED ECC for register file, multi-bit 

errors can occur in register file and propagate to program states without being detected by 

the ECC technique. Supporting a stronger ECC has a hardware cost issue in practice. For 

example, while an SEC-DED ECC causes ~22% of extra space overhead when the protec-

tion unit is 32 bits (e.g., register), a DEC-TED ECC introduces  ~41% of memory space 

overhead if the protection unit is the same. 

 

5.9. Experimental Methodology 
 

We use a GPU cluster where each node has an NVIDIA Tesla S1070 (4 GT200 GPU and 

4GB memory per GPU) for the experiments. The Parboil benchmark suite v1 is used to 

evaluate application dependability. 

In order to assess the performance overhead, we measure the time spent on GPU ker-

nels, memory copies, and CPU-side codes. GPUs operate in synchronous mode when con-

ducting this measurement. In practice, the measurement focuses on the GPU kernel execu-

tion time because the time spent on executing the CPU code and memory copy operations 

is similar regardless of used error detection technique. Note that even if the memory copy 

traffic is doubled, this does not increase the DMA time largely as long as the data size is 
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not excessively large as compared with the memory copy bandwidth between CPU and 

GPU memory (e.g., 4GB/s in PCI-E v2.0 with 8 lanes). 

For the dependability evaluation, we emulate hardware faults (in various parts of 

hardware components) that propagate and corrupt single or multiple bits in an architectural 

state (register or memory). 20-50 virtual variables are selected in each benchmark program 

and faults are injected into each of the selected virtual variables. Fifty different error 

masks (randomly generated) are used for each variable in order to emulate single and mul-

ti-bit errors. In total, about 10,000 faults are injected into seven benchmark programs. 

Specifically, we perform 10,000 different fault injection experiments per application 

where each experiment runs a program and injects only one fault (either single- or multi-

bit). Thus, in our experiments, error detection coverage p means that a fault in the used 

GPU programs can be either detected or masked with the probability of p if the character-

istic of the fault is same as that of the used 10,000 faults. 

The observed fault injection outcomes are classified into five types: (i) failure, a GPU 

kernel crash detected by the GPU runtime environment or a GPU kernel hang detected by 

the guardian process, (ii) masked, the output of a GPU kernel satisfies its correctness re-

quirement regardless of the injected fault, (iii) detected & masked, the injected fault is 

masked but error detectors raise an SDC alarm, (iv) detected, the output of GPU kernel 

does not satisfy the correctness specifications and an alarm is raised by error detectors, 

and (v) undetected, if the output does not satisfy the correctness specifications but is not 

detected by error detectors. 

 

5.10. Result 
 

This section evaluates the performance and coverage of HAUBERK in comparison with (i) 

Baseline, without any custom error detection, (ii) R-Naïve, full duplication based on re-

executing a GPU kernel twice, (iii) R-Scatter, an optimized full duplication exploiting da-

ta-level parallelism [DMZ09], (iv) HAUBERK-NL, HAUBERK only for non-loop codes, and 

(v) HAUBERK-L, HAUBERK only for loop codes. 

 

5.10.1. Performance Overhead 

Figure 5.14 shows the performance overhead of GPU kernels of seven HPC GPU pro-

grams (i.e., normalized to the baseline performance) when a same data set is used for 

training and testing. The average overhead of HAUBERK is 15.3%.  
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HAUBERK shows a significant performance overhead reduction as compared with R-

Naïve and R-Scatter. The average overheads of R-Naïve and R-Scatter are 100% and 89%, 

respectively. This shows that the evaluation data reported in [DMZ09] holds even in more 

complex GPU programs. R-Scatter has a larger overhead in GPU than similar techniques 

for CPU program because its duplicated computation seeks same types of hardware re-

sources or parallelism as the original computation, which is already heavily optimized in 

terms of used resources and parallelism. Note that statement duplication used in R-Scatter 

does not always double the performance overhead because the duplicated statements can 

be processed by using previously unused resources. 

R-Naïve and R-Scatter have larger memory overheads than HAUBERK, which has only a 

small memory overhead (i.e., typically <10KB in both CPU and GPU memory spaces). R-

Naïve doubles the CPU memory space to keep output data of the first and second execu-

tions of GPU kernel. R-Scatter doubles used GPU memory space and resources (e.g., 

global/shared memory and partly registers). This means R-Scatter is not directly applica-

ble to programs that use more than half of one of these resources. For example, TPACF 

uses more than half of the GPU shared memory (e.g., 16KB total in the used GPU). Thus, 

we could not compile this program using the R-Scatter error detectors. 

The average performance overhead of HAUBERK on the used benchmark is 15.3%. A 

large variation is observed in the performance overhead of HAUBERK on a particular pro-

gram (RPES) where a large portion of GPU codes is sequential (i.e., non-loop). Excluding 

the performance overhead for RPES
31

, the average overhead of HAUBERK is 8.9% where 

the minimum and maximum are 1.9% and 14.3%, respectively. 

                                                           
31

 We find that RPES is removed in the recent release of the Parboil benchmark suite because this type of 

program is not widely used as GPU program (i.e., inefficient due to the large portion of sequential code). 

 
Figure 5.14. Performance overhead. 
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The performance overhead of HAUBERK is similar but not a straight sum of perfor-

mance overheads of HAUBERK-NL and HAUBERK-L. This is because of common perfor-

mance overheads (e.g., to deliver the control block between CPU and GPU and to manipu-

late the control block by placed error detectors). 

The overhead of HAUBERK-NL depends on the portion of execution time spent on loops. 

For example, the overhead of HAUBERK-NL is exceptionally high in RPES because non-

loop codes in this program form 75% of total execution time. In some benchmarks (i.e., 

MRI-Q and MRI-FHD), the overhead of HAUBERK-NL is larger than the contribution of 

non-loop codes to the total execution time because the duplication increases the register 

pressure (i.e., consequently increasing memory spill operations) and can interfere with the 

memory coalescing patterns in original program. 

The overhead of HAUBERK-L has a relatively small variation because the same number 

(i.e., Maxvar = 1) of variables is protected in each loop. The smallest overhead is observed 

when the protected variable is in integer type (i.e., PNS) thanks to the fast integer arithme-

tic speed. Note also that the overhead of HAUBERK-L is relatively small if the program (i.e., 

CP) has a self-accumulating variable (i.e., FP variable) in its loops. The fact that CP has 

larger overhead than PNS implies that value-range checker for FP data placed outside of a 

loop is an expensive operation in terms of performance overhead because FP variable has 

up to three value ranges to check. 

 

5.10.2. Error Detection Coverage 

Figure 5.15 shows the error detection coverage of HAUBERK for the benchmark programs 

and number of error bits when the same input data set is used for training and test runs. On 

average, 13.2% of injected faults can escape HAUBERK error detectors and lead to SDC er-

rors. In other words the average detection coverage is 86.8%. If a system experiences two 

faults during its execution, the coverage of HAUBERK would be                

      , assuming the two faults are independent. In the case of single-bit errors, on av-

erage, 35.6% of the errors are masked, 11.0% lead to a GPU program failure, and 21.4% 

are detected by the introduced error detectors. Out of the remaining 32%, 22.2% are de-

tected but did not violate the application correctness, and 9.8% lead to SDC errors by by-

passing the embedded error detectors. 

The detected & masked error type is an error that changes an intermediate program 

state but does not make a large corruption in the output significant enough so as to violate 

the correctness requirements. Both the detected and detected & masked errors need a re-

execution of the GPU kernel to diagnose false alarm because the golden output is not 

available in practice. This re-execution has relatively small impact on the average execu-
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tion time of the GPU kernel because this fault can only happen if the GPU faces a hard-

ware fault. In practice, the hardware fault rate is often low enough and the error recovery 

time is not long enough to impact performance. 

The ratio of detected & masked type directly depends on the degree of strictness of 

output correctness requirement of application. For example, this ratio is low in SAD (i.e., 

an integer program) because it does not allow value errors in the output. This ratio is rela-

tively high in PNS and RPES, where correctness requirements are relatively loose: 

Max{0.01, 1%|GRi|} and 2%|GRi|+10
-9

, respectively. Here, |GRi| is i-th element of the 

golden output. Note that MRI-Q has stricter requirement than these two: Max{10
-

4
Max{|GR|}, 0.2%|GRi|} where |GR| means all elements in the golden output.

 32
 

Multi-bit errors typically increase the percentage of program failures and decrease the 

percentage of masked errors (see Figure 5.16). This is because when many bits are cor-

rupted, this is likely to make a large value change in both FP and integer data as far as the 

number of corrupted bits is less than half of available bits. In Figure 5.16, regardless of an 

original value range, if the number of corrupted bits increases, the portion for >1E+15 (i.e., 

                                                           
32

 Note that MRI-FHD and MRI-Q have similar algorithms and the same output correct requirements 

however these two programs show significantly different error sensitivities. Our analysis reveals that this is 

due to the difference in their input data where MRI-FHD in the used benchmark suite has a synthetic input 

data (all values are filled by zero) while MRI-Q has real input data. The following experiment shows the 

practical error sensitivity of MRI-FHD because it uses multiple real input data sets (see Figure 5.17). 

 
Figure 5.15. Error detection coverage of HAUBERK-NL and HAUBERK-L. 
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value errors more than 10
15

) gradually increases. This data is obtained by injecting faults 

into 33 million randomly-generated FP value samples. The same characteristic is observed 

in integer values. 

Note that multi-bit errors do not always bring higher error detection coverage than sin-

gle-bit errors when HAUBERK-generated error detectors are used. Some programs (e.g., CP 

) have lower coverage when many more bits are flipped. This is because multi-bit errors 

generally have higher non-benign error ratio (i.e., smaller masked error ratio), while many 

of these non-benign errors in these programs evade the provided loop error detectors. For 

example, if a corrupted variable is used as a divisor operand that computes another varia-

ble protected by a loop detector, a multi-bit error in the divisor operand variable can even-

tually reduce the protected variable value, i.e., less likely to be detected by the loop detec-

tor. 

We find multiple cases where the GPU kernel hangs or faces a long execution time de-

lay (i.e., a part of ‘Failure’ type in Figure 5.15). These failures are undetected by either R-

Naïve or R-Scatter. An example case is when a loop iterator is corrupted (e.g., to a large 

negative number and the loop terminates if the iterator is bigger than a positive number) 

and the corrupted iterator does not cause a crash. Another example is specific to the 

TPACF implementation that uses a loop and performs a memory write operation until the 

write is successfully done and not overwritten by another thread (i.e., checked by reading 

the data back). If the address of memory write is corrupted to specific address ranges, the 

loop does not terminate because the corrupted address never returns the write requested 

value. Failures in these two cases are detected by the guardian process in HAUBERK. 

 
Figure 5.16. Changes in the magnitude of values after experiencing a fault 

depending on the orginal value range (of FP data) and error bit count. 
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5.10.3. False Positive 

We evaluate the false positives of HAUBERK loop error detectors by using different training 

and test data sets. Four benchmark programs are selected for this evaluation based on the 

availability of multiple data sets and their representativeness with respect to other pro-

grams. Out of 52 datasets prepared for each program, 50 are randomly selected and used 

for training and the remaining two are used for evaluating the derived detectors. This pro-

cess is repeated 10 times to calculate average false positive ratio (see Figure 5.17). 

We find that the false positive ratio largely varies depending on the program. For ex-

ample, the measured false positive ratio of PNS becomes close to zero after executing sev-

en training sets but that of MRI-FHD remains 30% even after running 50 training sets. 

This is because in the case of PNS, the program input represents parameters of a fixed 

simulation model and thus accurate detectors can be relatively easy to derive. In the case 

of MRI-FHD, the inputs are vectors and the output computation involves multiplication of 

the different vectors; thus, range-based detectors are not that precise. 

In order to address detector imprecision, we investigate dynamic recalibration of the 

bounds (i.e., min and max values defining the bounds) used in the range detectors. The ap-

proach (described in Section 5.6 and 5.7) multiplies the bounds by alpha, a multiplication 

factor derived based on the monitored current false positive ratio. 

(a) If alpha = 1. Even when alpha is 1, the false positive ratio quickly converges to a 

ratio less than 10% in the three out of the four evaluated benchmark programs (see Figure 

5.17(left)). These three programs do not need to use the alpha larger than 1 (i.e., used 50 

 

Figure 5.17. False positive ratio vs. Training count. 
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training input sets are sufficient). The detection ratio reported in Figure 5.17 corresponds 

to the alpha equal to 1. 

(b) If alpha > 1. In the case of MRI-FHD, the false positive ratio does not quickly 

converge to below 10% if alpha is 1 (Figure 5.17(left)). Using a larger alpha value is 

needed even after processing more than 50 training input sets. Figure 5.17(right) shows 

the false positive ratio of MRI-FHD where the four curves are derived for alpha values of 

1, 2, 10, and 100. When a large multiplication factor (i.e., alpha) is used, the false positive 

ratio decreases quickly after a small number of training sets. For example, for the MRI-

FHD application applying alpha = 100, the false positive ratio becomes zero after execut-

ing 7 training sets. This shows that the adaptive technique to control value ranges used in 

the detector can efficiently manage the false positive ratios and consequently reduce the 

performance overhead.  

We also analyze the impact of the selected alpha value on the detection coverage. The 

error detection coverage of MRI-FHD is 95%, 95%, 82.8%, and 81.6%, when the alpha is 

1, 1000, 10000, and 100000, respectively. The value of alpha only affects the detection 

coverage of HAUBERK loop error detector. None or a small reduction (<0.5% decrease) in 

the error detection coverage is observed for MRI-FHD application when applying a multi-

plication factor (alpha) smaller than 1,000. This implies that the use of a large multiplica-

tion factor in the early stage of testing or training does not largely harm the error detection 

coverage because a fault in an FP or integer value often alters the data by orders of magni-

tude (e.g., >10
6
 times, see Figure 5.16). A large increase (12.2%) in the undetected SDC 

ratio is observed when the alpha is set to 10,000. This threshold alpha value is not fixed 

but depends on multiple factors, including the iteration count of protected loop and the 

application output correctness requirement. 

 

5.10.4. Instrumentation Time 

We evaluate the instrumentation time of HAUBERK error detectors. On average, adding the 

HAUBERK instrumentation takes 81 seconds where the minimum and the maximum are 36 

and 112 seconds, respectively, with the Parboil suite. The used machine has two 2.4GHz 

CPUs and 2GB DRAM and executes a Linux OS. This instrumentation time includes the 

C preprocessing time, parsing time, analysis time, and transformation time but excludes 

the time spent on C code beautifier. 

The exact time spent on processing the HAUBERK transformers (i.e., placing error de-

tectors in the intermediate representation) is 0.7 second, on average. The sizes of total 

program source code and GPU kernel code of each of the used benchmark programs are 

579 and 266 lines, respectively, on average, before C preprocessing. If a source-to-source 
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translator is already used for other purposes (e.g., performance), the HAUBERK transform-

ers only add a short delay (e.g., <0.7s, on average, per GPU kernel) to the total compila-

tion time. The HAUBERK instrumentation can make small impact even if a target program 

is big and contains many GPU kernels. 

The HAUBERK instrumentation is needed only after performance optimization and be-

fore testing. When developing an HPC program, most of the development time is spent on 

optimizing the program performance. After this optimization, developer typically runs an 

integrated stress testing. Because the HAUBERK instrumentation is for runtime fault toler-

ance, this instrumentation is added just before this final testing. 

 

5.11. Summary 
 

This chapter analyzed reliability problems in GPGPU platforms, focusing particularly on 

the design of efficient low-cost detection and recovery mechanisms for handling SDC 

(silent data corruption) errors. In order to tolerate SDC errors, customized error detection 

techniques are strategically placed in the source code of target GPU program so as to 

minimize performance impact and error propagation, and maximize recoverability. The 

presented HAUBERK technique is evaluated using a mutation-based fault injection tool 

(developed as part of this study) for automated reliability testing of commodity GPU de-

vices. HAUBERK offers a high error detection coverage (~87%) with a small performance 

overhead (~15%). 
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Chapter 6.  

Pluggable Watchdog: Transparent Failure 

Detection for MPI Programs 
 

 

This chapter presents a framework and its techniques that can detect various types of 

runtime errors and failures in MPI programs. The presented framework offloads its de-

tection techniques to an external device (e.g., extension card). By developing intelligence 

on the normal behavioral and semantic execution patterns of monitored parallel threads, 

these external error detectors can accurately and quickly detect errors and failures. This 

offloaded architecture allows us to use powerful detectors without directly using the 

computing power of the monitored system. The separation of hardware of the monitored 

and monitoring systems offers an extra advantage in terms of system reliability. Our ex-

periment shows that the presented techniques, on average, cover 95.2% and 98.6% of the 

injected hardware faults with 1.8% and 8.4% performance overheads, respectively. The 

average failure detection latency is 117 milliseconds for crashes, 2.3 seconds for hangs, 

and 44 seconds for silent data corruption failures.
33

 

 

 

6.1. Motivation 
 

The growing scale and complexity of state-of-the-art parallel computers are having a nega-

tive impact on hardware and software fault rates. Early, accurate detection of resulting er-

rors and failures is critical for the scalability of these computers. An undetected error can 

cause a hang failure of application software or a corruption in application output data. If 

such a hang or silent data corruption (SDC) failure is not detected shortly after its occur-

rence (e.g., within a checkpointing interval), the result is a checkpoint corruption problem. 

SDC failure is by definition undetected until the application termination, and consequently 

needs an application restart, delaying the expected execution time of application. 

There is an engineering tradeoff between detection accuracy and overheads. In order to 

                                                           
33

This chapter is accepted for publication: K. S. Yim, Z. Kalbarczyk, and R. K. Iyer, “Pluggable Watch-

dog: Transparent Failure Detection for MPI Programs,” in Proceedings of the IEEE International Parallel 

and Distributed Processing Symposium, 2013. 
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detect an error or failure, an extra computation must be performed. Such extra computa-

tion is typically introduced by creating redundancy in the time and/or space dimension. A 

larger amount of redundancy results not only in higher detection coverage but also in 

higher performance overhead and/or higher hardware cost. Strategically placed [FGA+10] 

and customized [YPS+11] error detection techniques show high efficiencies (e.g., cover-

age over overhead) in a statistical sense, but are still part of the tradeoff. 

In this chapter, we explore the possibility of escaping that engineering tradeoff in a way 

that is transparent to application programs. The presented techniques make nonintrusive 

changes in target system hardware and software, making them applicable to parallel com-

puters that use COTS (commercial-off-the-shelf) components. In the presented framework, 

the detection operations are offloaded to an external device (e.g., an extension card) of 

each compute node. When a Message Passing Interface (MPI) application is first launched, 

the program flow extractor derives a deterministic finite automaton (DFA) from the im-

plementation of the application. The derived DFA captures all the legitimate execution 

sequences of selected types of instructions (MPI API call instructions) in the application. 

At runtime, a set of signature monitors run on a monitored computer and report the execu-

tion events of the selected instructions (in an MPI API call granularity) and other vital sys-

tem events to a local monitoring device. A monitoring device (i.e., a PCI card in our proto-

type) uses its own embedded processor and memory and checks whether the application 

execution follows the program flow graph and complies with the past behavioral and se-

mantic execution patterns. Thus, our framework can run powerful detection techniques 

without directly using the computing power of the monitored computer, other than to col-

lect and report a set of events. 

We design and evaluate a set of heuristics and value clustering techniques that can de-

tect the behavioral and semantic errors and failures of MPI application processes. The 

termination state checker detects user process crash failures by forcing all MPI processes 

to terminate at one of the final states of their derived DFAs. Transition time checkers 

quickly detect user process hang failures by learning and enforcing the normal transition 

time intervals, where the transition time is time taken to transition from one DFA state to 

another state. These transition time checkers recognize the application execution phase, 

and use a tight timeout in each phase to reduce the hang detection latency. Output value 

checkers detect SDC failures by learning and enforcing normal value ranges of each type 

of application communication output messages. We present a dynamic profiling technique 

to make this output value checking practical in a new application running new input data. 

We have prototyped our system on a parallel computer system by using an FPGA-

based PCI extension card as a monitoring device. We conducted a fault injection experi-
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ment to evaluate the presented techniques using eight MPI-based parallel programs. The 

techniques cover ~98.5% of faults, on average, with average failure detection latencies of 

117 milliseconds, 2.3 seconds, and 44 seconds for crash, hang, and SDC failures, respec-

tively. That means that only ~1.5% of random processor register faults, on average, evade 

the presented techniques and lead to failures. The average performance overhead is 1.8% 

for techniques that detect crash and hang failures and 6.6% for techniques that detect SDC 

failures. Moreover, the physical split of the monitoring device from the monitored com-

puter has an extra advantage in terms of system reliability. Malfunction of a monitored 

computer does not directly affect execution of detection operations on the monitoring de-

vice, and vice versa. 

The main contributions of this study are as follows: 

 We summarize the experimental evidence that supports our design decision to detect 

failures in the highest layer of system abstractions (application software), especially if 

it is important to optimize the detection overhead (Section 6.2). 

 We present a pluggable detection framework for modern high-performance computers 

without any intrusive changes to target system hardware and software (Section 6.3). 

 We present a set of failure detection techniques that use a statically derived program 

flow graph and adaptively learning the normal behavioral and semantic execution pat-

terns of a target program (Section 6.4). 

 We develop a prototype system using only COTS components (Section 6.5). 

 We evaluate the fault detection coverage and latency of the presented system via a 

fault injection study (Section 6.6.1) and measure the performance overhead of the pre-

sented system (Section 6.6.2). 

This study demonstrates that by developing intelligence on the normal behavioral and 

semantic execution patterns of parallel application programs at a coarse granularity, exter-

nal checkers can accurately and quickly detect non-benign faults with low runtime over-

heads. 

 

6.2. Detection Target 
 

We focus on detecting failures in the highest layer of system abstraction: the application 

process. In this chapter, we assume that the target application is a batch-mode parallel 

program launched from a command line shell of the header node and executes on top of 

parallel compute nodes. 

We classify application failures into three types: 
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(i) Crash. Crash is an unexpected early termination of an application process. Crash 

comes with no or incorrect output data. Crash is by definition due to a detection of an error 

by a baseline error detection technique in the hardware, OS, middleware, or application. 

(ii) Hang. Hang is defined as a continuous execution of an application process beyond 

its maximum, known normal execution time. Hang comes with no or incorrect output data. 

Hang is typically due to an undetected error that changes the control flow of a program 

and makes the program fall into an infinite loop. Note that a hang of an application pro-

cess is due to a hang of itself or a hang of its underlying system software (e.g., OS or hy-

pervisor) that is responsible for scheduling the application process. Thus, a user process 

hang detection technique can also detect crash and hang failures of both the OS and hy-

pervisor. 

 (iii) SDC. SDC occurs when an application program terminates normally but produces 

corrupted final output data. We compare the output data of a golden (fault-free) run and a 

test run. If any values in the compared output data differ more than what is allowed by the 

application programmer or user (such correctness requirement is for example set to toler-

ate arithmetic errors of floating-point operations), we consider the test run to have incurred 

an SDC failure. SDC is typically due to an undetected error that may also have caused a 

data omission error or a timing error during the application process execution. 

Those three types of application software failures are our detection targets. Our choice 

of detecting failures in the application layer is supported by the following evidence: 

(i) Benign fault. In this chapter, we define a non-benign fault as a fault that successfully 

propagates to an application software state and leads to a user-visible failure. In each layer 
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Figure 6.1. Detection target in fault-error-failure chains. 
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of a system abstraction, a significant fraction of faults are masked and do not propagate to 

the upper layer of the system abstraction. For example, a transient fault in a combinational 

circuit of a processor is masked if the fault does not change the output data of the circuit at 

the exact same time the output is being saved in the following sequential circuit (see Fig-

ure 6.1). Similarly, a fault in a memory word is masked if the memory word has a dead 

variable. Previous fault injection experiments have extensively documented that masking 

effect in the device-physics, circuit, architecture, and software layers [KIR+99]. 

We believe that it is not always necessary to detect all faults in a low layer of system 

abstraction. It may be required only in mission-critical systems. Let us assume a technique 

that detects all low-layer faults (e.g., memory faults in the circuit layer), and restarts a pro-

gram from a checkpoint if a fault is detected. Many of the detected faults are not visible to 

users, meaning that this technique is conservative in the sense that it wastes a lot of time 

on unnecessary restart and rework operations. Such waste is especially undesired in com-

modity computers, whose designs are tightly constrained by energy and cost efficiency 

requirements. Moreover, computers with a technique designed to detect and tolerate al-

most all faults in the low layers (e.g., dual or triple modular redundancy) still need a soft-

ware failure detection technique if the computer nodes form a parallel or distributed sys-

tem, because of their single points of failure. 

(ii) Correlated faults. In commodity computers, many faults are spatially and/or tempo-

rally correlated, in part because of the use of COTS components, which are prone to per-

manent and intermittent faults. Memory errors observed in cloud datacenters are strongly 

correlated within the same memory module, and most of the uncorrectable errors are pre-

ceded by one or more correctable memory errors [SG06]. 

That correlation characteristic of faults implies that an imperfect detection technique 

can be effective in practice. For example, a technique with 90% fault detection coverage 

detects at least one non-benign fault with 99% probability if there are two non-benign 

faults, independent of each other. 

(iii) Fail fast. Non-benign faults have the following two desirable characteristics that 

make it relatively easy for application-layer techniques to detect and tolerate them: 

(a) Failure latency. Many previous fault injection experiments have found that most 

non-benign hardware faults have a short failure latency, where failure latency is the time 

from the introduction of a fault to the first occurrence of resulting failures in the same 

computer node. In x86 and PPC machines, >95% of non-benign transient faults in the pro-

cessor and memory have failure latencies shorter than ~200 ms [GKI04]. Even shorter 

failure latencies are found with permanent faults (e.g., 99% of processor faults have failure 

latencies shorter than ~20 µs) [LRS+08]. In general, most non-benign hardware faults lead 
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to node failures in ~200 ms, while the exact percent of such faults varies depending on the 

configurations. The rest small portion of the undetected faults cause long latency failures 

and are analyzed in [YKI09]. 

The common failure latencies are several orders of magnitude shorter than common 

checkpointing intervals (e.g., >10 minutes). That means that the majority of failures can be 

tolerated through use of a checkpoint-restart technique, as long as there is a quick and ac-

curate detection technique for these failures. Note that failures of a compute node are not 

always detected by the header node in parallel or distributed systems. In our preliminary 

study, ~14% of MPI user process crashes are undetected by the MPI header node (e.g., 

MPI middleware which is responsible for reporting the failure was in an unstable state 

when a type of crash signals arrives from OS), and an MPI process hang is detected by the 

header node after ~100 hours when an MPI middleware (MPICH2 v1.4.1) is used alone 

without any extra failure detection technique. 

(b) Fault/failure location. The locations of faults and failures are highly correlated. For 

example, [GKI04] shows that 90–92.5% of failures are detected in the same OS module in 

which the faults were injected. The reason is that only a relatively small number of in-

structions can be executed within the short failure latency. When a failure is detected, a 

micro-rebooting of the affected software module can tolerate the failure if the induced er-

rors did not propagate to outside the affected module. 

In this chapter, we focus on errors and failures due to transient hardware faults. Con-

sidering the similarity in the types of possible errors and failures due to software faults, we 

believe that the presented techniques are generally applicable to protection against soft-

ware faults. 

 

6.3. Framework 
 

The presented pluggable watchdog framework uses three types of new components in or-

der to detect software failures. 

(i) Program Flow Extractor (PFE). PFE is a post link-time static analyzer. PFE derives 

an execution behavioral model from a target program implementation (a binary file). The 

derived model is encoded as a DFA, where a transition represents the execution of a spe-

cific type of instructions and a state represents a program execution phase. The process 

must start from the start state and end at one of the final states of its DFA. 

(ii) Signature Monitor (SM). SM is a software component that executes on each of the 

monitored computers. Multiple SMs exist. An SM measures a set of specific types of 
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events in its host computer and reports them to the local monitoring device of its host 

computer. The provided SMs are implemented as OS modules or dynamically linkable 

user libraries. Thus, the provided SMs are easy to install. 

(iii) Monitoring Device (MD). An MD is an extra hardware device in each of the moni-

tored computers (e.g., an extension card or a separate chip in the motherboard). A set of 

error detection techniques execute on the MD of each node. The detection techniques use 

the dynamically measured execution signatures and/or statically derived program flow 

graph of the target application (see Figure 6.2, left). 

The presented framework has a control server node that controls the MDs of all com-

pute nodes of a target parallel computer (see Figure 6.2, right). The control server runs a 

GUI-based control program, which uses TCP and UDP communications to, for example, 

relay program flow graph files and failure detection results between the header node and 

MDs. If there are many compute nodes, one may use multiple control servers and organize 

them in a tree-like structure. 

The presented framework has a pluggable, nonintrusive architecture. In other words, all 

three components are easily installable on commodity computers. PFE is a user-level pro-

gram, and SMs are an MPI middleware wrapper library and a set of OS kernel modules. If 

the target system uses a dynamically linkable MPI library, the user can install the provided 

SM library by replacing the existing library. The user must also install the provided PFE 

program in the header node, and an administrator must install the provided SM kernel 

modules in all compute nodes. 

 

6.3.1. Program Flow Extractor (PFE) 

The presented PFE is designed to derive a program flow graph that captures all the legiti-
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Figure 6.2. Failure detection model (left) and target system architecture (right) of the 

presented framework. 
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mate execution sequences of all the targeted types of instructions in a given program. The 

user specifies the target instruction types. Let us assume that the target program is an MPI 

program, and that the target instruction types are call instructions whose callee symbol 

name starts with “MPI_”. These types are to identify all call instructions to MPI API func-

tions. The program flow graph derivation process has three major steps: 

(i) Preprocessing step. PFE reads the binary file of the target application program. PFE 

builds the complete call-flow graph (i.e., flows between functions) of the target program 

and complete control-flow graph (i.e., flows between basic blocks) of each function in the 

program. To do so, PFE disassembles the binary file and builds an intermediate represen-

tation (IR) data structure of the disassembled code. The data structure of IR encodes the 

program call- and control-flows and is easily re-organizable. 

(a) Call graph. PFE traverses all functions that are reachable from the main function, 

and constructs the call graph of these reachable functions. Regardless of the programming 

language used (e.g., C/C++, Fortran), the used linker generates the binary code by using 

main as the starting function of a program. All unreachable functions are eliminated from 

the IR data structure. 

PFE eliminates functions whose execution does not have any direct or indirect depend-

ency with the execution of any of the target instructions. PFE traverses all functions in the 

call graph and marks all functions that contain at least one target instruction. Figure 6.3(a) 

shows an example; gray boxes are marked functions and dotted boxes are unreachable 
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Figure 6.3. Program flow graph derivation process. 
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functions. PFE then recursively marks all the direct and indirect callers of the marked 

functions. Unmarked functions are eliminated from the call graph IR data structure. If the 

MPI API call instructions are specified as targets, all MPI API functions themselves are 

also eliminated if they do not internally call any other MPI API functions. 

 (b) Control-flow graphs. For each function in the reduced call graph, PFE builds a 

control-flow graph. In a control-flow graph, a vertex is a basic block, and an edge is a con-

trol-flow instruction between two basic blocks (see Figure 6.3(b)). Each vertex contains a 

bit that indicates the inclusion of at least one target instruction (see the gray boxes in Fig-

ure 6.3(b)). 

 Let us assume that the control-flow graph of function foo is notated as CFG(foo) = (V, 

E, s) where V is a set of basic blocks in foo, E is a set of control flows (e.g., vivj) be-

tween the basic blocks in V, and s is the entry basic block of foo. 

(ii) NFA derivation step. From the control-flow graph of each of the left functions, PFE 

derives a nondeterministic finite automaton (NFA). 

(a) Basic block splitting. For each control-flow graph, PFE splits basic blocks for 

which the total count of the contained target instructions and function call instructions is 

more than one. For example, if a basic block has a target instruction A, call instruction B, 

and target instruction C in sequence, this basic block is split into three basic blocks, where 

each of the split basic blocks contains just one of instructions A, B, or C. The split basic 

blocks are connected so as to follow the original execution sequence. In this example, PFE 

marks only the first and third split basic blocks to indicate the inclusion of a target instruc-

tion. 

(b) NFA conversion. PFE converts each of the split control-flow graphs to an NFA. Ta-

ble 6.1 shows the algorithm that converts a control flow graph CFG(V, E, s) to an NFA(V, 

E, s, f) where V is the set of states, E is the set of transitions, s is the initial state, and f is 

the final state of the NFA. There is a one-to-one mapping between the NFA states and the 

exits of the CFG basic blocks except for the starting state of the NFA (see Figure 6.3(c)), 

making it produce a compact NFA. 

The algorithm starts by pushing a pair of the starting state s of CFG and the initial state 

s to a set Q (line 3). H is a hash table that uses a state in CFG as the key and returns the 

pair state of the key in NFA. In the first iteration, H is empty. That creates a new NFA 

state v’ (that is paired with v) and inserts v’ to H as the hash value of v (lines 10–13). If v 

has a callee function, this callee is set as the callee of v’ (line 11) that notates a point to 

merge two NFAs. The algorithm then checks whether v contains a target instruction (line 

14). If the condition is true, the label of a new transition is set from v to v’ as the event 

name of the contained target instruction (lines 15 and 18). If it is false, the transition label 



 

 

127 

 

is set to λ, indicating that this transition can be made without consuming any event (line 

17). If v has no control-flow target basic block, v is an exit basic block, and thus the algo-

rithm inserts v’ to F (lines 22–23). Otherwise, the algorithm inserts the control-flow target 

basic blocks of v (up to 2 basic blocks) to Q with the pair NFA state of v (lines 25–27). 

If Q is implemented as a queue, the algorithm searches basic blocks of CFG in the 

breadth-first manner (lines 4–5). If Q is implemented as a stack, the algorithm uses the 

depth-first search. If the first v’ is the same as v (e.g., a loop that has only one basic block) 

and the breadth-first search is used, in the next iteration, the condition at line 6 is met, and 

thus a transition is made from an existing NFA state (v’ in the previous iteration) to itself 

using the same label. Because this is not the first visit to v (line 20), the algorithm skips 

the rest of the operations. 

The algorithm finally creates a new state (f) as the final state of NFA (line 28). There 

Table 6.1. CFG to NFA Conversion Algorithm. 

Convert a CFG (V, E, s) to an NFA (V, E, s, f) 

01: V := Ø, E := Ø, F := Ø, Q := Ø, H := Ø 

02: s := create the starting state in NFA 

03: enqueue s to V, enqueue (s, s) to Q 

04: while Q ≠ Ø 

05: |  (v, v) := dequeue Q 

06: |  if v is hashed in H then  

07: |  |  v’ := lookup the hash value of v in H 

08: |  |  visited = true 

09: |  else   

10: |  |  v' := create a new state in NFA 

11: |  |  set callee of v as callee of v’ if any exists 

12: |  |  insert v’ as the hash value of v to H 

13: |  |  visited = false 

14: |  if v is marked then  

15: |  |  l := get the event name of the target instruction in v 

16: |  else 

17: |  |  l := λ 

18: |  e := create a transition from v to v’ and label as l 

19: |  enqueue e to E 

20: |  if visited = false then 

21: |  |  E’ := a set of transitions in E that exits v 

22: |  |  if E’ = Ø then 

23: |  |  |  enqueue v’ to F 

24: |  |  else 

25: |  |  |  for each e ∈ E’ 

26: |  |  |  |  v’ := the control-flow target basic block of v 

27: |  |  |  |  enqueue (v’, v’) to Q 

28: f := create a new state in NFA 

29: while F ≠ Ø 

30: |  dequeue v from F 

31: |  create a λ-transition from v to f 

32: return (V, E, s, f) 
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must be at least one final state of NFA in F (line 29). For each state in F, the algorithm 

creates a transition to a new state f (lines 30–31). Optionally, one may extend the algo-

rithm to check the size of F and directly use f in F as the final state of NFA if |F| = 1. 

(iii) DFA conversion step. PFE finally merges the derived NFAs and converts the 

merged NFA to a reduced DFA. PFE prints the reduced DFA as a flow graph of a target 

program. 

 (a) Merging NFAs. Table 6.2 is the algorithm to merge all the converted NFAs to a 

new NFA, where H1 is a hash table that tracks the call count of each function, and H2 is a 

hash table that keeps the first-produced NFA instance of each function. This algorithm 

starts from the NFA of the main function (lines 2–3). For each transition e in the current 

NFA (lines 5–6), if the transition target state has a callee function and the callee exists in 

the reduced call graph (lines 7–8), it creates a λ-transition from the final state of the NFA 

of the callee to the transition target state (lines 11, 16), and changes the transition target 

state of e to the initial state of the callee NFA (line 17). If this callee is seen less than N 

times, it replicates the callee NFA by a recursive function call (lines 9, 18). This recursive 

function call returns a merged sub-NFA. The algorithm removes the initial and final state 

marks from the returned NFA before merging it to the current NFA instance (lines 4, 19). 

Table 6.2. Algorithm to Merge NFAs. 

Generate a merged NFA 

01: H1 := create an empty hash table, H2 := create an empty hash table 

02: (V, E, s, f) := generate NFA of the main function 

03: return Merge-NFAs(V, E, s, f, H1, H2) 

Merge-NFAs(V, E, s, f, H1, H2) 

04: (V’’, E’’, s’’, f’’) := clone of (V, E, s, f) 

05: for each state v in V  

06: |  for each transition e in E that exits v 

07: |  |  v’ := target state of e 

08: |  |  if v’ has a callee function then 

09: |  |  |  if H1.lookup(symbol name of the callee of v’) < N then 

10: |  |  |  |  H1’ := clone of H1, H2’ := clone of H2 

11: |  |  |  |  (V’, E’, s’, f’) := generate NFA of the callee function of v’ 

12: |  |  |  |  if H1’.lookup(symbol name of the callee of v’) is empty then 

13: |  |  |  |  |  H1’.insert(symbol name of the callee of v’, 0) 

14: |  |  |  |  |  H2’.insert(symbol name of the callee of v’, {s’, f’}) 

15: |  |  |  |  H1’.update(symbol name of the callee of v’, H1’.lookup(v’)+1) 

16: |  |  |  |  create a new transition from f’ to v’ 

17: |  |  |  |  change the transition target state of e to s’ from v’ 

18: |  |  |  |  (V’’’, E’’’, s’’’, f’’’) := Merge-NFAs(V’, E’, s’, f’, H1’, H2’) 

19: |  |  |  |  insert (V’’’, E’’’, Ø, Ø)  to (V’’, E’’, s’’, f’’) 

20: |  |  |  else 

21: |  |  |  |  {s’, f’} = H2.lookup(symbol name of the callee of v’) 

22: |  |  |  |  create a new transition from f’ to v’ 

23: |  |  |  |  change the transition target state of e to s’ from v’ 

24: return (V’’, E’’, s’’, f’’) 
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Lines 20–23 are to reuse the pre-generated NFA states if the same callee is seen ≥N times. 

Figure 6.3(d) shows an example of merged NFAs. 

This merge algorithm has a key difference from the existing technique [GSV05], which 

was developed for intrusion detections. We replicate the NFA of a callee that has a cycle 

in the call graph (e.g., recursions) for a certain number of times (N). This reduces impossi-

ble paths in the derived program flow graph that is useful when a target program imple-

mentation uses a recursion (e.g., for depth first searching or back tracking). Also, since we 

monitor the MPI API calls, we can convert the program flow graph into a deterministic 

form, unlike system calls [WD01], whose call sequences depend on runtime factors (e.g., 

context switching). Note that this does not mean we always produce a deterministic pro-

gram flow graph, because of asynchronous events (e.g., signal), setjmp, function pointers, 

and dynamic libraries, which must be manually handled. Note that to the best of our 

knowledge, there is no previous work that exploits program flow graph (similar to our ap-

proach) for hardware-induced error detection. 

(b) DFA conversion. PFE converts the merged NFA to an equivalent DFA and option-

ally reduces the converted DFA by using well-known algorithms from automata theory 

(see Figure 6.3(e) and 6.3(f)). PFE encodes the reduced DFA by an extended adjacency 

list notation that lists all the possible transition event (MPI API call types) and destination 

state pairs of each source state. The encoded DFA marks initial and final states. 

PFE saves the encoded DFA to a regular file named in the form p.dfa if the original bi-

nary file name is p. That extraction process is invisible to the MPI program developers and 

users. When a user launches an MPI program, the first process executing on the MPI 

header node checks whether there is p.dfa file in the current directory. The provided MPI 

wrapper library (see Section 6.3.2) performs this checking and the following operations on 

behalf of the first process when it calls the MPI_Init function. If p.dfa does not exist, the 

first process runs the PFE program with the binary file p and the pre-specified target in-

struction types to generate p.dfa. The first process then sends the content of p.dfa to the 

control server (see Section 6.4.1(i)) before continuing its execution. 

PFE extracts a program flow graph from the implementation of a target program (but 

not a design). The reason is that our target is a hardware fault that occurs at runtime (not at 

design time). As long as the programming model is SPMD (Single Program Multiple Da-

ta), PFE can statically derive program flow graph and enforce it on each parallel execution 

instance. In adaptive MPI where parallel execution instances can migrate from one node to 

another, migration has to be tracked, and MDs of the source and destination compute 

nodes must communicate the tracking information of the migrated instance. 

We have implemented PFE from scratch in C++. Our PFE implementation has 4,970 
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lines of codes. We used PFE to extract the program flow graph from each program in NAS 

Parallel Benchmark (NPB) v2.3. The total number of states is 5 to 14 per program. The 

total number of transitions is 6 to 50 per program. Figure 6.4 shows a DFA of the integer 

sort program in NPB derived by PFE. 

 

6.3.2. Signature Monitor (SM) 

A set of SM agents run on each of the monitored compute nodes. There are two types of 

SM agents: system and user (see Figure 6.5). Each SM agent measures and reports the 

signatures of software to its local MD by using the SM runtime in its host OS kernel. 

(i) SM agent. The provided system and user of SM agents are implemented as a kernel 

module and user-level library wrapper, respectively. Both of them can be installed without 

any intrusive modification in monitored system. 

The system agent monitors selected system events and sends them to its local MD via 

the SM runtime module. The reported event data contain information about the event type, 

logical processor ID, user process ID, and occurrence time. Some system agents prepro-

cess event data before reporting. For example, a system agent computes interrupt event 

counts per each logical processor for a time interval and only reports the counter values to 

the local MD. Such an agent can use not only numerical sum but also average, variation, 

median, histogram, and other data aggregation methods. 
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There is one default system agent that monitors the call events of the selected kernel 

functions by rewriting the kernel code in the memory. When this agent is first executed, it 

disassembles the kernel codes in the OS kernel image file and identifies all the call in-

structions to each of the selected kernel functions. It then replaces the call target address of 

each of the identified call instructions with the address of the corresponding wrapper func-

tion defined inside this agent. 

The default system agent has one wrapper function for each type of the selected kernel 

functions. The selected kernel functions are panic() and do_die() to detect kernel crash 

events, and do_exit() to detect user process termination events in Linux. The wrapper of 

panic() and do_die() sends a kernel crash event to the monitoring device by using the ur-

gent delivery mode, where the urgent delivery is a non-blocking operation that immediate-

ly sends the event data by using statically pre-allocated resources. The wrapper function of 

do_exit() identifies the index of the current process (e.g., MPI communication rank) if the 

current process is one of the monitoring target processes, and saves the identified index in 

the memory (see Section 6.4.1(ii) on how target processes are identified). The SM runtime 

module sends the saved do_exit event to the local MD at the next reporting time together 

with other user-level signature events, so that all buffered events are delivered in the order 

in which they occurred. 

The user agent for MPI programs is an MPI library wrapper that monitors all MPI API 

function call events at runtime. At the entry and exit of each MPI API function, this user 

agent composes an event data packet (containing the event type, current process ID, and 

other parameters of interests) and sends the composed packet to the MD. If the MPI li-

brary is provided as a dynamically linkable library (DLL), this rewritten MPI wrapper li-

brary is installed on a target system through replacement of the existing DLL file. If the 

MPI library is provided as a statically linked library, the binary file of a target program is 

regenerated through relinking of the object files of a target program with this rewritten 

MPI library without any program source code modification. 

(ii) SM runtime. The SM runtime is an interface between SM agents and the local MD. 

It provides SM agents with common mechanisms, and consists of two components: 

The SM runtime kernel module is an OS kernel module that provides interface func-

tions to SM system agents. Among its interface functions, register_event_handler(x,y) 

registers a callback function x to a specified type of events y. The supported system events 

include system call entry/exit, interrupt handler entry/exit, and context switching. re-

port_event(x, y) sends data x to the local MD. If the urgent delivery flag y is set, this func-

tion immediately sends x. If it is not, this function saves x in the memory to send the saved 

data to the local MD at the next reporting period. The SM runtime kernel module uses a 
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dedicated kernel thread for the periodic reporting. Thus, the caller of this function does not 

need to wait until the completion of a send operation. When small-size data are frequently 

sent, this kernel module can still fully utilize the communication bandwidth to its local 

MD, because the data are concatenated in the memory. 

The SM runtime library is a user library that allows SM user agents to use the SM 

runtime kernel module without any extra memory copy and system call operations. The 

runtime library maps the exposed buffer memory of the runtime kernel module to the vir-

tual address space of each of the host user processes of this library (using the mmap sys-

tem call in Linux). The library and the runtime kernel module provide the same event re-

porting interfaces to SM user agents and SM system agents, respectively. By calling those 

provided interface functions, each user agent directly accesses the memory buffer of the 

runtime kernel module without any context-switching operation. All accesses to the 

memory buffer are synchronized through use of a custom synchronization primitive (test-

and-set instruction) because the buffer is shared by all the system and user agents. 

 

6.3.3. Monitoring Device (MD) 

An MD is hardware external to a monitored computer. Errors in a monitored system can 

thus rarely propagate to its local MD, which could be, e.g., a board-level chip, a chipset 

extension, an extension card, a network fabric, or another computer node. In our prototype, 

we use a PCI extension card that has: (a) a PCI target controller for communication with 

its monitored system, an embedded processor (SPARC v8), and DRAM chips to execute 

the detection techniques, (b) a network interface chip (e.g., Ethernet) for communication 

with upper-layer MDs (e.g., control server), (c) local/remote storage (e.g., flash memory 

or network file system), and (d) a private power cable (see Figure 6.5). 

The PCI target controller exposes a set of registers (other than the standard PCI control 

registers) to its monitored system. The SM runtime module uses the registers to initiate 

copy operations to its local MD and issue an interrupt to the MD when the copying is done. 

The embedded processor runs an embedded OS (Snapgear Linux v2.6), handles interrupt 

requests of its monitored system, and uses the following software components to process 

the data. 

(i) Event queue. The event queue is a kernel module of the embedded OS of the MD 

that receives data from the monitored system. The event queue classifies data received 

from the monitored system and forwards the classified data to a proper event-processing 

engine. 

(ii) Event-processing engine. Event-processing engines are classified into two types: 

system and user. System engines process system-level events (e.g., sent by the default sys-
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tem agent). For example, a system engine monitors OS crash events and reports them to 

the control server. Another system engine monitors all user process crash events and for-

wards them to a user engine for failure detection. User engines process user-level events. 

A user engine receives the program flow graph of a target program from the control server 

when the program is launched, and traverses the DFA instances of the program flow graph 

as the program executes and generates event signature data (see Section 6.4.1(i) for the 

DFA dissemination process). We use multiple user engines to support the detection tech-

niques presented in Section 6.4. 

(iii) Actuator. Actuators take actions on the monitored system to avoid, detect, or re-

cover from failures. Actuators are classified into three types. One type controls the physi-

cal hardware of the monitored system (e.g., performs soft reboot to tolerate a transient 

fault). Another type sends commands to the system or user agents in order to execute them 

on the monitored system (e.g., make a checkpoint or migrate a user process between 

CPUs). The last type logs the processing results or reports the results to upper-layer MDs. 

 

6.4. Techniques 
 

Our detection techniques are classified into three types: 
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Figure 6.5. Software architecture of signature monitors and hardware architecture 

of a monitoring device. 

 

 



 

 

134 

 

6.4.1. Crash Detection 

We detect user process crash failures by checking the termination state (TS) of each moni-

tored process. 

(i) DFA dissemination. If an MPI program is launched, its first process sends the DFA 

file (p.dfa) to the control server and waits for an acknowledgment. The control server 

sends an acknowledgment after successfully disseminating p.dfa to all of its registered 

MDs. Our wrapper library forces all MPI processes to execute the MPI_Barrier function 

before actually executing the MPI_Init code. After the first process has completely dis-

seminated p.dfa and called MPI_Barrier, all MPI processes, including the first one, exit 

MPI_Barrier and continue their executions. As an alternative, we also provide a script that 

performs this DFA derivation operation before executing the mpirun command. 

(ii) Monitored process registration. Note that when a target program starts and calls 

MPI_Init(), our MPI wrapper library also extracts the process identifier and MPI commu-

nication rank of its host user process and send that information to the default system agent. 

The default system agent maintains a list of monitored processes of its host compute node, 

and reports the list to its local MD so that when one of the registered processes terminates, 

the local MD can recognize that it is a monitored process. 

(iii) Termination State (TS) checker. As the program runs and generates user signatures 

(e.g., call events of MPI APIs) in each MD, a user event-processing engine traverses the 

DFAs of all monitored processes of its monitored computer. If the process termination 

event is forwarded to this user engine, the engine checks the following to detect crashes. 

The checked condition is whether each monitored process terminates at one of the final 

states of its DFA. For example, in the DFA shown in Figure 6.4, “1” is the start state, and 

“6” is the final state. For the termination event of process P (do_exit event), if the current 

state of the DFA of P is a non-final state (not “6”), our TS checker declares the crash fail-

ure of P and reports this to the control server. 

Let us assume that there is a control-flow error which changes the condition of a branch. 

If such control-flow error also changes the sequence of MPI API call events of the pro-

gram and the changed sequence does not have a valid path in the derived program flow 

graph, such control-flow error is always detected by the TS check because the TS check-

ing naturally includes the transition destination (TD) checking. However, it is possible 

that some control-flow errors do not change the condition of any branch instruction. Such 

error is either benign or leads to a hang or an SDC failure. The following two subsections 

describe hang and SDC failure detection techniques. 
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6.4.2. Hang Detection 

Our transition time (TT) checker detects hang and timing failures of user processes by us-

ing the normal patterns in interoccurrence times of various granularities of user events. 

(i) Interoccurrence time. Our TT checker measures the interoccurrence times between 

any two consecutive user events. It measures them at one of the following granularities 

and keeps the max interoccurrence time per event pair group. 

(1) Hang-State-Node. In this case, the interoccurrence time is the transition time of 

each ordered pair of DFA states. One max transition time is kept for each source DFA 

state. The kept time of a state S is the maximum observed transition time from S to any of 

its legitimate destination states. 

(2) Hang-State-Thread. In this case, the interoccurrence time is the same transition time 

as in Hang-State-Node, but one maximum transition time is kept per state and per thread. 

Figure 6.6 shows the measured transition time distributions of eight out of sixteen pro-

cesses of the IS program running with its largest input dataset, where each graph is for a 

specific source DFA state. State “6” has no transition time data because it is the final state. 

We also do not use the transition time of the initial state “1” for error checking. One can 

define the transition time of the initial state as a time from a parallel process is created to 

the MPI_Init function is called by that process. In that case, the transition time of the par-

allel process can have a relatively large variation in practice. 

(a) There is a relatively large variation between different source states. For example, 

source state “4” always has a transition time between 1.5 and 2.1 seconds, while source 

state “7” always has a transition time of less than 3 ms. That shows that the source state is 

an effective classifier for learning about and enforcing the normal transition times. For ex-

ample, if we are using the short normal transition time pattern of state “7”, when no transi-

tion is made for ~20 ms, our TT checker declares a hang failure if the current state of a 

process is “7”, but does not declare a hang failure if the current state is “4”. 

(b) The transition times of the same source state are similar. In Figure 6.6, states “5” 

and “8” have the lowest peaks, but still, their transition times are numerically similar. In 

case of the state “5”, all the transition time samples are less than 310 ms. The similarity 

between threads is partly because of the SPMD nature of our benchmark programs, and 

the shortened communication intervals that come as a result of strong scaling. Based on 

this observation, we configured our TT checker to use the Hang-State-Node granularity in 

our experiment. 

(ii) Timer setup. When a new transition event occurs, our TT checker computes the 

timeout value as max{M∙Pmargin, Pmindl}, where M is the maximum transition time of the 

current state, Pmargin is the timeout margin parameter, and Pmindl is the minimum detection 
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latency parameter that includes the maximum reporting period of the SM runtime. Our TT 

checker sets a timer for the current state of each of the current processes by using the 

computed value. If the current process has a pending timer, our TT checker updates the 

timeout value of the pending timer. 

 (iii) Timeout. If a timer expires, it indicates that there was no transition in a monitored 

process within its maximum expected transition time interval, and our TT checker adds 1 

to the node hang process count. If the node hang process count is above a certain threshold 

(e.g., 25% of monitored processes in the node), our TT checker declares a user hang fail-

ure and reports this to the control server. It is our empirical observation that if an MPI pro-

cess hangs, all the other processes of the same program are also likely to experience hang 

failures in a short time interval (e.g., deadlock). Thus, by using the hang process count, 

our TT checker can manage the false positive ratio without harming the detection ratio. 

(iv) Adaptive management of timer. When a monitored user process terminates (do_exit 

event), our TT checker resets any previously set timer of the corresponding process. In 

practice, the detection latency and false positive ratio of our TT checker depend heavily on 

the Pmargin and Pmindl values. Our TT checker thus adaptively changes these values as it 

gains more confidence in M. In our prototype, the initial value of Pmindl is 30 seconds (con-

sidering the dispatch time of parallel processes), and Pmargin is 10. For each M, as it 

measures K more transition time samples, it reduces Pmindl by R percent down to 50 ms, 

and reduces Pmargin by R percent down to 2. Here, the low bound of Pmindl (50 ms) shall be 

double the length of the reporting period of the SM runtime. The minimum values of Pmindl 

and Pmargin set the minimum bound of the detection latency of our TT checker. K and R are 

 
Figure 6.6. Transition time distribution of IS in NPB; the legend label indicates the 

exiting state; y-axis is the probability density function (pdf). 
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the learning efficiency parameters. Larger values of K and smaller values of R make our 

TT checker more conservative that results in a smaller false positive ratio and a longer de-

tection latency for the early phase of monitoring. We set K to 1 and R to 1% in our exper-

iment. Users set the initial parameter values for each program execution and send them to 

MDs (e.g., as in DFA dissemination). At runtime, the user event-processing engine of 

each MD, which implements our TT checker, maintains one parameter value set per DFA 

state if the Hang-State-Node granularity is used. 

 

6.4.3. SDC Detection 

Our output value (OV) checker learns normal patterns in the communication output data 

values to detect SDC failures. 

(i) Output events. The MPI program uses certain types of MPI APIs to send messages 

to other MPI processes (e.g., MPI_Send, MPI_Reduce, MPI_Alltoall). Such an output API 

function sends an array of the same type of data, where the data type is specified as anoth-

er parameter of the API call. This API convention make our SM user agents (implemented 

as MPI wrapper library) possible to derive output data types at runtime without rewriting 

the application program. 

(ii) Value histogram. A user agent computes a histogram by using all the data array 

values of each output API call and reports the histogram to the local MD. The user agent 

computes the logarithm of each data value of the array (v) and converts the logarithm val-

ue to an index of a histogram bucket by using (6.1) where MM(v) = max{min{v, ∝}, β}. 

      
                 ∝    

                  ∝         
                        (6.1) 

Here, each histogram bucket keeps values with the same order of magnitude. base is 2 

or 10 in our experiment, depending on the data type. The ∝ and β parameter values also 

depend on the data type. If the data type is IEEE 754 single-precision floating point, the 

value range of each sample of data in v is approximately ±[2
-126

, 2
127

], and the value range 

of log2|v| is [-126, 127]. Based on that, ∝ can be set to less than 126 and β to less than 127. 

Considering the low probabilities of having extremely small or large values, we set ∝ to 

63 and β to 64 in our experiment, because the value range of I(v) then becomes [0, 2(∝+β) 

+ 1 = 255] (i.e., a compact and small memory space for encoding). 

(iii) Profiling. We obtain  ={H1, H2, …, Hn} by profiling a target program to use   

for SDC detection. Ht is the histogram of the t-th type of output data, and is an array of 

2(∝+β)+1 tuples where ∝ and β are parameters for the type t data values. Each tuple uses 

1 bit in static profiling and 2 bits in dynamic profiling. Each tuple of Ht indicates whether 

at least one value is seen for the corresponding histogram bin during profiling (“1”) or not 
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(“0”). 

Our OV checker declares an SDC failure if I(v) = i but Ht(i) = “0” where v is any output 

value seen during testing. The reason is that there is at least one new value that is at least 

an order of magnitude different from all the profiled values of the same program. 

We support four different profiling granularities of  . 

(1) SDC-Edge-Node. Ht(i) indicates whether there is at least one thread that can pro-

duce a value for the i-th histogram bin of Ht. Here, the type t is uniquely chosen through 

use of the data type and corresponding DFA edge of the MPI output operation. 

(2) SDC-Edge-Thread. This is similar to SDC-Edge-Node except that this keeps a dif-

ferent   for each process. 

(3) SDC-Dtype-Node and SDC-Dtype-Thread. These are similar to SDC-Edge-Node 

and SDC-Edge-Thread, respectively. The difference is that the type is chosen using only 

the data type of the MPI output operation. 

(a) Static profiling. Static profiling obtains   by running the same target program with 

input data that are the same or similar to that used in testing or with many common input 

data. IS that runs with the largest input dataset (“C” in NPB v2.3) produces 7 different 

types of histogram bins, where 6 are for unsigned short (bin count of 16 in our experi-

ments) and 1 is for single-precision floating-point data (bin count of 256). When SDC-

Dtype-Node is used,   has two histograms (see Figure 6.7(a) for a part of the histogram 

of unsigned short data). If SDC-Edge-Node is used,   has seven histograms (see Figure 

6.7(b) for a histogram part of unsigned short data from DFA state “7”). There is a large 

difference in bins between 46 and 53 because there are other DFA states generating output 

data of the same unsigned short type. Table 6.3(a) shows a part of the histogram data 

structure for Figure 6.7(a). 

(b) Dynamic profiling. We present a dynamic profiling technique that at runtime learns 

 
Figure 6.7. Profiled histogram examples of IS. 
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the normal output value ranges of a target program ( ). When an output MPI API func-

tion is called, a user agent first identifies the type of the output event (t). As in static pro-

filing, there are two different identification granularities. SDC-Edge has a histogram array 

for each pair of a DFA edge and an output data type. SDC-Dtype keeps an array for each 

output data type regardless of the DFA edge. 

At runtime, a user agent computes the histogram of the output data that are being sent. 

If the histogram is for the t that is first seen, Ht is initialized as a “0”-filled array. For each 

value (vx) in the given output data array, the agent computes ix=I(vx) and sets Ht(ix) to “1”. 

One Ht is maintained either per thread or per node. Thus, dynamic profiling also supports 

four different histogram tracking granularities similar to those of static profiling. 

Our dynamic profiling technique uses two parameters: distance and dynamic profiling 

time. If distance is d, this technique also marks d numbers of left and right neighbor bins 

of any histogram bin that is set to “1”. Here, marking means that if and only if such a 

neighbor bin is set to “0”, this bin is set to “2”. Figure 6.7(c) shows a part of the dynami-

cally profiled histogram of unsigned short type output produced by an edge exiting state 

“7” in IS when 20 ms has elapsed after the output of this type of data was first seen. Be-

cause of the short dynamic profiling time, it only captures the values in bins indexed as 44, 

45, and 50. Table 6.3(c) shows the part of the derived Ht of the histogram bins shown in 

Figure 6.7(c). The row “(c3)” shows Ht when the distance is 3 for the histogram in Figure 

6.7(c), where “2” indicates the neighbor bins. The histogram shown in Table 6.3, row 

“(c3)” has neither false positives nor false negatives, but could have false negatives if the 

distance is 4 due to the bin “54”. 

If a value for a neighbor bin is seen, this is not treated as an SDC failure, because it 

may be a result of insufficient dynamic profiling. When a new type of a histogram is first 

produced, our technique creates a timer and sets its timeout value to the given dynamic 

profiling time. Until the dynamic profiling timer expires, our technique does not declare 

an SDC failure, even if there is v such that I(v) = i but Ht(i) = “0”. If the timer expires, our 

technique then starts to declare SDC failures, because profiling has been done for a suffi-

cient time and the confidence in the obtained   has become high enough according to the 

given dynamic profiling time value. We optimize the dynamic profiling time parameters 

Table 6.3. A Part of Histogram of IS from Index 44 to 56. 

Bin# 44 45 46 47 48 49 50 51 52 53 54 55 56 

(a) 1 1 1 1 1 1 1 1 1 1 0 0 0 

(c) 1 1 0 0 0 0 0 0 0 0 0 0 0 

(c3) 1 1 2 2 2 2 1 2 2 2 0 0 0 
* (a): SDC-Dtype-Node, (c): SDC-Dtype-Node (20 ms), (c3): (c)+Distance 3 
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of eight parallel programs in Section 6.6 and show that longer distances need shorter dy-

namic profiling times. 

 

6.5. Experimental Methodology 
 

We have developed a prototype system of the presented framework and techniques. We 

measured the performance overhead of the system using the prototype, and performed a 

set of fault injection experiments to evaluate the fault detection coverage and latency. 

(i) Prototype. Our prototype of the presented system consists of two compute nodes, 

one header node, and one control node. Each compute node has two 6-core 2-way SMT 

processors (i.e., x86 ISA) with 32GB of DDR3 DRAM. Both 10Gbps SDR InfiniBand 

(RDMA) and 100 mega bps Ethernet interfaces are used to connect these two nodes. Each 

node executes a Linux kernel v2.6.39 and uses MPICH2 v1.4 as the MPI middleware, 

GCC v4.3.4 as the C/C++ compiler, and Intel Fortran compiler v12.1 as the Fortran com-

piler. 

(ii) Experimental setup. We used NPB v2.3 as the benchmark suite, which included one 

C program and seven Fortran programs. Each compute node had 24 logical processors, 

and each pair of logical processors shared the processor resources due to the SMT archi-

tecture. In each node, we ran 8 MPI processes by statically binding them to specific logi-

cal processors in such a way that no MPI processes shared the same SMT logical proces-

sor. 

(iii) Fault injection framework. We extended a software-implemented fault injection 

framework [YKI09] in order to emulate an error in a specific MPI process. As fault injec-

tion targets, we randomly selected a set of instructions to set breakpoints (about 700 to 

2,200 instructions, depending on the program code size). We set a breakpoint either right 

after a program launch or after a certain time of execution (e.g., to analyze how the detec-

tion latency changed as a program ran for a longer period of time). We emulated a random 

single-bit error in a randomly selected processor register just before the selected instruc-

tion was first executed after the breakpoint was set. The studied registers were general-

purpose (eax, ebx, ecx, and edx in x86 ISA) and special-purpose registers (esi, eflags, ds, 

esp, and eip). Only a part of the selected instructions were actually executed (i.e., faults 

were activated) during our experiments. We use only the activated fault samples (2,352 

from 8 programs) in our evaluation. 

For MPI processes, we add a software component to the breakpoint-based injector. 

The component selects a specific MPI process as a fault injection target. The added target 
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selector component is an MPI library wrapper that instruments two MPI functions: 

MPI_Init() called when each MPI process starts, and MPI_Finalize() called just before 

each MPI process terminates. The code added to MPI_Init() reads the target process selec-

tion information from a file and checks whether the identifier of current MPI process (or 

thread) is the same as the specified one. In the implementation, we use the MPI communi-

cation rank to specify an MPI process. If current thread is the target, this added code ex-

tracts the process identifier of the current process in OS. This code writes the extracted 

identifier and other fault injection command information to the fault injector module by 

using the proc file system interface. The code added to the MPI_Finalize() function checks 

the injection results by reading the injector status information via its proc file system inter-

face (e.g., whether the fault was activated). 

 

6.6. Results 
We evaluate the detection coverage, detection latency, and performance overhead of the 

presented techniques. Coverage is defined as 100% minus the percentage of faults that 

evade the protection and lead to failures. Detection latency is the time from the injection 

of a fault to the first detection of a resulting failure by the control server. 

 

6.6.1. Fault Detection Coverage and Latency 

Figure 6.8 summarizes the fault detection coverage. “A” indicates that only the baseline 

fault detection techniques were used. On average, ~59.5% of faults were not manifested 

(i.e., benign faults). In the figure, the y-axis starts from 40%, as all faults below 40% were 

not manifested. Among the rest of the manifested faults, 30.6%, 5.1%, and 4.8% led to 

user crash, user hang, and SDC failures, respectively, on average. 

When all the presented techniques were used in tandem (technique labeled “D”), the 

average fault detection coverage was 98.6%. When the TS and TT checkers were only 

used, the average detection coverage was 95.2%. Specifically, the TS checker detected all 

user crash failures, and the TT checker alone detected all user hang failures that were 

found and tested in our experiments. However, the presented techniques missed a non-

negligible portion of SDC failures. 

(i) Crash. The TS checker detected all the found user process crash failures (see Figure 

6.8(B)). All the used benchmark programs outputted the execution result before calling 

MPI_Finalize. PFE marked all the transition targets of that MPI_Finalize event as final 

states. Thus, if a process crashes before calling an MPI_Finalize, the TS checker always 

detects such crash failures. It is possible for a process to successfully output the result data 
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but subsequently crash before completely calling an MPI_Finalize. The TS checker still 

detects such crash failures, although the detections are false positive. Because a fault must 

occur between a few instructions (e.g., from the last instruction of the output operations to 

an MPI_Finalize call instruction) in order to cause such crash failures, the TS checker has 

an extremely small false positive ratio, and we did not observe any cases in our experi-

ments. If a process crashes after calling an MPI_Finalize but before completely terminat-

ing itself, the TS checker, by design, does not detect the failure. The reason is that we con-

sider such crashes to be normal executions (or SDC failures), because the process has pro-

duced the result data and transitioned to a final state. It is possible that the output is cor-

rupted, which is however is no longer a detection target of the TS checker but of the SDC 

detection techniques. Note that if an application program terminates early due to a detec-

tion of an error by its built-in error detector, the TS checker does not detect this event, be-

cause the execution still follows the design and implementation of a program. In such a 

case, the application outputs an error message and immediately returns the shell prompt to 

the user. 

Figure 6.9 (“Crash”) shows the cumulative probability distribution of the detection la-

tencies of all crash failures. The average of the crash detection latency was 117 ms. The 

TS checker detected 95% and 99% of crashes before 56 ms and 710 ms, respectively. That 

detection latency includes the extra time to process and send events to the control server, 

which is a reason why the detection latency is slightly longer than for the baseline detec-

 
Figure 6.8. Fault detection coverage 

* “A” in x-axis is for baseline, “B” is for TS, “C” is for TS+TT, and “D” is for TS+TT+OV. 
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tion techniques of OS [GKI04][YKI09]. 

(ii) Hang. One of our TT checkers (configured as Hang-State-Node) detected all hang 

failures (see Figure 6.8(C)) in our experiments. All the observed hang failures changed the 

control flow of at least one process in a way that made the process stop calling MPI API 

functions. In the most common case, first a process that had experienced a hang failure 

stopped calling MPI API functions, and then all the other processes of the same program 

stopped calling MPI API functions, because of their communication dependencies. Anoth-

er common case was that processes in only one node crashed, while processes of the same 

program on the other compute nodes did not. In that case, all other processes were likely 

to stop, because of their communication dependencies on the crashed processes. However, 

the header node did not always recognize such crash failures of a compute node. 

By checking the interoccurrence time between consecutive MPI API call events, the TT 

checker alone could detect all hang failures in our experiments. We found that checking 

the transition destination state did not increase the fault detection coverage. One reason is 

a relatively rare execution frequency of MPI API function calls (e.g., coarse-granularity 

monitoring), while in practice an instruction or a basic block is likely to form an infinite 

loop if there is a transient fault. 

In this chapter, hang failure detection means that hang failure is eventually detected 

within our monitoring time. A technical challenge is to minimize the detection latency and 

false positive ratio. We selected the parameter values of the TT checker (given in Section 

6.4.2) in such a way that the TT checker had no false positives with the used benchmark 

programs and still had a short detection latency. The TT checker gradually reduced its 

timeout interval as the monitoring time increased and it collected many more transition 

time samples. 

We evaluate the hang detection latency as a function of the fault occurrence time (i.e., a 

 
Figure 6.9. Cumulative error latency distribution. 
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wait time to set breakpoints). Figure 6.9 also shows the distributions of the hang detection 

latency, where “Hang (0s)” refers to the times when the breakpoints were set right after a 

program was launched, and “Hang (10s)” refers to the times when the breakpoints were 

set after a program had executed for 10 seconds. Note that some breakpoints of “Hang (0s) 

” were triggered after 10 seconds, as the breakpoint instruction is infrequently executed, 

and injecting the same type of faults (e.g., the same breakpoint, register type, and error 

bitmask) at different time points does not always lead to the same types of failure (e.g., 

some fault is not activated). In “Hang (0s)”, the average, 95th percentile, and 99th percen-

tile of the detection latencies were 5.4, 29.4, and 137.8 seconds, respectively, and in 

“Hang (10s)”, they were 2.3, 21.9, and 42. This shows that the TT checker quickly learned 

the normal behaviors and set relatively tight timeout intervals for many DFA states. 

The presented hang detection technique differs in the following ways from the previous 

techniques. In a hang detection technique that embeds heartbeat generation codes in the 

source code, the heartbeat generation code sends a heartbeat to another computer node or 

resets its local watchdog timer. This technique not only needs a source code modification 

but also loses detection coverage in many cases. For example, if the heartbeat generation 

code is embedded inside a loop, this technique cannot detect a hang failure that repeatedly 

executes the loop. Another technique uses the execution instruction count instead of the 

execution time. Instruction counts are useful if multiple user processes run in a time-

shared manner. Note that supercomputers and high-performance distributed computer sys-

tems run only one program at a time on each computer node. Instruction counts must be 

explicitly measured and reported by an entity residing in the monitored computer, while 

the execution time is universally known fact (i.e., something an external monitoring de-

vice naturally knows). 

(iii) SDC. The measured SDC failure ratios of BT, CG, EP, FT, IS, LU, MG, and SP 

were 6.6%, 0.8%, 7.0%, 3.2%, 5.0%, 5.3%, 0%, and 10.2%, respectively. The output veri-

fier of MG found no SDC failures in our experiments because MG is an approximation 

 

Figure 6.10. SDC detection ratio; x-axis is benchmark program. 
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algorithm, and its output verifier allows relatively significant value errors. 

(a) Static profiling. In static profiling, the average SDC detection ratios of SDC-Dtype-

Thread, SDC-Dtype-Node, SDC-Edge-Thread, and SDC-Edge-Node were 41.2%, 33.3%, 

65.7%, and 45.5%, respectively. Finer-granularity output data checking realized higher 

detection ratios. For example, SDC-Edge-Node had 12.2% higher coverage than SDC-

Dtype-Node, clearly showing the benefits of tracking program execution phases and en-

forcing different error conditions. IS clearly exemplifies that. In IS, SDC-Edge-Thread 

detected all SDC failures, but both SDC-Edge-Node and SDC-Dtype-Thread detected none. 

For example, normal values of some processes (or states) are abnormal in some other pro-

cesses (or states) that can only be distinguished by the finest-grained checking. 

The ratios shown in Figure 6.10 reflect profiling done using the same (or highly similar 

) input data; the program is deterministic in terms of its output data values. There are 

many scenarios in which the same program runs many times with similar input data (e.g., 

weather forecasting) in parallel and distributed systems. If a target program runs with new 

unknown input data, one may profile the value histograms by using multiple known com-

mon input datasets and use the OR operator to merge the histograms of each dataset. In 

such a case, if the histogram profiling is done for an insufficient number or combination of 

input datasets, finer-grained checking can have higher false positive ratios. As the profil-

ing is done for many more input datasets, both the detection coverage and false positive 

ratio go down, which has been well-studied for another value range checking technique 

[YPS+11]. 

(b) Dynamic profiling. The presented dynamic profiling is useful in providing detection 

for a new program that runs with a new input dataset. Figure 6.11(a1) and 6.11(a2) show 

the normalized dynamic profiling time as a function of the distance parameter value. Here, 

the normalized dynamic profiling time is the ratio of the shortest execution time needed to 

obtain the histograms equivalent to the statically profiled histograms, and the program 

normal execution time. For the same distance, SDC-Dtype-Node in general requires less 

dynamic profiling time than SDC-Edge-Node does, because SDC-Dtype-Node maintains a 

smaller number of histograms and thus uses many more samples per histogram than SDC-

Edge-Node does. In SDC-Dtype-Node, if the distance was ≥30%, all the benchmark pro-

grams could obtain the golden histograms in negligibly short dynamic profiling times (e.g., 

<1 ms). When SDC-Edge-Node was used and the distance was 0.1%, three programs (CG, 

EP, IS) required <1.5% of the execution time for dynamic profiling. Three other programs 

(FT, MG, SP) required relatively short dynamic profiling time when the distance was 1% 

or 5%. The remaining two programs (LU, BT), however, required a long dynamic profil-

ing time if the distance was less than 10%. 
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Figure 6.11(b1) and 6.11(b2) show the SDC detection ratio as a function of the distance 

parameter. Note that this gives the low bound of the SDC detection ratio for a given dis-

tance parameter value. In general, SDC-Edge-Node gives a higher detection ratio than 

SDC-Dtype-Node because of its finer-grained checking. In SDC-Edge-Node, when the dis-

tance was 0.1%, four programs (EP, FT, LU, SP) maintained relatively high detection ra-

tios. Among the four, FT and LU still maintained the high detection ratios when the dis-

tance was increased to 20%. Considering the tradeoff between the distance and the dy-

namic profiling time, at least three programs (EP, FT, LU) can take advantage of this dy-

namic profiling. 

Figure 6.9 also shows the cumulative detection latency distribution of SDC failures by 

the dynamic profiling technique with the distance parameter of 0.1%. SDC detection la-

tency is much longer than the crash and hang detection latencies. The majority of SDC 

detection latencies were longer than 1 second in our experiments because of the time taken 

by errors to propagate to and show up as communication output data. The average SDC 

detection latency was 44 seconds. 95% and 99% of SDC failures were detected within 

202.5 and 260.8 seconds. All the observed SDC failures were detected within 2,500 se-

conds, which is close to the total execution time of some programs. The reason is that 

some SDC errors were detected later, when the program exchanged the final output data at 

the end of its execution. This implies that in order to further reduce the SDC detection la-

 

           
(a1) SDC-Dtype-Node                       (a2) SDC-Edge-Node 

           
(b1) SDC-Dtype-Node                       (b2) SDC-Edge-Node 

Figure 6.11. Distance vs. Profiling time ((a1) and (a2)) and Distance vs. SDC detection 

ratio ((b1) and (b2), no data for MG) 

* x-axis is the distance relative to the total histogram bin count (%). 
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tency, one can monitor the types of events that are executed more frequently than the 

communication outputs. 

Failures of MDs do not impact their host application behavior because MDs are im-

plemented as separate hardware devices. Failures of MDs can be detected using existing 

hierarchical heartbeats if control servers are organized in a tree-like structure by using the 

existing control networks for heartbeat reporting. 

There is an engineering tradeoff between checking frequency and detection latency. 

The presented techniques are still part of that engineering tradeoff. However, long detec-

tion latency failures in the presented techniques are not difficult to recover because the 

presented techniques isolate the failures to each MPI process. Specifically, SDC failures 

are detected before they propagate to another MPI process. Although it may take a long 

time to detect, still the recovery technique can tolerate the detected SDC failure by locally 

restarting one MPI process for example without having to restart all other MPI processes. 

 

6.6.2. Performance Overhead 

Table 6.4 shows the performance overhead of the presented techniques, where “I” refers to 

the overhead of the crash and hang detection techniques, and “II” refers to that of the SDC 

detection techniques. The average performance overhead of “I” was 1.8%, which is much 

lower than that of “I+II”, 8.4%, because the histogram calculation uses computation- and 

memory-intensive operations and produces a relatively large volume of data to report to 

the local MD. 

The performance overheads were exceptionally high in CG, IS, and MG. For “I” alone, 

these three programs have higher overheads than the rest of the programs. This indicates 

that these three programs call MPI API functions more frequently. Among the frequently 

called functions, some were communication output APIs. The performance overhead of 

“II” was higher in IS than CG or MG because of the larger output data size (and/or higher 

execution frequency of output MPI APIs in general). We manually visualized the execu-

tions of IS and EP using the MPE and Jumpshot tools. IS frequently uses the 

MPI_Allreduce and MPI_Alltoallv operations during its execution in order to exchange 

different pieces of data among all pairs of parallel processes, and the time spent on 

MPI_Alltoallv forms >50% of the total execution time (showing the significance of out-

Table 6.4. Performance Overhead. 

 BT CG EP FT IS LU MG SP AVG 

I* 0.1% 1.2% 0.9% 0.6% 6.6% 0.2% 5.1% 0.1% 1.8% 

I+II* 0.6% 14.5% 1.0% 1.3% 32.6% 3.8% 10.9% 2.6% 8.4% 
* I: Call Event Monitoring, II: Output Data Value Monitoring 
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puts). On the other hand, EP uses no MPI API functions to perform computation (because 

EP is an embarrassingly parallel program) and uses MPI_Allreduce and MPI_Barrier 

functions only once to merge the computation results of all processes. This explains why 

EP had a low overhead of 1%. 

There are many existing techniques that can significantly reduce the communication 

overhead between SMs and their local MD (e.g., DMA). These not only reduce the com-

munication overhead but also allow us to offload a larger portion of detection operations 

(e.g., histogram) to MDs. Some techniques can reduce the impact of SM operations on the 

parallel program performance (e.g., jitter mitigation). 

 

6.7. Related Work 
 

At least two types of existing fault detection techniques are related to the presented 

framework and techniques (see the summary in Table 6.5). 

(i) Program-level embedded checker is error detection code embedded in monitored 

software. The placement and customization of error detection code can be automatically 

done if compiler-based techniques are used. As summarized in [YPS+11], such techniques 

typically incur >15% performance overhead. Many of them rely on static profiling data. 

[YPS+11] showed ~7 well-chosen input datasets are sufficient to control the false positive 

and negative ratios in parallel programs. In this chapter, we explored a dynamic profiling 

technique that profiles the normal value patterns of a program at runtime. Our approach is 

based on the fact that the same piece of program code is likely to produce similar output 

values regardless of how long it has been executed. 

ABFT [HA84] is a superior example of an embedded checker, because it offers high 

detection coverage and low runtime overhead in fundamental linear algebra operations. 

Recently, ABFT was extended for other matrix operations (e.g., sparse matrix multiplica-

tion [SKB12], dense linear system solver). ABFT however requires a significant amount 

of manual effort to rewrite application programs, while the presented framework automat-

ically customizes the failure detectors. Not only that, program-based detectors share HW 

with monitored programs while the presented framework splits them (e.g., to isolate HW 

faults to each other). 

(ii) External checker uses an observer that measures specific types of execution signa-

tures of the target programs (e.g., OS event or hardware performance counters) and sends 

them to an external checker for analysis and monitoring. The observer can be embedded in 

the target program source code or can be an extension of runtime software (e.g., JVM ex-
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tension). An external checker can run on the same computer node as the monitored pro-

gram or another computer node. Some uses statistical clustering to detect abnormal behav-

ior of the target program [AMA+11]. Some other [CR07] uses the formal properties of a 

target program and verify the properties at runtime. 

Our presented technique belongs to this type; specifically, it is most similar to watch-

dog processors. A watchdog processor checks the control flow of a program by snooping 

on the memory bus. Some previous work presented an extended watchdog processor to 

improve the coverage [MM88] and to support multitasking systems. Our presented system 

can be treated as an extension of watchdog processors for the commodity computers that 

use large-size on-chip caches and many-cores. Note that the control-flow checking of 

watchdog processors generally offers higher coverage than symptom-based techniques 

Table 6.5. A review of existing hardware fault detection techniques. 

Technique Description Comment 

Full  

duplication 

Creates spatial and/or tem-

poral replica of program 

(e.g., DMR, re-execution)  

A necessary technique for high availability 

systems but is suitable for COTS due to 

hardware change or large energy over-

heads (Overhead >100%, Coverage 

~100%, Intrusiveness high) 

Optimized  

duplication 

Optimizes the execution of 

the replica using parallelisms 

in HW (e.g., EDDI, SWIFT) 

The most effective in VLIW and supersca-

lars but less effective in fully-optimized 

parallel programs (Overhead 40-80%, 

Coverage ~99%, Intrusiveness medium for 

SW technique) 

Selective  

protection 

Selects a set of computer 

states or events that are likely 

to show the presence of er-

rors (e.g., selective duplica-

tion, program likely invari-

ants, processor symptom) 

Detects many common failures efficiently 

but such states or events do not always exist 

(e.g., for data errors) and often sensitivity 

of  program states depends on how they are 

used (Overhead 30-70%, Coverage 70-

90%, Intrusiveness medium) 

Manual  

customized  

protection 

Manually customizes soft-

ware algorithm or fault tol-

erance techniques for fault 

detection and/or recovery 

(e.g., ABFT) 

Typically shows the highest efficiency if a 

program uses specific types of operations 

(e.g., linear algebra) and such manual de-

velopment cost is acceptable (Overhead 

<5%, Coverage >95%, Intrusiveness high) 

External  

monitoring 

with artifi-

cial signa-

tures 

Offloads detection to an ex-

ternal detector of program 

and uses artificially collected 

program execution events 

(e.g., watchdog, runtime veri-

fication, anomaly-based) 

Detects many errors if the semantic gap to 

monitored software is well managed, and if 

the offloading is done to a separate HW, 

detection operation itself becomes reliable 

(Overhead <20%, Coverage 70-90%, In-

trusiveness low) 
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(that can rarely detect SDCs because SDCs are due to corruptions in application data). We 

further present heuristics and value clustering techniques to capture the behavioral and 

semantic execution patterns of applications and detect SDCs. We also show that middle-

ware API calls are effective signatures to detect software failures. 

 

6.8. Summary 
 

We have designed and implemented a software failure detection framework for COTS-

based parallel computers. The framework splits the hardware of monitored and monitoring 

devices in order to isolate hardware faults to each other. This architectural design helps us 

to use powerful failure detectors without directly using the computing power of monitored 

devices. The techniques detect many non-benign hardware faults (98.5%) with a small 

performance overhead (8.4%) because the techniques recognize the execution phases of 

applications using the statically derived program flow graphs, and learn and use the nor-

mal behavioral and semantic execution patterns of each execution phase of applications. 

Our prototype implementation and evaluation results demonstrate feasibility of the pre-

sented framework and techniques and justify large-scale experiments. 
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Chapter 7.  

FDX: Fault Tolerant, Programmable Voter 

(Architectural Support for Error Detection) 
 

 

This chapter presents a fault-tolerant, programmable voter architecture for software-

implemented N-tuple modular redundant (NMR) computer systems. Software NMR is a 

cost-efficient solution for high-performance, mission-critical computer systems because 

this can be built on top of COTS devices. Due to the large volume and randomness of 

voting data, software NMR system requires a programmable voter. Our experiment using 

a simulated fault injector shows that voting software that executes on a processor has the 

time-of-check-to-time-of-use (TOCTTOU) vulnerabilities. In order to address the prob-

lem, we present a special-purpose voter processor and its embedded software architec-

ture. The processor has a set of new instructions and hardware modules that are used by 

the software in order to accelerate the voting software execution and address the identi-

fied reliability problem. We have implemented the presented system on an FPGA plat-

form. Our evaluation result shows that using the presented system reduces the execution 

time of error detection codes (commonly used in voting software) by 14% and their code 

size by 56%. Our fault injection experiments validate that the presented system removes 

the TOCTTOU vulnerabilities. This is achieved by using 0.7% extra hardware in a base-

line processor.
 34

 

 

 

7.1. Motivation 
 

Physical space exploration uses human or robotic spaceships to explore outer space (e.g., 

Moon, Mars, and beyond). As the exploration distance increases, autonomous operation 

and on-board data processing become an essential part of robotic spaceships. These oper-

ations are computation- and memory-intensive and require a high-performance, low-

power computing platform. Thanks to the rapid advances in COTS devices, COTS-based 

                                                           
34

An extended version of this chapter was published: K. S. Yim, V. Sidea, Z. Kalbarczyk, D. Chen, and R. 

K. Iyer, “A Fault-Tolerant Programmable Voter for Software-Based N-Modular Redundancy,” in Proceed-

ings of the IEEE Aerospace Conference, 2012. 
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platforms can satisfy these requirements with small design and development costs. The 

use of high-performance COTS chips in spaceships and other mission-critical systems, on 

the other hand, increases concerns about system reliability. This is due to high probabili-

ties of transient faults as well as intermittent and permanent faults in these chips. 

The use of high-performance COTS chips in spaceships, on the other hand, increases 

concerns about system reliability. This is due to high probabilities of transient faults as 

well as intermittent and permanent faults in these chips. A transient fault is caused by 

ionizing radiation, particle strike, or other external interference. The induced error can 

propagate and corrupt a software state but does not cause permanent damage to the hard-

ware. In an experiment [CR11], injecting 50 MeV protons to three COTS devices caused 

data loss and device crash, but no symptom was observed that implied permanent damage 

of the devices (e.g., a high current condition). This type of faults is usually characterized 

as lasting up to one clock cycle. With the scaling of manufacturing technology, transients 

last longer because there is less space for the particle strike energy to dissipate. In current 

technology, transients can last up to two clock cycles or even longer [MM10]. If scaling 

continues, there is a high chance this duration will become longer. An intermittent fault 

has a duration that ranges between a few to billions of clock cycles [SSC03]. This fault is 

caused by various physical characteristics of chips (e.g., irregularities in chip voltage and 

temperature). Transistors become more and more susceptible to such physical character-

istics with the scaling of manufacturing technology and the integration of many transis-

tors into a chip (e.g., for multi-cores and large caches). A permanent fault occurs as a re-

sult of a manufacturing defect or excessive use of transistors. Such excessive use de-

grades the reliability of transistor materials. This fault behaves like a long duration inter-

mittent fault, but it permanently compromises the functionality of the transistors. Both 

intermittent and permanent faults are more common in high-density chips because of 

their high utilization and low operating voltage. 

One of the effective ways of synthesizing a reliable computer system from unreliable 

COTS components is N-tuple modular redundancy (NMR). NMR can be implemented in 

software without a major modification in the COTS components. For example, N identi-

cal copies of the same program can be run, with each copy executing on a separate com-

puting module. Here, the time between two consecutive voting operations is generally 

longer than it is in hardware-implemented NMR. In order to reduce the voting interval 

time, software NMR can not only use the final program output data but also the interme-

diate program states as voting data. Intermediate states include large size data (e.g., vec-

tor or matrix of floating-point data). This makes hardware NMR voter unsuitable for 
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software NMR systems because hardware NMR voter uses only one bit or one word 

[SAC+99] as voting data. 

In software NMR, the complexity of the voting algorithm is relatively high. If the vot-

ing data includes floating-point numbers, the voting algorithm should allow a certain de-

gree of value errors because floating-point arithmetic is neither associative nor distribu-

tive. Also, voter data may include execution time and platform-dependent information 

that should not be directly compared with each other. Such a complex voting algorithm 

needs a programmable voter. However, developing a highly reliable programmable voter 

is challenging. A processor-based implementation (to offer programmability) generally 

has lower reliability than an ASIC-based implementation due to the large size of the 

hardware, high fault sensitivity (e.g., sequential circuits [SVK+05]), and the difficulty of 

verifying the design. This reliability problem of programmable voter is an important chal-

lenge because voter is the single point of failure. 

In this chapter, we analyze the effectiveness of software-implemented error detection 

techniques under the presence of transient, intermittent, and permanent faults. We con-

duct fault injection experiments using a fault injector that is specifically developed to 

emulate errors induced by various types of faults in hardware. We observe the following 

problem: 

 Time-of-check-to-time-of-use (TOCTTOU) vulnerability. Almost all software-

based error detection codes check a system state before the state is used. If a 

hardware fault occurs after the checking (time-of-check) but before the checked 

data is used (time-of-use), this fault can evade the checking and harm the reliabil-

ity or data integrity of voting software. 

In this chapter, we present a fault-tolerant, programmable voter architecture for soft-

ware NMR systems. The presented architecture consists of a special-purpose processor 

and its embedded software. The processor and software implement the following two 

main techniques: 

 Removal of the TOCTTOU vulnerabilities. The TOCTTOU vulnerabilities are re-

moved by novel instructions. These new instructions make the time-of-check and 

the time-of-use the same. Specifically, a target voting program is replicated, and 

both replicas execute on top of the special-purpose processor in sequence. The 

voting result data produced by these two replicas are compared and voted on us-

ing a new specialized instruction that does not suffer the TOCTTOU vulnerability. 

 Accelerating the execution of voting software. New instructions are designed to 

speed up common software-based error detection codes. For example, a new in-

struction saves thread-dependent error checking data in special-purpose processor 
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registers. Another custom error checking instruction directly uses these saved data 

without re-computation or additional memory access. The saved data are copied 

to/from memory only during the context switching operations of user processes. 

We have implemented a prototype on an FPGA platform by using a SPARC v8 pro-

cessor as a baseline. The hardware area overhead of the presented architecture is 0.7% of 

the baseline processor size. The evaluation shows that using the presented instructions 

reduces the execution time of the five types of software-based error detection codes by 14 

% and their code sizes by 56%, on average. Our fault injection-based validation experi-

ment shows that the presented voter system does not have the TOCTTOU vulnerabilities. 

The rest of this chapter is organized as follows. Section 7.2 describes the software 

NMR systems and their voter designs. Section 7.3 reviews the related works, and Section 

7.4 analyzes the reliability problem of programmable voters. Section 7.5 presents our 

fault-tolerant voter processor and software with the three key techniques. Section 7.6 de-

scribes the prototype implementation. Section 7.7 performs validation experiments to an-

alyze the provided error detection coverage. Section 7.8 evaluates the reductions in the 

performance and memory space overheads. Section 7.9 discusses other potential applica-

tions of the presented techniques. Section 7.10 reviews the related works, and Section 

7.11 summarizes. 

 

7.2. Background 
 

This section describes background information of software NMR systems that can be 

built using COTS devices. 

 

7.2.1. Software N-tuple Modular Redundancy 

Space-borne software has strong reliability and availability requirements. Fault tolerance 

computers designed for such software use a high degree of redundancies in the hardware 

and/or software [SFA+07]. Software-based redundancy is preferred to hardware-based 

redundancy because that can be implemented by a system-level redesign (e.g., of the 

motherboard) without any intrusive chip-level modification. 

Software NMR creates redundancies in space, time, or both dimensions. Figure 7.1 

shows a spectrum of software NMR systems that use space-dimension redundancies 

where the systems are classified by the location of its voter software: (a) on top of a pro-

cessor of a computer node that executes a replica, (b) on top of a separate chip or card in 

a compute node, or (c) on another node. The architecture (a) does not need an extra com-
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puting module for the voter, however the execution of voting software perturbs the exe-

cution of the replica programs; this is especially critical if the replicas use frequently syn-

chronized message-passing threads [TEF+05]. While the architectures  in (a) and (b) can-

not tolerate a node failure, the architecture in (c) can, but this costs an extra delay in the 

communication time between replicas and its voter. 

The reliability of software NMR is lower than that of the simplex (i.e., executing only 

one program instance) after a certain time. We analyze the tradeoff point using field 

measurement failure rate data. The reliability of NMR is                  
  

          
         , where n is the number of replicas, Rv(t) is the reliability of the 

voter, and Rr(t) is the reliability of a replica. Let us assume that the replicas and voter fol-

low the exponential failure rate distribution with the mean-time-to-failure (MTTF) of 1 

and 100 time units, respectively, (i.e., MTTFr=1, MTTFv=100). The threshold point where 

the simplex configuration becomes more reliable is ~0.75 × MTTFr for TMR and ~2 × 

MTTFr for NMR (n=5). The time point at which the reliability becomes less than 0.99999 

is ~0.00025 × MTTFr for TMR and ~0.001 × MTTFr for NMR (n=5). In order to calculate 

the actual MTTFr and MTTFv values, let us assume that the average failure rate of DRAM 

is about 25000 FIT (failure in time per billion device hours) per megabits [SPW09]. For 

one bit, this failure rate is 0.025 FIT (i.e., MTTFbit = 4.56 × 10
6
 years). An SEC-DED 

ECC can correct one bit-error per data word, where c-bits are used as ECC bits to protect 

a data word of w-bits. MTTF of this ECC-protected memory system is            

         , where M is the number of words in the memory [WQR+04]. Using this 

formula, MTTF of 1GB DRAM protected by an SEC-DED ECC with w = 32 and c = 7 is 

calculated as ~299.9 days. 

This shows that when TMR is used, the voting interval shall be shorter than ~1.8 

hours to provide 0.99999 of system reliability. Many target programs complete before 

this time interval if the program outputs are used for spacecraft control operations, for 
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Figure 7.1. A spectrum of software-based NMR systems as a function of voter soft-

ware location. 
* SW is software, CS is chipset, and NIC is network interface card 
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example. For a target program that does not complete within this interval, the intermedi-

ate states of the program shall be checked by the voter at least at every ~1.8 hours. 

 

7.2.2. Programmable Voter 

Software NMR voter compares the intermediate states of replicas of a protected program 

if its voting interval (i.e., selected to provide a certain reliability) is shorter than the pro-

tected program execution time. In general, intermediate states have large size and are not 

exactly the same between replicas of the same program. A programmable voter (e.g., vot-

ing software on top of a processor) is more efficient for implementing checkers of inter-

mediate states than a hardware voter [KS01]. This is because of the relative easiness of 

handling large volumes of voting data and customizing the voting algorithm to cope with 

the randomness in voting data when a programmable voter is used. 

Hardware voter uses only one bit or one word [MM00] as voting data. Extending a 

hardware voter to check a large volume of intermediate data would significantly increase 

its design complexity and lower its reliability especially if the voting data has random-

ness as described follows: 

(a) Errors in floating-point data. When target software is implemented using parallel 

threads, non-deterministic execution behavior of such parallel threads can make some 

portion of the program output data random. For example, if all parallel threads send float-

ing-point data to a thread for summation, the arrival order of the sent floating-point data 

varies depending on various runtime conditions. Because floating-point addition is not 

associative, this can produce different sum values. This characteristic requires floating-

point programs to allow for a certain amount of error in computation results (e.g., <0.1% 

value error [YPS+11]). Thus, a voter that checks whether two floating-point sum values 

are the exact same cannot find a matching condition even if the compared sums only dif-

fer by what is allowed by the target software output value error margin. 

(b) Data that depend on runtime conditions. If the output data (or intermediate states) 

of replicas include some random data, the voter should exclude these data from the com-

parison. Since the presence and location of such random data in program outputs (or in-

termediate states) is not fixed in all software but depends on target software, a software 

voter can handle this more effectively than a hardware voter. Here, random data includes 

time information (e.g., date and time of execution) and platform information (e.g., pro-

cess and node identifiers). 
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7.3. Classification 
 

This section analyzes software-implemented error detection techniques used as part of a 

programmable voter. We classify the assembly code of an example software voter pro-

gram and classify the existing software-implemented error detectors into five types. 

 

7.3.1. Error Detectors 

Let us assume a floating-point program that produces a matrix as the output. A possible 

voting algorithm is: checking the height and width of the output matrixes from different 

replicas, comparing the values of each matrix element (i.e., whether the absolute differ-

ence of values in the same location of the output matrixes is less than a threshold value), 

and checking whether all elements satisfy the compared condition (e.g., if one element 

does not satisfy the condition, the voting fails). 

This simple voting algorithm uses three types of software-implemented error detec-

tors that are: checking the equality (e.g., matrix height with a constant value), checking a 

value range (e.g., value difference is less than a threshold), and checking bitmasks (e.g., 

whether all comparison results are true if the results are stored as a stream of bits). More 

or less complex error detectors can be used, depending on the characteristics of the voting 

data and target software. 

We analyze various types of software-implemented error detectors. Software error de-

tectors typically insert a finite number of instructions and data variables into the source 

code or binary code of a target program. These inserted instructions and data perform er-

ror checking operations at runtime. We divide the inserted error checking instructions 

into four types: 

(i) Creating redundancy. A certain type of redundancy in computation or data is in-

troduced to detect an error induced by a hardware fault. Examples include duplication of 

instructions [RCV+05], memory data [DMZ09], or user processes [SMR+07]. Also, ex-

isting redundant hardware states can be directly or indirectly exploited to detect and/or 

fix the error (e.g., ECC for processor register or memory [SSP90]). 

 (ii) Checking the error condition. Error detection is done by checking the original 

and redundant states. These checking operations are classified into five subtypes (see  the 

examples in Table 7.1). 

 Logical operation checks a logical expression consisting of logical, arithmetic, 

and other operators (e.g., equality) [RCV+05][DMZ09][SMR+07][YPS+11]. 
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 Bitmask operation checks, for example, whether a set of bits are marked [CRA06]. 

 Vector operation checks a property of a vector (e.g., length) or values stored in a 

vector (e.g., value range). 

 Voting operation checks whether a majority of values among the compared values 

are the same (e.g., 2 out of 3) [SMR+07][CRA06][YPS+11]. 

 Table lookup operation uses a lookup table that, for example, stores the access 

control information of a state that is being checked [ACR+08][CCM+09]. 

(iii) Invoking the error handler. If a checked error condition is met, a corresponding 

error handler is called. Methods to call an error handler include (a) procedure call, (b) 

system call, and (c) processor exception. While procedure call is the most common, a 

technique [Bag01] uses the divide-by-zero exception to avoid using an additional proce-

dure call when checking equality. 

(iv) Using the checked state. Checking is usually done before the checked state is 

used if the checker is embedded in the target software. This detects an error in a preemp-

tive way (e.g., isolating an error to help error recovery) and takes advantage of the 

memory locality (i.e., similar effect as pre-fetching technique). Actual distance between 

checking and using is often determined by the error checker placement algorithm. 

 

7.3.2. Example 

Table 7.2 shows the implementation of an error detector that checks two logical condi-

tions (see logical condition in Table 7.1). Assembly code in Table 7.2 is encoded using 

Table 7.1. Example codes of common error checkers used 

 in programmable voter (Notation: C/C++) 

Type Source Code Example 

Logical  

condition 

if(v < 100 || v > 500) 

    Error(); 

*pointer = v;  // data type of pointer is ‘int *’ 

Bitmask  
if(v & mask != 0) 

    Error(); 

Vector  

for(int i=0; buffer[i] != '\0'; i++) 

if(i >= len) 

Error(); 

Voting  
int result = (v1==v2 || v1==v3)?v1:((v2==v3)?v2: 

Error()); 

Table lookup  
if(table[(v - baseaddr) >> constant] & mask) 

    Error(); 
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the SPARC v8 instruction set architecture (ISA)
35

. Although the checked conditions are 

simple, 10 instructions are added to implement the checking. Among the added instruc-

tions, the first 8 (bolded in Table 7.2) are always executing regardless of the presence of a 

hardware fault. Six of these 8 are for conditional branch operations. 

A conditional branch operation is implemented as a pair of cmp (compare), bcond 

(branch on a condition), and nop (no operation) instructions. Here, nop is used because 

SPARC v8 uses a delayed branch (a common technique in embedded processors).  

Larger numbers of instructions are used to implement other error checkers. For ex-

ample, implementation of a string length checker (see vector in Table 7.1) uses 21 in-

structions where some of these instructions manage the control-flow of a loop calculating 

the length of a null-terminated string. The error detector using a lookup table (see table 

lookup in Table 7.1) uses 17 instructions. Three instructions are used to convert a source 

address (Src) to an address (TblTgt) in the table as shown in (6.1). SrcBase is the source 

base address, TblBase is the table base address, and SRL (shift right logical) is a constant 

value chosen by the table mapping granularity. Five other instructions are used to imple-

ment a conditional branch operation that checks the value loaded from the table and calls 

an error handler when the condition is met. 

                                                                    (6.1) 

                                                           
35

We use a SPARC v8 embedded processor as a baseline because this RISC processor has a relatively 

simple architecture to achieve a high reliability. 

Table 7.2. Assembly code implementation of an error checker 

that checks two logical conditions 

Instruction sequence Descriptions 

cmp  r1,99 

ble t1 

nop 

cmp r1,500 

bg t1 

nop 

b t2 

nop 

t1: call Error 

nop 

t2: st [r2], r1 

cmp: compare instruction 

ble: branch less equal instruction 

nop: no operation instruction 

r#: register whose number is # 

bg: branch greater instruction 

 

b: unconditional branch instruction 

 

call: procedure call instruction 

 

st: memory store instruction 
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The overhead induced by these checkers in terms of the execution time and program 

code size depends not only on the number of instructions used to implement them but al-

so on the frequency with which the checkers are used. Because the voter program is 

mainly used to compare data and to detect errors, a vast majority of voter program in-

structions is used to implement error checkers. This shows a need for accelerating the 

speed of error checking operations in a software voter. 

 

7.4. Analysis 
 

This section describes our fault injection experiment that analyzes the reliability of soft-

ware error detectors frequently used in a programmable voter. Our analysis results show 

two types of their common vulnerabilities to hardware faults. 

We analyze the behavior of a typical programmable voter under hardware faults as a 

function of the fault duration and fault location in the processor. This typical programma-

ble voter is built by executing a simple voting program as a user process of an embedded 

Linux OS that runs on a SPARC v8 processor-based platform.  

Observation 7.1: Software-based error checkers used in programmable voters suffer 

from the TOCTTOU vulnerability. This can cause false positives and negatives in the vot-

ing results, where a false negative directly harms the availability and integrity of whole 

system. 

We analyze every execution cycle of the error detectors. Figure 7.2 shows the 

TOCTTOU vulnerability window of the error checker shown in Table 7.2 to a hardware 

fault. The depicted instruction sequence corresponds to a fault-free execution (i.e., check-

ing two conditions and branching to t2) because the fault is not detected by the checker. 

Three types of processor hardware faults can evade this error detector: (i) a hardware 

fault that changes the reg1 value to a value smaller than or equal to 500 after the register 

access or A stage of the first cmp and before the execution or E stage of the second cmp, 

(ii) a hardware fault that changes the reg1 value to any value after the A stage of the se-

cond cmp and before the E stage of the st, and (iii) a hardware fault that changes the 

fetched reg1 value while the value is used by the st. (i) and (ii) correspond to the case 

when a fault is in the register file, and (iii) to when a fault is in the pipeline registers or 

combinational logics (see Figure 7.2). 

The impact of a fault that evades the error detectors can be severe in a programmable 

voter. Let us assume the r1 register in Table 7.2 contains the voting output data (e.g., the 

control signal for a navigation system of a spacecraft). If a corruption in the r1 value is 
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undetected, the data integrity of the whole system is broken and the reliability of whole 

system can be harmed. Similarly, when the corrupted data indicates which replica is 

faulty and needs a reboot, this can result in a continuous use of a faulty node or a restart 

of a non-faulty node that could cause severe damage, for example, when this node is cur-

rently the only non-faulty node. 

The size of the TOCTTOU window is large when one of the following three condi-

tions is present. (i) The error checker is complex. For example, an error detector checking 

multiple conditions has a larger TOCTTOU window than an error detector checking a 

single condition. (ii) Multiple error checkers are integrated. An example case is when 

both reliability and security checkers are used in the same place (e.g.,  [RCV+05] and 

[ACR+08] before every memory store). In this case, an error checker placed between the 

other error checker and the use instruction becomes a part of the TOCTTOU window of 

the other checker. (iii) The checker is used frequently. If the error detector is executed 

frequently, its cumulative TOCTTOU window size is large. For example, an error detec-

tor placed before every memory load has a larger cumulative TOCTTOU window than 

the same error detector placed before every system call. 

 

7.5. Design 
 

 

Figure 7.2. TOCTTOU windows of a software-implemented error detection code. 
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This section presents the design of a fault-tolerant, programmable voter system for soft-

ware NMR. The input of the voter system is N sets of data generated by N copies of the 

same software. This data is stored in a hardware queue that is protected by ECC. The 

output of the voter system is an N-bit word where each bit is the reset signal of each of 

the N replica nodes. It is assumed that all replica nodes have a bootstrap program that 

clones the states of other non-faulty replicas and continues the execution after rebooting. 

Figure 7.3 shows the architecture of the presented special-purpose processor for the 

software-implemented voter. In the figure, white boxes are components in the baseline 

processor of SPARC v8, and gray boxes are added components. We name these additions 

the Fault Detection eXtension (FDX). 

Three types of units and one decoder module form FDX. These units are controllable 

by new instructions. Figure 7.4 summarizes the syntax and encoding of the new instruc-

tions designed for the presented processor. Instruction is used as a hardware-software 

communication interface. This is meant to alleviate the semantic gap between hardware 

and software (i.e., the difference in information available to hardware and software) in an 

efficient way as described follows. 

 

7.5.1. Removing the TOCTTOU Window 

This subsection describes techniques that are designed to remove the TOCTTOU vulner-

ability. 

Figure 7.5 shows the execution model of voting programs on the presented special-

purpose processor. Two copies of the same voting program are created and executed on 

 
Figure 7.3. Architecture of the presented special-purpose processor for a software-

implemented voter. 

 

 

Figure 7.4. Encoding for new instructions designed on top of the SPARC v8 

instruction set architecture. 
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the processor. Each program produces a data word that shows the voting results. For ex-

ample, each bit in the data word can indicate whether a corresponding computing node is 

faulty and needs a restart. The two data words are compared and sent to a hardware unit, 

which resets specific computing nodes identified as faulty if the two data words are the 

same. For example, the two data words are different if one of the voting program copies 

experiences a hardware fault during its execution. The comparison operation of the two 

data words is not free from the TOCTTOU vulnerability insofar as this operation is im-

plemented in software. This vulnerability is addressed using a new instruction (Vote), 

which is designed by merging two other new instructions (Ensure and Check). 

 

7.5.1.1. Ensure Instruction 

The ensure instruction is used to configure an ensure unit (see Figure 7.3) that monitors a 

specified processor signal. The instruction syntax is: 

Ensure <SR>, [TD], [TS] 

The ensure instruction reads the value of the source register <SR> and configures an 

ensure hardware unit. The configured ensure unit ensures that the <SR> value fetched by 

the ensure instruction is actually used by the target pipeline signal of a target instruction. 

Here, the target pipeline signal is specified by the target signal operand [TS], and the tar-

get instruction address (TA) that is calculated by adding the PC of the ensure instruction 

and the target distance [TD] value. If a different value is used by the target signal, an 

FDX exception is raised. In the syntax, the operand (e.g., [TD] or [TS]) represented in 

non-bolded text is directly encoded as a part of the instruction bitcode. 

Table 7.3(b) shows an example code that uses the ensure instruction to eliminate the 

TOCTTOU window. In the original code in Table 7.3(a), a TOCTTOU window exists 

between the first cmp instruction and the st instruction. Thus, an ensure instruction is 

 
Figure 7.5. Presented voter software execution model. 
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placed before the first cmp by using r1 as <SR> (a register value being checked), 11(10) as 

[TD] (as the st is 11 instructions away from this ensure instruction), and msd as [TS] 

(where msd means the target signal is memory store data). If a fault occurs in the r1 regis-

ter value after this ensure instruction and before executing the st instruction, this fault is 

detected by the configured ensure unit when the st is executing. 

(i) Microarchitecture. To simultaneously monitor multiple target signals, multiple en-

sure units (e.g., 4) are provided. All ensure units monitor a control signal of the execute 

stage of the baseline pipeline. If the control signal indicating the ensure instruction is set, 

an idle ensure unit is activated. The activation is done in the memory stage of the ensure 

instruction (see Figure 7.6). 

The activated ensure unit stores the value of source register <SR> and the [TS] value 

to its local registers. The target instruction address (TA) is calculated as described before 

and stored in a local register of the activated ensure unit. If [TS] is for a fetch stage signal, 

a counter is used to track the target instruction instead of TA because TA is ineffective 

for a fault in the fetched PC value. The counter value is initialized by the [TD] value. The 

enable bit of the activated ensure unit is finally set to complete this configuration. 

Figure 7.6 shows how an ensure unit is configured and executed using the code in 

Table 7.3(d). After processing the execute stage of the check instruction (see Subsection 

7.5.1.2), the enable bit of an idle check unit is set. At the same time, its target address 

register is set to 103(10) by adding 100(10) (the PC value of the ensure instruction in this 

example) and 3(10) (the [TD] value). The given [TS] and read <SR> values (msd and 250, 

respectively) are set in the proper local registers. In the memory stage of the st instruction, 

this ensure unit reads the memory store data (msd) signal value and compares it to the SR 

register value. In this example, a soft error occurs in the register access stage of the st 

(see Figure 7.6) and changes the r1 register value stored in the register file. Thus, a mis-

Table 7.3. Optimizations of an error checking code by the presented instructions. 

(a) Original (b) Ensure (c) Check (d) Ensure/Check (e) Vote 

 

cmp  r1,99 
ble t1 

nop 

cmp r1,500 
bg t1 

nop 

b t2 
nop 

t1: call Error 

nop 
t2: st [r2], r1 

Ensure r1,11,msd 

cmp  r1,99 
ble t1 

nop 

cmp r1,500 
bg t1 

nop 

b t2 
nop 

t1: call Error 

nop 
t2: st [r2], r1 

 

Check r1,99,le 
 

 

Check r1,500,g 
 

 

 
 

 

 
st [r2], r1 

Ensure r1,3,msd 

Check r1,99,le 
 

 

Check r1,500,g 
 

 

 
 

 

 
st [r2], r1 

Vote r1,99, le,2,msd 

 
 

 

Vote r1,500,g,1,msd 
 

 

 
 

 

 
st [r2],r1 

* cmp: compare, ble: branch less equal, nop: no operation, bg: branch greater, b: unconditional branch, call: procedure call, st: 

memory store, r#: register number #, msd: memory store data, le: less than, g: greater. 
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match is detected by this ensure unit. The error bit is set in the next pipeline cycle to raise 

an FDX exception. If a mismatch is not detected, the enable bit is cleared to reuse this 

ensure unit. Similarly, if the PC signal in the fetch stage is given as <TS>, the counter 

value of this ensure unit is decreased by one every time a new instruction is fetched. If 

the counter value is zero, the same concurrent check operation is conducted to check the 

data integrity of the target PC signal value. 

(ii) Software. It is recommended that the ensure instruction be used just before a 

compare-equivalent instruction (e.g., cmp or check) to minimize the TOCTTOU window. 

Four ensure units are used in our implementation because common error detectors in 

Table 7.1 check up to three states at the same place. These four ensure units are virtual-

ized by the OS kernel in our implementation (or virtual machine monitor). At the context 

switch event, all internal registers of ensure units are treated as a part of the contexts of 

switched processes. Two other new instructions (see Section 7.5.2) are used to save and 

restore the ensure unit registers. This virtualization (or reconfiguration of the hardware 

checker) creates an illusion of multiple and exclusively accessible ensure units for each 

software execution entity (e.g., a user process). 

 

7.5.1.2. Check Instruction 

The check instruction supports common conditional branch operations. Its syntax is: 

Check <SR1>, (<SR2> or [Simm]), [Cond] 

The check instruction checks the contents of the source registers <SR1> and <SR2> 

for a logical condition [Cond] and raises an exception if the condition is met. Specifiable 

conditions are logical and bitmask operations. If an exception is raised, an error handler is 

 
Figure 7.6. Execution scenario of ensure instruction. 
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invoked by OS kernel or processor control logic. A signed immediate value [Simm] can 

replace <SR2>. Here, [Cond] and [Simm] values are provided as parts of the ensure in-

struction bitcode. 

The check instruction is an optimization for the common control-flow path of condi-

tional branch operations of error checkers. When there is no hardware fault, many condi-

tional branch operations of error checkers take the same control-flow path. The execution 

of this common control-flow path is optimized by a check instruction, while supporting 

the other control-flow paths (the rare cases) is done using a processor exception. 

Table 7.3(c) shows an example code of a check instruction. The original code shown 

in Table 7.3(a) has two conditional branch operations replaced by two check instructions. 

The two instructions (call and nop) in the original code are no longer needed because the 

error handler is directly called by the check instructions. This reduces the number of in-

structions used for error checking by 80% (from 10 to 2), and the number of executed 

instructions in the fault-free execution by 75% (from 8 to 2). 

(i) Microarchitecture. Execution of the check instruction consists of the following 

three stages: 

(a) Register access stage. <SR1> and <SR2> values are fetched from the register file 

(or the instruction register if [Simm] is used instead of <SR2>). If there is a dataflow de-

pendency to values generated by the preceding instructions, these values are forwarded 

from the pipeline registers of the preceding instructions. 

(b) Execute stage. An ALU in the baseline pipeline is used to compare the two 

fetched values and produce four flags: negative (N), zero (Z), overflow (V), and carry (C). 

These flags are forwarded to the check unit (see Figure 7.3) that performs a set of logical 

operations. For example, the equal-to condition is emulated by condition ‘Z’, less-than by 

‘Z OR (N XOR V)’, and greater-than-or-equal-to by ‘NOT (N XOR V)’. One of the 10 

logical conditions is selected by [Cond] and a multiplexer in the check unit. Also, bit-

mask operations (mask-set and mask-unset) are supported. Mask-set checks whether all 

bits set in <SR2> are set in <SR1> (i.e., <SR1> AND <SR2> = <SR2>), where the AND 

operation is done by an ALU of the baseline pipeline and the equality is checked by the 

check unit. 

(c) Exception stage. If the selected logical condition is met, an FDX exception is 

raised in this stage. For the FDX exception type, the precise interrupt mode is used that 

flushes all instructions fetched after the instruction that raised an exception. If an FDX 

exception is raised in a processor privileged mode, an FDX exception handler is called 

instead of stopping the processor (unlike other exceptions raised in the OS kernel). 
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A user-mode exception is used if the exception is raised in the user-mode and user-

mode FDX exception is enabled for the current user-level process. This reduces the FDX 

exception handling overhead. Instead of trapping into the OS kernel, this user-mode ex-

ception looks up a user space exception vector table and branches to the corresponding 

exception handler. This is the key difference between the check instruction and the TWI 

(trap word immediate) or TI instruction in the POWER instruction set architecture, to-

gether with the more diverse conditions supported by the check instruction. Note that the 

user-mode exception enable bit is implemented by reusing a reserved bit in the processor 

status word. Thus, this bit is automatically treated as a part of the user process context in 

OS. 

(ii) Software. Upon an FDX exception, the processor looks up the exception vector 

table in memory and jumps to a proper exception handler. For kernel-mode exceptions, 

an FDX exception handler is added in the OS kernel (SnapGear Linux for LEON3
36

). The 

FDX exception handler then calls an error handler defined in the kernel because this ex-

ception is raised in a privileged mode of processor. 

For FDX exceptions raised in a user mode, a library of user-level programs that use 

this check instruction initializes the user exception handler register. The library stores the 

address of the user-level error recovery function to the user exception handler register. 

The library also enables the user-mode exception after initializing the register. If the user-

mode exception is not enabled, the FDX exception handler in the OS kernel sends an 

FDX signal to the user process. The FDX signal information data contains the PC of an 

instruction raising this exception. A user process using FDX instructions is responsible 

for registering an FDX signal handler. If no user signal handler is given, the user process 

is terminated by default (fail-stop). 

 

7.5.1.3. Vote Instruction 

The vote instruction is designed to combine ensure and check instructions because these 

two instructions are typically used in sequence (see Table 7.3(d)). Its syntax is: 

Vote <SR1>, <SR2>, [Cond], [TD], [TS] 

The vote instruction is equivalent to the ‘Ensure <SR1>, [TD], [TS]’ and ‘Check 

<SR1>, <SR2>, [Cond]’ instruction sequence. Among these five operands, only two are 

fed by the register file (<SR1> and <SR2>). The rest are directly provided as parts of the 

vote instruction bitcode by using unused bits of the check instruction bitcode. Specifical-

ly, instead of supporting [Simm], vote instruction uses a part of [Simm] encoding bits for 

                                                           
36

LEON3 Processor, http://www.gaisler.com 
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[TD] and [TS] operands (see Figure 7.4). Because of this limit in encoding space, [TD] 

and [TS] operands of the vote instruction support only a subset of what [TD] and [TS] 

operands of the check instruction can represent (i.e., common cases are chosen as the 

subset). 

The vote instruction further reduces the code size and execution time of error check-

ing while removing the TOCTTOU window. An example code shown in Table 7.3(d) is 

reduced to two instructions by using two vote instructions (see Table 7.3(e)). This is a 33 

% reduction (from 3 to 2 instructions) in the code size, and the same reduction in the exe-

cuted instruction count in the fault-free case. 

 

7.5.2. Accelerating Error Checking 

This subsection presents instructions that can accelerate the error checking operations. 

 

7.5.2.1. Convert Instruction 

The convert instruction accelerates the address conversion of the table lookup operation 

(see Table 7.3). Its syntax is: 

Convert <DR>, <SR>, [Type] 

The convert instruction converts the source address <SR> to the address in the lookup 

table using a formula equivalent to (7.1) and stores the converted address to the destina-

tion register <DR> where [Type] selects one of preconfigured address conversion rules. 

(i) Microarchitecture. To convert an address in a cycle, Equation (7.2), which is anal-

ogous to (6.1), is used for the conversion operation. If a conversion rule is fixed in appli-

cation software, SrcBase, TblBase, and SRL are all constant values. Thus, the (SRL) term 

and the (TblBase-(SrcBase>>SRL)) term are computed and stored in two internal C1 and 

C2 registers of the convert unit (see Figure 7.3). 

                                                   (7.2) 

Multiple sets of C1 and C2 registers are used, where one of them is selected by 

[Type]. In the execute stage of the convert instruction, a logical shift right and an addition 

operation are performed by the convert unit using the selected C1 and C2 values. 

(ii) Software. The internal C1 and C2 registers of the convert unit are programmable 

by user mode software. For example, the main() function of a user program can be in-

strumented to pre-compute C1 and C2 register values and store them to a set of C1 and 

C2 registers of the convert unit by using new instructions (see Subsection 7.5.3.2). This 

dynamic pre-computation is correct even when the base address of the lookup table is dy-

namically chosen (e.g., due to the use of address space layout randomization [SPP+04]). 
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Multiple sets of C1 and C2 registers are programmed if a target program uses multiple 

lookup tables for its error checking operations. These C1 and C2 registers are virtualized 

by treating them as a part of the target program context as explained before. 

 

7.5.2.2. Configuration Load and Store Instructions 

The configuration load (CLD) and store (CST) instructions are used to access the con-

figuration where configuration refers to the internal registers of the FDX hardware units. 

Their syntaxes are: 

CLD [SA], <DR>         |         CST <SR>, [DA] 

The CLD instruction loads configuration data specified by the source address operand 

[SA] to a processor pipeline register <DR>. The CST instruction stores the value of a 

pipeline register <SR> to a configuration register specified by the destination address op-

erand [DA]. Accesses to some configuration registers are controlled by the FDX decoder 

(see Figure 7.3). For example, direct write access to internal registers of ensure units is 

allowed only if the processor is in a privileged mode unlike to the C1 and C2 registers. 

 

7.6. Implementation 
 

This section describes our implementation for proof-of-concept of the presented system. 

 

7.6.1. Hardware Area Overhead 

We have implemented the presented FDX on an FPGA-based platform (Altera Stratix-II) 

by extending a SPARC v8 processor. The FDX hardware includes an FDX decoder, four 

ensure units, a check unit, a convert unit, a monitor unit, and additional pipeline control 

and data registers (see Figure 7.3). Hardware area overhead is 1.11% for each ensure unit, 

0.04% for the check unit, 0.14% for the convert unit, 0.69% for the monitor unit, and 

0.86% for all the rest (the FDX decoder and pipeline register extension). These ratios are 

normalized to the area size of the baseline processor core (excluding cache, TLB, and 

memory controller), where area sizes are calculated using gate counts of the synthesized 

hardware. The total area overhead of the FDX extension is 6.17% compared with the 

baseline, single-issue, in-order core size, and it is 0.7% compared with total baseline pro-

cessor size. 

Adding FDX does not delay the clock cycle of the baseline processor when the base-

line clock frequency is 80MHz on the used FPGA. This is because FDX is simpler than 

the logics and data paths of the corresponding pipeline stages of the baseline processor. 
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7.6.2. Programming Interface 

We describe the software extensions that offer a programming interface (i.e., macros) to 

the new instructions. 

Error detectors written by the programmer can be rewritten using the FDX macro 

functions, which are implemented as a C library using inline assembly code (see Table 

7.4). If the physical register identifiers of operand variables are known, the macro shown 

in Table 7.4(a) is used for check instructions where sr1id and sr2id parameters contain 

the physical register identifiers of <SR1> and <SR2> operands, and cond contains the bit 

pattern of the [Cond] operand (e.g., ‘0x1’ for equal). The physical register identifier can 

be derived by disassembling the binary file. If the binary file already contains and uses 

this macro, changing the parameter value of the macro does not change the physical reg-

ister identifiers after a re-compilation. 

To automate this physical register identifier derivation process, we design the other 

type of macro as shown in Table 7.4(b). This type of macros accepts program variables as 

parameters (e.g., sr1, sr2) and sends them to the inline assembler that generates the phys-

ical register identifiers of these variables. In this example, because the check instruction 

uses the DR (destination register) field of original coprocessor instruction as the [Cond] 

field, multiple check instruction macros are designed such that each uses a different con-

stant value for the [Cond] field (in Table 7.4(b), %%g1 is to specify the value of 1 for 

equal conditions). These two types of macros are tested with a GCC cross compiler 

v3.4.4 for SPARC v8 ISA. 

Various types of error detection libraries can be designed using these macros. For ex-

ample, assert() macros can be rewritten to use the check or vote instruction. These library 

functions make migration of complex voting programs to the presented architecture easy. 

If error detectors are already implemented as a library and no change is made in their in-

terface to applications after using the FDX instructions, the use of FDX is transparent to 

target application software. 

Table 7.4. Example two types of macro functions to encode the check instruction 

(C/C++ SPARC inline assembly) 

(a) 

#define FDX_CHECK(sr1id,sr2id,cond) \ 

 __asm__(".word 0x81b80000 + ((" cond " & 0xf) << 25) + (((" sr1id ")         

            & 0x1f) << 14) + ((" sr2id ") & 0x1f)") 

(b) 
#define FDX_CHECK_EQ(sr1,sr2) \ 

 __asm__("cpop2 [%0 + %1], %%g1\n\t" :: "r"(sr1), "r"(sr2)); 
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When using multiple ensure instructions, it is recommended to minimize overlaps be-

tween delayed checking intervals (i.e., from an ensure instruction to its target instruction). 

Ensure instruction intervals can safely contain a control-flow instruction if the target of 

control-flow instruction is analyzed at compile-time and the target does not use more en-

sure units than available. This does not mean the ensure instruction interval cannot con-

tain any control-flow instruction. A common use of an ensure instruction is to monitor 

the target address of a control-flow instruction (e.g., a function entry). By calculating a 

distance to the control-flow instruction, using this distance +1 as [TA], and specifying 

fetch-PC as target signal (TS), the ensure instruction can check whether the control-flow 

is properly made. 

 

7.7. Validation 
 

This section analyzes error detection coverage of systems with and without FDX. 

 

7.7.1. Validating Error Detection of FDX-Based System 

We validate the error detection coverage of voter software implemented using the FDX 

instructions. A register transfer level (RTL) simulation is used to validate that the identi-

fied TOCTTOU windows are removed when the FDX instructions are properly used. 

RTL simulation allows us to inject a hardware fault and monitor the consequences with-

out causing any interference to the execution behavior of the target system pipeline.  

A voter system that follows the FDX software architecture executes the same voting 

program twice in sequence. Each of the voting program executions saves its voting result 

data (e.g., 32-bits) to memory. After the executions, the voter software uses memory load 

instructions to read the voting result data from the memory to the processor registers (e.g., 

r1 and r2) and compares the read data. If they are the same, the voting software writes the 

value of r1 to a memory-mapped I/O address in order to output the voting result data (e.g., 

that resets some replica nodes or continues without any reset). 

If a fault occurs in the execution of one of the two voting programs, this either causes 

two different voting result data or leads to an observable failure (e.g., crash or hang). If 

there is a corruption in the voting result data, the comparison instruction detects this at 

the end of voting software execution. If there is an observable failure, this is detectable 

and tolerable by an existing technique (e.g., watchdog-based reboot). 

We thus focus on analyzing the error detection coverage of the last comparison and 

memory write instructions of the FDX-based voting software. We consider two types of 
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software. One uses the ensure and check instructions (see Figure 7.7(a)). The other uses 

the vote instruction (see Figure 7.7(b)). In both cases, r1 and r2 contain the voting result 

data, and r3 contains the memory-mapped I/O address where the voting result data is sent 

to. For the instruction sequences given in Figure 7.7, a fault is emulated in each pipeline 

stage from the fetch cycle of the first instruction (ensure in Figure 7.7(a) and vote in Fig-

ure 7.7(b)) to the memory stage of the last instruction (st). 

 (a) Ensure instruction. The ensure instruction detects many faults injected in the 

TOCTTOU window. In Figure 7.7(a), the error detector code has the ensure, check, and 

st instruction sequence. For example, let us consider a hardware fault emulated in the ex-

ecute stage of the st instruction to change the pipeline register containing memory store 

data (msd) value. This induced error is detected by an ensure unit in the memory stage of 

the st. This raises an FDX exception in the next pipeline cycle. Similarly, the ensure in-

struction detects all faults injected in the target state after its execute stage (see the win-

dow covered by ensure in Figure 7.7(a)). 

(b) Check instruction. The ensure instruction does not detect faults that occur before 

its memory stage (e.g., execute stage) because an ensure unit is enabled from the memory 

stage. As recommended, if a compare-equivalent instruction follows an ensure instruction, 

the following instruction can detect such uncovered faults of the ensure instruction. For 

example, if a fault occurs in r1 stored in register file at the register access stage of the 

check instruction (in Figure 7.7(a)), the corrupted r1 value is compared to r1 in its exe-

cute stage. If the corrupted r1 value is bigger than r2, this check instruction raises an 

 

Figure 7.7. Error detection coverage of FDX instructions. 
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FDX exception in this example. This shows that the check instruction can detect faults 

that occur before the memory stage of its preceding ensure instruction (see the window 

covered by check in Figure 7.7(a)). 

(c) Vote instruction. Figure 7.7(b) shows the coverage of the vote instruction. This 

coverage combines the coverage of the ensure and check instructions. The vote instruc-

tion is more effective than a pair of ensure and check instructions if the execute stage of 

the ensure instruction is processed before the register access stage of the check instruc-

tion (e.g., due to a delay caused to forward the r2 value to the check). 

One may consider the use of a compiler-based technique to remove the TOCTTOU 

window by reordering time-of-check and time-of-use. This is not applicable when the use 

is a control-flow instruction because a fault can change the control-flow (bypassing the 

checker placed after the use instruction). Also, this cannot detect a fault if the induced 

error does not remain in the processor (e.g., after propagated to the memory). For exam-

ple, if a fault occurs in a pipeline register, the following instruction cannot see the corrup-

tion unless the corrupted pipeline register value is forwarded or stored in the register file. 

 

7.7.2. TOCTTOU Window Size in Non-FDX-Based System 

We then evaluate the ratio of random hardware faults that evade a given software-based 

error detector by exploiting a TOCTTOU vulnerable window. The probability of missing 

a hardware fault due to this vulnerability depends on the relative distance between check 

and use, and on the size of the checked state where there parameters are determined by 

the type of used error detectors. We use one of the strongest software-implemented fault 

detection techniques (i.e., instruction duplication [RCV+05]) by manually instrumenting 

the assembly codes of two benchmark programs: a Hanoi tower, representing an integer 

program; and a matrix multiplication, representing a floating-point program. Note that the 

claimed error detection coverage of this technique in [RCV+05] was 100% because the 

fault injection was conducted in the processor architecture layer. 

We conduct a fault injection experiment in the microarchitecture layer. We collect 

25,152 fault injection samples on small pieces of the target program code. Despite of the 

use of one of the strongest software-implemented error detectors, on average, 0.56% of 

the faults injected in the processor microarchitecture states evade the error detector and 

lead to silent data corruption partially due to TOCTTOU windows. 
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Figure 7.8 analyzes the probability of undetected hardware fault due to the 

TOCTTOU vulnerability when a program experiences multiple faults over its lifetime. 

This data is calculated using a formula, 1-(1-P)
N
, where P is the probability of an unde-

tected fault due to the TOCTTOU vulnerability (0.56% obtained in our experiment) and 

N is the number of faults (the x-axis in Figure 7.8). As the program experiences more 

hardware faults, the probability of missing at least one fault becomes higher (e.g., 99.5% 

when the fault count is 1,024). A program can experience many faults when (a) its execu-

tion time is long (e.g., scientific programs) [YKI09] or (b) the hardware fault rate is high. 

In either of these cases, even this small TOCTTOU vulnerability window can seriously 

harm the reliability and data integrity of target program protected by using a strong soft-

ware-based fault detection technique. This shows the importance of using FDX-like extra 

fault detection in mission-critical systems where near perfect error detection coverage is 

needed because of the possibility of catastrophic failures when the system operates with 

an undetected error.  

 

7.8. Evaluation 

 

This section evaluates the reductions in the performance and code size overheads when 

FDX is used. 

 

7.8.1. Performance Overhead Reduction 

We measure the execution time of the five error detectors (listed in Table 7.1) while us-

ing different FDX instruction sets. We use a real-time signal tracing tool (SignalTap II) to 

measure the execution time at the cycle granularity level. The time from the first cycle of 

the first instruction of an error checker to the last cycle of the last instruction of the 

checker is measured. To accurately measure the computation time, the same error checker 

 
Figure 7.8. Probability of at least one undetected fault due to the TOCTTOU 

vulnerability. 
* This is when a program experiences multiple faults (x-axis is fault count) over its lifetime. 
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is executed once before measurement to reduce the measurement interferences (e.g., 

caused by cache misses and page faults). 

On average, using all FDX instructions reduces the execution time of error detectors 

by 18.9% when the compiler optimization is not used and by 13.5% when the compiler 

optimization is used (see AVG bars in Figure 7.9). This ratio is normalized to the execu-

tion time of assembly codes of error detectors generated for the original ISA using the 

same compiler optimization level. Much higher speedup ratios are observed if the error 

checking algorithm is simple. For example, the execution time of the logical condition 

error checker (with optimization) is improved by 57.7% if all FDX instructions are used 

because of its simple checking algorithm, i.e., checking two logical conditions. 

The average execution time reduction by FDX is smaller when compiler optimization 

is used. For example, compiler optimization combines two conditional branch operations 

into one operation (see the original code in Table 7.1). The optimized code adds -100 to 

r1 and uses a branch instruction (bleu: branch on less-than-equal unsigned) to change the 

control flow when the r1 value is less than or equal to 400. Because r1 is treated as an 

unsigned integer value, if the original value of r1 is smaller than 100, the r1 value be-

comes a big positive integer number after the addition. In this case, the bleu instruction is 

not taken, and thus the optimized code executes the next instruction and calls an error 

handler. Only the pair of cmp and bleu instructions are replaced by a check instruction. 

Compiler optimization can also remove some cmp instructions by using an arithmetic in-

struction that generates flags (e.g., addcc/btst). In addition, while un-optimized codes do 

not use the delayed branch slot, optimized codes do so when it is feasible. 

 

 
Figure 7.9. Error detector execution time reduction as a function of the used com-

piler optimization level (O0 or O1) and instruction sets. 
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7.8.2. Code Size Overhead Reduction 

Figure 7.10 shows the program code size of five types of error detectors (listed in Table 

7.1) as a function of the used FDX instructions and compiler optimization level. A GCC 

v3.4.4 for SPARC ISA is used as a C/C++ compiler. We consider two optimization levels 

(O0 and O1) because optimization levels higher than O1 increase the code size in some 

types of checkers. 

The average code size reduction is 55.8% when all FDX instructions are used and 

compiler optimization is enabled (O1) (see AVG bars in Figure 7.10). This reduction ra-

tio is normalized to the code size of error checkers generated for the original ISA using 

the compiler optimization (O1). If all FDX instructions are applied to the checker codes 

compiled without optimization (O0), the average code size reduction ratio is 52.8% as 

compared with the size of the un-optimized original code (O0). 

All FDX instructions except for the ensure instruction reduce the code size. Specifi-

cally, the check and vote instructions are effective for all types of error checkers, while 

the convert instruction is only useful for an error checker using a lookup table. 

Table 7.5 shows the assembly codes for common error detection routines. Note that 

these codes are derived from existing error and attack detection techniques and are differ-

ent from the codes in Table 7.1. Here, each code block checks a condition (above a dotted 

line) and two conditions (below a dotted line). The left columns are the original code. 

The right column of each type of error detector codes is a code that is the same as one in 

the left column but is transformed by using the FDX instructions. 

 
Figure 7.10. Error detector code size reduction. 
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(a) Logical condition. An error detector checks whether one or multiple logical condi-

tions are met. An assert() statement (e.g., var1 == var2, var1 < var2) in a C program is a 

representative example. In Table 7.5(a), the code checks a condition (g1 × Const = g2, 

same as the TRUMP [CRA06]) and two conditions (g1 = g2 and g1 ≥ Const2). Each of 

these condition checks is implemented by a vote instruction. 

(b) Bitmask. Mask is another common error checker, which can, for example, check 

whether a certain set of bits are set or unset. The code in Table 7.5(b) checks whether all 

bits set in the Mask variable are set (same as MASK [CRA06] and the call/return target 

checking in Native Client [YSD+09]). This can also be efficiently optimized using the 

check or vote instruction because the check unit supports these bitmask operations. The 

code in Table 7.5(b) then checks whether all bits set in Mask1 or Mask2 are set. Here, if 

one condition is true, the result is true (ORed). FDX cannot replace the first conditional 

Table 7.5. Software-implemented hardware fault detectors and examples of using 

FDX instructions. 
(a) Logical condition (c) Duplication (e) Lookup table 

MUL 

g1,Const,g1 

CMP g1,g2 

BLT ERROR 

NOP 

ST [g1],g0 

- - - - - - - 

MUL 

g1,Const1,g1 

CMP g1,g2 

BNE ERROR 

NOP 

CMP g1,Const2 

BLT ERROR 

NOP 

ST [g1],g0 

Ensure g1,3,msa 

MUL g1,Const,g1 

Check g1,g2,ne 

 

ST [g1],g0 

- - - - - - - -  

MUL g1,Const1,g1 

Vote 

g1,Const1,ne 

     2,msa 

 

Check 

g1,Const2,lt 

     

 

ST [g1],g0 

CMP g1,g2 

BNE ERROR 

NOP 

ST [g1],g0 

- - - - - -  

CMP g1,g2 

BNE ERROR 

NOP 

CMP g3,g4 

BNE ERROR 

NOP 

ST [g1],g3 

Vote g1,g2,ne,1,msa 

 

 

ST [g1],g0 

- - - - - - - -  

Vote g1,g2,ne,2,msa 

 

 

Vote g3,g4,ne,1,msd 

 

 

ST [g1],g3 

SUB g2,g1,MIN 

DIV g2,g2,8 

ADD g2,g2,Base 

LD g3,[g2] 

CMP g3,Color 

BNE ERROR 

NOP 

ST [g1],g0 

- - - - - - - 

-  

SUB g2,g1,MIN 

DIV g2,g2,8 

ADD g2,g2,Base 

LD g3,[g2] 

AND 

g4,g3,Mask1 

CMP g4,Mask1 

BE P1 

NOP 

AND 

g4,g3,Mask2 

CMP g4,Mask2 

BNE ERROR 

NOP 

P1: ST [g1],g0 

Ensure g1,5,msa 

Convert g2,g1,0 

LD g3,[g2] 

Check g3,Color,NE 

 

 

 

ST [g1],g0 

- - - - - - - -  

Ensure g1,8,msa 

Convert g2,g1,0 

LD g3,[g2] 

AND g4,g3,Mask1 

CMP g4,Mask1 

BE P1 

NOP 

 

 

Check 

g3,Mask2,and 

 

 

P1: ST [g1],g0 

(d) Value range 

CMP g1,g2 

BLT ERROR 

NOP 

CMP g1,g3 

BGT ERROR 

NOP 

ST [g1],g0 

- - - - - -  

CMP g1,g2 

BLT ERROR 

NOP 

CMP g1,g5 

BGT ERROR 

NOP 

CMP g1,g3 

BGT ERROR 

NOP 

CMP g1,g4 

BLT ERROR 

NOP 

ST [g1],g0 

Vote g1,g2,lt,2,msa 

 

 

Check g1,g3,gt 

 

 

ST [g1],g0 

- - - - - - - -  

Vote g1,g2,lt,4,msa 

 

 

Check g1,g5,gt 

 

 

Check g1,g3,gt 

 

 

Check g1,g4,lt 

 

 

ST [g1],g0 

(b) Mask 

AND g2,Mask,g1 

CMP g2,Mask 

BNE ERROR 

NOP 

ST [g1],g0 

- - - - - - - 

AND 

g2,Mask1,g1 

CMP g2,Mask1 

BE  P1 

NOP 

AND 

g2,Mask2,g1 

CMP g2,Mask2 

BNE ERROR 

NOP 

P1: ST [g1],g0 

Vote 

g1,Mask,ms,1,msa 

 

 

 

ST [g1]g0 

- - - - - - - -  

Ensure g1,7,msa 

AND g2Mask1,g1 

CMP g2,Mask1 

BE P1 

NOP 

Check 

g1,Mask2,ms 

    

 

P1: ST [g1]g0 

* AND: Logical AND, BE: Branch equal, BGT: 

Branch greater than, BLT: Branch less than, 

BNE: Branch not equal, CMP: Compare, DIV: 

Divide, LD: Memory load, MUL: Multiply, 

NOP: No operation, ST: Memory store, SUB: 

Subtract, g0-5: Processor registers, [g0-5]: 

Memory pointer, msa: memory store ad-

dress, msd: memory store data, ms: 

maskset, lt: less than., ne: negative equal, 

gt: greater than 

* Ensure, check, vote, and convert instruc-

tions (see Figure 7) 
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branch (after the dotted line in Table 7.5(b)) with a check or vote instruction. This is be-

cause this first branch bypasses the rest of the error check if the checked condition is met, 

while check and vote instructions can be used only if the target of a control-flow instruc-

tion is an error handler. 

 (c) Duplication. Checkers for duplication-based error detectors usually use either 

equal or not-equal operator (e.g., EDDI/SWIFT [RCV+05][CRA06][OSM02]). This typi-

cally requires all duplicated states to be the same (i.e., conditions are ANDed if multiple 

conditions are checked). In this case, after the first check, the checker can jump to the 

error handler if that condition is false, but it still needs to process the rest of conditions if 

that condition is true (see Table 7.5(c)). This pattern is common in SWIFT, for example, 

because it checks two conditions (for memory address and data operands) before each 

memory write instruction. In SWIFT-R [CRA06], computation results are triplicated and 

thus two comparison operators are used in the same place to check whether all three re-

sults are the same. These equal or not-equal checkers can be optimized using the vote in-

struction, as shown in Table 7.5(c). 

(d) Value range. Checking whether a target value is within a value range is another 

common method of error detection. Examples are data value checkers [SLR+08] (e.g., for 

input validation) and memory segment checkers [YSD+09]. In Table 7.5(d), the code 

checks a condition (g1 ≤ g3) and two conditions (g2 ≤ g1 ≤ g3 or g4 ≤ g1 ≤ g5). As this 

check operation is a subset of logical conditions, this type of error detection is optimized 

using FDX instructions. 

(e) Lookup table. Applications of the FDX instructions are limited to hardware fault 

detection. A look-up table is most commonly used to detect and isolate software faults 

and security bugs [ACR+08][CCM+09][YSD+09]. For example, WIT checks whether 

pointer-based memory write instructions are accessing only data they are supposed to ac-

cess. An access permission table is used to specify which memory write instructions have 

access permission to each portion (e.g., 8 bytes) of data memory. This permission table is 

updated right after every memory object allocation and deallocation (e.g., by malloc() 

and free()). This table is also read right before every pointer-based memory write. As ex-

emplified in Table 7.5(e), this operation is well supported by the convert and check in-

structions.  

 

7.9. Discussion 
 

This section discusses other potential uses of the presented processor. 
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N-version programming (NVP) is a software engineering process that can reduce the 

probability of concurrent replica failures [Avi85]. In order to reduce such probability, 

NVP uses different types of software and/or hardware platforms for its replicas. Its repli-

cas on different types of platforms are more likely to have different intermediate data 

values and produce different output data values (e.g., if floating-point operation is used) 

than replicas on the same type of platforms (i.e., in software NMR). Such characteristic 

requires a programmable voter, and consequently makes the presented voter more attrac-

tive to NVP systems. 

The presented techniques can improve the error detection and recovery coverage of 

computing nodes. For example, embedding software-implemented error checkers in tar-

get software can detect errors in a computing node and send this information to an exter-

nal voter. This eventually improves the coverage of NMR systems especially when N is 

small. For example, in a TMR system, at least two replicas must be operating correctly in 

order to detect and tolerate faulty replicas. Because the time before voting is relatively 

long in software-based TMR, the simultaneous failure probability of two replicas (e.g., 

common mode failure) is relatively high. If the error detection information of each replica 

is available and trustworthy, the voter can find the non-corrupted third replica and toler-

ate the concurrent failure of two replicas. 

The use of software-implemented error detection in target software allows replicas to 

preemptively detect an error. This prevents the propagation of the error to another state 

(e.g., outside of target node). Such preemptive detection not only reduces the probability 

of common mode failures but also makes it possible to restart the faulty computing node 

in advance without having to wait until the next voting operation time. Consequently, we 

believe that the presented techniques are generally useful to detect and tolerate errors in 

embedded processors. 

 

7.10. Related Work 
 

This section reviews the related work. The existing error detection and recovery tech-

niques are classified into six types: 

(i) Hardware-based redundancy. Redundancy is introduced in various types of hard-

ware layers. These layers include the transistor, circuit, microarchitecture, and architec-

ture layers of the chip (e.g., Razor [EKD+03]). In an architecture-level technique, the en-

tire processor pipeline is replicated to compare the execution results of every instruction. 

If a mismatch is detected, without committing the execution result, the instruction is re-
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executed. The G5 processor [27] is an example design for in-order processor pipeline ar-

chitecture. Thanks to its fine-grained checking, this technique offers high error detection 

and recovery coverage for duplicated components and short detection and recovery times. 

Designing a hardware redundancy system for a high-performance computer is costly 

because of the use of many cores and sophisticated core architectures (e.g., out-of-order 

execution and branch prediction). For example, for out-of-order processor architecture, a 

proposal (DIVA [Aus99]) exists, but no chip has been fabricated yet for commercial pur-

poses. 

When many hardware replicas are used, the complexity of the system and the voter 

grow. This reduces the reliability of the voter. A previous work [SFA+07] reduces the 

development cost of NMR computers, except for the voter, by modularizing computing 

elements. Note also that the use of NMR does not provide perfect fault tolerance cover-

age if the target software runs on top of multiple processors or nodes, which can result in 

the use of an extra upper-layer fault tolerance technique in practice. 

(ii) Hardware-based customized protection. Symptom-based techniques (e.g., Re-

Store [WP05] and SWAT [LRS+08]) optimize error detection for general error propaga-

tion paths of software. In a more aggressive approach (e.g., RSE [NKI+04]), signatures of 

each application software are programmed in hardware when the software is loaded. The 

programmed hardware concurrently monitors the execution behavior of the application. 

This hardware detector targets non-benign errors in the application software. However, 

programming a large volume of application signatures makes it less flexible, especially if 

it is used to monitor multiple applications. 

This shows the difficulty of developing hardware-software co-designed error detec-

tion techniques and the importance of the hardware-software interface in co-design. Be-

cause of the semantic information gap between software- and hardware-based error 

checking mechanisms, to improve the detection coverage, the error sensitivity of applica-

tion states can be analyzed by software and delivered to hardware in a timely way. While 

in some previous work, all information is delivered when the program is loaded, in our 

design only a necessary portion of this information is delivered using the standard hard-

ware-software interface (e.g., before a target state is used). This takes advantage of 

memory locality and hardware parallelism. 

(iii) Application-specific instruction set processor (ASIP). ASIP is extensively used 

for domain-specific applications (e.g., digital signal processing and reconfigurable com-

puting), where the general-purpose instruction set is extended by extra, customized in-

structions. This allows the designer to maximize the benefit vs. cost, e.g., by replacing 

frequently used instruction sequences with simple hardware implementation [CFH+04]. 
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Many previous ASIP designs are done for performance not dependability, while [KNS10] 

is done for error recovery, and [RPK05] is done for security. This is because of the diffi-

culties of quantifying reliability as a function of ISA design and customizing an instruc-

tion sequence containing control-flow instructions. As far as we know, this work is the 

first ASIP design for fault detection. 

(iv) Complex instructions. Some processors have instructions that can be used to op-

timize error detector implementation. For example, predicate instructions in ARM ISA 

are conditionally executed and thus can remove a branch instruction in error checking. 

This execution has a larger overhead than the check instruction because the predicate in-

structions are always fetched and decoded regardless of the program control flow. Also, 

in a superscalar processor, speculation and branch prediction are used to hide the control 

hazard (a delay due to a branch instruction) although the hardware area overheads (e.g., 

for branch target buffer) are not negligible. In x86 ISA, index instructions are supported 

that can also accelerate the address conversion operation of the table lookup. 

(v) Instruction scheduling. When an error detector is derived by a compiler technique, 

the derived error detection routines can be fully customized for processor ISA. For exam-

ple, BGI [CCM+09] uses a table lookup operation for software fault isolation and error 

detection. By fixing the lookup table location in a virtual address, BGI simplifies the ad-

dress conversion operation to two instructions on a complex instruction set computer ma-

chine (sar and btc in x86 ISA). This, however, is not compatible with some other tech-

niques (e.g., address space layout randomization) that dynamically set the lookup table 

base address to protect the table from malicious and privileged users. 

Many compiler-generated error detectors optimize the redundancy creation stage (see 

Section 7.2) by exploiting hardware parallelism [RCV+05][DMZ09][SMR+07]. In this 

chapter, we optimize two of the remaining three stages of error detectors (checking a 

condition and calling an error handler), which implies that the presented techniques are 

orthogonal to many previous techniques. 

(vi) Built-In Self-Test (BIST). BIST is an efficient technique to diagnose permanent 

faults. On the other hand, BIST is impractical for diagnosing intermittent or transient 

faults due to its separate execution mode. Mode switching is needed if the processor is on 

and executing software. 

 

7.11. Summary 
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A failure in mission-critical system is either catastrophic or expensive to fix. In order to 

analyze the reliability of such systems, we have built a simulated fault injector that can 

accurately emulate various types of faults. Our fault injection experiment using this tool 

showed a reliability problem in software-based voters (i.e., used in N-modular redundan-

cy). We thus have explored processor architecture extension techniques (FDX) to support 

various types of software-based hardware fault tolerance techniques. Two types of novel 

instructions were designed to increase the detection coverage and to accelerate error 

checking operations. The evaluation results showed that the presented system reduces the 

execution time of error detectors by 14% and their code size by 56%, and removes the 

identified TOCTTOU vulnerability windows. The FDX hardware area overhead is 0.7% 

compared with the baseline processor size. These high error detection and recovery cov-

erage and low overheads in FDX-based systems are due to the co-design of hardware- 

and software-based fault tolerance techniques by using fault injection data. 
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Chapter 8.  

Conclusion 
 

 

This chapter concludes this dissertation. 

 

 

8.1. Lessons Learned 
 

This section summarizes the lessons learned from the fault characterization studies, the 

fault detection studies, and the overall design processes. 

 

8.1.1. Fault Characterization 

We have analyzed the characteristics of faults, errors, and failures. The characteristics are 

summarized as follows. 

(i) Fault. Many faults are masked. When a target system is monitored for 30 seconds 

after a fault is injected, a large percentage (e.g., 72–99.7%) of the hardware faults that 

propagate to software-visible system architecture states in the processor and memory are 

benign and do not harm the reliability and data integrity of software. The large portion of 

masked errors may be due to the large system state spaces of software. In order to deter-

mine whether such masked faults are permanently masked or just not activated during the 

monitored time, we used a much longer monitoring time (e.g., 2.5 hours) and executed a 

stress test case suite of an OS. We observed lower ratios of masked faults, but most faults 

in the processor and memory (e.g., 72.9–97% of memory faults) were still masked. Such 

a high probability of fault masking in the architecture and software layers is due to: un-

commonness of accessing certain portions of program states; probability of the first ac-

cess after a corruption is write operation (i.e., error is removed by a new value); probabil-

ity that the use of a corrupted data does not change the program behavior (e.g., checking 

x > 0 condition does not change the control flow as far as the corrupted value of x is larg-

er than 0); and probability that a change in program behavior does not show up as an ex-

ternally visible symptom (e.g., due to the absence of dataflow to the program output data). 

(ii) Error. Baseline error detection techniques in modern computers are effective at 

detecting many errors induced by hardware faults. Our fault injection results show that a 

large portion of non-masked errors are detected (e.g., >88% of non-benign errors in a 
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Linux platform). For example, if a fault changes a call- or control-flow of software, the 

processor can fetch and decode an invalid instruction (e.g., stored in a data segment or 

due to misaligned access to a code segment). Such a situation is detected by the processor 

error detectors (i.e., invalid opcode exception). If either the instruction or the data is cor-

rupted, this mismatch can produce a corrupted memory address operand, which is also 

detectable by the processor (e.g., segmentation fault or access permission violation). An 

error in an operand of an arithmetic instruction is detectable in some cases; for example, 

it is detectable if the denominator of a division instruction becomes zero. Furthermore, 

software-implemented error checkers in OSes detect errors that break the data integrity of 

kernel data structures and/or hardware states. 

We observe different error sensitivity characteristics in GPU programs. Our fault in-

jection experiments showed that an SEU emulated by injection of single-bit errors can 

seriously harm the reliability and data integrity of GPU kernels. The reason is that the 

percentage of data faults that can cause silent data corruption (SDC) errors in the evaluat-

ed GPU programs (e.g., 18–45%) is much larger than the percentage of data faults that 

can cause SDCs in common programs on CPUs. 

(iii) Failure. It is possible to recover from a large portion of failures through use of 

simple software techniques. The reasons include short error latency, strong correlation 

between error and failure locations, and the significance of reproducible memory data. 95 

to 97% of failures caused by processor faults have error latencies shorter than the time it 

takes to execute 5 billion instructions. 90 to 92.5% of such failures are detected in the 

same software module as the error occurrence. These failures are recoverable by a 

checkpoint-and-restart technique. However, 47% of failures caused by memory faults 

have fault latency longer than a time to execute 50 billion instructions. Such latent faults 

can cause a checkpoint corruption problem that needs an extra protection. Corruption in a 

portion of a checkpoint is tolerable by a forward error correction. For example, if a cor-

rupted data was loaded from a disk and unmodified since then, this the problem is cured 

when the data are reloaded from the disk. 

 

8.1.2. Fault Tolerance System Design 

We have designed three types of fault tolerance frameworks. The key design principles 

are summarized as follows. Modern computer systems and software consist of techniques 

designed and implemented in multiple layers of system abstractions, so the fault toler-

ance techniques for these systems are as well. It is thus natural to use a hardware-

software co-design approach and explore the wide hardware-software co-design spaces 

of fault tolerance techniques. The co-design approach in theory is likely to lead to a de-
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sign that is closer to the global optimum than approaches that modify only a part of a sys-

tem (e.g., software or hardware). We use the following design principles in order to ex-

plore the co-design space in an effective way. 

(i) Co-design of error detection and recovery. Error detection and recovery algo-

rithms are optimized at the same time. There are four cases in which this co-design pro-

vides benefits: error detection helps error recovery, error recovery helps error detection, 

an error recovery helps another error recovery, and an error detection helps another error 

detection. In a high layer of system abstraction, error isolation and recovery domains are 

defined and built using software and hardware techniques. The isolation property helps 

its error detection focus on the corruptions in the output data of each domain (namely, an 

isolated execution and deferred checking model). Furthermore, an error detection tech-

nique that is likely to limit the error detection latency helps its backward error recovery 

techniques optimize the recovery overhead (e.g., the number of checkpoints to keep).  

The following examples are cases in which the error detection and recovery take ad-

vantage of each other. The examples show the benefits of our error detection and recov-

ery co-design principle. An error isolation and recovery domain is a part of software 

and/or hardware that can isolate errors to its internal states and can tolerate the detected 

errors (e.g., by a re-execution). Some domain acts as a reliable computing base that can 

detect errors in other domains and trigger error recovery operations. A main technical 

challenge left in this fault tolerance architecture is that of detecting SDC errors in the 

output and input data of domains, because such data errors are undetected by the baseline 

fault tolerance techniques. 

Let us assume that both forward and backward error recovery techniques are used. 

Then, a forward error recovery technique can selectively protect system states that are 

hard to recover from using the backward recovery technique, because forward error re-

covery (e.g., ECC) has overheads in normal fault-free conditions. By selecting protection 

targets based on knowledge of recoverability, that principle allows us to design a fault 

tolerance system that is closer to the global optimal, because the forward error recovery, 

backward error recovery, and error detection techniques are considered and optimized 

simultaneously. 

(ii) Customized protection. We customize the error detection and recovery algorithms 

and techniques for each type of error isolation-recovery domain. For example, in this 

customization process, we use the error sensitivity, error recoverability, and protection 

cost of each type of target system state. This local customization principle was derived 

based on the observation that finding many local optima is easier than finding the global 

optimum. Here are some customization rules: 
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(a) Profiling-based customization. This sub-principle customizes the error detection 

and recovery algorithm by using profiling information on common programs of the tar-

geted type of software or hardware in order to minimize the impact on system perfor-

mance in common cases. For example, different error detection algorithms are used for 

different types of target software (e.g., parallel programs and privileged software). Such 

customization is also done at a finer granularity. Error detectors are strategically placed 

and customized in the source code of target GPU programs so as to minimize the perfor-

mance impact and error propagation, and maximize recoverability. Specifically, in GPU 

programs, loops form a majority of program execution time (e.g., >90%). A lightweight 

error detection algorithm is thus designed for loop codes, while a powerful but expensive 

error detection algorithm is used for non-loop codes based on the underlying concepts in 

Amdahl’s law [Amd67]. 

(b) Recoverability-driven selective protection. This sub-principle selectively protects 

part of system states. Example selection criteria are as follows. (1) A system state is se-

lected for protection if the expected error detection and/or recovery coverage gain from 

protecting this state is higher than the coverage obtainable from protecting any of the re-

mainder of unprotected states. For example, a data flow analysis is used to selectively 

protect program states to which errors in other states are likely to propagate. (2) We de-

rive protection target states by considering the recoverability of errors in these states. For 

example, by considering the urgency in error detection to enable and support safe error 

recovery, an error detection technique can focus on protecting system states that are like-

ly to cause long latency failures if a checkpointing-based error recovery technique is used. 

(iii) Separation of algorithm and mechanism. In our co-design, we separate the fault 

tolerance algorithm and mechanism. Here, a fault tolerance algorithm means an effective 

method of detecting and tolerating errors, and a fault tolerance mechanism is the imple-

mentation of an algorithm in software and/or hardware (e.g., a finite sequence of instruc-

tions).  

(a) Algorithm. An algorithm is heavily customized for a target subsystem and is stra-

tegically designed for targeted types of errors and failures. For example, an algorithm 

focuses on the detection of SDC errors. That allows us to reduce the coverage overlap 

with the baseline fault tolerance techniques of a target system (e.g., selectively targeting 

undetected or unrecoverable non-benign errors of a target system). Thus, many algo-

rithms are designed and optimized in a system abstraction that is close to end users. 

(b) Mechanism. A mechanism is optimized by exploiting the power of both hardware 

and software. For example, we offload fault tolerance operations to an external device 

that can efficiently process the operations without directly using the target system pro-
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cessor cycles. In another example, we identify the most frequently used instruction sub-

sequences of the initial software implementation of an algorithm and accelerate the iden-

tified sequences by using new processor instructions.  

(c) Semantic gap. This separation of algorithm and mechanism allows designers to 

efficiently target non-benign errors without facing the semantic gap between hardware 

and software. Here, the semantic gap is the information gap between hardware and soft-

ware. For example, although a hardware-implemented technique has the ability to access 

various system states, it is difficult to interpret the error sensitivity of each system state. 

By separating the algorithm and mechanism in different layers, the software-

implemented algorithm can focus on identifying the non-benign errors and delivering this 

information to hardware-implemented mechanisms. The use of a standard hardware-

software interface (e.g., an instruction set architecture extension in a case study) is effec-

tive at reducing the performance overhead associated with the information delivery be-

cause it can take advantage of existing hardware resources (e.g., memory hierarchy and 

computational parallelisms). 

(iv) Transparency. We have designed fault tolerance techniques in a way that mini-

mizes the deployment cost. For example, although the techniques are implemented as 

extensions of fundamental system components (i.e., processor, OS, and compiler), a user 

can directly take advantage of the techniques by compiling and launching the programs 

using provided tools. 

 

8.1.3. Development Process 

Based on those development studies, we present a novel development process (namely, a 

horseshoe model) that consists of the following eleven steps (see Figure 8.1): 

1. User requirement analysis. This step is designed to analyze the user requirements 

on target system performance, cost, and energy efficiencies. 

2. Tool development. This step develops a set of measurement tools, such as a fault 

injector and performance profiler, that can measure various types of target system 

characteristics. 

3. Measurement. This step is develops measurement techniques that can help devel-

opers conduct spatially and temporally comprehensive measurement experiments 

by using the tools developed in the previous step. Here, spatially comprehensive 

experiment means an experiment that generalizes its findings on different types of 

computer systems. A temporally comprehensive experiment monitors the behav-

iors of a system a statistically significant number of times and/or for a sufficiently 

long period of time. 
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4. Characterization. This step quantitatively and qualitatively analyzes the meas-

ured data. Quantitative analysis uses a set of metrics that can characterize the be-

haviors of system failures and normal executions. Qualitative analysis describes a 

set of cases that, for example, gives the propagation paths of an undetected error. 

5. Modeling. This step develops a model by using the understanding (or expertise) 

obtained in the previous measurement-analysis steps and the quantized system 

characterization parameters. Considering the complexity of modern computer sys-

tems under various types of hardware faults, the model has a form of stochastic 

activity models and is solved by the Monte Carlo simulation method. 

6. System requirement analysis. Using the developed model, this step explores the 

wide design space of fault tolerance techniques for a given configuration of target 

system hardware and software. This model-based design space exploration can 

derive the minimum design requirements of fault tolerance techniques that can 

meet the efficiency requirements derived by the user requirement analysis step. 

7. Architecture and algorithm design. This step is designs the fault tolerance system 

architecture (e.g., boundaries between protection units) and fault tolerance ap-

proaches for each protection unit. For example, we decompose the system-level 

components and create error isolation and recovery domains in a way that reduces 

the execution time and the memory size of the single points of failure. One type of 

domains is for each GPU device, and the other type of domains is for the comput-
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Figure 8.1. The presented development process. 
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er node. In each domain, we optimize the algorithms and techniques of error de-

tection and recovery by considering the characteristics of programs running on 

each domain. 

8. Reliability evaluation. This step is evaluates the coverage of designed algorithms 

and their software implementation via fault injection experiments. The previous 

algorithm design step is revisited until the requirements are met. 

9. Mechanism design and implementation. This step implements the designed algo-

rithms in hardware and/or software. For example, in one of our case studies, we 

used the ASIP approach that identifies commonly used instruction sequences and 

accelerates them by adding a specialized computation engine (e.g., a coprocessor) 

to the target processor pipeline. Such hardware extension does not just accelerate 

execution of software-implemented fault tolerance algorithms, but also improves 

their coverage. In another case study, we offloaded fault tolerance techniques to a 

separate hardware device in the computer node, so that the fault tolerance tech-

niques could run without directly using the computing power of target system. 

10. Performance evaluation. This step evaluates the performance, memory, and en-

ergy overheads of the hardware-software co-designed fault tolerance techniques. 

The steps from 7 to 10 are repeated until all the derived system requirements are 

satisfied. 

11. Operation. This step monitors the deployed fault tolerance systems in order to 

provide field evaluation data of the deployed techniques to administrators and/or 

users at runtime and to allow the administrators and users to dynamically select 

the deployed fault tolerance techniques and tune their configuration parameters. 

 

8.2. Applications  
 

We have presented various types of error detection and recovery techniques. In practice, 

it is possible to selectively use various combinations of these techniques to reflect the de-

sign requirements and configurations of a target system. The presented techniques can be 

grouped as functions of the types of protected subsystems. 

 CPU OS. The software symptom and online clustering are a good combination to 

detect OS failures. One may use the existing heartbeat techniques instead of the 

online clustering. Because a failure of an OS leads to the failures of all its user 

processes, both multi-level CPU checkpointing and recoverability-driven memory 

protection are useful for tolerating errors and failures detected in an OS. 
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 CPU MPI process. All four types of the specification-based error detection tech-

niques are useful for detecting errors and failures of MPI processes running on 

CPUs. If the use of all four checkers is constrained by the available resources, the 

use of the transition destination and time property checkers can be given top pri-

ority. In order to tolerate detected errors and failures of MPI processes, both the 

multi-level checkpointing and the recoverability-driven memory protection are 

useful.  

 GPU thread. The GPU guardian technique is useful for detecting hang failures 

and long execution errors of GPU threads. In order to provide stronger protection 

for SDC errors, one can use the similarity-based technique if a target program has 

a good spatial or temporal value similarity property (e.g., n-body program). For 

target programs that do not have such a property, the embedded error-checking 

techniques can be used as an alternative that can provide strong error detection 

coverage. If hardware modification is possible, one can also take advantage of the 

hardware-software co-designed techniques and run the embedded error checkers 

in a more efficient way. The selective re-execution technique and a GPU check-

point technique are a good combination to offer good recovery from errors and 

failures in GPUs. 

 Mission-critical systems. In mission-critical systems that use a relatively small 

number of computer nodes, the presented software-based NMR alone is good 

enough to provide strong error detection and recovery coverage. 

Depending on the scale of target system, there are three possible ways to combine the 

presented techniques. The cost-efficient fault tolerance techniques (i.e., all presented 

techniques except for the NMR) can improve the system efficiencies until a target paral-

lel or distributed system reaches a certain scale. When the system scale exceeds that 

threshold, hardware failures become so common that they can even block the executions 

of many of the presented techniques (e.g., checkpoint-restart operation). In such a case, 

the presented software-based NMR technique can be used in lower layers of system ab-

straction to detect and tolerate many hardware faults. Note that there may be alternative 

approaches (e.g., failure-oblivious computing [RCD+04]) that can tolerate such a high 

rate of faults with computation and energy efficiencies higher than 33.3%. That possibil-

ity is not extensively explored in this dissertation because of our focus on transparency. 

For example, we want to be able to run legacy MPI programs in new larger-scale com-

puters without direct modifications to the source code or programming model. As the sys-

tem scale grows, despite the use of the NMR technique, failures can become so common 

that they cannot be tolerated by the baseline techniques (e.g., heartbeat and checkpoint) in 



 

 

191 

 

an efficient way. In that third case, both the cost-efficient fault tolerance techniques and 

the NMR technique need to be deployed at the same time. A combination of those two 

types of techniques thus can significantly shift the scaling limit of parallel or distributed 

computer systems. 

Some of the presented frameworks and techniques can be used to detect failures 

caused by software faults and security attacks. For example, the presented hang detection 

techniques can detect failures of software that are caused by denial of service (DoS) and 

distributed DoS attacks. The presented SDC detection techniques can detect malicious 

intruders who harm the data integrity of software at runtime (e.g., memory corruption). In 

this dissertation, we limited our target system to parallel computer systems. Thus, there 

remains an important open challenge of finding a way to apply the presented experi-

mental validation and design methodologies to large-scale distributed computer systems 

(e.g., MapReduce) that have similar scalability, reliability, and availability problems. 
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