

© 2013 by Vikas Chandan. All rights reserved

 DECENTRALIZED THERMAL CONTROL OF BUILDING SYSTEMS

BY

VIKAS CHANDAN

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Mechanical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Doctoral Committee:

 Professor Andrew Alleyne, Chair

 Professor Geir Dullerud

 Professor Dušan Stipanović

 Dr. John Seem

ii

Abstract

Energy requirements for heating and cooling of buildings constitute a major fraction of end use

energy consumed. Therefore, it is important to provide the occupant comfort requirements in

buildings in an energy efficient manner. However, buildings are large scale complex systems,

susceptible to sensor, actuator or communication network failures in their thermal control

infrastructure, that can affect their performance in terms of occupant comfort and energy

efficiency. The degree of decentralization in the control architecture determines a fundamental

tradeoff between performance and robustness. This thesis studies the problem of thermal control

of buildings from the perspective of partitioning them into clusters for decentralized control, to

balance underlying performance and robustness requirements. Measures of deviation in

performance and robustness between centralized and decentralized architectures in the Model

Predictive Control framework are derived. Appropriate clustering algorithms are then proposed

to determine decentralized control architectures which provide a satisfactory trade-off between

the underlying performance and robustness objectives. Two different partitioning methodologies

– the CLF-MCS method and the OLF-FPM method – are developed and compared. The problem

of decentralized control design based on the architectures obtained using these methodologies is

also considered. It entails the use of decentralized extended state observers to address the issue of

unavailability of unknown states and disturbances in the system. The potential use of the

proposed control architecture selection and decentralized control design methodologies is

demonstrated in simulation on a real world multi-zone building.

iii

To my parents.

iv

Acknowledgments

This thesis would be incomplete without expressing my gratitude towards all the people who

have directly or indirectly helped me in the course of my graduate study at the University of

Illinois. It starts with Prof. Andrew Alleyne, my research advisor. I am extremely grateful to him

for providing me the opportunity to be a part of the Alleyne Research Group (ARG) since

January 2008. Through the course of the last five years within the ARG, I had the opportunity to

work on some challenging and practical research problems in the area of control and modeling of

energy systems. This thesis is a concatenation of those research efforts. I am very obliged to

Prof. Alleyne for his time and efforts in directing my research despite his busy schedule.

Throughout these years, he has helped me metamorphose from an undergraduate newcomer to

the field of research to a serious graduate student capable of taking ownership of research

directions and progress. Besides being an adviser to my research, I am also thankful to him for

the role he has played in several other aspects of my overall professional development. In

particular, his emphasis on leadership, collaboration and communication has helped me

throughout my stint as a graduate student and I am confident that these skills would prove

beneficial in the course of my future professional career. In addition to these, I am also thankful

to him for helping me make a few critical career decisions, keeping in mind my future

professional goals.

Next, I would like to thank the members of my PhD preliminary and defense examination

committees – Prof. Geir Dullerud, Prof. Dusan Stipanovic, Prof. Prashant Mehta and Dr. John

Seem – for their time and effort in evaluating my research and providing me valuable feedback. I

am especially grateful to Dr. John Seem for the discussions sessions that I had with him which

helped me in improving the quality and the practical appeal of my work. I would also like to

express my gratitude to all the professors at Illinois who provided me the opportunity to learn

v

through interactions both within and outside the classroom. The coursework that I undertook in

the area of controls introduced me to several important concepts and tools that I found useful for

my research at various points in time. These courses have also enabled me to a build

fundamental understanding of controls which I am confident would help me through the course

of my research career. I would also like to acknowledge the technical assistance provided by

Prasad Mukka at Siemens Corporate Research, Princeton, NJ in the development of the

EnergyPlus model that was used in Chapter 6 for the validation and verification of the tools

presented in this thesis.

Lastly, I would like to thank all my colleagues within ARG – both past and present – with

whom I had the opportunity to work with and interact very closely. In particular, I would like to

thank Neera, Tim, Dave, Kira, Bin, Nanjun, Yangmin and Erick with whom I had the privilege to

interact most closely during my time at the ARG. I would also like to thank some other members

of the group – Brian, Scott, Serena, Doug, Gina, Brandon, Rich, Tom, Justin, Joey, Megan,

Kasper and Matt – with whom I shared shorter but valuable stints. Finally, I would like to

conclude by thanking my family members whose love and support was critical in keeping me

motivated and strong throughout my journey towards a PhD.

vi

Table of Contents

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation and background.. 1

1.2 Research objectives .. 4

1.2.1 Control architecture selection .. 4

1.2.2 Decentralized control design .. 6

1.2.3 Evaluation of proposed tools and methodologies .. 7

1.3 Literature survey.. 7

1.3.1 Resources for building systems research .. 7

1.3.2 Modeling and simulation of building thermal dynamics 9

1.3.3 Thermal control of buildings .. 11

1.4 Outline of the thesis .. 13

CHAPTER 2 PHYSICAL DETAILS OF BUILDING SYSTEMS 14

2.1 Introduction .. 14

2.2 Control systems in a building ... 14

2.2.1 Thermal systems.. 14

2.2.2 Lighting systems ... 15

2.2.3 Security systems .. 15

2.3 VAV systems .. 17

2.3.1 Architecture .. 17

2.3.2 Sensing and actuation ... 19

2.3.3 Thermal control .. 20

CHAPTER 3 CENTRALIZED AND DECENTRALIZED CONTROL

FRAMEWORKS... 21

3.1 Thermal control of buildings .. 23

3.1.1 Control objectives ... 23

3.1.2 Control aspects ... 23

3.2 Preliminaries ... 26

vii

3.3 Centralized control framework ... 27

3.3.1 Architecture .. 27

3.3.2 Objective function .. 28

3.3.3 Model ... 28

3.3.4 Conversion to Quadratic Program .. 33

3.4 Decentralized control framework .. 36

3.4.1 Architecture .. 36

3.4.2 Objective function .. 36

3.4.3 Model ... 36

3.4.4 Conversion to Quadratic Program .. 38

CHAPTER 4 CONTROL ARCHITECTURE SELECTION FOR BUILDING

THERMAL CONTROL ... 42

4.1 Introduction .. 42

4.2 CLF-MCS approach ... 42

4.2.1 Overview ... 42

4.2.2 Coupling between inputs and clusters of inputs .. 43

4.2.3 Overview of divisive clustering approach.. 44

4.2.4 Optimality and robustness metrics ... 45

4.2.5 Stage level combinatorial optimization .. 47

4.2.6 MINCUT approximation .. 48

4.2.7 Optimal partition selection ... 50

4.2.8 Twelve zone building example ... 51

4.2.9 Nine zone building example .. 55

4.2.10 Remarks .. 58

4.3 OLF-FPM method .. 59

4.3.1 Overview ... 59

4.3.2 Optimality analysis for centralized MPC ... 59

4.3.3 Extraction matrices for decentralized MPC ... 61

4.3.4 Optimality analysis for decentralized MPC ... 64

4.3.5 Comparison of centralized and decentralized MPC ... 66

4.3.6 Optimality metric ... 70

4.3.7 Robustness metric ... 72

4.3.8 Optimal partitioning problem and complexity analysis 73

4.3.9 Agglomerative clustering .. 74

4.3.10 Nine zone building example ... 77

4.3.11 Eleven zone circular building.. 80

4.3.12 Remarks .. 87

CHAPTER 5 CONTROL DESIGN WITH OPTIMAL ARCHITECTURE 88

5.1 Introduction .. 88

viii

5.2 Cluster level modeling.. 89

5.2.1 3R2C modeling framework ... 90

5.2.2 Full order cluster level model ... 93

5.2.3 Model order reduction ... 94

5.2.4 State transformation ... 99

5.3 Observer and controller design... 107

5.3.1 Observer design ... 107

5.3.2 Controller design ... 107

5.4 Optimization ... 110

5.4.1 Re-statement of objective function ... 110

5.4.2 Constraints ... 115

5.4.3 Quadratic program formulation.. 119

5.5 Concluding remarks ... 120

CHAPTER 6 REAL WORLD BUILDING SIMULATION STUDY 121

6.1 Introduction .. 121

6.2 Test building and EnergyPlus model.. 123

6.2.1 Building Layout and Geometry ... 123

6.2.2 Construction data .. 127

6.2.3 Weather data.. 128

6.2.4 Internal loads ... 129

6.2.5 Creation of EnergyPlus model .. 132

6.3 Generation of linearized model .. 132

6.3.1 Overview of modeling framework .. 133

6.3.2 Zone level identification ... 133

6.3.3 Wall surface level identification ... 143

6.3.4 Construction of LTI model.. 153

6.4 Control architecture determination .. 154

6.4.1 Modifications to LTI model .. 154

6.5 Control design and analysis ... 158

6.5.1 Control design ... 159

6.5.2 Closed loop performance assessment... 161

6.6 Concluding remarks ... 176

CHAPTER 7 CONCLUSIONS .. 177

7.1 Summary .. 177

7.2 Conclusions .. 178

ix

7.3 Contributions .. 180

7.4 Future extensions .. 181

7.4.1 Incorporation of HVAC system ... 181

7.4.2 Experimental investigation... 181

7.4.3 Extension to other applications ... 182

References……………………………...……………………………………………………....183

Appendix A: Codes for 12-zone building example in section 4.2.8………………………...190

Appendix B: Codes for 9-zone building example in section 4.2.9……………………….....197

Appendix C: Codes for 9-zone building example in section 4.3.10………………….……..210

Appendix D: Codes for 11-zone building example in section 4.3.11………………........….222

Appendix E: Steps used in creating an EnergyPlus model using OpenStudio…………....229

Appendix F: Codes for performing zone level identification as per optimization

framework presented in (6.3) - (6.6)……………………………...…………………………..231

Appendix G: Codes for performing zone level identification as per optimization

framework presented in (6.7) - (6.10)…………………………………………...……………234

Appendix H: Codes for performing wall level identification as per optimization

framework presented in section 6.3.3.1………………………………………………..……..237

Appendix I: Codes for performing wall level identification as per optimization

framework presented in section 6.3.3.2…………………………………………..…………..239

Appendix J: Codes to obtain LTI model of SCR building and perform agglomerative

clustering (section 6.3.4 - 6.4)………………………………………………………......……..242

Appendix K: Codes for cluster level control design (Fig. 6.30)………………………...…..246

Appendix L: Codes for performing the optimality analysis (section 6.5.2.2)…………..….260

Appendix M: Codes for performing the robustness analysis (section 6.5.2.3)………….....272

x

List of Tables

Table 1.1 An overview of control-oriented building simulation programs 11

Table 3.1 Nomenclature of common symbols in Chapter 3 ... 21

Table 4.1 Construction properties used for the 12-zone building model 52

Table 4.2 Resistances and capacitances of walls ... 52

Table 4.3 Summary of results for 12-zone test building ... 53

Table 4.4 Nomenclature of additional symbols used (besides Table 3.1) 59

Table 4.5 FPM computation for 3-zone building in Figure 3.3 .. 73

Table 4.6 Optimal partitions vs. partitions using agglomeration for 9-zone building 79

Table 4.7 Resistance and capacitance values for walls of 11-zone building 81

Table 4.8 Zone capacitances for 11-zone building .. 82

Table 4.9 Partitions using agglomeration for 11-zone building ... 83

Table 5.1 Nomenclature of common symbols in Chapter 5 ... 89

Table 6.1 Nomenclature of symbols used in Chapter 6 .. 121

Table 6.2 Description of thermal zones in the test office building ... 127

Table 6.3 Details of construction template used for the test office building 128

Table 6.4 Nominal occupancy, lighting load and equipment load information used in EnergyPlus

model of test building ... 130

Table 6.5 Results of zone level optimization for all zones in test building 138

Table 6.6 ̅ and ̅ values for various wall types in the test building .. 154

Table 6.7 Thermal resistances due to wall opening between each pair of adjacent zones on each

floor of the test building .. 156

Table 6.8 Partitions using agglomeration for test building ... 157

Table 6.9 Parameters used in designing controllers for each cluster .. 160

Table 6.10 Maximum supply air mass flow rate and reheat power available to each zone 160

Table 6.11 Optimality analysis for test building under various control architectures 169

Table 6.12 Closed loop robustness analysis for test building for various control architectures in

the event of sensor failure in zone 1 ... 173

xi

List of Figures

Figure 1.1 Energy consumption by end use [3] ... 1

Figure 1.2 End-use energy consumption in commercial buildings [4] ... 2

Figure 1.3 End use energy consumption in residential buildings [5] ... 2

Figure 1.4 Illustration of centralized and decentralized architectures for thermal control of a

multi-zone building ... 4

Figure 2.1 Illustration of a rule based lighting control system (Source [64]) 16

Figure 2.2 Illustration of components in an automated building security system (Source:[66]) .. 17

Figure 2.3 Architecture of a VAV system (source: [68]) ... 18

Figure 2.4 Illustration of an air-handling unit (source: [69]) .. 18

Figure 2.5 Illustration of a VAV terminal unit (damper and reheat coils are not shown, source:

Wikipedia) ... 19

Figure 2.6 Illustration of a thermostat (source: [72]) .. 20

Figure 2.7 Illustration of a digital VAV controller (Source: [73]) ... 20

Figure 3.1 Six zone building used in the case study (return and supply water lines for chilled

water loop also shown). .. 24

Figure 3.2 Effect of sensor failure in room 1 of building shown in Fig. 3.1 25

Figure 3.3 An example 3-zone building (bottom surface of each zone faces ground – all other

external surfaces are exposed to ambient) .. 27

Figure 3.4 Schematic of centralized MPC architecture .. 27

Figure 3.5 Building block for RC network model of thermal interactions. Figure represents an

internal wall flanked by zones on either side of it. ... 30

Figure 3.6 Graph representation for the 3-zone building in Fig. 3.3. Nodes 1-10 represent walls,

11-13 are zones, 14 corresponds to ambient and 15 corresponds to ground. 32

Figure 3.7 Schematic of decentralized control architecture .. 37

Figure 4.1 Overview of the CLF-MCS clustering procedure ... 46

Figure 4.2 Schematic of combinatorial optimization process for any given stage. 47

Figure 4.3 Illustrative example of CLF vs. MCS plot. ... 50

Figure 4.4 12-zone test building architecture (Zones are numbered) ... 51

Figure 4.5 CLF vs. MCS plot for case 1 in Table 4.3 ... 53

Figure 4.6 CLF vs. MCS plot for case 2 in Table 4.3 ... 54

Figure 4.7 CLF vs. MCS plot for case 3 in Table 4.3 ... 54

Figure 4.8 CLF vs. MCS plot for case 4 in Table 4.3 ... 55

Figure 4.9 Layout of 9-zone building (side view) .. 56

Figure 4.10 CLF vs. MCS plot for nine-zone building with .. 57

Figure 4.11 CLF vs. MCS plot for nine-zone building with .. 57

Figure 4.12 CLF vs. MCS plot for nine-zone building with .. 58

Figure 4.13 Scalar illustration of deviation in performance between centralized and decentralized

xii

MPC when ̅̂
 ̅̂ .. 71

Figure 4.14 Illustration of agglomerative clustering for a building with 5 zones......................... 75

Figure 4.15 Computational complexity comparison of partitioning approaches 76

Figure 4.16 Illustration of optimality-robustness trade-off curve for OLF-FPM approach 77

Figure 4.17 OLF comparison of all p-partitions (solid circles) of the 9-zone building with

agglomerative partitions (empty circles). The agglomerative clustering progresses from left

to right, starting with the most decentralized partition (). ... 79

Figure 4.18 Optimality robustness trade-off curves for 9-zone building using true optimal

partitions and agglomerative partitions ... 80

Figure 4.19 Layout of 11-zone circular building (plan view with building height = 15 ft).......... 81

Figure 4.20 Optimality robustness trade-off curve for 11-zone building 84

Figure 4.21 Plot of for partitions from agglomeration for 11-zone building 84

Figure 4.22 Open loop response analysis for partitions of 11-zone building 86

Figure 4.23 Sinusoidal disturbance profiles used in open loop analysis of 11-zone building 87

Figure 5.1 Schematic of 3R2C modeling paradigm for wall i. ... 91

Figure 5.2 Schematic of 3-zone building used for illustration of Algorithm 5.2 97

Figure 5.3 Reduced order RC network obtained via Algorithm 5.2 for the cluster {1,2} of the 3-

zone building in Figure 5.2 ... 99

Figure 5.4 Illustration of controller and observer for i
th

 cluster. ... 109

Figure 6.1 Photograph of the SCR building (source: [93]) ... 124

Figure 6.2 Google SketchUp illustration of the test office building ... 124

Figure 6.3 Top (plan) view of test office building .. 125

Figure 6.4 Isometric view of the test office building .. 125

Figure 6.5 Side view of test office building viewed from the North-East direction 126

Figure 6.6 Transverse cut of basement showing conditioned and non-conditioned sections of test

office building ... 126

Figure 6.7 Transverse cut of D block showing the server room of test office building 126

Figure 6.8 Weekday occupancy schedule in each thermal zone in the test building 131

Figure 6.9 Saturday’s occupancy schedule in each thermal zone of the test building 131

Figure 6.10 Weekday lighting schedule in each thermal zone in the test building 131

Figure 6.11 Saturday’s lighting schedule in each thermal zone in the test building 132

Figure 6.12 Schematic of 3R2C modeling paradigm for wall i. .. 133

Figure 6.13 Zone set point temperature signal from 12:00 AM to 1:00 AM used in EnergyPlus

simulations for zone level identification ... 135

Figure 6.14 Temperature of zone F2 from zone level least squares identification methodology

compared with EnergyPlus data between 12:00 AM to 1:00 AM 136

Figure 6.15 Temperature of zone G from zone level least squares identification methodology

compared with EnergyPlus data between 12:00 AM to 1:00 AM 139

Figure 6.16 Temperature of zone E from zone level least squares identification methodology

compared with EnergyPlus data between 12:00 AM to 1:00 AM 139

Figure 6.17 Temperature of zone C from zone level least squares identification methodology

compared with EnergyPlus data between 12:00 AM to 1:00 AM 140

Figure 6.18 Temperature of zone SR from zone level least squares identification methodology

xiii

compared with EnergyPlus data between 12:00 AM to 1:00 AM 140

Figure 6.19 Temperature of zone F1 from zone level least squares identification methodology

compared with EnergyPlus data between 12:00 AM to 1:00 AM 141

Figure 6.20 Temperature of zone D from zone level least squares identification methodology

compared with EnergyPlus data between 12:00 AM to 1:00 AM 141

Figure 6.21 Temperature of zone F2 from zone level least squares identification methodology

compared with EnergyPlus data between 12:00 AM to 1:00 AM 142

Figure 6.22 Temperature of zone TCB from zone level least squares identification methodology

compared with EnergyPlus data between 12:00 AM to 1:00 AM 142

Figure 6.23 Temperature of zone NTCB from zone level least squares identification

methodology compared with EnergyPlus data between 12:00 AM to 1:00 AM 143

Figure 6.24 Inside surface temperature of wall 34 from least squares identification methodology

(section 6.3.3.1) compared with EnergyPlus data 100 K/kW) 148

Figure 6.25 Inside surface temperature of wall 34 from least squares identification methodology

(section 6.3.3.1) compared with EnergyPlus data 40 K/kW) 148

Figure 6.26 Inside surface temperature of wall 34 from least squares identification methodology

(section 6.3.3.1) compared with EnergyPlus data 10 K/kW) 149

Figure 6.27 Inside surface temperature of wall 34 from least squares identification methodology

(section 6.3.3.2) compared with EnergyPlus data ... 151

Figure 6.28 Illustration of wall opening present between thermal zones E and D in the test

building ... 155

Figure 6.29 Optimality-robustness tradeoff curve for test building (p denotes the number of

clusters in a partition). ... 156

Figure 6.30 Steps used for cluster level control design .. 159

Figure 6.31 Ambient temperature obtained from EnergyPlus weather file for the simulation time

window .. 162

Figure 6.32 Set-point temperatures for all zones during the simulation time window 163

Figure 6.33 Evolution of zone temperatures between 12:00 AM to 1:00 AM for centralized

architecture .. 163

Figure 6.34 Evolution of zone temperatures between 12:00 AM to 1:00 AM for decentralized

architecture corresponding to knee 3 .. 164

Figure 6.35 Evolution of zone temperatures between 12:00 AM to 1:00 AM for decentralized

architecture corresponding to knee 2 .. 164

Figure 6.36 Evolution of zone temperatures between 12:00 AM to 1:00 AM for decentralized

architecture corresponding to knee 1 .. 165

Figure 6.37 Evolution of zone temperatures between 12:00 AM to 1:00 AM for fully

decentralized architecture ... 165

Figure 6.38 Control inputs between 12:00 AM to 1:00 AM for centralized architecture 166

Figure 6.39 Control inputs between 12:00 AM to 1:00 AM for decentralized architecture

corresponding to knee 3 .. 166

Figure 6.40 Control inputs between 12:00 AM to 1:00 AM for decentralized architecture

corresponding to knee 2 .. 167

Figure 6.41 Control inputs between 12:00 AM to 1:00 AM for decentralized architecture

corresponding to knee 1 .. 167

xiv

Figure 6.42 Control inputs between 12:00 AM to 1:00 AM for fully decentralized architecture

 ... 168

Figure 6.43 Evolution of zone temperatures between 12:00 AM to 1:00 AM for centralized

architecture in the event of sensor failure in zone 1 ... 169

Figure 6.44 Evolution of zone temperatures between 12:00 AM to 1:00 AM for decentralized

architecture corresponding to knee 3 in the event of sensor failure in zone 1 170

Figure 6.45 Evolution of zone temperatures between 12:00 AM to 1:00 AM for decentralized

architecture corresponding to knee 2 in the event of sensor failure in zone 1 170

Figure 6.46 Evolution of zone temperatures between 12:00 AM to 1:00 AM for decentralized

architecture corresponding to knee 1 in the event of sensor failure in zone 1 171

Figure 6.47 Evolution of zone temperatures between 12:00 AM to 1:00 AM for fully

decentralized architecture in the event of sensor failure in zone 1 171

Figure 6.48 Regulation errors evaluated at the end of 1 hour for all zones in the building under

various control architectures in the event of sensor failure in zone 1 (zone numbers

indicated correspond to Table 6.2) .. 172

Figure 6.49 Control input for zone 1 between 12:00 AM to 1:00 AM for decentralized

architecture corresponding to knee 3 in the event of sensor failure in zone 1 174

Figure 6.50 Control input for zone 4 (lying in same cluster as zone 3) between 12:00 AM to 1:00

AM for decentralized architecture corresponding to knee 3 in the event of sensor failure in

zone 1 .. 174

Figure 6.51 Control input for zone 6 (lying in same cluster as zone 1) between 12:00 AM to 1:00

AM for decentralized architecture corresponding to knee 3 in the event of sensor failure in

zone 1 .. 175

Figure 6.52 Control input for zone 2 (in different cluster from zone 1) between 12:00 AM to 1:00

AM for decentralized architecture corresponding to knee 3 in the event of sensor failure in

zone 1 .. 175

Chapter 1

Introduction

1.1 Motivation and background

In recent times, there has been an increased emphasis, both nationally and internationally

on the importance of efficient utilization of energy [1, 2]. It has primarily been driven by

concerns related to environmental, economic and sustainability aspects associated with energy.

The impact of climate change and the rapid depletion of non-renewable natural resources is more

visible today than at any time in the past. Together with a greater emphasis or renewable and

non-polluting sources of energy, efficient use of energy can help to mitigate these effects. There

are also substantial economic benefits associated with lesser energy consumption in the form of

reduced costs both for energy suppliers and consumers. Reduction in energy demand leads to

lower utility expenses at the consumers’ end. Similarly, it translates into lesser energy supply and

therefore reduced capital and operating costs at the suppliers’ end.

Figure 1.1 Energy consumption by end use [3]

Industry

Transportation

Buildings

28%

31%

41%

2

Figure 1.2 End-use energy consumption in commercial buildings [4]

Figure 1.3 End use energy consumption in residential buildings [5]

Space

Heating

12%

Space Cooling

10%

Water Heating

4%
Ventilation

9%

Cooking

1%
Lighting

18%

Refrigeration

7%

Office

Equipment

8%

Other Uses

31%

Space Heating

25%

Space Cooling

13%
Water

Heating

13%

Refrigeration

6%

Cooking

3%

Lighting

11%

Appliances

17%

Other Uses

12%

3

The importance of efficient energy usage motivates a strong emphasis on sectors which

account for a large fraction of energy consumption, in order to create a meaningful impact on the

global energy and emissions scenario. Figure 1.1 shows sector-wise statistics on end use energy

consumption in the United States. The buildings sector is important because it accounts for more

than 40% of the total energy consumption and a similar share of greenhouse gas emissions in the

United States [3]. In most buildings, more than one-third of the energy usage is attributed to

space heating and cooling (Figure 1.2 and Figure 1.3). Therefore, improvements related to

energy efficiency in building thermal management can significantly impact the utilization, costs

and environmental sustainability aspects of the overall energy consumption.

The problem of efficient thermal management in buildings is inherently multidisciplinary

and presents diverse opportunities for several different areas of technology such as design,

architecture, alternative energy, modeling and control. In this regard, the opportunities offered by

the field of controls are particularly important for existing buildings where re-modeling and

design retrofits may be infeasible due to engineering or economic reasons. Strong arguments for

energy efficiency in the existing buildings stock [6] have recently been made, therefore

underlining the usefulness of controls in achieving such goals. Hence, control of the building

heating, ventilation and air-conditioning (HVAC) systems for energy efficient operation has

received considerable attention [7, 8, 9].

The underlying control objectives in the context of building thermal management are

manifold. The primary objective is to achieve the thermal demands corresponding to the various

zones in the building, which are specified by desired levels of temperature, humidity and other

indexes of occupant thermal comfort. As discussed above, another important objective is to

achieve these thermal demands in an energy efficient manner, which can lead to reduced energy

consumption, equipment operating costs and emissions. It is also desired to satisfy the thermal

demands robustly, meaning that the control design and architecture should ensure resilience

against failures such as thermostat malfunction. Lastly, the controllers should preferably be

easily tunable and scalable when going from one building to another.

Two key aspects associated with the control of large scale complex systems such as

buildings are control architecture and control algorithm. This thesis intends to analyze the role of

these aspects and address them appropriately with the aim of achieving the objectives in building

4

thermal control mentioned above. The outcome is a set of modeling and control tools that appear

promising when subjected to detailed simulation studies to examine their efficacy in meeting

these objectives. The next section describes the specific objectives of this thesis in more detail.

1.2 Research objectives

The primary objective of this research, as mentioned in the previous section is to aid the

development of novel and promising modeling and control tools capable of satisfactorily

addressing the underlying objectives in the thermal control of buildings. The specific research

objectives pursued in this thesis are described below.

1.2.1 Control architecture selection

From a systems engineering perspective, buildings are multi-time scale, complex systems

with multiple states, inputs, outputs and disturbances. For such systems, the closed loop

performance is affected by the choice of the control architecture. In theory, a centralized

controller (see illustration in Figure 1.4) using complete information of the system dynamics, and

having access to building-wide sensory data could control the building optimally, i.e. satisfy the

thermal comfort requirements in the various zones of the building with the least energy

consumption. In this framework, control decisions for the entire plant are made by a single

controller.

Centralized Decentralized

Figure 1.4 Illustration of centralized and decentralized architectures for thermal control of

a multi-zone building

5

 However, a key limitation of centralized decision making is potentially inferior

robustness to sensor and communication network failures. A faulty reading by one sensor can

affect the control decisions communicated to all actuators, thus distributing the effect of a local

failure plant-wide [10, 11]. In the context of building thermal control, it implies that many of the

conditioned zones will be affected until the fault is detected and diagnosed.

Due to these robustness concerns, decentralized decision making (see illustration in

Figure 1.4) may be preferable for such large scale systems [12, 13]. It is more resilient to sensor

and communication network faults because of its ability to contain them locally. Other benefits

of decentralization include flexibility in operation, and simplified design and tuning. A

decentralized control architecture consists of multiple disjoint control clusters, where each

cluster determines only a subset of the plant-wide control inputs. The clusters do not

communicate, i.e. decisions for the control inputs within a cluster are independent of any other

cluster. Thus, failures originating in one cluster are prevented from affecting other clusters. It is

therefore clear that with smaller clusters, the effect of such failures is more localized.

Although decentralization has merits from a robustness perspective, control decisions in a

centralized architecture are better informed than in a decentralized architecture because the latter

disregards any inter-cluster interactions in the decision making process. Therefore, it is expected

that a decentralized control scheme yields suboptimal performance with respect to a centralized

scheme and furthermore, the performance deterioration increases with the extent of

decentralization. Hence, the `degree of decentralization' results in a trade-off between optimality

and robustness.

Decentralized control has been applied to a wide variety of applications such as

coordination of multi-robot systems [14, 15], control of satellite formations [16], and control of

automated manufacturing systems [17, 18]. However, the decentralized control architecture is

chosen in such a way that each controller caters to an individual physical unit of the overall

system such as a robot, a satellite or a single machine. Decentralization in the context of building

thermal control has also been studied previously [19-23]. However, similar to the applications

previously mentioned, the most common architecture is a multi-agent scheme where each control

agent is matched to a single zone in the building. This choice results in the smallest possible

cluster size, which is beneficial from a robustness point of view. What is desired is a systematic

6

decentralization procedure that can quantify the specific trade-offs under consideration that exist

in a control design context. In this thesis we seek to address this need in the specific context of

building thermal control, by developing methodologies to determine appropriate decentralized

control architectures, which provide a satisfactory trade-off between optimality and robustness

objectives.

1.2.2 Decentralized control design

The design of controllers based on decentralized architectures obtained using the

methodologies developed in this thesis is another important research objective. A key issue in

control design for thermal control of buildings is the unavailability of accurate and reliable

information about certain aspects relevant to the thermal dynamics. In particular, thermostats

installed in buildings only measure the zone air temperatures which are associated with the

thermal comfort of occupants. Therefore, temperatures of walls which also participate in the

building’s thermal dynamics are usually not known. Additionally, thermal contribution from

factors such occupants, lighting, appliances and radiation are difficult to quantify and predict

accurately, resulting in potentially large uncertainties in the description of thermal dynamics

inside a building.

We observe that existing literature in the area of building thermal control seek to address

these issues for a particular building by (a) using data-driven or parameter identification type of

modeling approaches [24], (b) describing the dynamics only in terms of zone temperature states

[8], (c) adding additional sensors for prediction of unknown states or thermal loads [25, 26], and

(d) using high-fidelity models such as EnergyPlus [27] for prediction of states and loads which

are otherwise not known [28]. In this thesis, we aim to explore control design methodologies

which can be applied to a general class of buildings without the need to add additional sensors or

develop potentially expensive high-fidelity models. We also seek to address other challenges

associated with control design for thermal control of buildings such as potentially large

dimension of the state-space for the underlying thermal dynamics [29] and the presence of

constraints originating from practical considerations.

7

1.2.3 Evaluation of proposed tools and methodologies

It is important to verify the performance of the modeling and control tools developed in

this work to achieve the above mentioned objectives. For this purpose, a realistic testing

environment – either experimental or simulated – needs to be developed. Therefore, in the

absence of experimental facilities, an important objective of this research is to develop a

simulated test environment and employ it to validate the usefulness of the tools proposed for

control architecture selection and decentralized control design.

1.3 Literature survey

1.3.1 Resources for building systems research

Some important resources providing information on the statistics, challenges and past and

current efforts related to energy management of buildings are as follows.

1.3.1.1 ASHRAE

The American Society of Heating, Refrigeration and Air-Conditioning Engineers

(ASHRAE) [30], founded in 1894 is an international organization of engineers, industrialists,

scientists and researchers associated with the HVAC field. A few ASHRAE publications cater

specially to building systems such as High Performing Buildings (a quarterly magazine

presenting case studies on exemplary buildings designed for sustainability), Building

Information Modeling Guide (available for free online) and the Load Calculation Applications

Manual. In addition to these, the ASHRAE Journal, a monthly magazine, often features articles

which focus on issues and technologies related to the design, operation and control of building

HVAC systems. The society also publishes four handbooks related to the field (Fundamentals,

HVAC Systems and Equipment, HVAC Applications and Refrigeration) which are periodically

updated. These provide detailed technical descriptions of various HVAC components, together

with general and component specific physical and modeling insights. ASHRAE also releases

standards and guidelines to aid the design, selection and operation of HVAC systems.

1.3.1.2 Energy Information Administration

The Energy Information Administration (EIA) [31], created by the US Congress in 1977 is

8

an independent statistical agency within the US Department of Energy. The following articles are

periodically published by the EIA and made available online, which contain both overall and

sector-wise statistics regarding the national and international energy supply and demand:

1. Short Term Energy Outlook: Energy projections for the next 18 months, updated monthly.

2. Annual Energy Outlook: Projection and analysis of US energy supply, demand, and prices

through 2030 based on EIA's National Energy Modeling System.

3. International Energy Outlook: Assessment of the outlook for international energy markets

through 2030.

4. Monthly Energy Review: Statistics on monthly and annual US national energy consumption

going back approximately 30 years, broken down by source.

5. Annual Energy Review: Primary report of historical annual energy statistics.

 The statistics are presented sector-wise and at various levels of detail. For the building sector,

both heating and cooling data is made available based on geographical region, building type and

building features.

1.3.1.3 Europe’s Energy Portal

 Europe's Energy Portal [32] is an independently run commercial organization located

within the European Union (EU). It features articles presenting statistics, issues, and

technological and policy initiatives concerning emissions and energy in Europe. It also publishes

EU directives related to energy and the environment. Detailed country-wise and sector-wise data,

news and analysis are also provided.

1.3.1.4 Other resources

 Some other general resources that provide background information and updates on activities

related to the building energy area are as follows:

1. USGBC [33]: The U.S. Green Building Council (USGBC), founded in 1993, is a nonprofit

trade organization that promotes sustainability in how buildings are designed, built and

operated. USGBC provides online resources related to energy efficiency in buildings systems

including technical information, statistics, and case studies in the form of articles, webcasts,

videos and presentations.

2. Facilitiesnet [34]: This is an online portal containing articles related to building technologies

9

and building management strategies. It also includes some case studies and links to other

resources on energy efficient design and operation of buildings and data centers.

3. Building Technologies Program [35]: The Building Technologies Program (BTP) is funded

by the US Department of Energy to promote research and technology development to reduce

commercial and residential building energy usage. The program's website features resources

such as guidelines for best practices and also links to other agencies and online information

repositories.

4. ENERGY STAR [36]: It is a joint program of the U.S. Environmental Protection Agency and

the US Department of Energy. It provides online resources such as strategies and guidelines

for the design of energy efficient buildings and plants.

5. The Green Grid [37]: The Green Grid is a consortium of IT companies and professionals

seeking to improve energy efficiency especially in data centers. Its website contains articles,

survey findings, forum discussions and news updates.

1.3.2 Modeling and simulation of building thermal dynamics

A summary of papers and other resources on control oriented modeling and simulation of

building thermal dynamics is presented here. Lumped parameter methods constitute the most

common approach employed in literature to model the thermal interactions inside a building for

control design. This is because other potentially more accurate characterizations, such as the use

of partial differential equations to represent conductive and convective heat transfers, would

require computationally intensive, finite-element solution methodologies, involving high

dimensional state vectors. This limits their suitability for use in a control design procedure for a

complex, interconnected system such as a building.

One of the first attempts at developing lumped parameter dynamic models of buildings

was considered in [38]. A first order representation of the wall thermal dynamics based on

construction properties was proposed, using the concept of “accessibility factors”. Zones were

also represented as first order systems and were connected to walls through resistances, hence

resulting in a resistance capacitance (RC) network representation of the building thermal

dynamics. More details on the underlying framework, also known as the 2R1C framework are

provided in Section 3.3 of this thesis. This framework was experimentally validated by [39]. A

10

higher order lumped parameter framework, which represents each wall as a combination of three

capacitors and two resistors (also known as the 3R2C framework) was proposed in [40]. In this

paper, the resistances and capacitances were obtained by applying a model reduction procedure

involving nonlinear constrained optimization on a higher order model. More details on the 3R2C

framework are provided in Section 5.2 of this thesis. A related work is presented in [41], where a

genetic algorithm based parameter identification methodology is proposed to obtain resistances

and capacitances from experimental data to construct 3R2C representation of walls. A recent

improvement on 3R2C modeling has been claimed in [42], which proposes a rule based

methodology involving the concept of “dominant layer model” to compute resistances and

capacitances. The method was applied to a real construction to demonstate improvements in

accuracy over previously proposed 3R2C modeling approaches. The 3R2C framework has been

further investigated in [29] to propose an aggregation based model reduction methodology which

was shown to provide sufficient accuracy even after a large reduction in model order. An

advantage of this method over other model reduction methods, as claimed by the authors is that

the reduced order models retain the 3R2C framework.

Other types of lumped parameter modeling methods have also been inverstigated in

literature, besides 2R1C and 3R2C. Grey-box modeling methodologies were investigated in [24,

43]. A semiparametric regression analysis was proposed in [24] to estimate unknown parameters

and thermal loads in a grey-box model for building thermal dynamics. The methodology was

used in conjunction with model predicive control to show reduction in energy consumption on an

experimental test-bed. An Unscented Kalman Filter based approach was proposed in [43] to

estimate the parameters of a grey-box model of building thermal dynamics. The approach was

validated using EnergyPlus simulation data. Black-box system identification methods were

proposed in [44, 28] to identify lumped parameter models from high-fidelity EnergyPlus models.

Subspace identification methods were used in [44] and the identified models were

experimentally validated. In [28], balanced model reduction was employed to reduced the order

of the identified black-model for design of a model predictive controller. A model reduction

method was proposed in [45] for non-linear models of building thermal dynamics. This method

exploited the structure of the non-linear models and was shown to retain sufficient accuracy

when compared to the full order model.

11

The US Department of Energy provides a list [46] of simulation tools that are available

for free of cost and can be used to simulate the thermal dynamics in builings. Most of these tools

use static or slowly-sampled modeling paradigms, which limits their use for control design or

analysis. Therefore, they are primarily intended to provide the ability to test and improve the

design of building construction and HVAC systems. Still, some of these tools can be used for

control design and anlysis and are compared in Table 1.1.

Table 1.1 An overview of control-oriented building simulation programs [46]

Program
Level of state

resolution

Level of time

resolution
Software platform

EnergyPlus [27]
Zone and wall

temperatures
Upto 1 minute

Fortran compiler with

text based input and

output interfaces

ESP-r [47]
Zone and wall

temperatures
Upto 1 minute C/Fortran

HAMLAB [48]
Zone and wall

temperatures
< 1 minute allowed MATLAB/SIMULINK

BuildingSim [49]
Zone and wall

temperatures
Upto 1 minute Java

SMILE [50]
Zone and wall

temperatures
< 1 minute allowed C and Python

Among the programs listed above, EnergyPlus is a popularly used modeling environment

which used detailed models to simulate the thermal dynamics of a building. The interested reader

is directed to Chapter 6 and online tutorials provided in [27] for more information on

EnergyPlus. Analysis of other energy simulation programs is beyond the scope of this thesis.

1.3.3 Thermal control of buildings

In this section, we provide a survey of literature on thermal control of buildings. Model

Predictive Control (MPC) has been applied extensively to this area because of its ability to

handle large scale, constrained optimal control problems. Furthermore, the computational

12

complexity concerns which are typically associated with MPC are mitigated because of the slow

evolution of thermal dynamics in buildings. For a background and technical details on MPC, the

reader is directed to [51, 52].

MPC was used in [53, 54] to determine optimal zonal set-points and charging and

discharging strategies for thermal energy storage, so as to optimize the energy usage at the

building level. In particular, a detailed investigation of weather forecasting accuracy on the

closed loop performance was undertaken. Field results from experimental investigation of the

proposed MPC framework were reported. A stochastic MPC strategy for building climate control

was proposed in [33] that takes into account weather predictions and comfort constraints.

Nonlinear models with stochastic uncertainty were used for control design. The control strategy

was experimentally investigated under various weather conditions and occupancy scenarios.

A quadratic MPC framework was employed in [55, 25] on a heating system for an

experimental multi-zone building, and improvement in energy consumption over a baseline PID

scheme was demonstrated. Learning based MPC was applied in [24] to demonstrate

improvements in energy consumption over baseline control strategies on an experimental

building. The proposed approach uses statistical techniques to learn the unmodeled dynamics and

therefore improve model accuracy.

A min-max MPC framework with shrinking horizon lengths and pre-cooling was

proposed in [28] to minimize the energy cost associated with building thermal management. The

methodology was applied in simulation on an EnergyPlus model of a building to demonstrate

improvements over baseline strategies. The potential of occupancy information to reduce energy

consumption in buildings was investigated in [26]. Decentralized MPC strategies using current

and predicted occupancy information were implemented at the zone level. Simulation results on

a real world building model were presented to show improvements in energy efficiency. A

supervisory MPC scheme was explored in [56] to minimize the electrical utility cost in buildings.

A special emphasis was placed on the difficulties in optimization due to the demand charge

component of the utility cost. The proposed framework was implemented on an EnergyPlus

model of a building using MATLAB-EnergyPlus co-simulation approaches, and energy savings

with respect to baseline control strategies were reported.

Distributed MPC for thermal control of multi-zone buildings was studied in [57] to

13

address the computational challenges associated with centralized MPC. A multi-agent control

architecture involving coordination among agents was proposed, where each control agent uses

Sequential Quadratic Programming, proximal minimization and dual decomposition to handle

nonlinearities in the optimization framework. Simulation results were presented to demonstrate

the improvements in energy efficiency over a baseline control strategy. Distributed MPC using

coordination among agents was also investigated in [58]. The proposed methodology was based

on linear ARX models (auto-regressive models with external inputs) and quadratic objective

functions. Improvements in energy efficiency and computational complexity over a baseline

controller and a centralized controller respectively were reported in simulation.

Robust MPC methodologies to address the issue of uncertainty in the thermal dynamics

of buildings were investigated in [59]. Closed loop and open loop formulations of robust MPC

were compared in simulation and it was concluded that the former outperforms the latter in terms

of energy efficiency and robustness to disturbances. Lastly, very few studies in literature have

focused on non MPC based strategies for thermal control of buildings. For example, a mean field

decentralized control approach using a game-theoretic framework was proposed in [60] to

address the complexity of centralized control. Optimal control strategies were derived based on

the Hamilton-Jacobi-Bellman (HJB) principle and implemented in simulation to demonstrate

energy savings over a baseline PID strategy.

1.4 Outline of the thesis

The remainder of this thesis is organized as follows. Chapter 2 provides a physical

description of building systems with a special focus on variable air volume HVAC systems.

Chapter 3 describes centralized and decentralized control architectures for the thermal control of

buildings. These details are then used in Chapter 4 for the development of appropriate tools to

enable control architecture decisions that balance the optimality and robustness requirements in

the thermal control of buildings. Chapter 5 presents a control design framework for decentralized

architectures obtained using the methodologies developed in Chapter 4. A simulated real world

building example is studied in Chapter 6 to demonstrate the applicability of the control

architecture selection and control design tools developed in this thesis. Lastly, the conclusions

and research contributions from this work are presented in Chapter 7.

14

Chapter 2

Physical Details of Building Systems

2.1 Introduction

This chapter presents the physical details of building systems. The important control

systems in most modern buildings are briefly described. This is followed by a detailed discussion

on popularly used building thermal management systems known as variable air volume systems.

2.2 Control systems in a building

Most modern buildings consist of various control systems to meet the requirements of

occupants such as thermal comfort, lighting, power and security, which are together referred to

as a building management system. In this section, we describe the main features of systems used

for thermal comfort, lighting and security systems. For more details the reader is directed to [61,

62].

2.2.1 Thermal systems

Thermal management in buildings is accomplished using heating, ventilation and air-

conditioning (HVAC) systems. HVAC systems used in modern buildings perform the following

key functions:

1. Production of thermal energy by conversion from other forms such as mechanical,

electrical, chemical etc.

2. Distribution of thermal energy to conditioned spaces in buildings.

3. Control and monitoring through sensors, controllers and actuators.

15

HVAC systems in buildings range from small scale window units to large scale district

heating and cooling systems. For the building examples considered later in this work, we assume

that thermal management is provide by use variable air volume (VAV) systems which are t

employed in most medium and large scale buildings. More details on VAV systems are provided

in Section 2.3. Discussion of other types of HVAC systems is beyond the scope of this thesis but

the interested reader is directed to [63] for more details.

2.2.2 Lighting systems

Most modern buildings employ lighting control systems which provide several benefits

over individual switching, such as reduced energy consumption, synchronization of lighting

levels with activities, longer bulb life and reduced carbon emission footprints. A lighting control

system is usually centralized and is implemented using an embedded processor or an industrial

computer unit. It is typically based on rule based program logic which uses if-then-else

constructs and/or logical operators to determine lighting levels (on/off states and intensity of

lighting) at various locations in the building. The rules are based on one or a combination of the

following factors:

1. Schedules based on the time of the day.

2. Schedules based on the day of the week (weekday/weekend) or season of the year

(winter/summer)

3. Occupancy based lighting schedules

4. Daylight based lighting schedules (daylight harvesting)

5. Rules for special events such as social occasions or holidays

6. Alarm triggers, e.g. “all lights on” in case of suspected intrusion.

An illustration of a rule based lighting control system is shown in Figure 2.1. The

interested reader is directed to the online resource [65] for more information on lighting control

systems such as equipment, architecture and protocols.

2.2.3 Security systems

Security systems are provided in residential and commercial buildings to prevent, alert or

take remedial actions against undesired events such as intrusions, fire, excessive heat, flooding

16

and carbon monoxide risks. Modern security systems employ multiple sensors at various

locations in a building such as infrared/ultrasonic intrusion detectors, glass break detectors, video

surveillance systems e.g. security cameras, and smoke, heat and/or carbon monoxide detectors.

The trigger/alarm signals from each sensor is transmitted to one or more control units through

wires or wireless means.

Depending upon the type of alarm, its location in the building, time of day, and other

factors, the control units can automatically initiate various actions such as raising an alarm over

the public announcement system, or calling an ambulance service, fire department or police

department immediately. They may also be programmed to first call the property manager to

verify if the alarm is genuine. The security control system can also trigger other systems such as

the lighting control system to illuminate the entire building to facilitate evacuation, if necessary.

A schematic of the various constituents of an automated security system is shown in Figure 2.2.

The interested reader is directed to [67] for detailed information.

Figure 2.1 Illustration of a rule based lighting control system (Source [64])

17

Figure 2.2 Illustration of components in an automated building security system (Source:

[66])

2.3 VAV systems

A variable air volume (VAV) system is a type of HVAC system typically used for air-

conditioning medium and large scale buildings. Physical details of VAV systems are described in

this section.

2.3.1 Architecture

The architecture of a VAV system is illustrated in Figure 2.3. It consists of an air-

handling unit (AHU), VAV terminal units, ducts and air terminals. A building can have one or

more VAV systems depending on its size and layout. The AHU (Figure 2.4) recirculates the

return air from the section of the building conditioned by it, which is then mixed with outside air.

The mixing ratio is controlled using dampers. A fan is then used to transport the mixed air

through a bank of cooling coils to cool the air and also reduce its humidity. If necessary, the air

can also be heated and humidified through heating coils provided at the exit of the AHU. The

conditioned air is then circulated to the terminal VAV units through ducts.

18

Figure 2.3 Architecture of a VAV system (source: [68]). Note that dampers are not shown

in the air handling unit.

Figure 2.4 Illustration of an air-handling unit (source: [69])

VAV BOX VAV BOX
AIR

TERMINAL

19

The VAV terminal unit (Figure 2.5), also known as a VAV box is a zone level flow

control device. A VAV box has two actuators – an air damper and a reheat coil. It is connected to

a local or a central control system which typically seeks to achieve a specified set-point

temperature in the zone by using the damper to regulate the mass flow rate of air supplied to the

zone via air terminals. In the event that the zone temperature is lower than set-point and the mass

flow rate of air cannot be reduced further, reheat coils are used to heat the air supplied to the

zone.

Figure 2.5 Illustration of a VAV terminal unit (damper and reheat coils are not shown,

source: Wikipedia)

The source of cooling in the cooling coils in an AHU is usually chilled water provided by

a chiller unit installed in the building or a district cooling system to which the building is

connected. Similarly, the source of heating in the heating coils in an AHU and the reheat coils in

a VAV box is usually hot water or steam generated by a local heating unit in the building (e.g. a

boiler, air furnace or geothermal pump) or provided by a district heating system. Such water or

steam based heating and cooling systems are also known as hydronic systems. The reader is

directed to Chapter 2 of [70] for a detailed discussion of such systems.

In addition to the heating and cooling roles, a VAV system also provides ventilation to the

conditioned spaces due to continuous circulation of air. Therefore, a separate ventilation unit is

not required. The interested reader can find more details on VAV systems in the handbook [71].

2.3.2 Sensing and actuation

Thermostats (Figure 2.6) installed in the zones in a building measure the zone

temperatures which are used by the controllers to manipulate the dampers and/or the reheat coil

power as mentioned earlier. Therefore, from a thermal control perspective, the sensors

correspond to the thermostats and the actuators correspond to the dampers and reheat coils in the

20

VAV boxes. It should be noted that the temperature of air provided by the AHU is fixed (usually

around 13
0
C).

The differential pressure down the duct changes as a result of changes in the damper

positions in the VAV boxes, and is measured using a pressure sensor. Therefore, a fan controller

is employed to change the fan speed via a variable frequency drive to regulate the differential

static pressure down the duct around a specified set-point.

Figure 2.6 Illustration of a thermostat (source: [72])

2.3.3 Thermal control

The zones in a building are subjected to thermal loads originating from sources such as

occupants, appliances, lighting, solar radiation and ambient. The primary purpose of thermal

control is to offset these loads by manipulating the mass flow rate and temperature of supply air

from the air terminals of the VAV system so as to maintain the zones at specified set-point

temperatures. As described in Section 2.3.2, the controllers use thermostats as sensors and the

dampers and reheat coils in the VAV boxes as actuators. Historically, pneumatic control was

employed, but direct digital control systems (Figure 2.7) have become popular in recent times.

The control architecture can be centralized (one single control agent for all VAV boxes) or

decentralized (a different control agent for each VAV box) and is usually Proportional Integral

Derivative (PID) [74].

Figure 2.7 Illustration of a digital VAV controller (Source: [73])

21

Chapter 3

Centralized and Decentralized Control Frameworks

Centralized and decentralized Model Predictive Control (MPC) frameworks for the

problem of building thermal control are presented in this chapter. These frameworks form the

basis for the development of control architecture selection methodologies presented in Chapter 4.

The list of common symbols used in this chapter is shown in Table 3.1.

Table 3.1: Nomenclature of common symbols in Chapter 3

 Symbol Description

 Set of all zones in the building

 cluster in a p-partition

 Number of walls in the building

 Number of walls in cluster

 Number of zones in the building

 Number of zones in cluster

 Vector of wall temperatures at time

 Vector of wall temperatures within cluster at time

 Vector of zone temperatures at time

 Vector of zone temperatures within cluster at time

22

 Vector of control inputs at time

 Vector of control inputs for cluster at time

 Ambient temperature at time

 Ground temperature at time

 Vector of unmodeled thermal loads acting on walls at time

 Vector of unmodeled thermal loads acting on zones at time

 Vector of unmodeled thermal loads in cluster’s walls at time

 Vector of unmodeled thermal loads in cluster’s zones at time

 Vector of zone temperature set-points at time

 Vector of cluster zone temperature set-points at time

 Vector of weights on cost objective

 Vector of weights on cluster's cost objective

 Vector of weights on performance objective

 Vector of weights on cluster's performance objective

 Number of samples in the control and prediction horizon

 Sample time for discretization of thermal dynamics

 Predicted value of quantity , after time steps in future, given

 Identity matrix of dimension

 Zero matrix of dimension

23

3.1 Thermal control of buildings

3.1.1 Control objectives

In this section, we revisit the objectives in the thermal control of buildings described in

Secion 1.1. The primary objective in the thermal control of buildings is to provide desired levels

of occupant comfort in their air conditioned sections. An important part of the occupant comfort

requirements is to achieve desired temperature set-points that are prescribed manually by the

users or auto-programmed by the Building Automation System (BAS). Depending on the

specific requirments of occupants, activity levels, etc., the set-points can vary from one zone to

another at any given time, as well as for the same zone at different times in the day. Another

important control objective is to reduce the operating cost or power required by the heating,

ventilation and air-conditioning (HVAC) systems while seeking to provide the occupant comfort

requirements. This is motivated by the need to operate buildings efficienctly, as described in

Chapter 1.

From a controls perspective, a building is a complex multi-input, multi-output (MIMO) system

employing multiple sensors and actuators to meet the air-conditioning requirements as discussed

in Chapter 2. Such a system can be susceptible to failures originating in the sensors, actuators or

the commnucation infrastructure which integrates them with various elements of the control

network. It is desired that any such failure should have a limited effect on the satisfaction of

building-wide occupant comfort requirements before the fault is detected and diagnosed.

Therefore, resilience to such failures is another important objective that should be considered in

the thermal control of buildings. Also, from an implementation perspective, it is desired that the

control framework be scalable across buildings, irrespetive of their size or layout.

3.1.2 Control aspects

As mentioned in Chapter 1, two important aspects that need to be considered while

designing controllers to achieve the afore-mentioned objectives are (i) control architecture, and

(ii) control methodology. These aspects are explained below.

24

3.1.2.1 Control architecture

The existence of a tradeoff between optimality and robustness with respect to the degree

of decentralization of the control architecture was discussed in Section 1.2.1. To further explain

the demerits of centralized control, we consider a simulation case study performed on a 6 room

water-cooled building shown in Figure 3.1. The underlying control objective is to achieve

prescribed set-point temperatures (C) in all the rooms. A centralized control scheme based

on Model Predictive Control (MPC) and a decentralized control scheme (at the room level) based

on single input single output (SISO), proprtional-integral (PI) control were implemented. Details

of the plant and the controllers with the relevant codes and models are provided in the media

accompanying this thesis. The desired objective of temperature regulation was met by both these

controllers under normal circumstances. However, the performance when a fault was introduced

in the sensor in the atrium (room 1) is shown in Figure 3.2. It was observed that with centralized

control, sensor failure in room 1 significantly affected the performance in the other rooms of the

building (Figure 3.2 (a)). With decentralized control, however, the effect was limited to room 1,

where the fault originated (Figure 3.2 (b)).

Figure 3.1: Six zone building used in the case study (return and supply water lines for

chilled water loop also shown).

Temperature sensor fault
(Garbage reading)

ROOM 2

ROOM 3 ROOM 6
ROOM 1

25

(a) Regulation errors under centralized control

(b) Regulation errors under decentralized control

Figure 3.2: Effect of sensor failure in room 1 of building shown in Fig. 3.1

Therefore, the control architecture plays an important role in achieving the control

objectives listed in section 3.1.1. Besides centralized and decentralized, other configurations

such as hierarchical or overlapping architectures [75] can also be used for control. However, the

scope of this thesis is limited to the study of centralized and decentralized control architectures

only, because of the natural tradeoff between optimality and robustness associated with them as

explained above and in Section 1.2.1.

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

Room number

R
e

g
u

la
ti
o

n
 e

rr
o

r
(d

e
g

 C
)

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Room number

R
e

g
u

la
ti
o

n
 e

rr
o

r
(d

e
g

 C
)

26

3.1.2.2 Control methodology

Various control methodologies have been implemented in literature for the thermal

control of buildings, ranging from model-free approaches such as on-off or PID [76,77] to

model-based optimal control methods such as Linear Quadratic Regulation (LQR) [78] and

model-predictive control (MPC) [8,79]. Among these approaches, MPC has been of considerable

interest recently [8,79,80,81], (also see references in Section 1.3.3) because of its proven

effectiveness in handling large scale, constrained, optimal control problems. Therefore, the

control methodology used in this work is based on an MPC framework.

The centralized and decentralized MPC frameworks presented in this chapter are

developed to serve as a basis for the development of appropriate procedures for control

architecture selection in Chapter 4. However, appropriate modifications to these frameworks are

necessary for their implementation. These modifications will be discussed in chapter 5.

3.2 Preliminaries

A few preliminaries are required before a formal description of the centralized and

decentralized control frameworks can be presented.

Definition 3.1 (Zones): A zone in a building is defined as a cluster of rooms for which the

thermal demands are met using a common actuator. The set of all zones is denoted by , which

has elements.

Definition 3.2. (p-partition): A p-partition (or simply a partition) of the building is defined as

any set of non-empty and non-overlapping subsets of that cover all of , where

 . The elements which constitute a p-partition are called its clusters, denoted by ,

where . The number of elements in is denoted by . The above properties can

be formally stated as:

1. ,

2. ⋃
 , and

3. .

As an illustration of these definitions, consider a simple 3-zone building shown in Figure

3.3. The set of zones, for this example is {1, 2, 3}. It has exactly three 2-partitions which are

{{1,2},{3}}, {{1},{2,3}} and {{1,3},{2}}. Furthermore, the only 1-partition and 3-partition of

27

 are {{1,2,3}} and {{1},{2},{3}} respectively.

Figure 3.3: An example 3-zone building (bottom surface of each zone faces ground – all

other external surfaces are exposed to ambient)

3.3 Centralized control framework

3.3.1 Architecture

The proposed centralized MPC architecture for the thermal control of buildings,

illustrated in Figure 3.4 consists of a single control agent which determines the plant-wide

control inputs, based on the feedback of building-wide sensory data (zone and wall

temperatures), and appropriate forecasts of disturbances such as ambient temperature, ground

temperatures and thermal loads acting on the building’s walls and zones. The control decisions

are arrived at using a discrete time MPC approach, where an objective function is minimized

using a centralized system model that serves the purpose of constraints in the optimization. The

control inputs represent the rates of energy transfer – posititve for heating and negative for

cooling – provided to the zones by the HVAC system.

Figure 3.4: Schematic of centralized MPC architecture

21 3

Centralized
control agent

Building-wide zone and
wall temperatures

HVAC supervisory control
inputs (operating loads)

for each zone

Building-wide
disturbance forecasts

Centralized model

28

3.3.2 Objective function

As explained in Section 3.1.1, a primary objective in the thermal control of buildings is to

achieve desired temperature set-points for the various zones. A secondary control objective is to

reduce the HVAC operating cost or energy consumption associated with meeting the specified

temperature set-points. A weighted sum of these objectives is used to construct an overall

objective function, as shown in (3.1), for optimization over a finite time-horizon in a discrete

time setting. The size of the time-horizon, measured in terms of the number of samples, is

denoted by . The first term, represents the temperature set-point regulation objective

across all zones whereas the second term, represents either the HVAC operating cost or

power consumption. It should be noted that the power consumed by the HVAC system in

conditioning a zone depends upon the absolute value of the energy transfer irrespective of its

sign (heating or cooling). Therefore, a quadratic function of these energy transfers is used in

 . Further, the choice of quadratic functions to represent the constituent terms in the

objective function imparts strict convexity, which is a desired property in static optimization

problems [82]. To render the framework less restrictive, the weights and , in and

 respectively, are specified as vector quantities which allow the flexibility of assigning

different weights for different zones. The notation used is defined in the nomenclature (Table

3.1) and is consistent with standard practice in MPC literature [12].

 (3.1)

With,

 ∑
 ()

 () (3.2)

 ∑
 (3.3)

3.3.3 Model

An appropriate model is required to characterize the effect of the control variables on the

feedback variables of interest at each time step in the optimization. The zone temperatures are

dynamically interconnected by heat flow occurring through internal walls. The ambient

temperature, and ground temperature, also affect the thermal behavior in the zones through

29

the external walls (building envelope), and can be treated as disturbances in the context of the

overall system dynamics. A s reviewed in Section 1.3.2, a simple approach for modeling these

thermal interactions, which is widely used in literature is to treat the building as a lumped

resistive-capacitive (RC) network. Other potentially more accurate characterizations, such as the

use of partial differential equations to represent conductive and convective heat transfers, would

require computationally intensive, finite-element solution methodologies, involving high

dimensional state vectors. This limits their suitability for use in a control design or analysis

procedure for a complex, interconnected system such as a building.

The model used in this work is based on [38], revisited in [40], where the walls and zones

are represented by a capacitor each, with capacitance equal to the corresponding thermal mass

(Figure 3.5). The system states are the (lumped) temperatures of the walls and zones. The control

inputs correspond to the energy transfer rates in (heating or cooling) that the HVAC system

provides to the zones. In a variable air volume (VAV) air-conditioning system, these can be

modulated by adjusting dampers in the VAV boxes to set air flow rates or by manipulating the

supply air temperature provided by the Air Handling Units (AHU) [79]. The heat transfer

between a wall and any of its adjacent zones or the ambient/ground (in case of external walls) is

characterized by a resistor, with resistance set to the inverse of the corresponding heat transfer

coefficient. Various other factors also affect the thermal dynamics, such as heat flows

contributed by occupants, lights, appliances, direct or indirect solar radiation, and thermal

infiltration. In this work, these factors are not modeled separately and only their lumped

contribution to each zone and wall is represented using thermal disturbance vectors and

having units of . This is because as seen in Chapter 4, these disturbances do not affect the

control architecture selection methodologies.

The resulting linear, discrete time, state space model for the building thermal dynamics

using the afore-mentioned assumptions is as shown.

[

] [

]

⏟

[

] [

] [

] [

] (3.4)

30

Figure 3.5 Building block for RC network model of thermal interactions. Figure represents

an internal wall flanked by zones on either side of it. The unmodeled thermal loads are also

shown via current sources.

Here, the state transition matrix, is partitioned into sub-matrices , , and

 . These sub-matrices, together with the other matrices , , , and

appearing in the model can be obtained for any general building from a knowledge of the

underlying resistance and capacitance values in the RC network via the procedure described in

Algorithm 3.1. In this algorithm, a weighted graph is used to represent the resistances in the

network. A Laplacian matrix is then constructed, which represents the net flow of energy into

each node in the graph, thus allowing the application of the First Law of Thermodynamics

(conservation of energy) at the nodes.

Algorithm 3.1. Generation of state space model for building thermal dynamics from a RC

network

STEP 1: A weighted graph is created with nodes for each of the walls, the zones, the ambient and

ground (see Figure 3.6). While numbering the nodes, those representing walls are numbered first,

followed by the zones, the ambient and lastly the ground. Each wall node is connected by

undirected edges to the two nodes to which it is thermally connected. This results in nodes

R2 R1

Cwall Czone,1Czone,2

zone,1

dzone,2

d walld

31

representing external walls to be connected to a zone node and the ambient/ground temperature

node. Similarly, the internals walls are connected to a pair of zone nodes. The weight of each

edge is set to be the inverse of the corresponding thermal resistance between the two nodes it

connects. The resulting weighted graph is denoted by along with the weight function

 . Here, and are the sets of vertices and edges, respectively, in graph G. We also

define capacitance matrices, and which are diagonal matrices of the thermal capacitances

associated with the walls and the zones respectively. The diagonal entries in these matrices are

entered in the order of the corresponding node numbers in .

STEP 2: The Laplacian matrix of , denoted by is then obtained as:

 (3.5)

Where,

 {

 ∑

We extract a square sub-matrix from which corresponds to its first rows and

columns, and denote the result by . Next, a column vector denoted by is extracted which

corresponds to the first rows and the column of . Similarly, another

column vector denoted by is extracted which corresponds to the first rows and the last

column of .

STEP 3: The following matrices are now defined:

 [

] (3.6)

 (3.7)

 (3.8)

32

 (3.9)

 (3.10)

Figure 3.6: Graph representation for the 3-zone building in Fig. 3.3. Nodes 1-10 represent

walls, 11-13 are zones, 14 corresponds to ambient and 15 corresponds to ground.

 STEP 4: The continuous time model for the building thermal dynamics is obtained as shown in

(3.11).

[

] [

] [

] [

] [

] (3.11)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

33

 The model (3.4) is obtained by the discretization of (3.11) using an appropriately chosen

sample time . In the examples used in this thesis, the discretization is performed in MATLAB

using the ‘zero order hold’ method. It should be noted that , , , and are

diagonal matrices as a result of the construction procedure described above.

In most modern buildings, the zone temperature measurements are available using

thermostats. However, wall temperatures measurements may not be available. We consider the

estimation of wall temperatures in Chapter 5 when designing the centralized and decentralized

controllers. For the purposes of control architecture selection however, we assume that full state

measurement is available. This implies that at each time instant , the wall temperatures

and zone temperatures are known.

3.3.4 Conversion to Quadratic Program

Over the selected prediction horizon, the model given by (3.4) is used to predict the

future states
 and

 in terms of any chosen current and future

control inputs
 , current state measurements , forecasted values of

unmodeled thermal loads
 and

 , ambient temperatures

 and ground temperatures

 .

Let [

] , [

], [

], [

], [

],

 [

] and [

]. Using (3.4) we obtain

34

 ∑

The above equations can be succintly written as

 ̅ ̅ ̅ ̅ ̅ ̅ (3.12)

Here,

 ̅ [

], ̅ [

], ̅

[

]

 ,

 ̅ = [

] ̅ [

], ̅ [

], [

],

 [

], [

],

[

]

, [

], and

 [

].

From (3.1) can be re-stated as

 (̅ ̅)

 (̅ ̅) ̅ ̅ (3.13)

Where,

35

 ̅ [

], ̅

[

]

,

 [

]

 ,

and [

]

.

Let
 and ̅ [

]

 Clearly, ̅ ̅ ̅ (3.14)

Using (3.12), (3.14) can be written as

 ̅ ̅(̅ ̅ ̅ ̅ ̅) (3.15)

Substituting ̅ from (3.15) in (3.13) and ignoring the term (̅ ̅ ̅

 ̅)

 ̅ ̅(̅ ̅ ̅

 ̅
) which is independent of ̅ and

therefore does not affect the optimization, we obtain

 ̅ ̅
 ̅ (3.16)

where,
 ̅ ̅ (3.17)

 ̅ [̅(̅ ̅ ̅

 ̅
) ̅] (3.18)

Therefore, the optimization problem corresponding to centralized MPC can be re-stated as the

Quadratic Program (QP):

 ̅

 ̅
 ̅ (3.19)

where, ̅ ̅ ̅
 ̅ (3.20)

36

3.4 Decentralized control framework

3.4.1 Architecture

We consider any general p-partition of a building (definition 3.2) with constitutive

clusters , where . A multi-agent MPC scheme is considered which is

decentralized with respect to these clusters. In this architecture (Figure 3.7), each agent

determines the control inputs for the corresponding cluster, based on the temperature

measurements of zones and walls constituting the cluster, and appropriate forecasts of

disturbances such as ambient temperature, ground temperature and thermal loads acting on the

walls and zones constituting the cluster. The control decisions are still arrived at using a discrete

time MPC approach, but the objective function and the model used for prediction are local to the

cluster corresponding to a particular control agent.

3.4.2 Objective function

The objective function for the control agent,
 is obtained in (3.21) by extracting

only those terms in and which correspond to the zones in the cluster .

 (3.21)

 where,

 ∑
 ()

 (), (3.22)

 ∑

 . (3.23)

In the above equations, and are vectors obtained from and respectively by

extracting entries corresponding to the zones in the cluster.

3.4.3 Model

Similar to the centralized MPC framework, an appropriate model is required to

characterize the effect of the cluster level control variables, i.e. the thermal energy transferred to

each zone in a cluster by the HVAC system, on the cluster-level state variables of interest. This

relationship is obtained by first recognizing the states (and), the control inputs, and the

37

disturbances, and that are associated with the walls and zones constituting the cluster,

and then characterizing their interdependencies by extracting suitable sub-matrices from the full-

order state space matrices in (3.4). Here, is the vector of temperatures of all walls which are

adjacent, in terms of the graph described in Algorithm 1, to the zones constituting the

cluster. The corresponding model for the cluster can be expressed in the form shown in

(3.24), which uses the fact that , , and in (3.4) are diagonal matrices. The

last term in the right hand side of (3.24) represents the influence that the zone temperatures in

other clusters have on the dynamics of the cluster.

 Figure 3.7 Schematic of decentralized control architecture

Decentralized
control agent 1

Cluster 1 wide zone and
wall temperatures

HVAC supervisory control
inputs (operating loads)

for each zone in cluster 1

Disturbance forecasts
relevant to cluster 1

Cluster 1 level model

Decentralized
control agent 2

Cluster 2 wide zone and
wall temperatures

HVAC supervisory control
inputs (operating loads)

for each zone in cluster 2

Disturbance forecasts
relevant to cluster 2

Cluster 2 level model

Decentralized
control agent p

Cluster p wide zone and
wall temperatures

HVAC supervisory control
inputs (operating loads)

for each zone in cluster p

Disturbance forecasts
relevant to cluster p

Cluster p level model

38

 [

] [

]

⏟

[

] [

]

 [

] [

] ∑ [

] (3.24)

Imposition of a control architecture that is decentralized with respect to the clusters

implies that the control agent does not have access to the sensory data from the other

clusters. Therefore, the , for each appearing in (19) must be replaced

with an appropriate guess or estimate, ̂ . For example, if the operating temperature range of

the building zones is known, say , the estimates can be heuristically chosen values

which lie in this range. A specific choice for these estimates is the set-point temperatures for the

corresponding zones, assuming that the controllers are able to satisfactorily regulate the

temperatures around these set-points. Therefore, the appropriate model for use by the control

agent is given by

[

] [

]

⏟

[

] [

]

 [

] [

] ∑ [

] ̂ . (3.25)

3.4.4 Conversion to Quadratic Program

The optimization of the cost function
 for the control agent can be converted to a

QP by proceeding similarly as in the case of centralized MPC. Over the selected prediction

horizon, the model given by (3.25) is used to predict the future states
 and

 in terms of any chosen current and future control inputs

 ,

current state measurements , forecasted values of unmodeled thermal loads

39

 and

 , ambient temperatures
 , ground

temperatures
 , and state estimates from other clusters ̂

 (where

).

Let [

] [

], [

], [

], [

],

 [

], [

] and [

]. Using (3.25), we obtain

 ∑

 ̂

 ∑

 ̂

 ∑

(̂ ̂)

 ∑

 ∑

 ̂

The above equations can be succintly written as

 ̅ ̅ ̅ ̅ ̅ ̅ ∑ ̅̂ (3.26)

Here,

40

 ̅ [

], ̅ [

], ̅

[

]

 ,

 ̅ [

], ̅ [

], ̅̂

[

 ̂

 ̂

 ̂]

 [

],

[

]

,

[

]

,

[

]

,

[

]

,

[

]

, and

[

]

From (3.21),
 can be re-stated as

 (̅ ̅)

 (̅ ̅) ̅

 ̅ (3.27)

where,

 ̅ [

], ̅

[

]

,

 [

]

 ,

41

and [

]

.

Let
 and ̅ [

]

 Clearly, ̅ ̅ ̅ (3.28)

Using (3.26), (3.28) can be written as

 ̅ ̅ (̅ ̅ ̅ ̅ ̅ ∑ ̅̂) (3.29)

Substituting ̅ from (3.29) in (3.27) and ignoring the terms which are independent of ̅

and therefore do not affect the optimization, we obtain

 ̅

 ̅
 ̅ (3.30)

where,
 ̅

 ̅ (3.31)

 ̅

 [̅ (̅ ̅ ̅ ̅ ∑ ̅̂) ̅] (3.32)

Therefore, the optimization problem corresponding to decentralized MPC can be re-

stated as the Quadratic Program (QP):

 ̅

 ̅

 ̅ (3.33)

 where, ̅ ̅
 ̅

 ̅ (3.34)

42

Chapter 4

Control Architecture Selection for Building Thermal

Control

4.1 Introduction

The role of control architecture in achieving the thermal control objectives was described

in sections 1.2.1 and 3.1.2 In particular, the fundamental tradeoff between optimality and

robustness with regard to the ‘degree’ of decentralization was examined. The focus of this

chapter is on the development of appropriate decentralized control architecture selection

methodologies which consider the afore-mentioned tradeoff between optimality and robustness.

Two different approaches – CLF-MCS method and OLF-FPM method – are presented and

demonstrated using examples. The reader is directed to sections 3.3.1 and 3.4.1 for details on

centralized and decentralized frameworks, which form the basis for these methodologies.

4.2 CLF-MCS approach

4.2.1 Overview

The CLF-MCS approach is a procedure for partitioning a building based on Coupling

Loss factor (CLF) and Mean Cluster Size (MCS) as optimality and robustness metrics

respectively. A divisive clustering procedure employs these metrics to create a family of

partitions using combinatorial optimization. These partitions are then analyzed to select those

which provide satisfactory trade-offs between optimality and robustness. A MINCUT

approximation for the underlying combinatorial optimization problem is also presented to

43

address computational concerns. The methodology is demonstrated using simulated examples.

4.2.2 Coupling between inputs and clusters of inputs

The concepts of coupling between inputs and clusters of inputs are presented here as

preliminaries used in the development of the Coupling Loss Factor as an optimality metric.

4.2.2.1 Coupling between inputs

We consider the centralized MPC framework described in Section 3.3. For a prediction

horizon of length samples, we introduce a vector ̅ defined at any time instant as

 ̅ [

 ̅

 ̅

 ̅

] (4.1)

where, ̅ [

] for . (4.2)

Here, denotes the component of the vector of control inputs . The vector ̅ was

defined in (3.12) as

 ̅ [

] (4.3)

Comparing (4.1) and (4.3), we observe that the entries of ̅ form a permutation of the

entries of ̅. Therefore, ̅ can be expressed as shown in (4.4), where is a permutation matrix.

 ̅ ̅ . (4.4)

Using (4.4) in (3.20), the objective function for centralized MPC can be written as

 ̅
 ̅ ̅ ̅ ̅ ̅ ̅ (4.5)

Where, ̅
 , (4.6)

and, ̅
 . (4.7)

44

The quadratic part, ̅ ̅ ̅, can be written in the expanded form as:

 [

 ̅

 ̅

 ̅

]

[

 ̅ ̅ ̅

 ̅ ̅ ̅

 ̅ ̅ ̅]

[

 ̅

 ̅

 ̅

]

Each off-diagonal term, ̅ represents the coupling between and in

 ̅ . Therefore, we use ‖ ̅ ‖
 as a measure of coupling

1
 between and and extend this to

define coupling between between a pairs of input clusters in Section 4.2.2.2.

4.2.2.2 Coupling between clusters of inputs

Consider a p-partition of the building from definition 3.2. Consider any two clusters

and from this partition. The coupling matrix between these clusters, ̅
 is defined as

 ̅

(

 ̅
 ̅

 ̅
 ̅

)

 (4.8)

where, and .

The coupling () between and is then defined as

 () ‖ ̅
‖

. (4.9)

4.2.3 Overview of divisive clustering approach

The CLF-MCS clustering procedure is carried out in a divisive sequence as illustrated in

Figure 4.1. The input to each stage is a set of parent clusters, and the output is a set of child

clusters. The child clusters are obtained from the parent clusters via combinatorial analysis. The

input to the first stage is the root cluster containing all the control inputs, which represents the

completely centralized case. The output of the last stage is a set where each control input is a

cluster by itself and hence represents a fully decentralized architecture. For any intermediate

1
 It is important to scale the system first so that coupling metrics corresponding to different pairs of input

channels can be compared with one another. For a discussion on scaling see [83].

45

stage , the input (set of parent clusters) is the same as the output (set of child clusters) of the

previous stage . Two metrics representing optimality and robustness are computed for

each stage. A plot of one metric versus the other is then used to identify the stage which results

in a satisfactory tradeoff between robustness and optimality.

4.2.4 Optimality and robustness metrics

Two dimensionless metrics - Coupling Loss Factor (CLF) and Mean Cluster Size (MCS)

are computed for each partitioning stage.

4.2.4.1 Coupling Loss Factor

The CLF for stage is a normalized measure of the inter-cluster coupling among its

child clusters that are denoted by
 , where . Here, is the total number of such

child clusters. First, we introduce the coupling loss vector for this stage as the vector of

the couplings (

) for each pair of child clusters, (

) with . More

formally,

 ()

 (4.10)

where, [(

) (

) (

)] for all

The CLF for stage , is then defined as

‖ ‖

‖ ̅‖
 (4.11)

Here ̅ is the matrix defined in 4.6. The CLF for the parent partition to stage 1, which

represents the fully centralized scenario, is clearly zero. measures the coupling that gets

ignored if the system were partitioned according to the child clusters of stage . Therefore, it

is desired to partition the system such that the corresponding CLF is small so that the resulting

deviation in optimality from centralized control is small.

46

Figure 4.1 Overview of the CLF-MCS clustering procedure

4.2.4.2 Mean Cluster Size

We use
 to denote the number of elements in child cluster

 . for stage is

defined as the average number of zones per child cluster normalized with respect to the total

number of zones.

 ∑

. (4.12)

It is clear that . In a decentralized control architecture, the effect of a sensor

or communication related fault is confined to the cluster where it originates. Therefore, the MCS

is an indicator of robustness to such faults - a small value indicates that the number of clusters is

large and thus the effect of failures is less widespread. Hence, it is desired to partition the

1 2 3……...Nz

1 2 3…….p p+1 p+2 ….Nz

1 2 3….q q+1 q+2….p p+1 p+2 ….Nz

Stage 1

Stage 2

1 2 3 Nz

Stage p

PC

CC

PC

CC

CC

CLF1,

MCS1

CLF2,

MCS2

CLFp,

MCSp

PARTITIONING STAGES

Optimal stage and partitions

CLF vs. MCS Analysis
PC : Parent Clusters

CC : Child Clusters

LEGEND

47

building such that the corresponding MCS is small.

4.2.5 Stage level combinatorial optimization

As shown in Figure 4.1, for each stage, the input is a set of parent clusters and the output

is a set of child clusters. The objective of the stage level optimization is to appropriately split the

parent clusters to obtain corresponding child clusters. This process is based on a combinatorial

optimization procedure which is explained below and illustrated in Figure 4.2.

Figure 4.2 Schematic of combinatorial optimization process for any given stage.

Since the parent clusters for any stage are the child clusters from its preceding stage

 , they are given by
 where . An intermediate cluster pair for any

parent cluster is defined as a set of two non-empty clusters obtained by splitting that parent

cluster. Therefore, the number of intermediate cluster pairs,
 obtained from the parent

cluster
 is given by by the Stirling number of the second kind [84],

 expressed as

 . (4.13)

The Intermediate Loss Factor (ILF) is defined for each intermediate cluster pair

{

 } of
 , indexed by as

 (

)

 (

)
 (4.14)

where,
 , and .

1 2 3 4 5

1 2 3 2 1 3 3 1 2

2

PARENT CLUSTER 1 PARENT CLUSTER 2

4 5

ILF = 0.2 ILF = 0.03 ILF = 0.1 ILF = 0.05

4 51 3

CHILD CLUSTER 1 CHILD CLUSTER 2 CHILD CLUSTER 3

} INTERMEDIATE

CLUSTER PAIRS

48

 The underlying optimization problem for the stage, is to find the parent cluster

(indicated by) and its corresponding intermediate cluster pair (indicated

by
) which yield the smallest ILF. This is stated as

 (4.15)

The optimal parent cluster is then split to create the optimal intermediate cluster pair,

whereas the other parent clusters are retained. In other words, the cluster
 is partitioned into

the clusters
 and

 . The result is a set of child clusters having one more cluster

than the set of parent clusters.

The ILF defined in (4.14) measures the ‘amount of coupling’ information lost when a

parent cluster is split into two child clusters, normalized with respect to the coupling originally

present in the parent. Therefore, the above optimization involves determination of the optimal

split in the sense that such a split results in the smallest loss of coupling information among all

possible splits.

4.2.6 MINCUT approximation

The exponential computational complexity, characterized by (4.13), of the combinatorial

optimization motivates the development of a more tractable approach for the minimization

problem (4.15). In what follows, for simplicity, we denote the size
 of the parent cluster

by . The elements of
 are accordingly denoted by , where .

A matrix ̅ is constructed for the parent cluster
 from its elements in a manner

analogous to the construction of the coupling matrix in (4.8)

 ̅

(

 ̅
 ̅

 ̅

 ̅
 ̅

 ̅

 ̅

 ̅
 ̅)

 (4.16)

For any given intermediate cluster pair, {

 } a matrix, ̅
 can be obtained

from ̅ by setting to zero all blocks which correspond to elements in one intermediate cluster

only. More precisely,

49

 ̅

(

 ̅

 ̅

 ̅

 ̅

 ̅

 ̅

 ̅

 ̅

 ̅)

, (4.17)

where,
 {

 (4.18)

Using the above definitions,
 defined in (4.14) can be expressed as

‖ ̅
 ‖

‖ ̅ ‖

. (4.19)

From the above expression, the problem of minimizing
 over intermediate

cluster pairs indexed by , for a particular parent, denoted by a fixed , corresponds to the

minimization of ‖ ̅
 ‖

 over . Assuming that ̅

 is sufficiently sparse, we now approximate

‖ ̅
 ‖

 by the 2-norm of the vector

 consisting of the elements of ̅
 .

To make this procedure more formal, we introduce a binary vector whose

elements, () are defined as follows:

 {

 (4.20)

(‖
 ‖

)

 can be expressed as

 (‖
 ‖

)

 (̅)

 (̅)

 (4.21)

Here, (̅)

 denotes the matrix obtained by taking element-wise square of ̅ . In other

words, (̅)

 is the Hadamard product of ̅ with itself. and are defined below.

(

)

where, [

]

and [

]

 Hence, the problem of minimizing
 over for a particular parent can be

50

approximated by the following Boolean maximization, which represents a MINCUT problem in

graph theory:

 (̅)

 for all .

The above maximization can be performed using numerical techniques such as [85]

available for solving the MINCUT problem. In this way, for each parent , the minimum ILF can

be found and compared across all parents to solve the original minimization problem (4.15).

4.2.7 Optimal partition selection

Since it is desired to have both CLF and MCS small, this problem is analogous to dual

objective optimization in a pareto-optimal setting [82]. Motivated by this, the optimal partition is

obtained from a plot of versus illustrated in Figure 4.3. The optimal partition should

be a knee point. Therefore, navigating along the curve about that point in either direction would

result in a large increase in one metric but only a relatively small decrease in the other metric.

The plot must be studied in the ascending order of the partitioning stages (right to left) for knee

points. For instance, if the first knee is not ‘sufficiently’ sharp, then the second knee (if any)

should be studied.

Figure 4.3 Illustrative example of CLF vs. MCS plot.

MCS

1/6 1/4 1/2 1.0

C
LF

Stage 1
Stage 2

Stage 3
Stage 4

Stage 5

Stage 6

51

4.2.8 Twelve zone building example

The layout of the building used in this example is shown in Figure 4.4. It consists of 3

floors, with a total of 12 rooms of equal dimensions () numbered as shown. The

building is assumed to be surrounded by ambient on all sides. The walls were modeled as RC

circuits (Figure 3.5) based on the accessibility factor method described in [38], and the zones

were modeled as isolated capacitors. Each room has 6 walls – 4 side walls, 1 ceiling and 1 floor.

The construction details are presented in Table 4.1, from which the resistances and capacitances

for the walls were computed as shown in Table 4.2. Note that in case of external walls,

denotes the resistance between the wall and ambient. The zonal thermal capacities were assumed

to be 250 kJ/K based on air at 25 C and Pa. An overall system model of the form (3.4) was

obtained by constructing an RC network using these details, and then applying Algorithm 3.1

where discretization was performed using the zero-order-hold method with step size of 10

minutes. This choice was justified based on the fact that it was close to one-tenth of the smallest

time constant in the model. The Hessian Matrix ̅ was then created using (4.6) with prediction

horizon, samples (2 hours) and the weights and (see nomenclature).

Figure 4.4 12-zone test building architecture (Zones are numbered)

Floor 1

Floor 2

Floor 3

1
2

5
6

11
12

3, 4

7, 8

9, 10

Ambient

Column 1

Column 2

Column 3

52

Table 4.1 Construction properties used for the 12-zone building model [40]

Element Layering Thickness (m)

External walls

Brick 0.122

Insulation 0.050

C-Block 0.112

Plaster 0.013

Internal walls

Plaster 0.013

C-Block 0.122

Plaster 0.013

Table 4.2 Resistances and capacitances of walls (Refer to Figure 3.5)

Type of wall (kJ/kg) (K/kW) (K/kW)
*

Horizontal External 8329.15 29.99 81.08

Vertical External 8329.15 36.84 82.00

Horizontal Internal 4660.00 21.32 21.32

Vertical Internal 4660.00 21.32 21.32

As seen in Table 4.2, due to symmetry, the resistances corresponding to both horizontal

and vertical internal walls have the same value K/kW. In the case study

presented, the resistances of the horizontal internal walls (floor separators) are multiplied by a

factor of to introduce thermal anisotropy. Similarly, the resistances of the column separating

vertical internal walls (e.g. between zones 1 and 3, 2 and 4 etc.) are scaled by , and those of the

symmetrically splitting vertical internal walls (e.g. between zones 1 and 2, 5 and 6, etc.) by .

The clustering methodology presented in Figure 4.1 was applied for specific values of

and the results have been summarized in Table 4.3. The relevant codes are provided in Appendix

A. The combinatorial optimization in each stage was performed by comparing all possible

intermediate cluster pairs. Evaluation of the MINCUT approximation is considered in a different

example presented in section 4.2.9. The corresponding CLF vs. MCS plots are shown in Figure

4.5 to Figure 4.8. Important observations are as follows:

 1. For the nominal case (case 1, Figure 4.5), a knee point is not obvious. Therefore,

stage 3 was chosen to be the optimal partition where both CLF and MCS are satisfactorily small.

53

 2. For cases 2, 3 and 4 the knee points identified for optimal partitioning (Figure 4.6 to

Figure 4.8) are stages 3, 3 and 2 respectively. The corresponding clusters obtained (Table 4.3)

can be explained on the basis of physical intuition. In case 2, the internal horizontal walls are

more insulating than the vertical walls, therefore the building must be partitioned horizontally

(along floors). In cases 3 and 4 this is reversed and a subset of vertical walls becomes more

insulating. Therefore optimal clustering corresponds to partitions along such walls.

 3. Figure 4.6 to Figure 4.8 indicate that clustering stages downstream of stage 3 are not

optimal. This can be explained because these stages cause partitions along the low-insulation

walls after separation along all high insulation walls has already been completed, therefore

causing larger relative losses in coupling.

Table 4.3 Summary of results for 12-zone test building

Case optimal partition

1 1 1 1 {1,2,3,4,7,8}, {5,6,9,10}, {11,12}

2 3 1 1 {1,2,3,4,7,8}, {5,6,9,10},{11,12}

3 1 3 1 {1,2}, {3,4,5,6}, {7,8,9,10,11,12}

4 1 1 3 {1,2,5,7,9}, {2,4,6,8,10}

Figure 4.5 CLF vs. MCS plot for case 1 in Table 4.3

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

MCS

C
L

F

Stage 1

Stage 2

Stage 3

Stages 4 and higher

54

Figure 4.6 CLF vs. MCS plot for case 2 in Table 4.3

Figure 4.7 CLF vs. MCS plot for case 3 in Table 4.3

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

MCS

C
L

F

Stage 2Stage 3 Stage 1

Stages 4 and higher

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

MCS

C
L

F

Stages 4 and higher

Stage 2
Stage 3

Stage 1

55

Figure 4.8 CLF vs. MCS plot for case 4 in Table 4.3

4.2.9 Nine zone building example

The layout of the building used in this example is shown in Figure 4.9. It consists of 3

floors, with a total of 9 rooms of equal dimensions () numbered as shown. Similar

to the previous example, the walls were modeled as RC circuits (Figure 3.5) and the zones were

modeled as isolated capacitors. Each room has 6 walls - 4 side walls, 1 ceiling and 1 floor. The

construction details and the resulting values of capacitances and resistances computed from them

are same as for the 12-zone example, as presented in Table 4.1 and Table 4.2. The zonal thermal

capacities were assumed to be 250 kJ/K based on air at 25 C and Pa. The dicrete-time

system model for this system was then obtained in the same way as for the 12-zone building. The

Hessian Matrix, ̅ was then created using (4.6) with prediction horizon, samples (4

hours) and the weights and (see nomenclature).

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

MCS

C
L

F

Stage 1
Stage 2

Stages 3 and higher

56

Figure 4.9 Layout of 9-zone building (side view)

The resistance values for all horizontal and vertical internal walls were found to be the

same (see Table 4.2) as expected due to symmetry. We denote this value by

K/kW. In the case study presented, the resistances of the horizontal internal walls are scaled up

by a factor of , i.e. set to . Correspondingly, the resistances of the vertical internal

walls are scaled down by a factor of , i.e. set to . Therefore, the ratio of horizontal wall

resistances and vertical wall resistances is augmented by .

The clustering methodology presented in Figure 4.1 was applied for various values of the

factor . The relvant codes are provided in the Appendix B. The optimization in each stage was

performed using the combinatorial approach (involving all possible intermediate cluster pairs) as

well as the MINCUT approximation presented in section 4.2.7. The CLF vs. MCS plots for some

selected values of are shown in Figure 4.10 to Figure 4.12. Key observations are as follows.

 1. The CLF vs. MCS plots using the MINCUT procedure and the combinatorial

procedure exactly coincide in Figure 4.11 and Figure 4.12. However, they differ in Figure 4.10.

This suggests that the MINCUT approximation to the combinatorial optimization problem can be

potentially accurate in asymmetric situations. In general, it trades accuracy for computational

simplicity as indicated by a run-time of 0.29 seconds when compared to 4.92 seconds for the

combinatorial procedure
2
.

 2. For the nominal case (), a knee point is not immediately obvious in Figure

2
Values are for the case , implemented on a 2.0 GHz, 960 MB, AMD Athlon machine

1 2 3

4 5 6

7 8 9
Internal

walls

External

walls

Ambient

57

4.10. Therefore, stage 3 was chosen to be the optimal partition where both CLF and MCS are

satisfactorily small.

 3. When (Figure 4.11 and Figure 4.12), the optimal partition is provided by stage

3 since it corresponds to a ‘sharp’ knee. It corresponds to the clusters {1,2,3}, {4,5,6} and

{7,8,9}. This can be justified on the basis of physical intuition. When , the horizontal walls

are more insulating than the vertical walls, therefore the building must be sliced horizontally.

Figure 4.10 CLF vs. MCS plot for nine-zone building with

Figure 4.11 CLF vs. MCS plot for nine-zone building with

Stage 1

Stage 2

Stage 3

Higher
stages

Stage 1Stage 2
Stage 3

Higher
stages

58

Figure 4.12 CLF vs. MCS plot for nine-zone building with

4.2.10 Remarks

The examples in Sections 4.2.8 and 4.2.9 demonstrate the capability of the CLF-MCS

approach in determining architectures for decentralized control of a building that are consistent

with physical intuition. In addition, Section 4.2.9 verifies that the proposed MINCUT

approximation to address the high computational complexity of combinatorial optimization

results in only a small loss in accuracy. However, the optimality and robustness metrics were

chosen in a heuristic manner. The CLF defined in (4.11) does not directly quantify the loss in

performance (optimality) in going from a centralized architecture to a decentralized architecture.

Similarly, the MCS defined in (4.12) does not directly represent the true effect of fault

propagation in the event of a sensor, actuator or communication infrastructure related failure in a

building. Also, the divisive partitioning procedure in Figure 4.1 was found to have exponential

computational complexity due to (4.13). The MINCUT approach which was proposed to address

this issue is based on the assumption that ̅
 is sufficiently sparse (see section 4.2.7). However,

the desired level of sparsity is not quantified.

The above limitations of the CLF-MCS approach motivate the development of an

approach which uses analytically derived metrics, and is computationally tractable with

quantifiable computational complexity. The OLF-FPM approach presented in the next section

satisfies these requirements and is proposed as an alternative to the CLF-MCS approach.

Stage 1Stage 2Stage 3

Higher
stages

59

4.3 OLF-FPM method

4.3.1 Overview

The OLF-FPM approach is a procedure for partitioning a building based on Optimality

Loss factor (OLF) and Fault Propagation Metric (FPM) as optimality and robustness metrics

respectively. An agglomerative clustering procedure employs these metrics to create a family of

partitions. Similar to the CLF-MCS approach, these partitions are then analyzed to select those

which provide satisfactory trade-offs between optimality and robustness. The partitioning

methodology is demonstrated using simulated examples. The optimality analysis of centralized

and decentralized MPC frameworks and their comparison are presented first as necessary

prerequisites for the development of OLF. The nomenclature in Chapter 3 is used several times

in the remainder of Section 4.3. Additional nomenclature used is listed in Table 4.4

Table 4.4: Nomenclature of additional symbols used (besides Table 3.1)

 Symbol Description

 Vector of size with all entries 1

 Temperature of zone in building

 Capacitance of zone in building

 Unmodeled thermal disturbance acting on zone in building

 Unmodeled thermal disturbance acting on wall in building

4.3.2 Optimality analysis for centralized MPC

Assuming that and in (3.2) and (3.3) are component-wise positive vectors, the

objective function in (3.1) is strictly convex in the dimensional space of real

variables consisting of components of
 ,

 and

 . The linear constraint (3.4) represents hyperplanes in this space. Therefore, the

optimization problem corresponding to centralized MPC is strictly convex with a unique global

60

minimum [82]. In terms of the unconstrained re-statement (3.19), this implies that is a

strictly convex function of ̅, with a positive definite invertible Hessian Matrix, in (3.20). The

fact that is positive definite can also be verified from (3.17) by noting that and are

positive definite matrices when and are component-wise positive vectors. The closed form

expression for the unique minimizer, ̅
 of in (3.19) is given by

 ̅

 ̅ [̅(̅ ̅ ̅ ̅) ̅] (4.22)

A transformed form ̅
 is defined for ̅

 which has the structure given by (4.1). Using

(4.4), ̅
 can be expressed as

 ̅
 ̅

 (4.23)

Substituting (4.23) in (4.22), we obtain

 ̅

 ̅ [̅(̅ ̅ ̅ ̅) ̅] (4.24)

Equation (4.24) can be written as

 ̅

 ̅

 [

 ̅

 ̅

 ̅
 ̅

 ̅] (4.25)

where,

 ̅
 , (4.26)

 ̅ ̅ [

], (4.27)

 ̅ ̅ [

], (4.28)

 ̅ , (4.29)

 ̅ , (4.30)

 ̅ , (4.31)

 ̅ , (4.32)

 ̅ . (4.33)

61

4.3.3 Extraction matrices for decentralized MPC

Let be a vector, the component, of which is the value of an appropriate

physical quantity associated with the zone in the building, where . In the

present context, could represent a vector of temperatures, control inputs or unmodeled thermal

loads for the various zones. Next, consider a general p-partition of the building consisting of

clusters , where . For each , let be a vector such that

its component,
 , where is the value of the afore-mentioned physical

quantity for the zone in the cluster . Therefore, the set of elements of is a subset of the

elements of . However, a sequential stack of given by (

)

 does not

necessarily produce . This is also true in the context of vectors and , which

are analogues of and respectively, but are defined for walls instead of zones. Here, we

introduce the concept of extraction matrices to enable an accurate representation of the

mathematical relationship between the cluster-level vectors and the overall system level vectors,

and extend it to include the case when these vectors are lifted in time. This concept is required

for the optimality analysis of decentralized MPC that follows in the next section.

Definition 4.1 (Cluster extraction matrix): Let and be vector

representations of the elements of the sets and respectively, where . The

cluster extraction matrix, for the cluster, in the p-partition is defined as the

Boolean matrix with exactly one 1 in each row which satisfies

 (4.34)

Definition 4.2 (Lifted cluster extraction matrix): The lifted cluster extraction matrix, ̅

 for the cluster, in the p-partitionis defined as the boolean matrix which is

obtained from by replacing all scalar ones with and all scalar zeros with .

Definition 4.3 (Overall extraction matrix): The overall extraction matrix, is

defined in (4.35) by stacking the matrices , along their columns.

 (

)

 (4.35)

Definition 4.4 (Overall lifted extraction matrix): The overall lifted extraction matrix, ̅

62

 is defined in (4.36) by stacking the matrices ̅ , along their columns.

 ̅ (̅
 ̅

 ̅
)

 (4.36)

Definition 4.5 (Wall extraction matrix): Let be a vector representing the set of walls

in the building. Similarly, let be a vector representing the set of walls in the cluster

 . The wall extraction matrix, for the cluster, in the p-partition is defined

as the Boolean matrix with exactly one 1 in each row which satisfies

 (4.37)

Definition 4.6. (Overall wall extraction matrix): The overall wall extraction matrix,

 (∑

) is defined in (4.38) by stacking the matrices , along their

columns.

 (

)

 (4.38)

Definition 4.7 (Lifted wall extraction matrix): The lifted wall extraction matrix, ̅

 for the cluster, in the p-partition is defined as the Boolean matrix which is

obtained from by replacing all scalar ones with and all scalar zeros with .

Definition 4.8 (Overall lifted wall extraction matrix): The overall lifted wall extraction matrix,

 ̅ (∑

) is defined in (4.39) by stacking the matrices ̅ , along

their columns.

 ̅ (̅
 ̅

 ̅
)

 (4.39)

As an example, consider the 3-zone building in Figure 3.3. We demonstrate the above

definitions using the 2-partition of this building {{1,3},{2}}. Here, ,

and . Therefore, , and .

The cluster extraction matrices are given by:

 [

] , .

The lifted cluster extraction matrices are given by:

 ̅ [

] , ̅ .

63

The overall extraction matrix and overall lifted extraction matrix are then given by:

 [

], ̅ [

]

Using the graph shown in Figure 3.6, the vector of walls in the building is given by

 , and

Hence, the wall extraction matrices are given by:

[

]

, [

].

The overall wall extraction matrix is given by:

[

]

 .

The lifted wall extraction matrices ̅ and ̅ are obtained from and respectively

by replacing all scalar ones with and all scalar zeros with . The overall lifted wall

extraction matrix ̅ is obtained from in a similar manner.

We state some easily verifiable properties of the extraction matrices in terms of , ,

64

and defined earlier, and their time-lifted analogues
3
 ̅, ̅ , ̅ and ̅ defined in (4.40) to (4.43).

 ̅ ̅ ̅ ̅ where, ̅ , (4.40)

 ̅ (̅
 ̅

 ̅
)

where, ̅

 , (4.41)

 ̅ ̅ ̅ ̅ where, ̅ , (4.42)

 ̅ (̅
 ̅

 ̅
)

where, ̅

 . (4.43)

Properties of extraction matrices

1. .

2. ̅ ̅ ̅.

3. (

)

 .

4. (̅
 ̅

 ̅
)

 ̅ ̅.

5. Both and ̅ are invertible permutation matrices.

6. .

7. ̅ ̅ ̅.

8. (

)

 .

9. (̅
 ̅

 ̅
)

 ̅ ̅.

4.3.4 Optimality analysis for decentralized MPC

The components of the vectors and in (3.22) and (3.23) are positive if and in

(3.2) and (3.3) are component-wise positive. Therefore, as observed for the centralized MPC

optimization problem, the optimization problem for the control agent in the decentralized

control framework (3.34) is also strictly convex. The closed form expression for the unique

minimizer ̅
 of in (3.33) is given by

 ̅

 ̅

 [̅ (̅ ̅ ̅ ̅ ∑ ̅̂) ̅] (4.44)

3
If is used to represent the zone temperatures, ̅ in (32) should instead be defined as

 ̅ = . The definition of ̅
 in ((3.26)) should be similarly modified.

65

The vector ̅
 is a lifted vector given by

 ̅

[

]

, where
 for all . (4.45)

We now introduce a vector ̅
 whose elements are permutations of the elements of ̅

as shown

 ̅

[

 ̅

 ̅

 ̅

]

, (4.46)

where, ̅

[

]

 for . (4.47)

Here,
 denotes the component of the vector of control inputs

 . Therefore, the

elements of ̅
 and ̅

 are permutations of each other. Let be a permutation matrix such

that

 ̅
 ̅

 . (4.48)

Substituting (4.48) in (4.44), we obtain

 ̅

 ̅

 [̅ (̅ ̅ ̅ ̅ ∑ ̅̂) ̅] (4.49)

Equation (4.49) can be written as

 ̅ ̅

 ̅
 ̅

 ̅
 ̅

 ̅

 ∑ ̅̂ (4.50)

where,

 ̅
 , (4.51)

66

 ̅

 ̅ [

], (4.52)

 ̅

 ̅ [

], (4.53)

 ̅

 , (4.54)

 ̅

 , (4.55)

 ̅

 , (4.56)

 ̅

 , (4.57)

 ̅

 , (4.58)

 ̅

 . (4.59)

4.3.5 Comparison of centralized and decentralized MPC

We now present a quantitative comparison of the centralized and decentralized MPC

control methodologies which forms the basis of the OLF metric presented in the next section. Let

 ̅̂
 be a vector of temperature estimates for zone lifted in time, defined as

 ̅̂
 = (̂

 ̂
 ̂

)

. (4.60)

Here, ̂
 at any time instant denotes the projected estimate of the temperature of zone

 , time steps ahead in future where . The overall lifted vector of estimates

 ̅̂ is then defined as the sequential stack of ̅̂
 given by (35)

 ̅̂ [(̅̂
)

 (̅̂
)

 (̅̂
)

]

 (4.61)

The vector ̅̂ appearing in (4.50) and defined in Section 3.4.4 can be generated by selecting

appropriate components of ̅̂ . It can then be used to compute ̅
 using (4.50). Using the

definition (4.46) of ̅
 , the values {

 }

 in (4.47) can be obtained for each

zone in the cluster . We observe that each pair maps to a zone in the building where

67

 , and . For each pair we denote
 by

 . In this way, repeating this procedure for each cluster , where , we obtain

the set of values

 for each zone in the building. This is

because the union of clusters decomposes the entire building (see definition 3.2)

For each , we represent the values

 in a succint form

by defining the vector

 ̅
 [

]. (4.62)

Next, an overall lifted vector of control inputs, ̅
 for the decentralized case is

constructed by the sequential stack of ̅
 given by

 ̅
 [̅

 ̅
 (̅

)

]

 (4.63)

Note that ̅
 constructed above and ̅

 defined in (4.23) are comparable vectors in the

sense that entries in identical locations in these vectors are associated with the same zone in the

building and the same time instant in the prediction horizon. This fact is easily verifiable.

Theorem 4.1 (Centralized-Decentralized Equivalence) Let ̅̂
 be a solution of the

linear equation (4.64) in . If the overall lifted vector of zone temperature estimates ̅̂ (defined

in (4.61)) is set to ̅̂
 , then the ensuing overall lifted vector of control inputs, ̅

 (defined in

(4.63)) computed by the decentralized multi-agent MPC control architecture satisfies ̅
 ̅

 .

 ̅ ̅ ̅ ̅ ̅ ̅ (4.64)

where, ̅ ̅ ̅

 , (4.65)

 ̅ ̅ ̅

 , (4.66)

 ̅ ̅

 ̅, (4.67)

 ̅ ̅

 ̅, (4.68)

68

 ̅

 , (4.69)

 ̅

 , (4.70)

 ̅

 ̅, (4.71)

(

)

. (4.72)

In the above equations,

 ̅

(

 ̅

 ̅

 ̅)

, (4.73)

(

)

 for , (4.74)

 [(

)

 (

)

 (

)

]

 for . (4.75)

Proof: Using properties 1, 2, 6 and 7 of the extraction matrices (Section 4.3.3), (4.50) can

equivalently be restated in the form shown below

 ̅ ̅ ̅

 ̅ ̅
 ̅

 ̅

 ̅

 ̅ ̅ ∑ ̅ ̅̂ (4.76)

Using the definitions of , ̅, and ̅ from (4.35), (4.36), (4.38) and (4.39) respectively,

the combined form of (4.76) resulting from the concatenation over all clusters , is

expressed as (4.76), where , and
 () are as defined in (4.73) to (4.75).

 ̅ ̅ ̅

 ̅ ̅

 ̅
 ̅

 ̅
 ̅ ̅

69

 ̅ ̅̂ (4.76)

 Comparing (4.25) and (4.76), ̅
 ̅

 if ̅̂ is such that ̅ ̅̂

 ̅ ̅ ̅ ̅ ̅ with , defined in (4.65) to (4.71).

This completes the proof of Theorem 4.1. □

Remarks. It should be noted that the centralized-decentralized equivalence condition stated

above was derived based on the assumption that, apart from the underlying dynamical models,

no other constraints are imposed on the centralized and decentralized optimization problems.

Corollary 4.1 If the overall lifted vector of zone temperature estimates, ̅̂ is chosen to be

different from ̅̂
 , the overall lifted vector of optimal control inputs for the corresponding

decentralized controller differs from that for centralized control by an amount that is linearly

dependent on the deviation of ̅̂ from ̅̂
 . More precisely,

 ̅

 ̅ ̅

 ̅(̅̂
 ̅̂) (4.77)

Proof: The application of Theorem 4.1 to (4.76) provides the following alternative expression for

 ̅
 , which was originally given by (4.25):

 ̅ ̅ ̅

 ̅ ̅
 ̅

 ̅
 ̅

 ̅ ̅

 ̅ ̅̂
 . (4.78)

Subtraction of (4.76) from (4.78) leads to (4.77). □

Remarks.

 1. The family of solutions to (4.64) can be described by the set ̅

 , where is any particular solution of (4.64). To satisfy the conditions of Theorem

4.1, ̅̂
 can be chosen as any element from this set. In the particular case where is invertible,

 ̅̂
 has a unique closed form expression given by ̅̂

 ̅
 (

 ̅ ̅ ̅ ̅ ̅).

 2. Since ̅ , is full rank due to strict convexity of the decentralized

MPC optimization problem, the matrix ̅ defined in (4.73) is also full rank. Hence,
 exists

70

for use in (4.77).

 3. The centralized-decentralized equivalence (Theorem 4.1) provides a sufficient

condition for which the solutions of the centralized and decentralized (corresponding to any p-

partition) MPC problems match. The temperature estimates ̅̂
 , that the multi-agent

decentralized controllers would require in such a situation, depend on system wide sensory data

 and , as expressed by (4.64). Since each decentralized controller has access to only

certain temperature measurements and , the centralized-decentralized equivalence

of Theorem 4.1, cannot be achieved in practice. However, this condition can be used to quantify

the difference between the centralized and decentralized solutions as stated in Corollary 4.1.

4.3.6 Optimality metric

For any p-partition of the building, where , we define an appropriate

scalar metric to quantify the optimality associated with a multi-agent MPC controller that is

decentralized with respect to the clusters constituting the partition. The overall lifted vector of

temperature estimates ̅̂ defined in (4.61) which is required for implementing the decentralized

MPC controller is, at best, chosen heuristically. The centralized-decentralized equivalence

(Theorem 4.1) establishes a theoretical best value of this estimate, ̅̂
 , which if used, results in

matching of the centralized and decentralized control inputs. However, an arbitrary choice of this

estimate results in a deviation of the decentralized control inputs
 from the centralized control

inputs ̅
 which is quantified by (4.77). This deviation translates into a deviation of the

centralized objective function from its optimal value. To quantify it we proceed as follows.

Using the transformation 4.4, the centralized objective function ̅ given by (3.19)

was expressed as a function
 ̅ shown in (4.5). An alternative expression for

 ̅ is

 ̅

 ̅
 ̅ ̅

 ̅ ̅ ̅
 (4.79)

Using Corollary 4.1, we obtain

 ̅

 ̅

 ̅
 ̅

 ̅ ̅
 ̅

(̅̂ ̅̂

)

 ̅
 ̅

 ̅ ̅ ̅ ̅
 ̅(̅̂ ̅̂

) (4.80)

Here, we have used the fact that ̅ is a symmetric matrix and ̅ is a permutation matrix.

71

It is desired that the above deviation be small, so that the decentralized controller can provide

performance which is close to that provided by centralized control. An illustration of this

deviation is shown in Figure 4.13 for a hypothetical scalar case.

Using the inequality shown in (4.81), it can be concluded that the quantity

 ̅

 ̅
 ̅ ̅ ̅ ̅

 ̅ characterizes an upper bound on the above deviation in the

objective function which is independent of the deviation of ̅̂ from ̅̂
 . Therefore, it represents

the ‘loss’ in optimality in going from a centralized control architecture to a decentralized control

architecture. We denote this quantity using the term Optimality Loss Factor (OLF) as shown in

(4.82).

(̅̂ ̅̂
)

 ̅
 ̅

 ̅ ̅ ̅ ̅
 ̅(̅̂ ̅̂

)

 ̅

 ̅
 ̅ ̅ ̅ ̅

 ̅ ‖ ̅̂ ̅̂
 ‖

 (4.81)

 ̅

 ̅
 ̅ ̅ ̅ ̅

 ̅
 ̅ ̅ ̅

 ̅ . (4.82)

The OLF is used as the appropriate optimality metric which must be minimized in the choice of

partitions for decentralized control.

Figure 4.13 Scalar illustration of deviation in performance between centralized and

decentralized MPC when ̅̂
 ̅̂

*

cv*

dcv v

' ()cg v

' ()cg *

dcv

' ()cg *

cv

72

4.3.7 Robustness metric

For any p-partition of the building, where , we define an appropriate

scalar metric to quantify the robustness associated with a multi-agent MPC controller that is

decentralized with respect to the clusters constituting the partition. In such an architecture, the

effect of a sensor or communication related fault on the resulting control inputs, ̅
 , will be

confined to the cluster where the fault originates because the control agents do not communicate.

Therefore, the average number of affected zones in the event of a failure is an indicator of

robustness in the sense that a small value ensures that the effect of failures is less widespread.

To quantify this concept, we consider the event that a failure has occurred in one of the

zones in the building. For simplicity, we assume that the probability of failure occurring in any

particular zone of the building is uniform across all zones and therefore equals . We define

the Fault Propagation Metric (FPM) as the expected value of the aggregated thermal

capacity of all affected zones in case of above failure event, normalized with respect to the total

thermal capacity of zones in the building. An expression for the FPM is derived as shown

∑

∑

∑

∑

 (4.83)

As an example, FPM for all possible partitions of the 3-zone building shown in Figure

3.3 are calculated in Table 4.5. For simplicity, the thermal capacity of each zone is set to unity.

73

Table 4.5 FPM computation for 3-zone building in Figure 3.3

p p-partitions FPM

1 {1,2,3} 1

2 {1,2},{3} OR {1,3},{2} OR {3,2},{1}

 =

3 {1},{2},{3}

 =

 It should be noted that in the case of a building, which exhibits heterogeneity in the sense

that its thermal zones are sized differently, the total volume of space affected is a more

appropriate characterization of the effect of the failure event than just the number of affected

thermal zones. Since the thermal capacity of a zone is closely related to its volume, the FPM

defined above is an indicator of the effect of failure in terms of the volume of affected space.

Therefore, the FPM is used as an appropriate robustness metric which must be minimized in the

choice of partitions for decentralized control.

4.3.8 Optimal partitioning problem and complexity analysis

This section presents a formal definition of the partitioning problem for the decentralized

thermal control of a building and analyzes the underlying computational complexity.

Definition 4.9 (Optimal p-partition): An optimal p-partition is defined as one with the smallest

OLF among all possible p-partitions of , for a fixed .

Definition 4.10. (Optimal partitioning problem): The optimal partitioning problem is to

determine a family of optimal p-partitions, one for each .

 For a given , the number of p-partitions of the set is given by the Stirling number of

the second kind, [84], as expressed in (4.84). Therefore, the total number of partitions to

be considered to solve the optimal partitioning problem is given by the sum of the Stirling

numbers over , which is also defined as the Bell number [84], denoted by
 and is expressed

in (4.85).

74

∑

 (

) (4.84)

 ∑

 (4.85)

The Bell number grows exponentially
4
 with . This implies that if all possible partitions

were to be considered, the optimal partitioning problem becomes intractable as the number of

zones in the building increases. This motivates the development of a less computationally

complex methodology for optimal partitioning using only a small subset of all partitions of .

4.3.9 Agglomerative clustering

Agglomerative or `bottom-up' clustering [86] is a hierarchical methodology used in a

variety of applications such as data-mining and bio-informatics [87, 88] to form clusters of

objects. It starts with individual objects that are progressively grouped together into larger

clusters until the root cluster containing all the objects is reached. This is typically done using a

greedy approach which groups the two ‘closest’ clusters together at each step, based on a suitable

distance function metric between clusters.

We adopt the agglomerative clustering approach using the OLF as a distance function, to

address the optimal partitioning problem in the context of decentralized building thermal control.

Algorithm 4.1. Agglomerative Clustering for Partitioning a Building (See Figure 4.14 for

illustration)

STEP 1: Define the initial parent partition as the unique -partition of , which consists of

clusters, each having exactly one zone.

STEP 2: Agglomerate any two clusters in the parent partition to create a child partition. In this

way, find all child partitions of the parent partition. Compute the OLF for each such child

partition.

STEP 3: Among all child partitions found above, determine one with smallest OLF. Set the new

parent partition to be this child partition. In case of multiple child partitions having the smallest

OLF, select any one of them.

STEP 4: Repeat steps 2 and 3, until the parent partition becomes the unique 1-partition of ,

4
The first few Bell numbers are given by 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975,...

75

which consists of exactly one cluster that contains all zones.

 Figure 4.14 Illustration of agglomerative clustering for a building with 5 zones

 Remarks.

 1. The parent partition has clusters initially. At the end of each iteration, the number

of clusters decreases exactly by 1. Therefore the parent partition obtained at the end of the

iteration is a p-partition, with .

 2. The p-partitions generated via these iterations are not necessarily optimal p-partitions

(definition 4.9). They represent a guess for an optimal p-partition, obtained from the previous

iteration in a greedy manner.

 3. If the size of the parent partition in any iteration of Algorithm 4.1 is , the

number of child partitions that are created using the agglomeration described in Step 2 of

the algorithm is given by:

 (

) (4.86)

Noting that starts from and decreases by 1 in each iteration, the total number of child

partitions,
 considered in one run of the algorithm is (

) as computed below.

 ∑

 (

) ∑

 ()

 (4.87)

 1 2 3 4 5

1, 3 2 4 5

4, 51, 3 2

1, 2, 3 4, 5

1, 2, 3, 4, 5

1, 2 3 4 5 1, 4 2 3 5 etc.

76

Hence a significant computational benefit is achieved when compared to the complexity

associated with considering all possible partitions (Figure 4.15).

Figure 4.15 Computational complexity comparison of partitioning approaches

Similar to the CLF-MCS method, the results of Algorithm 4.1 can be presented on an

optimality-robustness trade-off curve, as notionally illustrated in Figure 4.16, where the OLF and

the FPM values of the resulting parent partitions from each iteration are plotted. This represents a

multi-objective optimization framework, where the goal is to simultaneously minimize both the

OLF and the FPM. The rightmost and leftmost points on this curve correspond to the two

extremes of a completely centralized architecture (a single cluster) and a completely

decentralized architecture (clusters) respectively. This curve serves as a useful design tool. It

can be used to compare various partitions and make a decision on the appropriate intermediate

architecture between these two extremes that results in a satisfactory trade-off between

optimality and robustness objectives. Some heuristic guidelines, similar to the CLF-MCS

approach, are presented below based on visual inspection.

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

N
z

N
u

m
b

e
r

o
f

p
a

rt
it
io

n
s
 c

o
n

s
id

e
re

d

Total (Bell number)

Agglomerative

77

 Figure 4.16 Illustration of optimality-robustness trade-off curve for OLF-FPM approach

Starting from the rightmost point, and proceeding left on the optimality-robustness trade-

off curve, the partitions which correspond to a ‘knee point’ on this curve should be explored. At

such points, navigation in either direction would result in a large increase in one metric but only

a relatively small decrease in the other metric. Therefore, these points reflect the attainment of a

satisfactory balance between the optimality and robustness objectives, and the corresponding

partition of the building should preferably be used for decentralized control. In the event of

multiple knee points in the curve, the sharpest among them may be considered. Also, those knee

points which are more centrally located should be preferred over others. The following sections

provide some examples to further explain this process.

4.3.10 Nine zone building example

We revisit the 9-zone building described in section 4.2.9. Its layout is shown in Figure

4.9, and the construction properties, wall resistances and capacitances are shown in Table 4.1 and

Table 4.2. Similar to Section 4.2.9, the capacitance for each zone was assumed to be 250 kJ/kg.

The contribution of occupants and objects to the zone capacitances was ignored for simplicity.

With the above modeling assumptions, the building is rendered thermally symmetric, meaning

that the resistances offered by all internal walls are the same (Table 4.2). To introduce

anisotropy, we artificially decrease the thermal resistances associated with the vertical internal

walls by a factor of 3 from their originally computed values. Furthermore, we multiply each wall

resistance by a factor of 0.06 to increase the coupling among zones. An overall system model of

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

FPM

O
L

F

"Best" partition
(sharpest knee)

78

the form (3.4) was obtained by constructing an RC network using these details, and then

applying Algorithm 3.1 where discretization was performed using the zero-order-hold method

with step size of 10 minutes.

To partition the building, the exact solution to the optimal partitioning problem was

obtained for this example by considering all possible p-partitions, for each as

described in Section 4.3.8. Next, the agglomerative clustering approach (Algorithm 4.1) was

applied, which provided suitable guesses for optimal p-partitions. OLF computations were based

on the MPC parameters samples, and . All relevant codes are provided

in Appendix C. The resulting partitions from the agglomerative approach and the exact solution

approach are compared in Figure 4.17 and Table 4.6. The corresponding optimality-robustness

trade-off curves are shown in Figure 4.18. The following observations can be made from these

results:

1. As seen in Figure 4.17, the p-partitions obtained using the agglomerative approach

have OLF values close (in many cases identical) to optimal p-partitions, for all .

 2. Visual inspection of Figure 4.18 for knee-points suggests that the partition which

offers the `best' trade-off between the OLF (optimality) and FPM (robustness) objectives is an

optimal 3-partition, which from the Table 4.6 corresponds to . This

would partition the building along its floors and is physically consistent with the thermal

anisotropy that was introduced by causing horizontal walls (floors and ceilings) to be more

insulated than vertical walls.

 3. Another knee-point is observed in Figure 4.18 which corresponds to . This can

possibly be explained on the basis of the partitions obtained in Table 3 for the agglomerative

approach. Navigation from to results in fusion of the zones 8 and 9 from separate

clusters into a single cluster. However, these zones have a potentially significant dynamical

coupling through the relatively less insulated common vertical wall between them. This is likely

to cause a large decrease in OLF for a comparatively small increase in FPM while going from

 to resulting in the knee point seen in Figure 4.18.

 4. Finding the exact solution to the optimal partitioning problem required the

consideration of 4140 partitions, whereas only 240 partitions were analyzed by the

agglomerative approach.

79

From the above observations, it can be concluded that agglomeration is able to provide

sufficiently accurate results with significantly less computational effort when compared to the

exact solution approach involving the analysis of all partitions.

Table 4.6 Optimal partitions vs. partitions using agglomeration for 9-zone building

p

Optimal p-partition p-partition from agglomeration

Clusters
OLF

Clusters

OLF

9 {1}{2}{3}{4}{5}{6}{7}{8}{9} {1}{2}{3}{4}{5}{6}{7}{8}{9}

8 {1}{2}{3}{4,5}{6}{7}{8}{9} {1}{2}{3}{4,5}{6}{7}{8}{9}

7 {1,2}{3}{4}{5}{6}{7}{8,9} {1}{2,3}{4,5}{6}{7}{8}{9}

6 {1}{2,3}{4,5}{6}{7}{8,9} {1}{2,3}{4,5}{6}{7}{8,9}

5 {1}{2,3}{4,5,6}{7,8}{9} {1}{2,3}{4,5}{6}{7,8,9}

4 {1,2,3}{4}{5,6}{7,8,9} {1,2,3}{4,5}{6}{7,8,9}

3 {1,2,3}{4,5,6}{7,8,9} {1,2,3}{4,5,6}{7,8,9}

2 {1,2,3,4,5,6}{7,8,9} {1,2,3,4,5,6}{7,8,9}

1 {1,2,3,4,5,6,7,8,9} 0 {1,2,3,4,5,6,7,8,9} 0

Figure 4.17 OLF comparison of all p-partitions (solid circles) of the 9-zone building with

agglomerative partitions (empty circles). The agglomerative clustering progresses from left

to right, starting with the most decentralized partition ().

123456789
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-3

Number of clusters (p)

O
L

F

80

Figure 4.18 Optimality robustness trade-off curves for 9-zone building using true optimal

partitions and agglomerative partitions

4.3.11 Eleven zone circular building

We now consider a single-story circular building with 11 zones including a central atrium

(zone 1), as shown in Figure 4.19, which can be thought of as a small office building. It is

surrounded by ambient on all sides. Hallways, shown shaded, are provided to facilitate the

movement of people inside the building. For the purposes of modeling, the building has 27

external walls and an equal number of internal walls. The walls are assumed to have construction

properties as shown in Table 4.1. The R and C parameters shown in Table 4.7 and Table 4.8

were computed in a manner similar to the 9-zone building, with the hallways modeled as

resistors with a high value of resistance calculated using the thermal conduction and convection

properties of air. For simplicity, the accessibility factors [38] for computation of wall resistances

were assumed to be 0.5 each. Similar to the 9-zone building in the previous section, an overall

system model of the form (3.4) was obtained by constructing an RC network using these details,

and then applying Algorithm 3.1 where discretization was performed using the zero-order-hold

method with step size of 10 minutes.

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-3

FPM

O
L

F

Trade-off curve using true optimal partitions

Trade-off curve using agglomerative partitions

81

Figure 4.19 Layout of 11-zone circular building (plan view with building height = 15 ft)

Table 4.7 Resistance and capacitance values for walls of 11-zone building (see Figure 3.5)

Type of wall

(kJ/kg)
 (K/kW) (K/kW)

Ceiling and floor for zone 1 9.178 9.178

Ceilings and floors for zones 2-6 15.297 15.297

Ceilings and floors for zones 7-11 8.344 8.344

Vertical walls separating ambient from each of zones

7 – 11
 9.414 9.414

Vertical walls between zone 1 and each of zones 2 – 6 9.160 9.160

Vertical walls separating zone pairs (2,3), (3,4), (4,5)

and (5,6)
 11.515 11.515

Vertical wall (hallway separation) between zones 2

and 6
 1151.50 1151.50

Vertical walls (hallway) separating zone pairs (2,7),

(3,8), (4,9), (5,10), (6,11)
 431.25 431.25

Vertical walls separating zone pairs (7,8), (8,9),

(9,10) and (10,11)
 11.515 11.517

Vertical wall (hallway separation) between zones 7

and 11
 1151.50 1151.50

1

2

3

4

5

6

7

8

9

10

11

r

r

r

Hallway (5 ft)

r = 20 ft

LEGEND
Ambient

82

Table 4.8 Zone capacitances for 11-zone building

Zone number Capacitance (kJ/kg)

1 643.72

2 – 6 386.23

7 – 11 708.09

An intuitive method to partition the building is to split it along the thermally insulating

circular ring of hallway, resulting in two clusters: and . However, it is

not obvious how to further partition these clusters into smaller clusters. The partitions resulting

from the application of the agglomerative clustering algorithm are shown in Table 4.9, where

parameters used to compute the OLF values are , and . Relevant codes

are provided in Appendix D. The corresponding optimality-robustness trade-off curve is shown

in Figure 4.20. A visual inspection of this curve indicates the presence of two knee points, as

labeled in the figure. Following observations are made:

 1. Knee 1 corresponds to the intuitive partition which was

noted above. However, the unacceptably high FPM associated with this partition indicates

inferior robustness to faults, motivating further partitioning of these clusters.

 2. The OLF values for both knees 1 and 2 are close to zero. However, the FPM associated

with knee 2 is only about 60% of the FPM for knee 1. Therefore, knee 2 provides a better trade-

off between optimality and robustness than knee 1.

 3. Strong dynamic coupling is expected to exist among zones 1 to 6, primarily due to the

atrium (zone 1) which is connected to each of the zones 2 to 6. Therefore to ensure small

deviation from optimality, the building should be partitioned such that these zones are contained

in the same cluster. This is verified from the clusters constituting the partition for knee 2 (

in Table 4.9).

The above observations can also be explained by considering a scalarized framework,

which is a widely used approach for multi-objective optimization [82]. For the multi-objective

problem of minimizing OLF and FPM, we define a single scalar objective function as

shown in (4.88), where is a parameter which can be adjusted to influence the relative

83

weights on the optimality and robustness objectives. Here is the value of OLF for the

most decentralized partition {{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11}}, whereas

 is the value of the FPM for the most centralized partition, i.e. {1,2,3,4,5,6,7,8,9,10,11}.

 (4.88)

Figure 4.21 is a plot of for the various p-partitions produced in Table 4.9 by the

application of the agglomerative clustering approach. For , it is observed that of all the

partitions, the 4-partition (knee 2 in Figure 4.20) corresponds to the global minimum, resulting

in the smallest value of . However, increasing the weight on optimality by changing to

0.85 causes the 2-partition (knee 1 in Figure 4.20) to provide the global minimum. This is

consistent with the analysis presented above. However since a suitable value of is not obvious

to decide, we prefer to use the optimality-robustness trade-off curve instead as the appropriate

tool for the analysis of the partitions provided by agglomerative clustering.

Table 4.9 Partitions using agglomeration for 11-zone building

 p-partition from agglomeration

11 {1}{2}{3}{4}{5}{6}{7}{8}{9}{10}{11}

10 {1,4}{2}{3}{5}{6}{7}{8}{9}{10}{11}

9 {1,3,4}{2}{5}{6}{7}{8}{9}{10}{11}

8 {1,3,4,5}{2}{6}{7}{8}{9}{10}{11}

7 {1,2,3,4,5}{6}{7}{8}{9}{10}{11}

6 {1,2,3,4,5,6}{7}{8}{9}{10}{11}

5 {1,2,3,4,5,6}{7}{8}{9,10}{11}

4 {1,2,3,4,5,6}{7,8}{9,10}{11}

3 {1,2,3,4,5,6}{7,8}{9,10,11}

2 {1,2,3,4,5,6}{7,8,9,10,11}

1 {1,2,3,4,5,6,7,8,9,10,11}

84

 Figure 4.20 Optimality robustness trade-off curve for 11-zone building

Figure 4.21 Plot of for partitions from agglomeration for 11-zone building

 A validation of the above findings is provided by observations from open loop

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
x 10

-3

FPM

O
L

F

Knee 1
Knee 2

1234567891011
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of clusters (p)

J
p
a
rt

iti
o
n

 = 0.5

 = 0.85

global minimum

global minimum

85

simulations of the building thermal model. The building was partitioned into clusters

corresponding to knee 2 in Figure 4.20. Cluster-level models, as discussed in Section 3.4.3, were

obtained from the centralized model by decoupling the system along the boundaries (physical

walls) of each cluster. An estimate of C was used to represent the temperature of the zones

outside any cluster, i.e each element of the vector in (3.24) is 20. Simulation results obtained

for a period of 10 days are shown in Figure 4.22, where is the capacity-weighted mean

temperature of the zones, defined as

∑

 . (4.89)

The relevant MATLAB codes are provided in Appendix D and the SIMULINK models

are included in the media accompanying this thesis. In defining , the contribution of each

zone's temperature is weighted by its thermal capacity. Since the thermal capacity of a zone is

closely related to its volume, indicates an effective temperature for the building as a

whole. The response corresponding to the fully decentralized partition, i.e.

{{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11}} is also plotted. In these simulations, the

ambient temperature and the unmodeled thermal disturbances (for all) are

assumed to be sinusoids with a 24 hour time-period as shown in Figure 4.23. The thermal

disturbance is assumed to be 0 for all for simplicity. From Figure 4.22 it is

observed that the error in predicting is less than 5% for the knee 2 partition, whereas, the

fully decentralized partition results in a maximum error of about 20% over the simulation time

window. Here, errors are evaluated with respect to predicted by the centralized case. This

observation verifies that by partitioning the system using knee 2, the corresponding cluster-level

decentralized models do not result in significant loss in inter-cluster thermal coupling, when

compared to the centralized system model.

The 11-zone building example considered above demonstrates the benefit of using OLF-

FPM partitioning approach, as opposed to physical intuition, which may be absent or can only

provide limited insight. For example, the partition {{1,2,3,4,5,6},{7,8,9,10,11}} arrived at using

the intuition of separation along the thermally insulating hallways generates a knee in Figure

4.20. However, as the analysis presented above clearly demonstrates, it is not the most

appropriate choice.

86

Figure 4.22 Open loop response analysis for partitions of 11-zone building

(a) Ambient temperature profile

Figure 4.23 (cont. on next page)

0 5 10 15 20 25
20

22

24

26

28

30

32

Hour of the day

A
m

b
ie

n
t
te

m
p

e
ra

tu
re

 (
d

e
g

 C
)

87

(b) Unmodeled thermal load profile for each zone

Figure 4.23 Sinusoidal disturbance profiles used in open loop analysis of 11-zone building

4.3.12 Remarks

The main advantage of the OLF-FPM approach over the CLF-MCS approach is that the

optimality and robustness metrics are analytically derived and directly correlated with the

notions of optimality and robustness. In particular, OLF is related to an upper bound on the

deviation in performance between centralized control and decentralized control. Similarly, FPM

by definition represents the expected value of the % volume of building affected in the event of

failures. On the other hand, a quantifiable relationship between CLF and optimality or MCS and

robustness is not available. However the CLF-MCS approach is useful because it provides an

initial framework for partitioning which is improved upon by the OLF-FPM method. In the

remainder of this work, only the OLF-FPM method is considered for making control architecture

decisions because of its above stated benefits over the CLF-MCS method.

88

Chapter 5

Control Design with Optimal Architecture

5.1 Introduction

Chapter 4 presented two different approaches for the determination of decentralized

control architectures which balance the underlying optimality and robustness requirements in the

thermal control of buildings. However, the design of decentralized controllers based on the

control architectures determined using these methodologies was not considered. This chapter

seeks to address this requirement by focusing on the design aspects of decentralized control for a

given architecture. Two key challenges are envisioned in this regard: all system states are not

measurable and there are several unmodeled disturbances. These practical concerns are

addressed in this chapter by first developing reduced order model representations for the thermal

dynamics then using decentralized extended state observers to simultaneously estimate the

unknown states and disturbances. This is followed by control design based on the Model

Predictive Control (MPC) framework, since MPC has been extensively applied in the building

systems control literature because of its proven effectiveness in handling large-scale constrained

optimal control problems (see discussion in section 3.1.2.2).

 The decentralized control design methodology presented in this chapter differs from

Chapter 3 in three aspects. Firstly, the model used for control design is based on a three resistor –

two capacitor (3R2C) framework to represent the thermal dynamics of walls, which is a more

accurate representation than the two resistor – one capacitor (2R1C) framework that was used in

Chapter 3. Secondly, the controllers are output-feedback as opposed to the state-feedback

framework presented in chapter 3, considering the fact that typically only zone temperature

89

measurements are available in a building via the thermostats. Lastly, the control design considers

certain practical constraints which were ignored in Chapter 3 for simplicity. The nomenclature

used in this chapter is shown in Table 5.1.

5.2 Cluster level modeling

In this section, we consider a p-partition of the building (definition 3.2) and develop

models to describe the thermal dynamics associated with the clusters which constitute the

partition. These models are used for the design of decentralized observers and controllers as

described in subsequent sections.

Table 5.1 Nomenclature of common symbols in Chapter 5

 Symbol Description

 Number of walls surfaces in the building

 Number of zones in the building

 Number of zones in cluster

 Vector of wall surface temperatures

 Vector of wall surface temperatures in cluster

 Temperature of wall surface in cluster

 Vector of zone temperatures

 Vector of zone temperatures in cluster

 Vector of zone temperature set-points in cluster

 Vector of zone temperature measurements in cluster

 Ambient temperature

 Temperature of ground below building

 Temperature of zone in cluster

 Temperature of cold air supplied to each zone

 Vector of unknown thermal loads acting on wall surfaces

 Vector of unknown thermal loads acting on zones

90

 Vector of unknown thermal loads acting on wall surfaces in cluster

 Vector of unknown thermal loads acting on zones in cluster

 ̅
 Vector of aggregated thermal loads acting on wall surfaces in reduced order

model for cluster

 ̅
 Vector of aggregated thermal loads acting on zones in reduced order model

for cluster

 Thermal capacitance associated with wall surface in cluster

 Thermal capacitance associated with zone in cluster

 Specific heat capacity of air

 Projected value of quantity after time steps in future, given . Note

 .

 Vector of control inputs

 Vector of control inputs in cluster

 Control input for zone in cluster

 ̇
 Maximum air mass flow rate for zone in cluster

 ̇
 Maximum reheating available for zone in cluster

 Zero matrix of dimension

 Identity matrix of dimension

5.2.1 3R2C modeling framework

We consider a 3R2C modeling paradigm [40], where each wall is represented by a set of

3 resistances and 2 capacitances (Figure 5.1), whereas, each room is treated as a single

capacitance. This is an improvement over the 2R1C paradigm considered in chapter 3 for

control architecture selection. In Figure 5.1, and are capacitances for the wall,

the states associated with them being the temperatures of its two surfaces. For internal walls

(flanked by zones on both sides), the designation of “in” and “out” for the wall surfaces is

arbitrary. However, for external walls (facing the ambient or ground on one side and a zone on

the other), by convention “out” refers to the surface which faces the ambient/ground and “in”

91

refers to the surface facing the zone. and in Figure 5.1 are thermal resistances

between the surfaces of wall i and the appropriate elements (zones, ambient or ground) which

they thermally interact with. represents the resistance between inner and outer wall

surfaces. Similar to the 2R1C framework, each zone in the building is represented by a lumped

capacitance.

 The states of the system are the wall surface temperatures and zone temperatures. The

control inputs represent the rates of energy transfer – positive for heating, and negative for

cooling — provided to the zones by the HVAC system. The ambient and ground temperatures

are considered as measured disturbances. Various other factors also affect the thermal dynamics

which are treated as unknown disturbances. These include long-wave and short-wave radiation

heat transfers affecting the walls, and thermal loads from occupants, appliances and lighting

which affect the zones. In this work, these factors are not modeled separately and only their

lumped thermal contribution to each zone and wall is represented using disturbance vectors

and .

Figure 5.1 Schematic of 3R2C modeling paradigm for wall i. Un-modeled thermal loads

acting on the wall’s surfaces are also shown.

The ensuing linear state space model is of the form (5.1), with reference to the notation

described in the nomenclature (Table 5.1). It is obtained by applying Algorithm 5.1 presented

below on a RC network for the building constructed using the framework presented above. Note

Rww,i Rw-in,i

Cw-in,iCw-out,i

Rw-out,i Connection
to zone,

ambient or
ground

Connection
to zone,

ambient or
ground

dw-in,idw-out,i

92

that Algorithm 5.1 is an extension of Algorithm 3.1 to the 3R2C case.

[

] [

] [

] [

] [

] [

] (5.1)

Algorithm 5.1. Generation of state space model for building thermal dynamics using 3R2C

framework

STEP 1: A weighted graph is created with nodes for each of the wall surfaces, the zones, the

ambient and ground. While numbering the nodes, those representing wall surfaces are numbered

first, followed by the zones, the ambient and lastly the ground. Each wall surface node is

connected by undirected edges to the two nodes (zones, ambient or ground) to which it is

connected via resistances in the RC network. Additionally, the inside and outside surfaces of

each wall are also connetcted by an edge. The weight of each edge is set to be the inverse of the

corresponding thermal resistance between the two nodes it connects. The resulting weighted

graph is denoted by along with the weight function, . We also define

capacitance matrices, and which are diagonal matrices of the thermal capacitances

associated with the wall surfaces and the zones respectively. The diagonal entries in these

matrices are entered in the order of the corresponding node numbers in .

STEP 2: The Laplacian matrix of , denoted by is then obtained as:

 (5.2)

where,

 {

 ∑

Note that is a diagonal matrix. We extract the following sub-matrices from :

93

1. is the square sub-matrix of which corresponds to its first rows and first

 columns.

2. is the sub-matrix of which corresponds to its first rows and the columns

 .

3. is the sub-matrix of which corresponds to the rows

 and the first columns.

4. is the sub-matrix of which corresponds to the rows

 and the columns .

5. is a column vector which corresponds to the first rows and the

 column of

6. is a column vector which corresponds to the first rows and the

 column of

STEP 3: The matrices appearing in (5.1) are then obtained as follows:

 (5.3)

 (5.4)

 (5.5)

 (5.6)

 (5.7)

 (5.8)

 (5.9)

 (5.10)

5.2.2 Full order cluster level model

We consider a p-partition of the building. The model for the () cluster

is obtained from (5.1) by extracting the dynamics of the walls and the zones constituting the

cluster as shown below (see nomenclature)

94

[

] [

] [

] [

] [

]

[

]

 ∑ [

] ̂

 (5.11)

The dynamics of the cluster depends on the zone temperatures in the other clusters

,

where . However, imposition of a control architecture that is decentralized with respect to

the clusters implies that the control agent does not have access to the sensory data from the

other p−1 clusters. Therefore, as mentioned in chapter 3,

 for each must be replaced with

an appropriate guess or estimate ̂

 as shown in (5.11).

The states
 , and the disturbances

 and
 are unknown and therefore (5.11) cannot

be directly used for control design. This concern is addressed in the remainder of this section.

5.2.3 Model order reduction

For a building with zones, the number of states in the model (5.1) is of the order of

 [29]. This motivates the development of reduced order models, which can be used for

control design at the overall building level (centralized architecture) or the cluster level

(decentralized architecture). An aggregation based methodology was proposed in [29] for the

development of reduced order models of building thermal dynamics. A particular advantage is

that the reduced order models can also be represented by RC networks. In this paper, we adopt

the methodology in [29] to seek an observable reduced order model representation which allows

extended state observers to estimate the unmeasured states and disturbances.

Algorithm 5.2, presented below, outlines steps for model reduction via aggregation of

states, which eventually lead to an observable representation in Section 5.2.4. The resulting state

space model for the cluster obtained from the algorithm consists of the states ̅
 ,

 ̅
 and

 , where and is given by

[

 ̅

 ̅

]

⏟

 [

 ̅
 ̅

 ̅

 ̅
 ̅

 ̅
 ̅

]

⏟
 ̅

[

 ̅

 ̅

] [

 ̅

]

⏟
 ̅

95

[

 ̅

 ⏟
 ̅

 ̅

 ⏟
 ̅

 ̅

 ̅

 ⏟
 ̅

 ̅

⏟
 ̅

]

[

 ̅

 ̅
]

 ∑ [

 ̅

]

⏟

 ̅

 ̂

 (5.12)

Here, ̅
 [̅

 ̅
 ̅

]

 (5.13)

 ̅
 [̅

 ̅
 ̅

]

. (5.14)

In the above equations,
 and

 are defined in step 1of Algorithm 5.2.

Algorithm 5.2. Model reduction for the cluster via aggregation of states

STEP 1: For each zone in the cluster, all wall surfaces belonging to the walls

that enclose it are identified (note that a wall has two surfaces, each represented by a capacitance

in the 3R2C framework). Of these, we denote those surfaces that directly face the zone by the

set
 . Among the remaining surfaces which do not face the zone directly, those which also

do not face another zone in the cluster directly are identified. The set of these surfaces is denoted

by ̅
 . Note that ̅

 can be an empty set. We define
 as the number of non-empty sets

 , where . Similarly,

 is defined as the number of non-empty sets ̅
 ,

where . Note that
 because each zone is surrounded by at least one

wall surface.

STEP 2: For each zone , the temperatures of all wall surfaces in the set
 and

 ̅
 are aggregated into single states ̅

 and ̅
 respectively as shown (refer to

nomenclature)

 ̅

∑

∑

 , (5.15)

96

 ̅

∑

 ̅

∑

 ̅

 . (5.16)

STEP 3: Equivalent capacitances ̅
 and ̅

 associated with the states ̅
 and

 ̅
 respectively are computed as shown

 ̅
 ∑

 , (5.17)

 ̅
 ∑

 ̅

 . (5.18)

STEP 4: For each , ̅
 is defined as the parallel equivalent of all

resistances which connect an element in
 with an element in ̅

 . The capacitors ̅
 and

 ̅
 are then connected using ̅

 .

STEP 5: For each , ̅
 is defined as the parallel equivalent of all

resistances which connect an element in
 with zone . The capacitors ̅

 and
 (see

nomenclature) are connected using ̅
 .

STEP 6: For each , ̅
 is defined as the parallel equivalent of all

resistances which connect an element in
 with an element in

 . The capacitors ̅
 and

 ̅
 are connected using ̅

 .

STEP 7: For each , ̅
 is defined as the parallel equivalent of all

resistances which connect an element in ̅
 with the ambient. The capacitor ̅

 and

ambient are connected with ̅
 . Similarly, ̅

 is defined for the ground instead

of ambient.

STEP 8: For each cluster , and for each zone in cluster

 and zone in cluster we define the resistance ̅

 as the parallel

97

equivalent of all resistances which connect an element in ̅
 with the zone The capacitor

 ̅
 is connected to the external zone (lying outside cluster) using ̅

.

STEP 9: The reduced order RC network is constituted by the capacitances and resistances

created in steps 3 – 8.

As an example, consider the 3-zone building shown in Figure 5.2 which is similar to the

example in Figure 3.3, except that it is modeled using the 3R2C framework. The zones are

marked as . The building has 20 wall surfaces which are marked as – . The

resistances representing heat transfer paths between the wall surfaces, zones, ambient and ground

are also shown in the figure. The capacitances (not shown in the figure) corresponding to the

wall surfaces and the zones are given by and respectively. Let the

temperatures associated with these capacitances be represented by and .

Figure 5.2 Schematic of 3-zone building used for illustration of Algorithm 5.2

z1 z2 z3

w
1

w2

w
3

w4

w
5

w6

w
7

w8

w
9

w10

w
1

1

w12

w
1

3

w14

w15

w16

w17

w18

w
1

9

w20

AMBIENT

A
M

B
IEN

T

A
M

B
IE

N
T

GROUND

R
w
2
,w
1
4

R
w
2
,z
1

R
w
4
,z
1

R
w
4
,w
1
5

R
w
1
5
,g

R
w
1
4
,a

R
w
1
6
,a

R
w
6
,w
1
6

R
w
6
,z
2

R
w
8
,z
2

R
w
8
,w
1
7

R
w
1
7
,g

R
w
1
8
,a

R
w
1
0
,w
1
8

R
w
1
0
,z
3

R
w
1
2
,z
3

R
w
1
2
,w
2
0

R
w
2
0
,g

Rw13,a

Rw13,w1

Rw1,z1 Rw3,z1

Rw3,w5

Rw5,z2 Rw7,z2 Rw9,z3 Rw11,z3

Rw7,w9

Rw12,w19

Rw19,a

98

Consider a 2-partition {{1,2},{3}} of the building. Application of each step of Algorithm 5.2 to

the first cluster {1,2} is shown below.

STEP 1:
 ̅

 and ̅

STEP 2: ̅

, ̅

,

 ̅

 and ̅

.

STEP 3: ̅
 , ̅

 ,

 ̅
 and ̅

 .

STEP 4:

 ̅

 and

 ̅

 .

STEP 5:

 ̅

 ,

 ̅
 ,

 ̅
 , and

 ̅

 .

STEP 6:

 ̅

 .

STEP 7:

 ̅

 ,

 ̅

 ,

 ̅

 and

 ̅

.

STEP 8 :

 ̅
 and

 ̅

 .

STEP 9: The reduced order RC network for the 3-zone building is shown in Figure 5.3. It has

99

only 6 states compared to 23 states in the full order model.

Figure 5.3 Reduced order RC network obtained via Algorithm 5.2 for the cluster {1,2} of

the 3-zone building in Figure 5.2

5.2.4 State transformation

The states ̅
 and ̅

 , and disturbances ̅
 and ̅

 in (5.12) are unknown. An

extended state observer (ESO) [89, 90] can be designed to estimate them based on assumptions

on the dynamics of the unknown disturbances. In this paper, we assume that the unknown

1

,
,1

,1

w
in

z
R

1

,
,1

w
in

w
ou

t
R

1

,
,1

w

o
u

t
a

R

1

,
,1

w

out
g

R
1

,
,2

,2

w
in

z
R

1

,
,2

w
in

w
ou

t
R

1

,
,2

w

out g

R
1

,
,2

w

out
a

R

1
2

,
,2

,1

w
ou

t
z

R

1zC

1

,1w inC

1

,1w outC

2zC

1

,2w inC

1

,2w outC

aT

gT

3zT

1

, ,1,2w in w inR

100

disturbances are slowly time-varying quantities. Therefore, if the time window of interest for

control design – such as prediction horizon in case of MPC – is sufficiently small, e.g. 30

minutes to an hour, we can assume that the disturbances are constant, that is ̅̇

 and ̅̇

 . This is used to augment the dynamics in (5.12) as shown

[

 ̅

 ̅

] [
 ̅ ̅

 ̅

] [

 ̅

 ̅

] [
 ̅

] [
 ̅

 ̅

] [

] ∑ [

 ̅

] ̂

 . (5.19)

A limitation of representation (5.19) is that it does not guarantee observability when

measurements are only available for the zone temperatures
 in the cluster. To address this

limitation, we define new states

 ̅

 (̅
)

 ̅

 ̅
 , (5.20)

 ̅

 ̅
 ̅

 (̅
)

 ̅

 ̅
 , (5.21)

where,

 ̅
 [

 ̅

 ̅

] ̅
 [

 ̅
 ̅

 ̅
 ̅

] , ̅

 [
 ̅

 ̅
],

and ̅
 [̅

] .

The transformed state space model using the new states
 and

 is given by

[

] [
 ̅

 ̅

 ̅
 ̅

]

⏟
 ̅

[

] [

 ̅

] [
 ̅

 ̅

] [

] ∑ [

 ̅

] ̂

, (5.22)

where,

 ̅
 [

 ̅

], ̅
 [

 ̅

] , ̅
 [

 ̅

], and ̅

 [

 ̅
].

The measurement model corresponding to (5.22) is given by

101

 [

]⏟

[

] (5.23)

Theorem 5.1: The pair (̅

) is observable.

Proof: Using the definitions of ̅
 , ̅

 , ̅
 and ̅

 above, ̅
 can be written as

 ̅

[

 ̅

 ̅
 ̅

 ̅
 ̅

 ̅
 ̅

]

 (5.24)

For simplicity of notation, we define ̅
 , ̅

 , ̅
 ,

 ̅
 , ̅

 , ̅
 and ̅

 . Furthermore, we

define the matrix

 [

]. (5.25)

A weighted graph is created with nodes corresponding to each of the aggregated wall

temperature states in cluster (̅
 and ̅

 in (5.12)), zone temperatures (
), ambient

temperature (), ground temperatures (), and zone temperature estimates (̂

) in all

other clusters. These nodes are numbered in the order in which they are mentioned above. An

edge is used to connect each pair of nodes which are connected by a resistance in the reduced

order RC network (obtained from Algorithm 5.2). The weight such edges are set to be the inverse

of the corresponding thermal resistances. The resulting weighted graph is denoted by

() along with the weight function . Note that this procedure is an extension of

the Algorithm 5.1 to a cluster in the building. We also define capacitance matrices ̅
 , ̅

and
 , which are diagonal matrices of the thermal capacitances associated with the state vectors

 ̅
 , ̅

 , and
 respectively. The diagonal entries in these matrices are entered in the

order of the corresponding node numbers in . Let
 denote the Laplacian matrix of and

102

recall that
 and

 denote the lengths of the vectors ̅
 and ̅

 respectively.

We now define the following sub-matrices of
 .

1. is the square sub-matrix of
 which corresponds to its first

 rows and columns.

2. is the square sub-matrix of
 which corresponds to its first

 rows and

columns.

3. is the square sub-matrix of
 which corresponds to rows

 and the first
 columns.

4. is defined as the sub-matrix of
 which corresponds to its first

 rows and columns

 .

An illustration of the above matrix definitions is presented below. Consider a 2-partition

{{1,2},{3}} of the building in Figure 5.2. The Laplacian matrix
 for the first cluster {1,2} in

this partition can be expressed as follows using its reduced order RC network representation in

Figure 5.3.

[

]

,

where,

 ̅

 ⁄

 ̅

 ⁄

 ̅

 ⁄

103

 ̅

 ⁄

 ̅

 ⁄

 ̅

 ⁄

 ̅

 ⁄

 ̅

 ⁄

 ̅

 ⁄

 ̅

 ⁄

 .

The matrices , , and are then obtained as

 [

],

104

[

]

,

 [

],

 [

].

The following properties can be easily verified from the structure of graph :

1. and are Hermitian, irreducible, diagonally dominant matrices with positive diagonal

entries. Furthermore, at least one row of both and is strictly diagonally dominant.

2. is a diagonal matrix with negative entries on diagonal.

3. is a sparse matrix of nonpositive elements such that each column has exactly one nonzero

entry. Furthermore, the nonzero entries in two different columns of are in different row

locations.

Now we state and prove the following Lemmas.

Lemma 5.1: is a full rank matrix.

Proof: It can be shown that
 . Using property 2 of above, we conclude

that is a diagonal matrix with positive entries on diagonal. Hence, is full rank. □

Lemma 5.2: is an invertible matrix.

Proof: can be expressed as (̅
)

 . Since is an irreducibly diagonally dominant

matrix from property 1 above, it is non-singular as a result of the Levy-Desplanques theorem

[91]. Hence,
 exists. Therefore,

 exists and is given by
 ̅

 . □

Lemma 5.3: is a positive definite matrix.

Proof: can be expressed as shown

 ⌈
 ̅

 ̅

⌉

 . (5.26)

105

Since is an irreducibly diagonally dominant matrix from property 1 above, it is non-singular

as a result of the Levy-Desplanques theorem [91]. Also, since is a Hermitian, diagonally

dominant matrix with real non-negative entries on the diagonal, it is positive semi-definite. Since

a non-singular positive semi-definite matrix can only be positive definite, we conclude that is

positive definite. Using the fact that ̅
 and ̅

 are diagonal matrices with positive

entries, we establish using (5.26) that is positive definite. □

Lemma 5.4:
 is a positive definite matrix.

Proof: can be written as (̅
)

 Since ̅

 is a diagonal matrix with positive

entries, share the properties of above (property 3), except that its entries are nonnegative

instead of nonpositive. Next,

(
)

 ∑ (
)

 ∑ .

Since and are both nonzero simultaneously for some only if , we

conclude that:

(
)

 {

Hence,
 is a diagonal matrix with positive entries and is therefore positive definite. □

We rewrite
 in the form (5.27) which is aligned with the expanded form of ̅

 in (5.24).

 [

]. (5.27)

The resulting observability matrix for (̅

) is obtained as shown

[

 ̅

 (̅

)

 (̅

)

]

[

]

(5.28)

Here,

106

 ,

 ,

 .

Let us assume that the matrix does not have full rank. Hence, there exists a vector whose

elements are not all zero such that,

 (5.29)

We rewrite in the form shown in below which is aligned with the expanded form of in (5.28)

 (5.30)

Using (5.28) and (5.30), (5.29) results in

 , (5.31)

 , (5.32)

 , (5.33)

 (5.34)

Using (5.31) in (5.32), we obtain

 = 0. (5.35)

Using (5.31) and (5.35) in (5.33), we obtain

 . (5.36)

Since is full rank (Lemma 5.1), we obtain

 . (5.37)

Using (5.31), (5.35) and (5.37) in (5.34), and using the definitions of to results in

 = 0. (5.38)

Note that
 exists from Lemma 5.2. Since is full rank (Lemma 5.1), we obtain

 . (5.39)

107

We define
 . Note that is the Schur complement of . Since is

positive definite (Lemma 5.3), using the Schur complement condition for positive definiteness,

we conclude that is positive definite. Next, (5.39) leads to

 . (5.40)

Since and
 are positive definite matrices (Lemma 5.4), we conclude from (5.40) that

 . Therefore, from (5.37), since is full rank (Lemma 5.2). Using (5.35), this

implies . Hence, implying from (5.30) that . This

contradicts the assumption that at least one element of is nonzero. Therefore, is full rank and

hence (̅

) is observable. □

5.3 Observer and controller design

The reduced order, transformed representation shown in (5.22) provides an observable

state space representation of the cluster level dynamics. In this section, we use this property to

design an observer at the cluster level to estimate the unknown states. A cluster level controller is

then designed which utilizes these estimates to provide optimal control decisions that minimize

an appropriate objective function subject to constraints.

5.3.1 Observer design

For any p-partition of a building, a family of discrete-time observers – one for each

cluster i – can be designed to estimate the states
 and

 in the model (5.22) using the zone

temperature measurements obtained in (5.23). From an implementation perspective, it is desired

that the sampling rate of the observers should match that of the controllers. The temperature

estimates ̂

 for the zones in the clusters other than appearing in (5.22) are treated as design

parameters. For example, they can be set to the corresponding set-point temperatures

,

based on the assumption that the controllers are able to accurately regulate the zone temperatures

around the set-point.

5.3.2 Controller design

Here, we consider the design of output-feedback model predictive controllers which are

108

decentralized at the cluster-level and use the state estimates provided by the observer in Section

5.3.1. The objective function to be minimized at any time step k for the cluster in a p-partition

consists of a sum of appropriate performance and cost objectives (see (3.21)).

 , (5.41)

where,

 ∑

 , (5.42)

 , (5.43)

 ∑

 . (5.44)

Here, are vector valued, component-wise positive weights on the

performance (set-point tracking of zone temperatures) and cost (energy consumption) objectives;

 and represent the prediction and control horizon lengths respectively. A discrete-time

version of the model (5.22) has the form

[

] ̅
 [

] ̅
 [̅

 ̅
] [

]

 ∑ ̅

 ̂

 . (5.45)

The model (5.45) imposes the following constraints on the optimization:

1. For each ,

[

] ̅
 [

] ̅

 [̅
 ̅

] [

] ∑ ̅

 ̂

 , (5.46)

2. For each ,

[

] ̅
 [

] ̅

109

 [̅
 ̅

] [

] ∑ ̅

 ̂

 (5.47)

Additional constraints, such as heating and cooling capacity bounds are represented by

 , for all . (5.48)

Here, represents the set of feasible values of . At each time instant ,

the controller uses: (a) the state estimates from the observer ̂
 and ̂

 , (b) the zone

temperature measurements from thermostats
 , and (c) the signals , and

{ ̂

 }

 to determine optimal values

 of the control inputs

 which minimize the objective function (5.41) subject to the constraints (5.46) –

(5.48). In accordance with the MPC methodology, the control input
 corresponding to the

current time instant is then applied to the plant. The observer and controller for the cluster are

illustrated in Figure 5.4.

Figure 5.4 Illustration of controller and observer for i
th

 cluster.

Plant
 ith cluster

thermostats

SIGNAL MULTIPLEXER

ith observer
agent

()aT k ()gT k
()kwd

()kzd
()ki

z,measT

()kj

zT

ˆ ˆ(), ()k ki i

1 2η η
()ki

u
ith control

agent

110

It should be noted that the design of cluster level decentralized controllers and observers

discussed in this section leads to an output feedback control framework which only uses zone

temperature measurements that are provided by thermostats. It also incorporates physical

constraints such as heating or cooling capacity bounds associated with the HVAC system.

Therefore, it builds upon the decentralized control framework that was presented in chapter 3

(Section 3.4) to make it practically implementable.

5.4 Optimization

Through a procedure analogous to that presented in Section 3.4.4, the optimization of the

cost function in (5.41) for the control agent, in the presence of heating/cooling capacity

constraints can be converted to a Quadratic Program (QP). The underlying procedure is shown in

this section.

5.4.1 Re-statement of objective function

We augment the state space model in (5.45) by defining a new state
 as shown below

 (5.49)

Therefore,

 , (5.50)

Where is defined as

 . (5.51)

Using (5.50) and (5.51), the augmented form of (5.45) is given by

 ∑ ̅

 ̂

 , (5.52)

where,

[

]

 ,
 [

 ̅
 ̅

] ,
 [

 ̅

] ,
 [

 ̅

] ,

111

 [

 ̅

] , ̅

 [

 ̅

].

Based on (5.52), the constraints (5.46) and (5.47) can be written as the following.

1. For each :

 ∑ ̅

 ̂

 , (5.53)

2. For each :

 ∑ ̅

 ̂

 , (5.54)

The derivation of (5.54) uses the fact that from definition (5.51),

outside the control horizon, i.e. when . Using (5.53) and (5.54), we obtain

the following equations via iterations for each time step in the prediction horizon.

 ∑ ̅

 ̂

 ∑ ̅

 ̂

 (
)

 ∑(

 ̅

 ̂
 ̅

 ̂

)

112

 (

)

 ∑ (

)

(

) ∑ ∑(
)

(̅

 ̂
)

 (

)

 ∑ (

)

 ∑(
)

(

)

 ∑ ∑(
)

(̅

 ̂
)

 () (

)

 ∑ (

)

 ∑ (
)

(

)

 ∑ ∑(
)

(̅

 ̂
)

The above equations can be succinctly written as

 ̅

 ̅̅ ̅̅ ̅ ̅ ∑ ̅̂

 . (5.55)

Here,

 ̅

[

]

, ̅̅ ̅̅

[

]

, ̅ [

],

113

 ̅

[

]

, ̅̂

[

 ̂

 ̂

 ̂

]

,

[

(
)

(
)

]

,

[

(
)

(
)

 (
)

(
)

 (
)

 (
)

]

,

[

(
)

]

,

[

(
)

]

,

[

 ̅

 ̅

 ̅

(
)

 ̅

 ̅

 ̅

]

.

From (5.41), can be re-stated as

114

 (̅
 ̅

)

 (̅

 ̅
) ̅ ̅

 ([
 ̅

 ̅
] [

 ̅

])

[

] ([

 ̅

 ̅
] [

 ̅

]), (5.56)

where,

 ̅

[

]

, ̅

[

]

()

,

 [

]

 ,

and [

]

.

Let
 [

],

and ̅

[

]

()

Here,

 .

Clearly, [
 ̅

 ̅
] ̅

 ̅
 . (5.57)

Using 5.55), (5.57) can be written as

[
 ̅

 ̅
] ̅

 (
 ̅̅ ̅̅ ̅ ̅ ∑ ̅̂

). (5.58)

We define the following:

115

 ̅
 (

 ̅

), [

]. (5.59)

Using (5.58) and (5.59) in (5.56), and ignoring terms which are independent of ̅̅ ̅̅ (the

optimization variable), we obtain

 ̅̅ ̅̅
 ̅̅ ̅̅ (

)

 ̅̅ ̅̅ , (5.60)

where,

 (̅
)

 ̅

 , (5.61)

and,

 (̅

)

 [̅

 (
 ̅̅ ̅̅ ̅ ̅ ∑ ̅̂

) ̅

].

(5.62)

In the above framework,
 is constructed from the estimated and measured states.

Therefore,

 [

 ̂

 ̂

] (5.63)

5.4.2 Constraints

In this section, we consider constraints representing upper bounds on the heating and

cooling provided to the zones by the HVAC system. These constraints translate into upper and

lower bound inequality constraints on the control inputs. We assume that the HVAC system is a

VAV system with reheating coils described in Chapter 2. For simplicity, we assume 100%

recirculation of return air from each zone, i.e. there is no mixing of outside air in the air handling

unit. Furthermore, we assume that the temperature of cold supply air is fixed; therefore the

heating or cooling provided to the zones is manipulated only by changing the air mass flow rates

via dampers in the VAV boxes and/or by varying the amount of heating provided by reheat coils

(in case of heating only). In the remainder of this section, ‘ ’ and ‘ ’ when used to compare

vectors, refer to inequalities taken component-wise.

116

5.4.2.1 Cooling constraints

For each zone in the cluster, the cooling constraint due to the above

assumptions is given by (refer to nomenclature):

 ̇

 (
) (5.64)

The combined form of (5.64) for all zones in the cluster is given by

 (

) (5.65)

Here,

[

 ̇

 ̇

 ̇

]

,

[

]

Equation (5.65) results in the following constraints over the control and prediction horizons.

1. For ,

 (

) (5.66)

2. For ,

 (

) (5.67)

Equations (5.66) and (5.67) can be succinctly written as

 ̅̅ ̅̅ ̅

 (
 [

 ̅
])

 , (5.68)

where,

117

 [

],

[

]

,

[

]

(())

,

[

]

(())

,

 ̅

[

]

(()) (())

 .

 ̅
 and ̅̅ ̅̅ were defined earlier as

 ̅

[

]

, ̅̅ ̅̅

[

]

.

Let

 and ̅

 be defined as

 ,

 ̅

[

]

()

.

Clearly,

 ̅
 ̅

 ̅
 . (5.69)

Using (5.55), (5.69) can be written as

118

 ̅
 ̅

 (
 ̅̅ ̅̅ ̅ ̅ ∑ ̅̂

). (5.70)

Substituting for ̅
 from (5.70) in (5.68) we obtain:

 ̅̅ ̅̅ ̅

 (

 ̅̅ ̅̅
 ̅

 ̅ ∑

 ̅̂

)

 , (5.71)

where,

 [

 ̅

] [

 ()
],

 [

 ̅

],

 [

 ̅

],

 [

 ̅

],

 [
 ()

 ̅

].

Note that in deriving (5.71), we used the fact that

 . The inequality

(5.71) can be re-stated as:

(
 ̅

) ̅̅ ̅̅ ̅

 (

 ̅
 ̅ ∑

 ̅̂

)

 . (5.72)

5.4.2.2 Heating constraints

For each zone in the cluster, the heating constraint due to the

assumptions on the HVAC system mentioned earlier is given by (refer to nomenclature)

 . (5.73)

The combined form of (5.73) for all zones in the cluster is given by

 . (5.74)

Equation (5.74) results in the following constraints for (the control horizon)

119

 (5.75)

Equation (5.75) can be succinctly written as

 ̅̅ ̅̅ ̅

 , (5.76)

where,
 was defined earlier as

[

]

,

and,

 ̅

[

]

,

[

]

.

5.4.3 Quadratic program formulation

Using the results in Sections 5.4.1 and 5.4.2, the optimization problem corresponding to

the decentralized controller for the cluster (see section 5.3.2) is expressed as the following

quadratic program (QP)

 ̅̅ ̅̅

 ̅̅ ̅̅
 ̅̅ ̅̅ (5.77)

 where, ̅̅ ̅̅ ̅̅ ̅̅
 ̅̅ ̅̅ (

)

 ̅̅ ̅̅ (5.78)

subject to :

(
 ̅

) ̅̅ ̅̅ ̅

 (

 ̅
 ̅ ∑

 ̅̂

)

 , (5.79)

 ̅̅ ̅̅ ̅

 . (5.80)

The above quadratic program can be solved at each time step using an appropriate tool

such as the optimization toolbox in MATLAB [92]. The optimal control input,
 at this

120

time instant, is given by

 ̅̅ ̅̅

 , (5.81)

where,

 [

 ()]. (5.82)

The control input
 is applied to the cluster in the partition at the time step,

and this procedure is then repeated for all clusters and all time steps.

5.5 Concluding remarks

A framework was presented in this chapter for the design of cluster level decentralized

controllers corresponding to any partition of a building. The important elements of this

framework were (i) a reduced order representation of the thermal dynamics associated with a

cluster, (ii) a cluster level observer for estimation of unknown states and disturbances, and (iii) a

cluster level controller based on an MPC framework which utilizes the reduced order model and

the estimates provided by the observer.

Chapters 4 and 5 constitute a two-step decentralized control design process for the

thermal control of a building. It consists of deciding a control architecture based on the tools

developed in chapter 4, followed by design of decentralized controllers using the framework

developed in this chapter. To demonstrate the use of these tools, the next chapter presents a real

world building example, where this two-step procedure – involving control architecture selection

and control design – was applied in simulation.

121

Chapter 6

Real World Building Simulation Study

6.1 Introduction

This chapter presents simulation studies using a real world building model to

demonstrate the applicability of the tools developed in the previous chapters. A detailed model of

the building is first developed in EnergyPlus [27] – a state-of-the-art modeling toolbox for

buildings developed by the US Department of Energy (DOE). A linear representation of the

thermal dynamics for the building is then obtained, which is used to partition it for decentralized

control in accordance with the OLF-FPM method presented in Chapter 4. This is followed by the

design of decentralized controllers using the methodology described in Chapter 5. Lastly, the

optimality and robustness aspects associated with the decentralized controllers are investigated to

conclude the chapter. The nomenclature used in this chapter is shown in Table 6.1

Table 6.1 Nomenclature of symbols used in Chapter 6

Symbol Description

 Number of zones in a building

 Temperature of zone

 Internal thermal load generated in zone

 Specific heat capacity of air

 ̇ Mass flow rate of air supplied to zone by the HVAC system

 Thermal capacitance of zone

122

Sample time used for EnergyPlus simulations

(typically 1 minute in this work)

 ̇ Mass flow rate of infiltrated air from ambient to zone

 Ambient temperature

 Temperature of wall surface

 Superscript used to denote data obtained from EnergyPlus simulations

*
Superscript used to denote optimal values or results obtained from an

optimization

 Set of wall surfaces which enclose zone

 Heat transfer coefficient between zone and wall surface

 Heat transfer coefficient between zone and any enclosing wall surface

 Area of wall surface

 Length of time window (in samples) used in optimization

 Unmodeled thermal load acting on inside surface of wall

 Temperature of inside surface of wall

Temperature of interface (zone/ambient/ground) which thermally interacts with

inside surface of wall

 Temperature of outside surface of wall

 Unmodeled thermal load acting on outside surface of wall

Temperature of interface (zone/ambient/ground) which thermally interacts with

outside surface of wall

 Number of wall surfaces in building

 Vector of unmodeled thermal loads acting on wall surfaces

 Vector of unmodeled thermal loads acting on zones

 Thermal load acting on wall surface

 Stefan-Boltzmann constant

 Solar absorptance of wall surface

 Incident solar radiation per unit area on wall surface

123

 Thermal absorptance of wall surface

 Temperature of ground outside building used for radiation calculations

 Sky temperature used for radiation calculations

 Thermal load acting on zone

 Actual occupancy in zone as a fraction of nominal occupancy

 Nominal occupancy in zone

 Average rate of heat transfer from an occupant

Actual lighting thermal load in zone as a fraction of nominal lighting

thermal load

 Nominal lighting thermal load in zone

Actual equipment thermal load in zone as a fraction of nominal equipment

thermal load

 Nominal appliance thermal load in zone

 Set-point temperature for zone

6.2 Test building and EnergyPlus model

The test building considered in this chapter is a multi-zone building, modeled based on

the layout of the Siemens Corporate Research (SCR) building located in Princeton, New Jersey

(NJ). A photograph of the actual building is shown in Figure 6.1. The various features of the

building, which are used in the development of an EnergyPlus model, are explained this section.

6.2.1 Building Layout and Geometry

A Google SketchUp [94] illustration of the building is shown in Figure 6.2, whose plan

view is shown in Figure 6.3. It consists of 5 blocks marked C, D, E, F and G (Figure 6.4) and has

three floors including a basement (Figure 6.5). The building has 9 thermal zones, details of

which are provided in Table 6.2. Note that the basement of the building has a section which is

not thermally conditioned, indicated by NTCB in Table 6.2and shown in Figure 6.6. Each

thermal zone is catered by its own air handling unit, except the zone labeled NTCB. For a

124

background on thermal zones and air handling units in a building, the reader is directed to

Chapter 2. As shown in Figure 6.2, the building also has external windows which are included in

the development of an EnergyPlus model.

Figure 6.1 Photograph of the SCR building (source: [93])

Figure 6.2 Google SketchUp illustration of the test office building

N

125

Figure 6.3 Top (plan) view of test office building

Figure 6.4 Isometric view of the test office building

126

Figure 6.5 Side view of test office building viewed from the North-East direction

Figure 6.6 Transverse cut of basement showing conditioned and non-conditioned sections

of test office building

Figure 6.7 Transverse cut of D block showing the server room of test office building

127

Table 6.2 Description of thermal zones in the test office building

Thermal

zone number
Description Alias

1 Entire G block (includes both 1
st
 and 2

nd
 floor sections) G

2 Entire E block (includes both 1
st
 and 2

nd
 floor sections) E

3 Entire C block (includes both 1
st
 and 2

nd
 floor sections) C

4 Server room (Figure 6.7) located on 1
st
 floor of D block SR

5 1
st
 floor section of F block F1

6
Entire D block (includes both 1

st
 and 2

nd
 floor sections but

excludes the server room)

D

7 2
nd

 floor section of F block F2

8 Thermally controlled section of the basement (Figure 6.6) TCB

9
Non-thermally controlled section of the basement

(Figure 6.6)

NTCB

6.2.2 Construction data

The construction data for the building was based on a standard ‘medium office building’

construction template for ASHRAE climate zone 5 (NJ lies in that zone) provided in the

OpenStudio tool [95] developed by the National Renewable Energy Laboratory (NREL). This

sets appropriate properties for various construction elements in the building such as exterior and

internal walls, floors and ceilings, and doors and glass windows. A description of the material

layers associated with the various construction elements in the ‘medium office building’

construction template is shown in Table 6.3.

128

Table 6.3 Details of construction template used for the test office building

Construction element in ‘medium

office building’ template
Applicability

Material layers with

thickness indicated in

parentheses

ASHRAE_189.1-

2009_ExtRoof_IEAD_ClimateZone 2-5

Ceilings facing

ambient

Roof membrane (0.0095 m),

roof insulation (0.2105 m),

metal decking (0.0015 m)

000_Interior Wall Interior walls

Gypsum board (0.019 m),

air gap (0.15 m), gypsum

board (0.019 m)

000_Interior Door Interior doors Wood (0.0254 m)

ASHRAE_189.1-

2009_ExtWall_Mass_ClimateZone 5

Walls facing

ambient

Stucco (0.0253 m), heavy-

weight concrete (0.2033 m),

wall insulation (0.0794 m),

gypsum (0.0127 m)

000_Interior Floor
Interior

floors/ceilings

Acoustic tile (0.0191 m), air

gap (0.18 m), light-weight

concrete (0.1016 m)

000_ExtSlabCarpet_4_in_ClimateZone

1-8

Floors facing

ground

Heavy-weight concrete

(0.1016 m), carpet pad

(0.2165 m)

ASHRAE_189.1-

2009_ExtWindow_ClimateZone 4-5

Windows

facing ambient
Theoretical glass (0.003 m)

6.2.3 Weather data

Weather information is required as an input for simulating EnergyPlus models. The

weather information is provided to EnergyPlus through a weather file which contains

information such as dry bulb temperature, wet bulb temperature, relative humidity, wind speed,

etc. for any location. A library of weather files for various locations around the world is provided

129

by the US DOE [96]. For the test building under consideration, a weather file specific to

Princeton, NJ where the building is located was not available. Therefore, the weather file for the

nearest location for which data is available (Trenton, NJ approximately 10 miles away) was used.

6.2.4 Internal loads

Internal loads are a key constituent of any EnergyPlus model. The calculation of internal

thermal loads for each thermal zone in a building is performed in EnergyPlus based on

information about occupancy, lighting and equipment corresponding to the zone.

6.2.4.1 Occupancy information

Occupancy information is specified by providing the nominal occupancy for the zones,

occupancy schedules which determine what percentage of the nominal number of occupants is

present at a given time, and activity schedules which determine the thermal contribution (in W)

from each occupant at any time. The nominal occupancy can be entered in the form of total

number of people, number of people per floor area or floor area per person. The occupancy and

activity schedules can be provided as time-series data sampled hourly for each day in the week.

Typically, three schedules – weekday schedule, Saturday schedule and Sunday schedule – are

provided for occupancy and activity.

For the test building under consideration, the nominal occupancy values are shown in

Table 6.4. Note that the table also shows nominal lighting and equipment loads which are

explained later in this Section. The weekday and Saturday occupancy schedules are shown in

Figure 6.8 and Figure 6.9 respectively. The Sunday occupancy is zero for the entire day. These

occupancy schedules are based on a template called ‘Medium_Office_Bldg_Occ’ provided in the

OpenStudio tool. The activity schedule for all zones at all times corresponds to a thermal

contribution of 120 W per occupant. This value is based on the template

“Medium_Office_Activity” provided in OpenStudio.

6.2.4.2 Lighting information

Similar to the occupancy information, the thermal load from lighting in each thermal

zone in a building is specified by providing the nominal lighting thermal load (W) and lighting

schedules which determine what percentage of the nominal lighting load is applicable at any

130

given time. The nominal lighting thermal load can be entered in the form of an absolute load

(W), load per floor area (W/ft
2
) or load per person (W/person). The lighting schedules can be

provided as time-series data sampled hourly for each day in the week.

For the test building under consideration, the nominal lighting thermal load values are

shown in Table 6.4. The weekday and Saturday lighting schedules are shown in Figure 6.10 and

Figure 6.11 respectively. Sunday’s schedule for each zone is set to 5% of the corresponding

nominal lighting thermal load at all times in the day. These lighting schedules are based on a

template called ‘Medium_Office_Bldg_Light’ provided in the OpenStudio tool.

Table 6.4 Nominal occupancy, lighting load and equipment load information used in

EnergyPlus model of test building

Zone alias
Nominal

occupancy

Nominal lighting

thermal load (kW)

Nominal equipment

thermal load (W per

person)

G 50 5.0 400

E 50 5.0 400

C 50 5.0 400

SR 0 5.0 400

F1 75 5.0 400

D 50 5.0 400

F2 75 5.0 400

TCB 10 5.0 400

NTCB 0 1.0 400

131

Figure 6.8 Weekday occupancy schedule in each thermal zone in the test building

Figure 6.9 Saturday’s occupancy schedule in each thermal zone of the test building

Figure 6.10 Weekday lighting schedule in each thermal zone in the test building

0 5 10 15 20 24
0

0.2

0.4

0.6

0.8

1

Hour of the day

F
ra

c
ti
o

n
 o

f
n

o
m

in
a

l
o

c
c
u

p
a

n
c
y

0 5 10 15 20 24
0

0.2

0.4

0.6

0.8

1

Hour of the day

F
ra

c
ti
o

n
 o

f
n

o
m

in
a

l
o

c
c
u

p
a

n
c
y

0 5 10 15 20 24
0

0.2

0.4

0.6

0.8

1

Hour of the day

F
ra

c
ti
o

n
 o

f
n

o
m

in
a

l
li
g

h
ti
n

g
 l
o

a
d

132

Figure 6.11 Saturday’s lighting schedule in each thermal zone in the test building

6.2.5 Creation of EnergyPlus model

An EnergyPlus model for the test building was created using the OpenStudio tool [95]

based on the layout, construction, weather and internal load information described above. The

steps used for construction of the model are explained in Appendix E. The description includes a

link to online tutorials on OpenStudio. For the interested reader, the Openstudio and EnergyPlus

files that were generated for the test building under consideration are included in the media

accompanying this thesis.

In the EnergyPlus model constructed above, the ‘ideal air loads’ option was turned on.

This option provides the requisite amount of heating or cooling to each thermally controlled zone

in order to achieve specified set-point temperatures, without the need to set up an HVAC system.

Consideration of the HVAC system is beyond the scope of this thesis. However, OpenStudio

provides the option of specifying an appropriate HVAC system, which can be auto-sized

depending on design weather conditions and loads. More details are available in the tutorials

referenced in Appendix E.

6.3 Generation of linearized model

In this section, we describe the development of a linearized model, based on the 3R2C

framework (see Section 5.2.1) for the test building described in section 6.2. The purpose of the

linearized model is to allow the use of the OLF-FPM method described in Chapter 4 to partition

the building for decentralized control.

0 5 10 15 20 24
0

0.2

0.4

0.6

0.8

1

Hour of the day

F
ra

c
ti
o

n
 o

f
n

o
m

in
a

l
li
g

h
ti
n

g
 l
o

a
d

133

6.3.1 Overview of modeling framework

The identification of resistances and capacitances to construct a RC network model of a

building is performed in two steps, which we refer to as ‘zone level identification’ and ‘wall

surface level identification’. In this chapter, the term wall is used to represent a general term to

represent all surfaces constituting the building, i.e. ceilings, floors, vertical walls (both internal

and external), windows and doors. The underlying details of these steps are described in Sections

6.3.2 and 6.3.3 below. The 3R2C modeling paradigm for walls which is used in these steps was

illustrated in Figure 5.1 and is reproduced below in Figure 6.12.

Figure 6.12 Schematic of 3R2C modeling paradigm for wall i.

The resistances and capacitances obtained through these steps are then used in Section

6.3.4 to create a linear time invariant (LTI) model of the building thermal dynamics.

6.3.2 Zone level identification

The zone level identification corresponds to the estimation of the following parameters

1. The thermal capacitance, associated with each zone in the building.

2. The resistances and corresponding to each internal wall (flanked by

zones on both sides) in the building as shown in Figure 6.12.

3. The resistance corresponding to each external wall (flanked by a zone on

one side and ambient/ground on another) in the building as shown in Figure 6.12.

It is easy to verify that the above resistances are given by elements of the set { |

 , where represents the thermal resistance between zone and wall surface

 , and represents the set of wall surfaces which enclose zone . EnergyPlus uses the following

Rww,i Rw-in,i

Cw-in,iCw-out,i

Rw-out,i Connection
to zone,

ambient or
ground

Connection
to zone,

ambient or
ground

134

difference equation obtained using the Backward Euler method to represent the thermal

dynamics for the zone (see nomenclature for details on notation)

 ̇ ̇

 ̇ ∑

 ̇ ̇ ∑

 (6.1)

The above equation represents the conservation of energy (first law of Thermodynamics)

for the zone. The interested reader is directed to [97] for details its derivation. Here,

represents the overall heat transfer coefficient between the zone and wall surface multiplied

by the area of surface . This is related to introduced earlier by

. (6.2)

Equation (6.1) can be used to identify the unknown capacitance and the thermal

resistances where , based on data obtained from an EnergyPlus simulation. This can be

formally expressed as a least-squares identification problem for zone given by the optimization

below (see nomenclature for details on notation)

{
 {

 }

}

{ { }
}

 ∑ (
)

 (6.3)

Subject to:

 ̇

 ̇

 ̇

 ∑

 ̇

 ̇
 ∑

 , (6.4)

 , (6.5)

 for all . (6.6)

In the above optimization framework, the superscript “E+” is used to indicate data

obtained from an EnergyPlus simulation and the superscript “ * ” represents optimal values or

the result of the optimization. is the length of the time window used for simulation measured

135

in terms of number of samples, where the sample period is seconds. Equation (6.4) is based on

(6.1), whereas the constraints (6.5) and (6.6) are included to prevent the capacitance and

coefficients from becoming negative or unbounded. Solution of the above optimization

problem for each zone provides the required zone capacitances and

resistances (computed from via (6.2)).

Data for use in the above optimization process is obtained by providing persistently

excited zone set-point temperature signals in EnergyPlus in time-series format. In the simulation

process, the ‘fictitious’ HVAC system corresponding to the ‘ideal air loads’ option heats or cools

the zones, as needed, to achieve the specified set-point temperatures at each time instant.

The above optimization was performed for zone F2 in the test building using the

‘fmincon’ command in the MATLAB optimization toolbox [98]. The optimization time window

was chosen to be 24 hours, from 12:00 AM on June 3 to 12:00 AM on June 4. The set-point

temperature signal used to obtain EnergyPlus simulation data is shown in Figure 6.13, which is a

pseudo-random binary signal (PRBS) generated using MATLAB. The relevant codes for

performing this optimization are provided in Appendix F.

Figure 6.13 Zone set point temperature signal from 12:00 AM to 1:00 AM used in

EnergyPlus simulations for zone level identification

0 10 20 30 40 50 60
20

21

22

23

24

25

26

27

28

Time from 12:00 am onwards (minutes)

Z
o

n
e

 s
e

t-
p

o
in

t
te

m
p

e
ra

tu
re

 (
 0
C

)

136

Zone F2 is surrounded by 9 surfaces. The corresponding values of coefficients, in

units of K/kW obtained from the optimization are 0, 0, 0, 0, 0, 0, 0, 0.617 and 3.857. A

comparison of the zone temperature predicted using the identified model with the zone

temperature obtained via EnergyPlus simulation is shown in Figure 6.14. It is observed that the

zone temperature predicted using the identified model is very close to that obtained from

EnergyPlus simulations all time instants. However, the identified parameter values are

unrealistic. In particular, coefficients between zone F2 and seven of the surrounding

surfaces are zero, which is physically untenable. A possible reason for this solution is the

presence of too many unknown parameters (10 for zone F2 – 9 resistances and 1 capacitance) in

the optimization framework. This may lead to a situation where the same total energy transfer to

a zone from the surrounding surfaces can be achieved by multiple combinations of surface to

zone heat transfer coefficients. Therefore, some of the heat transfer coefficients can be set to zero

by augmenting the remaining heat transfer coefficients in such a way that the total energy

transfer from the surfaces to the zone is the same as that corresponding to the EnergyPlus

simulation.

Figure 6.14 Temperature of zone F2 from zone level least squares identification

methodology compared with EnergyPlus data between 12:00 AM to 1:00 AM

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 o
f
z
o

n
e

 F
2

 (
0
C

)

137

In an attempt to address the above problem, potentially arising due over-parameterization

in the optimization framework, we propose a simplified framework which is based upon the

following physical reasoning. Each coefficient (where) can be written as the

product of and , which denote the heat transfer coefficient between zone and surface ,

and the area of surface respectively. The coefficient corresponds to convection heat transfer

which is primarily dependent on the properties of air and temperatures of zone and surface . If

we ignore the dependence of on the temperatures of zone and surface in the range of

operation of the building, we can assume that each of the heat transfer coefficients are same

for all . This results in a simplified modeling framework which only uses a single heat

transfer coefficient denoted by between zone and all surfaces enclosing it. Therefore, the

following framework for least squares system identification is proposed.

{

 }
{ }

 ∑ (
)

 (6.7)

Subject to:

 ̇

 ̇

 ̇

 ∑

 ̇

 ̇
 ∑

 , (6.8)

 , (6.9)

 . (6.10)

Similar to the optimization framework given by (6.3) to (6.6), in the above equations, the

superscript “E+” is used to indicate data obtained from an EnergyPlus simulation and the

superscript “ * ” represents optimal values or the result of the optimization.

The above optimization was performed for all zones in the test building. The optimization

time window was chosen to be 24 hours, from 12:00 AM on June 3 to 12:00 AM on June 4. The

set-point temperature signal used to obtain EnergyPlus simulation data is shown in Figure 6.13

which is the same as that used for the optimization framework described earlier. The result of the

optimization for each zone is shown in Table 6.5. A comparison of zone temperatures predicted

138

using the identified models with zone temperatures obtained via EnergyPlus simulation is shown

in Figure 6.15 to Figure 6.23. It is observed that the zone temperatures predicted using the

identified models are very close to those obtained from EnergyPlus simulations all time instants.

The relevant codes for performing this optimization are provided in Appendix G.

Table 6.5 Results of zone level optimization for all zones in test building

Thermal zone number (j) Alias

(kJ/K)

(K/kW-m
2
)

1 G

2 E

3 C

4 SR

5 F1

6 D

7 F2

8 TCB

9 NTCB

139

Figure 6.15 Temperature of zone G from zone level least squares identification

methodology compared with EnergyPlus data between 12:00 AM to 1:00 AM

 Figure 6.16 Temperature of zone E from zone level least squares identification

methodology compared with EnergyPlus data between 12:00 AM to 1:00 AM

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 o
f
z
o

n
e

 G
 (

0
C

)

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 o
f
z
o

n
e

 E
 (

0
C

)

140

Figure 6.17 Temperature of zone C from zone level least squares identification

methodology compared with EnergyPlus data between 12:00 AM to 1:00 AM

Figure 6.18 Temperature of zone SR from zone level least squares identification

methodology compared with EnergyPlus data between 12:00 AM to 1:00 AM

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 o
f
z
o

n
e

 C
 (

0
C

)

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 o
f
z
o

n
e

 S
R

 (
0
C

)

141

Figure 6.19 Temperature of zone F1 from zone level least squares identification

methodology compared with EnergyPlus data between 12:00 AM to 1:00 AM

Figure 6.20 Temperature of zone D from zone level least squares identification

methodology compared with EnergyPlus data between 12:00 AM to 1:00 AM

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 o
f
z
o

n
e

 F
1

 (
0
C

)

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 o
f
z
o

n
e

 D
 (

0
C

)

142

Figure 6.21 Temperature of zone F2 from zone level least squares identification

methodology compared with EnergyPlus data between 12:00 AM to 1:00 AM

Figure 6.22 Temperature of zone TCB from zone level least squares identification

methodology compared with EnergyPlus data between 12:00 AM to 1:00 AM

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 o
f
z
o

n
e

 F
2

 (
0
C

)

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 o
f
z
o

n
e

 T
C

B
 (

0
C

)

143

Figure 6.23 Temperature of zone NTCB from zone level least squares identification

methodology compared with EnergyPlus data between 12:00 AM to 1:00 AM

The thermal resistance between zone and its enclosing surfaces can be computed

from the solution of the optimization problem given by (6.7) to (6.10) as shown below

. (6.11)

As stated earlier, the resistances desired to be computed from the zone level identification

are given by elements of the set { | . Therefore, the use of (6.11) allows

the computation of all such resistances. The thermal capacitances associated with the zones

appear as optimization variables in (6.7) and therefore are directly provided by the optimization.

The calculation of resistances and capacitances in this way completes the zone level

identification. For the test building under consideration, the capacitances obtained are shown in

Table 6.5. The resistances are computed from the
 values shown in this table in a spreadsheet

using (6.11) which is provided in the media accompanying this thesis.

6.3.3 Wall surface level identification

The wall surface level identification involves estimation of the following parameters with

reference to Figure 6.12:

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 o
f
z
o

n
e

 N
T

C
B

 (
0
C

)

144

1. For internal walls (flanked by zones on both side): , and

2. For external walls (flanked by a zone on one side and ambient/ground on

another): , , ,

The above parameters, together with the parameters estimated using zone level

identification in Section 6.3.2 provide the complete set of resistances and capacitances required

to set up a Linear Time Invariant (LTI) model of the building thermal dynamics. Two variants of

a least squares identification procedure – treating wall surface thermal loads as known and

unknown respectively – were first implemented for the wall surface level identification.

However, both these methods were found to have critical limitations and provided unsatisfactory

results. Therefore, as an alternative, the wall surface level identification was performed by

computing the values of the desired resistances and capacitances directly using material

properties of the wall construction layers. The two least squares identification procedures

mentioned above are presented below, followed by the procedure for direct computation of

parameters.

6.3.3.1 Least squares identification with unknown wall thermal loads

The least squares identification procedure described here treats the wall thermal loads

(and) as unknowns to be determined along with resistances and capacitances.

The identification procedure involves solving a pair of optimization problems for each internal

and external wall.

The pair of optimization problems corresponding to the internal wall is given by:

(i) {

 {
 }

}

{ { }

}

∑ (
)

 (6.12)

Subject to:

for all , (6.13)

 , (6.14)

145

 , (6.15)

 for all . (6.16)

(ii) {
 {

 }

}

{ { }

}

∑ (
)

 (6.17)

Subject to:

for all , (6.18)

 , (6.19)

 for all . (6.20)

The notations used in the above optimization problems are explained in the nomenclature

(Table 6.1). Equations (6.13) and (6.18) represent energy conservation equations (first law of

Thermodynamics) applied to the wall surfaces. Note that since is an internal wall,
 and

 appearing above represent temperatures of zones that flank it on either side. The

resistances and are assumed to be known since they can be determined from the

zone level identification described in Section 6.3.2. The length of the optimization time-

window , and the bounds , , , , , ,

 and are treated as design parameters which can be tuned if necessary.

The pair of optimization problems corresponding to the external wall is given by:

(i) {

 {
 }

}

{ { }

}

∑ (
)

 (6.21)

Subject to:

146

for all , (6.22)

 , (6.23)

 , (6.24)

 for all . (6.25)

(ii) {

 {
 }

}

{ { }

}

∑ (
)

 (6.26)

Subject to:

for all , (6.27)

 , (6.28)

 , (6.29)

 for all . (6.30)

The notations used in the above optimization problems are explained in the nomenclature

(Table 6.1). Note that since is an external wall,
 represents a zone temperature and

 represent ambient/ground temperature. The resistance is assumed to be known

since it can be determined from the zone level identification described in Section 6.3.2. The

length of the optimization time-window , and the upper and lower bounds ,

 , , , , , and

are treated as design parameters which can be tuned if necessary.

The above identification procedure was applied to the wall number 34 in the model,

which is an external wall that faces zone F2 on one side and ambient on the other. A 10 hour

long time window corresponding to 8 am – 6 pm was used for the optimization, which

147

corresponds to the period when the building is occupied. The data used for the EnergyPlus

simulation was the same as that generated in Section 6.3.2 using a PRBS set-point signal. The

sample time, was set to 1 minute. The upper bound, , was chosen to be 100 K/kW.

Figure 6.24 shows a comparison of predicted values of inside surface temperature

obtained from the identified model with its values obtained from the EnergyPlus simulation. It is

observed that the two plots match very well. However, an investigation of the identified

parameters reveals that the identified resistance has a value of 96 K/kW which is

significantly large when compared to the theoretical value of 31 K/kW computed from material

properties (see Section 6.3.3.3 for details on computation based on material properties).

Similarly, on applying a more conservative upper bound of 40 K/kW, the

predictions from the identified model matched well with the EnergyPlus simulation as shown in

Figure 6.25. The identified resistance had a value of 40 K/kW in this case, which was

close to its afore-mentioned theoretical value. Upon further lowering to 10 K/kW,

predictions from identified model were again close to EnergyPlus simulation data (Figure 6.26),

but was identified as 9 K/kW which was significantly smaller than its theoretical value.

Note that for visual clarity, the results in Figure 6.24 to Figure 6.26 are shown only for the first

hour of the optimization time window, i.e. from 8 am to 9 am. The relevant codes for performing

these optimizations are provided in Appendix H.

These observations suggest that the least squares identification methodology presented

above is not reliable since the identified resistance appears to be a function of the upper bound

imposed on it. This behavior can be explained on the basis that since is an

independent variable in the above optimization framework, for each , it can

be chosen in such a way that matches
 , irrespective of the value of . This

over-parameterization can be easily verified from the following constraint used in the

optimization

 .

To address the above limitation of the least squares methodology presented, we seek a

148

framework where is not an independent variable for all values of ,

as proposed in the next section.

Figure 6.24 Inside surface temperature of wall 34 from least squares identification

methodology (section 6.3.3.1) compared with EnergyPlus data 100 K/kW)

Figure 6.25 Inside surface temperature of wall 34 from least squares identification

methodology (section 6.3.3.1) compared with EnergyPlus data 40 K/kW)

Time instant (from 8 am onwards)

T
w
-i
n
,3
4
 (

0
C

)

Time instant (from 8 am onwards)

T
w
-i
n
,3
4
 (

0
C

)

149

Figure 6.26 Inside surface temperature of wall 34 from least squares identification

methodology (section 6.3.3.1) compared with EnergyPlus data 10 K/kW)

6.3.3.2 Least squares identification with known wall thermal loads

The least squares identification procedure described here assumes that the wall thermal

loads and are known at each time . This is based on the assumption that

these thermal loads are a result of radiation – both long-wave and short-wave – acting on the

wall surfaces. Radiation heat transfer associated with each wall surface can be obtained from

EnergyPlus simulations. The reader is directed to [97] for more details on procedure to obtain

radiation data from EnergyPlus.

The identification procedure involves solving a pair of optimization problems for each

internal and external wall, which are modifications of the optimization problems in Section

6.3.3.1. The pair of optimization problems corresponding to the internal wall is given by:

(i) {

 }
{ }

∑ (
)

 (6.31)

Subject to:

for all , (6.32)

Time instant (from 8 am onwards)

T
w
-i
n
,3
4
 (

0
C

)

150

 , (6.33)

 . (6.34)

(ii)

∑ (
)

 (6.35)

Subject to:

for all , (6.36)

 (6.37)

The pair of optimization problems corresponding to the external wall is given by:

(i) {

 }
{ }

∑ (
)

(6.38)

Subject to:

for all , (6.39)

 , (6.40)

 . (6.41)

(ii) {

 }

{ }

∑ (
)

 (6.42)

Subject to:

for all , (6.43)

 , (6.44)

151

 . (6.45)

The notations used in the above optimization problems are explained in the nomenclature

(Table 6.1). Similar to Section 6.3.3.1, the above identification procedure was applied to the

inside surface of wall 34 in the model. A 10 hour long time window corresponding to 8 am – 6

pm was used for the optimization. The data used for the EnergyPlus simulation was the same as

that generated in Section 6.3.2 using a PRBS set-point signal and the sample time, was set to 1

minute. Figure 6.27 shows the comparison of predicted values of surface temperature

obtained using the identified model with its values obtained from the EnergyPlus simulation. It

was observed that the two plots deviate significantly from one another. The relevant codes for

performing this optimization are provided in Appendix I.

Figure 6.27 Inside surface temperature of wall 34 from least squares identification

methodology (section 6.3.3.2) compared with EnergyPlus data

A possible reason for the above deviation is the difference in the order of the

corresponding models. While the identified model for each wall is second because of its

representation by two capacitances, EnergyPlus uses a model which is much higher in order,

typically representing each construction layer by 6 – 18 capacitances connected by resistances

[97].

The inability of the two identification approaches presented in Sections 6.3.3.1 and

6.3.3.2 to provide accurate and reliable parameter estimates suggests that data-based

identification from EnergyPlus is not a suitable framework for obtaining 3R2C models for walls.

Time instant (from 8 am onwards)

T
w
-i
n
,3
4
 (

0
C

)

152

Therefore, we proceed to calculate the resistances and capacitances associated with the walls

directly based on material properties of their corresponding construction layers, as described in

the next section.

6.3.3.3 Direct computation of parameters

The steps to compute the parameters associated with the walls from the material

properties of the construction layers are as follows:

1. For each wall type in the building (Table 6.3), the quantities ̅ and ̅ are computed as

follows:

 ̅ ∑

 (6.46)

 ̅ ∑

 (6.47)

In the above equations, is the number of material layers, whereas , , and

represent the density, specific heat capacity, thickness and thermal conductivity, respectively, of

layer .

2. For each wall , the total capacitance associated with it, is computed as

 ̅, (6.48)

where is the surface area of wall and ̅ is the value of ̅ for the corresponding wall type

computed using (6.46). We assume that the capacitance is equally divided to represent the

capacitances associated with the two surfaces of wall . Therefore,

. (6.49)

3. For each wall , the resistance associated with heat transfer between its two

surfaces, is computed as

 ̅

, (6.50)

where, as before, is the surface area of wall and ̅ is the value of ̅ for the corresponding

wall type computed using (6.47).

The above calculations together with the resistances calculated via the zone level

153

identification described in section 6.3.2 provide all the parameters shown in Figure 6.12 except

the resistances between external walls and ambient/ground. These resistances are

computed as follows:

1. The convection heat transfer coefficient, between ambient and an external

wall facing ambient can be directly obtained from EnergyPlus simulations. Let

 ̅ denote the average value of over an appropriate simulation window

such as 24 hours, i.e.

 ̅
∑

 , (6.51)

where denotes the number of samples in the simulation time window. The resistance

is then computed as

 ̅
 . (6.52)

2. The resistance between ground and an external wall facing ground is set to

0, which is consistent with the modeling assumption in EnergyPlus that ground facing

walls have the same temperature as ground. In other words, for such a wall, the

temperature of the surface facing ground is not a state. Therefore, the

dynamics for such a wall is first order represented only by the state .

For the test building under consideration, the calculated values of ̅ and ̅ using (6.46)

and (6.47) for the various wall types are shown in Table 1. Using the steps mentioned above, all

resistances and capacitances corresponding to the wall surface level identification were

computed using a spreadsheet which is provided in the media accompanying this thesis.

6.3.4 Construction of LTI model

The resistances and capacitances computed in sections 6.3.2 and 6.3.3 were used to

construct an LTI model to represent the thermal dynamics for the test building. This was done in

accordance with the graph based procedure described in Algorithm 5.1 The code used to obtain

the model is provided in Appendix J. The resulting state space model has the structure shown in

(5.1) and is of order 112. Of these, 103 states represent wall temperatures for the inside and

outside surfaces and 9 states represent zone temperatures.

154

Table 6.6 ̅ and ̅ values for various wall types in the test building

Wall type ̅ (kJ/K-m
2
) ̅ (K/kW-m

2
)

Ceilings facing

ambient

Interior walls

Interior doors

Walls facing

ambient

Interior

floors/ceilings

Floors facing

ground

Windows facing

ambient

6.4 Control architecture determination

In this section, the LTI model developed in Section 6.3.4 for the test building under

investigation is used to determine appropriate control architectures which provide a satisfactory

tradeoff between optimality and robustness. The OLF-FPM method described in Chapter 4 is

used for this purpose. The reasons for using the OLF-FPM method over the CLF-MCS method

were explained in Chapter 4.

6.4.1 Modifications to LTI model

The EnergyPlus model of the test building that was constructed in Section 6.2 was based

on the assumption that the thermal zones are completely separated from one another by solid

walls. However in the actual building being modeled, openings are present in the walls at several

places to facilitate movement of people in the building as illustrated in Figure 6.28. From a

thermodynamic point of view, these openings allow direct thermal interaction between the zones,

in addition to the thermal interactions occurring through the walls which separate them. These

additional thermal interactions can be modeled as resistances which directly couple the

155

associated zone capacitances.

Figure 6.28 Illustration of wall opening present between thermal zones E and D in the test

building

In the absence of accurate information about these openings, we assume that each pair of

adjacent zones on a floor has a wall opening whose area is 5% of the surface area of the wall that

separates these zones. The resistance associated with the thermal interaction between each

such pair of zones can be computed as

 =

 ()
 . (6.53)

Here, is the coefficient for heat transfer between the pair of zones through

the wall opening between them. Its value, based on the properties of the “air wall” element in

OpenStudio is 0.06 kW/K-m
2
. The values of these resistances for each adjacent pair of zones in

each floor of the test building computed based on (6.53) are shown in Table 6.7

The LTI model obtained in Section 6.3.4 is modified by incorporating coupling terms in

in its state transition matrix between the zone temperatures states. The code used to obtain the

modified model is provided in Appendix J. Note that even after modification, the resulting LTI

model has the structure given by (5.1). The LTI model was then discretized using a sample time

of 60 seconds. The OLF-FPM partitioning procedure presented in Section 4.3 was applied based

on this model. The OLF calculations were based on the parameters , and

 (see nomenclature in Chapter 4). The p-partitions obtained via agglomerative

clustering (Algorithm 4.1), are shown in Table 6.8. The resulting optimality robustness trade-off

curve is shown in Figure 6.29. The codes used for discretization of the model and application of

agglomerative clustering are included in Appendix J.

ZONE D ZONE E

Wall opening
between zones

E and D

156

Table 6.7 Thermal resistances due to wall opening between each pair of adjacent zones on

each floor of the test building

Pair of zones Thermal resistance due to wall opening (K/kW)

{C,D} 1.318

{G,D} 2.079

{SR,D} 6.615

{G,SR} 6.615

{G,E} 1.582

{G,F2} 3.164

{G,F1} 3.164

{TCB},{NTCB} 1.683

Figure 6.29 Optimality-robustness tradeoff curve for test building (p denotes the number of

clusters in a partition).

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

FPM

O
L

F

knee 3 (p = 2)

knee 2 (p = 5)

knee 1 (p = 7)

157

Table 6.8 Partitions using agglomeration for test building

p Partition from agglomeration

9 {G}{E}{C}{SR}{F1}{D}{F2}{TCB}{NTCB}

8 {G}{E}{C}{SR,D}{F1}{F2}{TCB}{NTCB}

7 (knee 1) {G,SR,D}{E}{C}{F1}{F2}{TCB}{NTCB}

6 {G,SR,D,E}{C}{F1}{F2}{TCB}{NTCB}

5 (knee 2, optimally decentralized

partition)
{G,SR,D,E}{C}{F1}{F2}{TCB,NTCB}

4 {G,SR,D,E,F2}{C}{F1}{TCB,NTCB}

3 {G,SR,D,E,F2,C}{F1}{TCB,NTCB}

2 (knee 3) {G,SR,D,E,F2C,F1}{TCB,NTCB}

1 {G,SR,D,E,F2C,F1,TCB,NTCB}

The following observations are made from these results.

1. From visual inspection, three knee points are observed as shown in Figure 6.29. These

correspond to partitions of size 2, 5 and 7 clusters respectively.

2. Knee 2 is more centrally located than the other two knees and is therefore treated as the

partition with the most appropriate balance between optimality and robustness. Therefore,

we refer to the architecture corresponding to this partition as the optimally decentralized

architecture.

A proposed explanation for the clusters appearing in the optimally decentralized architecture

is presented below based on the building layout described in Section 6.2.1.

1. The zones G, D and E form a closely coupled triplet. This is because these zones are

interconnected in a hub and spoke manner with zone G acting as the hub. The zone SR is

fully contained within zone D and therefore is expected to be strongly coupled with it.

The zones F1 and F2, which also act as spokes connected to the hub G, are not as

strongly coupled to zone G as zones D and E. This is because the area of the wall

158

connecting zones F1 or F2 to G is almost half of the area of the wall connecting zone E or

D to G. Hence, it is expected that zones G, D, SR and E form a closely coupled quartet,

verified from the fact that they constitute one cluster in the optimally decentralized

architecture (see Table 6.8).

2. The zones F1 and F2 are expected to be weakly coupled because they lie on two different

floors. The internal floor separating them has a significant amount of insulation due to

air-gap in the construction layers (Table 6.3). Also, there is no wall opening because

these zones are on different floors. Hence it is expected that zones F1 and F2 lie in

different clusters in the optimally decentralized architecture, which is verified from Table

6.8.

3. Based on the layout shown in Figure 6.4, the zone C is expected to be weakly coupled to

the rest of the building. This is because it is connected to the building through a single

wall. Note that every other zone is connected to the rest of the building through at least

two walls (for example, zone E is connected to zones G and NTCB). Hence, it is

expected that zone C be put into a single cluster in the optimally decentralized

architecture, which is verified from Table 6.8.

4. The zones TCB and NTCB are located entirely in the basement of the building and are

therefore expected to be weakly coupled to the other zones in the building. However, the

coupling between them is expected to be relatively strong because of a wall with a large

surface area, and a proportionally large opening separating them. Hence, it is expected

that zones TCB and NTCB constitute a cluster in the optimally decentralized architecture,

which is verified from Table 6.8.

6.5 Control design and analysis

In this section, centralized and decentralized model predictive controllers are designed

using the LTI model of the building thermal dynamics obtained in Section 6.3. The architectures

for decentralized control are based on the results in Section 6.4. The control design is based on

the framework presented in Chapter 5. Next, the performance of these controllers is evaluated in

simulation on a nonlinear model of the building thermal dynamics, which is derived based on the

EnergyPlus model developed in Section 6.2. Specifically, the effect of control architecture on

159

optimality and robustness is investigated.

6.5.1 Control design

 Centralized and decentralized output feedback model predictive controllers were

designed using the control and observation framework described in Chapter 5. For the benefit of

the reader, the underlying steps in the control design are summarized in Figure 6.30. The relevant

sections in Chapter 5 are referenced. The codes used to implement each of the steps in Figure

6.30 for the test building are provided in Appendix K.

Figure 6.30 Steps used for cluster level control design

The decentralized controllers designed correspond to the partitions given by = 2, 5, 7

and 9 in Table 6.8. These architectures correspond to the three knee points in Figure 6.29 and

also the fully decentralized case where each cluster is a zone. The centralized controller was

designed using the same principles as for decentralized control. This is because a centralized

architecture can be viewed as a decentralized architecture with only one cluster.

The observers were designed such that in the continuous time domain, their poles were

10 times further left on the real axis than the poles of the open loop model. As discussed in

Section 5.3.1, for each cluster , the temperature estimates ̂

 for the zones in the clusters other

Obtain full order cluster level model
from LTI model of overall building

(Section 5.2.2)

Perform model reduction
 (Algorithm 5.2)

Transform the model
 (Section 5.2.4)

Design cluster level observer
 (Section 5.3.1)

Design cluster level controller and
express underlying optimization as QP

 (Section 5.3.2, Section 5.4)

160

than appearing in (5.11) are set to the corresponding set-point temperatures

. The other

parameters used in the control design procedure are listed in Table 6.9 (refer to nomenclature in

Chapter 5). The maximum supply air mass flow rates and reheating power which are required to

set up the constraints in Section 5.4.2 are shown in Table 6.10.

Table 6.9 Parameters used in designing controllers for each cluster

Parameter Description Value

 Prediction horizon 30 samples

 Control horizon 15 samples

 Penalty on performance term

 Penalty on cost term

Supply air temperature to each

zone

 Specific heat capacity of air 1.005 kJ/kg-K

Table 6.10 Maximum supply air mass flow rate and reheat power available to each zone

Zone number

(as per Table 6.2)

Maximum supply air mass

flow rate (kg/s)

Maximum reheat power

(kW)

1 12.7 140

2 12.7 140

3 12.7 140

4 4.2 50

5 8.5 70

6 12.7 140

7 8.5 70

8 4.2 50

9 4.2 50

161

6.5.2 Closed loop performance assessment

6.5.2.1 Nonlinear model for control evaluation

Reduced order LTI models were used for control design in Section 6.5.1, which were

based on the assumption that the unmodeled thermal loads acting on the walls and zones were

slowly time varying quantities. It is desired to evaluate the closed loop performance on a model

which has higher fidelity when compared to the models used for control design. This is

accomplished by developing a full order model which uses realistic nonlinear expressions for the

thermal disturbances.

The afore-mentioned nonlinear model is obtained from the full order LTI model (5.1), by

using the expressions (6.54) to (6.56) to model the thermal disturbances and for the walls

and zones. These expressions emulate the models used by EnergyPlus to compute these

disturbances [97]. Note that the temperature values in these equations should be in Kelvin. The

reader is directed to the nomenclature for an explanation of the notations used.

For each internal wall surface ,

 ∑ (

)
 ⏟

 ⏟

 (6.54)

 For each external wall surface facing the ambient,

 (
)⏟

 (
)⏟

 (
)⏟

 ⏟

 (6.55)

There is no thermal disturbance acting on external wall surfaces facing the ground.

For each thermal zone,

 (6.56)

In the above equations, is a matrix of Script-F factors [97, 99],
 is the set of all internal

wall surfaces which share the same zone as internal wall surface , and , and are

view factors with respect to the ground, sky and air respectively for the external wall surface .

These quantities, along with , , , and can be directly obtained from

162

the EnergyPlus model. A spreadsheet showing the values of these quantities is included in the

media accompanying this thesis.

A 24-hour time window which starts at 12:00 AM on June 3 and ends at 12:00 AM on

June 4 is used for simulation. The signal obtained from EnergyPlus for the simulation time is

plotted in Figure 6.31. The quantities and in (6.56)

correspond to nominal values and schedules related to occupancy, lighting and equipment, and

their values used in the simulation are the same as described in Section 6.2.4. The temperature

 of the ground below the floor of the building at all times is set to be which corresponds

to the value used by EnergyPlus.

Figure 6.31 Ambient temperature obtained from EnergyPlus weather file for the

simulation time window

6.5.2.2 Optimality Analysis

The five controllers (1 centralized and 4 decentralized) designed in Section 6.5.1 were

implemented on the nonlinear model obtained in Section 6.5.2.1. This was done in accordance

with the block diagram shown in Figure 5.4. The associated MATLAB codes are provided in

Appendix L and the SIMULINK models are enclosed in the media accompanying the thesis. A

24-hour long simulation was performed based on the settings described in Section 6.5.2.1. The

desired set-point temperature for each zone is shown in Figure 6.32, which is obtained from the

OpenStudio template called ‘Medium_Office_ClgSetp’. The initial temperature of all zones and

walls is assumed to be . The ambient, ground and sky temperatures and short wave

radiation data required to compute the disturbances in Section 6.5.2.1 were obtained by first

0 2 4 6 8 10 12 14 16 18 20 22 24

15

20

25

30

Time from 12:00 AM onwards (hours)

A
m

b
ie

n
t
te

m
p

e
ra

tu
re

 (
 0

C
)

163

simulating the EnergyPlus model for that day. This data is obtained from EnergyPlus in a

spreadsheet which is provided in the media accompanying the thesis.

The zone temperature responses and associated control inputs (heating/cooling provided

by HVAC system) corresponding to the various control architectures are shown in Figure 6.33

and Figure 6.42. From these figures, it can be observed that the temperature responses and

control inputs signals vary depending on the control architecture.

Figure 6.32 Set-point temperatures for all zones during the simulation time window

Figure 6.33 Evolution of zone temperatures between 12:00 AM to 1:00 AM for centralized

architecture

0 2 4 6 8 10 12 14 16 18 20 22 24
23

24

25

26

27

Time from 12:00 AM onwards (hours)

Z
o

n
e

 s
e

t-
p

o
in

t
te

m
p

e
ra

tu
re

 (
 0
C

)

0 10 20 30 40 50 60
25

25.2

25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

27

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 (
 0

C
)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

Reference

164

Figure 6.34 Evolution of zone temperatures between 12:00 AM to 1:00 AM for

decentralized architecture corresponding to knee 3

Figure 6.35 Evolution of zone temperatures between 12:00 AM to 1:00 AM for

decentralized architecture corresponding to knee 2

0 10 20 30 40 50 60
25

25.2

25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

27

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 (
 0

C
)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

Reference

0 10 20 30 40 50 60
25

25.2

25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

27

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 (
 0

C
)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

Reference

165

Figure 6.36 Evolution of zone temperatures between 12:00 AM to 1:00 AM for

decentralized architecture corresponding to knee 1

Figure 6.37 Evolution of zone temperatures between 12:00 AM to 1:00 AM for fully

decentralized architecture

0 10 20 30 40 50 60
25

25.2

25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

27

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 (
 0

C
)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

Reference

0 10 20 30 40 50 60
24.5

25

25.5

26

26.5

27

27.5

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 (
 0

C
)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

Reference

166

Figure 6.38 Control inputs between 12:00 AM to 1:00 AM for centralized architecture

Figure 6.39 Control inputs between 12:00 AM to 1:00 AM for decentralized architecture

corresponding to knee 3

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

Time from 12:00 AM onwards (minutes)

C
o

n
tr

o
l
in

p
u

t/
P

o
w

e
r

fr
o

m
 H

V
A

C

(k

W
)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

Time from 12:00 AM onwards (minutes)

C
o

n
tr

o
l
in

p
u

t/
P

o
w

e
r

fr
o

m
 H

V
A

C
 (

k
W

)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

167

Figure 6.40 Control inputs between 12:00 AM to 1:00 AM for decentralized architecture

corresponding to knee 2

Figure 6.41 Control inputs between 12:00 AM to 1:00 AM for decentralized architecture

corresponding to knee 1

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

Time from 12:00 AM onwards (minutes)

C
o

n
tr

o
l
in

p
u

t/
P

o
w

e
r

fr
o

m
 H

V
A

C
 (

k
W

)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

Time from 12:00 AM onwards (minutes)

C
o

n
tr

o
l
in

p
u

t/
P

o
w

e
r

fr
o

m
 H

V
A

C
 (

k
W

)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

168

Figure 6.42 Control inputs between 12:00 AM to 1:00 AM for fully decentralized

architecture

To compare the performance of various control architectures with regard to optimality,

the integral defined in (6.57) below is used, which is the continuous time analogue of the

system-wide (centralized) objective function that the control was designed to minimize (see

(5.41) and the parameters in Table 6.10).

 ∫

 , (6.57)

where, .

A comparison of the performance (optimality) for various control architectures is shown

in Table 6.11. It is observed that the deviation in optimality increases with the level of

decentralization, as expected.

6.5.2.3 Robustness analysis

We set up a case study to examine the robustness of the controllers designed in Section

6.5.1 to a sensor failure event. It is assumed that the thermostat in zone G has developed a fault

such that its temperature reading is 0 – the assumed lower limit of its sensing range – at all

times. Zone G is chosen in this case study because it is connected to the most number of zones in

0 10 20 30 40 50 60
-10

-5

0

5

10

15

20

25

30

35

40

Time from 12:00 AM onwards (minutes)

C
o

n
tr

o
l
in

p
u

t/
P

o
w

e
r

fr
o

m
 H

V
A

C
 (

k
W

)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

169

the building (Figure 6.4). The simulation was re-run as described in Section 6.5.2.2 without

changing any other setting. The associated MATLAB codes are provided in Appendix M and the

SIMULINK models are enclosed in the media accompanying the thesis.

The zone temperature responses corresponding to the various control architectures are

shown in Figure 6.43 to Figure 6.47. The resulting magnitudes of temperature deviations from

set-points, i.e. | | for all zones in the building, at 1 hour, for

the five control architectures are shown in Figure 6.48. Note that the zone numbers indicated

correspond to Table 6.2.

Table 6.11 Optimality analysis for test building under various control architectures

Control architecture % deviation in from centralized

Centralized 0.00

Knee 3 partition 0.00

Knee 2 partition 8.90

Knee 1 partition 22.73

Fully decentralized 52.94

Figure 6.43 Evolution of zone temperatures between 12:00 AM to 1:00 AM for centralized

architecture in the event of sensor failure in zone 1

0 10 20 30 40 50 60
20

30

40

50

60

70

80

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 (
 0

C
)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

Reference

170

Figure 6.44 Evolution of zone temperatures between 12:00 AM to 1:00 AM for

decentralized architecture corresponding to knee 3 in the event of sensor failure in zone 1

 Figure 6.45 Evolution of zone temperatures between 12:00 AM to 1:00 AM for

decentralized architecture corresponding to knee 2 in the event of sensor failure in zone 1

0 10 20 30 40 50 60
20

30

40

50

60

70

80

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 (
 0

C
)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

Reference

0 10 20 30 40 50 60
20

30

40

50

60

70

80

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 (
 0

C
)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

Reference

171

Figure 6.46 Evolution of zone temperatures between 12:00 AM to 1:00 AM for

decentralized architecture corresponding to knee 1 in the event of sensor failure in zone 1

Figure 6.47 Evolution of zone temperatures between 12:00 AM to 1:00 AM for fully

decentralized architecture in the event of sensor failure in zone 1

0 10 20 30 40 50 60
20

30

40

50

60

70

80

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 (
 0

C
)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

Reference

0 10 20 30 40 50 60
25

30

35

40

45

50

Time from 12:00 AM onwards (minutes)

T
e

m
p

e
ra

tu
re

 (
 0

C
)

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

Reference

172

Figure 6.48 Regulation errors evaluated at the end of 1 hour for all zones in the building

under various control architectures in the event of sensor failure in zone 1 (zone numbers

indicated correspond to Table 6.2)

From Figure 6.43 to Figure 6.48, it is observed that large deviations from the set-point

temperature result in zone 1 in each of the five control architectures. However, as seen in Figure

6.47, set-point temperatures are achieved in all other zones in the building in case of fully

decentralized control. Table 6.12 shows the number of affected zones – where the temperatures

do not achieve the set-point – and the corresponding fraction of building volume affected,

obtained on the basis of data in Figure 6.48 for each of the control architectures considered. The

spreadsheet used for computation of fraction of building volume affected is enclosed in the

media accompanying the thesis. The clusters that constitute each control architecture, as obtained

0

10

20

30

40

50

60

4

1
2,6
3

7,5

8,9

4

1
2,6
3

7,5

8,9

4

1
2
6

3,5,7,8,9

4

1
6

2,3,5,7,8,9

1

2,3,4,5,7,8,9

Centralized Knee 3 Knee 2 Knee 1 Fully
decentralized

R
eg

u
la

ti
o

n
 e

rr
o

r
(

0
C

)

173

from Table 6.8, are also shown in Table 6.12 for reference. As expected, in each case it is

observed from Table 6.12 that the number of affected zones matches with the size of the cluster

containing zone 1 where the fault originates.

A thermodynamic explanation of the fault propagation phenomenon is as follows. Since

the sensor in zone 1 records an incorrect value of 0 , the controller corresponding to the cluster

containing zone 1 dictates the HVAC system to overheat this zone at it maximum allowable

heating capacity (Figure 6.49). This controller also overheats other zones in the cluster (see

Figure 6.50 and Figure 6.51) – at their corresponding maximum allowable heating capacities -

because the model for the thermal dynamics of the cluster incorrectly predicts a significant loss

of thermal energy from these zones to zone 1 which is assumed to be at 0 . Since the models

used for other clusters do not use information from the sensors of this cluster, they are insulated

from the sensor fault in zone 1 (verified from Figure 6.52).

Table 6.12 Closed loop robustness analysis for test building for various control

architectures in the event of sensor failure in zone 1

Control

architecture

Number of

affected zones

% building

volume affected

Clusters

Centralized 9 100.00 {1,2,3,4,5,6,7,8,9}

Knee 3 6 79.25 {1,2,3,4,5,6,7}{8,9}

Knee 2 4 45.30 {1,2,4,6}{3}{5}{7}{8,9}

Knee 1 1 29.79 {2}{3}{1,4,6}{5}{7}{8}{9}

Fully

decentralized
1 12.94 {1}{2}{3}{4}{5}{6}{7}{8}{9}

174

Figure 6.49 Control input for zone 1 between 12:00 AM to 1:00 AM for decentralized

architecture corresponding to knee 3 in the event of sensor failure in zone 1

Figure 6.50 Control input for zone 4 (lying in same cluster as zone 3) between 12:00 AM to

1:00 AM for decentralized architecture corresponding to knee 3 in the event of sensor

failure in zone 1

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

Time from 12:00 AM onwards (minutes)

C
o

n
tr

o
l
in

p
u

t/
p

o
w

e
r

fr
o

m
 H

V
A

C
 (

k
W

)

Actual for zone 1

Maximum for zone 1

0 10 20 30 40 50 60
15

20

25

30

35

40

45

50

55

60

65

Time from 12:00 AM onwards (minutes)

C
o

n
tr

o
l
in

p
u

t/
p

o
w

e
r

fr
o

m
 H

V
A

C
 (

k
W

)

 Actual for zone 4

Maximum for zone 4

175

Figure 6.51 Control input for zone 6 (lying in same cluster as zone 1) between 12:00 AM to

1:00 AM for decentralized architecture corresponding to knee 3 in the event of sensor

failure in zone 1

Figure 6.52 Control input for zone 2 (in different cluster from zone 1) between 12:00 AM to

1:00 AM for decentralized architecture corresponding to knee 3 in the event of sensor

failure in zone 1

0 10 20 30 40 50 60
20

40

60

80

100

120

140

160

180

Time from 12:00 AM onwards (minutes)

C
o

n
tr

o
l
in

p
u

t/
p

o
w

e
r

fr
o

m
 H

V
A

C
 (

k
W

)

Actual for zone 6

Maximum for zone 6

0 10 20 30 40 50 60
-20

0

20

40

60

80

100

120

140

160

Time from 12:00 AM onwards (minutes)

C
o

n
tr

o
l
in

p
u

t/
p

o
w

e
r

fr
o

m
 H

V
A

C
 (

k
W

)

Actual for zone 2

Maximum for zone 2

176

6.5.2.4 Discussion

As seen from Table 6.12, less than half of the building volume is affected in case of the

optimally decentralized partition (knee 2) in the event of sensor failure in zone 1. Also, as

previously observed in Table 6.11, the deviation in optimality from centralized control in a

situation without failures is less than 10%. Therefore, knee 2 appears to provide an appropriate

trade-off between optimality and robustness objectives. This verifies the observation from Figure

6.29 that it is more centrally located on the optimality-robustness trade-off curve than other

knees.

6.6 Concluding remarks

 The two-step process of control architecture selection and control design presented in the

previous chapters in the thesis was successfully applied in simulation on a real world building

model. The optimality and robustness trends as were quantitatively investigated as a function of

the degree of decentralization. Therefore this chapter demonstrates the applicability of the tools

developed in the thesis and can be used by the interested reader to implement them on other

building systems. The associated MATLAB codes, SIMULINK models and spreadsheets which

are referenced in the chapter should be modified accordingly.

177

Chapter 7

Conclusions

In this final chapter, the work presented in this thesis is summarized in Section 7.1

followed by concluding remarks in Section 7.2. The main contributions of this work and future

avenues of research are discussed in Sections 7.3 and 7.4.

7.1 Summary

A chapter-wise summary of this thesis is presented below:

1. Chapter 1 motivates the problem of building thermal control and describes the

research objectives of this work. In particular, it motivates the need for decentralized

thermal control of buildings. It also provides a literature survey of the area of building

thermal control and the tools used in this work.

2. The physical aspects of building thermal control were presented in chapter 2. This

included a description of underlying energy management systems, and sensing,

actuation and control infrastructure.

3. Chapter 3 presented mathematical details of centralized and decentralized control

architectures, which are used as preliminaries in the development of methodologies

for partitioning a building for decentralized control. The objective functions, models

and optimization frameworks corresponding to both centralized and decentralized

architectures are described in detail.

4. Two methodologies – CLF-MCS and OLF-FPM – were developed in Chapter 4 to

partitioning a building for decentralized control. In each of these methodologies,

appropriate optimality and robustness metrics were developed and optimality-

178

robustness trade-off curves were generated to decide a control architecture which

provides a satisfactory balance between optimality and robustness. The metrics were

based on the results of Chapter 3 and were tested on simple examples in simulation.

5. Chapter 5 considers the design of decentralized controllers for any partition of a

building. Reduced order, observable models were developed for the thermal dynamics

in a cluster. An observation framework which used these models to estimate both

known states and disturbances was proposed. A state feedback decentralized model

predictive framework was then developed which uses the estimates provided by the

observer to minimize an objective function subject to physical constraints.

6. A real world simulation study was presented in Chapter 6 to demonstrate the

applicability of the tools developed in this work for control architecture selection and

control design. Both optimality and robustness analysis was performed to compare

the closed loop performance of various control architectures.

7.2 Conclusions

The important conclusions from this work are as follows:

1. The thermal control of a complex interconnected system such as a building has

multiple underlying objectives, most importantly occupant comfort, energy

efficiency, robustness to faults and scalability.

2. The control architecture affects the extent to which these objectives are achieved. In

particular, a fundamental tradeoff between optimality (occupant comfort and energy

efficiency) and robustness (fault resilience) exists with respect to the degree of

decentralization. Increase in the degree of decentralization results in improvements in

robustness at the cost of optimality.

3. Two key challenges were identified with regard to the problem of determination of a

control architecture that appropriately balances optimality and robustness

requirements. Firstly, appropriate metrics are needed to quantify optimality and

robustness. Secondly, the problem of partitioning a building into clusters for

decentralized control is inherently computationally complex due to its combinatorial

nature.

179

4. A CLF-MCS approach which used coupling loss factor (CLF) and mean cluster size

(MCS) as heuristically defined optimality and robustness metrics was proposed. It

used a divisive, stage-by-stage partitioning method to generate a family of partitions

represented on an optimality-robustness trade-off curve. Its application to simulated

examples revealed that the control architectures obtained were in sync with physical

intuition.

5. An OLF-FPM approach was also proposed which used analytically derived optimality

and robustness metrics – optimality loss factor (OLF) and fault propagation metric

(FPM). It used an agglomerative clustering approach to generate a family of partitions

represented on an optimality-robustness trade-off curve. Similar to the CLF-MCS

approach, its application to simulated examples revealed that the control architectures

obtained were in sync with physical intuition. It was concluded that the OLF-FPM

approach was an improvement over the CLF-MCS approach because the metrics were

analytically derived and the complexity of the partitioning procedure was only cubic

in the number of zones, as opposed to the exponential complexity associated with the

CLF-MCS approach.

6. The unavailability of measurements for wall temperature states and thermal

disturbances was identified as a key challenge in the design of decentralized

controllers, once a control architecture has been determined. A model reduction

framework was proposed, which after a suitable state transformation resulted in an

observable representation of the cluster level thermal dynamics. This allowed the

design of extended state observers to estimate both unknown disturbances and states,

which in turn allowed the design of output feedback decentralized controllers for

thermal comfort. A model predictive framework with the ability to handle constraints

was used for control design.

7. Identification of a simplified linear time invariant (LTI) model for a real world test

building from its EnergyPlus model was investigated. It was observed that zone level

identification using a standard least squares identification approach resulted in

physically untenable parameters, potentially due to over-parameterization. This issue

was addressed using a modified least squares identification framework which used

180

fewer parameters. Use of least squares identification approaches for wall level

identification resulted in inaccurate and unreliable parameter estimates, potentially

due to over-parameterization and mismatch between the order of the identified model

and the order of the model used in EnergyPlus. Therefore, direct computation of wall

level parameters from construction layer properties was used as an alternative to least

squares identification.

8. The application of the OLF-FPM approach on the LTI model of the real world test

building resulted in a decentralized architecture which was physically explained on

the basis of layout and construction properties of the building. Closed loop evaluation

of this architecture on a nonlinear model of the building thermal dynamics verified

that it provides a satisfactory tradeoff between optimality and robustness. The

simulations also demonstrated and quantified the fundamental tradeoff between

optimality and robustness that exists as a function of the degree of decentralization.

7.3 Contributions

Intelligent energy management in buildings is important due to the large scale impacts of the

building sector on the economic and environmental aspects of energy. In this context, efficient

thermal control is especially important because of the relatively significant contribution of space

heating and cooling to the end use energy consumption of buildings. This thesis makes some

important contributions to the problem of building thermal control, which are listed below.

1. The role of control architecture in achieving the objectives associated with the thermal

control of buildings has not been properly investigated in literature. This work contributes

to the area of building thermal control by motivating the incorporation of control

architecture as an important dimension to be considered in control design. In this

context, it specifically investigates the impact of decentralization of the control

architecture on the attainment of optimality and robustness objectives.

2. A specific contribution of this work is the development of appropriate metrics to quantify

the optimality and robustness attributes of any decentralized architecture for the thermal

control of a building. Both heuristic (CLF and MCS) and analytically derived (OLF and

FPM) metrics were presented.

181

3. Another contribution of this work is the adoption of existing tools and concepts from

parallel technological fields, which have previously not been applied to area of building

thermal control. In particular, the concept of agglomerative clustering was successfully

employed to address the computational complexity concerns in the problem of control

architecture determination.

4. In addition to providing methodologies for control architecture selection, this work also

provides a methodology for control design based on the control architectures selected. It

proposes a control design framework which addresses practical issues such as

unavailability of certain states and disturbances and presence of physical constraints.

5. Lastly, this thesis complements the theoretical frameworks proposed for control

architecture selection and control design by showing their applicability on a real world

building example in simulation.

7.4 Future extensions

We identify the following areas of future research to build upon the work presented in this thesis.

7.4.1 Incorporation of HVAC system

The scope of this thesis was limited to consideration of the building side dynamics and

control. The control variables considered correspond to the energy transfer rates

(heating/cooling) provided by the HVAC system to the zones in the building. However, the

HVAC itself was not considered.

To manipulate the heating or cooling provided to the zones for building thermal control,

appropriate actuators in the HVAC system – such as dampers and reheaters in a VAV system

(Chapter 2) – need to be adjusted. Therefore, for practical implementation of closed loop control,

the HVAC system dynamics should be included. This can be achieved by modifying the control

design framework in Chapter 5 by including appropriate actuator dynamics.

7.4.2 Experimental investigation

Implementation of the tools proposed in this work on a real building system can be

undertaken. Such experimental studies would serve to complement the simulation studies

182

presented in Chapter 6, and provide additional validation of the tools for control architecture

selection and control design presented in this thesis.

As described in Section 7.4.1, the HVAC system dynamics would have to be

incorporated in the control design framework for experimental implementation. This may

necessitate the consideration of other practical aspects such as actuator limitations and slew rates

in addition to the constraints described in Chapter 5.

Besides experimental validation, co-simulation approaches, which allow controllers

based in MATLAB to interface directly with the higher fidelity EnergyPlus models can also be

explored. This can be enabled by the use of appropriate platforms such as the Building Control

Virtual Test Bed (BCVTB) [100].

7.4.3 Extension to other applications

 Although the proposed tools in this thesis are developed specifically in the context of

thermal control of buildings, they can also be potentially applied to other large scale energy

management applications such as data center cooling, district heating and cooling for campuses,

and distributed refrigeration systems for supermarkets. Moreover, the modularity of the

decentralized framework allows for extensions to other energy efficiency domains apart from

thermal. This includes electrical grid based systems having generation, distribution, consumption

and recovery.

183

References

[1] The White House. Energy, Climate Change and our Environment. [Online]. Available:

http://www.whitehouse .gov/ energy

[2] K. Annan. Toward a sustainable future. Environment: Science and Policy for Sustainable

Development, 44 (7): 10–15, 2002.

[3] EIA. Annual Energy Outlook 2011. [Online]. Available: http://www.eia.gov/forecasts/

aeo/data.cfm

[4] EIA. 2003 Commercial Buildings Energy Consumption Survey. [Online]. Available: http://

www.eia .gov/emeu/cbecs /contents.html

[5] EIA. 2009 Residential Energy Consumption Survey. [Online]. Available: http://www.eia.

gov/consumption /residential /reports /2009overview.cfm

[6] G. Holness. Sustaining Our Future By Rebuilding Our Past: Energy Efficiency in Existing

Buildings – Our Greatest Opportunity for a Sustainable Future. ASHRAE J, (51(8), 16–21,

2009.

[7] H. H. Mathews, C. P. Botha, D. C. Arndt, and A. Malan. HVAC control strategies to enhance

comfort and minimise energy usage. Energy and buildings, 33(8):853-863, 2001.

[8] F. Oldewurtel, et al. Energy efficient building climate control using stochastic model

predictive control and weather predictions Proceedings of the American Control Conference

(ACC), 5100--5105, 2010.

[9] S. Wang and Z. Ma. Supervisory and optimal control of building HVAC systems: A review.

HVAC&R Res., 14(107):3-32, 2008.

[10] A. Alleyne, et al. Final report. NSF CMMI Woskshop on Building Systems, University of

Illinois at Urbana-Champaign, 2010. [Online]. Available: http://arg.mechse.illinois.edu/

index.php?id=1093|Publications

[11] J. Morris, D. Kroening, and P. Koopman. Fault tolerance tradeoffs in moving from

decentralized to centralized embedded systems. International Conference on Dependable

Systems and Networks, 377-386, 2004.

184

[12] P. J. Campo and M. Morari. Achievable closed-loop properties of systems under

decentralized control: Conditions involving the steady-state gain. IEEE Transactions on

Automatic Control, 39(5):932-943, 1994.

[13] D. D. Šiljak, Decentralized control of complex systems. Academic Press, 1991.

[14] J. T. Feddema, C. Lewis and D. A. Schoenwald. Decentralized control of cooperative

robotic vehicles: theory and application. Robotics and Automation, IEEE Transactions on,

18(5):852-864, 2002.

[15] T. Huntsberger, et al. CAMPOUT: A control architecture for tightly coupled coordination

of multirobot systems for planetary surface exploration. Systems, Man and Cybernetics,

Part A: Systems and Humans, IEEE Transactions on, 33(5):550-559, 2003.

[16] J. C. Russell, Decentralized control of satellite formations. International Journal of Robust

and Nonlinear Control, 12(2-3):141-161, 2002.

[17] R. W. Brennan, S. Balasubramanian and D. H. Norrie. Dynamic control architecture for

metamorphic control of advanced manufacturing systems. Proceedings of SPIE, 1997.

[18] D. M. Dilts, N. P. Boyd, and H. H. Whorms. The evolution of control architectures for

automated manufacturing systems. Journal of manufacturing systems, 10(1):79-93, 1991.

[19] V. Chandan, S Mishra, and A. Alleyne, Predictive control of complex hydronic systems.

Proceedings of the American Control Conference (ACC), pages 5112-5117, 2010.

[20] P. Davidsson and M. Boman. Distributed monitoring and control of office buildings by

embedded agents. Information Sciences, 171(4):293-307, 2005.

[21] K. L. Moore, T. Vincent, F. Lashhab and C. Liu. Dynamic Consensus Networks with

Application to the Analysis of Building Thermal Processes. Proceedings of the IFAC World

Congress, 3078-3083, 2011.

[22] S. Sharples, V. Callaghan and G. Clarke. A multi-agent architecture for intelligent building

sensing and control. Sensor Review, 19(2):135-140, 1999.

[23] M. Zaheer-Uddin, R. V. Patel and S. A. K. Al-Assadi. Design of decentralized robust

controllers for multizone space heating systems. IEEE Transactions on Control Systems

Technology, 1(4):246-261, 1993.

[24] A. Aswani, et al. Identifying models of HVAC systems using semiparametric regression. In

Proceedings of the American Control Conference, 2012.

185

[25] J. Široký, et al. Experimental analysis of model predictive control for an energy efficient

building heating system. Applied Energy 88(9): 3079-3087, 2011.

[26] S. Goyal, H. Ingley and P. Barooah. Zone-level control algorithms based on occupancy

information for energy efficient buildings. In American Control Conference, 2012.

[27] U.S. Department of Energy, EnergyPlus energy simulation software. http://apps1.eere.

energy.gov/buildings/energyplus/

[28] Ma, Jingran, S. J. Qin and T. Salsbury. Model predictive control of building energy systems

with balanced model reduction. In American Control Conference (ACC), 3681-3686, 2012.

[29] K. Deng, et al. Building thermal model reduction via aggregation of states. In American

Control Conference (ACC), 5118-5123, 2010

[30] The American Society of Heating, Refrigeration and Air-Conditioning Engineers. http://

www.ashrae.org/.

[31] The Energy Information Administration. http://www.eia.doe.gov/.

[32] Europe's Energy Portal. http://www.energy.eu/.

[33] The U.S. Green Building Council. http://www.usgbc.org/.

[34] facilitiesnet. http://www.facilitiesnet.com/.

[35] EERE: Building Technologies Program. http://www1.eere.energy.gov/buildings/.

[36] Energy Star. http://www.energystar.gov/.

[37] The Green Grid. http://www.thegreengrid.org/.

[38] F. Lorenz and G. Masy, M´ethode d’´evaluation de l’´economie d’´energie apport´ee par

l’intermittence de chauffage dans les bˆatiments, Traitement par differences finies d’un

model a deux constantes de temps, Report No. GM820130-01. Faculte des Sciences

Appliquees, University de Liege, Liege, Belgium, 1982 (in French).

[39] G. Hudson and C. Underwood. A simple building modeling procedure for MATLAB/

SIMULINK. in Proc. Int. Build. Perform. Simul., Conf., 1-7. 1999

[40] M. Gouda, S. Danaher and C. Underwood. Building thermal model reduction using

nonlinear constrained optimization. Build. Environ., 37(12), 1255-1265, 2002.

[41] S. Wang and X. Xu. Simplified building model for transient thermal performance

estimation using GA-based parameter identification. International journal of thermal

sciences 45(4):419-432, 2006.

186

[42] A. P. R. González, M. E. Eames and D. A. Coley. Lumped Parameter Models for Building

Thermal Modelling: An Analytic approach to simplifying complex multi-layered

constructions.

http://ceae.colorado.edu/~zhiqiang/COBEE12/PDF/Topic%2011/T11_49_v2.pdf

[43] P. Radecki and B. Hencey. Online building thermal parameter estimation via Unscented

Kalman Filtering. In American Control Conference (ACC),3056-3062, 2012.

[44] S. Prívara et al. Modeling and identification of a large multi-zone office building. In Control

Applications (CCA), IEEE International Conference on, 55-60, 2011.

[45] S. Goyal and P. Barooah. A method for model-reduction of nonlinear building thermal

dynamics. In American Control Conference (ACC),2077-2082, 2011.

[46] US Department of Energy, Whole Building Analysis: Energy Simulation. http://apps1.

eere.energy.gov/buildings/tools_directory/subjects.cfm/pagename=subjects/pagename_menu

=whole_building_analysis/pagename_submenu=energy_simulation

[47] ESP-r. http://www.esru.strath.ac.uk/Programs/ESP-r.htm

[48] Hamlab. http://archbps1.campus.tue.nl/bpswiki/index.php/Hamlab

[49] Building Sim. http://www.buildingsim.com/

[50] Building Simulation with SMILE. http://english.dezentral.de/warp.html

[51] E. F. Camacho, et al. Model predictive control. Springer, 1999.

[52] D. Q. Mayne, et al. Constrained model predictive control: Stability and optimality.

Automatica 36(6): 789-814, 2000.

[53] G. P. Henze, et al. Impact of forecasting accuracy onpredictive optimal control of active and

passive building thermal storage inventory. HVAC & R Research, 10(2):153-178, 2004.

[54] G. P Henze, et al.. Experimental analysis of model-based predictive optimal control for

active and passive building thermal storage inventory. International Journal of Heating

Ventilating Air Conditioning and Refrigerating Research, 11(2):189-214, 2005.

[55] S. Prívara, et. al. Role of MPC in Building Climate Control. Computer Aided Chemical

Engineering, 29:728-732, 2011.

[56] T. X. Nghiem and G. J. Pappas. Receding-horizon supervisory control of green buildings. In

American Control Conference (ACC), 4416-4421, 2011.

187

[57] Y. Ma, G. Anderson and F. Borrelli. A distributed predictive control approach to building

temperature regulation. In American Control Conference (ACC), 2089-2094. 2011.

[58] P. Moroşan, et al. Building temperature regulation using a distributed model predictive

control. Energy and Buildings (42)9:1445-1452, 2010.

[59] M. Maasoumy, and A Sangiovanni-Vincentelli. Optimal control of building hvac systems in

the presence of imperfect predictions. In Dynamic Systems and Control Conference, 2012.

[60] K. Deng, P. Barooah and P. G. Mehta. Mean-field control for energy efficient buildings.

In American Control Conference (ACC), 3044-3049, 2012.

[61] Snoonian, D, Smart buildings. Spectrum, IEEE, 40(8): 18-23, 2003.

[62] Levermore, G. Building Energy Management Systems: An Application to Heating, Natural

Ventilation, Lighting and Occupant Satisfaction. Taylor & Francis, 2000.

[63] McDowall, R. Fundamentals of HVAC systems. Elsevier Science Limited, 2006.

[64] Commercial Lighting Tax Deduction, Introduction to lighting controls. http://www.

lightingtaxdeduction.org/ technologies/intro-lighting-controls.html

[65] Lighting Controls Association. http://lightingcontrolsassociation.org/

[66] Galaxias, Building security solutions. http://www.galaxias.in/?page_id=107

[67] Schneider Electric, Integrated security solutions. http://www.schneider-electric.com/

solutions/ww/en/sol/ 4871515-integrated-security-solutions?domain=4664816

[68] Drexel University, VAV systems (online lecture notes). http://www.pages.drexel.edu/

~ea38/AE390/A5 /products.htm

[69] Madison Gas and Electric Company, Economizers. http://www.mge.com/business/saving/

BEA /_escrc_0013000000DP22YAAT-2_BEA1_PA_PA_Ventilation_PA-08.html

[70] Chandan, Vikas. Modeling and control of hydronic building HVAC systems., MS Thesis

(2010). http://arg.mechse.illinois.edu/index.php?id=1144|ms

[71] Handbook, A. S. H. R. A. E. HVAC systems and equipment. American Society of Heating,

Refrigerating, and Air Conditioning Engineers, Atlanta, GA (2012).

[72] Emerson, Programmable - Universal Staging Thermostats. http://www.emersonclimate.com/

en-US/ products/thermostats/Pages/programmable_universal_thermostats.aspx

[73] ASIC/1-6000 VAV Controller with Integrated Actuator, http://www.asicontrols.com/

products/programmed/asic_1_6000/.

188

[74] Salsbury, T. A survey of control technologies in the building automation industry. In 16th

IFAC World Congress. 2005.

[75] Scattolini, R. Architectures for distributed and hierarchical model predictive control–a

review. Journal of Process Control. 19(5): 723-731, 2009.

[76] Soyguder, S., Karakose, M., & Alli, H. Design and simulation of self-tuning PID-type fuzzy

adaptive control for an expert HVAC system. Expert Systems with Applications, 36(3 PART

1): 4566-4573, 2009.

[77] Athienitis, A. K., & Chen, T. Y. Experimental and theoretical investigation of floor heating

with thermal storage. In the 1993 Winter Meeting of ASHRAE Transactions. Part 1,1049-

1057. 1993.

[78] Maasoumy, M., Pinto, A., & Sangiovanni-Vincentelli, A. Model-based hierarchical optimal

control design for HVAC systems. In Dynamic System Control Conference (DSCC), 2011.

 [79] Ma Y. et al., Predictive control for energy efficient buildings with thermal storage:

Modeling, stimulation, and experiments. Control Systems, IEEE, 32 (1):44-64, 2012.

[80] Prívara, S., Široký, J., Ferkl, L., and Cigler, J. Model predictive control of a building heating

system: The first experience. Energy and Buildings, 43(2): 564-572. 2011.

[81] Huang, G., Wang, S., and Xu, S. A robust model predictive control strategy for improving

the control performance of air-conditioning systems. Energy Convers. Manage., 50(10):

2650-2658, 2009.

[82] Boyd, S.P. and Vandenberghe, L. Convex optimization. Cambridge Univ Pr, 2004.

[83] Skogestad, S. and Postlethwaite, I. Multivariable feedback control: analysis and design.

Wiley New York, 1996.

[84] Rota, G.C. The number of partitions of a set. American Mathematical Monthly, 71(5):498--

504, 1964.

[85] Stoer, M. and Wagner, F. A simple min-cut algorithm. Journal of the ACM (JACM),

44(4):585--591, 1997.

[86] Chidananda Gowda, G. and others. Agglomerative clustering using the concept of mutual

nearest neighbourhood. Pattern Recognition, 10(2):105--112, 1978.

[87] Eisen, M.B. and Spellman, P.T. and Brown, P.O. and Botstein, D. Cluster analysis and

display of genome-wide expression patterns. Proceedings of the National Academy of

189

Sciences of the United States of America, 95(25):14863, 1998.

[88] Jain, A.K. and Murty, M.N. and Flynn, P.J. Data clustering: a review. ACM computing

surveys (CSUR), 31(3):264--323, 1999.

[89] S. Li, et al., “Generalized extended state observer based control for systems with

mismatched uncertainties,” Industrial Electronics, IEEE Transactions on, vol.59, no. 12,

4792-4802.

[90] R. Miklosovic, A. Radke, and Z. Gao. “Discrete implementation and generalization of the

extended state observer,” in Proc. Amer. Control Conf., 2006.

[91] R. Horn, and C. Johnson. Matrix Analysis, Cambridge University Press, 1985

[92] Matlab Optimization Toolbox. http://www.mathworks.com/products/optimization/

[93] Glassdoor. http://www.glassdoor.com/Photos/Siemens-Corporate-Research-Office-Photos-

E220560.htm

[94] Google Sketchup. http://www.sketchup.com/intl/en/download/index2.html

[95] National Renewable Energy Laboratory, Openstudio. http://open studio.nrel.gov/

[96] EnergyPlus weather data. http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather

_data .cfm

[97] EnergyPlus engineering documentation. http://apps1.eere.energy.gov/buildings/energyplus/

pdfs/engineeringreference.pdf

[98] MATLAB, fmincon documentation. http://www.mathworks.com/help/optim/ug/fmincon.

html

[99] H.C. Hottel, and A.F. Sarofim, Radiative transfer. McGraw-Hill New York, 1967.

[100] Lawrence Berkeley National Laboratory, Building Controls Virtual Test Bed http://

simulationresearch .lbl.gov/ bcvtb

190

Appendix A

Codes for 12-zone building example in section 4.2.8

To obtain the results presented in this section, the following programs need to be run in the

specified sequence:

STEP 1: Obtain weighted incidence matrix, and capacitance matrices (see Algorithm 3.1)

% **

clc;

clear all;

N_alpha = [];

Rinv_ext_h_in = 1/29.99;

Rinv_ext_h_out = 1/81.08;

Rinv_ext_v_in = 1/36.84;

Rinv_ext_v_out = 1/82.00;

Rinv_int_h_in = 1/21.32;

Rinv_int_h_out = 1/21.32;

Rinv_int_v_in = 1/21.32;

Rinv_int_v_out = 1/21.32;

% Factors rho_1, rho_2 and rho_3 being set to 1. These factors can be set to other values % to

run the various cases in section 4.2.8

rho_1 = 1;

rho_2 = 1;

rho_3 = 1;

% Set 1: Incidence matrix entries for horizontal external walls

count1 = 0;

vect_1 = [1,2,3,4,5,6,7,8,9,10,11,12];

vect_2 = [1,2,3,4,5,6,7,8,9,10,11,12];

for i = 1:length(vect_1)

 N_alpha(vect_1(i),vect_2(i)) = Rinv_ext_h_in;

 N_alpha(vect_1(i),13) = Rinv_ext_h_out;

 count1 = count1+1;

end

% Set 2: Incidence matrix entries for vertical external walls

count2 = 0;

vect_1 = [13,14,15,16,17,18,19,20,21,22,23,24];

vect_2 = [1,2,3,4,5,6,7,8,9,10,11,12];

for i = 1:length(vect_1)

 N_alpha(vect_1(i),vect_2(i)) = Rinv_ext_v_in;

 N_alpha(vect_1(i),13) = Rinv_ext_v_out;

 count2 = count2+1;

end

191

vect_1 = [37,38,39,40,41,42,43,44,45,46,47,48];

vect_2 = [1,2,5,6,11,12,7,8,9,10,11,12];

for i = 1:length(vect_1)

 N_alpha(vect_1(i),vect_2(i)) = Rinv_ext_v_in;

 N_alpha(vect_1(i),13) = Rinv_ext_v_out;

 count2 = count2+1;

end

% Set 3: Incidence matrix entries for horizontal internal walls

count3 = 0;

vect_1 = [25,26,27,28,29,30];

vect_2 = [3,4,7,8,9,10];

vect_3 = [5,6,9,10,11,12];

for i = 1:length(vect_1)

 N_alpha(vect_1(i),vect_2(i)) = Rinv_int_h_in/rho_1;

 N_alpha(vect_1(i),vect_3(i)) = Rinv_int_h_out/rho_1;

 count3 = count3+1;

end

% Set 4: Incidence matrix entries for vertical internal walls

count4 = 0;

vect_1 = [31,32,33,34,35,36];

vect_2 = [1,3,5,7,9,11];

vect_3 = [2,4,6,8,10,12];

% Set 4, subset 1: Symmetrically splitting internal walls

for i = 1:length(vect_1)

 N_alpha(vect_1(i),vect_2(i)) = Rinv_int_V_in/rho_3;

 N_alpha(vect_1(i),vect_3(i)) = Rinv_int_V_out/rho_3;

 count4 = count4+1;

end

% Set 4, subset 2: Column separating internal walls

 N_alpha(37,1) = Rinv_int_V_in/rho_2;

 N_alpha(37,3) = Rinv_int_V_out/rho_2;

 N_alpha(38,2) = Rinv_int_V_in/rho_2;

 N_alpha(38,4) = Rinv_int_V_out/rho_2;

 N_alpha(39,3) = Rinv_int_V_in/rho_2;

 N_alpha(39,7) = Rinv_int_V_out/rho_2;

 N_alpha(40,4) = Rinv_int_V_in/rho_2;

 N_alpha(40,8) = Rinv_int_V_out/rho_2;

 N_alpha(41,5) = Rinv_int_V_in/rho_2;

 N_alpha(41,9) = Rinv_int_V_out/rho_2;

 N_alpha(42,6) = Rinv_int_V_in/rho_2;

 N_alpha(42,10) = Rinv_int_V_out/rho_2;

 count4 = count4+6;

% Capacitance matrices

C_w = blkdiag(8329.15*eye(count_1), 8329.15*eye(count_2), 4660*eye(count_3),

4660*eye(count_4));

192

C_z = blkdiag(250*eye(12));

C_cap = blkdiag(C_w,C_z);

% **

STEP 2: Obtaining matrices A, B, C and D for continuous time state space model (see Algorithm

3.1)

% **

nw = count_1+count_2+count_3+count_4;

nz = 12;

N_beta = -N_alpha;

N_alpha_z = N_alpha(:,1:nz);

N_beta_z = N_beta(:,1:nz);

S_r_beta = diag(sum(N_beta'));

S_c_alpha_z = diag(sum(N_alpha_z));

N_alpha_a = N_alpha(:,nz+1:nz+1);

inv_C_cap = inv(C_cap);

% Generation of A, B, C and D matrices denotes using the subscript “bldg.”

A_bldg = inv_C_cap*[[S_r_beta,N_alpha_z];[-N_beta_z',-S_c_alpha_z]];

B_bldg = inv_C_cap*[[zeros(nw,nz),zeros(nw,nz), N_alpha_a];[eye(nz), eye(nz), zeros(nz,1)]];

C_bldg = [zeros(nz,nw),eye(nz)];

D_bldg = zeros(nz,2*nz+1);

% **

STEP 3: Discretization of model and generation of Hessian matrix

% **

% Part 1: Discretization of continuous state space model, resulting matrices are A_fd, %B_fd,

and C_fd

global N Hess Nu

sys = ss(A_bldg,B_bldg,C_bldg,D_bldg);

Ts = 600;

sysd = c2d(sys,Ts,'zoh');

A_fd = sysd.A;

B_f = sysd.B;

C_fd = sys.C;

B_fd = B_f(:,1:9);

% Part 2: Finding unswapped Hessian

N = 24; % Length of prediction horizon

Nu = 12;

for i = 0:N-1

 P(:,:,i+1) = C_fd*(A_fd)^i*B_fd;

end

Hess_us = [];

for i = 0:N-1

 blah = [];

 for j =0:N-1

 blah = [blah,(P(:,:,i+1))'*(P(:,:,j+1))];

193

 end

 Hess_us = [Hess_us;blah];

end

% Part 3: Swapping to create Hess which is the Hessian matrix in desired form

H_s = [];

for i = 1:Nu

 for j = 0:N-1

 H_s = [H_s;Hess_us(j*Nu+i,:)];

 end

end

Hess =[];

for i = 1:Nu

 for j = 0:N-1

 Hess = [Hess,H_s(:,j*Nu+i)];

 end

end

% **

STEP 4: Stage by stage combinatorial optimization (see section 4.2.3) and generation of

optimality-robustness tradeoff curve

% **

global N Hess Nu

parentset = struct('values',{[1:1:Nu]});

rcs = 1;

k = 1;

clf_vect(k) = 0;

res_vect(k) = rcs;

while rcs > 1/Nu

[childset,clf,mcs] = comboptm(parentset); % call the function “comboptm” to calculate

% the child partition for a given parent partition (stage level combinatorial optimization)

childset.values % displays result (output child partition) of the combinatorial optimization

 parentset = childset;

 k = k + 1;

clf_vect(k) = clf;

 mcs_vect(k) = mcs;

end

plot(mcs_vect,clf_vect,'-') %Generates optimality-robustness tradeoff curve

 % **

MATLAB Function “comboptm” used in the above code is as shown:

% **

function [childset,clf1,mcs] = comboptm(parentset)

global N Hess Nu

no_parents = length(parentset);

194

minweight = 99999;

for l = 1:no_parents

 list = parentset(l).values;

 n = length(list);

 for k = 1:n-1

 C = combnk(list,k); % Creates all possible intermediate cluster pairs

 nc = length(C(:,1));

% The following loop compares the intermediate cluster pairs to find the ones with

% smallest ILF

 for i = 1:nc

 innerlist = C(i,:);

 innerweight = weight_calculate(innerlist,list)/self_weight(list); %ILF (see (4.14))

 if(innerweight<minweight)

 minweight = innerweight;

 minlist = innerlist;

 minlist_comp = setdiff(list,minlist);

 minparent = l;

 end

 end

 end

end

% Create child clusters

childset = struct('values',{});

for l = 1:no_parents;

 if l<minparent

 childset(l).values = parentset(l).values;

 end

 if l == minparent

 childset(l).values = minlist;

 childset(l+1).values = minlist_comp;

 end

 if(l>minparent)

 childset(l+1).values = parentset(l).values;

 end

end

% The remainder of the program computes the CLF and MCS of child clusters

c = no_parents + 1;

tot_coupling_lost = [];

for i = 1:c-1

 tot_coupling_lost_i = [];

 for j = i+1:c

 coupling_i_j = findcoupling(childset(i).values,childset(j).values);

 if (i == j)

 coupling_i_j = 0*coupling_i_j;

 end

195

 tot_coupling_lost_i = [tot_coupling_lost_i;coupling_i_j];

 end

 tot_coupling_lost = [tot_coupling_lost;tot_coupling_lost_i];

end

clf1 = (norm(tot_coupling_lost))/norm(Hess);

mcs = 1/c;

% **

The MATLAB functions “weight_calculate”, “self_weight” and “findcoupling” used in the

above function are shown below

% **

function result = weight_calculate(innerlist,list)

global N Hess Nu

cluster1 = innerlist;

cluster2 = setdiff(list,innerlist);

bout = [];

for i = 1:length(cluster1)

 bin = [];

 for j = 1:length(cluster2)

 bin = [bin,Hess((cluster1(i)-1)*N+1:cluster1(i)*N,(cluster2(j) - 1)*N+1:cluster2(j)*N)];

 end

 bout = [bout;bin];

end

result = norm(bout);

% **

% **

function result = self_weight(list)

global N Hess Nu

bout = [];

for i = 1:length(list)

 bin = [];

 for j = 1:length(list)

 bin = [bin,Hess((list(i)-1)*N+1:list(i)*N,(list(j)-1)*N+1:list(j)*N)];

 end

 bout = [bout;bin];

end

result = norm(bout);

% **

% **

function result = findcoupling(cluster1,cluster2)

global N Hess Nu

bout = [];

for i = 1:length(cluster1)

196

 bin = [];

 for j = 1:length(cluster2)

 bin = [bin,Hess((cluster1(i)-1)*N+1:cluster1(i)*N,(cluster2(j)-1)*N+1:cluster2(j)*N)];

 end

 bout = [bout;bin];

end

result = norm(bout);

% **

197

Appendix B

Codes for 9-zone building example in section 4.2.9

To obtain the results presented in this section, the following programs need to be run in the

specified sequence:

STEP 1: Obtain weighted incidence matrix, and capacitance matrices (see Algorithm 3.1)

% **

% 9 zone building

clc

clear all

N_alpha = [];

rho = 1; % Factor rho is set here

rat1 = rho;

rat2 = 1/rho;

% SET 1: Incidence matrix entries for horizontal external walls

count_1 = 0;

for i = 1:3

 count_1 = count_1+1;

 currentrow = zeros(1,10);

 currentrow(i) = 1/29.99;

 currentrow(10) = 1/81.08;

 N_alpha = [N_alpha;currentrow];

end

for i = 7:9

 currentrow = zeros(1,10);

 currentrow(i) = 1/29.99;

 currentrow(10) = 1/81.08;

 count_1 = count_1+1;

 N_alpha = [N_alpha;currentrow];

end

% SET 2: Incidence matrix entries for vertical external walls

count_2 = 0;

for i = 1:3:7

 currentrow = zeros(1,10);

 currentrow(i) = 1/36.84;

 currentrow(10) = 1/82.00;

 count_2 = count_2+1;

 N_alpha = [N_alpha;currentrow];

end

for i = 1:9

 currentrow = zeros(1,10);

198

 currentrow(i) = 1/36.84;

 currentrow(10) = 1/82.00;

 count_2 = count_2+1;

 N_alpha = [N_alpha;currentrow];

end

for i = 3:3:9

 currentrow = zeros(1,10);

 currentrow(i) = 1/36.84;

 currentrow(10) = 1/82.00;

 count_2 = count_2+1;

 N_alpha = [N_alpha;currentrow];

end

for i = 1:9

 currentrow = zeros(1,10);

 currentrow(i) = 1/36.84;

 currentrow(10) = 1/82.00;

 count_2 = count_2+1;

 N_alpha = [N_alpha;currentrow];

end

%SET 3: Incidence matrix entries for horizontal internal walls

count_3 = 0;

for i = 1:6

currentrow = zeros(1,10);

 currentrow(i) = 1/(rat1*21.32);

 currentrow(i+3) = 1/(rat1*21.32);

 count_3 = count_3+1;

 N_alpha = [N_alpha;currentrow];

end

%SET 4: Incidence matrix entries for vertical internal walls

count_4 = 0;

for i = 1:2

 for j = i:3:i+6

 currentrow = zeros(1,10);

 currentrow(j) = 1/(rat2*21.32);

 currentrow(j+1) = 1/(rat2*21.32);

 count_4 = count_4+1;

 N_alpha = [N_alpha;currentrow];

 end

end

%Capacitance matrices

C_w = blkdiag(8329.15*eye(count_1), 8329.15*eye(count_2), 4660*eye(count_3),

4660*eye(count_4));

C_z = blkdiag(250*eye(9));

C_cap = blkdiag(C_w,C_z);

% **

199

STEP 2: Obtaining matrices A, B, C and D for continuous time state space model (see Algorithm

3.1)

% **

nw = count_1+count_2+count_3+count_4;

nz = 9;

N_beta = -N_alpha;

N_alpha_z = N_alpha(:,1:nz);

N_beta_z = N_beta(:,1:nz);

S_r_beta = diag(sum(N_beta'));

S_c_alpha_z = diag(sum(N_alpha_z));

N_alpha_a = N_alpha(:,nz+1:nz+1);

inv_C_cap = inv(C_cap);

% Generation of A, B, C and D matrices denotes using the subscript “bldg.”

A_bldg = inv_C_cap*[[S_r_beta,N_alpha_z];[-N_beta_z',-S_c_alpha_z]];

B_bldg = inv_C_cap*[[zeros(nw,nz),zeros(nw,nz),N_alpha_a];[eye(nz),eye(nz),zeros(nz,1)]];

C_bldg = [zeros(nz,nw),eye(nz)];

D_bldg = zeros(nz,2*nz+1);

% **

STEP 3: Discretization of model and generation of Hessian matrix

% **

% Part 1: Discretization of continuous state space model, resulting matrices are A_fd, %B_fd,

and C_fd

global N Hess Nu

sys = ss(A_bldg,B_bldg,C_bldg,D_bldg);

Ts = 600;

sysd = c2d(sys,Ts,'zoh');

A_fd = sysd.A;

B_f = sysd.B;

C_fd = sys.C;

B_fd = B_f(:,1:9);

N = 24; %Prediction horizon

Nu = 9;

%Finding unswapped Hessian

for i = 0:N-1

 P(:,:,i+1) = C_fd*(A_fd)^i*B_fd;

end

Hess_us = [];

for i = 0:N-1

 blah = [];

 for j =0:N-1

 blah = [blah,(P(:,:,i+1))'*(P(:,:,j+1))];

 end

 Hess_us = [Hess_us;blah];

end

200

%Finding swapped Hessian

H_s = [];

for i = 1:Nu

 for j = 0:N-1

 H_s = [H_s;Hess_us(j*Nu+i,:)];

 end

end

Hess =[];

for i = 1:Nu

 for j = 0:N-1

 Hess = [Hess,H_s(:,j*Nu+i)];

 end

end

% **

STEP 4: Stage by stage combinatorial optimization (see section 4.2.3) and generation of

optimality-robustness tradeoff curve

% **

global N Hess Nu

parentset = struct('values',{[1:1:Nu]});

rcs = 1;

k = 1;

clf_vect(k) = 0;

res_vect(k) = rcs;

while rcs > 1/Nu

[childset,clf,mcs] = comboptm(parentset); % call the function “comboptm” to calculate

% the child partition for a given parent partition (stage level combinatorial optimization)

% To perform optimization using the MINCUT method instead, replace “comboptm” with

“comboptm_maxcut”

childset.values % displays result (output child partition) of the combinatorial optimization

 parentset = childset;

 k = k + 1;

clf_vect(k) = clf;

 mcs_vect(k) = mcs;

end

plot(mcs_vect,clf_vect,'-') %Generates optimality-robustness tradeoff curve

% **

The MATLAB functions “comboptm” and “comboptm_maxcut” used in the above codes are as

shown:

% **

function [childset,clf1,mcs] = comboptm(parentset)

global N Hess Nu

no_parents = length(parentset);

201

minweight = 99999;

for l = 1:no_parents

 list = parentset(l).values;

 n = length(list);

 for k = 1:n-1

 C = combnk(list,k); % Creates all possible intermediate cluster pairs

 nc = length(C(:,1));

% The following loop compares the intermediate cluster pairs to find the ones with

% smallest ILF

 for i = 1:nc

 innerlist = C(i,:);

 innerweight = weight_calculate(innerlist,list)/self_weight(list); %ILF (see (4.14))

 if(innerweight<minweight)

 minweight = innerweight;

 minlist = innerlist;

 minlist_comp = setdiff(list,minlist);

 minparent = l;

 end

 end

 end

end

% Create child clusters

childset = struct('values',{});

for l = 1:no_parents;

 if l<minparent

 childset(l).values = parentset(l).values;

 end

 if l == minparent

 childset(l).values = minlist;

 childset(l+1).values = minlist_comp;

 end

 if(l>minparent)

 childset(l+1).values = parentset(l).values;

 end

end

% The remainder of the program computes the CLF and MCS of child clusters

c = no_parents + 1;

tot_coupling_lost = [];

for i = 1:c-1

 tot_coupling_lost_i = [];

 for j = i+1:c

 coupling_i_j = findcoupling(childset(i).values,childset(j).values);

 if (i == j)

 coupling_i_j = 0*coupling_i_j;

 end

202

 tot_coupling_lost_i = [tot_coupling_lost_i;coupling_i_j];

 end

 tot_coupling_lost = [tot_coupling_lost;tot_coupling_lost_i];

end

clf1 = (norm(tot_coupling_lost))/norm(Hess);

mcs = 1/c;

% **

% **

function [childset,clf1,mcs] = comboptm_maxcut(parentset)

global N Hess Nu

no_parents = length(parentset);

minweight = 99999;

for l = 1:no_parents

 list = parentset(l).values;

 n = length(list);

 if(n>1)

 %Create Hp

 Hp = [];

 for i = 1:n

 Hp_row = [];

 for j = 1:n

 Hp_row =[Hp_row,Hess((list(i)-1)*N+1:list(i)*N,(list(j)-1)*N+1:list(j)*N)];

 end

 Hp = [Hp;Hp_row];

 end

 for i = 1:n

 Hp((i-1)*N+1:i*N,(i-1)*N+1:i*N) = zeros(N,N);

 end

 %Create Q

 Q = zeros(N*n,n);

 for i = 1:n

 Q((i-1)*N+1:i*N,i) = ones(N,1);

 end

 %Create weighting matrix and run MINCUT

 W = Q'*(Hp.*Hp)*Q;

 [MinCutGroupsList, MinCutWeight] = MinCut([1],W);

 innerlist_indices = MinCutGroupsList(1,:);

 innerlist_indices = innerlist_indices(innerlist_indices ~= 0);

 innerlist = zeros(1,length(innerlist_indices));

 for i = 1:length(innerlist_indices)

 innerlist(i) = list(innerlist_indices(i));

 end

 %Compare across all parents

 innerweight = weight_calculate(innerlist,list)/self_weight(list);

203

 if(innerweight<minweight)

 minweight = innerweight;

 minlist = innerlist;

 minlist_comp = setdiff(list,minlist);

 minparent = l;

 end

 end

end

childset = struct('values',{});

for l = 1:no_parents;

 if l<minparent

 childset(l).values = parentset(l).values;

 end

 if l == minparent

 childset(l).values = minlist;

 childset(l+1).values = minlist_comp;

 end

 if(l>minparent)

 childset(l+1).values = parentset(l).values;

 end

end

c = no_parents + 1;

tot_coupling_lost = [];

for i = 1:c-1

 tot_coupling_lost_i = [];

 for j = i+1:c

 coupling_i_j = findcoupling(childset(i).values,childset(j).values);

 if (i == j)

 coupling_i_j = 0*coupling_i_j;

 end

 tot_coupling_lost_i = [tot_coupling_lost_i;coupling_i_j];

 end

 tot_coupling_lost = [tot_coupling_lost;tot_coupling_lost_i];

end

clf1 = (norm(tot_coupling_lost))/norm(Hess);

mcs = 1/c;

% **

The MATLAB functions “weight_calculate”, “self_weight” and “findcoupling” used in the

above function are shown below

% **

function result = weight_calculate(innerlist,list)

global N Hess Nu

cluster1 = innerlist;

cluster2 = setdiff(list,innerlist);

204

bout = [];

for i = 1:length(cluster1)

 bin = [];

 for j = 1:length(cluster2)

 bin = [bin,Hess((cluster1(i)-1)*N+1:cluster1(i)*N,(cluster2(j) - 1)*N+1:cluster2(j)*N)];

 end

 bout = [bout;bin];

end

result = norm(bout);

% **

% **

function result = self_weight(list)

global N Hess Nu

bout = [];

for i = 1:length(list)

 bin = [];

 for j = 1:length(list)

 bin = [bin,Hess((list(i)-1)*N+1:list(i)*N,(list(j)-1)*N+1:list(j)*N)];

 end

 bout = [bout;bin];

end

result = norm(bout);

% **

% **

function result = findcoupling(cluster1,cluster2)

global N Hess Nu

bout = [];

for i = 1:length(cluster1)

 bin = [];

 for j = 1:length(cluster2)

 bin = [bin,Hess((cluster1(i)-1)*N+1:cluster1(i)*N,(cluster2(j)-1)*N+1:cluster2(j)*N)];

 end

 bout = [bout;bin];

end

result = norm(bout);

% **

% **

function [MinCutGroupsList, MinCutWeight] = MinCut(SourceVertices, WeightedGraph)

%%% performs Min Cut algorithm described in "A Simple Min Cut Algorithm" by

%%% M. Stoer and F. Wagner

%%%[source: http://www.mathworks.com/matlabcentral/fileexchange/13892-a-simple-min-cut-

algorithm]

205

%%% input -

%%% SourceVertices - a list of vertices that are forced to be kept in one side of the cut.

%%% WeightedGraph - symetric matrix of edge weights. Wi,j is the edge connecting

%vertices i,j

%%% use Wi,j=0 or Wi,j == inf to indicate unconnected vertices.

%%% output -

%%% MinCutGroupsList - two lists of verices, SECOND one contains the sourve vertives

%%% MinCutWeight - sum of weight of edges alosng the cut

%%% (C) Yohai Devir 2006

%%% <my first name> AT WHOEVER D0T COM

 GraphDim = size(WeightedGraph,1);

 SourceVertices = SourceVertices(SourceVertices ~= 0); %remove zero vertices

 %%% remove self edges and ZEROed ones

 WeightedGraph = WeightedGraph+diag(inf(1,GraphDim));

 % for ii = 1:GraphDim

 % WeightedGraph(ii,ii) = inf;

 % end

 WeightedGraph(WeightedGraph == 0) = inf;

 %%%Merge all Source Vrtices to one, so they'll be unbreakable, descending order is

%VITAL!!!

 SourceVertices = sort(SourceVertices);

 GroupsList = zeros(GraphDim); %each row are the vertices melted into one vertex in %the

table.

 GroupsList(:,1) = 1:GraphDim;

 for ii=length(SourceVertices):-1:2;

 [WeightedGraph,GroupsList] =

MeltTwoVertices(SourceVertices(1),SourceVertices(ii),WeightedGraph,GroupsList);

 end

 Split = GroupsList(:,1);

 %%% By now I have a weighted graph in which all seed vertices are

 %%% merged into one vertex. Run Mincut algrithm on this graph

 [MinCutGroupsList_L, MinCutWeight] = MinCutNoSeed(WeightedGraph);

 %%% Convert Data so the seed vertices will be reconsidered as different

 %%% vertices and not one vertex.

 for ii = 1:2

 MinCutGroupsList(ii,:) = Local2GlobalIndices(MinCutGroupsList_L(ii,:), Split);

 end

 if (length(find(MinCutGroupsList(1,:) == SourceVertices(1))) == 1)

 SeedLocation = 1;

 else

 SeedLocation = 2;

 end

 MinCutGroupsList_withSeed =

[MinCutGroupsList(SeedLocation,(MinCutGroupsList(SeedLocation,:)~=0))

SourceVertices(2:length(SourceVertices))];

206

 MinCutGroupsList_withSeed = sort(MinCutGroupsList_withSeed);

 MinCutGroupsList_withSeed = [MinCutGroupsList_withSeed zeros(1,GraphDim -

length(MinCutGroupsList_withSeed))];

 MinCutGroupsList_NoSeed = MinCutGroupsList(3 - SeedLocation,(MinCutGroupsList(3 -

SeedLocation,:)~=0));

 MinCutGroupsList_NoSeed = sort(MinCutGroupsList_NoSeed);

 MinCutGroupsList_NoSeed = [MinCutGroupsList_NoSeed zeros(1,GraphDim -

length(MinCutGroupsList_NoSeed))];

 MinCutGroupsList = [MinCutGroupsList_NoSeed ; MinCutGroupsList_withSeed];

return

%%

%%

%%% Perform ordinary Stoer & Wagner algorithm Min Cut algorithm

%%

%%

function [MinCutGroupsList, MinCutWeight] = MinCutNoSeed(WeightedGraph)

 GraphDim = size(WeightedGraph,1);

 GroupsList = zeros(GraphDim);

 GroupsList(:,1) = 1:GraphDim;

 MinCutWeight = inf;

 MinCutGroup = [];

 for ii = 1:GraphDim-1

 [OneBefore, LastVertex] = MinimumCutPhase(WeightedGraph);

 if OneBefore == -1 %Graph is not connected. LastVertex is a group of vertices not

connected to Vertex 1

 MinCutGroup_L = LastVertex(LastVertex~=0); clear LastVertex; %it's not the last

vertex

 MinCutGroupsList = [];

 for jj = 1:length(MinCutGroup_L);

 MinCutGroup_temp = GroupsList(MinCutGroup_L(jj));

 MinCutGroup_temp = MinCutGroup_temp(MinCutGroup_temp~=0);

 MinCutGroupsList = [MinCutGroupsList MinCutGroup_temp];

 end

 MinCutGroupsList = [MinCutGroupsList zeros(1,GraphDim -

length(MinCutGroupsList))];

 jj = 1;

 for kk=1:GraphDim

 if (find(MinCutGroupsList(1,:) == kk))

 MinCutGroupsList(2 ,jj) = kk;

 jj = jj + 1;

 end

 end

 MinCutWeight = 0;

 return

 end %of: If graph is not connected

207

 Edges = WeightedGraph(LastVertex,:);

 Edges = Edges(isfinite(Edges));

 MinCutPhaseWeight = sum(Edges);

 if MinCutPhaseWeight < MinCutWeight

 MinCutWeight = MinCutPhaseWeight;

 MinCutGroup = GroupsList(LastVertex,:);

 MinCutGroup = MinCutGroup(MinCutGroup~=0);

 end

 [WeightedGraph,GroupsList] =

MeltTwoVertices(LastVertex,OneBefore,WeightedGraph,GroupsList);

 end

 MinCutGroup = sort(MinCutGroup);

 MinCutGroupsList = [MinCutGroup zeros(1,GraphDim - length(MinCutGroup))];

 jj = 1;

 for kk=1:GraphDim

 if isempty(find(MinCutGroup(1,:) == kk,1))

 MinCutGroupsList(2 ,jj) = kk;

 jj = jj + 1;

 end

 end

return

%%% This function takes V1 and V2 as vertexes in the given graph and MERGES

%%% THEM INTO V1 !!

%%% The output is the UpdatedGraph inwhich both vertices are considered

%%% one, and updated GroupsList to reflect the change.

function [UpdatedGraph,GroupsList] =

MeltTwoVertices(V1,V2,WeightedGraph,GroupsList)

 t = min(V1,V2);

 V2 = max(V1,V2);

 V1 = t;

 GraphDim = size(WeightedGraph,1);

 UpdatedGraph = WeightedGraph;

 Mask1 = isinf(WeightedGraph(V1,:));

 Mask2 = isinf(WeightedGraph(V2,:));

 UpdatedGraph(V1,Mask1) = 0;

 UpdatedGraph(V2,Mask2) = 0;

 infMask = zeros(1,size(Mask1,2));

% infMask(find(Mask1 & Mask2)) = inf;

 infMask((Mask1 & Mask2)) = inf;

 UpdatedGraph(V1,:) = UpdatedGraph(V1,:) + UpdatedGraph(V2,:) + infMask;

 UpdatedGraph(:,V1) = UpdatedGraph(V1,:)';

 selectVec = true(1,GraphDim); selectVec(V2) = false;

% UpdatedGraph = [UpdatedGraph(1:V2-1,:) ; UpdatedGraph(V2+1:GraphDim,:)]; %remove

second vertex from graph

% UpdatedGraph = [UpdatedGraph(:,1:V2-1) UpdatedGraph(:,V2+1:GraphDim)];

208

 UpdatedGraph = UpdatedGraph(selectVec,selectVec);

 UpdatedGraph(V1,V1) = inf; % group-group distance

 V1list = GroupsList(V1,(GroupsList(V1,:)~=0));

 V2list = GroupsList(V2,(GroupsList(V2,:)~=0));

 GroupsList(V1,:) = [V1list V2list zeros(1,size(GroupsList,2)- length(V1list) - length(V2list))

]; %shorten grouplist

% GroupsList = [GroupsList(1:V2-1,:) ;GroupsList(V2+1:GraphDim,:)];

 GroupsList = GroupsList(selectVec,:);

return

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% perform one phase of the algorithm

%%%

%%% return [-1, B] in case of Unconnected Graph when B is a subgraph(s)

%%% that are not connected to Vertex 1

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [OneBefore, LastVertex] = MinimumCutPhase(WeightedGraph)

 GraphDim = size(WeightedGraph,1);

 GroupsList = zeros(GraphDim);

 GroupsList(:,1) = 1:GraphDim;

 if size(WeightedGraph,1) > 2

 FarestVertexGroup = 0;

 for ii = 1:GraphDim-1

 OneBefore = FarestVertexGroup(1);

 PossibleVertices = WeightedGraph(1,1:size(WeightedGraph,2));

 PossibleVertices(isinf(PossibleVertices)) = 0;

 FarestVertex = find(PossibleVertices == max(PossibleVertices),1,'first');

 if FarestVertex == 1 %In case the Graph is not connected

 OneBefore = -1;

 LastVertex = GroupsList(1,:);

 return

 end

 FarestVertexGroup = GroupsList(FarestVertex,:);

 [WeightedGraph,GroupsList] =

MeltTwoVertices(1,FarestVertex,WeightedGraph,GroupsList);

 end

 LastVertex = FarestVertexGroup(1);

 else

 OneBefore = 1;

 LastVertex = 2;

 end

return

%%% Having a local list of indices in a global list and sublist of the

%%% local list, find the corresponding global indices.

209

function GlobalIndices = Local2GlobalIndices(LocalIndices, Split)

 if max(LocalIndices) > length(Split)

 error('Local indices are bigger than local split\n');

 end

 GlobalIndices = nan(length(LocalIndices),1);

 for ii=1:length(LocalIndices)

 if LocalIndices(ii) == 0

 GlobalIndices(ii) = 0;

 else

 GlobalIndices(ii) = Split(LocalIndices(ii));

 end

 end

return

% **

210

Appendix C

Codes for 9-zone building example in section 4.3.10

To obtain the results presented in this section, the following programs need to be run in the

specified sequence:

STEP 1: Obtain weighted incidence matrix, capacitance matrices, and state space matrices (see

Algorithm 3.1)

% **

clc

clear all;

% Part 1: Generation of Incidence matrix (similar to code used for 9-zone building % model in

section 4.2.8)

clc

clear all

N_alpha = [];

Incid = [];

overall_rat = 0.06;

rat1 = 1;

rat2 = 1/3;

% Set 1: Horizontal external walls

count_1 = 0;

for i = 1:3

 count_1 = count_1+1;

 currentrow = zeros(1,10);

 booleanrow = zeros(1,10);

 currentrow(i) = 1/(29.99*overall_rat);

 booleanrow(i) = 1;

 currentrow(10) = 1/(81.08*overall_rat);

 booleanrow(10) = 1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

end

for i = 7:9

 currentrow = zeros(1,10);

 booleanrow = zeros(1,10);

 currentrow(i) = 1/(29.99*overall_rat);

211

 booleanrow(i) = 1;

 currentrow(10) = 1/(81.08*overall_rat);

 booleanrow(10) = 1;

 count_1 = count_1+1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

end

% Set 2: Vertical external walls

count_2 = 0;

for i = 1:3:7

 currentrow = zeros(1,10);

 booleanrow = zeros(1,10);

 currentrow(i) = 1/(36.84*overall_rat);

 booleanrow(i) = 1;

 currentrow(10) = 1/(82.00*overall_rat);

 booleanrow(10) = 1;

 count_2 = count_2+1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

end

for i = 1:9

 currentrow = zeros(1,10);

 booleanrow = zeros(1,10);

 currentrow(i) = 1/(36.84*overall_rat);

 booleanrow(i) = 1;

 currentrow(10) = 1/(82.00*overall_rat);

 booleanrow(10) = 1;

 count_2 = count_2+1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

end

for i = 3:3:9

 currentrow = zeros(1,10);

 booleanrow = zeros(1,10);

 currentrow(i) = 1/(36.84*overall_rat);

 booleanrow(i) = 1;

 currentrow(10) = 1/(82.00*overall_rat);

 booleanrow(10) = 1;

 count_2 = count_2+1;

212

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

end

for i = 1:9

 currentrow = zeros(1,10);

 booleanrow = zeros(1,10);

 currentrow(i) = 1/(36.84*overall_rat);

 booleanrow(i) = 1;

 currentrow(10) = 1/(82.00*overall_rat);

 booleanrow(10) = 1;

 count_2 = count_2+1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

end

% Set 3: Horizontal internal walls

count_3 = 0;

for i = 1:6

currentrow = zeros(1,10);

booleanrow = zeros(1,10);

 currentrow(i) = 1/(rat1*21.32*overall_rat);

 booleanrow(i) = 1;

 currentrow(i+3) = 1/(rat1*21.32*overall_rat);

 booleanrow(i+3) = 1;

 count_3 = count_3+1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

end

% Set 4: Vertical internal walls

count_4 = 0;

for i = 1:2

 for j = i:3:i+6

 currentrow = zeros(1,10);

 booleanrow = zeros(1,10);

 currentrow(j) = 1/(rat2*21.32*overall_rat);

 booleanrow(j) = 1;

 currentrow(j+1) = 1/(rat2*21.32*overall_rat);

 booleanrow(j+1) = 1;

 count_4 = count_4+1;

 N_alpha = [N_alpha;currentrow];

213

 Incid = [Incid;booleanrow];

 end

end

% Part 2: Generation of capacitance matrices

C_w =

0.1*blkdiag(8329.15*eye(count_1),8329.15*eye(count_2),4660*eye(count_3),4660*eye(count_

4));

c_z = 1*250*ones(9,1);

C_z = blkdiag(250*eye(9));

C_cap = blkdiag(C_w,C_z);

% Part 3: Generation of state space matrices

nw = count_1+count_2+count_3+count_4;

nz = 9;

nx = nw+nz;

nu = 9;

N_beta = -N_alpha;

N_alpha_z = N_alpha(:,1:nz);

N_beta_z = N_beta(:,1:nz);

S_r_beta = diag(sum(N_beta'));

S_c_alpha_z = diag(sum(N_alpha_z));

N_alpha_a = N_alpha(:,nz+1:nz+1);

inv_C_cap = inv(C_cap);

A_bldg = inv_C_cap*[[S_r_beta,N_alpha_z];[-N_beta_z',-S_c_alpha_z]];

B_bldg = inv_C_cap*[[zeros(nw,nz),N_alpha_a];[eye(nz),zeros(nz,1)]];

C_bldg = [zeros(nz,nw),eye(nz)];

D_bldg = zeros(nz,nz+1);

% Part 4: State space matrices in desired form, and zone-wall matrix

A_ww = A_bldg(1:nw,1:nw);

A_wz = A_bldg(1:nw,nw+1:nw+nz);

A_zw = A_bldg(nw+1:nw+nz,1:nw);

A_zz = A_bldg(nw+1:nw+nz,nw+1:nw+nz);

B_zd = B_bldg(nw+1:nw+nz,1:nz);

ZW = (Incid(:,1:nz))';

Nw = nw;

Nz = nz;

% Part 5: MPC Parameters

Ts = 60;

alphaa = 0.1;

N = 5;

214

% Part 6: Discretization of model

Ad_ww = eye(Nw) + Ts*A_ww;

Ad_wz = Ts*A_wz;

Ad_zw = Ts*A_zw;

Ad_zz = eye(Nz) + Ts*A_zz;

Bd_zd = Ts*B_zd;

 save nine_zone_model

% **

STEP 2: Obtain true optimal partitions when the number of clusters is i (program has to be rerun

for 1 ≤ i ≤ 9)

% **

i = 1;

min_olf = 99999999999;

 res = SetPartition(Nz,i); %Obtains set partitions

 n_part_i = length(res);

 local_part = struct;

 for k = 1:n_part_ilo

 for j = 1:i

 local_part(j).value = (res{k}{j})';

 end

 local_olf(k) = find_new_olf(i,local_part);

 hold on

 if(local_olf(k) < min_olf)

 min_olf = local_olf(k);

 min_part = local_part;

 end

 end

 hold on;

 scatter(i*ones(n_part_i,1),local_olf,'k','filled'); %Plots trade-off curve

 optimal_olf(i) = min_olf;

 optimal_part = min_part;

% **

The function “SetPartition” appearing in the above program is part of a package downloaded

from MATLAB Central. It is included in the media accompanying this thesis.

STEP 3: Obtain optimal partitions via agglomerative clustering (Algorithm 4.1)

% **

n_parent = 9;

s_dc_parent = struct;

s_dc_parent(1).value = [1]';

s_dc_parent(2).value = [2]';

s_dc_parent(3).value = [3]';

s_dc_parent(4).value = [4]';

s_dc_parent(5).value = [5]';

215

s_dc_parent(6).value = [6]';

s_dc_parent(7).value = [7]';

s_dc_parent(8).value = [8]';

s_dc_parent(9).value = [9]';

olf = zeros(Nz,1);

olf(Nz) = find_new_olf(n_parent,s_dc_parent);

fpm(Nz) = find_fpm(s_dc_parent);

for p = Nz-1:-1:1

olf_min = 9999999999999999999999;

s_dc_child_min = struct;

for i = 1:n_parent-1

 for j = i+1:n_parent

 n_child = n_parent-1;

 s_dc_child = struct;

 for k = 1:j-1

 s_dc_child(k).value = s_dc_parent(k).value;

 end

 s_dc_child(i).value = [s_dc_parent(i).value;s_dc_parent(j).value];

 if(j<n_parent)

 for k = j:n_parent-1

 s_dc_child(k).value = s_dc_parent(k+1).value;

 end

 end

 olf_child = find_new_olf(n_child,s_dc_child);

 if(olf_child <= olf_min)

 olf_min = olf_child;

 l_max = length(s_dc_child);

 for l = 1:l_max

 s_dc_child_min(l).value = s_dc_child(l).value;

 end

 end

 end

end

n_parent = n_child;

l_max = length(s_dc_child_min);

for l = 1:l_max

s_dc_parent(l).value = s_dc_child_min(l).value;

end

olf(p) = olf_min;

fpm(p) = find_fpm(s_dc_child_min);

disp('**************************************');

disp('The Optimal child partition for p = ');

disp(p);

for l = 1:p

 disp(s_dc_child_min(l).value);

216

end

end

% **

The functions “find_new_olf” and “find_fpm” used in the above code are shown below.

% **

function OLF = find_new_olf(n,s_dc)

load nine_zone_model

%**

%******************STRUCTURE CONVERSION PART*********************

%**

%Decentralized Boolean matrices

% Generate r_dc data structure (find walls for each cluster)

r_dc = struct;

N_dc = zeros(n,1);

N_dc_w = zeros(n,1);

for i = 1:n

 N_dc(i) = length(s_dc(i).value);

 current_wall_set = [];

 zone_set = s_dc(i).value;

 for l = 1:N_dc(i)

 wall_choice = [];

 for j = 1:Nw

 if(ZW(zone_set(l),j)==1)

 wall_choice = union(wall_choice,j);

 end

 end

 current_wall_set = union(current_wall_set,wall_choice);

 end

 r_dc(i).value = current_wall_set;

 N_dc_w(i) = length(current_wall_set);

end

%generate Pi and Qi

P_dc = struct;

Q_dc = struct;

for i = 1:n

 mat_P = zeros(N_dc(i),Nz);

 si = s_dc(i).value;

 for l = 1:N_dc(i)

 mat_P(l,si(l)) = 1;

 end

 P_dc(i).value = mat_P;

 mat_Q = zeros(N_dc_w(i),Nw);

 ri = r_dc(i).value;

217

 for l = 1:N_dc_w(i)

 mat_Q(l,ri(l)) = 1;

 end

 Q_dc(i).value = mat_Q;

end

%Generation of combined and lifted matrices

P_l_dc = struct;

P = zeros(Nz,Nz);

P_l = zeros(N*Nz,N*Nz);

for i = 1:n

 local_mat = zeros(N*N_dc(i),N*N_dc(i));

 for j = 1:N

 local_mat(N_dc(i)*(j-1)+1:N_dc(i)*j,Nz*(j-1)+1:Nz*j) = P_dc(i).value;

 end

 P_l_dc(i).value = local_mat;

end

rowpos = 0;

for i = 1:n

 P(rowpos+1:rowpos+N_dc(i),:) = P_dc(i).value;

 rowpos = rowpos + N_dc(i);

end

rowpos = 0;

for i = 1:n

 P_l(rowpos+1:rowpos+N_dc(i)*N,:) = P_l_dc(i).value;

 rowpos = rowpos+N_dc(i)*N;

end

%Decentralized MPC simplified model

A_dc = struct;

B_dc = struct;

for i = 1:n

 for j = 1:n

 if (i == j)

 A_dc(i,j).value = [(Q_dc(i).value)*Ad_ww*(Q_dc(i).value)'

(Q_dc(i).value)*Ad_wz*(P_dc(i).value)';(P_dc(i).value)*Ad_zw*(Q_dc(i).value)'

(P_dc(i).value)*Ad_zz*(P_dc(i).value)'];

 else

 A_dc(i,j).value = [(Q_dc(i).value)*Ad_wz*(P_dc(j).value)';zeros(N_dc(i),N_dc(j))];

 end

 end

 B_dc(i).value = [zeros(N_dc_w(i),N_dc(i));(P_dc(i).value)*Bd_zd*(P_dc(i).value)'];

end

%**

%******************DECENTRALIZED MATRICES PART*******************

%**

%M_dc data structure

218

M_dc = struct;

for i = 1:n

 for k = 1:N

 temp_mat = zeros(N_dc(i)+N_dc_w(i),(N_dc(i)+N_dc_w(i))*N);

 for l = 1:k

 temp_mat(:,(N_dc(i)+N_dc_w(i))*(l-1)+1:(N_dc(i)+N_dc_w(i))*l) =

(A_dc(i,i).value)^(k-l);

 end

 temp_mat(:,(N_dc(i)+N_dc_w(i))*k+1:(N_dc(i)+N_dc_w(i))*N) =

zeros((N_dc(i)+N_dc_w(i)),(N-k)*(N_dc(i)+N_dc_w(i)));

 M_dc(i,k).value = temp_mat;

 end

end

%B_diag data structure

B_diag = struct;

for i = 1:n

 local_mat = zeros((N_dc(i)+N_dc_w(i))*N,N_dc(i)*N);

 for k = 1:N

 local_mat((N_dc(i)+N_dc_w(i))*(k-1)+1:(N_dc(i)+N_dc_w(i))*k,N_dc(i)*(k-

1)+1:N_dc(i)*k) = B_dc(i).value;

 end

 B_diag(i).value = local_mat;

end

%R_dc data structure

R_dc = struct;

for i = 1:n

 mat_sum = zeros((N_dc(i)+N_dc_w(i))*N,(N_dc(i)+N_dc_w(i)));

 for k = 1:N

 mat_sum = mat_sum + (M_dc(i,k).value)';

 end

 R_dc(i).value = 2*(B_diag(i).value)'*mat_sum;

end

%S_dc data structure

S_dc = struct;

for i = 1:n

 for j = 1:n

 if (i==j)

 S_dc(i,j).value = zeros(N*N_dc(i),N*N_dc(j));

 else

 mat_sum = zeros((N_dc(i)+N_dc_w(i))*N,(N_dc(i)+N_dc_w(i))*N);

 blk_mat = zeros(N*(N_dc(i)+N_dc_w(i)),N*N_dc(j));

 for k = 1:N

 mat_sum = mat_sum + (M_dc(i,k).value)'*(M_dc(i,k).value);

 blk_mat((N_dc(i)+N_dc_w(i))*(k-1)+1:(N_dc(i)+N_dc_w(i))*k,N_dc(j)*(k-

1)+1:N_dc(j)*k)=A_dc(i,j).value;

219

 end

 S_dc(i,j).value = 2*(B_diag(i).value)'*mat_sum*blk_mat;

 end

 end

end

%H_dc data structure

H_dc = struct;

for i = 1:n

 mat_sum = zeros((N_dc(i)+N_dc_w(i))*N,(N_dc(i)+N_dc_w(i))*N);

 for k = 1:N

 mat_sum = mat_sum + (M_dc(i,k).value)'*(M_dc(i,k).value);

 end

 H_dc(i).value = alphaa*eye(N*N_dc(i))+(B_diag(i).value)'*mat_sum*B_diag(i).value;

end

%Combination Matrices

%Hdc

Hdc = zeros(N*Nz,N*Nz);

pos = 0;

for i = 1:n

 Hdc(pos+1:pos+N*N_dc(i),pos+1:pos+N*N_dc(i)) = H_dc(i).value;

 pos = pos+N*N_dc(i);

end

%Sdc

Sdc = zeros(N*Nz,N*Nz);

rowpos = 0;

for i = 1:n

 colpos = 0;

 for j = 1:n

 Sdc(rowpos+1:rowpos+N*N_dc(i),colpos+1:colpos+N*N_dc(j)) = S_dc(i,j).value;

 colpos = colpos+N*N_dc(j);

 end

 rowpos = rowpos + N*N_dc(i);

end

%Rdc

Rdc = zeros(N*Nz,Nz+Nw);

rowpos = 0;

colpos = 0;

for i = 1:n

 Rdc(rowpos+1:rowpos+N*N_dc(i),colpos+1:colpos+N_dc(i)+N_dc_w(i)) = R_dc(i).value;

 rowpos = rowpos + N*N_dc(i);

 colpos = colpos + N_dc(i)+N_dc_w(i);

end

%**

%******************H_c CALCULATION PART****************************

%**

220

%Centralized model matrices

A_c = [Ad_ww,Ad_wz;Ad_zw,Ad_zz];

B_c = [zeros(Nw,Nz);Bd_zd];

%M_c data structure

M_c = struct;

 for k = 1:N

 temp_mat = zeros(Nz+Nw,(Nz+Nw)*N);

 for l = 1:k

 temp_mat(:,(Nz+Nw)*(l-1)+1:(Nz+Nw)*l) = (A_c)^(k-l);

 end

 temp_mat(:,(Nz+Nw)*k+1:(Nz+Nw)*N) = zeros((Nz+Nw),(N-k)*(Nz+Nw));

 M_c(k).value = temp_mat;

 end

%B_diag_c matrix

 B_diag_c = zeros((Nz+Nw)*N,Nz*N);

 for k = 1:N

 B_diag_c((Nz+Nw)*(k-1)+1:(Nz+Nw)*k,Nz*(k-1)+1:Nz*k) = B_c;

 end

%H_c matrix

 mat_sum = zeros((Nz+Nw)*N,(Nz+Nw)*N);

 for k = 1:N

 mat_sum = mat_sum + (M_c(k).value)'*(M_c(k).value);

 end

 H_c = alphaa*eye(N*Nz)+(B_diag_c)'*mat_sum*B_diag_c;

%**

%******************OLF CALCULATION PART****************************

%**

M = inv(P_l)*inv(Hdc)*Sdc*P_l;

OLF_mat = M'*H_c*M;

OLF = max(eig(OLF_mat));

%OLF = norm(M,inf);

End

% **

% **

function FPM = find_fpm(s_dc)

load nine_zone_model

p = length(s_dc);

N_dc = zeros(p,1);

summ = 0;

for i = 1:p

 cluster_i = s_dc(i).value;

 N_dc_i = length(cluster_i);

 cap_summ_i = 0;

 for j = 1:N_dc_i

221

 cap_summ_i = cap_summ_i + c_z(cluster_i(j));

 end

 summ = summ+ cap_summ_i*N_dc_i;

 %summ = summ+ (N_dc_i)^2;

end

FPM = summ/(Nz*sum(c_z));

end

% **

222

Appendix D

Codes for 11-zone building example in section 4.3.11

To perform the agglomerative clustering analysis presented in this section, the following

programs need to be run in the specified sequence:

STEP 1: Obtain weighted incidence matrix, capacitance matrices, and state space matrices (see

Algorithm 3.1)

% **

%Model Inputs and MPC parameters for 11 zone circular bldg

clc

clear all;

% Part 1: Generation of Incidence matrix

clc

clear all

N_alpha = [];

Incid = [];

rat1 = 50;

rat2 = 1;

% Set 1: Horizontal external walls

count_1 = 0;

for i = 1:11

 count_1 = count_1+1;

 currentrow = zeros(1,12);

 booleanrow = zeros(1,12);

 if(i==1)

 currentrow(i) = 1/(0.5*18.356);

 booleanrow(i) = 1;

 currentrow(12) = 1/(0.5*18.356);

 booleanrow(12) = 1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

 elseif((i>=2)&&(i<=6))

 currentrow(i) = 1/(0.5*30.594);

 booleanrow(i) = 1;

 currentrow(12) = 1/(0.5*30.594);

 booleanrow(12) = 1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

223

 else

 currentrow(i) = 1/(0.5*16.6874);

 booleanrow(i) = 1;

 currentrow(12) = 1/(0.5*16.6874);

 booleanrow(12) = 1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

 end

end

for i = 1:11

 count_1 = count_1+1;

 currentrow = zeros(1,12);

 booleanrow = zeros(1,12);

 if(i==1)

 currentrow(i) = 1/(0.5*18.356);

 booleanrow(i) = 1;

 currentrow(12) = 1/(0.5*18.356);

 booleanrow(12) = 1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

 elseif((i>=2)&&(i<=6))

 currentrow(i) = 1/(0.5*30.594);

 booleanrow(i) = 1;

 currentrow(12) = 1/(0.5*30.594);

 booleanrow(12) = 1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

 else

 currentrow(i) = 1/(0.5*16.6874);

 booleanrow(i) = 1;

 currentrow(12) = 1/(0.5*16.6874);

 booleanrow(12) = 1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

 end

end

% Set 2: Vertical external walls

count_2 = 0;

for i = 7:11

 currentrow = zeros(1,12);

 booleanrow = zeros(1,12);

 currentrow(i) = 1/(0.5*18.827);

 booleanrow(i) = 1;

 currentrow(12) = 1/(0.5*18.827);

 booleanrow(12) = 1;

224

 count_2 = count_2+1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

end

%Set 3: Horizontal internal walls – no such walls since single floor building

count_3 = 0;

%Set 4: Vertical internal walls

count_4 = 0;

for i = 2:6

 currentrow = zeros(1,12);

 booleanrow = zeros(1,12);

 currentrow(1) = 1/(0.5*18.32);

 booleanrow(1) = 1;

 currentrow(i) = 1/(0.5*18.32);

 booleanrow(i) = 1;

 count_4 = count_4+1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

end

for i = 2:5

 currentrow = zeros(1,12);

 booleanrow = zeros(1,12);

 currentrow(i) = 1/(0.5*23.03);

 booleanrow(i) = 1;

 currentrow(i+1) = 1/(0.5*23.03);

 booleanrow(i+1) = 1;

 count_4 = count_4+1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

end

 currentrow = zeros(1,12);

 booleanrow = zeros(1,12);

 currentrow(2) = 1/(0.5*46.06*rat1);

 booleanrow(2) = 1;

 currentrow(6) = 1/(0.5*46.06*rat1);

 booleanrow(6) = 1;

 count_4 = count_4+1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

for i = 2:6

 currentrow = zeros(1,12);

 booleanrow = zeros(1,12);

 currentrow(i) = 1/(0.5*17.25*rat1);

 booleanrow(i) = 1;

 currentrow(i+5) = 1/(0.5*17.25*rat1);

225

 booleanrow(i+5) = 1;

 count_4 = count_4+1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

end

for i = 7:10

 currentrow = zeros(1,12);

 booleanrow = zeros(1,12);

 currentrow(i) = 1/(0.5*23.03);

 booleanrow(i) = 1;

 currentrow(i+1) = 1/(0.5*23.03);

 booleanrow(i+1) = 1;

 count_4 = count_4+1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

end

 currentrow = zeros(1,12);

 booleanrow = zeros(1,12);

 currentrow(7) = 1/(0.5*46.06*rat1);

 booleanrow(7) = 1;

 currentrow(11) = 1/(0.5*46.06*rat1);

 booleanrow(11) = 1;

 count_4 = count_4+1;

 N_alpha = [N_alpha;currentrow];

 Incid = [Incid;booleanrow];

% Part 2: Generation of capacitance matrices

c_w =

[4.27*10^4;ones(5,1)*2.56*10^4;ones(5,1)*3.36*10^4;4.27*10^4;ones(5,1)*2.56*10^4;ones(5,1

)*3.36*10^4;ones(5,1)*4.17*10^4;ones(5,1)*6.53*10^3;ones(4,1)*5.2*10^3;1.04*10^4;ones(5,1

)*2.77*10^4;ones(4,1)*5.2*10^3;1.04*10^4];

C_w = diag(c_w);

c_z = [643.72;ones(5,1)*386.23;ones(5,1)*708.09];

C_z = diag(c_z);

C_cap = blkdiag(C_w,C_z);

% Part 3: Generation of state space matrices

nw = count_1+count_2+count_3+count_4;

nz = 11;

N_beta = -N_alpha;

N_alpha_z = N_alpha(:,1:nz);

N_beta_z = N_beta(:,1:nz);

S_r_beta = diag(sum(N_beta'));

S_c_alpha_z = diag(sum(N_alpha_z));

N_alpha_a = N_alpha(:,nz+1:nz+1);

inv_C_cap = inv(C_cap);

A_bldg = inv_C_cap*[[S_r_beta,N_alpha_z];[-N_beta_z',-S_c_alpha_z]];

226

%B_bldg = inv_C_cap*[[zeros(nw,nz),zeros(nw,nz),N_alpha_a];[eye(nz),eye(nz),zeros(nz,1)]];

B_bldg = inv_C_cap*[[zeros(nw,nz),N_alpha_a];[eye(nz),zeros(nz,1)]];

C_bldg = [zeros(nz,nw),eye(nz)];

D_bldg = zeros(nz,nz+1);

% Part 4: State space matrices in desired form, and zone-wall matrix

A_ww = A_bldg(1:nw,1:nw);

A_wz = A_bldg(1:nw,nw+1:nw+nz);

A_zw = A_bldg(nw+1:nw+nz,1:nw);

A_zz = A_bldg(nw+1:nw+nz,nw+1:nw+nz);

B_normal_w = B_bldg(1:nw,:);

B_normal_z = B_bldg(nw+1:nw+nz,:);

B_zd = B_bldg(nw+1:nw+nz,1:nz);

ZW = (Incid(:,1:nz))';

Nw = nw;

Nz = nz;

%Part 5: MPC Parameters

Ts = 600;

alphaa = 0.1;

N = 5;

%Part 6: Discretization of model

Ad_ww = eye(Nw) + Ts*A_ww;

Ad_wz = Ts*A_wz;

Ad_zw = Ts*A_zw;

Ad_zz = eye(Nz) + Ts*A_zz;

Bd_zd = Ts*B_zd;

%Part 7: Simulation amplitudes – needed for open loop simulations later in this section

a1 = 0.5;

a2 = 0.5;

b1 = 10;

b2 = 20;

save circular_model

% **

STEP 2: To run the agglomerative clustering, run the program in Step 3 of Appendix C with the

following changes:

(i) Replace “n_parent = 9;” with “n_parent = 11;”

(ii) Include the lines “s_dc_parent(10).value = [10]';” and “s_dc_parent(11).value = [11]';”

after the line “s_dc_parent(9).value = [9]';”

(iii) In the functions “find_new_olf” and “find_fpm”, replace “load nine_zone_model” with

“load circular_model”

To obtain the plot in Fig. 4.21 corresponding to the scalarized analysis, the following code was

used. Note that this code provides the plot only for the case when . It can be re-run with

the appropriate modification “lambda = 0.85;” for the case when .

227

% **

J = zeros(Nz,1);

lambda = 0.5;

for i = 1:Nz

 J(i) = lambda*olf(i)/max(olf) + (1-lambda)*(fpm(i))/(max(fpm));

end

figure;

plot(J,'k');

% **

To obtain the open loop simulation results, cluster level state-space models can be obtained using

the following code. The models hence obtained are used in Simulink models to perform the

necessary simulations. These Simulink models (for centralized, knee2 and fully decentralized

cases) are included in the media accompanying this thesis.

% **

zone_set = [1,2,3,4,5,6]; % Zone numbers corresponding to the cluster go here. In this

 % example, we use the first cluster for knee 2 in Fig. 4.20

n_zone_set = length(zone_set);

wall_set = [];

for i = 1:n_zone_set

 w_i = [];

 for j = 1:nw

 if(ZW(zone_set(i),j)==1)

 w_i = [w_i;j];

 end

 end

 wall_set = union(wall_set,w_i);

end

n_wall_set = length(wall_set);

Adecen_ww = zeros(n_wall_set,n_wall_set);

Adecen_wz = zeros(n_wall_set,n_zone_set);

Adecen_zw = zeros(n_zone_set,n_wall_set);

Adecen_zz = zeros(n_zone_set,n_zone_set);

Bdecen_normal_w = zeros(n_wall_set,nz+1);

Bdecen_normal_z = zeros(n_zone_set,nz+1);

Bdecen_est_w = zeros(n_wall_set,nz);

Bdecen_est_z = zeros(n_zone_set,nz);

for i = 1:n_wall_set

 Adecen_ww(i,i) = A_ww(wall_set(i),wall_set(i));

end

for i = 1:n_wall_set

 for j = 1:n_zone_set

 Adecen_wz(i,j) = A_wz(wall_set(i),zone_set(j));

 end

228

end

for i = 1:n_zone_set

 for j = 1:n_wall_set

 Adecen_zw(i,j) = A_zw(zone_set(i),wall_set(j));

 end

end

for i = 1:n_zone_set

 Adecen_zz(i,i) = A_zz(zone_set(i),zone_set(i));

end

for i = 1:n_wall_set

 for j = 1:nz+1

 Bdecen_normal_w(i,j) = B_normal_w(wall_set(i),j);

 end

end

for i = 1:n_zone_set

 for j = 1:nz+1

 Bdecen_normal_z(i,j) = B_normal_z(zone_set(i),j);

 end

end

for i = 1:n_wall_set

 for j = 1:nz

 Bdecen_est_w(i,j) = A_wz(wall_set(i),j);

 end

end

for i = 1:n_wall_set

 for j = 1:n_zone_set

 Bdecen_est_w(i,zone_set(j)) = 0;

 end

end

Adecen = [Adecen_ww,Adecen_wz;Adecen_zw,Adecen_zz];

Bdecen = [Bdecen_normal_w,Bdecen_est_w;Bdecen_normal_z,Bdecen_est_z];

Cdecen = [zeros(n_zone_set,n_wall_set),eye(n_zone_set)];

Ddecen = zeros(n_zone_set,2*nz+1);

% The use of the number “1” in the variables “nwpart1” to “Dpart1” below corresponds to

% the variable names that are used to refer to the state space model corresponding to this

% cluster in the SIMULINK model

nwpart1 = n_wall_set;

nzpart1 = n_zone_set;

Apart1= Adecen;

Bpart1= Bdecen;

Cpart1= Cdecen;

Dpart1 = Ddecen;

% **

229

Appendix E

Steps used in creating an EnergyPlus model using

OpenStudio

The following video tutorials provide information on creation of an EnergyPlus model using

OpenStudio: http://www.youtube.com/user/NRELOpenStudio. Based on these tutorials, the

procedure involves the following basic steps:

Step 1: Choose the construction template using the OpenStudio plugin in Google SketchUp

Step 2: Draw the building in Google SketchUp. This involves the following substeps:

(i) Create the plan drawing of the building using SketchUp drawing tools

(ii) Use the “spaces from diagram” tool in the plugin to create floors based on the

above plan

(iii) Draw fenestration surfaces using the SketchUp drawing tools

(iv) Use the “project loose geometry” tool in the plugin to project the fenestration

surfaces on appropriate building surfaces

(v) Additional geometry if needed can be created using the “shading surface tool”,

“internal partition surface tool, etc.

Step 3: Use “Surface matching tool” in plugin to set appropriate boundary conditions for each

surface.

Step 4: Use “Space attributes tool” in plugin to assign stories, thermal zones and other attributes

to each of the spaces in the building. “Render modes” can be used to check the successful

application of these attributes.

Step 5: Launch the OpenStudio application from the plugin to open the .osm file.

Step 6: In the .osm file, set the paths for weather and design day files.

Step 7: Examine the schedules via the schedules tab. The relevant schedules should already have

been set to default values based on the construction template chosen in Step 1 above. If

necessary, one or more schedules can be changed at this point by dragging and dropping

schedules from the ‘my model’ or ‘library’ tabs.

Step 8: Examine the constructions via the constructions tab. Default construction sets should

already be present based on the construction template chosen in Step 1 above. For each

construction set, the relevant applicability –the entire building, a story, a space type or a

space – should also be assigned by default. This information can be changed if needed.

Also, each construction set consists of constructions, which in turn consist of a set of

http://www.youtube.com/user/NRELOpenStudio

230

materials. The constructions and/or materials constituting any such construction set can be

changed at this point using the ‘my model’ or ‘library’ tabs.

Step 9: Examine the load objects and the underlying attributes. Default values can be changed at

this point.

Step 10: Examine the space types using the “space types” tab. Construction sets, schedule sets

and loads are assigned to each space type. These assignments can be changed for existing

space types. Also new space types can be created with appropriate construction set,

schedule set and load assignments.

Step 11: Examine the stories using the “stories” tab. For each story, the underlying construction

and schedule sets can be changed. Also new stories can be created by assigning appropriate

construction and schedule sets.

Step 12: Click on the “facilities” tab. Choose appropriate view type – view by story/ space type/

thermal zone etc. Check the underlying assignments and ensure that the sets “unassigned

space type”, “unassigned thermal zone” etc. are empty. The facilities tab can be used to

assign attributes such as loads at the building/space type/story level.

Step 13: Click on the “thermal zones” tab. The “ideal air loads” option can be turned on/off at

this stage. If the “ideal air loads” option is turned off, zone equipment can be assigned at

this stage. Also, thermostats can be set at this point to each thermal zone.

Step 14: The “HVAC systems tab” can be used to create HVAC system loops and specify the

thermal zones which are serviced by the thermal “sink” element (e.g. Air handling Unit) in

the loops. It can be used to modify the existing loops by adding/removing sink/source

components, valves, terminal units etc.

Step 15: The variables which are desired to be included the SQL file generated at the end of the

EnergyPlus simulation can be selected, along with the reporting frequency using “output

variables” tab.

Step 16: Run the simulation using the “run simulation” tab. The directory containing the

EnergyPlus input data file (idf) can be accessed using the “tree” sub-tab.

Step 17: The “EP-Launch” EnergyPlus application can be used to perform an EnergyPlus

simulation via the idf file generated above. The results of the simulation are stored in a .csv

file which can be accessed using Microsoft Excel. The columns of this file provide the

values of the output variables which were selected in Step 15 above.

231

Appendix F

Codes for performing zone level identification as per

optimization framework presented in (6.3) – (6.6)

To obtain the results presented in section 6.3.2 for the optimization framework corresponding to

(6.3) – (6.6), the following steps are required. For the purposes of illustration, these steps are

explained for Zone F2. For the other zones, the steps are the same and the appropriate codes are

provided in the media accompanying this thesis.

STEP 1: In the EnergyPlus model, PRBS set-points are prescribed for all zones in the building.

The EnergyPlus model (.idf file), hence modified, is included in the media accompanying this

thesis.

STEP 2: A day-long simulation is run using the above EnergyPlus model and the generic

spreadsheet containing the output variables is obtained.

STEP 3: From the above generic spreadsheet, columns containing the variables needed for the

zone level identification are used to create a new spreadsheet called “sim_data_zone_F2”. This

file is also included in the media accompanying this thesis.

STEP 4: Simulation data contained in “sim_data_zone_F2” is exported to the MATLAB

workspace and saved in a MATLAB file called “zone F2 data” using the following MATLAB

code:

% **

% Import data for zone F2 in MATLAB

 clc;

 clear all;

 Q_dot_in = 0.001*xlsread(‘sim_data_zone_F2.xls','F2_data','a2:a1441');

 m_dot_supp = xlsread(‘sim_data_zone_F2.xls','F2_data','b2:b1441');

 T_supp = xlsread(‘sim_data_zone_F2.xls','F2_data','c2:c1441');

 T_z = xlsread(‘sim_data_zone_F2.xls','F2_data','d2:d1441');

 T_w1 = xlsread(‘sim_data_zone_F2.xls','F2_data','e2:e1441');

 T_w2 = xlsread(‘sim_data_zone_F2.xls','F2_data','f2:f1441');

 T_w3 = xlsread(‘sim_data_zone_F2.xls','F2_data','g2:g1441');

 T_w3_sub1 = xlsread(‘sim_data_zone_F2.xls','F2_data','h2:h1441');

 T_w3_sub2 = xlsread(‘sim_data_zone_F2.xls','F2_data','i2:i1441');

 T_w4 = xlsread(‘sim_data_zone_F2.xls','F2_data','j2:j1441');

 T_w5 = xlsread(‘sim_data_zone_F2.xls','F2_data','k2:k1441');

 T_w5_sub1 = xlsread(‘sim_data_zone_F2.xls','F2_data','l2:l1441');

232

 T_w6 = xlsread(‘sim_data_zone_F2.xls','F2_data','m2:m1441');

 V_inf = xlsread(‘sim_data_zone_F2.xls','F2_data','n2:n1441');

 T_amb = xlsread(‘sim_data_zone_F2.xls','F2_data','o2:o1441');

 save zone_F2_data

% **

STEP 5: The following MATLAB code can then be run to perform the zone level optimization.

% **

clc

clear all

% Part 1: Generation of optimal parameter values

area1 = 98.4271*82.0208*0.3048^2;

area2 = 98.4271*13.7812*0.3048^2;

area4 = (72.1771-62.3333)*(7.875-2.95312)*0.3048^2;

area5 = (16.4062-1.64062)*(7.875-2.95312)*0.3048^2;

area3 = 82.0208*13.7812*0.3048^2 - area4-area5;

area6 = 82.0208*13.7812*0.3048^2;

area8 = (72.2344-3.28125)*(7.875-2.95312)*0.3048^2;

area7 = 98.4271*13.7812*0.3048^2 - area8;

area9 = 98.4271*82.0208*0.3048^2;

areas = [area1 area2 area3 area4 area5 area6 area7 area8 area9]';

matlabpool open 4

options =

optimset('Algorithm','sqp','MaxFunEvals',100000,'MaxIter',100000,'UseParallel','always','TolFun

', 1e-4, 'TolX', 1e-12, 'TolCon', 1e-12);

init_param = [1*0.01*800*ones(9,1);5000]; % initial parameter valued

UB = [0.025*800*ones(9,1);10000]; % upper bounds on parameter values

LB = [0*ones(9,1);0]; % lower bounds on parameter values

optim_param = fmincon(@zone_F2_objective_fn_case1,init_param,[],[],[],[],LB,UB,[],options);

% call to

% fmincon to obtain optimal parameter values using least squares optimization

% Part 2: Comparison of zone temperature from least squares identification with EnergyPlus

simulation data

UA = optim_param(1:9);

C = optim_param(10);

load zone_F2_data

Tw_meas = [T_w1 T_w2 T_w3 T_w3_sub1 T_w3_sub2 T_w4 T_w5 T_w5_sub1 T_w6];

startt_index = 0;

startt = 60*startt_index;

Tz_pred(startt+1,1) = T_z(startt+1);

for k = startt+2:60*(startt_index+24)

 Tz_pred(k,1) = (Q_dot_in(k) + m_dot_supp(k)*1.012*T_supp(k) + C*T_z(k-1)/60 +

(Tw_meas(k-1,:))*(UA) + 1.2041*V_inf(k-1)*1.012*T_amb(k-1))/(C/60 + sum(UA) +

1.2041*V_inf(k-1)*1.012 + m_dot_supp(k)*1.012);

end

233

figure

plot(T_z(startt+1:60*(startt_index+1),1),'k');

hold on

plot(Tz_pred(startt+1:60*(startt_index+1)));

% **

The MATLAB function “zone_F2_objective_fn_case1” used in the above code is as follows:

% **

function cost = zone_F2_objective_fn_case1 (param)

% Part 1: Extract optimization variables

UA = param(1:9,1);

C = param(10);

% Part 2: Load measurement data

load zone_F2_data

Tw_meas = [T_w1 T_w2 T_w3 T_w3_sub1 T_w3_sub2 T_w4 T_w5 T_w5_sub1 T_w6];

% Part 3: Evolve the dynamics

area1 = 98.4271*82.0208*0.3048^2;

area2 = 98.4271*13.7812*0.3048^2;

area4 = (72.1771-62.3333)*(7.875-2.95312)*0.3048^2;

area5 = (16.4062-1.64062)*(7.875-2.95312)*0.3048^2;

area3 = 82.0208*13.7812*0.3048^2 - area4-area5;

area6 = 82.0208*13.7812*0.3048^2;

area8 = (72.2344-3.28125)*(7.875-2.95312)*0.3048^2;

area7 = 98.4271*13.7812*0.3048^2 - area8;

area9 = 98.4271*82.0208*0.3048^2;

areas = [area1 area2 area3 area4 area5 area6 area7 area8 area9]';

startt_index = 0;

startt = 60*startt_index;

Tz_pred(startt+1,1) = T_z(startt+1);

for k = startt+2:60*(startt_index+24)

 Tz_pred(k,1) = (Q_dot_in(k) + m_dot_supp(k)*1.012*T_supp(k) + C*T_z(k-1)/60 +

(Tw_meas(k-1,:))*(UA) + 1.2041*V_inf(k-1)*1.012*T_amb(k-1))/(C/60 + sum(UA) +

1.2041*V_inf(k-1)*1.012 + m_dot_supp(k)*1.012);

end

% Part 4: Calculate cost

deviation = Tz_pred(startt+1:60*(startt_index+24),1) - T_z(startt+1:60*(startt_index+24),1);

cost = norm(deviation);

% **

234

Appendix G

Codes for performing zone level identification as per

optimization framework presented in (6.7) – (6.10)

To obtain the results presented in section 6.3.2 for the optimization framework corresponding to

(6.7) – (6.10), the following steps are required. For the purposes of illustration, these steps are

explained for Zone F2. For the other zones, the steps are the same and the appropriate codes are

provided in the media accompanying this thesis.

STEPS 1- 4: Same as Steps 1-4 in Appendix F.

STEP 5: The following MATLAB code can then be run to perform the zone level optimization.

% **

clc

clear all

% Part 1: Generation of optimal parameter values

area1 = 98.4271*82.0208*0.3048^2;

area2 = 98.4271*13.7812*0.3048^2;

area4 = (72.1771-62.3333)*(7.875-2.95312)*0.3048^2;

area5 = (16.4062-1.64062)*(7.875-2.95312)*0.3048^2;

area3 = 82.0208*13.7812*0.3048^2 - area4-area5;

area6 = 82.0208*13.7812*0.3048^2;

area8 = (72.2344-3.28125)*(7.875-2.95312)*0.3048^2;

area7 = 98.4271*13.7812*0.3048^2 - area8;

area9 = 98.4271*82.0208*0.3048^2;

areas = [area1 area2 area3 area4 area5 area6 area7 area8 area9]';

%matlabpool open 4

options =

optimset('Algorithm','sqp','MaxFunEvals',100000,'MaxIter',100000,'UseParallel','always','TolFun

', 1e-4, 'TolX', 1e-12, 'TolCon', 1e-12);

init_param = [0.001;5000];

UB = [0.01;10000];

LB = [0;0];

optim_param = fmincon(@zone_F2_objective_fn_case2,init_param,[],[],[],[],LB,UB,[],options);

% call to

% fmincon to obtain optimal parameter values using least squares optimization

% Part 2: Comparison of zone temperature from least squares identification with EnergyPlus

235

simulation data

h = optim_param(1);

C = optim_param(2);

load zone_F2_data

Tw_meas = [T_w1 T_w2 T_w3 T_w3_sub1 T_w3_sub2 T_w4 T_w5 T_w5_sub1 T_w6];

startt_index = 0;

startt = 60*startt_index;

Tz_pred(startt+1,1) = T_z(startt+1);

for k = startt+2:60*(startt_index+24)

 Tz_pred(k,1) = (Q_dot_in(k) + m_dot_supp(k)*1.012*T_supp(k) + C*T_z(k-1)/60 +

(Tw_meas(k-1,:))*(h*areas) + 1.2041*V_inf(k-1)*1.012*T_amb(k-1))/(C/60 + sum(h*areas) +

1.2041*V_inf(k-1)*1.012 + m_dot_supp(k)*1.012);

end

figure

plot(T_z(startt+1:60*(startt_index+1),1),'k');

hold on

plot(Tz_pred(startt+1:60*(startt_index+1)));

% **

The MATLAB function “zone_F2_objective_fn_case2” used in the above code is as follows:

% **

function cost = zone_F2_objective_fn_case2 (param)

% Part 1: Extract optimization variables

h = param(1);

C = param(2);

% Part 2: Load measurement data

load zone_F2_data

Tw_meas = [T_w1 T_w2 T_w3 T_w3_sub1 T_w3_sub2 T_w4 T_w5 T_w5_sub1 T_w6];

% Part 3: Evolve the dynamics

area1 = 98.4271*82.0208*0.3048^2;

area2 = 98.4271*13.7812*0.3048^2;

area4 = (72.1771-62.3333)*(7.875-2.95312)*0.3048^2;

area5 = (16.4062-1.64062)*(7.875-2.95312)*0.3048^2;

area3 = 82.0208*13.7812*0.3048^2 - area4-area5;

area6 = 82.0208*13.7812*0.3048^2;

area8 = (72.2344-3.28125)*(7.875-2.95312)*0.3048^2;

area7 = 98.4271*13.7812*0.3048^2 - area8;

area9 = 98.4271*82.0208*0.3048^2;

areas = [area1 area2 area3 area4 area5 area6 area7 area8 area9]';

startt_index = 0;

startt = 60*startt_index;

Tz_pred(startt+1,1) = T_z(startt+1);

for k = startt+2:60*(startt_index+24)

 Tz_pred(k,1) = (Q_dot_in(k) + m_dot_supp(k)*1.012*T_supp(k) + C*T_z(k-1)/60 +

(Tw_meas(k-1,:))*(h*areas) + 1.2041*V_inf(k-1)*1.012*T_amb(k-1))/(C/60 + sum(h*areas) +

236

1.2041*V_inf(k-1)*1.012 + m_dot_supp(k)*1.012);

end

% Part 4: Calculate cost

deviation = Tz_pred(startt+1:60*(startt_index+24),1) - T_z(startt+1:60*(startt_index+24),1);

cost = norm(deviation);

% **

237

Appendix H

Codes for performing wall level identification as per

optimization framework presented in section 6.3.3.1

To obtain the results presented in section 6.3.3.1 for the optimization framework corresponding

to (6.12) – (6.20), the following steps are required. Note that these results are for the internal

(zone F2 facing) surface of wall 34.

STEPS 1- 2: Same as Steps 1-2 in Appendix F.

STEP 3: From the generic spreadsheet obtained in Step 2, columns containing the variables

needed for the wall level identification are used to create a new spreadsheet called

“sim_data_surf34_internal”. This file is included in the media accompanying this thesis.

STEP 4: Simulation data contained in “sim_data_surf34_internal” is exported to the MATLAB

workspace and saved in a MATLAB file called “surf34_internal_data” using the following

MATLAB code:

% **

% Import data for inside surface of wall 34 in MATLAB

 clc;

 clear all;

 T_in = xlsread('sim_data_surf34_internal.xls','surf34_internal_data','a2:a1441');

 T_out = xlsread('sim_data_surf34_internal.xls','surf34_internal_data','b2:b1441');

 T_z = xlsread('sim_data_surf34_internal.xls','surf34_internal_data','c2:c1441');

 T_surf = xlsread('sim_data_surf34_internal.xls','surf34_internal_data','d2:k1441');

 save surf34_internal_data

% **

STEP 5: The following MATLAB code can then be run to perform the wall level optimization.

% **

clc

clear all

% Part 1: Generation of optimal parameter values

matlabpool open 4

options =

optimset('Algorithm','sqp','MaxFunEvals',10000000,'MaxIter',100000,'UseParallel','always','TolF

un', 1e-4, 'TolX', 1e-12, 'TolCon', 1e-12);

window_length = 24;

init_param = [1e2;1;1*ones(24*60,1)];

238

UB = [1e4;100;5*ones(24*60,1)]; % the upper bound on the resistance is set to 100 here. It can

be changed to 40 and 10 here for the other two cases presented in section 6.3.3.1.

LB = [0;0;-5*ones(24*60,1)];

optim_param = fmincon(@id_surf34_internal_case1,init_param,[],[],[],[],LB,UB,[],options)%

call to

% fmincon to obtain optimal parameter values using least squares optimization

% Part 2: Comparison of wall temperature from least squares identification with EnergyPlus

simulation data

C_in = optim_param(1);

R_cond = optim_param(2);

d_in = optim_param(2+1:2+24*60);

R_in = 1/0.207;

load surf34_internal_data

T_in_pred(1,1) = T_in(1);

for k = 2:60*(window_length)

 T_in_pred(k,1) = T_in_pred(k-1) + (60/C_in)*((T_z(k-1)-T_in_pred(k-1))/R_in + (T_out(k-

1)-T_in_pred(k-1))/R_cond + d_in(k-1));

end

figure

plot(T_in(1:60*window_length,1),'k');

hold on

plot(T_in_pred(1:60*window_length,1));

% **

The MATLAB function “id_surf34_internal_case1” used in the above code is as follows:

% **

function cost = id_surf34_internal_case1 (param)

% Part 1: Extract optimization variables

window_length = 24;

C_in = param(1);

R_cond = param(2);

d_in = param(2+1:2+24*60);

R_in = 1/0.207;

% Part 2: Load measurement data

load surf34_internal_data

% Part 3: Evolve the dynamics

T_in_pred(1,1) = T_in(1);

for k = 2:60*(window_length)

 T_in_pred(k,1) = T_in_pred(k-1) + (60/C_in)*((T_z(k-1)-T_in_pred(k-1))/R_in + (T_out(k-

1)-T_in_pred(k-1))/R_cond + d_in(k-1));

end

% Part 4: Calculate cost

deviation = T_in_pred(1:60*window_length,1) - T_in(1:60*window_length,1);

cost = norm(deviation);

% **

239

Appendix I

Codes for performing wall level identification as per

optimization framework presented in section 6.3.3.2

To obtain the results presented in section 6.3.3.2 for the optimization framework corresponding

to (6.31) – (6.45), the following steps are required. Note that these results are for the internal

(zone F2 facing) surface of wall 34.

STEP 1: In the EnergyPlus model, PRBS set-points are prescribed for all zones in the building.

Also, the short-wave radiation incident on each wall surface is specified as an output variable.

The EnergyPlus model (.idf file), hence modified, is included in the media accompanying this

thesis.

STEP 2: A day-long simulation is run using the above EnergyPlus model and the generic

spreadsheet containing the output variables is obtained.

STEP 3: From the above generic spreadsheet, columns containing the variables needed for the

wall level identification for the internal surface of wall 34 are used to create a new spreadsheet

called "sim_data_surf34_internal_with_loads". In this spreadsheet, the long-wave radiation

incident on the wall surface is computed using the ScriptF factors obtained from EnergyPlus and

the wall surface temperatures. The long-wave radiation and short-wave radiation values are

added to give the total thermal load acting on the wall surface. This spreadsheet is also included

in the media accompanying this thesis.

STEP 4: Simulation data contained in “sim_data_surf34_internal_with_loads” is exported to the

MATLAB workspace and saved in a MATLAB file called “surf34_internal_data_with_loads”

using the following MATLAB code:

% **

clc;

 clear all;

 T_in = xlsread(‘sim_data_surf34_internal_with_loads.xls’,'a33:a73');

 T_out = xlsread(‘sim_data_surf34_internal_with_loads.xls’,’b33:b73');

 T_z = xlsread(‘sim_data_surf34_internal_with_loads.xls','c33:c73');

 d_in = 0.001*xlsread(‘sim_data_surf34_internal_with_loads.xls','o33:o73');

 save surf34_internal_data_with_loads

% **

STEP 5: The following MATLAB code can then be run to perform the wall level optimization.

% **

clc

240

clear all

% Part 1: Generation of optimal parameter values

matlabpool open 4

options =

optimset('Algorithm','sqp','MaxFunEvals',100000,'MaxIter',100000,'UseParallel','always','TolFun

', 1e-4, 'TolX', 1e-12, 'TolCon', 1e-12);

window_length = 23;

init_param = [1.1e3;1;1];

UB = [2e3;10;10];

LB = [0;0;0];

optim_param = fmincon(@id_surf34_internal_case2,init_param,[],[],[],[],LB,UB,[],options); %

call to fmincon to obtain optimal parameter values using least squares optimization

% Part 2: Comparison of wall temperature from least squares identification with EnergyPlus

simulation data

C_in = optim_param(1);

R_cond = optim_param(2);

R_rad = optim_param(3);

R_in = 1/0.207;

load surf34_internal_data

T_in_pred(1,1) = T_in(1);

for k = 2:60*(window_length)

 d_in(k-1) = (1/R_rad)*(sum(T_surf(k-1,:))-8*T_in_pred(k-1));

 T_in_pred(k,1) = T_in_pred(k-1) + (60/C_in)*((T_z(k-1)-T_in_pred(k-1))/R_in + (T_out(k-

1)-T_in_pred(k-1))/R_cond + d_in(k-1));

end

figure

plot(T_in(1:60*window_length,1),'k');

hold on

plot(T_in_pred(1:60*window_length,1));

% **

The MATLAB function “id_surf34_internal_case2” used in the above code is as follows:

% **

function cost = id_surf34_internal_case2 (param)

% Part 1: Extract optimization variables

window_length = 24;

C_in = param(1);

R_cond = param(2);

R_rad = param(3);

R_in = 1/0.207;

% Part 2: Load measurement data

load surf34_internal_data_with_loads

% Part 3: Evolve the dynamics

T_in_pred(1,1) = T_in(1);

for k = 2:60*(window_length)

241

 d_in(k-1) = (1/R_rad)*(sum(T_surf(k-1,:))-8*T_in_pred(k-1));

 T_in_pred(k,1) = T_in_pred(k-1) + (60/C_in)*((T_z(k-1)-T_in_pred(k-1))/R_in + (T_out(k-

1)-T_in_pred(k-1))/R_cond + d_in(k-1));

end

% Part 4: Calculate cost

deviation = T_in_pred(1:60*window_length,1) - T_in(1:60*window_length,1);

cost = norm(deviation);

% **

242

Appendix J

Codes to obtain LTI model of SCR building and

perform agglomerative clustering (sections 6.3.4 – 6.4)

To perform the agglomerative clustering analysis presented in this section, the following

programs need to be run in the specified sequence:

STEP 1: Obtain weighted incidence matrix, capacitance matrices, and state space matrices (see

Algorithm 5.1). The spreadsheet “identified_parameters_mod.xlsx” contains the data obtained

from the zone and wall level identification exercises performed in section 6.3. It is provided in

the media accompanying this thesis

% **

% Part 1: Generation of A_G (see Algorithm 5.1)

clc

clear all;

Nw = 103;

Nz = 9;

Nw_int = 59;

resistance_matrix = xlsread('identified_parameters_mod','consolidated','B2:BH11');

no_col = size(resistance_matrix,2);

inside_interface = resistance_matrix(1,:);

outside_interface = resistance_matrix(2,:);

internal_surface = resistance_matrix(3,:);

external_surface = resistance_matrix(4,:);

R_cond = resistance_matrix(6,:);

R_in = resistance_matrix(9,:);

R_out = resistance_matrix(10,:);

A_G = zeros(114,114);

for i = 1:no_col

 A_G(inside_interface(i),internal_surface(i))=1/R_in(i);

 A_G(internal_surface(i),inside_interface(i))=1/R_in(i);

 A_G(internal_surface(i),external_surface(i))=1/R_cond(i);

 A_G(external_surface(i),internal_surface(i))=1/R_cond(i);

 if (external_surface(i)~=114)

 A_G(external_surface(i),outside_interface(i)) = 1/R_out(i);

 A_G(outside_interface(i),external_surface(i)) = 1/R_out(i);

 end

243

end

inv_R_inf =

1*(0.06*0.05)*[252.859;160.319;50.392;50.392;210.712;105.356;105.356;198.027];

% Implementation of modifications as per section 6.4.1.

A_G(103+3,103+6) = inv_R_inf(1);

A_G(103+6,103+3) = inv_R_inf(1);

A_G(103+1,103+6) = inv_R_inf(2);

A_G(103+6,103+1) = inv_R_inf(2);

A_G(103+6,103+4) = inv_R_inf(3);

A_G(103+4,103+6) = inv_R_inf(3);

A_G(103+1,103+4) = inv_R_inf(4);

A_G(103+4,103+1) = inv_R_inf(4);

A_G(103+1,103+2) = inv_R_inf(5);

A_G(103+2,103+1) = inv_R_inf(5);

A_G(103+1,103+7) = inv_R_inf(6);

A_G(103+7,103+1) = inv_R_inf(6);

A_G(103+1,103+5) = inv_R_inf(7);

A_G(103+5,103+1) = inv_R_inf(7);

A_G(103+8,103+9) = inv_R_inf(8);

A_G(103+9,103+8) = inv_R_inf(8);

% Part 2: Generation of L_Gx

D_G = diag(sum(A_G,2));

L_G = A_G-D_G;

L_Gx = L_G(1:Nw+Nz,1:Nw+Nz);

% Part 3: Generation of C_w

C_in = resistance_matrix(7,:);

C_out = resistance_matrix(8,:);

c_w = zeros(Nw,1);

for i = 1:no_col

 c_w(internal_surface(i)) = C_in(i);

 if (external_surface(i)~=114)

 c_w(external_surface(i)) = C_out(i);

 end

end

C_w = diag(c_w);

% Part 4: Generation of C_z

c_z = zeros(Nz,1);

c_z(1) = 6181.45; %zone G

c_z(2) = 7389.79; %zone E

c_z(3) = 8889.79; %zone C

c_z(4) = 706.02; %zone comp_room

c_z(5) = 3709.49; %zone F1

c_z(6) = 7390.85; %zone D

c_z(7) = 3716.90; %zone F2

c_z(8) = 3449.18; %zone basement_TC

244

c_z(9) = 6498.85; %zone basement_NTC

C_z = diag(c_z);

% Part 5: Generation of L_a

L_a = L_G(1:Nw,Nw+Nz+1);

% Part 6: Generation of L_Gg

L_g = L_G(1:Nw,end);

% Part 7: Generation of State Space matrices(continuous time)

A_cont = (blkdiag(C_w,C_z))\L_Gx;

B_a_cont = [C_w\L_a;zeros(Nz,1)];

B_g_cont = [C_w\L_g;zeros(Nz,1)];

B_u_cont = [zeros(Nw,Nz);inv(C_z)];

B_dw_cont = [inv(C_w);zeros(Nz,Nw)];

B_dz_cont = B_u_cont;

% Part 8: State space matrices in desired form and zone-wall matrix

A_ww = A_cont(1:Nw,1:Nw);

A_wz = A_cont(1:Nw,Nw+1:Nw+Nz);

A_zw = A_cont(Nw+1:Nw+Nz,1:Nw);

A_zz = A_cont(Nw+1:Nw+Nz,Nw+1:Nw+Nz);

B_zd = B_u_cont(Nw+1:Nw+Nz,1:Nz);

ZW = zeros(Nz,Nw);

for i = 1:Nz

 for j = 1:Nw

 if(A_G(Nw+i,j)~=0)

 ZW(i,j) = 1;

 for k = 1:Nw

 if(A_G(j,k)~=0)

 ZW(i,k) = 1;

 end

 end

 end

 end

end

% Part 9: MPC Parameters

Ts = 60;

alphaa = 0.001;

N = 30;

% Part 10: Discretization

Ad_ww = eye(Nw) + Ts*A_ww;

Ad_wz = Ts*A_wz;

Ad_zw = Ts*A_zw;

Ad_zz = eye(Nz) + Ts*A_zz;

Bd_zd = Ts*B_zd;

save scr_model

% **

245

STEP 2: To run the agglomerative clustering, run the program in Step 3 of Appendix C with the

following change: in the functions “find_new_olf” and “find_fpm”, replace “load

nine_zone_model” with “load scr_model”.

246

Appendix K

Codes for cluster level control design (Fig. 6.30)

To perform the steps used in the cluster level control design shown in Figure 6.30, the following

programs are used. It is recommended that this Appendix be read along with Appendices L and

M.

STEP 1: Obtain weighted incidence matrix, capacitance matrices, and state space matrices (see

Algorithm 5.1). The spreadsheet “identified_parameters_mod.xlsx” contains the data obtained

from the zone and wall level identification exercises performed in section 6.3. It is provided in

the media accompanying this thesis.

% **

% Part 1: Generation of A_G (see Algorithm 5.1)

clc

clear all;

Nw = 103;

Nz = 9;

Nw_int = 59;

resistance_matrix = xlsread('identified_parameters_mod','consolidated','B2:BH11');

no_col = size(resistance_matrix,2);

inside_interface = resistance_matrix(1,:);

outside_interface = resistance_matrix(2,:);

internal_surface = resistance_matrix(3,:);

external_surface = resistance_matrix(4,:);

R_cond = resistance_matrix(6,:);

R_in = resistance_matrix(9,:);

R_out = resistance_matrix(10,:);

A_G = zeros(114,114);

for i = 1:no_col

 A_G(inside_interface(i),internal_surface(i))=1/R_in(i);

 A_G(internal_surface(i),inside_interface(i))=1/R_in(i);

 A_G(internal_surface(i),external_surface(i))=1/R_cond(i);

 A_G(external_surface(i),internal_surface(i))=1/R_cond(i);

 if (external_surface(i)~=114)

 A_G(external_surface(i),outside_interface(i)) = 1/R_out(i);

 A_G(outside_interface(i),external_surface(i)) = 1/R_out(i);

247

 end

end

% Implementation of modifications as per section 6.4.1.

inv_R_inf =

1*(0.06*0.05)*[252.859;160.319;50.392;50.392;210.712;105.356;105.356;198.027];

A_G(103+3,103+6) = inv_R_inf(1);

A_G(103+6,103+3) = inv_R_inf(1);

A_G(103+1,103+6) = inv_R_inf(2);

A_G(103+6,103+1) = inv_R_inf(2);

A_G(103+6,103+4) = inv_R_inf(3);

A_G(103+4,103+6) = inv_R_inf(3);

A_G(103+1,103+4) = inv_R_inf(4);

A_G(103+4,103+1) = inv_R_inf(4);

A_G(103+1,103+2) = inv_R_inf(5);

A_G(103+2,103+1) = inv_R_inf(5);

A_G(103+1,103+7) = inv_R_inf(6);

A_G(103+7,103+1) = inv_R_inf(6);

A_G(103+1,103+5) = inv_R_inf(7);

A_G(103+5,103+1) = inv_R_inf(7);

A_G(103+8,103+9) = inv_R_inf(8);

A_G(103+9,103+8) = inv_R_inf(8);

% Part 2: Generation of L_Gx

D_G = diag(sum(A_G,2));

L_G = A_G-D_G;

L_Gx = L_G(1:Nw+Nz,1:Nw+Nz);

%Generation of C_w

C_in = resistance_matrix(7,:);

C_out = resistance_matrix(8,:);

c_w = zeros(Nw,1);

for i = 1:no_col

 c_w(internal_surface(i)) = C_in(i);

 if (external_surface(i)~=114)

 c_w(external_surface(i)) = C_out(i);

 end

end

C_w = diag(c_w);

%Generation of C_z

c_z = zeros(Nz,1);

c_z(1) = 6181.45; %zone G

248

c_z(2) = 7389.79; %zone E

c_z(3) = 8889.79; %zone C

c_z(4) = 706.02; %zone comp_room

c_z(5) = 3709.49; %zone F1

c_z(6) = 7390.85; %zone D

c_z(7) = 3716.90; %zone F2

c_z(8) = 3449.18; %zone basement_TC

c_z(9) = 6498.85; %zone basement_NTC

C_z = diag(c_z);

% Part 3: Generation of L_Ga

L_Ga = L_G(1:Nw,Nw+Nz+1);

% Part 4: Generation of L_Gg

L_Gw = L_G(1:Nw,end);

% Part 5: Generation of State Space matrices(continuous time)

A_cont = (blkdiag(C_w,C_z))\L_Gx;

B_a_cont = [C_w\L_Ga;zeros(Nz,1)];

B_g_cont = [C_w\L_Gw;zeros(Nz,1)];

B_u_cont = [zeros(Nw,Nz);inv(C_z)];

B_dw_cont = [inv(C_w);zeros(Nz,Nw)];

B_dz_cont = B_u_cont;

ZW = zeros(Nz,Nw);

for i = 1:Nz

 for j = 1:Nw

 if(A_G(Nw+i,j)~=0)

 ZW(i,j) = 1;

 for k = 1:Nw

 if(A_G(j,k)~=0)

 ZW(i,k) = 1;

 end

 end

 end

 end

end

save fo_model

% **

STEP 2: Obtain the parameters for design of controller and observer at the cluster level

corresponding to any decentralized architecture

% **

% Part 1: Input cluster information for fully decentralized case. For other architectures, the

249

% code can be modified appropriately

n_clust = 9;

for i = 1:9

 struct_clust_zones(i).value = i;

end

% Part 2: Compute parameters for implementation of controller and observer for each cluster %

and store them as fields of appropriate data structures

for i = 1:n_clust

[struct_tfo_aggreg_A_cont(i).value,struct_tfo_aggreg_B_u_cont(i).value,struct_tfo_aggreg_B_a

_cont(i).value,struct_tfo_aggreg_B_g_cont(i).value,struct_tfo_aggreg_B_hat_cont(i).value,struct

_aggregates(i).value,struct_clust_walls(i).value,struct_ext_zones(i).value,Np,Nu,struct_S(i).valu

e,struct_C_bar(i).value,struct_Q1(i).value,struct_T(i).value,struct_W1(i).value,struct_W2(i).valu

e,struct_W3(i).value,struct_H(i).value,Ts,struct_A1(i).value,struct_A2(i).value,struct_A3(i).valu

e,struct_A4(i).value,struct_A5(i).value,struct_A6(i).value,struct_A7(i).value,rho_a,cp_a,struct_T

_supp(i).value,struct_M_bar_max(i).value,struct_C_bar_temp(i).value,struct_Q_max(i).value,str

uct_L(i).value,struct_init_est(i).value] =

find_model_and_mpc_param_with_dist(struct_clust_zones(i).value);

end

% Part 3: Save the data structures generated above in the Matlab file “clust_info”

save clust_info struct_tfo_aggreg_A_cont struct_tfo_aggreg_B_u_cont

struct_tfo_aggreg_B_a_cont struct_tfo_aggreg_B_g_cont struct_tfo_aggreg_B_hat_cont

struct_Q1 struct_clust_walls Ts Np Nu struct_aggregates c_w struct_clust_zones struct_S

struct_C_bar struct_T struct_W1 struct_W2 struct_W3 struct_ext_zones struct_H Nw Nz

struct_A1 struct_A2 struct_A3 struct_A4 struct_A5 struct_A6 struct_A7 rho_a cp_a

struct_T_supp struct_M_bar_max struct_C_bar_temp struct_Q_max struct_L struct_init_est

u_prev = zeros(Nz,1);

x_init_est = [];

for i = 1:n_clust

x_init_est = [x_init_est;struct_init_est(i).value]; % create a vector using initial state estimates %

computed for each cluster

end

save u_values u_prev % these parameters are required later in the implementation of MPC %

based decentralized controllers

% **

The function “find_model_and_mpc_param_with_dist” used in the above code is shown below:

% **

function[tfo_aggreg_A_cont,tfo_aggreg_B_u_cont,tfo_aggreg_B_a_cont,tfo_aggreg_B_g_cont,t

fo_aggreg_B_hat_cont,aggregates,clust_walls,ext_zones,Np,Nu,S,C_bar,Q1,T,W1,W2,W3,H,Ts

250

,A1,A2,A3,A4,A5,A6,A7,rho_a,cp_a,T_supp,M_bar_max,C_bar_temp,Q_max,L_tfo_aggreg,ini

t_est] = find_model_and_mpc_param_with_dist(clust_zones)

%%%

%SECTION 1: FINDING CLUSTER LEVEL MODEL (FULL ORDER)

%%%

load fo_model

n_clust_zones = length(clust_zones);

% Part 1: Determine walls of cluster

clust_walls = [];

for i = 1:n_clust_zones

 local_walls = find(ZW(clust_zones(i),:)~=0);

 clust_walls = union(clust_walls,local_walls);

end

n_clust_walls = length(clust_walls);

% Part 2: Determine zones external to cluster

ext_zones = [];

for i = 1:n_clust_walls

 local_zones = find(ZW(:,clust_walls(i))~=0);

 ext_zones = union(ext_zones,local_zones);

end

ext_zones = setdiff(ext_zones,clust_zones);

n_clust_ext_zones = length(ext_zones);

% Part 3: Determine connectivity among walls and zones inside cluster

clust_A_G = zeros(n_clust_walls + n_clust_zones,n_clust_walls + n_clust_zones);

for i = 1:n_clust_walls

 for j = 1:n_clust_walls

clust_A_G(i,j) = A_G(clust_walls(i),clust_walls(j));

 end

 for k = n_clust_walls+1:n_clust_walls+n_clust_zones

 clust_A_G(i,k) = A_G(clust_walls(i),Nw+clust_zones(k-n_clust_walls));

 clust_A_G(k,i) = A_G(Nw+clust_zones(k-n_clust_walls),clust_walls(i));

 end

end

for i = n_clust_walls+1:n_clust_walls+n_clust_zones

 for j = n_clust_walls+1:n_clust_walls+n_clust_zones

 clust_A_G(i,j) = A_G(Nw+clust_zones(i-n_clust_walls),Nw+clust_zones(j-n_clust_walls));

 end

end

251

% Part 4: Determine connectivity among walls and zones inside cluster and outside zones

clust_A_hat = zeros(n_clust_walls,n_clust_ext_zones);

for i = 1:n_clust_walls

 for j = 1:n_clust_ext_zones

 clust_A_hat(i,j) = A_G(clust_walls(i),Nw+ext_zones(j));

 end

end

clust_Az_hat = zeros(n_clust_zones,n_clust_ext_zones);

for i = 1:n_clust_zones

 for j = 1:n_clust_ext_zones

 clust_Az_hat(i,j) = A_G(Nw+clust_zones(i),Nw+ext_zones(j));

 end

end

% Part 5: Determine connectivity of walls with ambient and ground

clust_B_w_a = zeros(n_clust_walls,1);

for i = 1:n_clust_walls

 clust_B_w_a(i,1) = A_G(clust_walls(i),Nw+Nz+1);

end

clust_B_w_g = zeros(n_clust_walls,1);

for i = 1:n_clust_walls

 clust_B_w_g(i,1) = A_G(clust_walls(i),Nw+Nz+2);

end

% Part 6: Determine capacitance matrices

clust_c_w = zeros(n_clust_walls,1);

for i = 1:n_clust_walls

 clust_c_w(i) = c_w(clust_walls(i),1);

end

clust_c_z = zeros(n_clust_zones,1);

for i = 1:n_clust_zones

 clust_c_z(i) = c_z(clust_zones(i),1);

end

clust_C_w = diag(clust_c_w);

clust_C_z = diag(clust_c_z);

%%%

%SECTION 2: OBTAIN REDUCED ORDER CLUSTER LEVEL MODEL

%%%

% Part 1: Identify internal wall aggregations

aggregates = struct;

for i = n_clust_walls+1:n_clust_walls+n_clust_zones

252

 local_int_aggregation = find(clust_A_G(i,1:n_clust_walls)~=0);

 aggregates(i-n_clust_walls).value = local_int_aggregation;

end

% Part 2: Identify external wall aggregations

cnt = n_clust_zones;

for i = n_clust_walls+1:n_clust_walls+n_clust_zones

 local_ext_aggregation = [];

 local_int_aggregation = aggregates(i-n_clust_walls).value;

 n_local_int_aggregation = length(local_int_aggregation);

 for j = 1:n_local_int_aggregation

 temp = find(clust_A_G(local_int_aggregation(j),1:n_clust_walls)~=0);

 if(norm(clust_A_G(temp,n_clust_walls+1:n_clust_walls+n_clust_zones))==0)

 local_ext_aggregation = [local_ext_aggregation,temp];

 end

 end

 if(isempty(local_ext_aggregation) == 0)

 cnt = cnt + 1;

 aggregates(cnt).value = local_ext_aggregation;

 end

end

% Part 3: Determine aggregated capacitances

n_aggregations = length(aggregates);

aggreg_c_w = zeros(n_aggregations,1);

for i = 1:n_aggregations

 aggreg_c_w(i) = sum(clust_c_w(aggregates(i).value));

end

aggreg_C_w = diag(aggreg_c_w);

% Part 4: Determine equivalent resistances between aggregated walls and cluster zones

aggreg_A_G = zeros(n_aggregations+n_clust_zones,n_aggregations+n_clust_zones);

for i = 1:n_aggregations

 local_i_aggregation = aggregates(i).value;

 for j = 1:n_aggregations

 local_j_aggregation = aggregates(j).value;

 summ = 0;

 for m = 1:length(local_i_aggregation)

 for n = 1:length(local_j_aggregation)

 summ = summ + clust_A_G(local_i_aggregation(m),local_j_aggregation(n));

 end

 end

253

 aggreg_A_G(i,j) = summ;

 end

 for j = 1:n_clust_zones

 summ = 0;

 for k = 1:length(local_i_aggregation)

 summ = summ + clust_A_G(local_i_aggregation(k),n_clust_walls+j);

 end

 aggreg_A_G(i,n_aggregations+j) = summ;

 aggreg_A_G(n_aggregations+j,i) = summ;

 end

end

for i = 1:n_clust_zones

 for j = 1:n_clust_zones

 aggreg_A_G(n_aggregations+i,n_aggregations+j) =

clust_A_G(n_clust_walls+i,n_clust_walls+j);

 end

end

% Part 5: Determine equivalent resistances between aggregated walls and cluster zones and %

external zones

aggreg_A_hat = zeros(n_aggregations,n_clust_ext_zones);

for i = 1:n_aggregations

 local_aggregation = aggregates(i).value;

 for j = 1:n_clust_ext_zones

 summ = 0;

 for m = 1:length(local_aggregation)

 summ = summ + clust_A_hat(local_aggregation(m),j);

 end

 aggreg_A_hat(i,j) = summ;

 end

end

aggreg_Az_hat = clust_Az_hat;

% Part 6: Determine equivalent resistances between aggregated walls and ambient and %

ground

aggreg_B_w_a = zeros(n_aggregations,1);

aggreg_B_w_g = zeros(n_aggregations,1);

for i = 1:n_aggregations

 local_aggregation = aggregates(i).value;

 summ1 = 0;

 summ2 = 0;

254

 for m = 1:length(local_aggregation)

 summ1 = summ1 + clust_B_w_a(local_aggregation(m));

 summ2 = summ2 + clust_B_w_g(local_aggregation(m));

 end

 aggreg_B_w_a(i,1) = summ1;

 aggreg_B_w_g(i,1) = summ2;

end

% Part 7: Obtain continuous-time, reduced order state space model

aggreg_D_G =

sum([aggreg_A_G,[aggreg_A_hat;zeros(n_clust_zones,n_clust_ext_zones)],[aggreg_B_w_a;zer

os(n_clust_zones,1)],[aggreg_B_w_g;zeros(n_clust_zones,1)]],2);

aggreg_A_cont = (blkdiag(aggreg_C_w,clust_C_z))\(aggreg_A_G-diag(aggreg_D_G));

aggreg_B_u_cont = [zeros(n_aggregations,n_clust_zones);inv(clust_C_z)];

aggreg_B_a_cont = [aggreg_C_w\aggreg_B_w_a;zeros(n_clust_zones,1)];

aggreg_B_g_cont = [aggreg_C_w\aggreg_B_w_g;zeros(n_clust_zones,1)];

aggreg_B_hat_cont = [aggreg_C_w\aggreg_A_hat;clust_C_z\aggreg_Az_hat];

% Part 8: Obtain continuous-time, reduced order, transformed, state space model

tfo_aggreg_A_cont =

[aggreg_A_cont,[zeros(n_aggregations,n_clust_zones);inv(clust_C_z)];zeros(n_clust_zones,n_a

ggregations+2*n_clust_zones)];

tfo_aggreg_B_u_cont = [aggreg_B_u_cont;zeros(n_clust_zones)];

tfo_aggreg_B_a_cont = [aggreg_B_a_cont;zeros(n_clust_zones,1)];

tfo_aggreg_B_g_cont = [aggreg_B_g_cont;zeros(n_clust_zones,1)];

tfo_aggreg_B_hat_cont = [aggreg_B_hat_cont;zeros(n_clust_zones,n_clust_ext_zones)];

%%%

%SECTION 3: FINDING CLUSTER LEVEL MPC PARAMETERS

%%%

% Part 1: specify control and prediction horizons, sample time, penalties, upper and lower

% bounds

Np = 30;

Nu = Np/3;

Ts = 60;

gammaa_temp = 1000*ones(n_clust_zones,1);

gammaa_contrl =1*ones(n_clust_zones,1);

sigmaa = 0*ones(n_clust_zones,1); % this parameter is not used

cp_a = 1.05;

rho_a = 1.02;

m_max_full = 1*[12.7426;12.7426;12.7426;4.2475;8.4951;12.7426;8.4951;4.2475;4.2475];

T_supp_full = 12.8*ones(9,1);

255

Q_max_full = 1*[140;140;140;50;70;140;70;50;50];

% Part 2: Model discretization

sysc =

ss(tfo_aggreg_A_cont,[tfo_aggreg_B_u_cont,tfo_aggreg_B_a_cont,tfo_aggreg_B_g_cont,tfo_ag

greg_B_hat_cont],eye(n_aggregations+2*n_clust_zones),zeros(n_aggregations+2*n_clust_zones

,n_clust_zones+2+n_clust_ext_zones));

sysd = c2d(sysc,Ts,'zoh');

tfo_aggreg_A_disc = sysd.A;

tfo_aggreg_B_disc = sysd.B;

tfo_aggreg_B_u_disc = tfo_aggreg_B_disc(:,1:n_clust_zones);

tfo_aggreg_B_a_disc = tfo_aggreg_B_disc(:,n_clust_zones+1);

tfo_aggreg_B_g_disc = tfo_aggreg_B_disc(:,n_clust_zones+2);

tfo_aggreg_B_hat_disc =

tfo_aggreg_B_disc(:,n_clust_zones+2+1:n_clust_zones+2+n_clust_ext_zones);

% Part 3: Model augmentation

A_mpc =

[tfo_aggreg_A_disc,tfo_aggreg_B_u_disc;zeros(n_clust_zones,2*n_clust_zones+n_aggregations

),eye(n_clust_zones)];

B_mpc = [tfo_aggreg_B_u_disc;eye(n_clust_zones)];

Ba_mpc = [tfo_aggreg_B_a_disc;zeros(n_clust_zones,1)];

Bg_mpc = [tfo_aggreg_B_g_disc;zeros(n_clust_zones,1)];

B_hat_mpc = [tfo_aggreg_B_hat_disc;zeros(n_clust_zones,n_clust_ext_zones)];

C_mpc=

[zeros(n_clust_zones,n_aggregations),eye(n_clust_zones),zeros(n_clust_zones),zeros(n_clust_zo

nes,n_clust_zones);zeros(n_clust_zones,n_aggregations),zeros(n_clust_zones,n_clust_zones),zer

os(n_clust_zones),eye(n_clust_zones)];

% Part 4: T,S,W,C_bar,Q1 and Q2 matrices

T = zeros((n_aggregations+3*n_clust_zones)*Np,n_aggregations + 3*n_clust_zones);

for i = 1:Np

 T((i-1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones),:) =

(A_mpc)^i;

end

S = zeros((n_aggregations+3*n_clust_zones)*Np,n_clust_zones*Nu);

for i = 1:Np

 for j = 1:Nu

 if i-j < 0

 S((i-1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones),(j-

1)*n_clust_zones+1:j*n_clust_zones) =

zeros((n_aggregations+3*n_clust_zones),n_clust_zones);

256

 elseif i-j == 0

 S((i-1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones),(j-

1)*n_clust_zones+1:j*n_clust_zones) = B_mpc;

 elseif i-j > 0

 S((i-1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones),(j-

1)*n_clust_zones+1:j*n_clust_zones) = A_mpc^(i-j)*B_mpc;

 end

 end

end

W1 = zeros((n_aggregations+3*n_clust_zones)*Np,Np);

for i = 1:Np

 for j = 1:Np

 if i-j < 0

 W1((i-1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones),j) =

zeros((n_aggregations+3*n_clust_zones),1);

 elseif i-j == 0

 W1((i-1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones),j) =

Ba_mpc;

 elseif i-j > 0

 W1((i-1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones),j) =

A_mpc^(i-j)*Ba_mpc;

 end

 end

end

W2 = zeros((n_aggregations+3*n_clust_zones)*Np,Np);

for i = 1:Np

 for j = 1:Np

 if i-j < 0

 W2((i-1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones),j) =

zeros((n_aggregations+3*n_clust_zones),1);

 elseif i-j == 0

 W2((i-1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones),j) =

Bg_mpc;

 elseif i-j > 0

 W2((i-1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones),j) =

A_mpc^(i-j)*Bg_mpc;

 end

 end

end

257

W3 = zeros((n_aggregations+3*n_clust_zones)*Np,n_clust_ext_zones*Np);

for i = 1:Np

 for j = 1:Np

 if i-j < 0

 W3((i-1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones),(j-

1)*n_clust_ext_zones+1:j*n_clust_ext_zones) =

zeros((n_aggregations+3*n_clust_zones),n_clust_ext_zones);

 elseif i-j == 0

 W3((i-1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones),(j-

1)*n_clust_ext_zones+1:j*n_clust_ext_zones) = B_hat_mpc;

 elseif i-j > 0

 W3((i-1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones),(j-

1)*n_clust_ext_zones+1:j*n_clust_ext_zones) = A_mpc^(i-j)*B_hat_mpc;

 end

 end

end

C_bar = zeros(Np*2*n_clust_zones,Np*(n_aggregations+3*n_clust_zones));

for i = 1:Np

 C_bar((i-1)*2*n_clust_zones+1:i*2*n_clust_zones,(i-

1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones)) = C_mpc;

end

gammaa = [gammaa_temp;gammaa_contrl];

Q1 = zeros(Np*2*n_clust_zones,Np*2*n_clust_zones);

for i = 1:Np

 Q1((i-1)*2*n_clust_zones+1:i*2*n_clust_zones,(i-1)*2*n_clust_zones+1:i*2*n_clust_zones)

= diag(gammaa);

end

Q2 = zeros(Nu*n_clust_zones,Nu*n_clust_zones);

for i = 1:Nu

 Q2((i-1)*n_clust_zones+1:i*n_clust_zones,(i-1)*n_clust_zones+1:i*n_clust_zones) =

diag(sigmaa);

end

% Part 5: H matrix

H1 = S'*C_bar'*Q1*C_bar*S + Q2;

H = (H1+H1')/2;

% Part 6: Constraint matrices

A1 = zeros(n_clust_zones*(Np+1),n_clust_zones*Nu);

for i = 1:Np+1

 for j = 1:Nu

258

 if i-j >= 0

 A1((i-1)*n_clust_zones+1:i*n_clust_zones,(j-

1)*n_clust_zones+1:j*n_clust_zones)=eye(n_clust_zones);

 else

 A1((i-1)*n_clust_zones+1:i*n_clust_zones,(j-1)*n_clust_zones+1:j*n_clust_zones)=

zeros(n_clust_zones);

 end

 end

end

m_max = m_max_full(clust_zones);

Q_max = Q_max_full(clust_zones);

T_supp = T_supp_full(clust_zones);

M_max = diag(m_max);

for i = 1:Np+1

 M_bar_max((i-1)*n_clust_zones+1:i*n_clust_zones,(i-1)*n_clust_zones+1:i*n_clust_zones)

= M_max;

end

A4 = [zeros(n_aggregations+3*n_clust_zones,Nu*n_clust_zones);S];

A2 = zeros((Np+1)*n_clust_zones,n_clust_zones);

for i = 1:Np+1

 A2((i-1)*n_clust_zones+1:i*n_clust_zones,:) = eye(n_clust_zones);

end

A3 = [eye(n_aggregations+3*n_clust_zones);T];

c_temp =

[zeros(n_clust_zones,n_aggregations),eye(n_clust_zones),zeros(n_clust_zones,2*n_clust_zones)

];

C_bar_temp = zeros((Np+1)*n_clust_zones,(Np+1)*(n_aggregations+3*n_clust_zones));

for i = 1:Np+1

 C_bar_temp((i-1)*n_clust_zones+1:i*n_clust_zones,(i-

1)*(n_aggregations+3*n_clust_zones)+1:i*(n_aggregations+3*n_clust_zones)) = c_temp;

end

A5 = [zeros(n_aggregations+3*n_clust_zones,Np);W1];

A6 = [zeros(n_aggregations+3*n_clust_zones,Np);W2];

A7 = [zeros(n_aggregations+3*n_clust_zones,n_clust_ext_zones*Np);W3];

%%%

%SECTION 4: FINDING OBSERVER GAINS and INITIAL CONDITIONS

%%%

gain_mat = 0.5*(H\(S'*C_bar'*Q1'*C_bar*T));

A_cl = tfo_aggreg_A_cont-tfo_aggreg_B_u_cont*gain_mat(1:n_clust_zones,1:end-

259

n_clust_zones);

tfo_aggreg_C =

[zeros(n_clust_zones,n_aggregations),eye(n_clust_zones),zeros(n_clust_zones,n_clust_zones)];

eigen = eig(A_cl);

des_obsv_poles =

[10*eigen(1:n_aggregations+n_clust_zones);10*min(eigen)*(linspace(1.1,1.2,n_clust_zones))'];

L_tfo_aggreg = (place(tfo_aggreg_A_cont',tfo_aggreg_C',des_obsv_poles))';

init_est = [25*ones(n_aggregations+n_clust_zones,1);zeros(n_clust_zones,1)];

end

% **

STEP 3: Implement the decentralized controllers and observers whose parameters were

computed in Step 2. This is done using appropriate MATLAB functions invoked real-time from

the SIMULINK model. Instead of providing these codes here, they are provided in Appendix L

where the Simulation framework used to perform the optimality analysis in chapter 6 is

described.

260

Appendix L

Codes for performing the optimality analysis (section

6.5.2.2)

The steps for performing the optimality analysis are listed below:

1. Execute the code shown in Step 1 in Appendix K.

2. Execute the code shown in Step 2 in Appendix K.. Note that this code must be modified

to reflect the appropriate control architecture (centralized/knee3/knee2/knee1/fully

decentralized) for which the results are desired.

3. Execute the program “disturbance_param.m” provided later in this section. This program

sets the parameters used to speify the disturbance vectors “d_z” and “d_w” and the

ambient temperature as per section 6.5.2.1.

4. Run the SIMULINK model “output_feedback_decentralized_mpc” provided in the media

accompanying this thesis. This model invokes the following MATLAB functions in real-

time:

a. “find_amb”: Provides the ambient temperature at each time instant

b. “disturbance_function”: Creates the vectors “d_w” and “d_z” at each time instant

as per section 6.5.2.1.

c. “temp_sensor”: Introduces a fault in the thermostat of a desired zone. Make sure

that the line “meas_temp(1) = 0” is commented out.

d. “decen_obsv”: Implements the observers designed in Appendix K for each cluster

in the architecture

e. “extract_eta1”: Extract the vector of estimates of “eta_hat_1” for each cluster

lumped into a giant vector

f. “extract_eta2”: Extract the of estimates of “eta_hat_2” for each cluster lumped

into a giant vector

g. “extract_zone_temp”: Extract the vector of zone temperature estimates

h. “find_ref”: Provide the zone set-point temperature at each time instant

i. “decen_mpc_with_dist”: Implements the model predictive controllers designed in

Appendix K for each cluster in the architecture

j. “actuator”: Provides the option of introducing actuator faults. This option was not

used in this thesis

261

The MATLAB programs and functions referenced above are shown below:

1. Program “disturbance_param.m”

%**

%matrix F

F = zeros(Nw);

mat_G = xlsread('identified_parameters_mod','int_wall_dist','B1:K10');

for i = 2:size(mat_G,1)

 for j = 2:size(mat_G,2)

 F(mat_G(i,1),mat_G(1,j)) = mat_G(i,j);

 end

end

mat_D = xlsread('identified_parameters_mod','int_wall_dist','B12:J20');

for i = 2:size(mat_D,1)

 for j = 2:size(mat_D,2)

 F(mat_D(i,1),mat_D(1,j)) = mat_D(i,j);

 end

end

mat_E = xlsread('identified_parameters_mod','int_wall_dist','B22:H28');

for i = 2:size(mat_E,1)

 for j = 2:size(mat_E,2)

 F(mat_E(i,1),mat_E(1,j)) = mat_E(i,j);

 end

end

mat_TC = xlsread('identified_parameters_mod','int_wall_dist','B30:J38');

for i = 2:size(mat_TC,1)

 for j = 2:size(mat_TC,2)

 F(mat_TC(i,1),mat_TC(1,j)) = mat_TC(i,j);

 end

end

mat_C = xlsread('identified_parameters_mod','int_wall_dist','B40:K49');

for i = 2:size(mat_C,1)

 for j = 2:size(mat_C,2)

 F(mat_C(i,1),mat_C(1,j)) = mat_C(i,j);

 end

end

mat_F1 = xlsread('identified_parameters_mod','int_wall_dist','B51:J59');

for i = 2:size(mat_F1,1)

 for j = 2:size(mat_F1,2)

262

 F(mat_F1(i,1),mat_F1(1,j)) = mat_F1(i,j);

 end

end

mat_F2 = xlsread('identified_parameters_mod','int_wall_dist','B61:K70');

for i = 2:size(mat_F2,1)

 for j = 2:size(mat_F2,2)

 F(mat_F2(i,1),mat_F2(1,j)) = mat_F2(i,j);

 end

end

mat_SR = xlsread('identified_parameters_mod','int_wall_dist','B72:H78');

for i = 2:size(mat_SR,1)

 for j = 2:size(mat_SR,2)

 F(mat_SR(i,1),mat_SR(1,j)) = mat_SR(i,j);

 end

end

mat_NTC = xlsread('identified_parameters_mod','int_wall_dist','B80:L90');

for i = 2:size(mat_NTC,1)

 for j = 2:size(mat_NTC,2)

 F(mat_NTC(i,1),mat_NTC(1,j)) = mat_NTC(i,j);

 end

end

%areas

all_walls =

[xlsread('identified_parameters_mod','consolidated','B4:BH4'),xlsread('identified_parameters

_mod','consolidated','B5:BH5')];

all_areas =

[xlsread('identified_parameters_mod','consolidated','B6:BH6'),xlsread('identified_parameters

_mod','consolidated','B6:BH6')];

for i = 1:length(all_walls)

 areas(all_walls(i)) = all_areas(i);

end

areas = areas(1:Nw);

%stephen boltzmann constant

sb_const = 5.67e-8;

%ground,sky and ambient temp

T_gnd = xlsread('identified_parameters_mod','rad_signals','B2:B7201');

T_sky = xlsread('identified_parameters_mod','rad_signals','C2:C7201');

T_air = T_gnd;

%view factors

263

temp_mat1 = xlsread('identified_parameters_mod','ext_wall_dist','C2:F119');

for i = 1:118

 F_gnd(temp_mat1(i,1)) = temp_mat1(i,2);

 F_sky(temp_mat1(i,1)) = temp_mat1(i,3);

 F_air(temp_mat1(i,1)) = temp_mat1(i,4);

end

F_gnd = F_gnd(1:Nw);

F_sky = F_gnd(1:Nw);

F_air = F_gnd(1:Nw);

%short wave radiations

q_swr = zeros(7200,Nw);

temp_mat2 = xlsread('identified_parameters_mod','rad_signals','D1:AD7201');

for i = 1:size(temp_mat2,2)

 q_swr(:,temp_mat2(1,i)) = temp_mat2(2:end,i);

end

%schedules

eta_occ = [0 0 0 0 0 0 0.1 0.2 0.95 0.95 0.95 0.95 0.5 0.95 0.95 0.95 0.95 0.7 0.4 0.4 0.1 0.1

0.05 0.05];

eta_light = [0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.7 0.5 0.5

0.3 0.3 0.1 0.05];

%eta_appl = [0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.9 0.9 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.8 0.6 0.6 0.5

0.5 0.4 0.4];

eta_appl = ones(1,24);

%Nominal loads

N_occ = xlsread('identified_parameters_mod','zone_dist','B2:B10');

W_light = xlsread('identified_parameters_mod','zone_dist','C2:C10');

W_appl = 0.5*xlsread('identified_parameters_mod','zone_dist','D2:D10');

save dist_param F areas sb_const T_gnd T_sky T_air F_gnd F_sky F_air q_swr eta_occ

eta_light eta_appl N_occ W_light W_appl

%**

2. Function “find_amb”

%**

function Ta = find_amb(t)

load dist_param

Ta = T_air(floor(t/60)+1);

end

%**

264

3. Function “disturbance_function”

%**

function dist = disturbance_function(u)

load dist_param

Nw = 103;

Nz = 9;

wall_temp = u(1:Nw);

zone_temp = u(Nw+1:Nw+Nz);

curr_time = u(Nw+Nz+1);

dw = zeros(Nw,1);

dz = zeros(Nz,1);

%Internal surfaces

for i = 1:Nw

 summ = 0;

 for j = 1:Nw

 summ = summ + F(i,j)*((273.15+wall_temp(j))^4 - (273.15+wall_temp(i))^4);

 end

 dw_in(i) = sb_const*areas(i)*summ;

end

%External surfaces

for i = 1:Nw

 if(F_sky(i)==1)

 factor_ab = 0.7;

 else

 factor_ab = 0.9;

 end

 dw_out(i) = sb_const*areas(i)*(F_gnd(i)*((273.15+T_gnd(floor(curr_time/60)+1))^4 -

(273.15+wall_temp(i))^4) + F_sky(i)*((273.15+T_sky(floor(curr_time/60)+1))^4 -

(273.15+wall_temp(i))^4) + F_air(i)*((273.15+T_air(floor(curr_time/60)+1))^4 -

(273.15+wall_temp(i))^4))+areas(i)*factor_ab*q_swr(floor(curr_time/60)+1);

end

%Determine hour in which time lies

dayy = floor(curr_time/(24*3600))+1;

t_bar = curr_time-(dayy-1)*24*3600;

hourr = floor(t_bar/3600)+1;

%Zones

for i = 1:Nz

265

 %dz(i) = 100*eta_occ(hourr)*N_occ(i) + 1000*eta_light(hourr)*W_light(i) +

1000*eta_appl(hourr)*W_appl(i);

 dz(i) = 100*eta_occ(hourr)*N_occ(i) + 1000*eta_light(hourr)*W_light(i) +

400*eta_appl(hourr)*eta_occ(hourr)*N_occ(i);

end

dw = (dw_in + dw_out)/1000;

dz = dz/1000;

dist = [dw';dz];

end

%**

4. Function “temp_sensor”:

%**

function meas_temp = temp_sensor(u)

act_temp = zeros(9,1);

act_temp(1:9,1) = u(1:9);

curr_time = u(10);

meas_temp = act_temp;

%meas_temp(1) = 0;

%**

5. Function “decen_obsv”:

%**

function der_estimates = decen_obsv(u)

load clust_info

%Obtain inputs

n_clust = length(struct_clust_zones);

summ = 0;

for j = 1:n_clust

 summ = summ + length(struct_aggregates(j).value)+2*length(struct_clust_zones(j).value);

end

n_all_states = summ;

all_states = zeros(n_all_states,1);

all_states(1:n_all_states,1) = u(1:n_all_states);

all_inputs = zeros(Nz,1);

all_inputs(1:Nz,1) = u(n_all_states+1:n_all_states+Nz);

Ta_meas = u(n_all_states+Nz+1);

Tg_meas = u(n_all_states+Nz+2);

all_err = zeros(Nz,1);

all_err(1:Nz,1) = u(n_all_states+Nz+2+1:n_all_states+Nz+2+Nz);

266

overall_T_hat = zeros(Nz,1);

overall_T_hat = u(n_all_states+Nz+2+Nz+1:n_all_states+Nz+2+Nz+Nz);

n_clust = length(struct_clust_zones);

summ = 0;

der_estimates = [];

 for j = 1:n_clust

 aggregates = struct_aggregates(j).value;

 n_aggregations = length(aggregates);

 clust_zones = struct_clust_zones(j).value;

 n_clust_zones = length(clust_zones);

 x =

all_states(summ+1:summ+length(struct_aggregates(j).value)+2*length(struct_clust_zones(j).

value));

 summ = summ +

length(struct_aggregates(j).value)+2*length(struct_clust_zones(j).value);

 u = zeros(n_clust_zones,1);

 u(1:n_clust_zones,1) = all_inputs(clust_zones);

 local_err = zeros(n_clust_zones,1);

 local_err(1:n_clust_zones,1) = all_err(clust_zones);

 ext_zones = struct_ext_zones(j).value;

 T_hat = overall_T_hat(ext_zones);

 der_x = struct_tfo_aggreg_A_cont(j).value*x + struct_tfo_aggreg_B_u_cont(j).value*u

+ struct_tfo_aggreg_B_a_cont(j).value*Ta_meas +

struct_tfo_aggreg_B_g_cont(j).value*Tg_meas +

struct_tfo_aggreg_B_hat_cont(j).value*T_hat + struct_L(j).value*local_err;

 der_estimates = [der_estimates;der_x];

 end

%**

6. Function “extract_eta1”:

%**

function all_eta = extract_eta1(u)

load clust_info

all_eta = [];

n_clust = length(struct_clust_zones);

summ = 0;

for j = 1:n_clust

 aggregates = struct_aggregates(j).value;

 n_aggregations = length(aggregates);

267

 x =

u(summ+1:summ+length(struct_aggregates(j).value)+2*length(struct_clust_zones(j).value));

 summ = summ +

length(struct_aggregates(j).value)+2*length(struct_clust_zones(j).value);

 local_eta = zeros(n_aggregations,1);

 local_eta(1:n_aggregations,1) = x(1:n_aggregations);

 all_eta = [all_eta;local_eta];

end

%**

7. Function “extract eta2”:

%**

function zone_dist = extract_eta2(u)

load clust_info

zone_dist = zeros(Nz,1);

n_clust = length(struct_clust_zones);

summ = 0;

for j = 1:n_clust

 aggregates = struct_aggregates(j).value;

 n_aggregations = length(aggregates);

 clust_zones = struct_clust_zones(j).value;

 n_clust_zones = length(clust_zones);

 x =

u(summ+1:summ+length(struct_aggregates(j).value)+2*length(struct_clust_zones(j).value));

 summ = summ +

length(struct_aggregates(j).value)+2*length(struct_clust_zones(j).value);

 local_dist = zeros(n_clust_zones,1);

 local_dist(1:n_clust_zones,1) =

x(n_aggregations+n_clust_zones+1:n_aggregations+n_clust_zones+n_clust_zones);

 zone_dist(clust_zones) = local_dist;

end

%**

8. Function “extract_zone_temp”

%**

function zone_temp = extract_zone_temp(u)

load clust_info

zone_temp = zeros(Nz,1);

n_clust = length(struct_clust_zones);

summ = 0;

268

for j = 1:n_clust

 aggregates = struct_aggregates(j).value;

 n_aggregations = length(aggregates);

 clust_zones = struct_clust_zones(j).value;

 n_clust_zones = length(clust_zones);

 x =

u(summ+1:summ+length(struct_aggregates(j).value)+2*length(struct_clust_zones(j).value));

 summ = summ +

length(struct_aggregates(j).value)+2*length(struct_clust_zones(j).value);

 local_zone_temp = zeros(n_clust_zones,1);

 local_zone_temp(1:n_clust_zones,1) =

x(n_aggregations+1:n_aggregations+n_clust_zones);

 zone_temp(clust_zones) = local_zone_temp;

end

%**

9. Function “find_ref”

%**

function ref = find_ref(t)

sp = [26.7*ones(1,6),24*ones(1,16),26.7*ones(1,2)];

%Determine hour in which time lies

dayy = floor(t/(24*3600))+1;

t_bar = t-(dayy-1)*24*3600;

hourr = floor(t_bar/3600)+1;

ref = sp(hourr);

%**

10. Function “decen_mpc_with_dist”:

%**

function u_star = decen_mpc_with_dist(u)

load clust_info

load u_values

%Obtain parameters

n_clust = length(struct_clust_zones);

summ = 0;

for j = 1:n_clust

 summ = summ +

length(struct_aggregates(j).value)+2*length(struct_clust_zones(j).value);

end

n_all_states = summ;

269

all_states = zeros(n_all_states,1);

all_states(1:n_all_states,1) = u(1:n_all_states);

all_inputs = zeros(Nz,1);

all_inputs(1:Nz,1) = u(n_all_states+1:n_all_states+Nz);

Ta_meas = u(n_all_states+Nz+1);

Tg_meas = u(n_all_states+Nz+2);

all_ref = zeros(Nz,1);

all_ref(1:Nz,1) = u(n_all_states+Nz+1+1+1:n_all_states+Nz+1+1+Nz);

current_time = u(n_all_states+Nz+1+1+Nz+1);

overall_T_hat = all_ref;

if(mod(current_time,Ts) == 0)

 summ = 0;

 for j = 1:n_clust

 %assignments for each cluster

 aggregates = struct_aggregates(j).value;

 n_aggregations = length(aggregates);

 clust_zones = struct_clust_zones(j).value;

 n_clust_zones = length(clust_zones);

 x0 =

all_states(summ+1:summ+length(struct_aggregates(j).value)+2*length(struct_clust_zones(j)

.value));

 summ = summ +

length(struct_aggregates(j).value)+2*length(struct_clust_zones(j).value);

 u0 = zeros(n_clust_zones,1);

 u0(1:n_clust_zones,1) = all_inputs(clust_zones);

 r_temp = zeros(n_clust_zones,1);

 r_temp(1:n_clust_zones,1) = all_ref(clust_zones);

 S = struct_S(j).value;

 C_bar = struct_C_bar(j).value;

 Q1 = struct_Q1(j).value;

 T = struct_T(j).value;

 W1 = struct_W1(j).value;

 W2 = struct_W2(j).value;

 W3 = struct_W3(j).value;

 ext_zones = struct_ext_zones(j).value;

 n_clust_ext_zones = length(ext_zones);

 T_hat = overall_T_hat(ext_zones);

 H = struct_H(j).value;

 A1 = struct_A1(j).value;

270

 A2 = struct_A2(j).value;

 A3 = struct_A3(j).value;

 A4 = struct_A4(j).value;

 A5 = struct_A5(j).value;

 A6 = struct_A6(j).value;

 A7 = struct_A7(j).value;

 T_supp = struct_T_supp(j).value;

 M_bar_max = struct_M_bar_max(j).value;

 Q_max = struct_Q_max(j).value;

 C_bar_temp = struct_C_bar_temp(j).value;

 %initial conditions, lifted disturbances and references

 x_bar0 = [x0;u0];

 Ta_bar = Ta_meas*ones(Np,1);

 Tg_bar = Tg_meas*ones(Np,1);

 T_hat_bar = zeros(n_clust_ext_zones*Np,1);

 for i = 1:Np

 T_hat_bar((i-1)*n_clust_ext_zones+1:i*n_clust_ext_zones,1) = T_hat;

 end

 r = [r_temp;zeros(n_clust_zones,1)];

 %R matrix

 R = zeros(Np*2*n_clust_zones,1);

 for i = 1:Np

 R((i-1)*2*n_clust_zones+1:i*2*n_clust_zones,1) = r;

 end

 %F matrix

 F = S'*C_bar'*Q1'*(C_bar*T*x_bar0 + C_bar*W1*Ta_bar + C_bar*W2*Tg_bar +

C_bar*W3*T_hat_bar - R);

A_constraint = [-

(A1+rho_a*cp_a*M_bar_max*C_bar_temp*A4);(A1+0*rho_a*cp_a*M_bar_max*C_bar_t

emp*A4)];

b_constraint = [-rho_a*cp_a*M_bar_max*(A2*T_supp -

C_bar_temp*(A3*x_bar0+A5*Ta_bar+A6*Tg_bar+A7*T_hat_bar)) + A2*u0 ;

0*rho_a*cp_a*M_bar_max*(A2*T_supp -

C_bar_temp*(A3*x_bar0+A5*Ta_bar+A6*Tg_bar+A7*T_hat_bar)) - A2*u0 +

A2*Q_max];

 %Optimization

 options = optimset('display', 'off', 'Algorithm', 'active-

set','MaxFunEvals',100000,'MaxIter',100000,'UseParallel','always','TolFun', 1e-4, 'TolX', 1e-

12, 'TolCon', 1e-12);

271

 init_point = zeros(Nu*n_clust_zones,1);

 D_u_star_lifted = quadprog(H,F,A_constraint,b_constraint,[],[],[],[],init_point,options);

 %D_u_star_lifted = quadprog(H,F,[],[],[],[],[],[],init_point,options);

 %Extraction of optimal control input

 D_u_star = D_u_star_lifted(1:n_clust_zones);

 u_star(clust_zones) = D_u_star + u0;

 u_prev(clust_zones) = u_star(clust_zones);

 end

 save u_values u_prev

else

 u_star = u_prev;

end

%u_star(1) = 140;

end

%**

11. Function “actuator”:

%**

function u_z_supp = actuator(u)

u_act = zeros(9,1);

u_max = zeros(9,1);

u_min = zeros(9,1);

u_act(1:9,1) = u(1:9);

u_max(1:9,1) = u(10:18);

u_min(1:9,1) = u(19:27);

u_z_supp = u_act;

%**

272

Appendix M

Codes for performing the robustness analysis (section

6.5.2.3)

The steps to perform the robustness analysis are the same as that for optimality analysis

(Appendix L), the only difference being that the line “meas_temp(1) = 0” in the function

“temp_sensor” should not be commented out.

