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Abstract

This thesis presents a framework for the design of interfaces that can only

obtain noisy and discrete inputs at high latency from a human user (e.g.,

with an electroencephalograph) to control a robotic system (e.g., a robotic

wheelchair) that can provide visual feedback. In this framework, the human

user communicates their intent by providing inputs in response to queries

posed by the robot. The underlying problem is then to construct a policy

that determines the next query to be posed in order for the robot to infer

the user’s intent as quickly and as reliably as possible. The approach is to

maximize the expected amount of information to be obtained per unit of

time from the user’s response given a Bayesian estimate of the user’s intent

and an estimate of how quickly and accurately the robot can obtain the

user’s response. Under certain conditions, this policy reduces to the optimal

feedback policy for transmitting a message between two computational agents

over discrete noisy channels. Remarkably, for an interesting class of user

intents (e.g., desired paths for robotic navigation), the queries synthesized

by the optimal feedback policy can be easily understood and used by humans

to convey their intent to the robot.

As a case study in the application of this framework, this thesis focuses

on the design of EEG-based brain-robot interfaces, which allow human users

to control robotic systems with an electroencephalograph (EEG). It presents

two interfaces for robotic navigation, where the user’s intent was a desired

path to be followed by the robot, and one interface for text entry, where the

user’s intent was a desired character to be spelled. The first interface enabled

users to navigate a simulated aircraft flying at a fixed speed and altitude over

smooth paths that corresponded to a sequence of path primitives. The sec-

ond interface enabled users to navigate a mobile robot in a virtual indoor

environment over paths that (locally) minimized a cost function recovered

from human-demonstrated data. These two interfaces provided a new strat-
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egy, i.e., navigation based on querying desired paths, which was shown to be

advantageous over existing EEG-based interfaces for robotic navigation. The

third interface enabled users to specify text commands with inputs obtained

from steady-state visually-evoked potentials in EEG at a rate twice as fast as

they would using prior state-of-the-art text entry interfaces working with the

same input mechanism. This interface showed the importance of querying

human intent adaptively based on the prior knowledge on human intent (e.g.,

likelihoods of characters) and the expected accuracy and latency of inputs.

iii



To my lovely wife Sara, and our unborn child.

iv



Acknowledgments

First and foremost, all praise belongs to Allah for granting me the opportu-

nity to write this dissertation.

I would like to express my sincere appreciation to my advisor, Timothy

Bretl, for his endless guidance, support, and encouragement. It has been a

privilege to do research on challenging problems under his supervision, which

motivated me to constantly look for better approaches. I have benefited a

lot from his vision, and especially from his interdisciplinary efforts. Without

these efforts, and his persistent help, this thesis would not have been possible.

I have been very honored to have David Forsyth, Seth Hutchinson, Steven

LaValle, and Andrew Bagnell in my dissertation committee. I would like to

thank them all for their invaluable feedback and assistance. Thanks to David

Forsyth, who has been extremely helpful with his inspiration and encourage-

ment. Thanks to Seth Hutchison, who has provided useful suggestions and

directions for research. Thanks to Steven LaValle, who has always been ea-

ger to help since my first days as a graduate student, and has encouraged

me to do interdisciplinary research. Thanks to Andrew Bagnell, who has

invited me to his lab at Carnegie Mellon University, and has provided new

perspectives on my research.

In addition to the members of my dissertation committee, I have interacted

with several faculty members at University of Illinois. I would like to thank

them all for their time and support. In particular, I owe many thanks to Dan

Roth, Jeff Erickson, and Todd Coleman.

I would like to extend my appreciation to members of my research groups,

the Robotics & Neuro-Mechanical Systems lab, and the Brain-Machine In-

terface group at University of Illinois, for their support, encouragement and

contributions. In particular, I am indebted to James Norton, Miles Johnson,

Rui Ma, Or Dantsker, Aadeel Akhtar, Navid Aghasadeghi and Aaron Becker

for helping me in many different ways.

v



I am also grateful to Onur Pekcan and Baris Aktemur for helping me adapt

to the environment at University of Illinois, and for offering me their help at

every opportunity.

Finally, I would like to thank my family for their support, encouragement,

and reassurance. My deepest appreciation goes to my wife, Sara Olgun, for

her love and patience.

vi



Table of Contents

I INTRODUCTION . . . . . . . . . . . . . . . . . 1

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Take-Away Message and Contributions . . . . . . . . . . . . . 5
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Survey on Brain-Machine Interfaces . . . . . . . . . . . . . 10
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Our Scope in Brain-Machine Interface Design . . . . . . . . . 12
2.3 Obtaining Discrete Noisy Inputs in EEG-based Interfaces . . . 13
2.4 EEG-based Interfaces for Robotic Control . . . . . . . . . . . 15
2.5 EEG-based Interfaces for Text Entry . . . . . . . . . . . . . . 18

II METHODS . . . . . . . . . . . . . . . . . . . . . 24

Chapter 3 Querying Human Intent using Optimal Feedback Policy . . 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Optimal Feedback Communication of Message Points . . . . . 26
3.3 Querying Human Intent using Optimal Feedback Commu-

nication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 4 Querying Human Intent using Active Inference Policy . . . 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Bayesian Active Inference . . . . . . . . . . . . . . . . . . . . 38
4.3 Querying Human Intent using Bayesian Active Inference . . . 41

Chapter 5 Representing Human Intent as Strings of Symbols for
Robotic Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Representing Desired Paths as Strings of Symbols . . . . . . . 48
5.3 Learning Prior Model for Strings of Symbols . . . . . . . . . . 51
5.4 Encoding Strings of Symbols as Message Points . . . . . . . . 54

vii



Chapter 6 Representing Human Intent as Local Geodesics for Robotic
Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Representing Desired Paths as Local Geodesics . . . . . . . . . 57
6.3 Encoding Local Geodesics as Message Points . . . . . . . . . . 58
6.4 Learning Prior Model for Local Geodesics . . . . . . . . . . . 64

III APPLICATIONS . . . . . . . . . . . . . . . . . 66

Chapter 7 Enabling Humans to Fly Simulated Aircraft with EEG . . 67
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Method for Navigating a Robot in a Planar Workspace . . . . 70
7.3 Interface for Flying a Simulated Aircraft with EEG . . . . . . 75
7.4 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . 78
7.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 86
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Chapter 8 Enabling Humans to Navigate Simulated Robots In-
doors with EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Method for Navigating a Robot along Local Geodesics . . . . 97
8.3 Interface for Navigating a Simulated Robot with EEG . . . . . 99
8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Chapter 9 Enabling Humans to Enter Text Commands with EEG . . 107
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.2 Method for Identifying a Desired Character . . . . . . . . . . 114
9.3 Interface for Entering Text Commands . . . . . . . . . . . . . 118
9.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

IV CONCLUSION . . . . . . . . . . . . . . . . . . 127

Chapter 10 Discussion and Future Work . . . . . . . . . . . . . . . . 128
10.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

viii



Part I
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Chapter 1

Introduction

1.1 Motivation

We are motivated by the design of non-invasive brain-machine interfaces

(BMIs) for the control of robotic devices, such as a prosthetic or a powered

wheelchair. These interfaces translate measurements of brain activity into

input commands for the robotic device, effectively enabling a human user to

control the robotic device with thoughts instead of with physical movements.

In particular, BMIs can be used by individuals with impaired sensory-motor

function, such as the patients suffering from severe spinal cord injuries, to

improve their quality of life. For instance, a tetraplegic human patient has

successfully controlled a wheelchair in a virtual environment with input only

from an electroencephalograph (EEG) [1].

The challenge in the design of EEG-based brain-machine interfaces is that

the input commands decoded from EEG signals are discrete, noisy and have

high latency. For example, in the motor-imagery paradigm, human users can

provide binary input commands by imagining movement of their left- versus

right-hand. The correlates of motor imagery in EEG signals come at a low

rate and with a low signal-to-noise ratio. Decoding of EEG signals yields a

single binary input at about every second with usually more than 10% chance

of error. Mapping these inputs directly to a control command for navigating

a robot, as would be done with a joystick, is no longer a good idea.

Most of the work on brain-machine interfaces has originated within the

neuroscience community and has focused on enriching the measurement and

decoding of brain activity. Much less work focused on improving the human

control of the robotic device under the constraints in the human user’s ability

to provide inputs. What is the appropriate level of task specification? How

should the user choose input commands? How should the robot provide
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Figure 1.1: This thesis considers human control of robots over a low-fidelity
input mechanism by leveraging the high-fidelity feedback mechanism. See
Section 1.2 for details.

feedback? These are the kind of questions we are interested in answering

because they have a significant impact on the overall performance of a brain-

machine interface.

1.2 Scope

We restrict our scope to the human control of robots with interfaces that

have a low-fidelity input mechanism and a high-fidelity feedback mechanism

(Figure 1.1). In particular, we consider low-fidelity input mechanisms that

provide noisy discrete input commands from the user to the robot with high

latency, such as the EEG-based brain-machine interfaces, and high-fidelity

feedback mechanisms that provide visual stimuli generated by the robot to

the user, such as a graphical display showing possible routes for robotic

navigation. Our objective in human control of robots with such interfaces

is to allow humans communicate their intent to the robot as quickly and as

reliably as possible.

In this section, we describe the assumptions we make about the input and

feedback mechanisms, and the capabilities of human users and the robotic

systems. We emphasize that these assumptions are satisfied by the three

EEG-based brain-machine interfaces we developed, which will be described

in Part III of this thesis.
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1.2.1 Assumptions about the input mechanism

The input mechanism is used by the human user to provide discrete inputs,

i.e., an input command from a low-cardinality set of possible input com-

mands. The provided input command is observed with noise by the robot,

meaning that with some error probability the robot will not observe the

command that the user provided. Furthermore, the observation occurs with

latency, meaning that the robot will receive an input command a period of

time after the user provides an input command. We also assume that the

noise and the latency in the input mechanisms follow a predictable structure.

In other words, the robot can estimate how much quickly and accurately in-

put commands can be provided with the input mechanism.

1.2.2 Assumptions about the feedback mechanism

The feedback mechanism is used to provide visual stimuli generated by the

robot to the human user. We assume that the visual stimuli are perceived by

the human user without any noise, and without any latency. In other words,

the feedback becomes immediately available to the human user without any

corruption.

1.2.3 Assumptions about the human user

We assume that the human user can interpret the visual stimuli generated

by the robot accurately, and follow a protocol that tells exactly which input

command to provide in order to communicate a particular intent. We refer

such a protocol as a “query”, and providing an input command by following

the protocol as responding to the query. For example, if the human user is

presented with a target speed for the robot, and the protocol is to provide

the input 0 for specifying a slower speed, and to provide the input 1 for

specifying a higher speed, the human user can accurately provide the correct

input bit correlated with their desired speed.

We further assume that the user determines their intent prior to com-

munication, and their intent remains fixed until the communication is over.

However, the methods and applications that will be described in this thesis

are still applicable when the user changes their intent during the commu-
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nication, as long as the new intent remains consistent with the prior input

commands (i.e., the responses to the previous queries remain the same).

1.2.4 Assumptions about the robotic system

We assume that the robot can present a visual stimulus, with which the

human user can follow a protocol to determine the input command for con-

veying a particular intent. We refer presenting such a stimulus as posing a

query or querying the human intent. For example, in order to determine the

desired place the human user wants the robot to go to, the robot can pose a

query with a visual stimulus that highlights a particular place in a menu of

target places. The protocol to be followed, described by the query, might be

to provide the input 1 if the highlighted place is the desired place; and the

input 0 otherwise.

We further assume that the robot is capable of autonomously performing

the desired task correlated with the user’s intent. For example, if the user’s

intent is a desired path for the robot to follow, we assume that the robot can

autonomously follow the paths that might be specified by the user.

1.3 Take-Away Message and Contributions

This thesis will show that human control of robots (as described in Section

1.2) can be done efficiently by having humans provide input commands in

response to queries that are posed by the robot to maximize the expected

amount of information to be obtained per unit time about human intent.

The contributions of this thesis are as follows:

• A framework to design interfaces for human control of robots. We intro-

duced an information-theoretic framework that modeled human control

of robots over discrete noisy channels with high latency as the problem

of communicating the human user’s intent to the robot as quickly and

as reliably as possible. Under this model, we developed two approaches

to the interface design. In the first approach, we derived an optimal

feedback policy to querying human intent [2, 3, 4, 5]. This policy was

based on the theory of optimal feedback communication, which aims to
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design codes for transmission of messages between two computational

agents [6, 7]. We showed that, for an interesting class of human in-

tents (e.g., desired paths for robotic navigation), the queries (codes)

synthesized by the optimal feedback policy can be easily understood

and used by humans to convey their intent (message) to the robot. In

the second approach, which generalized the first approach, we derived

an active inference policy to querying human intent. This policy was

based on the theory of Bayesian active inference (or learning), which

aims to adaptively select events that provide observations about an

object to be inferred by maximizing their expected value. [8, 9, 10].

We proposed a new measure to evaluate the value of a query (event),

called information gain rate, which computed the expected amount of

information to be obtained per unit of time about human intent.

• Compact representations of human intent for robotic navigation. For

robotic navigation tasks, we modeled the human intent as a desired

path to be followed by the robot. To allow desired paths to be com-

municated quickly and reliably using low-fidelity input mechanisms,

we constructed two different representations of desired paths. First,

we represented desired paths as strings of symbols from an ordered

symbolic language [2, 4]. This representation depended on a prob-

abilistic language model recovered from human-demonstrated paths,

which used a new approach we developed to represent arbitrary paths

as strings of symbols [11]. Second, we represented desired paths as

local geodesics, which (locally) minimized a cost function recovered

from human-demonstrated paths [12, 3]. We showed that the topol-

ogy (i.e., the path-homotopy class) of a local geodesic originating from

a fixed point in a polygonal domain (with obstacles) can be specified

using only its length, and a real-valued angle [12]. This representa-

tion allowed humans to specify desired paths by communicating only a

real-valued angle [3].

• Efficient EEG-based BMIs for robotic navigation using optimal feedback

policy. We developed two EEG-based brain-machine interfaces that

allowed human users to specify desired paths for robots as quickly and

as reliably as possible using queries synthesized by the optimal feedback

policy. See Figure 1.2. The first interface enabled users to navigate
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(b) Control of a virtual aircraft (c) Control of a mobile robot (a) User providing inputs with EEG 

Figure 1.2: Illustration of the two EEG-based brain-robot interfaces
developed as part of this thesis. Users of these interfaces provide input
commands with EEG [see (a)] in response queries presented via visual
feedback in order to control a simulated aircraft [see (b)], or to control a
virtual mobile robot indoors [see (c)].

a simulated aircraft flying at a fixed speed and altitude over smooth

paths that were represented as strings of symbols [4]. To our knowledge,

reliable EEG-based control of a simulated aircraft was not possible with

the existing interfaces. The second interface enabled users to navigate

a mobile robot in a virtual indoor environment over paths that were

represented as local geodesics [3]. To our knowledge, this interface

provided superior performance over existing EEG-based interfaces for

indoor navigation in terms of time to complete the navigation tasks

and the quality of paths followed by the robot.

• An efficient EEG-based BMI for text entry using active inference policy.

We developed a brain-machine interface that allowed human users to

specify text commands with inputs obtained from steady-state visually-

evoked potentials in EEG at a rate twice as fast as they would using

prior state-of-the-art text entry interfaces working with the same input

mechanism. This performance improvement was achieved using the

active inference policy that took into account a language model, and

expected accuracy and latency of inputs. To our knowledge, across

EEG-based text entry interfaces, our interface was first to take into

account expected accuracy and latency of inputs in adaptive selection

of queries for identifying desired characters.
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Figure 1.3: The organization of the thesis, showing the dependencies
between the chapters.

1.4 Thesis Organization

The remainder of this thesis is organized as illustrated in Figure 1.3, and as

described below.

• Chapter 2 provides an overview of EEG-based brain-machine inter-

faces. In particular, it describes existing methods for obtaining noisy

discrete input commands from EEG, and existing interfaces for human

control of robots and for text entry.

• Chapter 3 describes the use of optimal feedback communication to

construct the optimal feedback policy for querying human intent. In par-

ticular, it explains the optimal feedback communication scheme called

“posterior matching”, designed for transmission of a message point be-

tween two computational agents, and shows its applicability to human

control of robots over discrete noisy channels with high latency.

• Chapter 4 describes the use of Bayesian active inference to construct

the active inference policy for querying human intent. In particular, it
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defines a measure called “information gain rate” to evaluate the value

of a query.

• Chapter 5 describes our representation of desired paths as strings of

symbols from an ordered symbolic language, where symbols correspond

to path primitives. In particular, it provides an algorithm for represent-

ing arbitrary paths as strings of symbols, which facilitates the learning

of a probabilistic language model from human-demonstrated data, and

an approach for encoding strings as message points.

• Chapter 6 describes our representation of desired paths as local geo-

desics with respect to a cost function that takes into account proximity

to obstacles. In particular, it provides an algorithm for encoding local

geodesics as message points.

• Chapter 7 describes our EEG-based brain-robot interface that allows

human users to fly a simulated aircraft moving at a fixed speed and al-

titude with binary input commands obtained from EEG. This interface

uses the optimal feedback policy (Chapter 3) to query desired paths,

and represents desired paths as strings of symbols (Chapter 5).

• Chapter 8 describes our EEG-based brain-robot interface that allows

human users to navigate a mobile robot in a virtual indoor environment

with binary input commands obtained from EEG. The interface uses

the optimal feedback policy (Chapter 3) to query desired paths, and

represents desired paths as local geodesics (Chapter 6).

• Chapter 9 presents our EEG-based interface for text entry that allows

human users to specify text commands efficiently with discrete input

commands obtained from EEG. This interface uses the active inference

policy (Chapter 4) to query desired characters.

• Chapter 10 concludes the thesis with a discussion of the methods and

applications presented here, and with directions for future work.
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Chapter 2

Survey on Brain-Machine Interfaces

2.1 Overview

A brain-machine interface (BMI) is a direct communication pathway between

a human user and an external device [13, 14, 15]. This pathway allows human

users to control external devices with their thoughts.

The primary reason brain-machine interfaces are developed is that these

interfaces might improve the quality of life of individuals with spinal cord

injuries. In United States alone, there are approximately 300,000 people with

such injuries, and about ten percent of these people do not have voluntary

motor function [16]. Brain-machine interfaces developed over the past decade

have led to promising results like enabling tetraplegic human patients to

control prosthetic devices and wheelchairs [17, 1].

A brain-machine interface has four principle components: (1) a neural

sensor that measures the user’s brain activity, (2) a decoding algorithm that

maps these measurements to input commands for the device, (3) an external

device that executes the user’s intent, and (4) a sensory mechanism that

provides feedback to the user [18, 15, 19]. These components are illustrated

in Figure 2.1 and described below.

The neural sensor. The measurements of the brain activity may come

from non-invasive sensors like an electroencephalograph (EEG) that observes

the gross electrical activity of many neurons [20], or a functional near-infrared

spectroscope (fNIRs) that observes blood oxygen concentration levels in the

brain [21]. These measurements may also come from invasive sensors like an

electrocorticograph (ECoG) that measures electrical activity from cortical

surface [22], or a circuit that can observe ensemble spiking of individual

neurons [23, 24, 25]. Invasive sensors may provide higher signal to noise ratio

10
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Figure 2.1: The components of a brain-machine interface.

than non-invasive sensors [18]. But, their use in practice is very limited due

to the clinical procedures required to place or maintain the sensory circuit

inside the scalp [18]. EEG is the most widely used non-invasive sensor for

measuring brain activity in BMIs [26].

The decoding algorithm. The signals acquired by the neural sensor are

translated by the decoding algorithm to input commands for the device.

The first step in decoding often involves extraction of features that reflect

the user’s intent [18]. For example, features might be amplitudes of evoked

potentials in EEG. The second step is then to map these features into com-

mands that are used to operate the external device. The input commands

might be either discrete, indicating a choice from a set of possible choices, or

continuous, indicating a real value in a particular real interval. When the in-

put commands are discrete, the decoding algorithm is also called a classifier.

The decoding can be synchronous, i.e. occurring in fixed time intervals, or

asynchronous, i.e., occurring after a variable amount of time, for ex., when

a feature value exceeds a certain threshold [15]. Asynchronous interfaces

are also called self-paced because the user may have the control over when

to initiate a mental task that corresponds to an input command, such as

imagination of left-hand motor imagery to provide a “turn left” command.

The external device. The devices operated in brain-machine interfaces

infer the user’s intent from input commands produced by the decoding algo-
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rithm. For example, the device can be a graphical computer interface that

displays sentences typed by the user to communicate with others, or a cursor

positioned by the user to select a desired item from a set of items on the

screen. The device can be a virtual system such as an avatar in a computer

game, or a mobile robot simulated in a graphical environment. The device

can be a physical system such as a powered wheelchair that the user can

use to navigate, or a robotic manipulator that the user can use to pick up

objects.

The sensory feedback. The sensory feedback may provide the state of

the external device as well as the stimuli necessary for the human user to

perform particular mental tasks. For example, the state of the device may be

the current position of a mobile robot in an interface for robotic navigation,

or the characters spelled so far in an interface for text entry. The stimuli

may be a set of screen objects flashing steadily at different frequencies. Such

stimuli, used in SSVEP-based BCIs, allow users to provide input commands

by selectively attending to one of the objects [15]. The sensory feedback

often take one or more of the following forms: visual, auditory feedback, or

tactile. Visual feedback is by far the widely used form. It can be provided by

a graphical display or by observation of the external device through physical

coupling. Auditory feedback can inform the user about the state of the device

or stimuli by playing auditory cues. In tactile feedback, the user observes a

force applied to their body, which might encode the state of the device or

stimuli.

2.2 Our Scope in Brain-Machine Interface Design

The framework presented in this thesis provides a systematic approach to

the design brain-machine interfaces that decode brain activity into discrete

input commands and that use visual feedback to inform the user about the

state of the device or stimuli.

In this chapter, we restrict our scope to EEG-based BMIs because EEG

is the most widely used neural sensor and recorded EEG activity might

be decoded into discrete input commands using many of the established

paradigms for EEG. These paradigms determine how the user communicates
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with the device such as which mental tasks are performed by the user, and

how recorded EEG activity can be mapped to input commands. We further

restrict our scope to BMIs that use visual feedback because visual feedback

is by far the most widely used form of feedback, and humans can interpret

most visual stimuli correctly.

The rest of this chapter provides a survey of existing BMIs that fall under

our scope. Section 2.3 describes the major paradigms used to obtain discrete

input commands in EEG-based BMIs. Section 2.4 describes existing BMIs

for human control of robotic systems. Section 2.5 describes existing BMIs

for text entry. Although interfaces for text entry have not been considered

for human control of robots, they might be used by human users to specify a

text which might then be interpreted as a command for the robot to execute

a desired task.

2.3 Obtaining Discrete Noisy Inputs in EEG-based

Interfaces

Brain-machine interfaces can be operated with many paradigms, such as

by having the user perform left- or right-hand motor imagery to provide a

binary input to the external device. These paradigms determine how the user

communicates with the device through EEG. For example, they might specify

the mental tasks that must be performed by the user to generate decodable

brain activity, or they might specify the stimuli that must be presented to

the user to generate specific brain potentials.

In this section, we describe four widely-used paradigms for obtaining dis-

crete inputs through EEG: motor-imagery, P300, SSVEP, and ErrP. These

paradigms have been used to enable a wide range of tasks that include con-

trol of robotic systems (see Section 2.4), and communication with text entry

(see Section 2.5).

The performance of these paradigms is often measured using one or more

of the following metrics:

• Overall accuracy that determines the average probability that the clas-

sifier will produce the correct input command, i.e., the input that cor-

responds to the mental task being performed by the user. It can be
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computed from a set of trials as the fraction of correct input commands

to the number of trials.

• Overall latency that determines the average time it takes to obtain an

input command after the onset of a mental task.

• Information transfer rate (ITR) that determines the number of reliable

bits communicated per trial or per second. Let pa be the overall accu-

racy, d be the overall latency, and N be the number of possible input

commands. Then, ITR per trial is

ITRtrial = logN + pa log pa + (1− pa) log
(1− pa)
N − 1

(2.1)

bits, and ITR per second is

ITRsec =
ITRtrial

d
. (2.2)

Motor-imagery paradigm. In this paradigm, the user performs mental

tasks by imagining a motor action such as left-hand, right-hand, tongue or

foot movement [27, 28, 29]. A visual stimulus might be presented to help the

user determine the motor-imagery correlated with their intent. In order to

classify the motor-imagery performed by the user from recorded EEG signals,

a decoding algorithm is trained using EEG data labeled with ground-truth

inputs. The performance of decoding may vary significantly among subjects,

and decoding may not be possible for about 20% of potential users [30]. This

paradigm can be used to obtain a few number of distinct inputs (usually 2,3

or 4). The average performance of this paradigm has been reported in [31]

as 0.38 bits of ITR per second, and about 1.5 seconds of overall latency.

P300 paradigm. In this paradigm, the interface presents a set of choices

to the user and highlights each choice successively in a random or infrequent

order [32, 33, 34]. The user is instructed to focus their attention to their

desired choice. When the user’s desired choice is highlighted, the brain elicits

a strong potential, called P300, with a peak occurring after about 300ms. The

decoding algorithm can detect this potential from recorded EEG signals, and

use the observed timing of the peak to determine the user’s desired choice.

This paradigm can be used to obtain a large number of distinct inputs, but
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the overall latency grows linearly with the number of possible inputs. The

average performance of this paradigm has been reported in [31] as 0.47 bits

of ITR per second.

SSVEP paradigm. In this paradigm, EEG signals are used to extract

steady-state visually-evoked potentials (SSVEP). These potentials are ob-

served over the visual cortex as natural responses to steadily flashing stimuli

[35, 36]. In this paradigm, the interface presents a set of choices, where each

choice is associated with a visual stimulus flashing at a unique frequency. The

user’s desired choice can be obtained with little or no training by analyzing

the characteristics of the observed SSVEP responses in EEG. This paradigm

can be used to obtain a large number of distinct inputs, but increasing the

number of possible inputs, i.e., using more stimulation frequencies, might

reduce the information transfer rates. The number of different stimulation

frequencies are limited if stimuli are presented on an off-the-shelf monitor,

but using custom-built LED-based devices several dozens of distinct inputs

might be obtained [37, 38]. The average performance of this paradigm has

been reported in [31] as 0.44 bits of ITR per second, and about 2.10 seconds

of overall latency.

ErrP paradigm. This paradigm uses error-related potentials (ErrP) that

are elicited when a subject observes an incorrect feedback. A BMI can utilize

these potentials to detect if the user has made an incorrect choice [39], or

to detect if the external device took an incorrect action [40]. In [40], this

paradigm provided a binary input with overall accuracy of 0.80, and overall

latency of 0.5 seconds. Despite its limitation to binary inputs, this paradigm

can be used to enhance the throughput of other paradigms [39].

2.4 EEG-based Interfaces for Robotic Control

BMIs for human control of robots typically function in one of two different

ways: process control and goal selection [14, 41]. In process control, mea-

surements of brain activity are used to specify an immediate action to be

taken, such as moving a cursor to the left or to the right. In goal selection,

measurements of brain activity are used to specify the desired output after a
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sequence of actions, such as the location at which the cursor should end up.

Many existing EEG-based BMIs use one of these two approaches for human

control of robots.

2.4.1 Interfaces based on process control

Many existing EEG-based BMIs use process control for movement tasks,

such as for navigating a wheelchair [42, 43], or a mobile robot [44, 45, 46].

A problem with this strategy is that it tends to produce erratic motion due

to the direct mapping from noisy measurements of brain activity to control

inputs. Methods of shared control have been proposed as a way to reduce

this problem [47, 42, 43, 45]. With shared control, movement is determined

by “averaging” inputs produced by the BMI with inputs that might have

been expected given a prior model.

The works in [44, 42, 43] used three mental tasks to drive a mobile robot,

a physical wheelchair, and a virtual wheelchair, respectively. These mental

tasks corresponded to three input commands: “left”, “right”, and “forward”.

These inputs were filtered based on the context (e.g., proximity to obstacles)

before being mapped to motor commands for the wheelchair. The actual

speed and direction of the robot were determined by taking into account the

decoding algorithm’s belief on each command, and the prior probabilities

that penalized the commands that move the robot close to the obstacles.

Although shared control improved performance, erratic motion still occurred

when user inputs were erroneous or in conflict with the prior model used in

the filter.

In [46], a mobile robot was navigated with ErrP paradigm. Based on the

robot’s state, the interface proposed the user one of the following five possible

actions: “stop”, “left”, “right”, “forward”, “u-turn”. The ErrP paradigm

was used to detect whether or not the proposed action matched the user’s

desired one.

In [45], a helicopter was navigated in a 3D virtual environment using 4-

class motor-imagery paradigm, where the inputs mapped to left/right turns

or up/down movements of the virtual helicopter. This mapping used a cone

of guidance to avoid collisions with obstacles.

In [48], a simulated humanoid was navigated with SSVEP using three
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steering actions (“left”, “right”, and “stop”). Gaussian processes were used

to learn a probabilistic model over actions from the demonstrated trajecto-

ries. This learnt model was used to auto-complete trajectories based on the

uncertainty in the probabilistic model.

The works in [1], and [49] controlled an avatar in a virtual environment

with 2-class motor imagery, and 3-class SSVEP paradigm, respectively.

2.4.2 Interfaces based on goal selection

EEG-based BMIs based on goal selection allow human users to choose from

a set of destinations for a wheelchair [50, 51], or objects to be picked up by

a humanoid robot [52]. A problem with this strategy is that the set users

can choose from is restricted to the goals determined by the designer, and

the user has no control over how the robot achieves the selected goal.

For instance, Rebsamen et al. [51] enabled a human user to drive a powered

wheelchair to a destination selected by the user from a list of locations. These

destinations were restricted to a given list (bath, bed, office, etc.) and users

did not have any control over paths followed by the wheelchair to reach the

selected destination.

In [52], the interface showed pictures of the objects that could be picked

up by a humanoid robot, and the user manipulated the robot by selecting

one of these objects.

2.4.3 Interfaces based on hybrid strategies

In an effort to address the problems with process control and goal selection,

the BMI proposed by Iturrate et al. [53] used a hybrid strategy for robotic

wheelchair navigation. In this strategy, measurements of brain activity were

used to specify a subgoal that indicated the next location to be moved by

the robot. The user selected from a finite set of locations that were visible to

the robot, and the robot then moved to the selected location autonomously.

By repeating this process, in effect, the user specified a desired path step by

step.
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2.5 EEG-based Interfaces for Text Entry

Table 2.1: Example state-of-the-art spellers across several input paradigms.

Input Paradigm Text Speller Alphabet Size Language Model Spelling Rate

P300 (offline) Speier et al. 2011 36 char-based 7.3 cpm
P300 (online) Townsend et al. 2010 72 none 3.66 cpm

Motor-imagery Blankertz et al. 2007 30 char-based up to 6.7 cpm
SSVEP Volosyak et al. 2011 32 word-based 7 to 10 cpm

Gaze (discrete) Majaranta et al. 2009 36 none 20 wpm
Gaze (continuous) Ward et al. 2002 27 char-based up to 25 wpm

In this section, we describe existing EEG-based spellers that use one of the

paradigms described in Section 2.3 to obtain noisy discrete inputs from the

user. The performance of a text speller is often measured by its spelling rate,

which can be defined as the average number of characters spelled per minute

(cpm) or the average number of words spelled per minute (wpm). Table 2.1

shows the spelling rates of example state-of-the-art spellers for several input

paradigms. Here, we see that EEG-based input paradigms (P300, motor-

imagery, and SSVEP) allow spelling rates of up to 10 cpm. On the other

end, spellers based on gaze, which can be measured by an eye tracker, can

achieve spelling rates of up to 25 wpm.

2.5.1 Spellers using P300

P300 paradigm is the most widely used paradigm for text spelling across

all EEG-based interfaces [54, 55, 56]. Successful uses of P300 spellers by

disabled subjects, especially those that were diagnosed with amyotrophic

lateral sclerosis (ALS), have been reported in several studies [57, 58, 59, 55].

In the original P300 speller design [32, 33], characters are placed into a 6

by 6 matrix like the one shown in Figure 2.2. The interface illuminates row

and columns of the matrix successively for a fixed duration in random order,

while the user is gazing or focusing attention at a desired character. The

illumination of the gazed character, which corresponds to a rare event in the

“oddball” paradigm, elicits the P300 potential after about 300ms. After all

rows and columns are illuminated once, the interface can determine the gazed

character with some chance of error. Illumination of the rows and columns
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Figure 2.2: The classical layout of characters in a P300 speller. The first
row is shown illuminated.

multiple times decreases the error but increases the time to spell a character.

Illumination of the rows and columns, called the RC paradigm, is the

most common stimulus presentation paradigm in P300 spellers [55]. Two

other paradigms are the single cell (SC) paradigm, and the checkerboard

(CB) paradigm. In the SC paradigm, the characters are illuminated one by

one in a random order. In the CB paradigm, characters in the original matrix

are divided into two halves, one half containing the characters on the “white”

cells, and the other half containing the characters on the “black” cells [60].

White and black cells are determined using a checkerboard style coloring

of the original matrix. The characters to be illuminated are chosen from

either the first half or the second half. This avoids the “adjacency-distraction

problem”, since characters that are adjacent in the original matrix will not

be illuminated at the same time. Townsend et al. [60] compared these three

stimulus presentation paradigms, and reported that CB performs better than

RC, which performs better than SC.

In addition to the stimulus presentation paradigm, many other factors

affect the performance of a P300 speller. These factors include stimulus

duration, inter-stimulus interval, matrix size, stimulus intensity, and many

others [55]. One important factor is the signal processing and the decoding

process that are used to detect P300 responses. There has been a significant

amount of work in the past decade to improve the detection accuracy of

P300 responses [55]. Recent works focused on improving the spelling rates

by taking into account the online performance in P300 detection [61, 62, 63],
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probabilistic language models [64, 65, 66, 67, 63, 68], and by using adaptive

protocols that decide which characters get illuminated in which order [66, 67].

Recent works also aimed to reduce or eliminate the off-line training for

P300 detection process by using semi-supervised or unsupervised algorithms

that took into account unlabeled online data [69], offline knowledge available

from other subjects [70], as well as probabilistic language models [71].

2.5.2 Spellers using motor-imagery

In this section, we describe three motor-imagery based spellers developed by

different research groups in the last decade.

The interface by Scherer et al. [72] uses three motor-imagery tasks: imag-

ination of left-hand, right-hand, and foot movement. Users perform one of

these tasks continuously until a desired event occurs. 26 characters are sep-

arated into two sets and a few characters from each set are shown on the left

and right side of the screen in alphabetical order. The user imagines foot

movement to scroll the character bottom up so that characters at the top

disappear and new characters appear at the bottom. Whenever the user’s

desired character moves to the top-most position on the screen, the user

imagines left-hand motor imagery, if the desired character is on the left side,

or right-hand motor imagery, if the desired character is on the right side, re-

spectively. The desired character is spelled whenever a 1D cursor controlled

by continuous left- and right-hand motor imagery classification exceeds a

user-specific threshold. With this interface, a mean spelling rate of about 2

characters per minute have been obtained in experiments [72].

The Hex-o-Spell interface by Blankertz et al. [73] allows users to spell

in two steps by correctly timing two distinct motor-imagery events such as

right-hand imagery and foot imagery. In the first step, 30 characters are

placed into six clockwise-ordered hexagons, each containing five characters.

A cursor points to the top-most hexagon in the beginning. Users rotate this

cursor clockwise until it points to the hexagon containing their desired char-

acter by providing continuous right-hand motor imagery. Users then provide

continuous foot motor imagery until a certain amount of time to select the

target hexagon. In the second step, the characters in the target hexagon are

distributed into five hexagons, each containing a single character. This dis-
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tribution is based on a probabilistic language model that assigns likelihoods

to characters based on the history of characters spelled so far. In particular,

in the second step, the characters that are more likely are assigned to the

hexagons that are closer to the cursor’s initial position. Similar to the first

step, users provide the motor-imagery events to choose the target hexagon

that contains the character to be spelled. With this interface, spelling rates

of up to 7.6 characters per minute have been reported in [73].

The interface by D’Albis et al. [74] uses four motor-imagery tasks: imagi-

nation of left-hand, right-hand, both-hands, and feet movement. Users per-

form one of these tasks to select one of the four targets displayed on the

screen. Three of these targets contain subsets of characters, and the other

target contains auxiliary commands such as an “undo” command that re-

turns the interface to its previous state. Users can specify a character in

three steps by selecting the target that contains the desired character in each

step. At first, 27 characters are distributed across the three targets, each

containing 9 characters. In the second step, 9 characters in the selected tar-

get are distributed across the three targets, each containing 3 characters. In

the third step, each target contains a single character. These three steps

allow the interface to identify and spell the desired character. A probabilis-

tic language model is used to disable the characters that are unlikely to be

spelled in the current context. This might improve spelling rates, because

disabling characters might result in having only one enabled character in the

target selected in the first or second step. Whenever this occurs, the enabled

character might be spelled without any further steps. The interface also has

a word prediction mode, where the interface shows the three words that are

most likely in the current context. The user can select a word among these

words by selecting an auxiliary command first, and then the target associ-

ated with the desired word. With this interface, three subjects obtained a

spelling rate of between 2 and 3 characters per minute in [74].

2.5.3 Spellers using SSVEP

In this section, we describe three state-of-the-art SSVEP spellers. The speller

by Cecotti [75] and the speller by [76] use an off-the-shelf graphics monitor to

display 5 different stimulation frequencies. The speller by Hwang et al. [38]
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uses a custom-built LED-based hardware to display 30 different stimulation

frequencies.

The interface by Cecotti [75] allows users to specify a desired character

using a decision tree with three levels. Initially, 27 characters are presented

in three groups which consist of nine characters. These groups are displayed

at the left, middle, and right of the screen and are associated with stimuli

steadily flashing at different frequencies. Following the user’s initial choice

of a group, the nine characters are divided into three subgroups, each with

three characters apiece. This process repeat one more time, allowing for the

selection of a specific character. In addition to three stimuli used to select the

groups of characters, two other stimuli are used to issue a “delete character”

command that erases the previous character spelled, and a “previous action”

command that returns to the previous selection or moves up in the tree.

With this speller, they achieved a spelling rate of 5.51 characters per minute

with an overall accuracy of 0.92 on average in experiments [75].

The Bremen speller [76] uses a custom-designed grid containing 32 charac-

ters, and five stimuli steadily flashing at different frequencies. Users specify

a desired character by navigating a cursor starting at the center of the grid

to the grid location of their desired character. Four input commands are

used to navigate the cursor left, right, up, down in the grid, and a fifth input

command is used to spell the character at the cursor location. The number of

inputs required to spell a character depends on the distance of the character

from the center of the grid. To have user specify more frequent characters

with less number of inputs, the characters are placed in the grid at the design

time based on their frequencies in English texts. A demographics study on

the Bremen speller has shown that it could be used by a large population of

able-bodied users [77]. In a more recent version of the interface, users are

given an option to select a word from a short list of candidate words, which

are chosen based on their frequencies in the prior use of the interface [78].

Although this word prediction mechanism has provided marginal improve-

ments in spelling rates, some subjects reported that they would prefer not

to have this mechanism. Experiments with the Bremen speller show that it

can provide a spelling rate of between 7 to 10 characters [76, 78].

The interface by Hwang et al. [38] uses a custom-built hardware that gen-

erates 30 different stimulation frequencies. Users specify a desired character

by attending to the unique stimulus associated with their desired charac-
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ter. Although the one-to-one mapping between stimuli and characters allows

users to spell in one step, the use of many frequencies cause a decrease in

overall accuracy. Therefore, users need to correct for errors more frequently

than the spellers achieving higher overall accuracy with the use of less number

of frequencies. Despite this, they achieved a spelling rate of 9.4 characters

per minute with an overall accuracy of 0.88 on average in online spelling

experiments [38].
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Chapter 3

Querying Human Intent using Optimal
Feedback Policy

3.1 Introduction

This chapter presents a feedback information-theoretic approach, based on

optimal feedback communication [6, 7], to querying human intent for inter-

faces that can only obtain noisy and discrete inputs at high latency from a

human user, and that can provide the human user visual feedback. In this

approach, we model the interface as a communication channel with feedback,

with which the human user can communicate their intent. Its appeal is that,

there is a probably optimal communication scheme for transmission of infor-

mation over such a channel. We refer to the policy that determines how the

human user provides inputs to the communication channel with feedback as

the optimal feedback policy.

In Section 3.2, we describe the optimal communication scheme, called “pos-

terior matching”. This scheme is designed for transmission of information

represented as message points between two computational agents. In Sec-

tion 3.3, we show that this scheme can be used by the robot to construct

optimal policies for querying human intent. It is important to emphasize

that not all communication schemes might be implemented efficiently by

human users to transmit their intent, such as the schemes based on error-

correcting codes. However, we will see that the policies generated under the

posterior matching scheme for transmission over discrete noisy channels can

be used to query human users under certain conditions.

One limitation of this approach is that it assumes a particular structure on

the information to be transmitted. In particular, it represents this informa-

tion as a message point, i.e., real number uniformly distributed in a closed

interval. In order to use this policy for querying human intent, we need to

encode human intent as a message point. For robotic navigation tasks, this
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Figure 3.1: Communication over a discrete noisy channel with noiseless
feedback

encoding problem will be addressed in Chapters 5 and 6.

3.2 Optimal Feedback Communication of Message

Points

3.2.1 The feedback communication problem

We model the information to be transmitted between two computational

agents as a message point, which is defined by a random variable W uni-

formly distributed in the unit interval [0, 1). We call the agent sending the

information as the channel encoder, and the agent receiving the information

as the channel decoder. A discrete noisy channel is a system using which the

channel encoder sends symbols from an input alphabet X , and the channel

decoder receives symbols from an output alphabet Y . Such a channel consists

of a probability transition matrix PY |X , where PY |X(y|x) defines the probabil-

ity of receiving the output symbol y ∈ Y given that the input symbol x ∈ X
was sent. The channel is called memoryless if the channel output depends

only on the current channel input and conditionally independent of previous

channel inputs. Here, we consider only the channels that are memoryless. In

a channel with feedback, the channel outputs become immediately available

without noise to the channel encoder.

Communication over a discrete noisy channel with feedback is illustrated

in Figure 3.1. The channel’s k−th input is represented by a random variable

Xk ∈ X , and its realization is denoted xk. The channel’s k−th output is
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represented by a random variable Yk ∈ Y , and its realization is denoted yk.

We denote the past output variables Y1, Y2, . . . , Yk by Y k, and similarly the

past output instances y1, y2, . . . , yk by yk. Without loss of generality, if X
contains N symbols, we set X = {0, 1, . . . , N − 1}.

A communication policy, also called a channel code, consists of a sequence

of encoding functions and a sequence of decoding functions. The encoding

function fk determines how the encoder chooses the input xk given the output

values received via feedback, i.e.,

Xk = fk(W,Y
k−1). (3.1)

The decoding function gk determines how the decoder computes an estimate

of the message point, denoted Ŵk, from k channel outputs, i.e.,

Ŵk = gk(Y
k). (3.2)

The decoding error ek after k outputs is computed as

ek =
∣∣∣W − Ŵk

∣∣∣ . (3.3)

In addition to generating a point estimate Ŵk ∈ [0, 1], the decoder can

generate an interval estimate ∆k ∈ ξ, where ξ is the set of all subintervals

[a, b], a ≤ b in [0, 1]. ∆k can be computed from the posterior distribution

over W after receiving k channel outputs. We denote the probability density

function (PDF) of this distribution as PW |Y k(w|yk). Let Pk{[a, b]} be the

probability concentrated on the interval [a, b] of the posterior PW |Y k(w|yk),
i.e.,

Pk{[a, b)} =

∫ w=b

w=a

PW |Y k(w|yk)dw. (3.4)

Given a target error probability δk, the interval estimate ∆k is the smallest

subinterval that has a posterior probability concentration of at least 1− δk,
i.e.,

∆k = arg min∆∈ξ,Pk{∆}≥1−δk |∆|, (3.5)

where | · | denotes the width of an interval, i.e., b− a for [a, b].
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3.2.2 Conditions for optimality

A transmission rate R is achievable if the resulting estimate Ŵk computed

after k channel outputs satisfies

lim
k→∞

P
(∣∣∣W − Ŵk

∣∣∣ > 2−kR
)

= 0, (3.6)

which states that the decoding error decades exponentially fast with the

number of channel outputs. The capacity of the channel gives us an upper

bound on the achievable rates. The capacity, denoted C, is defined as

C = max
PX

I(X;Y ), (3.7)

where the maximum is taken over all possible input distributions PX . The in-

put distribution that maximizes the capacity is called the capacity-achieving

distribution and denoted P ∗X . A communication policy is optimal if any rate

R ≤ C is achievable.

A necessary condition for optimality is to maximize I(W ;Y k), i.e., the

mutual information between the message point W and the channel outputs

observed till time k, Y k [79, 80, 7]. This mutual information can be bound

as follows

I(W ;Y k) = H(Y k)−H(Y k|W ) (3.8)

= H(Y k)−
k∑
i=1

H(Yi|Y i−1,W ) (3.9)

= H(Y k)−
k∑
i=1

H(Yi|Xi) (3.10)

≤
k∑
i=1

H(Yi)−
k∑
i=1

H(Yi|Xi) (3.11)

=
k∑
i=1

I(Xi;Yi) (3.12)

≤ kC, (3.13)

where (3.10) follows because Xi is a function of Y i−1 and W , (3.11) follows

because conditioning reduces entropy, (3.12) follows from the definition of

mutual information, and (3.13) follows from the definition of capacity. The
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equality I(W ;Y k) = kC is established when

• Yi’s are independent, i.e., I(Yi|Y i−1) = 0 [then (3.11) becomes equality],

• Xi’s are distributed according to the capacity-achieving distribution

P ∗X [then (3.13) becomes equality].

We will see that these two properties are satisfied by the optimal communi-

cation scheme that will be described in Section 3.2.3.

3.2.3 Posterior matching scheme for optimal feedback
communication

For constructing optimal communication policies for general memoryless chan-

nels with noiseless feedback, Shayevitz et al. [7] recently introduced a scheme

termed “posterior matching”. Posterior matching (PM) specifies the channel

input at time k according to

Xk = fk(W,Y
k−1) = F−1

X (FW |Y k−1(W |Y k−1)), (3.14)

where FX(x) is the input cumulative distribution function (CDF) for the

channel (known a priori) and FW |Y k−1(w|yk−1) is the posterior conditional

CDF of W , and F−1
X is the inverse CDF given by F−1

X (t) = inf{x : FX(x) >

t}. Applying F−1
X shapes FW |Y k−1(W |Y k−1) into the input distribution PX ,

which is taken to be the capacity-achieving input distribution P ∗X for opti-

mality. Xk is statistically independent of past channel outputs Y k−1, and

captures the information that is still missing at the decoder. Since the chan-

nel is memoryless, Yk is independent of Y k−1 under the PM scheme.

For discrete memoryless channels, the encoding function fk in (3.14), given

by the PM scheme, can be remarkably simplified. This simplification will

be very useful in Section 3.3, since a human user will apply the encoding

function. The encoding function in (3.14) uses FW |Y k−1(w|yk−1), the posterior

conditional CDF of W , which is also computed at the decoder. In the PM

scheme, the encoder only needs a sufficient statistics of this CDF to determine

the next channel input. This suggests the use of the sufficient statistic,

denoted Zk after k channel outputs, as the noiseless feedback to the encoder

(see Figure 3.2).
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Figure 3.2: Communication over a discrete noisy channel with noiseless
feedback using the posterior matching scheme. After receiving the k−th
channel output, the decoder generates the feedback Zk. Instead of Y k−1, a
sufficient statistic Zk−1 can be used as feedback by the encoder, without
loss of optimality.

If the input alphabet contains N symbols, i.e., X = {0, 1, , . . . , N − 1},
then Zk = (Z

(0)
k , Z

(1)
k , . . . , Z

(N−2)
k ) is a random vector with N − 1 random

variables satisfying the constraint 0 ≤ Z
(0)
k ≤ Z

(1)
k ≤ . . . ≤ Z

(N−2)
k ≤ 1.

Given the CDF of the input distribution, FX , and the CDF of posterior of

W , FW |Y k−1(w|yk−1), Zk−1 is the random vector obtained by

Z
(i)
k−1 = F−1

W |Y k−1(FX(i)), ∀i ∈ {0, 1, . . . , N − 2}, (3.15)

where F−1
W |Y k−1(t) is the inverse CDF of the posterior. Intuitively, Zk−1 par-

titions the unit interval into N non-overlapping contiguous subintervals

[0, Z
(0)
k−1), [Z

(0)
k−1, Z

(1)
k−1), . . . , [Z

(N−2)
k−1 , 1),

such that the probability concentrated on the i−th interval, i = 0, . . . , N−1,

from left to right, is equal to P ∗X(X = i).

Given Zk−1 as feedback, the encoder can determine the next input Xk

using

φ(W,Zk−1) =



0 if W ∈ [0, Z
(0)
k−1),

1 if W ∈ [Z
(0)
k−1, Z

(1)
k−1),

. . .

N − 1 if W ∈ [Z
(N−2)
k−1 , 1).

(3.16)

Intuitively, φ(W,Zk−1) returns the index of the subinterval that contains W .

This can be used in place of the original encoding function fk, at any time

30



step k, i.e.

Xk = fk(W,Y
k−1) = φ(W,Zk−1), k ∈ {1, 2, . . . }. (3.17)

Given the channel output yk, the posterior distribution is updated using

the Bayes’ rule as

PW |Y k(w|yk) = η · PY |W,Y k−1(yk|w, yk−1) · PW |Y k−1(w|yk−1) (3.18)

= η · PY |X(yk|fk(w, yk−1)) · PW |Y k−1(w|yk−1), (3.19)

where η is a normalizing constant.

3.2.4 Example: Optimal feedback communication over a BSC

Let us demonstrate the optimal feedback communication of a message point

W over a binary symmetric channel (BSC). A BSC consists of the input and

output alphabets X = Y = {0, 1}, and a probability transition matrix PY |X

such that

PY |X(y|x) =

1− ε if y = x

ε if y 6= x,
(3.20)

where ε is the crossover probability. The capacity achieving distribution for

a BSC is P ∗X(0) = P ∗X(1) = 0.5. The CDF of this distribution is FX(0) =

0.5, FX(1) = 1.0. The feedback Zk−1 provided to the encoder under the PM

scheme consists of a single random variable Z
(0)
k−1. We omit the superscript

and use Zk−1 to denote Z
(0)
k−1. Using (3.15), we see that the optimal feedback

is

Zk−1 = F−1
W |Y k−1(0.5), (3.21)

which is simply the median of the posterior PDF PW |Y k−1 . The k−th channel

input Xk is chosen as

φ(W,Zk−1) =

0 if W < Zk−1

1 otherwise.
(3.22)
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After receiving the k−th channel output as yk = 0, the decoder updates the

posterior distribution over W as

PW |Y k(w|yk) = η ·

(1− ε) · PW |Y k−1(w|yk−1) if w < Zk−1

ε · PW |Y k−1(w|yk−1) otherwise,
(3.23)

where η is a normalizing constant. This update increases the probability

density of all points that are smaller than the median Zk−1. The update for

yk = 1 is analogous.

An example application of the PM scheme for transmitting a message

point W = w∗ over a BSC with crossover probability ε = 0.1 is shown in

Figure 3.3. At first, the posterior is uniform, and the feedback z0 is the

median at 0.5. Because w∗ is smaller than Z0, the encoder provides x1 = 0.

After observing a channel output y1 = 0, the decoder updates the posterior,

which increases the probability density of all points to the left of Z0 and

decreases the probability density of all points to the right of Z0. Then, the

decoder computes Z1 as the median of PW |Y1 . Upon receiving Z1 as feedback,

the encoder determines the next channel input and the process repeats. As

more channel outputs are observed, the posterior PDF, roughly, concentrates

on a smaller interval, and the decoding error decreases.

The results obtained with Monte Carlo simulations of the PM scheme

for message point transmission over a BSC are shown in Figure 3.4. For

the decoding function, we estimated the message point as the median of

the posterior PDF, i.e., Ŵk = Zk. As expected, the decoding error ek =∣∣∣W − Ŵk

∣∣∣ decayed exponentially with the number of channel outputs. The

figure also plots the probability that the point estimate after k channel

outputs, Ŵk, is within 5% of the randomly chosen message point W , i.e.,

Pk{[W − 0.025,W + 0.025)}.
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Figure 3.3: The evolution of the posterior distribution of W during a
transmission of the message point w∗. All plots show the base-2 logarithm
of the posterior PDF, i.e., logPW |Y k . At first, the posterior PW was uniform
(hence logPW was zero), and the feedback z0 was the median at 0.5. Since,
w∗ < z0, the encoder chose the next input to be x1 = 0. Upon observing
y1 = 0, the posterior was updated using Bayes’ rule to get the PDF
PW |Y1(·|y1) and the feedback z1. This process was repeated until ten
channel outputs were obtained. In this process, only the 7th channel output
did not match the 7th channel input, i.e, y7 6= x7. The 5th frame shows the
posterior PDF at the end, the decoded interval ∆10 with a target error
probability of 0.10 (marked by green lines, denoted [a, b)). Finally, the 6th
frame shows the posterior PDF zoomed to this decoded interval.
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Figure 3.4: The results of Monte Carlo simulations of the PM scheme for
transmission of a random message point W ∈ [0, 1) over a BSC with five
different crossover probabilities (see legend). For each time step
k = 0, . . . , 49, the mean decoding error (in log2), and the mean probability

that the point estimate Ŵk = Zk is within 5% of the message point W are
plotted in the left and right frame, respectively.
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3.3 Querying Human Intent using Optimal Feedback

Communication

In this section, first we cast the problem of designing interfaces for human

control of robots as a communication problem for reliable transmission of

human intent over a discrete noisy channel with noiseless feedback. Then,

we show that the PM scheme for transmission of a message point, described

in Section 3.2, can be used for transmission of human intent, provided that

there is an invertible mapping from human intents to message points.

Interface design as a communication problem for transmitting hu-

man intent. We view the goal of the interface is to facilitate quick and

reliable transmission of human intent, which we represent as a random object

V , taking values from a set V . We assume that human intent is distributed

with a probability distribution PV . We model the user’s input mechanism as a

noisy discrete channel, and we assume that this channel can provide noiseless

feedback through the feedback mechanism. In this model, the human user

acts as an encoder (essentially mapping the feedback to the channel input),

and the robot acts as a decoder (essentially mapping the channel outputs to

an estimate of the human intent V ). The goal is to design a communication

policy over the communication channel, with which the human intent can

be transmitted to the robot with vanishing error probability. Let v̂k be the

estimate generated by the robot after k channel outputs, and V = v∗ be the

chosen human intent. We call a communication policy optimal if it achieves

capacity and if P (v̂k 6= v∗)→ 0 as k →∞.

Solving the communication problem using the optimal communi-

cation policy for transmitting a message point. The optimal com-

munication policy described in Section 3.2 assumes that the message to be

transmitted is a message point W distributed uniformly in the unit interval

[0, 1). The source-channel separation theorem tells us that the design of an

optimal communication policy for transmitting an arbitrary message can be

done in two stages [79]. The first stage produces a source code, which is an

invertible mapping ψ : V → [0, 1) from the space of possible human intents

to points in the unit interval. Given the human intent is V , the message to

be transmitted becomes W = ψ(V ). A source code is optimal if the average
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Figure 3.5: Our abstraction of brain-machine interface design as a feedback
communication problem. The human users convey their intent V = v∗ to
the external device through a discrete noisy channel with noiseless feedback.

number of bits used to represent W matches the entropy of V as given by

the distribution PV . The second stage produces a channel code, or a com-

munication policy, for transmission of W over the underlying communication

channel. In this stage, we can use the optimal channel code given by the PM

scheme described in Section 3.2. If both the source code and the channel

code are optimal, the resulting communication protocol will be optimal [79].

The resulting communication protocol for transmitting human in-

tent under the PM scheme. Figure 3.5 illustrates the resulting com-

munication protocol, in particular for the design of brain-machine interfaces.

Let ψ : V → [0, 1) be the invertible mapping described by an optimal source

code. Recall that the encoder determines the next input Xk using the mes-

sage point W and the feedback Zk−1, i.e., Xk = φ(W,Zk−1). We show that

the encoder can use a function φ̄ that depends on V instead of W to deter-

mine the next input, i.e.,

Xk = φ(W,Zk−1) = φ̄(V, Z̄k−1), (3.24)

where V = ψ(−1)(W ), and Z̄k−1 is the feedback consisting of items from V ,

computed by applying the inverse mapping ψ−1 to the items of Zk−1. In

particular, recall that Zk−1 = (Z
(0)
k−1, Z

(1)
k−1, . . . , Z

(N−2)
k−1 ), where 0 ≤ Z

(0)
k−1 ≤
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Z
(1)
k−1 ≤ . . . ≤ Z

(N−2)
k−1 ≤ 1. Then, we define

Z̄
(i)
k−1 = ψ−1(Z

(i)
k−1), (3.25)

and require that

0 ≤ ψ(Z̄
(0)
k−1) ≤ ψ(Z̄

(1)
k−1) ≤ . . . ≤ ψ(Z̄

(N−2)
k−1 ) ≤ 1. (3.26)

Therefore, if we let V̄
(i)
k−1 = ψ(Z̄

(i)
k−1), the encoding function φ̄ becomes

φ̄(V, Z̄k−1) =



0 if V < V̄
(0)
k−1,

1 if V̄
(0)
k−1 ≤ V < V

(1)
k−1,

. . .

N − 1 if V ≥ V̄
(N−2)
k−1 ,

(3.27)

where “<” defines an ordering between the elements of V , and the mapping

ψ : V → [0, 1) preserves this ordering. Since the encoder is the human user,

we also require that human users can determine the pairwise ordering of any

two elements in V .

For robotic navigation tasks, we model the human intent as a desired path

to be followed by the robot. In Chapters 5 and 6, we will consider two differ-

ent representations of desired paths, and show that these representations can

be encoded as message points and human users can determine the ordering

of desired paths under these representations.
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Chapter 4

Querying Human Intent using Active Inference
Policy

4.1 Introduction

This chapter presents an approach based on the framework of Bayesian active

inference [8, 9, 10] to querying human intent for interfaces that can only

obtain noisy and discrete inputs at high latency from a human user, and that

can provide the human user visual feedback. In this approach, we construct

a policy that finds the query with the maximum value (e.g., information

content) given a Bayesian estimate of the human intent after the responses

to previous queries and an estimate of how quickly and accurately the robot

can obtain the human response. We propose a measure to evaluate the value

of a query, called information gain rate, which computes the expected amount

of information to be obtained per unit of time about human intent. We refer

to the policy that selects the query with the maximum information gain

rate from a given pool of queries as the active inference policy. This policy

generalizes the optimal feedback policy (Chapter 3), which was applicable for

querying human intent under certain conditions, i.e., when the synthesized

queries could be interpreted without error and without significant delay by

human users. Active inference policy can select queries from a given pool

of queries designed beforehand to ensure that humans can respond to each

query quickly and accurately. Therefore, active inference policy does not

have the limitations of the optimal feedback policy.

In Section 4.2, we describe the framework of Bayesian active inference,

which is used to infer an unknown object with a target probability of error

by adaptively selecting events that provide observations about the unknown

object. This framework can be viewed as (sequential) Bayesian experimental

design, where the goal of experimentation is to infer the unknown value of

the random object, which is assumed to be distributed according to a prior
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probability known by the designer. The experiment to design is chosen to

be the one with the maximum value given the observations from previous

experiments.

In Section 4.3, we show how this framework can be used for inferring

human intent with input commands that are discrete, noisy and that have

high latency. Here, experiments are queries that are posed by the robot to

extract information about the human intent. We compute the value of a

query as the expected amount of information to be extracted about human

intent per unit of time by posing the query. We show that, under certain

conditions, active inference policy reduces to the optimal feedback policy

described in Chapter 3 for transmitting a message point over discrete noisy

channels with noiseless feedback.

4.2 Bayesian Active Inference

Bayesian active inference aims to infer an unknown object (e.g., an unknown

parameter in a model) by adaptively selecting events (e.g., experiments, tests

or queries) that provide observations about the unknown object. For exam-

ple, consider the problem of inferring a patient’s disease by asking the patient

a sequence of questions about their symptoms. Here, the unknown object

is the patient’s disease, and the events are the queries that the doctor asks

the patient to understand whether the patient has a particular symptom or

not. The problem is to infer the unknown object with a target probability of

error using a minimum number of events, or more generally, by incurring a

minimum amount of cost, where each event has an associated cost (e.g., the

expected time to describe the patient the kind of conditions that represent

the particular symptom queried).

In the absence of noise in the observations, this problem is known as object

identification, or optimal decision tree problem, which has been shown to be

NP-complete [81]. A greedy algorithm known as generalized binary search

(GBS) provides a O(log n) approximation ratio, where n is the number of

possible objects [82]. The idea is to select the query that eliminates the

maximum number of objects on average. This is achieved by finding the

most even split between the remaining set of possible objects, so that the

true response will eliminate one side of the split.
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When the object to be inferred is a hypothesis for labeling data, this

problem is known as active learning [83, 10]. In active learning, the events

are queries that are used to obtain the true labels for selected unlabeled data

points. In pool-based active learning, we are given a pool of unlabeled data

points X , and we are interested in learning an hypothesis h that maps data

points X to labels chosen from a finite set L. Often, the labels are binary, i.e.,

L = {+1,−1}, and a query tests whether a particular data point x ∈ X has

a positive or negative label. Such queries are called membership queries. In

general, each query has an associated cost, and the goal is to find a consistent

hypothesis by minimizing the expected amount of cost. It has been shown

that the generalized binary search achieves a near-optimal expected cost

when the labels obtained by the queries are noiseless [82, 84, 85]. Recently,

for the case of learning hypotheses using membership queries with noisy

observations, modified versions of the GBS algorithm have been shown to be

near-optimal in both the setting where true responses might be observed by

repeating a particular query [86], and the setting where repeating a particular

query produces the same noisy response [87]. A different algorithm for the

latter setting has also been shown to be near-optimal [88].

One way to formalize the Bayesian active inference problem is to use the

framework of Bayesian experimental design [89]. Here, a query is in the form

of an experiment that is conducted to obtain information about an unknown

object, or to make a decision. Assume that the goal of experimentation is to

infer the unknown value of a random object V taking values from a set V .

Before the experimentation, we have a prior probability distribution over the

random objects, given by P (V ). An experiment ε for attaining information

on V is a tuple ε = (Y , P (Y |V )), where Y is the set of possible observations,

and P (Y |V ) is a collection of conditional probability densities p(y|v) for each

y ∈ Y , v ∈ V . The approach is to select the experiment to be the one with

the highest value, i.e.,

arg maxε∈E R(ε), (4.1)

where R(ε) is a function that measures the value of the experiment. Lindley

[8] suggested selecting the experiment for which the expected information

gain is the greatest, i.e., selecting

arg maxε∈E I(V ;Y |ε), (4.2)
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Figure 4.1: The components of an EEG-based brain-machine interface and
how they interact with each other in closed loop to obtain input commands
from the user.

where I(V ;Y |ε) is the expected information gain of the experiment ε mea-

sured by the mutual information between the random observation Y and the

random object V . Several other measures have been proposed for Bayesian

experiment design [9, 89].

In the decision-theoretic setting, the goal of the experimentation is to make

a terminal decision d from a set of possible decisions D [89]. Let U(d, v, ε, y)

be the utility of choosing the terminal decision d ∈ D when the unknown

object is v ∈ V , the experiment designed is ε ∈ E , and y is the observation

from ε. The experiment to design is then

arg maxε∈E

∫
Y

max
d∈D

∫
V
U(d, v, ε, y)p(v|y, ε)p(y|ε)dvdy, (4.3)

which maximizes the expected utility. Closed form solutions can be obtained

in simple models (e.g., the normal linear model) for some utility functions

[89].

40



4.3 Querying Human Intent using Bayesian Active

Inference

In this section, we describe our method of using Bayesian active inference

(Section 4.2) in the design of interfaces for human control of robots with

inputs that are discrete, noisy and that have high latency.

4.3.1 The model for querying human intent

We make the following choices that allow us to use the framework of Bayesian

active inference for querying human intent. These choices are consistent with

the scope defined in Section 1.2.

Modeling an input mechanism as a discrete noisy channel with

non-uniform latency structure. The human user communicates their

intent V to the robot by providing discrete noisy input commands. We

model this input mechanism as a discrete noisy memoryless channel with

non-uniform latency structure. We denote such a channel c as a 4-tuple

c = (X ,Y , PY |X , LX,Y ), where X is the channel input alphabet, Y is the

channel output alphabet, PY |X is the probability transition matrix, and LX,Y

is the latency matrix. PY |X(y|x) is the probability that the channel output

y ∈ Y is observed when the channel input is x ∈ X . LX,Y (x, y) is the

expected time it takes to observe y when the channel input is x ∈ X . We

refer to the elements of a particular channel c as X (c), Y(c), P
(c)
Y |X , and L

(c)
Y |X .

Modeling a query as a deterministic mapping from V to channel

inputs. Each query q defines a mapping f from the human user’s intent V

to the set of possible channel inputs, so that the user knows how to respond

to the query. In particular, we define a query q as a tuple q = (f, c), where

f : V → X (c), c ∈ C is the associated input mechanism, and X (c) is the

channel input alphabet of the input mechanism c.

Modeling the human user as the agent responding to queries with-

out making mistakes. The human user provides information about their

intent V by responding to queries. When the user’s intent is V = v, given a

query q = (f, c), the user provides the channel input x = f(v). We call this
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channel input as the user response, and represent it by a random variable

X(q) ∈ X (c). We assume that there is a pool of queries, denoted Q, where

the human user can respond each query q ∈ Q without making mistakes.

This means that the human user selects the channel input according to the

function f associated with the query q.

Modeling the robot as the agent selecting queries from a pool of

queries. The robot uses queries to extract information about the human

user’s intent V . Each query is selected from the pool of queries Q. After

a query q = (f, c) is selected, it is posed to the user by presenting a visual

stimulus. Then a channel output y ∈ Y(c) is received. This channel output,

also called input command, serves as a noisy response to the selected query,

and is represented by a random variable Y (q) ∈ Y(c).

Illustration. Querying human intent under these models is illustrated in

Figure 4.1. The human user communicates their intent V = v to the robot

by providing input commands successively through the selected input mech-

anisms. At time step k, the human user is presented with a visual stimulus,

which is a graphical representation of a query qk ∈ Q. We denote the mapping

and the input mechanism specified by qk as fk, and ck, respectively. As a re-

sponse to the query qk, the user provides the channel input xk = fk(v). Then,

the robot receives the channel output yk ∈ Y(ck), which is distributed accord-

ing to P
(ck)
Y |X(yk|xk), after an expected amount of time given by L

(ck)
X,Y (xk, yk).

We note that we refer the channel output yk as the input command for the

robot. The robot uses this command to increase its information about the

user’s desired character V . If a stopping criterion is achieved, it generates

an estimate V̂ , which might then be executed autonomously by the robot.

4.3.2 The approach for adaptively selecting queries

The approach is to adaptively select the next query to be the one with the

highest value for inferring V after the responses to previous queries, and

an estimate of how quickly and accurately the robot can obtain the user’s

response. In particular, we assume that there is a finite set C of input mech-

anisms modeled as discrete noisy channels with latency, and for each input

mechanism we know the characteristics of the underlying channel, i.e., the
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channel input alphabet X , the channel output alphabet Y , and probability

transitions matrix PY |X (estimating how accurate the channel outputs are),

and the latency matrix LX,Y (estimating how fast the channel outputs will

be observed). We further assume that there is a pool Q of possible queries,

for which the human user can respond without making mistakes.

Following the approach in Bayesian active inference (Section 4.2), the robot

selects each query to be the one with the highest value. At time step k, the

robot has observed the noisy responses to previous queries as input com-

mands y1, . . . , yk. Denote these input commands as yk. Therefore, the next

query qk+1 is selected to be

qk+1 = arg maxq∈QR(q|yk), (4.4)

where R(q|yk) is the value of a query q. We will describe our choice of the

value function in Section 4.3.3.

The robot maintains a posterior probability over V , denoted P (V |yk),
which represents the robot’s belief of V after the noisy responses to queries

posed so far. Assume that the robot posed the query qk+1 = (fk+1, ck+1),

and observed yk+1, then this belief is updated as

P (V = v|yk, yk+1) = ηP
(ck+1)

Y |X (yk+1|fk+1(v))P (V = v|yk), (4.5)

where η is a normalizer. This is obtained by applying the Bayes’ rule

P (V = v|yk, yk+1) = ηP (yk+1|V = v, yk)P (V = v|yk), (4.6)

and noting that

P (yk+1|V = v, yk) = P
(ck+1)

Y |X (yk+1|fk+1(v)) (4.7)

holds because the posterior probability of observing yk+1 is independent of

V given the channel input xk+1 = fk+1(v).

4.3.3 Computing the value of a query: information gain rate

We compute the value of a query by taking into account both the expected in-

formation gain from the noisy observation of the user’s response to the query,
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and the expected time it takes to receive the noisy observation. The expected

information gain for a query q = (f, c) after k observations is computed as

I(V ;Y (q)|yk), (4.8)

where Y (q) is the noisy observation to X(q) = f(V ), governed by P
(c)
Y |X . The

expected time it takes to receive the noisy observation, referred as the ex-

pected latency of a query q = (f, c), is computed as

EX,Y [L
(c)
X,Y ] =

∑
x∈X (c)

∑
y∈Y(c)

P (x, y)L
(c)
X,Y (x, y), (4.9)

where P (x, y) = P
(q)
X (x)PY |X(y|x) is the joint distribution over X(q), and

Y (q), and P
(q)
X is the probability distribution of user responses. Our value

function is the expected information gain per unit time, defined by the ratio

of the expected information gain to the expected latency, i.e.,

R(q|yk) =
I(V ;Y (q)|yk)
EX,Y [L

(c)
X,Y ]

. (4.10)

We refer to this function as the information gain rate.

The information gain rate can be simplified to increase time efficiency and

to observe the link between this approach and the optimal feedback policy

described in Chapter 3, as will be discussed in Section 4.3.4. First, note that

after k observations, X(q) is a random variable distributed with

P
(q)
X (x) =

∑
∀v∈V,f(v)=x

P (v|yk). (4.11)

Intuitively, PX(x) is the total posterior probability of all intents for which

the user must select x = f(v). Second, note that the conditional P (y|v) is

given by

P (y|v) = P (y|x = f(v)) = P
(c)
Y |X(y|x), ∀v ∈ V , (4.12)

using the deterministic mapping f from intents to user responses. Using
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these two observations, we see that

I(V ;Y (q)|yk) = H(Y (q)|yk)−H(Y (q)|V, yk)
= H(Y (q)|yk)−H(Y (q)|X(q), yk)

= I(X(q);Y (q)|yk).
(4.13)

Therefore, we can represent the information gain rate (IGR) for a given query

q = (f, c) as

R(q|yk) = IGR(P
(q)
X , P

(c)
Y |X , L

(c)
X,Y ) =

I(X(q);Y (q)|yk)
EX,Y [L

(c)
X,Y ]

, (4.14)

which depends on the likelihood of responses to the query, given by P
(q)
X , and

the estimate of how accurate and fast the response can be obtained, given

by the characteristics P
(c)
Y |X , L

(c)
X,Y of the input mechanism c associated with

the query.

4.3.4 Conditions under which the active inference policy
reduces to the optimal feedback policy

The active inference policy, which adaptively selects queries that maximize

information gain rates, reduces to the optimal feedback communication policy

described in Chapter 3 for reliable transmission of a message point W over

a discrete noisy communication channel under the following assumptions.

• The human intent can be modeled as a random variable V distributed

uniformly in the unit interval [0, 1). In other words, the human intent

can be represented as a message point.

• There is only one input mechanism c, and c has unit latency, i.e., the

latency matrix L
(c)
X,Y is a constant matrix.

• The query pool is Q = F × {c}, where F is the space of all encoding
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functions φ of the form in (3.16), i.e., functions

f(V ) =



0 if V ∈ [0, z(0)),

1 if V ∈ [z(0), z(1)),

. . .

N − 1 if V ∈ [z(N−2), 1),

(4.15)

for all z(0), z(1), . . . , z(N−2) ∈ [0, 1) satisfying 0 ≤ z(0) ≤ z(1) ≤ . . . ≤
z(N−2) ≤ 1, are in F , where N is the size of the channel input alphabet.

Under these assumptions, maximizing IGR is equivalent to maximizing the

mutual information between the channel input X, and the channel input Y .

By selecting the queries in this way, the channel operates at the capacity. In

other words, the likelihood of responses to the selected query is distributed

with the capacity-achieving input distribution P ∗X .
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Chapter 5

Representing Human Intent as Strings of
Symbols for Robotic Navigation

5.1 Introduction

In robotic navigation tasks, we model the human intent as a desired path

to be followed by the robot. This chapter presents an approach based on a

symbolic language to represent desired paths.

Our choice of a symbolic language to specify desired paths is motivated

by the symbolic structure of human language, in particular, the fact that

in text form it can be expressed as a sequence of characters and that in

speech form it can be expressed as a sequence of phonemes. We will see that

a planar path expressed as a string of symbols from a symbolic language,

admits useful properties, which allow the use the optimal feedback policy for

querying human intent, see Chapter 3, in interfaces for robotic navigation.

Several studies conducted on humans suggest that purposeful human move-

ments are composed of simple and highly stereotyped entities that are usually

called motor primitives, motion primitives, or submovements [90, 91, 92, 93].

These primitives have a characteristic shape or speed profile [94, 95] and

have been variously explained as the result of optimal control applied to

objective functions like minimum jerk, movement time, energy, or accelera-

tion [96, 97, 98, 99]. A motion primitive can be represented in many differ-

ent ways [100, 101, 102] such as a stochastic linear dynamical system with

primitive-specific set of parameters [103, 104], as a hidden Markov model

with primitive-specific output and transition probabilities [105], or as a curve

segment with primitive-specific velocity or shape profile [95, 106].

In our approach, we define a set of path primitives and use these primitives

as symbols to construct an alphabet. Strings of symbols from this alphabet

correspond to paths that result from concatenation of path primitives identi-

fied by the symbols. Section 5.2 describes our choice of path primitives and
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the properties of the resulting paths. In order to represent desired paths with

as few bits as possible in expectation, we learn a prior model that assigns

likelihood to each string from existing data. This prior model allows us to

represent paths that are more likely with less number of bits. Section 5.3

describes our algorithm for learning a prior model.

In Chapter 3, we concluded that encoding of human intent as a message

point in the unit interval admits an optimal feedback policy for querying

human intent. In Section 5.4, we describe an algorithm that encodes strings

as message points such that the expected number of bits necessary to specify

a message point is as small as possible.

5.2 Representing Desired Paths as Strings of Symbols

Our goal is to represent desired paths for a robot as strings of symbols chosen

from a fixed low-cardinality alphabet. Let us assume that the robot is in a

state q(t) ∈ Q in a configuration space Q at time t, and it has a deterministic

state transition function q̇ = f(q, u), where u(t) ∈ U is the control input at

time t. We define a path primitive as a tuple (a, d), where a is a quantized

input restricted to values from a finite set A ⊂ U , and d ∈ R+ is the duration

for which the input a is applied to the robot. In other words, if a primitive

(a, d) is applied to the robot at state q at t = 0, we require that

u(t) = a for t ∈ [0, d]. (5.1)

We refer to the path generated by integrating f , from a starting state q,

using the fixed input a ∈ A for d units of time as a symbol. We associate

a unique symbol to each possible primitive, and construct an alphabet Σ =

{σ1, σ2, . . . , σM}, where each symbol σi ∈ Σ corresponds to a path primitive

(a, d), a ∈ A, d ∈ R+. We can now represent paths concisely as strings of

symbols from Σ. Given a starting state q, a path γ in R2 or R3 can be

represented as a string v = (v1 · · · vN) with symbols vi ∈ Σ, i ∈ {1, . . . , n}.
We denote the set of all strings by Σ∗, and the set of all strings of length N

by ΣN . An example alphabet for constructing planar paths is presented in

Section 5.2.1.
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5.2.1 Alphabet of Circular Arcs for Constructing Planar
Paths

We consider representing piecewise-smooth planar curves as sequences of

fixed-length circular arcs with curvatures chosen from a finite set. From

differential geometry of curves [107], we know that any smooth planar curve

γ : [0, L]→ R2 of arbitrary length L can be described by

ẋ = cos θ ẏ = sin θ θ̇ = −u, (5.2)

for an initial condition

x(0) = x0 y(0) = y0 θ(0) = θ0, (5.3)

where θ(t) is the angle of the tangent to the curve at (x(t), y(t)), and u(t)

is the curvature. We assume x0 = y0 = θ0 = 0 without loss of generality.

The curve is straight when u = 0, turns left when u < 0, and turns right

when u > 0. These ordinary differential equations also define the state

transition function f of a unit-speed unicycle [108]. We consider a subset of

curves for which u is piecewise-constant on intervals of length d and takes

values from a finite setA = {a1, a2, . . . , aM}, where elements ofA are ordered

so that ai < aj for all i, j ∈ {1, . . . ,M} satisfying i < j. In particular, on

each interval k ∈ {1, 2, . . . }, we require that

u(t) = σI(k) (k − 1)d ≤ t ≤ kd (5.4)

for some I : N→ A. We define an alphabet Σ = {σ1, σ2, . . . , σM}, where each

symbol σi represents the circular arc generated by applying the primitive

(ai, d), for i ∈ {0, 1, . . . ,M}.
Figure 5.1 demonstrates an example alphabet consisting of seven fixed-

length circular arcs with central angles evenly distributed in [−π/2, π/2].

Three sample paths composed form this alphabet are shown in Figure 5.2.

Ordering strings of symbols

A key property of a symbolic language using an alphabet of circular arcs is

that it admits an intuitive lexicographic ordering. In our alphabet of circular

arcs, we have σ1 < σ2 < · · · < σM so that σi = (ai, d) < σj = (aj, d) if and
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σ1

σ2

σ3

σ4

σ5

σ6

σ7

Figure 5.1: An example alphabet consisting of a set of fixed-length circular
arcs.

start

v1 = (σ4σ3σ6)

v2 = (σ4σ4σ4)

v3 = (σ5σ2σ4)

Figure 5.2: Three sample paths composed from the example alphabet
in Figure 5.1. They exhibit the ordering v1 < v2 < v3.
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only if ai < aj. This corresponds to the notion that σi turns more left than

σj. For two curves v = (v1 · · · vN) and v′ = (v′1 · · · v′N), we say that v < v′

if and only if vk < v′k, where k is the minimum index for which vk 6= v′k. This

ordering corresponds to the notion that v “turns left” the first time it differs

from v′, and allows humans to “alphabetize” curves just like they would

alphabetize strings of text. Figure 5.2 shows three ordered paths starting

from the same configuration.

5.3 Learning Prior Model for Strings of Symbols

We think of a string v = (v1 · · · vN) as a realization of a random vector

V = (V1 · · ·VN), where each Vi ∈ Σ, i ∈ {1, . . . , N} is a random variable

identifying the i−th symbol of a desired path. We associate a prior statistical

model with our symbolic language by assuming that the user’s desired path

is governed by a Markov process.

Building statistical models for human motion has been proven to be useful

in applications like motion synthesis for computer animation [101, 103], ges-

ture or activity recognition from motion data [109, 110], and motion plan-

ning for robots [111, 112, 113]. The most common approach is to learn a

statistical model from a dataset of human demonstrated behavior by first

representing data using a class of motion primitives, and then by computing

conditional probabilities among these primitives using a Markov assumption.

In our model of human motion based on a symbolic language, this approach

consists of solving the following two problems:

• the segmentation problem: represent a human-demonstrated path γ as

a sequence of symbols from a given alphabet Σ. In particular, find

v = (v1, . . . , vn) ∈ Σ∗ that best approximates γ.

• the modeling problem: construct a probabilistic language model that

assigns conditional probability to a symbol given the past symbols,i.e.,

P (Vk|V1, . . . , Vk−1).
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5.3.1 Our approach to the segmentation problem

In the segmentation problem, our goal is to represent a human-demonstrated

desired path γ as a string v ∈ Σ in a given alphabet Σ. In order to solve the

segmentation problem, we minimize the approximation error

E (v = (v1, . . . , vN), γ) =
∑

vi,i∈{1,...,N}

e
(
vi, γ

(vi)
)

(5.5)

where e(γ(1), γ(2)) is a dissimilarity measure between two curve segments

γ1, γ2, and γ(vi) is the portion of the curve γ that the symbol vi ∈ Σ ap-

proximates under a given correspondence between the symbols of v and the

segments of the curve γ. Unfortunately, finding v∗ = arg minv∈Σ∗ E(v, γ)

exactly is not computationally efficient in most practical cases, and requires

a partial enumeration of all possible strings in Σ∗. However, we can get

an approximate answer by considering a discretization of the curve γ pa-

rameterized by the time-steps in a finite set T , and a cluster of quantized

configurations, denoted Q̂(t) ⊂ Q, for each time set t ∈ T . We assume that

the correspondence between the string v and the curve γ is defined so that

each curve segment corresponding to a symbol starts and ends at a time

step t ∈ T . In addition to minimizing the approximation error in (5.5), we

minimize the correspondence error

D (v = (v1, . . . , vN), γ) =
∑

vi,i∈{1,...,N}

d
(
qend(vi), q̂end(γ(vi))

)
, (5.6)

where d(q1, q2) is a distance measure between two configurations, qend(vi)

is the endpoint configuration of the symbol vi ∈ v, and q̂end(γ(vi)) is the

quantized endpoint-configuration of the curve segment corresponding to vi.

Given a curve γ, we reduced our problem to minimizing the cost

J(v, γ) = E(v, γ) + τD(v, γ), (5.7)

where τ is a parameter that determines the trade-off between the approxi-

mation error E and the correspondence error D.

This problem can be solved by dynamic programming. Let C(t, q̂), t ∈
T , q̂ ∈ Q̂(t) be the minimum cost of approximating the portion of the curve

γ till time step t, using the quantized configuration q̂ at its endpoint, with a
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string v ∈ Σ∗. Let V (t, q̂) be the string attaining the minimum cost. Then,

we have the recurrence

C(t, q̂) = min
t′∈T ,t′<t,q̂′∈Q(t′){

min
σ∈Σ, after V (t′,q̂′)

{e (σ, γt′→t) + τd (qend (σ)) , q̂)}+ C(t′, q̂′)

}
,

(5.8)

where γt′→t denotes the portion of the curve γ from t′ to t. Assuming that

the size of each cluster Q̂(t) is limited by |Q̂|, the complexity of this approach

is O(|Σ||T ||Q̂|).

5.3.2 Our approach to the modeling problem

In the modeling problem, our goal is to derive conditional probabilities

P (Vk|V1, . . . , Vk) from a set of given strings v1,v2,. . . , that represent human-

demonstrated desired paths. Given v = (v1v2 · · · vN), denote its prefix

(v1v2 · · · vb) as vb, and its substring (vava+1 · · · vb) as vba. An n-order Markov

model takes into account only the n previous symbols. In other words,

P (vk|vk−1) is given by P (vk|vk−1
k−n), which can be computed by counting the

frequency of vkk−n relative to the frequency of vk−1
k−n. In order to handle the

zero frequency problem, in practice, a small probability is assigned to each

unobserved sequence. Our approach is to use a variable-order Markov model

in which the size of the context used for prediction is adjusted based on the

available statistics. This is achieved by an algorithm known as prediction by

partial matching (PPM) [114], which has shown to be very effective in com-

pression of text sources, and in various other domains for predicting likely

discrete sequences [115].

5.3.3 Example: Learning a prior model for hand drawings

As an example, we demonstrate a statistical model for human hand drawings.

Such a model can be used in a robotic drawing interface for human specifica-

tion of paths for a robotic pen moving on a planar surface. From a database

of existing artwork, we obtained a set of strokes where each stroke is a planar

curve γ : [0, 1] → R2 formed by applying a drawing tool such as a pen to a

53



v1

v2

v3

v4

v5

s1

s5

s10

s14

s18

P (σi)

σ1σ2 . . . σ8 . . . σ15σf

0.2

0.1

0.0

Figure 5.3: Left: Fitting an arbitrary planar curve γ (shown in black) to a
string v (shown in blue) in Σ∗. The alphabet Σ consisted of 15 fixed-length
circular arcs σ1, · · · , σ15, and a special symbol σf to indicate the end of the
curve. Points s1, . . . , sM describe the curve γ, and arcs v1, . . . , vn describe
the string v. Right: The unigram model obtained from a dataset of hand
drawings. See [11].

drawing surface. Using our alphabet of circular arcs for constructing planar

paths, we solved the segmentation problem first to represent each stroke as

a string v ∈ Σ∗. Then, using these strings as input, we built a zero-order

Markov model, which is also called a unigram model. The results are shown

in Figure 5.3. The details of this work can be found in [11].

5.4 Encoding Strings of Symbols as Message Points

Our goal is to construct an invertible mapping ψ : Σ∗ → [0, 1) from random

strings V ∈ Σ∗ distributed according to a given statistical model P (V) to

message points W ∈ [0, 1) distributed uniformly in the unit interval. Such

a mapping is called a source code. A source code is optimal if the average

number of bits used to represent the message point W = ψ(V) matches the

entropy of the statistical model P (V).

Our approach is to use a method of lossless data compression called arith-

metic coding [116] as our source code. Arithmetic coding maps a random

string V = (V1, V2, . . . , VN) with random variables Vi ∈ Σ into a subinterval

[lV, rV) ∈ [0, 1). Any point W ∈ [lV, rV) can be used to represent V , here we

simply choose ψ(V) as the midpoint (lV + rV)/2. A set of paths and their

mappings under a uniform prior over symbols are illustrated in Fig. 5.4.
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0 F (σ1) F (σ2) F (σ3) F (σ4) F (σ5) F (σ6) 1

Figure 5.4: All paths composed of three symbols mapped to a real point in
[0, 1) using arithmetic coding. F (σi) is the probability that the first symbol
is σi or comes before σi, which is i/7 in this example.

Algorithm 1 Source Decoding: ψ−1 : [0, 1)→ ΣN

Input: W ∈ [0, 1)
Output: V = (V1, V2, . . . , VM), Vi ∈ Σ,V ∈ ΣN

1: umin ← 0
2: umax ← 1
3: for j = 1 to N do
4: δ ← umax − umin

5: i = 0
6: repeat
7: i← i+ 1
8: until P (Vj ≤ σi|v1 . . . vj−1) ≥ (W − umin)/δ
9: umax ← umin + δP (Vj ≤ σi|v1 . . . vj−1)

10: umin ← umin + δP (Vj < σi|v1 . . . vj−1)
11: Vj = σi
12: end for

Given a desired length M , the inverse mapping ψ−1 : [0, 1)→ ΣN , from a

real number W ∈ [0, 1) to a random string V = (V1, V2, . . . , VN), is described

in Algorithm 1.

This method is both optimal and has the useful property that it preserves

lexicographic ordering, so that v < v′ if and only if ψ(v) < ψ(v′).
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Chapter 6

Representing Human Intent as Local
Geodesics for Robotic Navigation

6.1 Introduction

In robotic navigation tasks, we model the human intent as a desired path to

be followed by the robot. It is necessary to restrict the space of all possible

paths the user can specify because arbitrary paths cannot be described with

a finite number of inputs. In Chapter 5, we made a heuristic choice, and

used an ordered symbolic language to represent paths of piecewise-constant

curvature. In this chapter, we present an approach based on learning a

principle of optimality to make the choice of representation more systematic.

Although the space of all possible paths through a finite-dimensional space

is infinite-dimensional, paths taken by “real” robotic systems often cluster on

a finite-dimensional manifold that is embedded in this infinite-dimensional

space and that is governed by a principle of optimality. We take advantage

of this property to generate a compact representation of all paths likely to

be seen in the context of a particular application. In particular, we rep-

resent desired paths as local geodesics with respect to a cost function that

takes into account environment-driven features such as proximity to obsta-

cles (Section 6.2). We show that an important subset of all local geodesics

can be encoded as a message point in the unit circle, so that each angle in

[0, 2π) corresponds to a unique local geodesic (Section 6.3). Given a set of

human-demonstrated paths, we can apply an algorithm based on structure

learning to recover a cost function so that local geodesics resemble human-

demonstrated paths (Section 6.4).
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6.2 Representing Desired Paths as Local Geodesics

We represent desired paths as geodesics that are locally-optimal solutions to

minimize

∫ t=T

t=0

g(γ(t))dt

s.t. γ(t) ∈ Qfree,∀t ∈ [0, T ]

γ(0) = q0 and γ(T ) = q1,

(6.1)

where γ : [0, T ]→ Qfree is a continuous function, Qfree is the free configuration

space, g : Qfree → R+ is a given cost function, q0 and q1 are given start and

end configurations, respectively, and T is the free final time. We call a

configuration free if the robot at this configuration is not in contact with an

obstacle, and call it semi-free if the robot touches an obstacle. We define

Qfree as the set of free and semi-free configurations.

To make things concrete, we consider a point robot moving through a

bounded planar workspace with polygonal obstacles—also called a polygonal

domain— which has Qfree ∈ R2. A set of sample geodesics between two

configurations are shown in Figure 6.1.

Obstacles induce a topological structure to paths in Qfree. Two paths γ

and γ′ are called path-homotopic if they share the same endpoints in Qfree

and if γ can be continuously deformed to γ′. The path-homotopy defines

an equivalence relation and this relation divides paths into path-homotopy

classes. We assume that a cost function g : Qfree → R+ is given so that

there is a unique local geodesic for each path-homotopy class. This allows

us to represent a local geodesic only by a path-homotopy class which may

be defined using a (reference) path π : [0, 1] → Qfree with π(0) = q0 and

π(1) = q1, and denoted [π].

We refer a local geodesic as a locally-shorted path if the cost function g

is a constant, i.e., g(q) = c,∀q ∈ Qfree. We say that a geodesic from q0 to

q1 is globally-shortest if it has the shortest length among all locally-shortest

paths from q0 to q1. For each path-homotopy class [π], there is a unique

locally-shortest path that is path-homotopic to π.
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b

g
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Figure 6.1: Four sample local geodesics between a start and an end position
in a polygonal domain.

6.3 Encoding Local Geodesics as Message Points

In this section, we show that an important subset of all local geodesics orig-

inating from a fixed starting point can be encoded as a message point in

the unit circle, so that each angle in [0, 2π) corresponds to a unique local

geodesic.

6.3.1 The homeomorphism between locally-shortest paths
and the unit disk

In this section, we show by direct construction that the set of all paths

γ : [0, T ] → Qfree having length that is bounded and locally minimal is

homeomorphic to the unit disk, denoted D1 = {x|x ∈ R2, ‖x‖ ≤ 1}.

Visibility and the structure of shortest paths

First, we review the structure of shortest paths in a planar workspace with

polygonal obstacles and describe efficient ways to compute this structure [108,

117, 118]. Let P represent a polygonal domain with a free configuration

space Qfree. We say that two points p, q in Qfree are visible if there exist

a line segment between p and q in Qfree. A vertex v of P is reflex if the

interior angle between its two incident edges is greater than π. Let SR be

the set of reflex vertices in P . The shortest path from q0 to q1 is always a

polygonal line in Qfree with vertices chosen from the set S = SR ∪ {q0, q1}.
In particular, its first edge is a line segment from q0 to a reflex vertex and its
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last edge is a line segment from a reflex vertex to q1. All intermediate edges

are line segments between the visible reflex vertices, and they either lie in the

boundary of P (a boundary edge) or they are tangents to P at both endpoints

(a bitangent edge). The graph containing the boundary and bitangent edges

of P between the visible reflex vertices is called a shortest-path roadmap G,

or a reduced visibility graph. This graph representation allows us to obtain

globally-shortest paths from q0 to q1 efficiently. We extend G to contain edges

from {q0, q1} to the reflex vertices that are visible, and then we do a graph

search from q0 to q1 in the resulting graph. If multiple globally-shortest

path queries from a fixed q0 are going to be performed, we can construct

a shortest-path map using the continuous Dijkstra method. This map is a

planar decomposition of Qfree into cells such that all globally-shortest paths

ending in the same cell are identical except at their last polygonal segment.

Once constructed, this map representation allows us to obtain the globally-

shortest paths from q0 without searching a graph. Another version of the

shortest path problem is to find the locally-shortest path in a given path-

homotopy class. The path-homotopy class can be expressed as a sequence of

triangles in a triangulation of P . In this case, the locally-shortest path can

be computed efficiently using the funnel algorithm. See [108, 117, 118] for

details.

For a polygonal domain P , the region of P visible from a source point

x is called the visibility polygon of x, and denoted by Vx, see Figure 6.2.

The visibility polygon can be computed in time O(n log n) if P has n edges.

We refer a line segment in Vx that crosses the interior of P as an extension

edge. For each extension edge, we refer its vertex that is closest to x as a

way point and its other vertex as an extension point. The way points are

vertices through which shortest paths originated from x can cross. We refer

to a polygonal chain between two extension edges in the boundary of Vx as a

boundary edge. This allows us to represent the boundary of Vx as a sequence

of extension and boundary edges.

Our representation for locally-shortest paths is most closely related to gap

navigation trees [119]. It is constructed from the sequence of critical events

occurring in the robot’s visibility region as the robot moves in the environ-

ment. This tree structure can be used to solve several visibility-based tasks

including locally-optimal navigation.
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Figure 6.2: The visibility polygon of a point x, denoted by Vx is shown in
light gray. The way points from x are marked with black diamonds, and the
extension points are marked with empty diamonds. The extension edges are
shown in green, and the boundary edges are shown in blue.

Ṽx

x

w1

u1

w4

u2

w3

u3

w2

u4

Figure 6.3: Embedding the visibility polygon Vx of Figure 6.2 to a region
(cell) of the unit disk, denoted by Ṽx. The boundary edges of Vx become
circular arcs along the disk boundary and the extension edges of Vx become
the chords of the unit disk.

Locally-shortest paths as points in the unit disk

We define Π(x) to be the set of all locally-shortest paths (with bounded

length) originating from x ∈ Qfree, and Πb(x) ⊂ Π(x) to be the set of paths

in Π(x) that terminate at a semi-free configuration (a boundary point). We

denote the (closed) unit disk by D1. We construct a homeomorphism ψ :

Π(x) → D1 such that the restriction of ψ to Πb(x) is the boundary of the

unit disk, i.e. the unit circle S1.
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First, we map the locally-shortest paths terminating in Vx to a closed

planar region (cell) of D1, denoted by Ṽx. The cell Ṽx is bounded by a set

of chords in D1 and a set of circular arcs along the disk boundary. We have

a chord for each extension edge in Vx, and we have a circular arc for each

boundary edge in Vx. The cyclic ordering of the chords and circular arcs in

Ṽx matches to the cyclic ordering of the edges of Vx. An embedding of Vx

of Figure 6.2 to Ṽx is shown in Figure 6.3. The shortest paths ending at the

boundary edges of Vx map to the points along the disk boundary, and the

shortest paths ending at the extension edges of Vx map to the points on the

chords.

Then, we iterate over the way points of Vx. Let Vx→wi
be the set of points

that become newly visible by going from x to a way point wi. All shortest

paths terminating at a configuration q ∈ Vx→wi
contain the straight segment

from x to wi in their prefix. Vx→wi
can be computed by cutting the visibility

polygon of wi, Vwi
, by the extension edge from wi in Vx. The embedding of

Vx→wi
is the cell adjacent to the chord in Ṽx that corresponds to the extension

edge from wi. We denote this cell by Ṽx→wi
. Its boundary, like Ṽx, consists of

a circular arc for each boundary edge, and a chord for each extension edge. As

the algorithm moves to a new way point, a new set of points become visible

and we map them to the cells that are adjacent to the chords corresponding

to extension edges of the previous visibility region. This process is illustrated

in Figure 6.4.

Finally, we map the interior of Vp→q to the interior of Ṽp→q by doing a

triangulation of Vp→q and matching triangles in Vp→q to the cells of Ṽp→q

that are either bounded by three chords or bounded by two chords and a

circular arc. Any point in the interior of Ṽp→q represent a path π ∈ Π(x)

that terminate in the interior of Vp→q. Likewise, any point in the boundary

of Ṽp→q represents a path π ∈ Πb(x) that terminates in the boundary of Vp→q.

Figure 6.5 shows a set of paths in Πb(x) and their mapping to points in S1.

6.3.2 Using the homeomorphism to encode local geodesics as
message points

There is a one-to-one correspondence between the elements of the following

three sets for a given starting point q0 ∈ Qfree:
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Figure 6.4: Three iterations of constructing a unit disk representation of
locally-shortest paths. The top row shows the set of points that become
newly visible as the algorithm iterates over the way points. The bottom
row shows the embeddings of these visibility regions in the unit disk. Vx is
the visibility polygon of x, and Vp→q is the set of points that become newly

visible by moving from p to q. Their embeddings are Ṽx and Ṽp→q,
respectively.

• The set of all locally-shortest paths from q0 ∈ Qfree, denoted Π(q0).

• The set of all path-homotopy classes in Qfree with a starting point q0.

This set is known as the universal covering space, denoted Q̂, and

defined as Q̂(q0) = {[γ]|γ : [0, 1] → Qfree and γ(0) = q0}. We can

think of Q̂ as the space formed by concatenating the end points of all

path-homotopy classes from q0.

• The set of all local geodesics from q0, under a cost function g that

is defined so that each path-homotopy class contains a unique local

geodesic. We denote this set as Γg(q0).

This correspondence allows us to use the homeomorphism ψ : Π(q0)→ D1

derived in Section 6.3.1, to encode path-homotopy classes in Q̂(q0) or local

geodesics in Γg(q0) as points in the unit disk. Moreover, the restriction of ψ

to locally-shortest paths in Πb(q0) allows us to encode path-homotopy classes

in Q̂(q0) that end at the boundary (denote them Q̂b(q0)) or local geodesics in
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Figure 6.5: A set of locally-shortest paths starting at x and terminating at
the boundary is shown on the left, and their corresponding location in the
boundary S1 of the unit disk is shown on the right.

Γg(q0) that end at the boundary (denote them Γgb(q0)) as points in the unit

circle S1. We denote the homeomorphism between the geodesics in Γgb(q0)

and S1 as ψb : Γgb(q0)→ S1.

For robotic navigation tasks, we can model the user’s desired path as a local

geodesic γb in Γgb(q0), where q0 ∈ Qfree is the robot’s current configuration. We

note that any geodesic in Γg(q0) is a prefix of some other geodesic in Γgb(q0).

In particular, if γ : [0, T ] → Qfree is in Γg(q0), then there is a unique γb :

[0, T ′]→ Qfree, where T ′ ≥ T , γb(T
′) is a boundary point, and the restriction

of γb to the interval [0, T ] is identical to γ. In order to navigate the robot

under this model, the user specifies both γb and time T . Specification of γb

can be done efficiently using the optimal feedback policy derived in Chapter 3.

Specification of T can be deferred to navigation time. For example, the user

can issue a “stop” command to indicate the point at which they want to

terminate the navigation.

6.3.3 Ordering local geodesics

A key property of the space of local geodesics Γgb(q0) is that it admits an

intuitive cyclic ordering. In other words, Γgb(q0) is a cyclically ordered set,

with the ordering defined by the homeomorphism ψb : Γgb(q0) → S1, which

maps the local geodesics to the unit circle. Given two geodesics γ1 and γ2

in Γgb(q0), we say that γ1 is ordered to the “left” of γ2, denoted γ1 < γ2,

if and only if the clockwise angle from ψb(γ1) to ψb(γ2) is smaller than the
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Figure 6.6: A set of geodesics starting at x and ending at the boundary are
shown in (a), their corresponding points in the unit circle S1 are shown in
(b). The intermediate points along the geodesics in (a) indicate the points
at which the geodesics cross an extension edge.

counterclockwise angle from ψb(γ1) to ψb(γ2). Figure 6.6 demonstrates a set

of geodesics in a Γgb(q0) and their cyclic ordering.

6.4 Learning Prior Model for Local Geodesics

We modeled a desired path as a local geodesic in Γgb(q0), under a cost function

g : Qfree → R+. In this section, we describe a method to recover a cost

function g from existing data so that the geodesics in Γgb(q0) will resemble

paths that humans prefer in navigating a mobile robot (e.g., a wheelchair)

amidst obstacles in a target path-homotopy class. We note that it is also

possible to learn a prior probability distribution over path-homotopy classes

corresponding to the local geodesics in Γgb(q0) from existing data, but we do

not consider this problem here.

Our approach is to use maximum-margin structured learning (MMSL)

[120, 121]. We assume that we are given a training set D = {γ(i)}Ni=1 where

γ(i) : [0, T ] → Qfree is a human-demonstrated path. We further assume

and the cost function g : Qfree → R+ takes the form of g(q) = wT c(q)

where w is a non-negative weight vector in a convex parameter space W ,

and c = [c1, . . . , cn] is a given vector-valued feature function, with each
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ci : Qfree → R+. The total cost of a path γ : [0, T ] → R2 in Γ can be

expressed as

J(γ) =

∫
wT c(γ(t))dt = wTf(γ), (6.2)

where f : Γ → R+ is the feature sum along the path γ. In MMSL, we

introduce a margin that scales with the loss of choosing an alternative γ ∈ Γ

in place of the demonstrated example γ(i), and denote it by the function

Li : Γ → R+, where Li(γ) > 0 for all γ 6= γ(i), and Li(γ
(i)) = 0. The

underlying problem is to learn weights w ∈ W so that

wTf(γ(i)) ≤ wTf(γ)− Li(γ), ∀γ 6= γ(i), ∀i,

which requires the cost of an alternative γ to be larger than the cost of the

example γ(i). Maximizing margin subject to these constraints is equivalent

to the convex program

min
w∈W,ζi∈R

1

N

N∑
i=1

ζi +
λ

2
‖w‖2

s.t. wTf(γi) ≤ min
γ∈Γ

{
wTf(γ)− Li(γ)

}
+ ζi, ∀i,

where { ζi }Ni=1 are the slack variables, and λ ≥ 0 is a constant that trades off

between a penalty on constraint violations and margin maximization. This

program can be solved using a subgradient descent algorithm [120, 121].
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Chapter 7

Enabling Humans to Fly Simulated Aircraft
with EEG

7.1 Introduction

This chapter presents an interface for navigating a simulated aircraft that

moves at a fixed speed in a planar workspace, with noisy binary inputs that

are obtained asynchronously at low bit-rates from a human user through an

electroencephalograph. In this interface, we use the alphabet of circular arcs

described in Chapter 5 to represent desired planar paths for navigation as

strings of an ordered symbolic language. The underlying problem is then

to design a communication policy by which the user can, with vanishing er-

ror probability, specify a string in this language using a sequence of inputs.

The approach is to use the optimal feedback policy described in Chapter 3.

We show that this policy, which relies on a human user’s ability to compare

smooth curves, can be easily implemented by a human user. We demon-

strate our interface by performing experiments in which twenty subjects fly

a simulated aircraft at a fixed speed and altitude with input only from EEG.

Experimental results show that the majority of subjects have been able to

specify desired paths reliably despite a wide range of errors made in decoding

EEG signals.

As described in Chapter 2, existing brain-machine interfaces typically func-

tion in one of two different ways: process control and goal selection [14, 41].

In process control, measurements of brain activity are used to specify an

immediate action to be taken, such as moving a cursor to the left or to the

right. In goal selection, measurements of brain activity are used to specify

the desired output after a sequence of actions, such as the location at which

the cursor should end up.

Many existing BMIs use process control for movement tasks, including

The material in this chapter has been published in [4].

67



both invasive BMIs for control of a robotic arm by primates [23], and non-

invasive BMIs for control of a cursor [122], a wheelchair [42, 43] or a mobile

robot [44, 45, 46]. A problem with this strategy, particularly for non-invasive

BMIs, is that it tends to produce erratic motion due to the direct map-

ping from noisy measurements of brain activity to control inputs. Meth-

ods of shared control have been proposed as a way to reduce this problem

[47, 42, 43, 45]. With shared control, movement is determined by “aver-

aging” inputs produced by the BMI with inputs that might have been ex-

pected given a prior model. For instance, Vanacker et al. [42] enabled a

human user to drive a powered wheelchair with three inputs—“left”,“right”,

and “forward”—obtained from EEG. These inputs were filtered based on the

context (e.g., proximity to obstacles) before being mapped to motor com-

mands for the wheelchair. Although shared control improved performance,

erratic motion still occurred when user inputs were erroneous or in conflict

with the prior model used in the filter.

More BMIs are now starting to use goal selection for movement tasks,

including an invasive BMI that allowed primates to choose from a set of

reaching targets [123], and non-invasive BMIs that allowed human users to

choose from a set of destinations for a wheelchair [51], or objects to be picked

up by a humanoid robot [52]. A problem with this strategy is that the set

users can choose from is restricted to the goals determined by the designer,

and the user has no control over how the external device achieves a selected

goal. For instance, Rebsamen et al. [51] enabled a human user to drive

a powered wheelchair to a destination selected by the user from a list of

locations. These destinations were restricted to a given list (bath, bed, office,

etc.) and users did not have any control over paths followed by the wheelchair

to reach the selected destination.

In an effort to address the problems with process control and goal selection,

the BMI proposed by Iturrate et al. [53] uses a hybrid strategy for robotic

wheelchair navigation. In this strategy, measurements of brain activity are

used to specify a subgoal that indicates the next location to be moved by

the robot. The user selects from a finite set of locations that are visible to

the robot, and the robot then moves to the selected location autonomously.

By repeating this process, in effect, the user specifies a desired path step by

step.

Our BMI uses a hybrid strategy that is similar to the one proposed by
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(b) A snapshot of the display in the
tracking task

Figure 7.1: Our interface for flying a simulated aircraft at a fixed altitude
and speed with input only from electroencephalograph (EEG), see (a). The
pilot flies the aircraft by imagining either left- or right- hand movement,
the choice between which is based on visual feedback provided by a
graphical display. In the tracking task, the display shows the target path
(red curve), the estimated path (blue curve), and the flight path (black
curve) in the video obtained from the aircraft’s on-board camera, see (b).

Iturrate et al. [53]. However, rather than use measurements of brain activ-

ity to specify the desired path step by step, we use measurements of brain

activity as evidence to reduce uncertainty about the entire path all at once.

The “uncertainty” here refers to the uncertainty the robot has about the

desired path (which is known only to the human). Note that our approach

does not require the robot to wait until the entire path is specified before

beginning to move. Instead, the robot may begin to move immediately along

its best estimate of the desired path, using all evidence obtained so far. In

order to enable this strategy, we make system design choices that allow us

to cast interface design as a communication problem. Our first choice is

to model desired paths as strings in an ordered symbolic language for rep-

resenting smooth planar curves. Our second choice is to model the neural

sensor as a communication channel—in particular, to model EEG with left-

and right-hand motor imagery as a binary symmetric channel. Our third

choice is to use a graphical display for providing feedback to the user. With

these choices, the underlying problem is to design a provably optimal com-

munication protocol that says how the user should provide inputs, and how

the interface should generate feedback. We solve this problem by using the

optimal feedback policy derived in Chapter 3.
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We compare our approach to the hybrid strategy of Iturrate et al. [53]

in simulation, and show that our approach performs better for navigating a

robot moving at a fixed speed. We emphasize that the goal of this study is not

to provide a comparison between process control, goal selection, or hybrid

approaches. Such a comparison has been performed in [41]. Instead, our

goal is to propose and evaluate a hybrid approach that outperforms previous

hybrid approaches in navigating a robot moving at a fixed speed.

Our BMI allows a human pilot to fly a simulated aircraft at a fixed speed

and altitude using EEG (Fig. 7.1). Using a preliminary version of the inter-

face, we demonstrated EEG-based teleoperation of a physical model-aircraft

in a perimeter surveillance task [2]. Although our pilot achieved the task by

successfully flying the aircraft with EEG over a 3km perimeter in 5 minutes,

this preliminary version had two drawbacks. First, it required access to an

overhead map of the environment to inform the pilot about the aircraft’s

possible routes. Second, it required the pilot to be very good at providing

input commands to the interface (e.g., 90% accuracy at decoding EEG sig-

nals). Here, we address the first issue by displaying possible routes directly

on video streamed from the aircraft’s onboard camera. We address the sec-

ond issue by establishing a systematic way to choose interface parameters

based on measurements of the pilot’s ability to provide input commands.

We forego hardware experiments in order to perform a focused analysis of

our interface using a high fidelity flight simulation environment with many

subjects—which makes a hardware demonstration impractical. We also em-

phasize that we use an existing algorithm for decoding input commands from

EEG signals, and the goal of this work is not to advance the state-of-the-art

in EEG signal processing.

7.2 Method for Navigating a Robot in a Planar

Workspace

Our goal is to design a brain-machine interface that allows a human user

to navigate a mobile robot in a planar workspace with EEG signals. First,

we consider the problem of BMI design for specifying a desired path for

a stationary robot, and cast it as a communication problem that consists

of designing an optimal communication protocol (Section 7.2.1). Then, we
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Figure 7.2: Our abstraction of brain-robot interface design as a
communication problem. The human user conveys their desired path γ∗ to
the robot through a binary symmetric channel with causal feedback
provided by a graphical display.

describe how the optimal feedback policy described in Chapter 3 can be used

to allow a human user specify a desired path with vanishing error probability

(Section 7.2.2). Finally, we apply this policy in our BMI design for specifying

a desired path for a robot moving at a fixed speed (Section 7.2.3).

7.2.1 Interface design as a communication problem

In this section, we make three choices about system architecture that allow

us to cast brain-machine interface design as a communication problem.

Structure of Desired Paths Our first choice is to represent desired paths

as strings in a symbolic language (Chapter 5). In particular, we use the

alphabet of circular arcs for constructing planar paths (Section 5.2.1). This

alphabet consists of symbols Σ = {σ1, σ2, . . . ,M} that correspond to fixed-

length circular arcs. Strings of symbols v = (v1 · · · vM) correspond to paths

that are piecewise smooth.

Measurement and Interpretation of Brain Activity Our second choice

is to use a binary classifier to distinguish between left- and right-hand mo-
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tor imagery in the brain based on EEG signals. We model it as a binary

symmetric channel with some crossover probability ε [79]. The input to this

channel is xk ∈ {0, 1}, where we associate xk = 0 with “left” and xk = 1 with

“right.” The output of this channel is yk ∈ {0, 1}, where P (yk|xk) = 1− ε if

yk = xk and P (yk|xk) = ε otherwise.

Mechanism for Sensory Feedback Our third choice is to use a graphical

display to show candidate paths γ̂ to the human user. As we will see in

Section 7.2.2, the best choice of γ̂ to show at time step k is an estimate of the

user’s desired path γ∗ given the statistical model associated with our symbolic

language and the outputs y1, . . . , yk−1 of the binary symmetric channel we

defined above. This visual feedback is “causal” in the sense that it depends

only on prior outputs of the channel (i.e., only on the past history of EEG

signals). We also model this feedback as “noiseless” in the sense that we

assume the human user can decide with perfect accuracy whether or not

γ∗ < γ̂, i.e., whether or not their desired path is to the left of the candidate

path.

With these choices, our goal has now become the design of a protocol to

communicate a string γ∗ in an ordered symbolic language across a binary

symmetric channel with causal noiseless feedback. Such a protocol consists

of an encoder (essentially mapping the estimate γ̂k−1 to the input xk) and a

decoder (essentially mapping the outputs y1, . . . , yk to the estimate γ̂k), as

shown in Fig. 7.2.

7.2.2 Optimal feedback policy for specifying desired paths

The choices we made in the previous section allows us to use the optimal

feedback policy for querying the human user’s desired path. In Chapter 5,

we constructed an invertable mapping ψ : Σ∗ → [0, 1) from random strings

V ∈ Σ∗ distributed according to a given statistical model P (V) to message

points W ∈ [0, 1) distributed uniformly in the unit interval. We apply the

optimal feedback policy described in Chapter 3 to allow a human user specify

a desired path γ∗ ∈ Σ∗, or equivalently, the message point w∗ = ψ(γ∗) in the

unit interval [0, 1), using a sequence of noisy binary inputs.

This policy is not only optimal but also easy for a human user—the

“encoder”—to implement. Assume a graphical display shows the user the
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Figure 7.3: Four iterations of the communication protocol between the user
and the interface to the robot. The interface maintains a posterior
distribution over the unit interval and displays the path that corresponds to
the median of this distribution. The user responds by comparing the
desired path to the estimated path using lexicographic ordering. See text
for details.

path γ̂k−1 = ψ−1(ŵk−1) that corresponds to the estimate ŵk−1. Then, the

user only has to decide if their desired path γ∗ appears lexicographically to

the left (hence xk = 0) or to the right (hence xk = 1) of γ̂k−1. Figure 7.3

shows an example. Initially, the posterior is uniform and the median ŵ0 cor-

responds to the straight path given by γ̂0. Because γ∗ turns more right than

γ̂0, the user provides x1 = 1. After a true observation y1 = 1, the interface

updates the posterior—increasing the probability of all paths to the right of

γ̂0 and decreasing the probability of all paths to the left of γ̂0— and generates
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a new estimate ŵ1. In this case, the estimated path γ̂1 moves to the right

of γ∗, so the user provides x2 = 0. As the interface receives more inputs,

the posterior concentrates on smaller intervals around the desired path and

a longer prefix of the estimated path matches with the desired path. For

instance, see the posterior and the estimated path after five “correct” inputs

in Fig. 7.3d.

7.2.3 Application to navigation of a moving robot

In this section, we apply the optimal communication protocol derived in the

previous section to enable navigation of a mobile robot that moves at a fixed

speed. We make use of the following definitions:

• πdesired: user’s desired path γ∗ (not known to the robot).

• πestimate: the interface’s current estimate of πdesired.

• πtrack: the path the robot is following at a fixed speed.

• πinitial: the path the robot follows before πestimate starts.

The procedure implemented by the human user to specify πdesired is de-

scribed in Algorithm 2. The user provides either a “left” (left-hand motor

imagery) or a “right” (right-hand motor imagery) input to indicate whether

πdesired turns “more left” or “more right” than πestimate, which is displayed

by the interface as part of feedback. This is easy to implement for a trained

human eye since it only requires a visual search in the local neighborhood of

πestimate.

The procedure implemented by the interface to move the robot along the

path being specified by the user is described in Algorithm 3. At first, πtrack

begins with a fixed πinitial, a straight path of some length, so that the interface

can obtain several user inputs till the robot approaches the end of πinitial.

The estimated path πestimate is initialized to γ̂0, and updated after the k-th

user input to γ̂k according to the policy (Section 7.2.2). In particular, after

observing yk, the message point ŵk ∈ [0, 1) is computed using the optimal

feedback policy and then decoded as a path γ̂k = ψ−1(ŵk) using Algorithm 1.

The robot moves along πtrack at a fixed speed, and whenever it approaches

the end of πtrack, the interface appends the first symbol of πestimate to πtrack.
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Algorithm 2 Human User’s Algorithm for Providing Inputs.

1: k ← 1
2: loop
3: Observe πestimate and robot state
4: if πdesired < πestimate then
5: Input “left” (xk = 0) by left-hand motor imagery
6: else
7: Input “right” (xk = 1) by right-hand motor imagery
8: end if
9: k ← k + 1

10: end loop

Algorithm 3 Robot Navigation Algorithm.

1: πtrack ← πinitial

2: πestimate ← γ̂0

3: k ← 1
4: loop
5: Display πestimate and robot state
6: Move robot along πtrack at fixed speed
7: if User’s kth input is observed then
8: Compute ŵk from yk using the optimal feedback policy
9: Compute γ̂k from ŵk using Algorithm 1

10: πestimate ← γ̂k
11: k ← k + 1
12: end if
13: if Robot moved till the end of πtrack then
14: Append the first symbol of πestimate to πtrack

15: Shift πestimate one symbol ahead
16: end if
17: end loop

πestimate is then shifted one symbol ahead, which in the protocol corresponds

to assigning zero probability to paths that do not begin with the appended

symbol, and normalizing the posterior so that ŵk remains as the median.

7.3 Interface for Flying a Simulated Aircraft with EEG

This section describes the implementation of our brain-machine interface for

flying a simulated aircraft at a fixed speed and altitude with input only from

EEG.
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7.3.1 The simulated aircraft

We used an high-fidelity flight simulation environment for model aircrafts

based on Fs One R©RC flight simulator [124]. The simulated aircraft was con-

trolled by an autopilot that implemented a receding-horizon linear quadratic

regulator to fly over paths specified by the user [125]. We fixed the aircraft’s

speed to 25m/s, and the aircraft’s altitude to 200m. The aircraft’s camera

faced towards the direction of the flight, was inclined 45 degrees with respect

to the ground, and was roll-angle stabilized by the autopilot to ensure that

the human pilot had a good field of view of the ground ahead of the aircraft.

7.3.2 The feedback stimuli

The interface provided visual feedback to the human user by showing real-

time state and video obtained from the aircraft and the paths πestimate, de-

noted estimated path, and πtrack (without πinitial), denoted flight path, in a

graphical display (see Fig. 7.1b). These paths were augmented into the video

frames by placing them in a horizontal plane just above the ground-level in

the 3D workspace, and then projecting them onto the 2D image plane.

7.3.3 Configuration of the interface

In this section, we describe the important parameters that affected the per-

formance of our interface.

Crossover probability

Crossover probability was the fraction of input commands that were ex-

pected to be corrupted due to noise in decoding EEG signals (Section 7.2.1).

This probability was estimated by comparing observed input commands with

ground-truth input commands at the beginning of each experimental session

(see Section 7.4.4).

Symbol-length

Symbol-length affected the trade-off between how “expressive” (the degree in

which our space paths approximated the space of paths the pilot might desire
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to fly over) and how “compact” (the expected number of input commands

that were necessary to infer the pilot’s desired path correctly) our space of

paths was. In order to balance this trade-off, symbol-length was configured

adaptively with respect to the user’s performance in providing input com-

mands at the beginning of each experimental session (see Section 7.4.4). We

restricted symbol-length to be between 100m and 500m, because we assumed

that values smaller than 100m might put an excessive cognitive load on users,

and values larger than 500m might not provide a space of paths expressive

enough to accomplish our experimental tasks (see Section 7.4.1).

Alphabet of symbols

We used the alphabet shown in Fig. 5.2. It consisted of seven circular arcs

with central angles evenly distributed in [−π/2, π/2]. We empirically found

this alphabet to provide a good balance between expressiveness and com-

pactness of the generated paths.

Statistical model

We assumed a zeroth-order Markov model given by a discrete Gaussian ker-

nel centered on the straight arc, which was denoted “model1” and illustrated

in Fig. 7.5. In this statistical model, the straight arc had the highest prob-

ability and taking a wider turn was more likely than taking a sharper turn.

This corresponded to our prior belief on the structure of paths that pilots

could prefer to fly the aircraft over.

Startup delay

In the beginning of flight, the aircraft flew over a straight path (πinitial) of

two symbol-lengths before flying over the path specified by the user. We

empirically found that using a πinitial of two symbol-lengths provided a sig-

nificant improvement over using a πinitial of one symbol-length in Monte Carlo

experiments (see Section 7.4.3).

Estimated-path length

Estimated paths were decoded up to four symbols, i.e., M = 4 in Algorithm 1.

A large number of symbols was not desired because all symbols except the
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first few ones might have an almost zero probability of being part of the user’s

desired path and showing many symbols might make the display cluttered

and more difficult for human users to provide their inputs. In contrast,

a small number of symbols might lead to a situation where the estimated

path overlaps with the pilot’s desired path, causing the user’s algorithm for

providing inputs to fail. We empirically found that this situation was mostly

avoided when M ≥ 4.

7.3.4 Decoding input commands from EEG signals

The interface decoded the pilot’s input commands from EEG signals using

an asynchronous classifier implemented in C. EEG signals were collected by

eight electrodes positioned on the scalp at F3, F4, C3, C4, T7, T8, P3, P4 with

ground measured at Fpz, and reference measured at Cz [126]. Measured sig-

nals were amplified (James-Long Co.), low-pass filtered, and synchronously

sampled at 400Hz by an IOtech Personal Daq 3000 A/D converter. The

classifier was trained using the algorithm in [127], which used common spa-

tial analytic pattern (CSAP) to extract discriminative signals that capture

large disparities for each input command by viewing it as a blind-source sep-

aration problem. Incoming signals were processed at 15Hz, using a hidden

Markov model (HMM), to perform classification by belief propagation. The

decoding occurred asynchronously, i.e., when the belief probability exceeded

a threshold.

7.4 Experimental Procedure

This section describes the experimental procedure we used to evaluate the

method described in Section 7.2, and the BMI described in Section 7.3.

7.4.1 Experimental tasks

We used the following two tasks to evaluate our interface.
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runway

(a) The target paths selected for the
tracking task

start

runway

treeline

site-1
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(b) The target terrain structures
selected for the high-level task

Figure 7.4: Illustration of the experimental tasks used in the EEG
experiments. The target paths selected for the tracking task in the practice,
adapt, and fixed phases were shown in (a), assuming a symbol-length of
330m. In the high-level task, illustrated in (b), there was no specific target
path to track, instead the objective was to fly the aircraft first over the
treeline, and then over the house site-1 and site-2.

Tracking task

The goal was to fly the aircraft over a given target path, which was displayed

to the user during flight (see Fig. 7.1b). This task measured our interface’s

ability in allowing users to fly the aircraft over their desired paths. In order

to succeed in the task, the human user was required to specify a path that

matched the target path symbol by symbol. The interface terminated a run

of a tracking task as soon as the flight path deviated from the target path in

order to provide a fair comparison of performance across different runs. We

generated target paths randomly according to a given statistical model and

symbol-length. The target paths consisted of 3km/symbol-length (rounded

to nearest integer) symbols, hence they were approximately 3km long, which

was chosen to restrict the duration of an experimental run to about two

minutes—the time it took the aircraft to fly a 3km distance.

High-level task

The goal was to fly the aircraft over a given list of target terrain structures,

which were indicated on an overhead map of the environment and were shown

to the user before flight. Unlike the tracking task, the user was not required

to fly the aircraft over a specific target path, instead the actual path speci-
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fication was completely left up to the user. This task measured the efficacy

of our interface when the desired path was not shown as reference in the

display. In order to succeed in the task, the human user was required to

specify a path that hit all targets in the given order. Hitting targets in an

arbitrary order was not allowed to provide a fair comparison of performance

across subjects. We identified three targets on the map: a treeline, and two

house sites (see Fig. 7.4b). We said that a house site was hit by a path if the

site center was within 250m of some point along the path, and a treeline was

hit by a path if all points along the treeline were within 250m of some point

along the path.

7.4.2 Evaluation criteria

We used the following measures to evaluate the performance of our approach

in Monte Carlo experiments:

• success rate: the fraction of trials that were successful in Monte Carlo

simulations of a thousand trials for a given symbol-length.

• safe symbol-length: the smallest symbol-length less than or equal to

500m, at which a success rate of 90% or higher was achieved.

We used the following measures to evaluate the input performance observed

during a tracking task:

• input error (E): fraction of input commands that were incorrect

across all input commands.

• input rate (R): average number of input commands (bits) received

per second.

• information transfer rate (ITR): number of reliable bits per second

given by

R

(
log n+ E logE + (1− E) log

(1− E)

n− 1

)
,

where n is the number of input classes.

We used the following measures to evaluate the subject’s performance in

flying the aircraft using our interface:
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• run success: a run was said to be successful if the task performed in

the run was successful.

• symbol-count (SC): number of symbols in the flight path that matched

the target path in the tracking task.

• hit-count (HC): number of targets that were hit by the flight path

in the high-level task.

7.4.3 Monte Carlo experiments

We evaluated the performance of our approach (Section 7.2) and the hybrid

approach of [53] under different configurations by performing Monte Carlo

experiments. In these experiments, the performance was measured by run-

ning several trials of the tracking task with randomly sampled inputs under

each configuration. The compared configurations are described below.

Sequential-select

In this configuration, we implemented the hybrid approach of [53] as follows.

We allowed the user to specify a desired path symbol by symbol using three

inputs {“left”,“right”,“rest”}. Recall that we denoted the alphabet of sym-

bols by Σ = {σ1, . . . , σ7}, and assumed that the symbols were ordered so

that σi < σj if and only if i < j. Let vm ∈ Σ be the m-th symbol in πdesired,

and v0 be a pre-determined symbol that the robot followed at start. The user

provided inputs to specify vm until the robot approached the end of vm−1.

Let v̂m ∈ Σ be the m-th symbol chosen so far by the user. At first v̂m was

σ4. The user provided “left” if vm < v̂m, “right” if vm > v̂m, and “rest” if

vm = v̂m. Upon receiving a “left” or “right” input, the interface updated

v̂m = σi to be σi−1 (if i > 1) or σi+1 (if i < 7), respectively. Note that “rest”

inputs were discarded by the interface, and vm was set to v̂m when the robot

approached the end of vm−1, at which point specification of vm+1 started.

Robust-sequential-select

In this configuration, we attempted to increase the robustness of the hybrid

approach of [53] by making use of the “rest” inputs in sequential-select as

follows. After receiving a “rest” input, the interface entered into a “lock”
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mode where “left” or “right” inputs did not immediately change the current

selection v̂m. In “lock” mode, the interface maintained a posterior probability

P over the correct input X. Let Yk be the random variable denoting the k-th

observation in the “lock” mode, with Y0 = “rest”. The interface assumed

a uniform prior PX , and computed the posterior after each Yk, k = 0, 1, . . .

using Bayes’ rule as P (x|y0, . . . , yk) = ηPY |X(yk|x)P (x|y0, . . . , yk−1), where

η was a normalizing constant. Upon receiving an observation yi = “left”

(or “right”, analogously), if the posterior probability of “left” after y0, . . . , yi

was greater than that of “rest”, the interface terminated the “lock” mode

and updated v̂m accordingly. The “lock” mode was also terminated when

the specification of the next symbol started.

Our approach + uniform

In this configuration, our approach used a statistical model with a uniform

prior over symbols, denoted “uniform”, and the robot followed an initial path

of one symbol-length at start. This configuration provided a fair comparison

against sequential-select and robust-sequential-select, because all configura-

tions shared the same statistical model and the startup condition.

Our approach + delay + uniform

In this configuration, the robot followed an initial path of two symbol-lengths

at start. Note that following such a path introduced a delay that was longer

than the delay in the previous configurations, and this might lead to a better

performance because the user had more time to specify πdesired.

Our approach + delay + model1

In this configuration, which was the same as the configuration of our inter-

face, the statistical model used by our approach was “model1”, as described

in Section 7.3.3 and illustrated in Fig. 7.5.

Our approach + delay + model2

In this configuration, our approach used a statistical model, denoted “model2”

and illustrated in Fig. 7.5, that was a zeroth-order Markov model given by a

discrete Gaussian kernel centered on the straight arc, with a variance smaller
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than the variance used in “model1” and with the probabilities of σ1, σ7 set

to 0.05. The purpose of evaluating this configuration was to see how much

performance could be gained if desired paths were generated according to a

model with less uncertainty such as “model2”.

In Monte Carlo experiments, we randomly sampled inputs at every second

(R = 1) to yield the same ITR for each configuration. In particular, to yield

ITRs of 0.75, 0.50, 0.25 bits/second, the simulated inputs satisfied an input

error E of 0.04, 0.11, 0.21 for n = 2, and 0.17, 0.26, 0.38 for n = 3, respectively

from lowest to highest ITR. The probability transition matrix PY |X , which

specified the conditional probability of generating Y when the correct input

was X, was such that PY |X(y|x) = 1−E if y = x, and PY |X(y|x) = E/(n−1)

otherwise. We computed success rate as a function of symbol-length for each

ITR in {0.75, 0.50, 0.25}, by running a thousand trials for each symbol-length

from 100m to 500m with increments of 10m. We computed safe symbol-

length from the resulting success rates. We also note that the target paths

were randomly sampled according to the statistical model used by each con-

figuration.

7.4.4 EEG experiments

We evaluated the performance of our brain-machine interface (Section 7.3)

with 20 able-bodied subjects that were right-handed, between the ages of 20

and 30, and had normal or corrected-to-normal vision. Only two subjects

had prior experience in EEG motor-imagery based BMI studies. In total, 57

experimental sessions were performed by these subjects. An experimental

session consisted of the following five phases in the given order. This study

was approved by the Institutional Review Board of the University of Illinois.

Training phase

We collected labeled EEG data to train the decoding algorithm by displaying

visual prompts, either a left or a right arrow, for a duration of four minutes.

The prompts were chosen according to a randomly generated sequence con-

taining 30 “left” and 30 “right” input commands. Each prompt lasted four

seconds with no break period in between the prompts. The decoding algo-

rithm was trained only once using the EEG data collected from these 60
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prompts.

Practice phase

Subjects performed several runs of the tracking task, denoted as practice-

runs, using a keyboard instead of EEG to provide “left” and “right” inputs

until they succeeded in the task. The goal was to make the subject well

acquainted with the use of the interface. We set the crossover probability to

4% and the symbol-length to 100m so that the subjects could succeed in the

task only by choosing their input commands accurately to yield a low input

error, and by providing these inputs quickly to yield a high input rate. This

phase ended after the subject succeeded in the tracking task using keyboard.

Adapt phase

Several runs of the tracking task, denoted as adapt-runs, were performed to

configure the two important parameters, crossover probability and symbol-

length (Section 7.3.3), with respect to the subject’s performance in pro-

viding input commands through EEG motor imagery. After each adapt-

run, we measured the input rate, the input error and the run success (Sec-

tion 7.4.2). In the first run, we set the parameters to their pre-determined

values (crossover probability was 15% and symbol-length was 337m). In all

future runs, the interface chose crossover probability to be the input error

of the previous run, and symbol-length to be the safe symbol-length com-

puted from Monte Carlo simulations of the tracking task using random in-

puts yielding the input error and input rate of the previous run. If the safe

symbol-length did not exist, symbol-length was set to 500m. The subject

performed a new run until the chosen parameter values satisfied the follow-

ing convergence criteria: the subject succeeded in the last run, the chosen

symbol-length was within some tolerance (100m) of the symbol-length used

in the last run, the subject performed at least 3 runs, and the subject per-

formed at least 5 runs if the chosen symbol-length was longer than 400m. If

the convergence criteria were met, the interface, future phases, and future

runs were said to be properly configured. This phase ended after the inter-

face was properly configured, in which case it was considered a successful

adapt-phase, or after 10 adapt-runs.
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Figure 7.5: Results of Monte Carlo experiments comparing different
configurations of our approach and the hybrid approach of [53]. The figures
at top show the success rate of each method in our navigation task as a
function of symbol-length. The figures at bottom show the priors for each
statistical model.

Fixed phase

The subjects performed several runs of the tracking task, denoted as fixed-

runs, with the parameters chosen in the adapt phase. This phase ended after

a successful fixed-run, in which case it was considered a successful fixed-phase

or after 10 fixed-runs.

Free phase

The qualified subjects performed severals runs of the high-level task, denoted

as free-runs, with the parameters chosen in the adapt phase. A subject was

qualified for free phase if the preceding fixed phase was successful. The

number of free-runs performed in this phase was determined by the pilot and

the operator of the experiment. A free-phase was said to be successful if at

least one of the free-runs was successful.

We note that in all runs of the tracking task in the practice, adapt, and

fixed phases, the aircraft started flight from the same point, but the sequence

of symbols in the target path were unique to each phase (see Fig. 7.4a). In

the free phase, the aircraft started flight from a different point to make the

terrain flown over in free-runs different than the terrain flown over in runs of

the tracking task.
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7.5 Experimental Results

This section describes the results obtained from the experiments described

in the previous section.

7.5.1 Results from Monte Carlo experiments

Results show that our approach outperformed our implementations of the

hybrid approach of [53] under all settings considered in Monte Carlo experi-

ments, and the performance of our approach could be improved by increas-

ing the startup delay or by using non-uniform statistical models. Figure 7.5

shows the success rates as a function of symbol-length under three different

ITRs and Table 7.1 shows the safe symbol-lengths for each configuration. We

summarize the results as follows:

• Sequential-select was not robust to input errors, and did not have a

safe symbol-length. Failures in sequential-select trials might be due to

false observations of “rest” inputs that occurred shortly before the end

of the time window for symbol selection.

• Robust-sequential-select provided a significant improvement over sequential-

select, and had safe symbol-lengths except for the lowest ITR.

• The baseline configuration of our approach, “our approach + uniform”

outperformed sequential-select and robust-sequential-select under all

considered values of symbol-length and ITR.

• Increasing startup delay improved the performance significantly. It

shortened the safe symbol-length more than 70m for the two higher

ITRs, and unlike the baseline configuration of our approach, it had a

safe symbol-length for the lowest ITR.

• The performance obtained with the three statistical models were com-

parable, with “model2” yielding marginally better results especially

for the lowest ITR. The performance differences between the statistical

models could be explained by the entropy of the model priors, which

were 2.81, 2.70, and 2.35 for “uniform”, “model1”, and “model2”, re-

spectively.
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Table 7.1: Safe symbol-lengths

Method ITR=0.75 ITR=0.50 ITR=0.25

sequential-select N/A N/A N/A
robust-sequential-select 300 430 N/A
our approach + uniform 210 330 N/A
our approach + delay + uniform 140 220 480
our approach + delay + model1 140 220 470
our approach + delay + model2 130 210 420
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7.5.2 Results from EEG experiments

Results show that our interface allowed subjects to specify desired paths

accurately for our simulated aircraft even under very low ITRs. Observed

input performances with EEG were very low, which led to the failure of

many runs (Section 7.5.2), and a low number of successful adapt phases

(Section 7.5.2). Despite these low input performances, half of the subjects

succeeded in the fixed phase (Section 7.5.2), and most of the qualified subjects

succeeded in the free phase (Section 7.5.2).
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Results with tracking task

Subjects performed several runs of the tracking task by providing inputs

through a keyboard in the practice phase, and through EEG in the adapt

and fixed phases. Results show that input performances with EEG were

significantly lower than the performances with a keyboard due to errors in

decoding EEG signals, and only the runs with a sufficient level of input

performance were successful. In the practice phase, all subjects succeeded in

the tracking task after a few trials and became well acquainted with the use

of the interface. In successful practice-runs, subjects yielded on average an

input error of 0.03, an input rate of 1.02, and an ITR of 0.86. In the adapt

and fixed phases, in total, subjects performed 622 runs, of which only 78%

had an input error less than 0.5, only 50% had an ITR greater than 0.05,

only 11% were successful (Fig. 7.6a). In successful adapt- and fixed-runs,

subjects yielded on average an input error of 0.24, an input rate of 0.85, and

an ITR of 0.18. Table 7.2 shows results obtained in adapt- and fixed- runs

for each subject. Out of 20 subjects, 15 of them (subjects A-O) succeeded in

at least one of the runs, and 3 of them (subjects A,B,C) succeeded in most of

the runs by yielding on average an ITR greater than 0.15 and a symbol-count

larger than 5 symbols. The best symbol-count, 13 symbols (each with length

223m), was achieved by subject A in one of the adapt runs.

Results in adapt phases

The interface was properly configured in only 30% of the sessions (17 out

of 57). The failure in adapt-phases could be explained by the observation

that the ITRs (0.05 bits on average) in failed adapt-phases were significantly

lower (p < 0.01) than the ITRs (0.12 bits on average) in successful adapt

phases. Fig. 7.6b shows the results obtained in the adapt phase of a sample

session. Here, the interface was properly configured after 6 adapt-runs, with

crossover probability set to 0.20 (input error observed in the last adapt-run),

and symbol-length set to 420m. On average, in successful adapt-phases, 7

adapt-runs were performed, and crossover probability was set to 0.25. In the

majority of these phases, the chosen symbol-length was 500m, the largest

value allowed, and in the rest of them, it was 345, 420, 466, 484, 490m from

smallest to largest.
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Results in properly-configured fixed phases

Results show that subjects succeeded in the tracking task after the interface

was properly configured, if their input performances were comparable to the

input performances that had been used to configure the interface. In total,

16 properly-configured phases were performed by 11 subjects, and all these

phases except one were successful (Table 7.2). Fig. 7.6b shows the results

obtained in the fixed phase of a sample session. Here, the subject succeeded

in the fixed-phase after failing in the first two fixed-runs. This failure could

be explained by observing that the input errors in these runs were greater

than the input error in the last adapt-run, which was used to configure the

interface, while the input rates were similar. In fact, 89% of the failures in

properly-configured fixed-runs could be explained by the same observation.

Results in free phases with high-level task

Results show that qualified subjects could fly the aircraft over their desired

path in the absence of a specific target path shown as part of the feedback

stimuli. Ten subjects were qualified for the free phase by succeeding in the

preceding fixed phase. Seven of these subjects succeeded in the high-level task

in at least one of their free-runs (Table 7.2). Out of 30 free-runs performed in

total, 12 runs were successful (hit-count was 3), and in 8 runs hit-count was 2.

Figure 7.7 shows the flight paths obtained in all free-runs. Across successful

free-runs, the length of the flight path from start to the first point that hit the

third target (site-2) was between 4.8 and 6.2km with a mean of 5.4 km. The

mean flight path computed by averaging all paths from successful free-runs

closely matched our expectation of the path subjects would fly the aircraft

over.

7.6 Conclusion

In this study, we presented an EEG-based brain-machine interface for flying

a simulated aircraft at a fixed speed and altitude with noisy binary inputs

that were provided by imagining either left- or right-hand movements in the

brain. Our approach was to construct an optimal communication protocol

that said how user inputs and sensory feedback must be generated in order
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(a) hit-count = 3

start

treeline

site-1

site-2

(b) hit-count = 2

(c) hit-count = 1 (d) hit-count = 0

Figure 7.7: The flight paths (thin black curves) specified by the subjects in
the high-level task, where the objective was to fly the aircraft over three
targets: treeline, site-1, and site-2. The frames (a), (b), (c), (d) show the
flight paths with hit-counts = 3, 2, 1, 0, respectively. A target was hit by a
path if the target center (the red dots for site-1, site-2, and the red curve
for treeline) was within 250m of some point along the path. The frames
also show the points within 250m of the target centers (light-green regions),
and the frame (a) shows the mean flight path (dashed blue curve)
computed by averaging all paths with hit-count = 3 in the time domain.
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to convey the user’s desired path to the aircraft as quickly and as robustly as

possible. Experimental results showed that our approach outperformed an

existing state-of-the-art hybrid approach in navigating a robot moving at a

fixed speed and our BMI based on this approach allowed human users to fly a

simulated aircraft successfully despite very low ITRs with EEG. Poor input

performances might be due to training our EEG decoding algorithm with

a small amount of data collected at the start of each experimental session.

Better input performances might be obtained by retraining during a session

or by using a larger dataset that might include signals from a bigger set of

electrodes. The success in our experiments depended critically on the adap-

tation of the interface to the user’s input performance. We enabled users

with higher input performances to navigate the robot along more expressive

paths by increasing (roughly) the precision at which desired paths were spec-

ified. With this adaptation, our interface provided a comfortable experience

to our subjects. A discomfort might have been experienced if we were to use

symbol-lengths smaller than 100m, but in practice such discomforts might be

avoided by adjusting the robot speed accordingly. In the rest of this section,

we present the limitations of our approach and how these limitations might

be resolved in future work.

7.6.1 Limitations and future work

Choosing structure of desired paths systematically

Our interface used a heuristic alphabet associated with a set of circular arcs

and a heuristic statistical model given by a zeroth-order Markov model. In

future work, we intend to make the choice of the alphabet for representing

paths and the choice of Markov model more systematic by learning them

from human-demonstrated data.

Enabling navigation amidst obstacles

In this study, we did not consider obstacle avoidance. It might be possible to

incorporate this into our approach by choosing structure of desired paths sys-

tematically (see previous paragraph) using a dataset of human-demonstrated

paths for navigation amidst obstacles, similar to the work in [128]. Note that

this would assign zero probability to paths that collide with obstacles.
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Extending our approach to more than binary inputs

In our interface, users specified desired paths only with binary inputs. One

way of extending our approach to make use of discrete inputs with more

than two choices might be as follows. Recall that in the case with binary

inputs, the estimated path after k user inputs, γ̂k, partitioned the set of

all possible paths Σ∗ into two subsets {γ|γ < γ̂k}, and {γ|γ ≥ γ̂k} with

equal posterior probability. Similarly, in the case with m discrete inputs, the

interface might choose m − 1 paths γ1, γ2, . . . , γm−1 to partition Σ∗ into m

disjoint subsets such that each subset will have equal posterior probability

and the i-th subset will contain only the paths that are ordered between γi−1

and γi, where γ0, γm are left-most and right-most paths in Σ∗, respectively.

Then, the user might provide an input to indicate the subset that contains

their desired path.

Enabling navigation in 3D space

In this study, we assumed that the robot was moving in a 2D space. One

way of extending our approach to enable 3D navigation might be as follows.

A space curve γ can be defined by its curvature κ, determining how much

γ turns left or right, and its torsion τ , determining how much γ bends up

or down, at each point along the curve using Frenet-Serret frame [129]. In

order to model desired paths, our approach might use an alphabet consisting

of (κ, τ) pairs corresponding to curves of fixed length with constant curvature

and torsion. Then, it might be possible to design a communication protocol

that would rely on user’s ability to compare space curves. This comparison

might be based on finding the first point at which two space curves differ,

and then observing if one of the curves has smaller curvature (i.e., turns more

left), or torsion (i.e., bends more down) than the other.

In order for our approach to find a real-world use case, we need further

developments that BCI community as a whole needs to address. First, our in-

terface must have a mechanism for starting or stopping the navigation, which

might be achieved by using more input classes or different input paradigms.

Second, our interface demanded high cognitive load on users. In the future,

we might train our EEG decoding algorithm using additional data corre-

sponding to a “rest” class and adjust the robot’s speed based on the uncer-

tainty the robot has about the desired path so that users might take a break
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from providing inputs. Third, our interface used a “locked-down” graphical

display to show feedback stimuli. In future work, we might consider present-

ing feedback using an augmented reality display such as a head mounted or

virtual retinal display.
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Chapter 8

Enabling Humans to Navigate Simulated
Robots Indoors with EEG

8.1 Introduction

This chapter presents an interface that allows a human user to specify a

desired path for a mobile robot in a planar workspace with noisy binary

inputs that are obtained at low bit-rates through EEG. We represent desired

paths as local geodesics with respect to a cost function that is defined so that

each path-homotopy class contains exactly one local geodesic (Chapter 6).

We apply max-margin structured learning to recover a cost function that is

consistent with observations of human walking paths. Our approach is to

use the optimal feedback policy described in Chapter 3 to allow users select

a local geodesic—equivalently, a path-homotopy class—using a sequence of

noisy bits. We validate this approach with experiments that quantify both

how well our learned cost function characterizes human walking data and

how well human subjects perform with the resulting interface in navigating

a robot in a virtual indoor environment with EEG.

It is necessary to restrict the space of all possible paths the user can specify

because we cannot describe arbitrary paths with a finite number of inputs.

In Chapter 5, we made a heuristic choice, and used an ordered symbolic

language to represent paths of piecewise-constant curvature. However, this

decision made it hard to incorporate certain types of statistical information.

For example, how does path likelihood vary in the presence of obstacles?

In Chapter 6, we suggested a more systematic approach, observing that the

principle of optimality could be used to generate a compact representation

of all paths likely to be seen in the context of a particular application. In

particular, we represented a desired path as a local geodesic with respect to

a cost function that is defined so that each path-homotopy class contains

A preliminary version of the material in this chapter has been published in [3].
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Figure 8.1: Our interface for navigating a mobile robot in a planar
workspace with polygonal obstacles. The interface allows a human user to
specify a desired path, which corresponds to a local geodesic from the
robot’s current location to a boundary point. The interface provides
feedback by showing its estimate of the user’s desired path (called
estimated path). The user provides binary inputs by determining the cyclic
ordering of their desired path with respect to the estimated path. See text
for details.

exactly one geodesic.

In this chapter, we use the representation of desired paths described in

Chapter 6, and the optimal feedback policy described in Chapter 3 to build

an efficient brain-robot interface. This brain-robot interface is designed to

enable a human user navigate a mobile robot indoors along human-like paths

(Section 8.2). Section 8.3 describes the implementation of our interface for

controlling a simulated robot with EEG. We then describe the experiments

used to learn the cost function from a dataset of human-walking paths, and

the experiments performed to evaluate the performance of the resulting in-

terface in navigating a simulated robot using EEG (Section 8.4).
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8.2 Method for Navigating a Robot along Local

Geodesics

8.2.1 Encoding local geodesics as message points in the unit
circle

In Chapter 6, we constructed a homeomorphism ψ : Γg(q0) → D1, where

Γg(q0) is the space of all local geodesics from q0 in a free configuration space

Qfree, and D1 is the unit disk. In this homeomorphism, paths in Γg(q0)

terminating at a boundary point, denoted Γgb(q0), mapped to the unit circle

S1. This mapping, denoted ψb : Γgb(q0) → S1, allowed us to encode local

geodesics in Γgb(q0) as real-valued angles in S1.

There are three properties of this encoding that facilitates the design of an

efficient interface for navigating a mobile robot indoors.

• We can easily compute the probability that a geodesic crosses a par-

ticular extension edge. Extension edges were defined during the con-

struction of the homeomorphism ψ : Γg(q0)→ D1 (Section 6.3.1). Let

γl, γr be the two geodesics that cross e1, . . . , em−1, and terminate at

an endpoint of the extension edge em such that ψb(γl) < ψb(γr). Then,

any geodesic γ in Γgb(q0) that crosses e1, . . . , em−1, em is mapped to an

angle θ = ψb(γ) such that ψb(γl) < θ < ψb(γr). This means that we can

compute the probability that a geodesic crosses a sequence of exten-

sion edges by calculating the probability concentrated on a contiguous

interval.

• Any geodesic in Γg(q0) is a prefix of some other geodesic in Γgb(q0). With

this property, navigation along any path γ ∈ Γ(q0) can be accomplished

by carrying out the navigation along the path γb ∈ Γgb(q0) with prefix

γ, and then by stopping the navigation when the desired endpoint is

reached.

• A human user might easily determine the cyclic ordering of two geodesics

in Γgb(q0). Recall that, we induced a cyclic ordering between the geodesics

in Γgb(q0) using the mapping ψb in Section 6.3.3.
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8.2.2 Optimal feedback policy for selecting local geodesics

We apply the optimal feedback policy described in Chapter 3 to allow a

human user specify a local geodesic γ∗ ∈ Γgb(q0), or equivalently, the angle

θ∗ = ψb(γ
∗), with vanishing error probability, using a sequence of noisy binary

inputs. Although this policy was designed for transmission of a message point

in the unit interval [0, 1), we extend it here for transmission of a message

point in the unit circle S1, which is assumed to be distributed uniformly.

We model the noisy input source as a BSC with crossover probability ε. At

time step k, the input to this channel is xk ∈ {0, 1}, where we associate

xk = 0 with the input “left” and xk = 1 with the input “right”. The

output of the channel is yk ∈ {0, 1} with P (Yk 6= Xk) = ε, where Yk, Xk are

random variables corresponding to channel input and output, respectively.

We assume that the BSC can provide noiseless feedback to the user, which in

our case corresponds to providing an estimate γ̂ of the user’s desired path γ∗

to the user and assuming that the user can determine with perfect accuracy

whether or not γ∗ < γ̂ according to the ordering defined in Section 6.3.3.

The optimal feedback policy used by the interface is as follows. As-

sume that at time step k, the interface computed the posterior distribution

PΘ|Y k(θ|y1 . . . yk), where Θ ∈ S1 is the random variable indicating the desired

angle, and Y k is the random vector (Y1, . . . , Yk). First, the interface finds a

pair of angles (µk, µ̄k) that are opposite to each other in S1, i.e., µ̄k = (µk+π)

mod (2π), and that the probability concentrated on the half circle from µk to

µ̄k is equal to the probability concentrated on the opposite half circle from µ̄k

to µk. The interface selects the angle in (µk, µ̄k) with higher posterior den-

sity as the estimate θ̂k, and provides it as feedback by showing the geodesic

γ̂k = ψ−1
b (θ̂k). Then, the user selects the next input xk+1 as 1 if γ∗ ≥ γ̂k

or as 0 otherwise. Finally, if yk+1 = 1 (the case yk+1 = 0 is analogous), the

interface applies Bayes’ rule to update the posterior distribution as

PΘ|Y k+1

(
θ
∣∣y1 . . . yk+1

)
=

η ·

(1− ε) · PΘ|Y k

(
θ
∣∣y1 . . . yk

)
if ψ−1

b (θ) ≥ γ̂k

ε · PΘ|Y k

(
θ
∣∣y1 . . . yk

)
otherwise,

(8.1)

where η is a normalizing constant. Then, the process repeats.

98



(a) Intel pedestrian path
prediction dataset [128]

(b) The recovered cost
function

     













(c) Test paths and
corresponding geodesics

Figure 8.2: The dataset consisting of human walking paths is shown on a
525 by 325 map in (a), where black pixels denote obstacles, and white
pixels denote free space. The recovered cost function is shown in (b), where
red pixels denote a high cost and blue pixels denote a low cost. The paths
in the test dataset (dashed blue curves) and the geodesics (solid blue
curves) generated with the recovered cost function for each test path is
shown in (c).

8.3 Interface for Navigating a Simulated Robot with

EEG

8.3.1 Our approach for navigation with binary inputs

In this section, we describe our algorithm for enabling the navigation of

the robot while the user is specifying their desired path using the method

described in Section 8.2. Let q0 ∈ Qfree be the robot’s starting position,

and Q̂(q0) be the universal covering space consisting of all path-homotopy

classes with a fixed starting point q0. At time step k, the interface obtains

the noisy input yk from the user and computes the posterior distribution

PΘ|Y k(θ|y1, . . . , yk). From this distribution, it generates the estimate θ̂k ∈ S1

and the geodesic γ̂k = ψ−1
b (θ̂k), which starts at q0 and ends at a boundary

point. The estimate θ̂k also describes a path-homotopy class with an endpoint

qf in Q̂(q0). Instead of displaying γ̂k as feedback, the interface displays the

geodesic π̂k from the robot’s current position q ∈ Q̂(q0) to qf ∈ Q̂(q0). Let

e be the first extension or boundary edge that π̂ crosses in Q̂(q0) (see Sec-

tion 8.2). The robot moves along π̂ until it crosses e when the posterior

probability of the event that the user’s desired path crosses e is at least 0.90.

This procedure is outlined in Algorithm 4.
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Algorithm 4 Robot Navigation Algorithm.

1: let Q̂(q0) be the universal covering space

2: while robot is not at a boundary point do

3: wait until noisy input yk is observed

4: evaluate PΘ|Y k and obtain θ̂k ∈ S1, γ̂k ∈ Γgb(q0)

5: let q be the robot’s current position in Q̂(q0)

6: let qf be the point in Q̂(q0) corresponding to θ̂k

7: display geodesic π̂k from q to qf in Q̂(q0) as feedback

8: let e be the first edge that π̂k crosses in Q̂(q0)

9: if posterior probability of crossing e ≥ 0.90 then

10: command robot to “move along” π̂k until it crosses e

11: else

12: command robot to “stop”

13: end if

14: end while

8.3.2 Our approach for obtaining binary inputs through EEG

Our BMI was based on steady-state visually-evoked potentials (SSVEP), a

natural neural response to repetitive flickering stimuli in the environment

[130]. By providing stimuli of known frequency patterns, it is possible to

determine which stimulus the user is attending to. Our interface displayed

two stimuli that steadily flashed on a CRT monitor at 8.67Hz and 12Hz.

These frequencies were chosen because they yield high signal-to-noise ratio

and lie outside of the range known to induce seizures [131]. EEG signals

were extracted from seven electrode sites across the occipital region of the

scalp, in particular PO7, PO3, PO4, PO8, O1, OZ, O2, at impedances not

exceeding 10kΩ, with a reference measured at PZA [132]. These signals were

acquired using a 128-channel bioamplifier at 256Hz, bandpass-filtered from

1Hz to 30Hz, and analyzed with BCI2000 [133] and MATLAB using a three

second sliding window. The signals from each channel were filtered into four

different spatial representations using bipolar and Laplacian configurations

[134]. For each spatial filter, we computed a signal to noise ratio (SNR)

of each frequency of interest together with its second harmonic. For each

frequency, after discarding the highest and lowest SNR values, the average of

the remaining two SNR values was obtained. A classification was made when
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this average exceeded a threshold of 8. After each classification, auditory

feedback was provided to the user by playing a unique sound to indicate

observation of a “left” or “right” input.

8.4 Experiments

8.4.1 Learning cost function from data

We performed experiments to learn the cost function in (6.1) using the Intel

pedestrian path prediction dataset [128] that consists of human walking paths

recorded in an office environment (Fig. 8.2a). Similar to the procedure in

[128], a black and white pixel map of the environment was generated, with

a pixel corresponding to a distance of 0.04 meters. Ten cost features were

defined for each pixel based on blurred images of the pixel map with different

levels of blurring. The loss function, a measure of dissimilarity of a given path

γ from an example path γi, was computed by first assigning a zero loss to all

pixels that are within 7 pixels (0.28 meters) of distance from γi, and constant

loss to all other pixels, and then by summing the loss values assigned to the

pixels that γ crossed over.

We observed that some paths in the dataset do not resemble any optimal

behavior that can be explained by our cost features. We labeled such paths

as outliers and removed them from the dataset. In order to detect whether

a path γi was an outlier, we applied MMSL using γi as the only training

example to obtain a cost function gi, and computed the loss of the geodesic

from the start point γi(0) to the end point γi(1) under the cost function gi.

If this loss was non-zero, we labeled the path γi as an outlier. Out of 166

paths, 100 paths were found to be outliers, and the remaining paths were

split into a training set and a test set, each containing 33 paths.

The recovered cost function with MMSL using all paths in the training set

is illustrated in Fig. 8.2b. We empirically verified that geodesics generated

with respect to this cost function in each path-homotopy class were unique.

For evaluation, we computed the loss of the geodesics corresponding to each

training and test path. In the training set, 45% of the geodesics had zero-loss

and in the test set, 55% of the geodesics had zero-loss. The results (Fig. 8.2c)

suggest that we can approximate human walking paths with zero-loss by a
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Task-1
(a)

start

end

reference path

Task-2
(b)

start

end

Figure 8.3: Description of the two experimental tasks. The goal was to
navigate the robot from start (blue dot) to the midpoint of the finish
segment (red boundary segment) by specifying a desired path homotopic to
the reference path (blue curve). Task-1 was very similar to the task used in
[53], where the reference path followed the dashed blue curve towards the
end.

geodesic curve in about half of the cases, and the recovered cost function

generalizes well to new cases.

8.4.2 Using the interface to navigate a simulated robot

In order to quantify the performance of our interface for navigating a sim-

ulated robot with EEG, we performed experiments with two able-bodied

subjects that had no prior experience in SSVEP-based BMIs. Each subject

completed two trials of two unique navigation tasks (Fig. 8.3). The goal in

each task was to navigate the robot from its start position to a goal position
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Table 8.1: Experiment Results for Task 1

Subject A Subject B

Trial 1 Trial 2 Trial 1 Trial 2

Task success YES YES YES YES
Time-to-navigate (s) 177 188 142 138
Time-opt-ratio 1.69 1.79 1.35 1.31
Time-to-specify (s) 143 102 117 99
Input accuracy 0.83 0.82 1.0 0.95
Input latency (s) 3.4 3.7 6.2 5.0
ITR (bits/min) 6.04 5.19 9.68 8.56

Table 8.2: Experiment Results for Task 2

Subject A Subject B

Trial 1 Trial 2 Trial 1 Trial 2

Task success YES NO YES YES
Time-to-navigate 253 - 257 314
Time-opt-ratio 1.62 - 1.65 2.01
Time-to-specify 138 - 165 264
Input accuracy 0.91 0.82 1.0 0.88
Input latency 4.3 8.1 6.9 8.0
ITR (bits/min) 7.86 2.37 8.70 3.53

in the boundary by specifying a desired path homotopic to a target reference

path. In task-1, we simulated the environment used in [53] to evaluate their

EEG-based BMI for navigating a physical wheelchair. Our reference path was

very similar to theirs except that our path terminated in the boundary rather

than in the free space. In task-2, we simulated the environment in which the

dataset of human walking paths used in Section 8.4.1 was produced.

We used the following metrics to evaluate the performance of our brain-

machine interface:

• Task success: whether the robot successfully navigated along a path

that was homotopic to the reference path.

• Time-to-navigate: the duration of the task in seconds, if the task

was successful.
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Task 1
(a)

(b)

Task 2

Figure 8.4: The actual paths (thin curves) followed by the mobile robot
compared to the geodesic homotopic to the reference path (thick blue
curve). The black curves correspond to the resulting paths from the
successful trials. The red curve corresponds to the resulting path obtained
in the failed trial.

• Time-opt-ratio: the ratio of time-to-navigate to the time it would

take for the robot to continuously move along the geodesic homotopic

to the reference path, which was 105 seconds for task-1, and 156 seconds

for task-2.

• Time-to-specify: the time it took for the posterior probability of

choosing a geodesic with an end point in the finish segment to exceed

90% probability.

• Input accuracy: the fraction of inputs that were correctly classified

before time-to-specify.
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• Input latency: the average time in seconds between two consecutive

inputs.

• ITR: the information transfer rate that gives the number of reliable

bits obtained from the user per minute.

Results show that our interface enabled subjects to successfully complete

the navigation tasks in 7 of the 8 trials. The actual paths followed by the

mobile robot are shown in Fig. 8.4, and the performances obtained in task-1

and task-2 are reported in Table 8.1, and 8.2, respectively. Remarkably, in all

successful trials, the actual paths were very close to the geodesics homotopic

to the reference paths. Subjects obtained between 5 and 10 bits/minute ITR

in all trials except in trial-2 of task-2, where both subjects reported being

tired and unable to focus their attention during the entire time. This might

explain why subject A failed in trial-2 of task-2.

In task-1, the average time-to-navigate was 2.7 minutes, which is signifi-

cantly less than the average time-to-navigate of 9.5 minutes reported in [53].

However, the fact that they used a different paradigm (P300) for obtaining

inputs from EEG than ours (SSVEP), the fact that they used a physical

wheelchair rather than a simulated mobile robot, and the fact that they

did not rely on a given map of the environment prevents us from making

a true comparison. For both tasks, time-opt-ratio was between 1.3 and 2.0

(time-opt-ratio of [53] was 5.4), which means that the navigation time with

our interface was less than twice the time it would have taken the robot to

move continuously along the geodesic homotopic to the reference path. It is

important to note that the average gap between time-to-specify and time-

to-navigate was 1.0 minutes, meaning that the subject specified a geodesic

with an end point in the finish segment of the task about one minute before

the robot actually moved to the midpoint of the finish segment. This gap

was partly because between two consecutive user inputs, the robot was only

allowed to move until it crossed an extension edge (see Algorithm 4). In

future work, the robot might be allowed to move along a longer prefix of the

specified geodesic and the speed of the robot might be adjusted to reduce

this gap.
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8.5 Conclusion

This study demonstrated an interface that allowed users to navigate a robot

through a planar space containing obstacles using only the inputs from an

SSVEP-based BMI. By representing desired paths as geodesics under a cost

function recovered from human-demonstrated paths, we enabled users to

navigate this space in a smooth human-like manner with only binary inputs.

Our results suggest that not only can users navigate in this manner, but that

they can do so with a very high success rate. Our subjects navigated the

robot along two experimental paths in less than twice the time it would have

taken the robot if informed of the path explicitly before the task. In the

future, we would like to use a 3-class SSVEP-based BMI to enable the user

to start or stop the robot at their will. Optimization of the robot’s control

behaviors and our signal classification algorithm may allow us to further

improve the performance.
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Chapter 9

Enabling Humans to Enter Text Commands
with EEG

9.1 Introduction

This chapter presents an interface for text entry with discrete input com-

mands obtained from EEG using steady-state visually evoked potentials

(SSVEP). In existing SSVEP spellers, users specify a desired character by

providing input commands in response to a sequence of queries, which are

designed beforehand and selected at run time based on a fixed decision tree.

Our approach is to use the active inference policy described in Chapter 4 to

select queries adaptively based on a probabilistic language model, an esti-

mate of how fast the interface can observe input commands, and an estimate

of how accurate the input commands are. In particular, the next query is

chosen to be the one that yields the highest information gain rate (IGR),

which is defined as the expected amount of information to be received per

unit of time from a query. We performed experiments to compare our inter-

face against two state-of-the-art SSVEP spellers that used queries designed

beforehand. Results show that our interface allows users to spell sentences

twice as fast as they would with the compared spellers using the same input

mechanism.

In the last decade, there has been a significant progress in the development

of EEG-based brain-computer interfaces (BCIs) for text spelling [54]. Users

of these interfaces specify a desired character using established paradigms

such as those based on motor-imagery, P300, or steady-state visually-evoked

potentials (Chapter 2). For example, in SSVEP-based BCIs, users allocate

their attention to a visual target across a set of targets steadily-flashing at

different frequencies. Users’ allocation of their attention to a particular tar-

get generates an EEG activity that reflects the frequency of the attended

target [135]. Effectively, this allows users to provide discrete input com-
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mands, where each input command corresponds to allocation of attention

to a particular target. Although the operation of motor-imagery and P300

based BCIs differ from SSVEP-based BCIs, in principle, users provide dis-

crete input commands by selecting targets.

The typical process of identifying the user’s desired character from input

commands is illustrated in Figure 9.1. First, the user is presented with a

visual stimulus. We view this stimulus as a graphical representation of a

“query”, which is designed to extract information about the desired charac-

ter. Each query defines a mapping from characters to targets, so that the

user knows which target must be selected to communicate information about

a particular character. For example, consider using an EEG paradigm with

two targets, labeled 1 and 2, to specify an English letter from “A” to “Z”.

A query might ask users to select the target 1 to communicate that the de-

sired character is a vowel, and to select the target 2 to communicate that

the desired character is a consonant. Second, the user selects the target that

is correlated with the desired character, as defined by the query posed with

the visual stimulus. We refer to this target as the user response. In our

example, the response would be 1 if the desired character is “E”. Third, the

user communicates the response using an EEG paradigm, and a classifier

processes recorded EEG activity to predict the response. We refer to the

predicted response as an input command, and view the translation of the

user response to an input command as the communication of information

over a discrete noisy channel. Fourth, the interface uses the input command

to increase its information about the desired character. If the information

obtained so far is not enough to identify the desired character, the interface

designs a new query to extract more information. This query is posed with

the presentation of a new stimulus, and the process repeats.

The queries designed by the interface play a significant role in determining

how quickly and reliably the interface can identify the user’s desired charac-

ter. In particular, some queries are better than others, where “goodness” of

a query depends on the following three models:

• A language model that determines the likelihood of a character given

the characters spelled previously,

• An accuracy model that determines the conditional probability of an

input command given a user response,
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Figure 9.1: The components of an EEG-based brain-computer interface and
how they interact with each other in closed loop to obtain inputs from the
user.

• A latency model that determines the time it takes to obtain an input

command given a user response.

In order to illustrate these models and their importance in query design,

let us consider spelling with an interface that has 27 characters consisting

of letters from “A” to “Z”, and the space character “ ”. Assume that the

interface has three targets, labeled 1, 2, 3, each of which can be selected as

the response to a query. From now on, we use “response” to mean “user

response”, and use “input” to mean “input command”.

To demonstrate the importance of the language model, consider the case

where the user is trying to spell a word, and has already spelled “TH”. In

this case, the likelihoods of characters assigned by the language model, shown

in Figure 9.2a, tell us that “E” is the most likely, and “A” is the second most

likely character to be spelled after “TH”. A query that allows users to specify

“E” or “A” with a single response (see Figure 9.3b) is more valuable than a

query that allows users to specify “X” or “Y” with a single response. This is

because when the former query is used; the desired character will be identified

using a single input with high probability. But, when the latter query is used;

additional inputs will be required to identify the desired character with high

probability.

To demonstrate the importance of the accuracy and latency models, con-

sider the example models shown in Figure 9.2b, and Figure 9.2c, respectively.

We represent these models as matrices, where the value at the x-th row and
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Figure 9.2: The example models that affect the value of query. Frame (a)
shows the likelihood of characters after spelling “TH”; (b) shows the
accuracy model as a matrix, where higher values (shown darker) mean
higher conditional probability of observing the corresponding input given
the corresponding response; (c) shows the latency model as a matrix, where
lower values (shown brighter) mean a shorter time of classification in
seconds.
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y-th column of the accuracy matrix, denoted A(x, y), corresponds to the con-

ditional probability of observing y when the response is x, and the value at

the x-th row and y-th column of the latency matrix, denoted L(x, y) cor-

responds to the time it takes to observe y when the response is x. One

observation that can be made from the example models is that observing

y = 2 when x = 2 is more accurate and faster than observing y = 3 when

x = 3, i.e., A(2, 2) > A(3, 3) and L(2, 2) < L(3, 3). Using this observation,

we argue that in the case of spelling after “TH”, a query that asks users to

provide x = 2 to specify “E” is more valuable than a query that asks users

to provide x = 3 to specify “E”. This is because associating characters that

are more likely with responses that can be communicated more accurately

and more quickly might reduce both the probability of spelling an incorrect

character, and the expected time to spell a character.

Most existing EEG-based spellers do not take into account any of these

models for selecting queries. In these spellers, queries are often designed a

priori at the time of design and selected at run time based on a decision tree

and the inputs obtained so far. We refer such queries as “static” queries.

As an example, Fig. 9.3a demonstrates how users might specify the letter

“E” using a speller with static queries. In this speller, the user can specify

a character by responding to three successive queries, where each response

indicates the character group that contains the desired character. The num-

ber of possibilities for the desired character is reduced from 27 to 9 after the

first query, from 9 to 3 after the second query, and from 3 to 1 after the

third query. In our example, the interface identifies “E” after observing the

inputs 1, 2, 2. The same sequence of inputs is used to identify “E” regardless

of what has been spelled before “E” or how fast and accurate each input can

be obtained.

Our goal is to develop an EEG-based text-entry interface that adaptively

queries desired characters by taking into account a probabilistic language

model, an accuracy model, and a latency model, as illustrated in Figure 9.2.

As an example, Figure9.3b shows an adaptive query posed after spelling

“TH”. In this query, the user is asked to provide 1, 2, or 3 to indicate whether

the desired character is “A”, “E”, or any other character, respectively. The

user provides x = 2 to specify “E”, and the interface spells “E” when y = 2

is observed. Based on the example models provided, this query assigns the

most likely character to the input that can be obtained faster and more
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accurate than other inputs. Although adaptive queries might give better

spelling performance than static queries, they may cause the visual stimuli

to be difficult to understand. Therefore, adaptive queries and associated

visual stimuli must be carefully designed to ensure ease of use.

In order to select adaptive queries effectively, our approach is to choose the

next query to be the one that maximizes the information gain rate (IGR),

as defined in Chapter 4. IGR measures the expected amount of information

received per unit of time, and is a more general version of the information

transfer rate (ITR), which is commonly used in the BCI literature as a per-

formance measure [18, 19, 136]. The assumptions used to calculate ITR,

such as assuming equal likelihood of responses, make it inappropriate as a

measure for selecting queries. Unlike ITR, IGR depends on the likelihoods of

responses to a query, and the characteristics of the input channel as defined

by the accuracy and latency models. The likelihoods of responses can be

computed from the posterior likelihoods of characters given by the language

model and the inputs obtained to the queries posed so far. To ensure ease

of use, we restrict the set of possible queries from which the next query is

chosen to queries for which we assume that users can determine the respond

quickly and accurately.

To our knowledge, adaptive queries have not been considered in SSVEP-

based spellers before, e.g., see [75, 76]. Although adaptive queries have been

considered in spellers based on P300 and motor-imagery brain potentials, the

models they assumed and the approach they took are quite different than

ours. The Hex-o-Spell interface by Blankertz et al. [73] and the interface by

D’Albis et al. [74] allowed users to specify a character with motor-imagery

tasks. These interfaces used a probabilistic langauge model to change parts

of a pre-determined decision tree based on the characters specified so far.

Unlike ours, they did not take into account either an accuracy or a latency

model. In P300-based interfaces, the number of targets the user can choose

is often the same as the number of characters. One exception is the interface

by Ma et al. [67], where sets of available targets were adaptively chosen

with respect to a probabilistic language model and a latency model that

scales linearly with the number of available targets. Their approach was to

minimize the expected time to spell a character by constructing an optimal

decision tree to identify the next character in the current context. However,

their approach did not take into account an accuracy model. An intermediate
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 
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(a) An example speller with static queries

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 

1 2 3 

Spell “E” 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 

Spell “A” 

2 3 1 

Next Query 

Spell “I” Next Query… Spell “_” 
(b) An example speller with adaptive queries

Figure 9.3: Illustrating the process of spelling “E” after “TH” using static
queries that are chosen a priori at the design time, see (a), and using
adaptive queries that are chosen at run time based on the example models
shown in Fig. 9.2, see (b). Users provide the response 1, 2, or 3, to indicate
that their desired character is in the group colored with blue, red, or green,
respectively. “E” is spelled after 3 static queries in (a), and after a single
adaptive query in (b).
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step in the design on P300 spellers is to decide which sets of characters are

illuminated in which order. For example, in the original P300 speller [32, 33],

the characters are placed into a 6x6 matrix, and rows and columns of this

matrix are illuminated in a random order. The interface by Park et al.

[66], determines the order of illumination of rows or columns of the matrix

adaptively based on a probabilistic language model and the online confidence

of the P300 detection algorithm produced after the previous illuminations.

However, their approach may not be used to select queries from a large pool

of queries due to its computational complexity.

As a case study in the application of our approach, we present an SSVEP-

based speller with adaptive queries. Section 9.2 describes our method of

identifying a desired character by adaptively selecting queries to maximize in-

formation gain rates. Section 9.3 describes the implementation of our speller,

and two state-of-the-art SSVEP spellers with static queries, which are used

for performance comparison. We performed experiments to evaluate our

speller, and the performance gained by the use of adaptive queries in con-

trast to the spellers implemented for comparison (Section 9.4). Results show

that our interface allows users to spell sentences twice as fast as they would

with the compared spellers using the same input mechanism.

9.2 Method for Identifying a Desired Character

In this section, we apply our active inference policy (Chapter 4) that adap-

tively selects queries to maximize information gain rates for identifying the

user’s desired character. Recall that, Chapter 4 represented human intent

as a random variable V taking values from a set V . Here, human intent is

a desired character chosen from a given alphabet of characters. In order to

avoid confusion between the random variable V and the character “V”, we

use Σ = {σ1, . . . , σM} to denote the alphabet, and Ψ ∈ Σ to denote the

random variable specifying the desired character.

In Chapter 4, we modeled input mechanisms as discrete noisy channels

with latency. Here, we consider only a single input mechanism with which

users respond to queries by choosing a target from a finite set of targets

denoted X . The chosen target, denoted as a random variable X ∈ X , is

observed by the interface as an input command Y ∈ Y , where Y = X . The
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Algorithm 5 The process of identifying a single character

1: Q ← query pool
2: A← accuracy matrix
3: L← latency matrix
4: s← characters spelled in the past
5: PΨ ← likelihood of characters after s, given by the lang. model
6: loop
7: q ← SelectQuery(Q, PΨ, A, L)
8: POSE q by updating visual stimulus
9: WAIT until an input command is observed

10: y ← observed input command
11: PΨ ← UpdateBelief(PΨ, A, q, y)
12: if IsStoppingCriteriaMet(PΨ, q, y) then
13: SPELL arg maxσ∈f−1

q (y) PΨ(σ)
14: end if
15: end loop

accuracy model A is given by the probability transition matrix PY |X of the

input mechanism, i.e., A(x, y) = PY |X(y|x),∀x ∈ X ,∀y ∈ Y . Recall that

A(x, y) is the probability that the input Y = y will be observed when the

response is X = x. The latency matrix of the input mechanism LX,Y is

denoted as L, i.e., L(x, y) = LX,Y (x, y). Recall that L(x, y) is the time it

takes to observe Y = y after the presentation of a query, when the response

is X = x.

We compute the likelihood of characters in a spelling context using a prob-

abilistic language model. The spelling context, denoted s ∈ Σ∗, is defined as

the sequence of characters spelled so far. We use the distribution PΨ to rep-

resent the likelihood of characters in the current spelling context, and after

the responses to queries posed in this context. The queries are selected from

a query pool, denoted Q. Associated with each query q ∈ Q is a function

fq : Σ→ X that defines the response the user must provide to communicate

their desired character. The preimage f−1
q : X → Σ∗ for a response x ∈ X is

defined as {σ ∈ Σ|fq(σ) = x}. Intuitively, f−1
q (x) is the set of characters in

Σ that are mapped to x by the function fq.

The process used to specify a desired character is outlined in Algorithm 5.

First, the interface is given the query pool, the accuracy matrix, the latency

matrix, and the probabilistic language model. The approach for construct-

ing these components in our interface for text entry will be described in Sec-
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Algorithm 6 SelectQuery(Q, PΨ, A, L)

1: maxScore ← 0
2: bestQuery ← None
3: for q ∈ Q do
4: PX = [. . . ]
5: for x ∈ X do
6: PX(x) =

∑
σ∈f−1

q (x) PΨ(σ)
7: end for
8: score = IGR(PX , A, L)
9: if score > maxScore then

10: score ← maxScore
11: bestQuery ← q
12: end if
13: end for
14: return bestQuery

tion 9.3. The interface’s belief of the desired character PΨ is initialized by the

probabilistic language model taking into account the spelling context s. Sec-

ond, the interface selects the query from Q that maximizes the information

gain rate (Chapter 4), i.e.,

arg maxq∈Q IGR(P
(q)
X , A, L), (9.1)

where P
(q)
X is the likelihood of responses to the query q, computed from

P
(q)
X (x) =

∑
σ∈f−1

q (x)

PΨ(σ), ∀x ∈ X . (9.2)

Algorithm 6 describes this selection process. Then, the selected query is

posed to the human user by updating the visual stimulus. Third, the in-

terface updates its belief PΨ over the desired character Ψ using the input

command y observed as a noisy response to the query. Algorithm 7 describes

this belief update. Intuitively, this update scales the posterior probability

of a character σ by the probability that y will be observed when the user

response is fq(σ) ∈ X . As a result, this increases the posterior probability

of all characters in the preimage of y by A(y, y). Fourth, the interface tests

whether it received enough information to identify the user’s desired char-

acter using the stopping criteria described in Algorithm 8. If the algorithm

cannot identify the character, the process continues with the selection of a
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Algorithm 7 UpdateBelief(PΨ, A, q, y)

1: for σ ∈ Σ do
2: PΨ(σ) = A(fq(σ), y)PΨ(σ)
3: end for
4: NORMALIZE PΨ

5: return PΨ

Algorithm 8 IsStoppingCriteriaMet(PΨ, q, y)

1: α, β ← thresholds chosen empirically
2: ψ1 ← arg maxσ∈f−1

q (y) PΨ(σ)

3: ψ2 ← arg maxσ∈Σ−f−1
q (y) PΨ(σ)

4: if |f−1
q (y)| > 1 then

5: ψ3 ← arg maxσ∈f−1
q (y)−{ψ1} PΨ(σ)

6: return PΨ(ψ1) > αPΨ(ψ2) and PΨ(ψ1) > βPΨ(ψ3)
7: else
8: return PΨ(ψ1) > αPΨ(ψ2)
9: end if

new query and lasts till the stopping criteria are met.

The stopping criteria described in Algorithm 8 depend on the likelihood

of characters given by the current belief PΨ, and the preimage f−1
q (y) which

consists of the characters correlated with the input command by the mapping

used in the last query. Let ψ1 be the most likely character in the preimage,

and ψ2 be the most likely character outside of the preimage. If the preimage

contains a single character, the algorithm tests whether the likelihood ratio
PΨ(ψ1)
PΨ(ψ2)

is greater than a certain threshold α. If the preimage contains multi-

ple characters, in addition to this test, the algorithm checks if the likelihood

ratio PΨ(ψ1)
PΨ(ψ3)

is greater than a certain threshold β, where ψ3 is the second-

most likely character in the preimage. The intuition behind this heuristic

stopping criteria is that if the observation of the user’s response points to

multiple characters we want the spelling to occur with (roughly) more evi-

dence (assuming β > α) than if the observation of the user’s response points

to a single character.
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9.3 Interface for Entering Text Commands

Our interface allowed users to specify a character from an alphabet Σ that

consisted of the 26 English letters, the space character denoted “ ”, and

the backspace character denoted “<”. We defined an ordering between the

characters in Σ by assigning “<” as the first character, the characters “A-

Z” as the second to twenty-seventh character, and “ ” as the twenty-eight

character.

9.3.1 Obtaining input commands through EEG

The interface obtained discrete input commands using the SSVEP paradigm.

Five steady-state targets flickering at frequencies f1 = 7.50, f2 = 10.0, f3 =

6.67, f4 = 12.0, f5 = 8.57, from left to right respectively, were presented on an

LCD monitor (Figure 9.5). The user responded to queries by allocating their

attention to one of the five targets. In particular, the set of responses and

inputs were X = Y = {1, 2, 3, 4, 5}, where the index i corresponded to the

target flickering at the frequency fi. EEG signals were extracted from seven

electrode sites across the occipital region of the scalp, in particular PO7, PO3,

PO4, PO8, O1, OZ, O2, at impedances not exceeding 10kΩ, with a reference

measured at PZA [132]. These signals were acquired using a 128-channel

bioamplifier at 256Hz, bandpass-filtered from 1Hz to 30Hz, and analyzed

using a 1.5 seconds sliding window. The signals from each channel were

filtered into four different spatial representations using bipolar and Laplacian

configurations [134]. For each spatial filter, we computed a signal to noise

ratio (SNR) of each frequency of interest together with its second harmonic.

For each frequency, after discarding the highest and lowest SNR values, the

average of the remaining two SNR values was obtained. A classification was

made when this average exceeded a pre-determined threshold.

9.3.2 Constructing the accuracy and latency models

We constructed the accuracy and latency models by having users perform

a set of training trials before their use of the text entry interface. In these

trials, we asked users to attend to a particular targetX ∈ X chosen randomly.
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After each trial, we recorded the observed input command Y ∈ Y , and the

latency given by the elapsed time since the onset of the prompt for selecting

X. To construct the accuracy matrix A, we estimated A(x, y),∀x ∈ X ,∀y ∈
Y , as the fraction of the number of trials in which Y = y observed when

X = x to the number of trials in which X = x. We smoothed A by adding

0.01 to all A(x, y) for which x 6= y, and then by scaling appropriately to

get a probability measure. To construct the latency matrix L, we estimate

L(x, y),∀x ∈ X ,∀y ∈ Y as the mean latency across the latencies of all trials

in which Y = y observed when X = x. We filled in the empty L(x, y) values,

i.e., (x,y) values for which y was not observed when the response was x, with

the mean latency across all trials.

9.3.3 Constructing the probabilistic language model

We constructed a probabilistic language model using prediction by partial

matching (PPM) [114]—a method based on variable-order Markov models.

We trained PPM using the English text provided with the Dasher text-entry

interface [137] with context lengths of up to 5 characters. Given the spelling

context s ∈ Σ∗, this model provided the conditional probabilities PΨ(Ψ|s),
where PΨ(Ψ = σ|s) is the probability that the desired character is σ ∈ Σ

after spelling s. Figure 9.4c illustrates the conditional probabilities obtained

with our probabilistic language model after spelling “COMP”.

9.3.4 Constructing the query pool

The interface poses queries to extract information about the user’s desired

character. In principle, each surjective function f : Σ → X can represent a

query. We require f to be surjective (onto) because observing an input com-

mand y that has an empty preimage f−1(y) does not provide any information

about the desired character.

In our interface, we only considered a subset of all possible queries that

could be constructed by surjective functions. The reason behind this was to

restrict our queries to ones for which we believed the associated stimuli would

allow humans to understand the query with ease and would allow them to

provide their responses without making mistakes. In particular, our query
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    

(a) A char-select query posed after spelling “COMP”

    

(b) A range-select query posed after spelling “COMP”

    

<A E L O R TU

(c) Conditional probabilities after spelling “COMP”

Figure 9.4: Illustration of the queries used by our interface.

pool Q consisted of two types of queries called char-select and range-select.

In a char-select query q, the interface assigns four characters from Σ to

responses 1, 2, 3, 4 with respect to their order in Σ, and assigns the remaining

characters to the response 5. This corresponds to the mapping

fq(Ψ) =



1 if Ψ = ψ1

2 if Ψ = ψ2

3 if Ψ = ψ3

4 if Ψ = ψ4

5 if Ψ ∈ Σ− {ψ1, ψ2, ψ3, ψ4},

(9.3)
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where ψ1 < ψ2 < ψ3 < ψ4 and ψ1, ψ2, ψ3, ψ4 ∈ Σ. Figure 9.4a shows the

stimulus used by our interface to pose the char-select query with the max-

imum IGR after spelling “COMP”. For instance if the desired character is

“L”, the user must provide X = 4 as the response to this query.

In a range-select query q, the interface partitions the ordered set of char-

acters into five contiguous non-empty groups (ranges), and assigns these

groups to targets 1, 2, 3, 4, 5 with respect to their order. This corresponds to

the mapping

fq(Ψ) =



1 if Ψ < ψ1

2 if ψ1 ≤ Ψ < ψ2

3 if ψ2 ≤ Ψ < ψ3

4 if ψ3 ≤ Ψ < ψ4

5 if ψ4 ≤ Ψ,

(9.4)

where ψ1 < ψ2 < ψ3 < ψ4 and ψ1, ψ2, ψ3, ψ4 ∈ Σ. Figure 9.4b shows the

stimulus used by our interface to pose the range-select query with the max-

imum IGR after spelling “COMP”. For instance if the desired character is

“L”, the user must provide X = 3 as the response to this query.

9.4 Experiments

9.4.1 The interfaces implemented for comparison

Bremen Interface

In our implementation of the Bremen interface [76], the user was presented

with a grid containing the characters in Σ (Figure 9.5b). In order to specify a

desired character, the user first navigated a cursor within the grid to the cell

with their desired character by providing responses 1, 2, 4, 5 to move left, up,

down, and right in the grid, respectively. The cursor always started at the

center cell with “E”, and moved onto the corresponding adjacent cell after

receiving a navigation command 1, 2, 4 or 5. When the cursor was at the

desired character, the user provided the response 3 to specify that character.

The placement of characters in the grid was determined a priori based on the

frequencies of characters in English texts [76]. For example, “B” was spelled
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Table 9.1: Target texts and their negative log-likelihoods

Target Text NLL (bits/char)

T1 BCI 7.19
T2 BRAIN 3.04
T3 SIREN 5.31
T4 BRAIN COMPUTER INTERFACE 1.98
T5 PLEASE GET ME A BLANKET 2.64

after receiving the navigation commands 5, 5, 4 that moved the cursor right,

right, and down, respectively, and after the select command 3 that triggered

spelling.

Cecotti Interface

In our implementation of the Cecotti interface [75], the 3-level decision tree

in Figure 9.3a was used. Initially, all possible characters were presented

in three subgroups which consisted of nine characters. The user provided

responses 1, 3, 5 to choose the subgroup displayed at left, middle, or right,

respectively. Following this initial group choice, the nine characters were

again subdivided into three subgroups, each with three characters apiece.

This process repeated one more time, allowing for the selection of the desired

character. Additional responses allowed the user to return to the previous

decision or move up the tree (by providing response 4), or delete the previous

character (by providing response 2). For example, “B” was spelled after

receiving the input commands 1, 1, 3.

9.4.2 Participants and procedure

We performed experiments with 4 able-bodied participants that were between

the ages of 20 and 30, and had normal or corrected-to-normal vision. In the

beginning, participants completed a training phase consisting of 100 trials,

where they were asked to attend to a randomly selected frequency from five

frequencies. The purpose of the training phase was to estimate the accuracy

and the latency matrix. After the training, the participants spelled the five

target texts given in Table 9.1 using first our interface, then Bremen interface,
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and finally Cecotti interface.

In order to evaluate the performance of the SSVEP classification algorithm,

we used the following measures

• overall accuracy (denoted Ā): the fraction of trials where the observed

input command matched the user response across all trials.

• overall latency (denoted L̄): the average time it took to obtain an input

command across all trials.

• information transfer rate (ITR): the average number of reliable bits

received per minute using 5 targets, computed using

L̄−1
(
log 5 + Ā log Ā+ (1− Ā) log

(
(1− Ā)/4

))
. (9.5)

In order to evaluate the performance of a text entry interface, we used the

following measures:

• spelling rate (denoted R), the number of characters spelled per minute

(cpm), without counting any backspaces.

• input-char rate(denoted ICR), the average number of trials used to

spell one character.

9.4.3 Results

The spelling rate achieved by our interface in spelling a target text T de-

pended upon the likelihood of T under our probabilistic language model.

We computed the negative log-likelihood per character (denoted NLL) under

our model for each target text, and reported the results in Table 9.1. NLL

specified the average number of bits required to represent per character of

a target text. NLL for target words (T1,T2,T3), ranged from 3.0 to 7.2,

were higher than NLL for target sentences (T4,T5), ranged from 2.0 to 2.6.

To account for this difference, we reported the results from spelling words

(Table 9.3) separately than the results from spelling sentences (Table 9.4).

We emphasize that NLL of English text was predicted to be about 2 bits per

character [115, 138]. Therefore, the results obtained from the spelling of the
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Table 9.2: Results obtained with our interface.

Spelling time (sec) ITR R

T1 T2 T3 T4 T5 (bits/min) (cpm)

P1 27 30 70 131 124 34.2 8.6
P2 23 30 27 96 81 52.2 12.2
P3 78 29 34 118 103 39.6 9.4
P4 46 30 63 138 154 33.6 7.6

Table 9.3: Performance comparisons across target words (T1,T2,T3).

Ā L̄ (sec) ICR R (cpm)

Beremen interface 0.96 3.67 2.78 6.45
Cecotti interface 0.99 3.18 3.15 6.68
Our interface 0.97 3.49 2.81 7.53

target sentences were a better estimate of the actual performance that might

be obtained with the long-term use of the interface.

In spelling target words, our adaptive interface provided a marginal im-

provement over the compared interfaces. In particular, the mean spelling rate

with our interface (7.53 cpm) was about 15% better than the rate with Bre-

men and Cecotti interfaces. In spelling target sentences, the improvement in

spelling rate jumped to over 100%, and participants achieved a mean spelling

rate of 12.41 cpm. The difference in performance gain between spelling target

words and sentences were due to the difference in their likelihoods under our

language model. Individual performances using our interface varied between

participants, as shown in Table 9.2, where they obtained ITRs ranging from

33.6 to 52.2 bits/min and spelling rates ranging from 7.6 to 12.2 cpm.

The classification performances observed across all three interfaces were

similar, with overall accuracies ranging from 0.93 to 0.99, and with overall

latencies ranging from 2.9 to 3.67 seconds. The overall latency with Cecotti

interface was slightly shorter than the other interfaces. This might be because

in Cecotti interface, users may determine the sequence of responses leading

to the spelling of their desired character much faster than they may do in

the other interfaces.
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Table 9.4: Performance comparisons across target sentences (T4, T5).

Ā L̄ (sec) ICR R (cpm)

Bremen interface 0.97 3.20 3.25 6.05
Cecotti interface 0.93 2.90 3.67 6.20
Our interface 0.98 3.26 1.54 12.41

9.5 Conclusion

We presented an EEG-based interface that allowed users to spell English

sentences by responding to a sequence of queries that were chosen adaptively

to maximize information gain rates. Although we experimented with only

four able-bodied participants, the results suggest that the performance of

EEG-based text entry interfaces might be improved significantly with our

approach. In particular, in our experiments, the spelling rates with our

interface were twice the spelling rates obtained with our implementations of

the two existing state-of-the-art SSVEP-based spellers.

We emphasize that we used a relatively simple algorithm to decode EEG

signals. Despite this limitation, one of our participants achieved an ITR of

52.2 bits/min, and spelled target sentences at a rate of 16 cpm. By using an

advanced decoding algorithm such as the one in [76], spelling rates over 20

cpm might be achieved.
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    

(a) Our Interface

    

(b) Bremen Interface

    

(c) Cecotti Interface

Figure 9.5: Sample screenshots of the interfaces evaluated in this study.
Our SSVEP-based interface for text entry [shown in (a)], and the interfaces
implemented for comparison: Bremen speller [shown in (b)] and Cecotti
speller [shown in (c)]. The flickering objects are the white rectangles that
appear on the top of each interface.
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Chapter 10

Discussion and Future Work

10.1 Discussion

In this thesis, we presented a framework for human control of robots with

low-fidelity input mechanisms, such as the mechanisms used in EEG-based

brain-machine interfaces, which produce input commands that are noisy,

discrete and that have high latency. We considered that although the input

mechanism is low-fidelity, there is often a high-fidelity feedback mechanism

that the robot can use to provide stimuli to the human user. Our objective

was to enhance the performance of the interfaces for human control of robots

by having humans provide input commands in response queries that are

posed by the robot to maximize information gain rates for quick and reliable

estimation of the human intent. We computed information gain rate of a

particular query as the expected amount of information to be received per

unit of time about the human intent by posing that query.

10.1.1 Discussion of the optimal feedback policy

Our first approach to querying human intent was to leverage an optimal

feedback communication policy (Chapter 3), which was designed for reliable

transmission of a message point between two computational agents. We

presented the use of this policy in the context of human control of robots

where the agent transmitting the message is a human user, and the message

represents the human intent. This policy assumed a particular structure on

the human intent, specifically that it can be mapped to a message point

distributed uniformly in a closed real interval, and that there is an intuitive

ordering between all possible human intents. We showed that such a structure

exists when we represent human intent as a desired path to be followed by a
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robot, based on the following two models. In the first model, desired paths

were represented as strings of symbols chosen from an ordered alphabet,

where each symbol identified a path primitive, such as a fixed-length circular

arc with a particular curvature (Chapter 5). In the second model, desired

paths were represented as local geodesics with respect to a cost function that

took into account environment-driven features such as proximity to obstacles

(Chapter 6). We demonstrated the feasibility of using the optimal feedback

policy in robotic navigation tasks by querying the desired paths the humans

want the robot to follow. In particular, we developed interfaces for flying a

simulated aircraft and for navigating a mobile robot indoors with only noisy

binary inputs obtained from EEG.

10.1.2 Discussion of the EEG-based interfaces for robotic
navigation

The interface for flying a simulated aircraft represented desired paths as

strings of circular arcs, which corresponded to paths of piecewise-constant

curvature, and allowed users to navigate the aircraft successfully over these

strings at a fixed speed and altitude (Chapter 7). Experimental results with

this interface showed that our approach outperformed an existing state-of-

the-art approach in navigating a robot moving at a fixed speed and enabled

successful specification of desired paths despite very low information transfer

rates obtained with binary motor imagery decoding from EEG signals.

The interface for navigating a mobile robot in a virtual indoor environment

represented desired paths as local geodesics with respect to a cost function

that was recovered from human-demonstrated paths using structured predic-

tion (Chapter 8). Effectively, this interface allowed a human user to navigate

a robot by specifying the topological structure of their desired path, and

letting the robot determine the geometric structure using the cost function

learnt from existing data. In experiments, the robot was navigated along two

target paths successfully in less than twice the time it would have taken to

robot if informed of the path explicitly before the task.

Prior to these two interfaces, the existing interfaces for human control of

robots with EEG heuristically used inputs commands, which were inherently

noisy and low-bandwidth, to identify moment-to-moment steering commands
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(i.e., in the interfaces based on process control such as [43]), waypoints (i.e.,

in the interface by Iturrate et al. [53]) or final destinations (i.e., in the

interfaces based on goal selection such as [51]). In contrast, our interfaces

used input commands as evidence to infer the user’s desired path over a

compact space of desired paths. The experimental results showed that our

approach is not only optimal for reliable communication of intent but also

generates a protocol that is easy for humans to implement for navigating

robots.

10.1.3 Discussion of the active inference policy

Our second approach to querying human intent was to leverage the Bayesian

active inference framework (Chapter 4). In particular, we presented the use

of a (sequential) Bayesian experimental design, which suggested the selection

of the experiment with the maximum information gain about the unknown

parameter to be learnt, in the context of designing queries for inferring hu-

man intent, where each query specified the input command the human must

provide to communicate information about their intent. To evaluate the

value of a query, we introduced a measure we called information gain rate

(IGR), which was defined as the ratio of the information gain to the expected

latency of observing an input command after a query was posed. However,

other measures could be used to evaluate the value of a query depending on

the objectives of the interface design.

We also established a link between the active inference policy that max-

imizes information gain rates and the optimal feedback policy presented in

Chapter 3. In particular, the queries selected by these two policies are the

same if the human intent can be mapped to a particular structure (i.e., to a

message point uniformly distributed over a closed real interval), the human

responds to each query using the same input mechanism, and the expected

time to obtain an input command after posing a query is the same for all

queries. If these conditions are satisfied, the active inference policy reduces

to the optimal feedback policy.

130



10.1.4 Discussion of the EEG-based interface for text-entry

We demonstrated the feasibility of using the active inference policy by de-

veloping an EEG-based interface for text entry (Chapter 9). Users of this

interface specified desired texts by responding to a sequence of queries that

were chosen adaptively to maximize information gain rates. To our knowl-

edge, our interface was the first to design queries to make the input commands

received from human users have the maximum value for identifying the user’s

desired character based on the characteristics of the input mechanism. The

experimental results showed that our interface allowed human users to specify

text twice as fast as they would with the compared state-of-the-art interfaces

using the same input mechanism.

10.2 Future Work

10.2.1 Representing human intent as executions of MDP
policies for robotic navigation

We modeled human intent as a desired path to be followed by the robot, and

considered two representations: one represented paths as strings of symbols,

and the other represented paths as local geodesics. The former representation

allowed users to specify paths with a resolution that was (roughly) a function

of the alphabet size, and the length of each symbol. The latter representa-

tion allowed users to specify only the topology of the paths (including the

endpoint), where the geometric structure was provided by a prior model tak-

ing into account environment-driven features such as proximity to obstacles.

In the future, to make desired paths more expressive and more compact by

considering a hybrid of these two representations, we can represent a desired

path as a path taken under a stochastic optimality policy of a deterministic

Markov Decision Process (MDP).

An MDP is a 4-tuple (S,Σ, T, R), where S is the set of states, Σ is the

set of actions, T : S × Σ → S is the deterministic state-transition function,

and R : S × Σ → R is the reward assigned to each state-action pair. A

stochastic policy assigns a likelihood π(σ|s) to each action σ ∈ Σ taken in

each state s ∈ S. A path γ is a sequence of state-action pairs visited under
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a policy, i.e., γ = (γ0, γ1, . . . , γN), γi ∈ S × Σ, and the reward of a path

is J(γ) =
∑|γ|

i=0R(γi). We view an action σ ∈ Σ as describing the path

generated by applying a motion primitive to the current state, similar to

our representation of paths as compact strings (Chapter 5). For example,

we can represent the paths generated using our alphabet of circular arcs

(Section 5.2.1) as paths generated by execution of a stochastic MDP policy.

In this MDP, the states are points on a 3D grid defined over the x, y positions

and the orientation θ. Each state-symbol pair is assigned a reward, and each

path is assigned a likelihood based on the accumulated rewards. Given a set

of human-demonstrated paths, we can learn a stochastic optimality principle

using the method of [139].

10.2.2 Adapting representations of human intent to the
capacity of the input mechanism

In this thesis, we considered low-fidelity input mechanisms that have limited

bandwidth such as the mechanisms used in EEG-based brain-machine inter-

faces. In our model of such input mechanisms as discrete noisy channels,

the capacity of a channel provides a fundamental limit on the bandwidth of

communication. It is important to express human intent with an uncertainty

that admits reliable communication within a desired amount of time. We

emphasize that the higher the uncertainty of the human intent, the more

input commands will be required to communicate the human intent to the

robot. In future work, we can use tools of rate-distortion theory [79] to adapt

representations of human intent to enable reliable communication under the

constraints of the input mechanism.

In our interface for flying a simulated aircraft, we considered adapting the

representation of desired paths by changing the length of the symbols that the

paths are composed of (Chapter 7). This enabled human users with higher-

bandwidth input mechanisms to fly the aircraft along more expressive paths.

However, our approach for adaptation was based on performing Monte Carlo

simulations of the interface under a simulated input mechanism for a wide

range of symbol lengths. In future work, we plan to use a more systematic

approach.

One way to adapt representations of desired paths based on a symbolic
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language is to choose the symbols of the language, i.e., the alphabet Σ,

systematically from a large pool of symbols A. We can formalize this as the

problem of selecting a subset Σ in A that maximizes a measure of expressivity

of the paths generated using the symbols in Σ subject to the constraint

that the reliable communication of paths of desired length can be achieved

within a desired amount of time with the capabilities of the input mechanism.

This problem might be addressed by using a submodular set function to

measure the expressivity of paths, and by approximating the communication

constraint using a modular function (e.g., the number of symbols in Σ must

be less than a particular amount). The solution to this problem might be

obtained using near-optimal greedy algorithms for submodular maximization

[140].

10.2.3 Querying human intent without knowing the
characteristics of the input mechanism beforehand

We restricted our scope to the setting where the robot knows the charac-

teristics of the input mechanisms, such as how much accurately and quickly

input commands can be provided using a particular mechanism (Section 1.2).

In our interface for text-entry, we learnt an accuracy and latency model of

the user’s input mechanism by performing experimental trials in which the

ground-truth user responses were known. This was a lengthy process and

many trials needed to be performed to obtain a good estimate of the accu-

racy and latency models before allowing users to enter text. A similar process

was used to estimate the crossover probability of input commands in our in-

terface for flying a simulated aircraft with binary commands. Results with

this interface showed that this crossover probability changed across succes-

sive runs of the experimental tasks and most of the failures with the interface

could be explained by the change in the crossover probability.

In order to eliminate or shorten the process of estimating the characteristics

of the input mechanisms, and to enable re-estimation of these characteristic

during the use of the interface for inferring human intent, in future work,

we plan to cast the problem of adaptively selecting queries as a multi-armed

bandit problem. Formalized by Robbins [141], in the multi-arm bandit prob-

lem, pulling each arm yields a reward with a probability that is fixed but
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unknown to the puller and that is independent across each arm. The goal is

to determine which arm to pull in which order in order to maximize the total

reward. The solution strategies trade-off between exploration (estimating the

fixed probabilities used by each arm) and exploitation (pulling the arm that

is expected to give maximum expected reward).
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