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ABSTRACT 

This dissertation studies the rheological properties of dense colloidal mixtures. Particular 

interest is focused on the role of volume fraction and strength of interactions that lead to glass 

or gel formation. Variables studied include particle concentration, strength of attraction, 

particle size distribution, and particle shape, which have effects on dynamic arrest transitions, 

jamming conditions and steady flow properties of dense suspensions. A special attention is 

paid to changes in properties at volume fractions exceeding the dynamic arrest transitions and 

approaching maximum packing fractions. For mixtures of particles, dynamic state diagrams 

are constructed as functions of large particle volume fraction ratio and total particle volume 

fraction as particle interactions are varied.  

The main effort is focused on the system composed of spherical silica particles with 

different sizes (100nm-1μm) dispersed in low molecular weight polyethylene glycol (PEG) 

melts with molecular weight 400 and 2000. For this system we explore the impact of the 

polymer molecular weight on the dynamic arrest transition, linear elasticity, shear thickening, 

and yielding for both monomodal and bimodal particle size distributions. Data is reported 

showing a varied dynamic arrest transition volume fraction, weakened shear thickening 

behavior and augmented shear elasticity in higher molecular weight polymer melt (PEG2000) 

for single-component system and denoting a stronger particle-particle attraction in higher 

molecular weight polymer which cannot be a consequence of adsorbed polymer layer 

entanglement. For bimodal mixtures in PEG400, particles interact with excluded volume 

potentials and the dynamic arrest transition volume fraction is a non-monotonic function of 

large particle volume fraction ratio. The dynamic arrest volume fraction is strongly correlated 

with the maximum packing fraction for each mixture. The data show that rheological 

properties of dynamic arrested states diverge in a consistent way when approaching 
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maximum packing fractions. When dispersed in PEG2000 where particles are attractive, the 

dynamic arrest volume fraction is a monotonic function of large particle volume fraction 

ratio, which is not correlated with maximum packing fraction. Flow properties at this 

condition are dominated by attractions.   

In a further study, the flow properties of suspensions of large (diameter~1μm) and small 

(diameter~300nm) polystyrene particles suspended in an aqueous electrolyte were 

investigated.  Here two types of large particles were investigated: spheres and dumbbell 

shaped particles. Weak shape anisotropy of the large particles delays the dynamic arrest 

transition and decreases the viscoelasticity at fixed volume fractions in single-component 

systems, but enhances the dynamic arrests and alters the jamming conditions in binary 

mixtures compared to sphere mixtures with bimodal size distributions. A consistent 

understanding of rheology in dense suspensions is built up based on particle localization 

effects.   
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Chapter 1. Introduction 

1.1 Overview 

Colloidal dispersions with particle size ranged from 10nm to 10μm have been used 

widely in industrial processing where large surface areas and high solid concentrations 

are required, including paints, ceramics, food and electronics. With the ability to tune 

particle interactions, concentration, size and shape, the physical properties of colloidal 

dispersions can be easily designed and improved thus making the application of this 

group of materials ubiquitous.
1-4

 

There are different strategies to vary the parameters of colloidal suspensions in order 

to control processing. Particle shape can be manipulated by different manufacturing 

techniques.
5, 6

 Particle size can also be varied in a wide range within 10nm-10μm, particle 

interaction can be tuned by varying temperature, the chemistry of the particle surface and 

the colloid materials, surface  chemistry  and  dispersion  medium,  while  the  particle 

concentration  can  also  be manipulated over in a wide range to achieve different state 

behaviors.
7
 Despite knowing that these parameters can be used to vary suspension 

properties, designing and engineering colloidal dispersions with desired mechanical, 

optical or electrical properties, requires a deeper fundamental understanding of the 

effects of particle shape, size, interaction and concentration which all influence the 

state behaviors and rheology of the suspension in a cooperative way. Many studies have 

been carried out to study the phase behaviors and the rheology of dense suspensions 

composed of single-component colloids with concentrations and interactions varied, 

involving dynamic arrest transitions (glass transition and gelation) and the flow 

properties of repulsive glasses, attractive glasses and gels.
8
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When the size polydispersity is large enough or the suspension is concentrated with 

sufficient rapidity, the suspension reaches a jammed state at random close packing where 

the dispersion shows no long-range ordered structure as seen in crystals. As show in 

Figure 1.1, which is a schematic state diagram of single-component spherical hard-core 

colloidal dispersion, when the particle-particle interaction energy at contact ε/kBT=0, the 

resulting interactions are purely volume exclusion in nature and the system is referred to 

as being composed of hard spheres. At low volume fractions, the suspension is a liquid 

with very low elasticity. As volume fraction increases towards random close packing 

(~0.64) the suspension viscosity increases rapidly and elasticity become apparent. 

Depending on the method used to characterize the suspension’s relaxation rate, hard 

sphere suspensions are said to undergo a glass transition for ϕc~0.58 in experimental 

reports. At this point density fluctuations are said to not relax in a time period of 10 

seconds.
9
 The exact volume fraction defining the glass transition depends on the method 

which is used to characterize relaxation processes. As ϕc is increased, particles are 

trapped in cages formed by nearest neighbors for increasing long periods of time 

resulting in increasing time for long-range diffusion and reduced relaxation rates. The 

glass transition is ultimately seen as a dynamic process where the system is a liquid for 

observations of duration longer than the relaxation time and a solid for observations of 

duration shorter than the relaxation time. Hard spheres show glassy dynamics 

characterized by rapid diffusion within cages and slow diffusion for large distances, at 

volume fractions above 0.5. The period of observation required to see liquid-like 

behavior diverges as random close packing is approached. The volume fraction 

characterizing the onset of glassy behavior or the volume fraction where particles become 
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localized by cages of nearest neighbors is defined as ϕx and is said to demark the dynamic 

arrest transition. The prediction of the value of ϕx depends on the details of the theory 

used and varies between 0.52 for idealized mode coupling theory (MCT)
10

 to 0.432 for 

naïve mode coupling theory (nMCT)
11

. Both MCT and nMCT are designed to predict 

when collective interactions result in the localization of particles by entropic forces 

produced by nearest neighbors. In its idealized form, MCT predicts that long-range 

diffusion ceases for ϕc>ϕx. Many observations demonstrate that above ϕx, suspensions are 

able to relax when exposed to stress and zero-shear viscosities are observed.  

This theory was advanced with the introduction of dynamic localization theory where 

the cross-over volume fraction ϕx is set to be the point where there is an inflection in a 

dynamic potential. This potential is used to describe the motion of particles due to 

collective particle motions in the suspensions. The dynamic potential results from force 

correlations and does not alter the suspension’s microstructure and is a theoretical 

construct used to capture the fluctuating forces acting on the particles. The dynamic 

potential thus only alters the dynamics of particle motion which is associated with time 

dependent force correlations and predicts that the onset of glassy behavior does not occur 

as an abrupt transition but is observed as a smooth transition in zero shear rate viscosity 

and diffusivity where the rate of change of these parameters occurs more rapidly for ϕc> 

ϕx. For ϕc<ϕx, the dynamic potential drives particles to diffuse randomly throughout the 

suspension volume.  For ϕc>ϕx , the dynamic potential develops a local minimum at Lr

and a barrier at Lr . Long range particle diffusion requires activated motion out of the 

dynamic potential. This occurs with a characteristic hopping time. As volume fraction is 

raised the local minimum in the dynamic potential grows in depth, the barrier over which 
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the particles must diffuse increases in height and the hopping time becomes longer as 

shown in Figure 1.2(A). In this model, long range diffusion does not cease until the 

suspension hits the maximum packing fraction which is ~0.64 for hard spheres.
12

 With 

increasing strength of particle attractions, the dynamical ϕx can be changed. With weak 

attractive energy at contact (ε/kBT~2), theoretical studies predict re-entrant behavior with 

ϕx slightly increased above the hard sphere value.
13, 14

 The existence of re-entrant glasses 

formation has also been confirmed experimentally and the prediction of this phenomena 

is one of the major achievements of MCT.
15

 With stronger attraction introduced, dynamic 

arrest occurs at lower volume fraction, than what is seen in hard sphere suspensions. 

These systems are called gels.  For all these systems the maximum packing fraction ϕm is 

controlled only by the particle hard core geometry, and thus cannot be varied due to 

tuning interactions. 

As the volume fraction of suspensions is raised, their flow properties often show very 

similar properties where, with increased stress a low shear rate viscosity is followed by a 

shear thinning region leading to a high-shear viscosity plateau which is interrupted by 

shear thickening at high enough volume fraction. According to dynamic localization 

theory, when shear stress is increased on suspensions with ϕc>ϕx, the barrier over which 

the particles must diffuse decreases in height. At the absolute yield stress, the local 

minimum and barrier in dynamic potential disappear with a saddle point developing at 

the inflection point (Figure 1.2 (B)). These universal features are of course modified by 

suspension parameters of volume fraction, particle size, shape, and interaction potential. 

Here dynamic localization theory is used to explore the consequences of particle 

localization in complex media where pair potentials are poorly understood and the 
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maximum packing fraction can be varied. Of particular interest is developing methods to 

characterize the dynamic arrest transition ϕx and to explore changes in flow properties 

when approaching the maximum packing volume fraction ϕm. To do this I purposely 

study colloidal dispersions with bimodal size distribution and tunable particle-particle 

interaction by controlling the suspension medium. Here ϕm is controlled by varying 

particle geometry and particle size distribution. ϕx is controlled by both packing and 

varying particle interactions.    

1.2 Binary Mixtures 

It is important to understand the effect of polydispersity in colloidal suspension not 

only for wide existence of multimodal colloidal mixture but also for optimizing the 

properties of colloidal dispersions. There are many examples of colloidal mixtures in the 

nature such as the proteins in  eye lens protein mixtures formed by γ- and α-crystallins 

where  phase separation occurs on decreasing temperature.
16

 Complexity is expected in 

the properties when increase the degrees of freedom in colloidal suspensions by adding a 

different species of particle as shown in experimental systems.
17, 18

 In addition, 

theoretical studies have predicted that novel dynamics and structures can be produced by 

heterogeneity in size, shape and interaction of colloids.
19-21

  

In colloid-polymer composite systems colloid-colloid interactions can be controlled 

precisely by changing the colloid-polymer segment interaction and the thickness of the 

adsorbed polymer layer. Few studies have explored the effect of size disparity when 

particles of mixed size are incorporated into the composite. One especially important 

question lies in understanding how the rheology in dense polymer composite melts.  

Detailed studies show that particle interactions are systematically varied with increasing 



6 
 

polymer radius of gyration. Here the effects of increasing particle size are explored for 

two polymer molecular weights under the entanglement molecular weight. In addition, 

the effects of introducing bimodality of particle size into polymer composite melts are 

explored. 

Complexity in colloidal suspensions can also be introduced by changing particle 

shape. Most detailed studies have been carried out on suspensions composed of spheres.  

Recently studies have established that particles with weak shape anisotropy but hard 

interactions share universal rheological behavior of spheres if ϕm is recognized as 

changing with particle shape. The effects are explored if we introduce shape anisotropy to 

bimodal mixtures of colloidal particles.   

Therefore, in the following chapters, suspension flow properties are characterized of 

two carefully designed experimental systems: silica particles dispersed in polyethylene 

glycol (PEG) in Chapter 2-4 and polystyrene particles in aqueous phase in Chapter 5. In 

Chapter 2, silica particles with four different sizes in PEG are studied as a function of 

polymer molecular weight leading to an understanding of the effects of polymer molecule 

weight and particle size on flow properties. In Chapter 3, binary mixtures of colloids in 

low molecular weight PEG are studied, where interaction is volume exclusion and glasses 

form at high volume fractions. In Chapter 4, the polymer-induced attraction on the 

rheology of binary colloidal dispersions is investigated. In Chapter 5, polystyrene 

particles are designed to incorporate shape anisotropy in binary mixtures to help us 

develop further understanding about the glass transition in dense suspension. In Chapter 6, 

rheology of different systems are understood in the frame of nMCT and dynamic 

localization theory based on the studying the entropic barrier height and external shear 



7 
 

induced hopping. In Chapter 7, the results are summarized and main conclusions are 

given.  

1.3 Tables and Figures 

 

Figure 1.1 Schematic state diagram of single-component spherical particle. 
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Figure 1.2 Schematic dynamic potential as a function of particle displacement for (A) 

zero shear condition denoting transition from delocalization to localization with Lr  and 

FB labeled for ϕc>ϕx, and for (B) suspension with ϕc>ϕx when exposed to different shear. 
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Chapter 2. Role of Particle Size and Polymer Length in Rheology of Colloid-

Polymer Composites 
1
 

2.1 Introduction 

The mechanical properties of polymers are often enhanced by addition of  sub-micron 

colloidal particles.
1
 Such particle filled polymer melts are referred to as nanocomposite 

when the particle size is below ~100nm in diameter. Particles can enhance elasticity, 

push the composite glass transition temperature up or down and can increase or decrease 

the viscosity of the composite melt.
2, 3

 Previous studies that focused on the rheology of 

unentangled polymer nanocomposite melts demonstrated that in miscible systems, the 

rheology of the composite melt is well described as effective hard spheres suspended in a 

Newtonian continuous phase up to a high packing fractions.
2, 4

 On the other hand, for the 

same polymer-particle systems, at fixed particle size when the polymer molecular weight 

is increased to a value near where the polymer chains entangle, detailed studies of 

composite microstructure demonstrate the inappropriateness of treating polymer melts as 

structure-less continuum even when the ratio of polymer radius of gyration to the particle 

diameter, Rg/Dc, is only 0.02.
2
  

Here we investigate changes in flow properties in composites of unentangled 

polyethylene glycol (PEG) with a focus on the effects of silica particle size and high rates 

of deformation. We are interested in uncovering the effects of particle size and polymer 

molecular weight on the reinforcing properties of highly filled composites while 

exploring melt flow properties at shear rates where these composites thicken. In these 

systems, PEG adsorbs to the particle surface, giving rise to particle and polymer 

                                                 
1
 Reproduced with permission from Macromolecules DOI 10.1021/ma301184t. Copyright 2012 American 

Chemical Society   
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miscibility. The particle’s index of refraction is nearly matched to that of the polymer and 

charges at the particle surface are eliminated by the low dielectric constant of the polymer 

melt such that direct inter-particle interactions are limited to very weak van der Waals 

attractions. At low particle volume fractions these systems are thus expected to have 

rheological behavior similar to that of polymer coated particles in a Newtonian 

continuous phase. 

When macroscopic surfaces are driven together in a polymer melt where the polymer 

adsorbs to the particle surface, soft repulsions  begin to appear when the surfaces are 

separated at a distance of less than ~5-6Rg, with a hard repulsion developing for 

separations of 2-3Rg.
5, 6

 In colloid filled polymer melts, the hard particle surfaces alter 

polymer configurations. These zones of altered configuration begin to interact as the 

particle volume fraction is raised. As with macroscopic surfaces, when the average 

surface separation between two particles, h, in units of Dc is estimated as:

1

3/1













c

m

cD

h




, adsorbed polymer layers begin to interact at h/Rg<3.6 for unentangled 

polymer and h/Rg<6 for entangled polymer. Here c is the volume fraction and m is the 

maximum packing fraction (~0.64 for spheres). As a result, in addition to chemical 

details of segment-particle surface interactions, the potential of mean force between 

particles is expected to be a function of Dc, Rg and volume fraction just as charge 

stabilized particles, the interaction between which is a function of Dc, 1/(Debye length) 

andc.
7, 8

  

For particles suspended in polymer melts to experience soft repulsions mediated by 

the adsorbed polymer layer, the appropriate attraction strength between polymer 
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segments and particle surface must be achieved. Weak attractions result in depletion 

attractions that drive the particles to aggregate. Thus to produce a stable dispersion of 

particles in a melt, the polymers must experience a net attraction to the particle surface.
9
 

The Polymer Reference Site Interaction Model (PRISM) of Schweizer and coworkers has 

been developed to predict microstructures of polymer and particles in nanocomposite 

melts.
10

 Comparisons of polymer and particle microstructure for low molecular weight 

unentangled polymer with PRISM predictions show near quantitative agreement.
11, 12

 

PRISM predicts weak changes to composite microstructure and adsorbed layer thickness 

with increasing polymer molecular weight.  

Contrast matching neutron scattering
13

 and rheological studies
14

 demonstrate that the 

adsorbed polymer layer grows in thickness with increasing molecular weight. Indeed 

Anderson et al show that when working with 44 nm silica particles suspended in 

polyethylene glycol melts with molecular weights of 400-20,000, the particle’s intrinsic 

viscosity increased in a manner consistent with an  effective hard core diameter of 

Dc(1+2.8Rg/Dc).
14

 Anderson et al reported that this increase in effective particle size with 

molecular weight is accompanied by a decrease in colloidal stability indicative of a 

weakening of repulsions or the introduction of weak inter-particle attractions. However 

for low molecular weight (MW<1000), the effective hard sphere model captures the 

linear viscoelastic rheology until particles are brought to a volume fraction where 

h/Dc~3.6Rg/Dc. Increases in adsorbed polymer layer thickness are associated with greater 

structure in colloidal suspensions. There is thus some confusion as to success of PRISM 

for low molecular weight polymer composites as well as the failure of PRISM at higher 

molecular weights based on the nature of the absorbed polymer layer and how it 
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influences the potential of mean force felt by the particles. These observations of silica in 

PEG melts augment earlier studies of polybutylene melts filled with polystyrene 

spheres
15

  and  suggest that nonequilibrium polymer configurations become increasingly 

dominant as polymer molecular weight grows.  

Here nonequilibrium configurations are associated with the inability of adsorbed 

polymer segments to rapidly exchange with those in the bulk such that polymer 

configurations near the particle surface cannot relax into an equilibrium state over 

reasonable time scales. The increased segment residence time at the particle surface alters 

particle and polymer microstructures.
13

 In studies of composites made of 44 nm silica in 

PEG for molecular weights above 3000, the proximity of the surfaces was found to 

introduce greater entanglement at volume fractions where h/Dc<6Rg/Dc . The interaction 

of the adsorbed polymer layers at these average surface spacing does not lead to particle 

aggregation, but increasing polymer MW does result in kinetic arrest of the particles at 

ϕc~0.30 and the composites displaying brittle fracture. The gel transition observed in 

these systems is not well described as a glass transition of effective hard spheres. 

 A variety of previous studies have explored the role of soft repulsions on linear and 

nonlinear suspension rheology. For example, the effects of particle size and polymer 

induced interaction potentials on rheological properties and microstructure of charged 

polymer colloids (with varying ionic strength, particles with grafted polymers (fixed graft 

size and variable  particle size
16

) as well as microgel systems and particles with the core-

shell microstructures have been extensively reported.
17-20

 Often, these studies analyze 

experimental observations starting models where the adsorbed or grafted polymers starts 
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define an effective hard core volume fraction that accounts for the increased excluded 

volume introduced by the adsorbed or grafted polymer layers.  

Consistently, as volume fraction is raised, there is a transition from a state where a 

zero shear rate viscosity can be measured to a state the suspensions shear thinned in all 

measurable shear rates,  . Often volume fractions are reached where the suspensions 

show a dynamic yield stress where the stress is very weakly dependent on   followed at 

high shear rates by the approach of a high shear rate terminal viscosity. At effective 

volume fractions where the yield stress plateau develops, the linear elastic storage 

modulus, G’, displays a high frequency plateau while the linear loss modulus, G”, 

develops a minimum indicating a separation of relaxation time scales. These features are 

consistent with the onset of glassy behavior as predicted by mode coupling theory (MCT) 

.
17

 However at effective volume fractions where absorbed polymer layers begin to 

interact, the deformability of adsorbed or grafted layers dominate the flow,
20

 

demonstrating the need for care in interpreting the flow properties at high volume 

fraction and high stresses.  

Working with a range of particle sizes enables us to explore a broad range of shear 

rates. The particles are Brownian and for the Newtonian polymer melts studied here, the 

diffusivity can be written as D0=kBT/3pDc. Here ηp is the viscosity of solvent and kBT 

is product of the Boltzmann parameter and absolute temperature. Typically shear 

thickening is associated with high applied stresses where hydrodynamic interactions 

dominate the suspension microstructure.  This occurs where the rate of shear is larger 

than the rate of diffusion. This ratio of rates is characterized by the Peclet number, 

TkDPe Bcp 4/3 3  and thickening is typically observed when Pe>10.
21

 Thickening 
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becomes noticeable as the volume fraction increases and, initially is observed as a 

logarithmic increase viscosity with shear rate. As the volume fraction approaches close 

packing the viscosity undergoes a discontinuous increase as shear rate is increased.  

If  thermally active particles are suspended in a Newtonian continuum and experience 

only hard core interactions, dimensional analysis suggests that for a given volume 

fraction, shear thickening will be observed  at a universal value of Pe.
21

 As a result, the 

absolute shear stress at the onset of shear thickening satisfies
3

 cc D . When interactions 

other than those of volume exclusion are operational, the size dependence of τc will 

change. For example, for particles experiencing short range, screened electrostatic 

repulsions satisfy 
2

 cc D .
7

 Similar results have been observed with particles 

experiencing soft repulsions that demonstrate the sensitivity of shear thickening to the 

hydrodynamic permeability of polymer coat.
16, 22

 Attractions are known to delay 

thickening to larger stresses
23

 while soft polymer layers are known to weaken the onset of 

thickening.
22

 Little has been reported for shear thickening in nanocomposite melts where, 

as discussed above the effects of particle size, interactions of absorbed polymer layers 

and changes to the potential of mean force due to nonequilibirum polymer configurations 

become important.   

Here we focus on four different colloid-polymer composites composed of two 

different silica particle sizes (Dc=127nm referred to as small particles and Dc=612nm 

referred to as large particles) and two different polymer molecular weights (polyethylene 

glycol with molecular weight equaling to 400 and 2000 where the molecular weight for 

entanglement is ~4000) .
14

 Below in Section 2.2 we discuss how we create our 
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composites and characterize composite rheology under steady shear and in linear and 

nonlinear oscillatory rheometry.  

In Section 2.3 we discuss our results with careful attention to the magnitudes moduli, 

to volume fraction dependencies of characteristic frequencies extracted from linear elastic 

studies and yielding behavior with a particular focus on flow curves and the stress at the 

onset of thickening. We show that there are three effects altering composite mechanics at 

high volume fractions with increasing polymer molecular weight and increasing particle 

size. First we show that the potential of mean force experienced by the particles 

suspended in polymer melts is altered by particle size and this effect is enhanced in high 

MW polymer melts. Secondly, as polymer molecular weight grows- even below the 

entanglement molecular weight, particles experience weak attractions that extend beyond 

the extent of bound polymer layers. We attribute these attractions to very slow exchange 

of absorbed polymer segments with those in the bulk. This gives rise to the effective 

particle surface becoming chemically similar to the bulk such that the enthalpy of 

exchange of a segment from bulk to the effective particle surface drops, resulting in a 

depletion attraction. Thirdly, as the volume fraction is raised such that h/Rg is of order 

unity, interactions of the polymer layers begin to dominate flow properties. Finally we 

report that in the composites formed of the low molecular weight polymer, hard sphere 

scaling is not observed at shear thickening and that shear thickening is considerably 

weakened as polymer molecular weight is increased.  
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2.2 Experimental Methods 

2.2.1 Sample Preparation 

Monodisperse silica particles are synthesized by method that is developed by Stober
24

 

and extended by Bogush et al.
25

 Two different sizes are prepared with Dl=612±20nm 

(referred to as large particles) and Ds=127±7nm (referred to as small particles) which will 

be mainly discussed below. In addition, two more particle sizes are included in shear 

thickening behavior study for low molecular weight which are (730±8) nm and (213±9) 

nm particles. The product particles are suspended in ethanol solution containing water 

and ammonia hydroxide. The resulting suspension is concentrated to a mass fraction 

~0.20 by heating up the suspension to evaporate the solvent and drive off the ammonia. 

Following previous studies,
2
 we chose to work with polyethylene glycol with MW~400 

(MW: 380~420, PEG400, low molecular polymer) at T=25°C and MW~2000 (MW: 

1900~2200, PEG2000, high molecular polymer) at T=75°C as the polymer melts. 

PEG400 is a Newtonian fluid with viscosity ~0.10 Pa·s at T=25°C. PEG2000 is also a 

Newtonian fluid at the condition we study with viscosity ~0.10Pa·s at T=75°C.  

Concentrated silica particle suspensions are mixed with PEG and the resulting 

suspensions are placed into a vacuum oven with temperature kept above Tm of PEG to 

remove ethanol. Below we refer to the four different sets of composites separately as 

SCSP (small colloid in short polymer), LCSP (large colloid in short polymer), SCLP 

(small colloid in long polymer) and LCLP (large colloid in long polymer). To determine 

the volume fraction ϕc of particle with mass fraction Xc<0.50, the equation  c=(ρT/ρc)Xc is 

used, where ρT and ρc are the density of the filled composites and pure polymer melts. 

The composite density, ρT, is determined using a Mettler/KEM DA-100 density meter for 
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low molecular weight polymer (PEG400). The particle density was measured in previous 

studies to be ρc=1.6g/cm
3
.
2
  The results are quite consistent for large and small particles 

for the same mass fraction samples. For Xc>0.50, the composite viscosity was too high to 

be measured in the density meter and volume fraction were determined by extrapolating 

the plot in the ϕc-Xc panel. Previous study has confirmed a similar density of composites 

independent of polymer molecular weight,
14

 so we would use the same volume fraction 

here for SCLP and LCLP at same mass fractions.  

2.2.2 Rheology  

Rheology experiment is carried out at C-VOR Bolin rheometer where a cone and 

plate geometry is used. The cone diameter is 20mm with a 4° angle. Here the temperature 

is kept at 25°C for PEG400 and 75°C for PEG2000 to keep the similar matrix viscosity 

high enough (ηp=0.10Pa·s) to make sure of studying in a high dimensionless frequency 

range ( TkD Bcp /3*
3

  ) and  high dimensionless shear rate range (

TkDPe Bcp 4/3 3  ) to observe shear thickening in the measurement window which 

will be discussed below. 

Oscillatory stress is used to measure elastic modulus G’ and viscous modulus G” as a 

function of frequency ω in the frequency sweep experiment with strain γ=0.01 held 

constant to make sure of searching in a linear region, and G’ and G” are measured by 

varying shear stress/strain at fixed frequency ω=0.1Hz to study the nonlinear rheology 

and yielding behavior. Moreover continuous stress is applied in the viscometry 

measurement to study the viscosity as a function of applied shear stress or shear rate to 

understand the shear thickening behavior. Pre-shear has been applied and 1 min recovery 

time has been allowed before each measurement. We found that the samples recovered 
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their properties within the time frame of switching shear stresses. The measurements 

were found to be reproducible with the samples showing no thixotropy and flow 

properties being independent of shear-history. 

2.3 Results and Discussions 

2.3.1 Low Concentration Viscosity 

In Figure 2.1, the relative zero shear viscosity ηr,0 =η0/ηp is plotted as a function of 

silica particle volume fraction, where η0 is the viscosity in the low shear rate region and 

ηp is the polymer matrix viscosity (ηp=0.10Pa·s for PEG400 at T=25°C and for PEG2000 

at T=75°C), and the resulting low volume fraction data is fit to:  

2

0, )(5.21 ccr kHk          (2.1) 

Here k=ϕeff/ϕc with ϕeff standing for the effective hard sphere volume fraction and H is 

interaction coefficient which should be 5.9 for hard sphere interaction.
26

 The fitting 

results are also included in Table 2.1.   

Within experimental uncertainty, when suspended in PEG 400, both large and small 

particles behave essentially like hard spheres with single particles dissipating energy as if 

they have a slightly larger core size.
 
An effective particle size can be calculated from k 

assuming that single particles dissipate energy under shear as if they were composed with 

a hard core surrounded by an immobilized polymer layer with thickness δ at the outer 

edge of which the non-slip boundary condition holds. Under these conditions, 

k=ϕeff/ϕc=(Deff/Dc)
3
=(1+2δ/Dc)

3
. We tabulate the values of  in Table 2.1. For PEG2000, k 

is larger than for PEG400 showing that the steric layer thickness is independent of the 

particle size, but increases proportionally with the square root of the polymer 

polymerization degree in agreement with previous work, where steric layer thickness is 
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found to be proportional to Rg ( NRg  with N representing the polymerization degree) 

for PEG with MW in the range of 400-20000.
14

 The values in Table 2.1 are smaller than 

the values reported for 44 nm diameter silica particles reported previously,
14

 which may 

reflect the effects of surface curvature. Also for PEG2000, H is increased slightly for both 

large and small particles further away from 5.9, denoting enhanced pair interactions. 

However, H lies close to the hard sphere value of 5.9 showing that the interaction is small 

for both PEG400 and PEG2000.   

2.3.2 Linear Rheology 

At elevated volume fractions, the linear elastic properties of these composites vary 

dramatically with particle size and polymer molecular weight. In Figure 2.2, we present 

the linear elastic moduli and viscous moduli as a function of frequency for representative 

volume fractions of the four sets of composites. Here the dimensionless parameters are 

obtained as following: TkDGG Bc /''*
3

 , TkDGG Bc /""*
3

  and 0

2
/* DDc  , where 

G’, G”,  are the elastic modulus, viscous modulus and angular frequency (ω=2πf with f 

representing frequency in unit of Hz), and D0 is the dilute particle diffusion coefficient. 

At low frequencies the composites enter a low frequency terminal region where both 

G’* and G”* increase as power law functions of * with exponents of 2 and 1,  

respectively, below a crossing point x1
*
, where G’*=G”*=Gx1*.

27
 For the data shown in 

Figure 2.2, the terminal region is only observed with LCSP while, for the other three sets 

of data, the terminal region is entered at frequencies lower than could be probed. At even 

higher frequencies, there is a second crossing point at x2
*
, where G”*>G’*. As the 

volume fraction increases, a minimum develops in G” at m and G’ develops a “rubbery” 

plateau, Gp’=G’(m).  
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In the terminal region at low frequencies, the viscous nature of the composite is 

probed with composite’s zero shear rate viscosity given by G”/. The cross over 

frequency x1*, characterizes the rate particles can diffuse out of nearest neighbor cages 

such that the inverse of x1* is comparable to the α-relaxation time of colloidal glasses.
28, 

29
 At frequencies between x1* and x2*, the sample is deformed at rates where particles 

cannot exchange nearest neighbors but at rates slower than the time it takes particles to 

explore the nearest neighbor cage. For frequencies greater than x2*, the deformation rate 

becomes larger than the short time rate of particle diffusion within their cage, particle 

motion is increasingly frozen and the suspension responds with a high frequency 

viscosity.
27

 

As shown in Figure 2.2, due to fixed instrumental frequency range and a substantial 

change in particle volume, the range of dimensionless frequencies covered by the 

experiments for large and small particles are substantially different. A consequence is 

that we cannot probe the low frequency region for large particle composites and we 

cannot probe deeply into the high frequency region for small particle composites. In 

addition we note that the range of dimensionless moduli measured is substantially larger 

for the large particles than for the small particles. Despite the large dimensionless moduli 

reported, the absolute moduli for the large particles are small and thus we can only report 

reliable measurements at the largest volume fractions studied.   

As mentioned above, values of the 1/x1 (or the frequency at the maximum in G”) are 

often taken as characterizing the α-relaxation time for particles diffusing out of nearest 

neighbor cages
4, 28

 For near hard sphere interactions, the α-relaxation frequency decreases 

with increasing volume fraction as 
  )( cg  with ϕg~0.58 up to a critical volume 
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fraction above which this critical scaling is no longer observed and the α-relaxation time 

increases more slowly with volume fraction.
4
 The deviation from the critical scaling is 

taken as an indication that the system has entered an activated relaxation zone where 

relaxation times will diverge only at random close packing. In the activated glassy 

transport model of Schweizer and coworkers, the magnitude of relaxation time in the 

activated region is set by the height of a dynamical potential which is determined in a 

self-consistent manner from the equilibrium microstructure and D0 while the magnitude 

of the elastic modulus is set by the curvature of the dynamical potential at its minimum.  

We note that x1*<10
-3

 for SCSP and for LCSP 10
-1

<x1*<10
0
 for similar range of 

volume fractions and that there is a greater characteristic frequency as determined by x1
*
 

and m
*
 for the small particles than the large particles. Interpreted in terms of the 

activated transport model, this suggests that, at the same volume fraction, the confining 

potential for the large particles has a lower barrier across which the particles must diffuse 

to exchange nearest neighbors than is experienced by the small particles. Moving to 

higher MW we see that x1* for SCLP is less than 5x10
-4

 for all volume fractions greater 

than 0.39 indicating greatly reduced rates of long range diffusion are created by 

suspending the small particles in higher molecular weight melts. On the other hand, x1 

for LCLP are of the same order as LCSP showing that the barrier to diffusion is 

approximately the same at low and high molecular weights clearly indicating that effects 

of absorbing polymer are enhanced as the average spacing between the particles shrinks 

relative to the polymer’s radius of gyration.  

In the frequency range between x1* and x2
*
, the particles remain diffusive but 

cannot exchange nearest neighbors. The separation of time scales for long range and short 
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range diffusion are classic indicators of glass or gel formation. All the composites studied 

here show this state transition.  In Figure 2.3,  we present volume fraction dependencies 

of m*,and Gp’* along with the prediction of Kobelev et al for hard sphere glasses.
30

 The 

horizontal lines in Figure 2.3(A) are dimensionless frequency * for f=0.1Hz for the four 

different sets of composites where we ran stress sweep experiments discussed in the 

following subsection.  

The frequency at the minimum in G”, ωm, is often taken as a surrogate for the beta 

relaxation time- the time it takes particles to explore nearest neighbor cages.
4
 With this 

interpretation in mind we see in Figure 2.3(A) that the large particles have considerable 

greater short time diffusivities than small particles when suspended in both low and high 

molecular weight polymers. We note that we have chosen temperatures such that the 

viscosity of the PEG400 melt is the same as the PEG2000 such that the shifts in ωm* can 

be made at fixed matrix viscosity ηp. In this case, the self-diffusivity of the particles in the 

two molecular weight melts is expected to be similar. We note that ωm* appears to be a 

weak function of polymer molecular weight once particle size is fixed. This suggests that 

despite evidence of greater attractions between particles with increased molecular 

weights, particle mobility within cages set by nearest neighbors is weakly dependent on 

polymer molecular weight.   

While the changes  in ωx1 and ωm are associated with changes to  the dynamical 

potential barrier to diffusion,
31

 changes in Gp’* are associated with probing the curvature 

of the dynamical potential  barrier and its minimum and are argued to have a form: 

2

23

58.0
'
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c
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c
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D

Tk

DG
 ,

32
 where rloc is the localization length or a measure of the range of 
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local particle motion when trapped within nearest neighbor cages. When particle-particle 

attractions are increased, rloc is decreased, resulting in larger elasticity.  

In Figure 2.3(B), Gp’* is essentially the same for SCSP and LCSP with volume 

fraction dependence captured well by the volume fraction dependence of  predicted  zero 

stress dimensionless elastic modulus G’*: 264 )106.1('* eG   for hard spheres.
30

 These 

results are consistent with the low volume fraction viscosity measures suggesting nearly 

hard sphere behavior for low molecular weight suspending media 
4
 and suggest that 

rloc/Dc is similar for small and large particles in PEG400. We note substantial differences 

in x1
*
 values for these samples suggesting that the barrier height for activated diffusion 

is larger for the small particles. We note that theoretical studies suggest that for hard 

particles, there is a tight linkage between the barrier height, FB and the localization length 

with FB~rloc
-1

,
31

 suggesting that elasticities and diffusion times should be inversely 

correlated. We expect the diffusion times to scale as exp(FB/kBT) such that an increase in 

modulus will track a rapid drop in ωx1*.  That we do not observe this coupling as we 

change particle size suggests we are not working with volume exclusion potentials of 

mean force.   

The limiting high frequency behavior of the  elastic modulus of colloidal suspensions 

has been explored by  Lionberger and Russel who show that, at high frequencies for no 

slip boundary conditions G’*~ω*
1/2

 while for slip boundary conditions G’* is 

independent of strain frequency.
33

 We note a tendency toward slip boundary conditions 

as particle size decreases for PEG400.  

When polymer MW is increased to 2000, Gp’* increases tremendously for both large 

particles and small particles. For SCLP, samples become solid-like when ϕc is as low as 
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0.37, where h/Rg=13. Due to this average particle separation being approximately twice 

that where we expect adsorbed polymer layers interact, we conclude that the  jump in 

modulus cannot be explained by repulsive interactions and that these systems form 

colloidal gels due to attractions. This effect is also seen in the increase of Gp’* for large 

particles in moving from small polymer to large polymer melts.  

The volume fractions of the large particle composites studied here are well above that 

where small hard particles display glassy behavior. However, these systems show limited 

separation at time scales in frequency sweeps and, as discussed below, have a very weak 

dynamic yield stress plateau in continuous shear studies. This may be attributed to these 

particles experiencing a weak attraction such that the system lies in a re-entrant glassy 

region where attractions melt the glass.  

These results indicate that particles feel stronger attractions in PEG2000 than in 

PEG400. Independent of molecular weight PEG adsorbs strongly to the particle surface.
13

 

Thus these attractions are between polymer coated surfaces. Within the context of a 

PRISM framework, the primary variable controlling composite microstructure and 

mechanics is the exchange enthalpy of moving a polymer segment from the bulk to the 

particle surface, εpc. If εpc is small, polymer does not adsorb and depletion attractions 

develop. Only when εpc is sufficiently large will thermodynamically stable layers form 

and the particles and polymer become miscible.
34

 Here we have a system where the 

polymer adsorbs and generates miscible composites. However, the particles are also seen 

to experience attractions. We believe this is due to non-equilibrium adsorption of 

polymers arising from increasing number of absorbed polymer segments per chain as 

polymer molecular weight increases. The increased number of binding segments per 
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chain will reduce the ability of the adsorbed polymers to reach equilibrium with polymer 

segments in the bulk. As a result, from the perspective of a polymer segment in the bulk, 

the surface will look as it is composed of PEG segments resulting in a decrease in 

effective εpc. Thus while the exchange enthalpy is sufficient to create a stable polymer 

layer at each particle surface, because polymers cannot exchange freely with those in the 

bulk, a weak depletion attraction develops as a result of a drop in the effective εpc.  

From the studies of the linear rheology of these composite melts, we draw two 

conclusions:  (1) as c increases gels or glasses are formed. The high volume fractions 

where the separation of time scales occurs (for all but SCLP) suggests the systems 

experience volume exclusion and weak attractions. (2) The differences in ωm* for SCSP 

and LCSP denotes that composite dynamics are controlled by details of interactions while 

the magnitudes and volume fraction dependencies of Gp* for these two samples suggest 

hard sphere behavior. When increasing the MW of polymer, the jump in Gp* indicates 

that attractions are introduced.  

Having established general features of the polymer induced particle interactions, 

below we explore the effects of polymer induced attractions on the nonlinear rheology of 

the composites and changes to the flow properties when the composites are subjected to 

continuous shear.  

2.3.3 Nonlinear Rheology and Yielding Behavior 

In many reports of suspension dynamics, yielding is investigated by subjecting 

suspensions to a fixed strain frequency and an increasing maximum strain. At high 

volume fractions the G’* is seen to decay while G”* passes through a maximum and 

crosses G’* at a specific strain and stress amplitude. These strains and stresses are 
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typically taken as characterizing yield stress and strain of the suspension. As discussed 

above and shown in Figure 2.2, as * is increased above ~10
1
-10

2
, x2

*
 is approached. At 

these frequencies, for all strains- even in the linear response region G”*>G’* and this 

standard method of characterizing yield stresses becomes difficult to interpret. This is of 

particular concern in studies where particle size is varied as increasing Dc, increase ω* 

rapidly driving the sample characterization towards ωx2
* 

and making it difficult to 

compare flow properties between materials at the same volume fraction containing 

particles of different sizes. Here we propose to use a frequency near ωm* for amplitude 

sweeps as a means of characterizing yielding behavior as particle size is varied.   

As shown in Figure 2.3(A), f=0.1Hz is near the frequency ωm where the minimum of 

G”* is detected and rubbery plateau of G’* is observed. We use this frequency to 

investigate yielding. By choosing a frequency near ωm*, we are looking at yielding at 

strain frequencies where the particles are trapped in cages. Therefore we are thus 

characterizing the nonlinear deformation behavior by increasing the maximum strain at a 

frequency within a range that exceeds the rate the particles can exchange nearest 

neighbors and below a frequency where the particles do not respond to flow. As a result, 

particles have insufficient time to escape from the dynamical arrest state at low strain 

magnitude, but ample time to explore nearest neighbor cages during a strain cycle.   

Results of these amplitude sweeps are shown in Figure 2.4 where in large strain limit, 

for the 127 nm particles in both polymers, the moduli decrease G’*∝γ-2
, G”*∝γ-

0.6
(ϕc≥0.534 for SCSP and ϕc ≥0.398 for SCLP).  For the 612 nm particles in the low 

molecular weight polymer, G’*∝γ-1
 (ϕc≥0.580). When suspended in PEG2000 the large 

particles have moduli that decay as G’*∝γ-1.6
(0.504≤ ϕc≤0.592) in the large amplitude 
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limit. Here γ is the shear strain. For LCSP (Figure 2.4(B)) and LCLP (Figure 2.4(D)), the 

large strain behavior of G”* is complicated by the onset of strain thickening, where the 

G”* is decreased first and then increased in the large γ magnitude limit. To understand 

this phenomenon better, continuous shear is applied which will be discussed in the next 

subsection. All these modulus behaviors at large shear strain are summarized in Table 

2.2. 

Kobelev and Schweizer extended the activated transport model to predict an absolute 

yield stress where the applied stress eliminates thermodynamical barrier limiting 

diffusional exchange of nearest neighbors. In previous studies this has been associated 

with the stress (strain) in amplitude sweeps where G’*=G”*=Gx*.
30

 In Figure 2.5 we 

present τx*( TkD Bcxx /* 3  ), Gx* and γx which represent a measure of the absolute yield 

stress, the elasticity at the yield stress and the strain at the yield stress, respectively.  

The trends with change in particle size and molecular weight observed in Gp* are 

duplicated in Figure 2.5(A) and (B) for τx* and Gx*. For both large particles and small 

particles, increasing polymer MW results in increases in stress τx* and elasticity Gx* at 

yield point, consistent with the presence of attractions. We note that Gx* are larger for 

LCSP than SCSP. We attribute this to the larger dimensionless frequency of deformation 

which pushes G”* closer to G’*. 

2.3.4 Flow Curves and Shear Thickening 

The response of the composite melts to continuous shear is presented in Figure 2.6, 

where we present the dimensionless stress τ* as a function of Pe, where τ*=τDc
3
/8kBT 

(where τ is the stress). These composite melts show general flow features expected for 

concentrated colloidal suspensions: i) at low Pe and low volume fractions, a terminal 
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region can be observed where in this double logarithmic plot, the slope of the curve 

)(log/)(log 1010  dd  has a value of unity, and the composite melts show a zero shear 

rate viscosity. ii) As volume fraction increases the composite melts shear thin at a volume 

fraction dependent value of Pe= Pe1. As the volume fraction increases the stress begins to 

develop a plateau where p= )(log/)(log 1010  dd  takes on a value <<1 for an extended 

Pe region. For the SCLP composites, at the highest volume fractions studied, p 

approaches zero indicating the composite melt is showing a dynamic yield stress. iii) 

Above a second characteristic volume fraction dependent value of Pe=Pe2, a high shear 

rate terminal behavior is approached where p again approaches unity, iv) Pe2 is weakly 

dependent on volume fraction while Pe1 decreases with increasing volume fraction as the 

dynamic yield stress plateau becomes more prominent. v) At sufficiently high volume 

fractions shear thickening occurs at Pe3 above which the slope p>1. While Pe3 is a 

function of volume fraction, the stress at thickening, τc*, is a weak function of volume 

fraction. We note that these features are those expected of dense suspensions of stable 

particles suspended in low molecular weight solvents.
16

 One thing to note here is that for 

the highest ϕc samples of LCSP and LCLP, a double yielding phenomenon is observed 

for LCSP. This first continuous thickening with smooth change of slope p is explained as 

a result of hydrocluster formation as other samples, the second discontinuous thickening 

with sharp change of slope p is attributed to jamming which is only observed at very high 

ϕc. This phenomenon has also been reported previously with polymer stabilized large 

particles in low MW solvent.
35

 We report viscosities based on average shear stress and 

shear rate.  If there are flow instabilities or shear banding, we did not observe them. 
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Shear thinning in dilute colloidal suspensions occurs as hydrodynamic forces alter 

suspension microstructure. These effects have been extensively studied with calculations 

of changes to microstructure with stress predicted and measured.
36

 As volume fraction is 

raised the suspension develops a glassy response where G” develops a minimum. This 

behavior manifests itself in continuous shear as the slope p for the dynamic stress plateau 

decreasing rapidly as volume fraction is raised. The shear rate at which hydrodynamic 

forces dominate over thermodynamic forces is a weak function of volume fraction (i.e., 

Pe2 shows a weak volume fraction dependence), and the range of shear rates where shear 

thinning is observed increases. These ideas have been developed for particles suspended 

in low molecular weight solvents but apply equally to the composite systems at hand.  

The dynamic glass transition theory postulates that above a cross over volume 

fraction, ϕx, corporative motion is increasingly required for particles to exchange nearest 

neighbors. For ϕc/ϕx<1, increases in shear stress result in continuous changes of 

suspension microstructure and shear thinning occurs by smooth and rapid diffusion. As 

ϕc/ϕx grows above unity, particles become increasingly localized, the barrier to diffusion 

increases rapidly and the rate of diffusion decreases rapidly resulting in a rapidly 

increasing zero shear rate viscosity. For Pe1<Pe<Pe2, if the dynamical energy barrier 

height were independent of the applied stress, the result would be a dynamic yield stress 

plateau where the stress is independent of Pe (τ*~Pe
p 

where p~0).
37

 In this region 

particles are trapped by nearest neighbors for a substantial period of time before the 

imposed microstructural deformation forces particles to rearrange their microstructure 

and energy is dissipated in rapid particle jumps at a rate that controlled by the 

thermodynamic forces acting on the particles and thus is independent of the applied shear 
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rate.
37

 If the applied stress is sufficient to alter suspension microstructure such that the 

energy dissipated in each particle jump decreases with increased shear rate, a weaker 

yield stress plateau will be observed (p>0). The more strongly localized are the particles 

due to crowding or due to inter-particle forces, the less the rate of deformation is 

controlled by smooth deformation and the larger the fraction of energy in the sheared 

system will be dissipated by rapid jumps between localized positions. The high shear rate 

terminal regime is entered at Pe2 where the rate of deformation becomes comparable to 

the rate of diffusion over the dynamical barrier. For larger shear rates, a high shear rate 

plateau viscosity is achieved and hydrodynamic interactions control stress transfer and 

the suspension microstructure.
38

 These hydrodynamic stresses ultimately drive particles 

to form hydroclusters and at Pe3, shear thickening is observed. 

This idealized picture is altered by details of particle interactions as seen for the four 

sets of data shown in Figure 2.7 where we compare flow curves at the same volume 

fraction for the two particle sizes suspended each in the two polymer melts. The growth 

of p (i.e., the weakening of the dynamic yield stress plateau) and an increase in Pe1 are 

associated with a decrease in Rg/Dc. At this volume fraction, the high shear rate viscosity 

is similar for all but the SCLP.  This system displays a very slow approach to high shear 

rate terminal viscosity dominated purely by hydrodynamic interactions. If the particles 

behaved as hard spheres, the flow curves in Figure 2.7 would superimpose. This is seen 

for SCSP and LCSP samples over the range of Pe where we could gather overlapping 

data suggesting the samples interact weakly. However, consistent with the linear and 

nonlinear viscoelastic data shown in previous sections increasing polymer molecular 
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weight alters particle interactions at low shear rates indicating that the increased 

molecular weight alters the potentials of mean force experienced by the particles. .  

Here to explore the shear thinning behavior, we use the slope p at the inflection point 

Ped where 0
)(log

*)(log
2

10

10

2


Ped

d 

 

(or the stress plateau region where the slope 

)(log/*)(log 1010 Peddp  is constant). p decreases with increasing volume fraction as 

expected, with the detailed information of p supplied in supporting information. We did 

not present the values of p for LCSP as we are not able to get to measure stresses at 

sufficiently small values of Pe to track the inflection point. Based on other comparisons, 

similar behaviors between SCSP and LCSP are expected for the slope at the inflection 

point. Of particular significance is that at fixed c ~0.505 (as shown in Figure 2.7), p 

increases as Rg/Dc decreases indicating that the development of a well-defined yield stress 

plateau is sensitive to soft interactions that are 1% or less of the particle diameter. This 

can be imagined as indicating that particles are more highly constrained by nearest 

neighbors and that the barrier to flow is less readily degraded as the extent of the 

adsorbed polymer layer relative to the particle size increases. And when changing to 

PEG2000, p decreases sharply especially for SCLP.   

As pointed by de Kruif et al.
36

, the viscosity of hard-sphere systems at shear-thinning 

region correlates empirically with  

 mdrr

rr


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,


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






        (2.2) 

Here ηr,0 is the relative zero shear viscosity of the suspension, ,r is the relative high 

shear rate viscosity of the suspension, τd is the critical dimensionless shear stress which 
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can be treated as the inflection point of the stress plateau and is a function of volume 

fraction, and m is a fitting parameter. This correlation works well up to ϕc~0.50 for hard 

sphere systems with 1.4<m<1.8. At elevated volume fraction where ,r << 0,r , 

p=2/(2+m) yielding for volume exclusion and weakly attractive systems below the gel 

point 
2, 39-41

 0.53<p<0.59. By assuming that this correlation characterizes the ability of 

shear to alter microstructure and stress transfer at volume fractions where the particles are 

not localized, we are able to define a glass or gel volume fraction as that point where 

p<0.56 . Using this definition we see that the gel or glass transition occurs at volume 

fractions of 0.511, 0.330 and 0.549 for SCSP, SCLP and LCLP respectively. We note that 

p changes in a continuous manner as volume fraction is raised and that this definition of 

kinetic arrest is somewhat arbitrary. On the other hand, the volume fractions of kinetic 

arrest defined by this method are close to those where ωm is first observed: corresponding 

to 0.533, 0.369 and 0.570 for SCSP, SCLP and LCLP, respectively indicating a variety of 

measures capture the onset of rapid slowing of relaxation times with increasing volume 

fraction.   

Shear thickening is associated with hydrodynamic stresses forcing particle together 

and the build-up of clusters held together by shear forces. At high volume fraction these 

clusters span the shear gap and result in positive normal stresses and discontinuous jumps 

in viscosity as shear rate is increased. Shear thickening is delayed by strong interparticle 

forces-attractions or repulsions. The larger the repulsion is, the higher the shear rate is 

required to establish the correct hydrodynamic conditions to drive cluster formation. As 

shown in Figure 2.6, SCSP, LCLP and LCLP all reach hydrodynamically controlled 

stress transfer and shear thickening is observed. For the SCLP case, the inter-particle 
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forces remain sufficiently strong that, over the shear stress range probed, hydrodynamic 

forces cannot overcome inter-particle forces and thickening is not observed. The 

dimensionless stresses at the onset of thickening are shown in Figure 2.8(A) with detailed 

values shown in Supporting Information. While hydrodynamic forces must dominate 

stress transfer to observe shear thickening, short range inter-particle forces also are 

known to have a strong impact on the shear rate at the onset and the degree of shear 

thickening. For particles only experiencing excluded volume interactions, due to the no 

flux boundary condition at the particle-fluid interface, Brownian forces gives rise to large 

gradients in particle number density at the particle surface. The pair distribution function 

relates hydrodynamic and Brownian forces through the conservation equation and 

equation governing particle motion. The gradient of pair distribution function is a 

measure of the effect of magnitude of the thermodynamic force required to balance 

hydrodynamic force and ensure the no-flux boundary condition. For hard spheres the 

critical stress at thickening scales as Dc
-3

. As discussed below, the composites studied 

here do not display this size scaling and we are forced to recognize that even for the low 

molecular weight polymer, the details of the potential of mean force near contact are 

important in establishing the onset and magnitude of the thickening.
8
   

We observe that the stress at thickening is a weakly increasing function of volume 

fraction.  We associate this with the average inter-particle spacing such that as the 

particles approach contact, the stress required for them to thicken will diverge. The 

equilibrium surface separation, h, can be expressed as:  

1)/(/ 3/1  cmcDh          (2.3) 
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As the adsorbed polymer layer soft interaction is important, proved already in dilute 

suspension, here we would incorporate a simplified surface interaction potential in the 

following form:
16

  

BAhrU )(          (2.4) 

where A and B are fitting parameters determined by polymer size and particle size. 

Here we base our discussion on the assumption of force balance where hydrodynamic 

force equals potential of mean force at the equilibrium surface separation.  

r
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)/(

16

3 3
        (2.5) 

From these expressions we postulate that inter-particle forces influence the stress 

scale but not the volume fraction dependency of this divergence and write the 

dimensionless stress at thickening as:  
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         (2.6) 

where ϕm is a maximum packing fraction (set here to be 0.64 consistent with previous 

experimental studies
36

). We anticipate C will be independent of volume fraction and 

carry information about particle size and pair potential while B will be a universal 

constant.  Shown in Figures 2.8(A) and (B) are plots of τc* fit with Equation (2.6). We 

tabulate best fits for our data in Table 2.3 where we note our expectation of a constant 

value of the exponent B within experimental uncertainty. Our experimental results of 

critical shear stresses for small particles in PEG400 and large particles in PEG400 and 

PEG2000 are summarized in Supporting Information and presented in Figure 2.8(A) 

along with a comparison of a previous correlation of experimental data for hard spheres:
8
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153.0/

3

1.0
8


e

Tk

D

B

cc           (2.7) 

The proposed scaling captures the data well with B a weak function of Dc or Rg, and 

the coefficient C dependent on Dc. Here C increases with Dc in PEG400, showing a 

scaling 





 cc D
 
where α is smaller than 3. The change in modulus with polymer 

molecular weight is associated with an increase in attraction which is expected to delay 

thickening. This expectation is confirmed with magnitude of τc* being slightly larger for 

LCLP than LCSP.
13

 Previous studies with silica particles dispersed in silicon oil have 

shown that medium viscosity has no effect on critical shear thickening stresses. In these 

studies a universal shear response is observed when hard sphere scaling and effective 

volume fractions are used. As a result, we can conclude that deviations from this 

universal behavior result from variations in particle interactions.
42

 Similarly in our study 

where the viscosity kept constant with temperature increasing for LCLP, we do not 

attribute the slight increasing observed in τc* to the temperature change which affects the 

dimensionless scaling, but to an increased attractive interaction that results from  

increasing polymer MW. This conclusion is confirmed by the disappearance of shear 

thickening when moving from SCSP to SCLP.  

To confirm the particle size scaling of thickening in PEG400 melts, we gathered 

thickening data on two more particle size (Dc=213nm and Dc=730nm). The critical 

stresses at the onset of thickening are shown Figure 2.8(B) with the results of fitting the 

data summarized in Table 2.3, In Figure 2.9, we show how the characteristic critical 

stress for thickening varies as a function of Dc/Rg, where Rg is held constant and Dc is 

varied. C increases from near zero for small Dc/Rg according to a linear manner and 
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approaches a constant value at large Dc/Rg, which can be explained as a consequence of 

reduced particle softness when increasing Dc considering the thickness of polymer layer 

is constant. For these systems we expect the adsorbed polymer to reach equilibrium with 

polymer in the bulk and to result in a polymer layer of thickness ~1 nm.
2
 The particles are 

thermodynamically stable and the potential of mean force is short range and 

monotonically repulsive. The results in Figure 2.9 indicate that only for Dc/Rg>600 with 

the influence of that soft repulsion begin to have minimal influence on the onset of 

thickening. Therefore, under conditions  of small Dc (Dc/Rg<600), the soft interactions of 

the adsorbed layers  drive the critical stress to scale as 
2

 cc D instead of 
3

 cc D , 

even though hard sphere behavior is seen  in the low shear rate viscosity under dilute 

conditions. This may be explained as a consequence of adsorbed polymer layer 

deformation when applying high shear. A similar mechanism has been applied to explain 

the shear thinning behavior for smaller particles.
43

 In addition, we note that the ω 

dependence of G’ at high frequencies also reflects the deformation of polymer layers. As 

the particles are thermodynamically dispersed in polymer melts, no irreversible 

aggregation is observed in the high shear response. However, we note that with increased 

molecular weight, the attractions produced by having the polymer adsorb in a non-

equilibrium manner increase the critical stress for thickening. 

2.3.5 The Role of Polymer Induced Particle-Particle Interaction in Controlling 

Viscoelasticity of Composites 

Four different sets of colloid-polymer composites are designed purposely here to 

understand the role of polymer induced particle-particle interaction in controlling 

composite viscoelasticity. Specifically, particles are suspended in PEG400 and PEG2000. 
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These polymers molecular weights are chosen as they remain under the entanglement 

limit but are sufficiently different to alter pair interaction potentials. Two different 

particle sizes are chosen, where Dc=612nm for large particles and Dc =127nm for small 

particles, to provide a measure of the effects of changes in particle size on characteristic 

shear stresses, shear rates and strain frequencies.  

From linear rheology where we investigate the samples at a strain frequency in the 

elastic modulus plateau and flow curves where we investigate properties at shear rates in 

the dynamic stress plateau, we conclude that by changing the suspended medium from 

PEG400 to PEG2000 attractive interactions are introduced. Our studies suggest that with 

increasing volume fraction, the SCLP enters dynamical arrest state.  This occurs at a 

value of ϕc, suggesting formation of strongly bonded gel. The LCLP system shows a 

much higher dynamical arrest transition volume fraction lying close to the value of 

LCSP. Considering all these effects, we propose a state diagram showing dynamical 

arrest transition boundaries in Figure 2.10 (A) in the panel of polymer MW-ϕc. In low 

MW polymers (PEG400), particles experience basically volume exclusive interaction and 

both particles form dense glasses at large ϕc. For high MW polymers (PEG2000), the 

inter-particle attractions are introduced with strength and range independent of particle 

size. For LCLP, attractive dense glasses are formed showing dynamical arrest transition 

volume fraction close to that seen with the LCSP system. This is attributed to re-entrant 

behavior.
44

 For SCLP, the relative attractive range (scaled with particle size) is larger, 

this re-entrant behavior is suppressed, and a gel is formed at low ϕc. This suppression of 

re-entrant behavior due to attraction range enlarge has been predicted.
45
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To understand the polymer-induced soft interaction in PEG400, it is necessary to 

apply high shear rate and study shear thickening phenomenon. In Figure 2.10 (B), we 

propose a state diagram of shear thickening in the panel of τ*-ϕc. For a fixed particle size, 

at for τ* just below τc*, shear thinning occurs. When crossing the boundary of τc*, 

hydroclusters are formed with shear thickening observed. τc* is a weak function of ϕc, but 

increases sharply when approaching maximum packing fraction ϕm, where jamming 

conditions can be achieved. This shear thickening transition boundary is moved to larger 

stresses by increasing Dc as a result of reducing the relative softness of the pair potential 

as characterized by a reduction of  Rg/Dc, and saturation in reduced softness is observed 

for Dc/Rg>600 as suggested in Figure 2.8 (B).  

2.4 Conclusion 

These studies uncover a surprisingly complex set of phenomena associated with 

suspending particles in polymer melts. The system chosen has seen extensive study 

where we know the polymer segments have a strong affinity for the particle surface and 

that to high volume fractions the polymer remains adsorbed to the particle surface with a 

layer thickness growing approximately as Rg. This type of absorption is not predicted 

from equilibrium theories which are, however able to capture polymer and particle 

microstructure at the lowest molecular weight, suggesting nonequilibrium absorption for 

higher molecular weight polymers. We associate this nonequilibrium absorption with an 

increase in inter-particle attraction and suggest this is due to a depletion effect where 

polymer segments in the bulk observe a particle surface that appears as if it is composed 

of polymer segments instead of the bare silica as experienced when the polymer segments 

can easily equilibrate with those in the bulk.   
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The consequences of these polymer particle interactions are seen in dense suspension 

rheology where for low molecular weight (PEG400), the particles appear to interact as 

expected for particles experiencing short range repulsive interactions. The composites 

undergo glass transitions with a cross over volume fraction near 0.5 where a separation of 

relaxation times becomes apparent indicating the onset of caging. The softness of the 

repulsive interaction is, however, important at high stresses where the onset of  

thickening is delayed to higher stresses as Dc/Rg increases with an apparent saturation for 

Dc/Rg>600. 

In the high molecular weight polymer we see evidence of attractions. For the small 

particles, the attractions are sufficient to produce a gel at volume fractions above 0.3 

while for the large particles the attractions effect is not large enough to shift the 

suspensions to gelation. The attractions are of sufficient magnitude that thickening is not 

observed for small particles.   

One surprising result of this study is the substantial rheological consequences in 

moving from a polymer with degree of polymerization of 9 to a polymer with degree of 

polymerization of 45.  Both degrees of polymerization are below the entanglement value 

of ~100-150. Thus the adsorption of the polymer to the particle surface induces 

interactions that are not at equilibrium well below the point where the polymers entangle 

and these nonequilibrium effects have substantial rheological consequences. Particles are 

often added to polymer melts to enhance composite elasticity. Often this is attributed to 

particle induced polymer interactions (e.g., the particles alter polymer relaxation times by 

creating effective cross link points).  Here we show that substantial alterations to 
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composite properties can arise where the particles are, on average, spaced at many times 

the polymer radius of gyration due to polymer induced changes to particle interactions. 
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2.5 Tables and Figures 

 
 Figure 2.1 Measurement of the zero shear viscosity of PEG400 (square) and 

PEG2000(circle) as a function of ϕc for (A) small particles and (B) large particles, with 

Einstein’s equation (dashed line) and Einstein’s equation with 2
nd

 term (dot-dash line) 

included, and fitting curve to Equation(2.1) (solid line).  
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Table 2.1 Fitting parameter for zero shear viscosity at low concentration  

 Dc=127nm  

 k H δ(nm) Rg/Dc  

PEG 400 (Rg=0.8nm)  1.06 0.08 5.4 2.0 1.2 6x10
-3

  

PEG2000 (Rg=1.9nm)  1.09 0.08 7.6 1.1 1.9 1.5x10
-2

  

 Dc=612nm 

 k H δ(nm) Rg /Dc 

PEG 400 (Rg=0.8nm)  1.01 0.04 6.5 1.0 1.0 1.3x10
-3

 

PEG2000 (Rg=1.9nm)  1.02 0.04 7.6 1.3 2.0 3.1x10
-3
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Figure 2.2 (continued on next page)  
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Figure 2.2 Linear G’* (Close symbols) and G”* (Open symbols) for (A) SCSP at 

ϕc=0.511( ,  ), 0.534 ( , )  and 0.604 ( , ); (B) LCSP at ϕc=0.580( ,  ), 0.604 

( , ) and 0.629 ( , ); (C) SCLP at ϕc=0.369( ,  ), 0.438 ( , ) and 0.479 ( , ); 

(D) LCLP at ϕc=0.549( ,  ), 0.570 ( , ), 0.592 ( , ) and 0.615 ( , ). 
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Figure 2.3 Dimensionless frequency ωm*(A), dimensionless elastic moduli Gp’*(B) at 

the local minimum of G”* point plot with volume fraction for SCSP( ), LCSP( ), 

SCLP( ) and LCLP( ). The solid line (red for SCSP, blue for LCSP) and dashed line 

(red for SCLP, blue for LCLP) in (A) is dimensionless frequencies for f=0.1Hz. The 

dashed line in (B) is prediction of Kobelev et al
30
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Figure 2.4 (continued on next page) 
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Figure 2.4 Stress sweep experiment results for f=0.1Hz with G’* (Close symbols) and 

G”* (Open symbols) plot with strain for (A) SCSP at ϕc=0.511( ,  ), 0.534 ( , )  and 

0.604 ( , ); (B) LCSP at ϕc=0.580( ,  ), 0.604 ( , ) and 0.629 ( , ); (C) SCLP at 

ϕc=0.398( ,  ), 0.438 ( , )  and 0.479 ( , ); (D) LCLP at ϕc=0.549( ,  ), 0.570 (

, ) and 0.615 ( , ). 

10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

10
2

G
'*

, G
"*

γ

10
-3

10
-2

10
-1

10
0

10
1

10
0

10
1

10
2

10
3

G
'*

, G
"*

γ

(D) 

(C) 



49 
 

Table 2.2 Summary of modulus behavior at large shear strain 

 SCSP LCSP SCLP LCLP 

ϕc range  ϕc ≥0.534 ϕc≥0.580 ϕc≥0.398 0.504≤ϕc≤0.592 

G’* G’*∝γ-2
 G’*∝γ-1

 G’*∝γ-2
 G’*∝γ-1.6

 

G”* G”*∝γ-0.6
 Thickening G”*∝γ-0.6

 Thickening 

 

 

 

Figure 2.5 (continued on next page) 
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Figure 2.5 (A) The dimensionless stress τx* (B) dimensionless elasticity Gx* (C) strain γx 

at the cross point where G’*=G”*=Gx* plot with volume fraction for SCSP( ), 

LCSP( ), SCLP( ) and LCLP( ).The curves (red solid for SCSP, blue solid for LCSP, 

red dashed for SCLP and blue dashed for LCLP) in Figure (C) are used to guide eyes for 

the peak in γx. And the black solid lines are predictions by Kobelev et al.
30
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Figure 2.6 (continued on next page)  
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Figure 2.6 Flow curves for (A) SCSP (B) LCSP (C) SCLP (D) LCLP. 

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
2

τ*

Pe

 0.237

 0.299

 0.330

 0.369

 0.398

 0.417

 0.438

 0.454

 0.479

 0.501

 0.520

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

τ*

Pe

 0.419

 0.440

 0.459

 0.484

 0.504

 0.525

 0.549

 0.570

 0.592

 0.615

(C) 

(D) 



53 
 

 

Figure 2.7 Flow curves for small particles (red) and large particles (blue) suspended in 

PEG 400 (square) and PEG 2000 (circle) at ϕc~0.505 (SCSP: 0.511, LCSP: 0.510, SCLP: 

0.501 and LCLP: 0.504). 
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Figure 2.8 (continued on next page)  
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Figure 2.8 (A) The dimensionless shear stress for onset thickening for SCSP( ), LCSP 

( ), and LCLP ( ) plot as a function of volume fraction. The solid line (red for SCSP, 

blue for LCSP) and dashed line (LCLP) are fitting curves in form of Equation (2.6). The 

dotted line is the correlation of hard sphere experiment experiencing Brownian force 

reported before.
16

 (B) The dimensionless shear stress for onset thickening for particles in 

PEG400 Dc=127nm( ), Dc=213nm ( ), Dc=612nm ( ) and Dc=730nm ( )plot as a 

function of volume fraction. The dashed line is fitting curve in form of Equation (2.6). 
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Table 2.3 Fitting parameters of Equation (2.6) for particles suspended in PEG400 and 

LCLP  

Particle size Dc (nm) Dc/Rg B C 

127 ( PEG400) 158 0.31 0.06 7.3 1.6 

213 (PEG400) 266 0.26 0.10 10.8 3.8 

612 (PEG400) 765 0.41 0.08 39.8 13.6 

730 (PEG400) 912 0.28 0.09 43.5 16.3 

612 (PEG2000) 322 0.39 0.09 46.7 15.2 

 

 

Figure 2.9 Coefficient of Equation (2.6) C as a function of Dc/Rg for particles dispersed 

in PEG 400 ( ) and in PEG 2000 ( ). 
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Figure 2.10 (A) Schematic dynamical arrest transition boundaries in the panel of 

polymer MW-ϕc for different particle sizes. (B) Schematic shear thickening boundaries in 

the panel of τ*-ϕc for different particle sizes in PEG400. 
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Chapter 3. Rheology of High Density Glass of Binary Colloidal Mixtures in 

Unentangled Polymer Melts
2
 

3.1  Introduction 

Flow properties and state behaviors of particles suspended in polymer melts are 

complicated by the sensitivity of particle’s potential of mean force to particle-polymer 

segment interactions.
1
 Miscible systems are formed when polymer absorbs to form a 

thermodynamically stable layer. We explore the flow properties of binary mixtures of 

miscible polymer-particles systems, where we pay particular attention to suspension 

relaxation rates which are brought on by altering the relative contributions of the large 

and small particles as the total volume fraction exceeds dynamical arrest transitions and 

approaches jamming conditions. 

The state behaviors of dense suspensions containing particles of a single size have 

been studied as a function of particle interaction strength to predict and understand the 

kinetic arrest transition when moving from a liquid to a glass or gel.
2
 Mode coupling 

theory (MCT) and its recent extensions to incorporate activated processes were 

developed to describe the collective dynamics where nearest neighbor cages block long 

range diffusion.
3
 This model and its extensions have been shown to be robust in 

predicting the onset of slowed dynamics and activated processes as volume fraction or 

strength of attraction is increased.
4
 Well above this dynamical arrest transition, there is a 

random close packing volume fraction where particle diffusion ceases. 

Suspension viscosity increases rapidly as the volume fraction approaches close 

packing. This is exemplified by the classic Krieger-Dougherty equation for the relative 

                                                 
2
 This work is reproduced from Soft Matter DOI: 10.1039/c3sm27874c. Copyright 2012 Royal Society of 

Chemistry.     
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viscosity of suspensions with volume fractions ϕc which can be written:  

m

mcr

 ][
)/1(


 where, for hard spheres,   5.2 . The maximum packing volume 

fraction is ϕm and is often reported to be ~ 0.64 for suspensions of hard spheres.
5-7

  
 

The dynamical arrest volume fraction is expected to lie well below maximum packing 

(at volume fractions near 0.50 as predicted by MCT, with experimental results higher 

than the theoretical prediction).
8-10

 In its original form, MCT predicted that when 

particles are localized by nearest neighbors, the long-range diffusion ceases and the 

relaxation time diverges.
11

 As there is a great deal of evidence suggesting that 

suspensions in glassy states retain well defined zero shear rate viscosities,
6, 7, 12, 13

 

Schweizer and co-workers developed the dynamic arrest theory.
14

 This theory defines a 

cross-over volume fraction ϕx which demarks the onset of particle localization. Above ϕx, 

the particles experience a dynamical potential, the depth of which grows with volume 

fraction. The relaxation time is determined by the rate of diffusion out of the dynamical 

potential well. The theory predicts a smooth change in relaxation times as volume 

fraction exceeds ϕx with the rate of long range diffusion vanishing only at close packing. 

As a result, the experimental glass transition is tied to an experimentally chosen 

relaxation time. When the observation time is longer than the time for particles to diffuse 

out of the dynamical potential well, the material is liquid-like. While the observation time 

is shorter, the particles are localized in nearest neighbor cages and the material is solid-

like. Thus for volume fractions above ϕx, there is an experimental deformation frequency 

above which the material is a solid and below which the material is a liquid. The 

experimental result for this glass transition is usually higher than the theoretical 

prediction as stated above. The links between the divergence in extrapolated viscosity 
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associated with approaching to a maximum packing fraction and the changes in viscosity 

typically associated with the glass transition remain poorly understood. Here we use high 

density glasses of binary colloidal mixtures in low molecular weight polymer melts to 

systematically investigate this high concentration behavior. 

Mixing hard spheres of different sizes is known to increase ϕm. Previous studies of 

binary mixtures demonstrate that hard sphere mixtures will display fluid-fluid phase 

separation when the size ratio dl/ds (where di is particle diameter with i=l indicating large 

and i=s indicating small) is larger than ~5. Experimental systems have been explored to 

build phase diagrams where equilibrium phase separation has been observed.
15, 16

 

Theoretical work has been carried out to study hard sphere demixing by a virial approach 

for size ratio ~6 and ~3 in the ϕs-ϕl panel where spinodals and binodals are shifted to a 

higher volume fraction when the size disparity incresaes.
17

 

These studies focus on equilibrium phase boundaries. Recent studies relying on MCT 

demonstrate that a binary mixture of hard-core particles with a size ratio δ=dl/ds=5 will 

undergo a dynamic arrest transition without competition with liquid-liquid phase 

separation.
18

 These studies show that when δ≤8, glasses and gels are formed upon 

increasing volume fraction and for δ≥8 liquid/liquid phase separations will occur before 

the nonergodic state boundary line is crossed.
19, 20

 For systems where equilibrium glasses 

are formed, it is found that when δ≥1.54, adding small particles into a dense suspension 

of large particles or large particle to a dense suspension of small particles will result in 

faster relaxations such that the overall volume fraction required for a glass-fluid transition 

will increase. However, when δ≤1.25, increases in overall volume fraction by adding the 

second component to a glass of the first component can result in slower relaxations.
21, 22
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Recent MCT studies have also predicted multiple distinct glassy states by considering 

whether  small particles are mobile when >3.
23

 Here we study the rheology of binary 

mixtures of near hard spheres with a size ratio δ=4.8. This size ratio is small enough to 

obtain nonergodic transitions while avoiding liquid/liquid phase separations and large 

enough to give rise to re-entrant glass transitions. 

Previous experimental studies on the viscosity of binary hard sphere mixtures 

explored mixing effects on ϕm, with little focus on exploration of dynamical arrested 

transitions.
5, 7, 24

 At a fixed size ratio when the volume fraction ratio is varied, a non-

monotonic change in maximum packing fraction is used to explain variations in 

suspension rheology.
5
 In agreement with theoretical predictions, the peak in maximum 

volume fraction is shifted to the higher larger particle fractions, R=ϕl/(ϕs+ϕl), with 

increasing δ.
7
 This behavior results in re-entrant glass formation when the second 

component is added to a glass of the first.
21, 22

 The effects of shifting ϕm with changes in 

R are also reflected in mixtures displaying weaker shear-thickening than single-

component suspensions at the same volume fraction.
25

 These results suggest that the 

transport properties of mixtures can be expressed in terms of distance from the maximum 

packing fraction.   

In this work, to minimize the van der Waals attraction and electrostatic repulsion, we 

use silica particles suspended in melts of polyethylene glycol with a molecular weight of 

400, PEG 400. Previous studies using 44nm particles demonstrated that polymer-particle 

interactions are sufficiently strong to produce thermodynamically stable polymer layers at 

the particle surfaces. This layer increases the effective particle diameter at low volume 

fractions such that the particles can be considered as effective hard spheres up to a glass 
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transition volume fraction. Above this transition volume fraction, steric layer interactions 

will increasingly dominate composite mechanical properties.
26

 Despite behaving 

rheologically as hard spheres with sizes increased by the thickness of the absorbed layer, 

the suspension microstructures observed with small angle X-ray scattering are poorly 

described as being composed of hard spheres when fitting with hard sphere model at the 

volume fractions above 0.10. Instead, the microstructures of both the particle and 

polymer segments of these low molecular weight composites are well predicted by the 

particle reference site interaction models (PRISM) of Schweizer and coworkers.
1, 27

 This 

theory indicates that the particles experience a monotonically decaying potential of mean 

force with a decay length on the order of  polymer segment diameter.
28

  

Therefore, although the absorbed layer is a small fraction of a particle diameter, the 

dense composite microstructure is not well described by that for hard spheres even when 

suspended in polymers of molecular weight as low as 400.
26

 For higher molecular 

weights, there is experimental evidence that working at volume fractions where the 

average particle separation is less than ~6Rg, the particle surfaces force changes of 

polymer configuration and this can dramatically alter the potential of mean force 

experienced by the particles and give rise to dramatic changes to composite mechanical 

properties.
29

 Further evidence suggesting that composites cannot be considered as one-

component systems comes from comparing experimental yielding behaviour observed in 

nonlinear oscillatory shear response
26

 with the yielding behaviour predicted by Schweizer 

and coworkers.
30 

These results suggest that even for the degree of polymerization as low 

as 9, the internal degree of freedom associated with the polymer gives rise to a rich 

diversity of behaviors when particles are forced into close proximity.
4, 30
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In a previous study, we have explored the dynamical arrest transition and continuous 

shear-thickening behavior of two different submicron sized colloids (dl=612nm and 

ds=127nm) in PEG400.
31

 The similarity of state behaviors and diverging properties of 

stress at shear-thickening when approaching jamming conditions indicates that the 

particles with relatively thin adsorbed polymer layers experience close to purely volume 

exclusive potentials of mean force, suggesting that the adsorbed polymer layers that give 

rise to colloidal stability at equilibrium are of limited importance in controlling packing 

and processability at high stresses.
31

 These studies again suggest that the mechanical 

properties of miscible nanocomposites are controlled by the approach to a maximum 

packing fraction. By working with binary mixtures, we are able to alter this maximum 

packing fraction and explore this hypothesis.  

We extend our previous study of the silica particles of ds=127nm and dl=612nm in 

PEG400 to binary mixtures of these particles where we characterize the steady shear and 

frequency dependent behavior as a function of R and ϕc. We analyze our results under a 

pseudo one-component model where flow properties are characterized in terms of the 

product of two functions: one that characterizes the distance of the total volume fraction 

and the close packing and the second that is independent of volume fraction and depends 

on R.  

We introduce the sample preparation procedure and the measurement technique in 

Section 3.2. Results and discussions are presented in Section 3.3 with cross-over volume 

fraction characterized through changes in shear-thinning behaviour followed by an 

analysis of relaxation times, elasticities, yielding behaviours and finally how these 

composites shear thickened. A summary of the results and conclusions are given in 



66 
 

Section 3.4. 

3.2 Experimental Methods 

3.2.1 Sample Preparation 

Monodispersed silica particles are synthesized by method that is developed by 

Stӧber
32

 and extended by Bogush et al.
33

 Two different sizes are prepared with 

dl=612±20nm (referred to as large particles) and ds=127±7nm (referred to as small 

particles) with which binary mixtures will be made. The product particles are suspended 

in ethanol solution containing water and ammonia hydroxide. The resulting suspension is 

concentrated to a mass fraction ~0.20 by heating up the suspension to evaporate the 

solvent and drive off the ammonia. Following previous studies,
31

 we chose to work with 

polyethylene glycol with MW~400 (PEG400, Sigma-Aldrich) at T=25°C as the polymer 

melts. PEG400 is a Newtonian fluid at the condition where we study with viscosity of 

0.10 Pa·s at T=25°C. The two concentrated silica particle suspensions with a fixed mass 

fraction ratio are mixed with PEG (with eventual large particle volume fraction ratio R=0, 

0.29, 0.5, 0.71, 1) and the resulting suspension is placed into vacuum oven with 

temperature kept above Tm of PEG to remove ethanol.
31

 

3.2.2 Rheology  

Flow measurements were carried out on a C-VOR Bolin rheometer with a cone and 

plate geometry. The cone diameter was 20mm with a 4° angle. The temperature was kept 

at 25°C where the PEG400 has a viscosity of ηp=0.10Pa·s which is large enough to 

ensure that measurements are made in the high dimensionless frequency range and in the 

high dimensionless shear rate range enabling the observation of shear-thickening as 

discussed below. 
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Continuous stresses are applied to study the viscosity as a function of applied shear 

stress. Oscillatory stresses are applied to measure elastic modulus G’ and viscous 

modulus G” as functions of frequency ω in the frequency sweep experiments. In this 

work, the maximum strain was held as γ≤0.01 to ensure that only linear properties are 

reported. The samples are well behaved showing no thixotropy and the properties 

reported are independent of shear-history. 

We have previously shown that at low concentrations both large and small particles 

interact weakly and are well described with 2

0, )(5.21 ccr kHk    where k=1.06±0.08, 

H=5.4±2.0 for the small particles and k=1.01±0.04, H=6.5±1.0 for the large particles.
31

 

Hard sphere pair potentials occur when H=5.9, suggesting that adsorbed layers increase 

the effective hard sphere volume fraction (k=ϕeff/ϕc) by 6% and 1% for the small and 

large spheres respectively. These results suggest that the particles are interacting weakly 

as volume fraction is raised.  

To compare the magnitudes of the mixture properties, below we choose a particle 

length scale as an average diameter <D>. This approach characterizes the mixture as a 

pseudo one-component system.
34

 We assume that systems composed of binary mixtures 

behave similarly as a monodisperse system with diameter <D> with same number 

density (ρl+ρs) and same total volume fraction. So that we have: 

333 )( ssllsl ddD         (3.1) 

 

which results in: 

3/1

33
)

1
( 


sl d

R

d

R
D       (3.2) 

The values of <D> for the five different sets of suspensions are summarized in Table 

3.1.  
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3.3 Results and Discussions 

3.3.1 Dense suspension Rheology and Glass Transitions 

In this section, we explore the flow properties of composites when exposed to a 

continuous stress. In Figure 3.1(A)-(E), for different values of R, the steady relative 

viscosity ηr=η/ηp is plotted as a function of applied dimensionless shear stress 

τ*=τ<D>
3
/8kBT, where ηp is the viscosity of polymer melt and kB is Boltzmann constant. 

These data sets are similar. At low shear stresses and low concentrations, a zero shear 

viscosity plateau is observed. With increasing shear stress, shear-thinning occurs where 

the viscosity decreases with increasing the shear stress. When the shear stress is increased 

to a critical value, a high shear stress plateau viscosity is achieved. By increasing the 

shear stress further, continuous shear-thickening is detected. 

As the volume fraction is increased, the zero shear viscosity plateau is no longer 

probed at the lowest stress measurements. The larger particles have a smaller diffusivity 

resulting in longer absolute relaxation times required to observe the zero shear viscosity 

once the suspension enters a state of kinetic arrest. Experimentally we set the lower limit 

of shear rate at 10
-2

s
-1

 limiting our ability to probe this long-relaxation time regime. For a 

fixed volume fraction, and dimensionless stress, the viscosity is a non-monotonic 

function of R with the lowest viscosities achieved for R=0.71. 

As discussed in more detail below, these particles do not show hard sphere scaling 

such that the characteristic stresses and shear rates at a fixed volume fraction do not scale 

on <D>
3
.  In combination with the absolute changes in the relaxation rates and the range 

of relaxation rates probed experimentally, determining the location of the localization 

volume fraction is difficult with oscillatory shear experiments as is commonly done.
26, 35
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Here we seek an alternative method based on empirical correlations developed for shear-

thinning suspensions containing Brownian fluids below the localization volume fraction. 

This approach is based on the observation that for low volume fractions 

 

1)(log/)(log 1010  dd  while in the kinetically arrested low shear rate region, )(log/)(log 1010  dd

approaches zero, suggesting there is a cross-over in shear-thinning behaviour with 

)(log/)(log 1010  dd ~0.5.  This approach can be linked to many experiments for suspensions 

of Brownian particles experiencing a variety of pair potentials shear thin from a zero 

shear rate viscosity η0 to a high shear rate viscosity of η∞  as: 

 d

d



/1

1

0 








       (3.3) 

where τ is the applied stress and τd is the stress where the viscosity drops to half way 

between η0 and η∞, and 1.4<d<1.8.
5, 36

 This expression correlates shear-thinning for hard 

spheres when ϕc<0.5 and for attractive and repulsive particles below localization or 

disorder/order phase transition volume fractions.
37

 We choose to characterize shear-

thinning through a shear-thinning exponent, p, which is defined to be the slope of the 

flow curvein log-log coordinates of τ* vs. Peclet Number, Pe, as evaluated at the 

reflection point of the flow curve (so )(log/*)(log 1010 Peddp   when

0)(log/*)(log 2

1010

2 Pedd  ). Here Pectlet number is defined as TkDPe Bp 4/3 3   with 

  being the shear rate. In Figure 3.1 (F), flow curves for elevated ϕc (R=0.29) are plotted 

corresponding to the plot for same samples as shown in Figure 3.1 (B) to show the 

characteristic shear-thinning behaviors in flow curves, with p being a decreasing function 

of ϕc. This tendency is also observed for other values of R. As the localization transition 

is approached, η0/η∞>>1, resulting in p=2/(2+d). From the empirically derived values of d, 
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we find that for non-localized suspensions 0.53<p<0.59. 

At higher volume fractions the suspensions develop a dynamic yield stress plateau 

where p approaches zero. We choose a way to locate ϕx as the volume fraction where 

p<0.56.
31

 We choose this method to characterize the localization volume fraction as we 

expect it to be robust against changes in particle size, size distribution or pair potential. 

This method of characterizing the onset of localization demarks the onset of a 

dynamic yield stress plateau-a characteristic of all gelled or glassy suspensions. The 

dynamic yield stress plateau is associated with a large separation in relaxation times. At 

low stresses the suspensions will be liquids with a viscosity η0. Above a shear rate, Pe1 

which characterizes a shear rate which equals to the rate of equilibrium diffusion out of 

nearest neighbor cages, shear-thinning takes place. At higher shear rates, hydrodynamic 

forces dominate suspension microstructure and stress transfer mechanisms thus the 

suspension takes on the high shear rate viscosity. The transition from shear-thinning to 

constant viscosity takes place at a shear rate Pe2. At elevated volume fractions, Pe1 and 

Pe2 are more widely separated and p approaches zero. The empirical correlations indicate 

that as long as particles are not localized, (for hard spheres, this means ϕc<0.5), p is 

greater than or equal to ~0.56; while for localized suspensions (or for hard spheres when 

ϕc>0.5), p decreases towards zero. We associate the volume fraction where p decreases 

with the onset of caging and the growth of the dynamical potential. For the small particles 

studied here this transition occurs at ϕx=0.511. 

For composites of uniform spheres, we seek an estimate of the kinetic arrest volume 

fraction in a similar manner. To do this we assume that the binary mixture can be treated 

as a pseudo single-component system that will have properties modified by an R 
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dependent maximum packing fraction, ϕm, and an effective average size that depends on 

the rheological property studied. 

As a result, we seek to correlate properties in terms of functions that have a form of 

F(R)F2(ϕ,ϕm,ϕx). We start by knowing that the cross-over volume fraction demarking the 

onset of dynamic localization occurs for R=0 at ϕx=0.511, which is close to the prediction 

of MCT for the critical glass transition volume fraction of single-component system 

0.516.
21

 We then argue that for our pseudo one-component systems where R>0, we will 

see similar flow curves. As we are interested in flow behavior dominated by equilibrium 

forces, we focus our attention on stresses smaller than those characterizing shear-

thickening. We locate ϕx for R>0 by seeking volume fractions for other sets of 

composites where the flow curves superimpose with the R=0 flow curve at ϕx=0.511. The 

result is shown in Figure 3.2. 

Excellent superposition of the data is found for these five flow curves in the shear-

thinning region (dynamical yield stress plateau). Therefore we have ϕx=0.511, 0.557, 

0.603, 0.605 and 0.510 for R=1, R=0.29, R=0.5, R=0.71 and R=1, respectively. As 

expected, the onset of non-ergodic behavior is the same for R=0 and R=1 and passes 

through a maximum between R=0.5 and R=0.71. Above these volume fractions, we 

expect the long range particle diffusion to become increasingly sluggish with Pe2/Pe1 

growing rapidly with the volume fraction. The validity of defining the dynamic arrest 

volume fraction using this transition of shear-thinning exponent p is proved in inset of 

Figure 3.2, where universal decreasing tendency is observed when plotting p as a 

function of ϕc/ϕx for R=0, 0.29 and 0.5.  
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3.3.2 Linear Rheology 

To explore composite properties above ϕx, we investigate their frequency dependent 

response in the linear deformation region. In Figure 3.3, we present the dimensionless 

linear elastic modulus G’* and dimensionless linear viscous modulus G”* as a function 

of dimensionless strain frequency ω*. The dimensionless parameters are calculated as 

following: TkDGG B/''* 3 , TkDGG B/""* 3  and 
0

2 /* DD  , where G’, G”, ω 

are the elastic modulus, viscous modulus and angular frequency (ω=2πf, where f is the 

deformation frequency in units of Hz), and D0 is the dilute particle diffusion coefficient in 

expression of  DTkD pB 3/0
. 

All these five sets of composites display the expected characteristics of suspensions 

entering a state of dynamical arrest as volume fraction is increased. At low frequencies 

the composites approach a terminal behavior where G” approaches η0ω with η0 being the 

zero shear rate viscosity. With increasing deformation frequency, there is a cross-over 

frequency, ωx1
*
, where G’*=G”*=Gx1* which denotes the inverse of the characteristic 

time for particles to escape the cage formed by nearest neighbors. For many of the 

systems studied we are unable to probe this cross-over region. With increasing volume 

fraction, a minimum develops in G”* and a plateau develops in G’*, showing that there 

is a separation of time scales associated with long-time and short-time diffusions.
26, 35

 At 

high frequencies, G”* has a stronger dependency on ω* than G’*, resulting in a second 

cross-over frequency at ωx2* where G’*=G”*=Gx2*.  For larger frequencies, G’*<G”* 

denoting that rate of particle diffusion is increasingly negligible relative to the imposed 

rate of deformation. 

These universal features indicate that all of the mixtures studied enter a state of 
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dynamical arrest at large volume fractions. Details of this transition depend on R. First, 

the frequency at the minimum in G”*, ωm*, is an increasing function of R. If the particles 

were true hard spheres we expect ωm* to be equal for R=0 and R=1. Secondly, between 

ωx1* and ωx2*, G’* increases as ~ω*
a
 where for R=0, a~0 while for R=1, a~1/3. This 

change in slope can be attributed to a change in the particle-polymer boundary condition 

where it has been shown that in the high frequency limit a=0 is indicative of a slip 

boundary condition and a=1/2 is a no-slip boundary condition.
38

 These different values of 

a suggest that as <D> decreases, the polymer-surface interactions become increasingly 

distinct from those commonly expected in  low molecular weight solvents. Thirdly, the 

first volume fraction where we observe a minimum in G”* changes in a non-monotonic 

manner as R is increased. 

A second estimate of the cross-over volume fraction where particles become caged 

can be derived from the volume fraction where a minimum in G”* is first observed, ϕcr, 

where from the data in Figure 3.3 we find: ϕcr= 0.523, 0.568, 0.642, 0.641 and 0.592 for 

R=0, 0.29, 0.5, 0.71 and 1, respectively, with the uncertainty about 0.012. The maximum 

in ϕcr for intermediate values of R indicates a delay in reaching the kinetically arrested 

state which suggests greater fluidity and a greater distance from a maximum packing 

fraction for particles experiencing volume exclusion interactions. 

We note in passing that for R=0.5 and 0.7 the mixtures were readily processed and 

handled at total volume fractions of 0.7, an impossibly high value for suspensions of 

single-sized hard core particles. We also conclude that at deformation rates intermediate 

between ωx1* and ωx2*, the slip boundary condition giving rise to a<0.5 is enhanced as R 

is reduced from unity. ϕcr is influenced by hydrodynamic interaction at high frequency 
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which is varied by particle size. As a result, we use values of ϕx to characterize the cross-

over volume fraction. 

To further study the effect of mixing on dynamical arrest in these systems, the 

dimensionless characteristic frequencies ωm*, ωx2* and Gp’*, the dimensionless plateau 

elasticity defined as G’*(ωm*), are plotted as a function of volume fraction ϕc in Figure 

3.4 (A) (B). A comparison of these five different binary mixtures at ϕc=0.63 is made in 

Figure 3.5 to demonstrate the effects of changing R at fixed total solids loading. 

The frequency at the minimum in G”*, ωm*, is a weakly decreasing function of ϕc 

while ωx2* is an increasing function of ϕc. As shown in Figure 3.4(B), for different R, 

Gp’* is plotted as a function of ϕc, and is well represented as an exponential function of 

volume fraction of )exp('* cp bAG  with b~26. This dependence is  predicted by Kobelev 

and Schweizer for hard spheres.
30

 By scaling according to this functional dependence for 

different R, the pre-exponential parameter A is a non-monotonic function of R with a 

minimum between R=0.5 and R=0.71, as shown in the inset of Figure 3.4(B). In Figure 

3.4(B), we also show the elastic modulus of hard sphere glass at ω*≈0.5 reported by 

Koumakis et al,
39

 which is substantially larger than our single-component system at high 

concentration (R=0 and R=1), reflecting a difference divergence behavior at ϕm.      

The prediction of Kobelev and Schweizer is based on a Percus-Yevick solution for 

the structure of hard sphere suspensions which is known to fail at volume fractions 

approaching close packing. Under these predictions we expect Gp’* to diverge. More 

recent studies suggest that at very high volume fractions 2)('* DgGp  , where g(D) is the 

radial distribution function at contact which is expected to diverge as  )/(1 cm   where 

there are predictions with γ= 1 or γ=2.
3
 Kramb et al found that for their near hard sphere 
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suspensions, Gp’* 4)/(1 cm    indicating that for some classes of particles 

γ=2.
40

 A weaker divergence is expected for polymer suspensions with free volume or 

Doolittle model is applied to explain the suspension viscosity.
41

 

In Figure 3.5, we compare the frequency dependent properties of five composites at 

the same total volume fraction of 0.63.  We note again the non-monotonic dependence of 

G’* on R with minimum values being reached between R=0.5 and R=0.71 where a 

plateau modulus between ωx1 and ωx2 is not established showing that at this volume 

fraction these suspensions retain some liquid-like properties. These features suggest that 

the maximum packing fraction is more distant from 0.63 for intermediate values. 

As a first step in characterizing the approach to close packing we first obtain ϕm for 

these five different sets of composites by extracting the high frequency viscosity through 

fitting the linear loss modulus to a simplified model of G” as following:
42

 

 

 





 '

1

'
)("

2

0

0





pG

G       (3.4) 

where τ0 is the long-range relaxation time, η∞’ is the high frequency viscosity, and Gp’ is 

the elastic modulus at the plateau which is set as the valued at ωm. 

With this model and assuming ωm>>1/τ0, we find η∞’=Gp’/ωm, so ηr,∞’=η∞’/ηp= 

Gp’/(ωmηp).  

To explore this phenomenon we correlate ηr,∞’ with volume fraction. We expect the 

high frequency viscosity to diverge at close packing and make the an assumption that 

1

, )(' 

  cmr   when ϕc approaching ϕm.
43

 By defining dimensionless volume fraction 

ϕ*=(ϕm-ϕx)/(ϕm-ϕc) where ϕx is taken as known and we seek  

*),(/' '

,,   xrr R       (3.5)  
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Here ηr,∞’(R, ϕx) is the relative high frequency viscosity of the suspension at ϕx. The 

value of ηr,∞’(R, ϕx) is found as a vertical shift to collapse the data onto a single curve and 

represents the value of ηr,∞’ at the cross-over volume fraction. For a given value of R, ϕm 

is fixed and ϕx is known. Shown in Figure 3.6(A) are the results of this treatment, where 

ϕm=0.631, 0.661, 0.713, 0.719 and 0.632 for R=0, R=0.29, R=0.5, R=0.71 and R=1 

respectively. The uncertainty in determining ϕm is estimated about 0.005. 

Good superposition of data is observed as shown in Figure 3.6(A) suggesting the 

viscosity diverges linearly with ϕ* which is in keeping with the expectation that for near 

volume exclusion interactions 10 )()()(/1' 

  cms DgD  ,
43

 where )(0 sD  is the  self 

diffusivity and g(D) is the radial distribution function at contact with ϕm~0.63 for both 

R=0 and R=1. The relative high frequency viscosity at the cross-over volume fraction, 

ηr,∞’(R, ϕx) is a monotonic function of R, displaying a sharp decrease from R=0.71 and 

R=1, as shown in the inset panel of Figure 3.6(A). We suggest that this phenomenon 

results from the change in the stress transfer boundary condition at the polymer melt-

solid surface. As we observed for R=1 and R=0, the small particles display a slip 

boundary condition while the large particles show no-slip boundary. For completeness we 

note that this scaling suggests that ωm* must also scale on ϕ* and this is shown in Figure 

3.6 (B).  

Table 3.2 summarizes our results of ϕm and ϕx which are obtained from flow curve 

superposition above. The complete state diagram is presented in Figure 3.7, where the 

calculation results of Ouchiyama et al.’s prediction are also presented.
44

 While our 

system is not composed of hard spheres, the values extracted from the divergence of ηr,∞’ 

are very close to these predictions. 
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From Table 3.2 and Figure 3.7, we find that the ratio ϕm/ϕx is nearly constant with 

ϕm/ϕx=1.21±0.03. Previous results with MCT for binary mixtures have shown that the 

ratio of ϕx and ϕm is also constant.
45

 This close connection between ϕm and ϕx is also 

observed in experimental results using shape anisotropic particles,
46

 and suggests that 

ηr,∞’ diverges as ϕ*. 

In Figure 3.8, we plot the plateau modulus Gp’* scaled with Gp’*(R, ϕx) as a function 

of ϕ*, showing that Gp’* diverges at jamming condition according to a power law

7.0*),'*(/'*  xpp RGG . The weak dependence on ϕ* is an indication of the weak 

dependence of the localization length of the particle cage on volume fraction. This 

suggests that for particles to achieve these maximum packing fractions, polymer will be 

displaced from the particle surfaces. Also we show in the inset of Figure 3.8 plots of 

Gp’*/Gp’*(R, ϕx) as a function of ϕc/ϕx-1. Yatsenko and Schweizer predict that for hard 

spheres, the elastic modulus increases as a function of ϕc/ϕx-1 with the results correlated 

with an exponential function as )1/(45.10
)'*(/'*


 xceGG xpp

 .
47

 This behavior has been 

confirmed experimentally.
40

 We emphasize here that the correlations of Gp’* with ϕ* and 

with ϕc/ϕx-1 are carried out without adjusting ϕm or ϕx from the values shown in Table 

3.2. These correlations give us confidence that these values represent good estimates of 

the cross-over volume fraction and the volume fraction where diffusion ceases.  

The divergence of Gp’* indicates that even though the polymer in which the particles 

are suspended is well below the entanglement molecular weight and even though the 

adsorbed layer thickness at the particle surface is less than 1% of a particle diameter, the 

particles in suspensions are not interacting as hard spheres. This is indeed confirmed by 

detailed studies of particle and polymer microstructure and is expected from the 
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predictions of polymer nanocomposite theories.
27

 

An alternative approach to extract information about the jamming volume fraction 

can be found in the properties of ωx2*. For ω*<ωx2*, particles diffuse faster than the 

suspension deformation rate. When ω*>ωx2
*
, particles diffuse shorter distances per cycle 

of deformation such that at high frequencies particle motion is frozen and the suspension 

responds like a fluid with viscosity  ηr ,∞’. As a result, we use 1/ωx2* as a surrogate for the 

characteristic time for a particle to explore a cage of nearest neighbors. Unlike the 

strategy developed from ηr,∞’, the dependence of both G’* and G”* on the stress 

boundary condition at the polymer melt/solid interface will be similar suggesting ωx2 will 

be a useful parameter to gauge how mechanical properties diverge as close packing is 

approached.  By assuming that 1/ωx2 characterizes the time required for a particle to 

explore its localization volume, we write: 

)(//1 2

2  slocx Dr       (3.6) 

where rloc is the localization distance which characterizes the size of a nearest neighbor 

cage. Ds(ϕ) is the short-range diffusivity and )(/)( 0 DgDDs  .
48

 For hard spheres

)(/1 Dgrloc  .
43

 We thus anticipate: 

z

xxx R *),(*/* 22         (3.7) 

 From our previous analysis, we expect that z=1 if all the assumptions above are 

valid. Shown in Figure 3.9 is a plot of ωx2*/ωx2*(R, ϕx) as a function of ϕ* showing the 

collapse of the data using ϕm in Table 3.2. The trend line has a slope of unity. 

3.3.3 Nonlinear Rheology 

Yielding in colloidal suspensions is often assessed by investigating the nonlinear 

response of the suspension when deformed at a fixed frequency and is associated with a 
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decrease of G’ with increasing maximum stress or strain. Under these conditions at low 

stresses, G’>G” and as the magnitude of the applied stress is increased, G’ rolls off and 

drops below G”. Within the context of the dynamical arrest theories for the colloidal 

glass transition, this roll-off is associated with how the applied stress lowers the barrier 

for diffusion out of a nearest neighbor cage. When the barrier is low enough, in the time 

frame of the deformation, particles can exchange nearest neighbors, and the suspension’s 

elastic modulus decreases. At the point where the barrier is driven to zero, the material 

will flow like a liquid. Yielding in colloidal glasses and gels at a particular deformation 

frequency is often associated with the stress required to make G’=G”.
26, 49, 50

 

  As shown in Figure 3.3, if the stress sweep is made at ω*<ωx1* or ω>ωx2*, G’<G” 

in the linear region. As a result, yielding as described above will only be observed at 

intermediate deformation frequencies. From a dynamical arrest perspective, this result 

follows from particle localization and a separation of time scales for diffusion within a 

cage and out of a cage of nearest neighbors. When ω*<ωx1*, the deformation is so slow 

that particles can exchange nearest neighbors by diffusion in the time period of the 

deformation, whereas for ω*>ωx2*, the particles cannot diffuse the localization distance 

in the time frame of the deformation and the suspension deforms in an affine manner. In 

our exploration of yielding we chose to study deformation at a fixed frequency of 0.1Hz 

which lies between ωx2 and ωx1 and lies near ωm for many of the suspensions. We show 

our typical stress sweep experiment data in Figure 3.10(A) for our mixture 

representatives for ϕc=0.63 at f= 0.1Hz. 

Here we note that as the maximum stress (τ*=τ<D>
3
/kBT) to which the suspension is 

exposed is increased, G’* rolls off its plateau value while G”* passes through a 



80 
 

maximum. We associate the yield stress with the stress τx* where G’*=G”*= Gx*. In 

Figures 3.10(B) and (C) we see that τx* and Gx* can be characterized as exponential 

functions of the volume fraction, passing through a minimum at R=0.71 while the strain 

shown in Figure 3.10(D) at τx*, γx, passes through a maximum when increasing volume 

fraction, the magnitude of which diminishes at values of R intermediate between 0 and 1. 

The maximum of γx when increasing ϕc is also observed in previously reported hard 

sphere glasses by Koumakis et al.
39

 This non-monotonic yield strain behavior with 

increasing ϕc can be explained as a combined effects of changes in τx* which reflects the 

entropic barrier height of the dynamic potential and changes in Gx* which reflects the 

minimum in the curvature of dynamical potential. With both parameters subtly altered by 

changes in ϕc, the ϕc dependence of γx is achieved. These have been predicted by Kobelev 

et al. theoretically, with the results also presented in Figure 3.10 (B)-(D).
30

  We explain 

the diminishing of peak in γx between R=0 and R=1 as resulting from details of the 

heterogeneous environments experienced by localized particles of different sizes. 

In Figure 3.11(A) we plot scaled τx* as a function of ϕ*, where we use ϕm as defined 

above. By adjusting the magnitude of Tx(R) which is a function used to normalize τx* at 

ϕx, we force the data to collapse into the power law   t

xx RT */*   , where we find out that 

t~1.  

In Figure 3.11(B), we plot scaled Gx* as a function of ϕ*. By adjusting the magnitude 

of Jx(R) which is a function used to normalize Gx* at ϕx, we seek the best data collapse 

into the power law   j

xx RJG */*  , where we find that j~0.7. While Gx* has the same 

dependence on ϕ* as Gp’*, we note that this is a weaker dependence that seen for τx*. 

Extended from this nonlinear oscillatory rheology, large amplitude oscillatory shear 
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(LAOS) strain analyses have been applied to study the full nonlinear responses of 

suspensions.
51-54

 These developed studies have suggested that at high amplitude strain in 

nonlinear oscillatory shear sweep experiment where the stress is not perfectly sinusoidal, 

commonly experimental results of commercial rheometer are the first-harmonic Fourier 

moduli G1’ and G1”. However, other harmonics have also been determined from the 

whole nonlinear response which contributes significantly in fully understanding of 

yielding. Therefore, using the current definition of dynamic moduli G’ and G” at large 

amplitude strain renders the main points in yielding of this unexplored composite system, 

while detailed analysis of the strain curves of our samples may provide a rich area of 

further investigation.  

3.3.4 Shear-Thickening 

In Figure 3.2 we show that there is a great similarity in the shear-thinning behavior of 

samples near the glass transition showing that the approach to the dynamic stress plateau 

is dominated by thermodymanic (or caging interactions). However, as shown in Figure 

3.1, at higher stresses the onset of thickening is dependent on R. In Figure 3.1 (A), we 

denote the method in determining τc* for the highest volume fraction. Shear-thickening is 

sensitive to pair potentials. This shows up in the size dependencies of the stress at the 

onset of thickening, τc*. For steric polymeric repulsions
31

 or electrostatic repulsions,
55

 

2
 cc D . For pure hard sphere repulsions, 

3
 cc D . These previous studies suggest τc* 

is a weak function of volume fraction, but size variations can change the stress at the 

onset of thickening.  For our samples we find that τc* is a weak function of volume 

fraction with a tendency to diverge at a maximum packing fraction as shown in Figure 

3.12. In Figure 3.12, we also include the correlated experimental results for hard spheres 
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experiencing Brownian forces in low molecular weight solvent reported before.
56

 This 

denotes again that we cannot simply treat the systems in polymer melts as volume 

exclusive spheres dispersed in continuum medium when applying high shear stress. 

To understand the divergent behavior of τc* and how this varies with R, in Figure 

3.13 we present scaled τc*/τc*(R, ϕx) as a function of ϕ*, together with fitting to a power 

law c

xcc R *),(*/*   , where τc*(R, ϕx) is an estimate of τc* at the cross-over point. 

We find that the stress at thickening diverges weakly with c~0.35 and τc*(R, ϕx) is a non-

monotonic function of R with a sharp increase between R=0.71 and R=1 as shown in the 

inset panel of Figure 3.13. By looking at the data in detail, we can find that there is 

tendency to diverge as ϕm is approached but for volume fractions below ϕx (ϕ*<1), the 

data does not collapse well into the power law function of ϕ*. 

Previous studies for single-component system suggest τc* is a weak function of 

volume fraction.
31

 For our samples we find that τc* shows a weak volume fraction 

dependency with a tendency to diverge at a maximum packing fraction. By assuming 

dominance of soft interaction and applying force balance with details discussed in 

previous work,
31

 the data can be fitted to the form 
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We find that B is weakly dependent on particle size which reflects the softness of 

adsorbed polymer layer, while the characteristic stress, C, is sensitive to particle size. For 

suspensions of uniform spheres at R=0 and R=1, we find out that B=0.31 and B=0.41 

respectively, with the average being 0.36, which can be well simplified with the power 

law in Figure 3.13 within a narrow volume fraction range. 
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From the collapse of the data when scaled to the distance to close packing, we 

conclude that thickening of these composites is well described by a model where volume 

fraction dependencies are determined by the distance from a maximum packing fraction. 

On the other hand, the magnitude of high frequency viscosity ηr,∞’(R, ϕx), plateau 

elasticity Gp’*(R, ϕx), the characteristic short-range diffusion rate ωx2*(R, ϕx) and inverse 

of critical shear stress 1/τc*(R, ϕx) are all functions of R (below F(R, ϕx) is used to denote 

these flow properties). These functions scaled by the values at R=0 (F(0, ϕx)=2327, 30.9, 

28.2 and  0.0782 for ηr,∞’ (R, ϕx), Gp’*(R, ϕx), ωx2*(R, ϕx) and 1/τc*(R, ϕx) respectively) 

are plotted in Figure 3.14, where we observe that they all show a sharp change from 

R=0.71 to R=1. The largest changes are seen for ηr,∞’(R, ϕx) and 1/τc*(R, ϕx) which 

characterize the high frequency and high shear rate response respectively. We attribute 

this observation to the loss of the no-slip boundary condition for the effective particles 

when a small fraction of small particles is added to a suspension of large particles. We 

note that at R=0.71 the large particles represent only 2% of the total number of particles 

in the mixture. As a result, there will be an enormous change in the properties which are 

sensitive to the surface properties of the large particles as R increases from 0.71 to 1.    

3.4 Conclusion 

We investigate the phase diagram and rheology of a binary colloidal mixtures 

dispersed in unentangled polymer melts. Previous studies confirmed that glasses are 

formed by single component systems in this colloid-polymer composite. Here we show 

that despite the limited degree of polymerization of the melt and despite the absorbed 

polymer layer being less than 1% of the particle diameter, the composites cannot be 

treated as hard spheres suspended in viscous continuous phase. 
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Of particular interest is the link between the cross-over volume fraction which 

demarks the onset of collective motion and the maximum packing fraction. Building on 

knowledge that mixtures of hard particles of different size will have an R dependent 

maximum packing fraction, we hypothesize that the mechanical properties of suspensions 

of these particles will be dependent on the proximity to a maximum packing fraction and 

to diverge in a critical manner. We find that the divergence of the elastic modulus, the 

high frequency viscosity, the yield stress, and the rate of short time self-diffusion are 

captured by a single set of R dependent maximum packing fractions. In addition we find 

that the ratio of the cross-over volume fraction and the maximum packing fraction is a 

constant as R is varied from 0 to 1.  Finally we find the stress at thickening is a weak 

function of volume fraction and has a very weak divergence as maximum packing 

fraction is reached.   

The potential of mean force between these particles is monotonically repulsive and 

short-ranged. However, dense suspension microstructure is poorly described with an 

effective hard sphere diameter where the diameter is independent of volume fraction 

indicating that the internal degrees of freedom of the polymer and the way in which it 

absorbs to the particle surface are significant in controlling composite microstructure and 

dynamics.
36

 Nevertheless, we conclude that the reduction in free volume for long-range 

and short-range diffusion produced by increasing the total solid volume fraction 

dominates suspension dynamics while the polymers play an indirect role. The polymer 

studied here is unentangled and is known to reach equilibrium configurations in the 

composite. If these conditions are not met, polymer relaxation processes may become 

important in controlling composite dynamics and stress transfer properties. 
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3.5  Tables and Figures 

 

 

Figure 3.1 (continued on next page)  
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Figure 3.1 (continued on next page)  
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Figure 3.1 ηr as a function of τ* for elevated ϕc at (A) R=0, (B) R=0.29, (C) R=0.5, (D) 

R=0.71 and (E) R=1. (F) Flow curves for elevated ϕc at R=0.29. The arrow in (A) shows 

the method of determining τc*. 
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Table 3.1 Summary of volume average diameter <D> 

R 0 0.29 0.5 0.71 1 

<D>/nm 127 142 160 190 612 

 

 

 

Figure 3.2 Flow curves of R=0 at ϕc=0.511( ), R=0.29 at ϕc =0.557( ), R=0.5 at ϕc 

=0.603( ), R=0.71 at ϕc=0.605( ) and R=1 at ϕc =0.510( ). The dashed line has a slope 

of 0.56. Inset shows p as a function of ϕc/ϕx for R=0 ( ), 0.29( ) and 0.5 ( ), with the 

solid line denoting ϕc/ϕx=1 and dashed line denoting p=0.56. 
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Figure 3.3 (continued on next page)  
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Figure 3.3 (continued on next page)  
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Figure 3.3 Linear G’* (Close symbols) and G”* (Open symbols) for (A) R=0 at 

ϕc=0.511( , ), 0.534 ( , )  0.557 ( , ), 0.604 ( , ) and 0.628 ( , ); (B) R=0.29 at 

ϕc=0.557( , ), 0.579 ( , )  0.604 ( , ), 0.628 ( , ) and 0.652 ( , ); (C)R=0.5 at 

ϕc=0.628( , ), 0.656 ( , )  0.678( , ) and 0.701( , ); (D)R=0.71 at ϕc=0.605( ,  ), 

0.628 ( , )  0.653 ( , ), 0.675 ( , ) and 0.700 ( , ); (E) R=1 at ϕc=0.580( , ), 0.604 

( , ) and 0.629 ( , ). The solid lines in (A) and (E) show the slope a at the plateau. The 

arrow in (E) illustrates methods of determining ωx2*. 
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Figure 3.4 (continued on next page) 
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Figure 3.4 (A)ωm*(close symbols), ωx2* (open symbols) as a function of ϕc for R=0( , ), 

R=0.29( , ), R=0.5( , ), R=0.71( , ) and R=1( , ); (B) main panel: Gp’* as function 

of  ϕc for R=0( ), R=0.29( ), R=0.5( ), R=0.71 ( ) and R=1( ), inset: A as a function of 

R.  The dashed lines (red for R=0, orange for R=0.29, green for R=0.5, purple for R=0.71 

and blue for R=1) in (A) are dimensionless frequencies for f=0.1Hz. The black dashed 

line in (B) main panel  is prediction of Kobelev et al
30

 for hard spheres. The Open circles 

in (B) are experimental results of hard sphere glass reported by Koumakis et al.
39

 The 

solid curve in (B) inset is used to guide eyes. 
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Figure 3.5 Frequency sweep experiment at ϕc=0.63 (C) for R=0( , ), R=0.29( , ), 

R=0.5( , ), R=0.71 ( ,  ) and R=1( , ) with close symbols for G’* and open 

symbols for G”*. The dashed lines (red for R=0, orange for R=0.29, green for R=0.5, 

purple for R=0.71 and blue for R=1) are dimensionless frequencies for f=0.1Hz. 
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Figure 3.6 (continued on next page) 
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Figure 3.6  (A) Scaled high frequency viscosity ηr,∞’/ηr,∞’(R, ϕx) and (B) scaled 

dimensionless frequency ωm*/ωm* (R, ϕx) as a function of ϕ* for R=0( ), R=0.29( ), 

R=0.5( ), R=0.71 ( ) and R=1( ).The dashed line in (A) is fitting of Equation (3.5), and 

the dashed line in (B) is fitting of power law 3.0*),(*/*  xmm R . Inset of (A): ηr,∞’ 

(R, ϕx) is plotted as a function of R with the solid curve used to guide eyes. 
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Table 3.2 Summary of ϕx, ϕm and ϕm/ϕx for different R 

R ϕx ϕm ϕm/ϕx 

0 0.511 0.631 1.23 

0.29 0.557 0.661 1.19 

0.5 0.603 0.713 1.18 

0.71 0.605 0.719 1.19 

1 0.51 0.632 1.24 

 

 

Figure 3.7 Phase diagram of the binary mixture with close squares for ϕx, open squares 

for ϕm. Solid curves are used to guide eyes. Cross symbols stand for the highest volume 

fraction samples investigated here. The dashed curve is the calculation result of 

Ouchiyama et al.’s equation.
44
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Figure 3.8 Scaled dimensionless elasticity Gp’*/Gp’*(R, ϕx) as a function of ϕ* (Main 

Panel) and scaled dimensionless elasticity Gp’*/Gp’*(R, ϕx) as a function of ϕc/ϕx-1(Inset) 

for R=0( ), R=0.29( ), R=0.5( ), R=0.71( ) and R=1( ).The dashed line in main panel is 

fitting of power law 7.0*),'*(/'*  xpp RGG . The dashed line in inset is correlation result of 

Yatsenko et al. for hard spheres.
47
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Figure 3.9 Scaled dimensionless frequency ωx2*/ωx2*(R, ϕx) as a function of ϕ* for 

R=0( ), R=0.29( ), R=0.5( ), R=0.71 ( ) and R=1( ). The dashed line is fitting of power 

law *),(*/* 22  xxx R . 
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Figure 3.10 (continued on next page) 
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Figure 3.10 (continued on next page) 
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Figure 3.10 (continued on next page) 

 

0.50 0.55 0.60 0.65 0.70 0.75
10

0

10
1

10
2

G
x
*

φ
c

(C) 



103 
 

 

Figure 3.10 (A) Stress sweep experiment at f=0.1Hz at ϕc=0.63 for R=0( , ), 

R=0.29( , ), R=0.5( , ), R=0.71 ( ,  ) and R=1( , ) with close symbols for G’* 

and open symbols for G”*. (B) τx*, (C) Gx* and strain (D) γx at the cross point where 

G’*=G”*=Gx* plot with ϕc for R=0( ), R=0.29( ), R=0.5( ), R=0.71 ( ) and 

R=1( ).The Open circles in (D) are experimental results of hard sphere glass reported by 

Koumakis et al.
39

  The dashed curves in (D) are used to guide eyes for the peak in γx. The 

black lines in (B)-(D) are predictions by Kobelev et al.
30
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Figure 3.11 (A) Scaled dimensionless yield stress τx*/Tx(R) and (B) scaled dimensionless 

frequency Gx*/Jx(R) as a function of ϕ* for R=0 ( ), R=0.29( ), R=0.5( ), R=0.71 ( ) and 

R=1( ). Dashed lines in (A) and (B) are fittings of power law *)(/*  RTxx
and

7.0*)(/* RJG xx . 
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Figure 3.12 Dimensionless critical stressed τc* as a function of ϕc for R=0( ), 

R=0.29( ), R=0.5( ), R=0.71 ( ) and R=1( ).The dotted line is the correlation of 

hard sphere experiment experiencing Brownian force reported before.
56
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Figure 3.13 Scaled dimensionless stress τc*/τc(R, ϕx) as a function of ϕ* for R=0( ), 

R=0.29( ), R=0.5( ), R=0.71 ( ) and R=1( ). The dashed line is fitting of power law

35.0*),(*/*  xcc R . Inset: τc(R, ϕx) is plotted as a function of R with the solid curve 

used to guide eyes. 
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Figure 3.14 Plots of F(R, ϕx)/F(0, ϕx) as a function of R, where F(R, ϕx) are ηr,∞(R, ϕx)    

( ), Gp’*(R, ϕx) ( ),  ωx2*(R, ϕx) ( ) and 1/τc*(R, ϕx)  ( ). 
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Chapter 4. The Effects of Polymer Induced Attraction on Dynamical Arrests of 

Polymer Composites with Bimodal Particle Size Distributions 

4.1 Introduction 

The impact of mixing particles of different size on suspension flow properties is both 

subtle and dramatic. In one sense little changes: as volume fraction increases the 

suspension viscosity increases,
1-3

 gels and glasses are formed at high enough volume 

fraction,
4, 5

 yield stresses develop and shear thickening
6
 can be observed. When observed 

from a second perspective, however, introducing a second component with different size 

substantially alters the volume fraction where changes in state are observed. For example 

while numerous studies show that amorphous suspensions of hard spheres will not flow 

at a volume fractions above ~0.64,
7-10

 the same state is not reached for mixtures of hard 

spheres with a size ratio of ~4 at a 1:1 mixing volume fraction ratio until the  total 

particle volume fraction is ~0.70 as shown in experiment
3, 11

 and theory.
12

 This maximum 

packing fraction can be varied by changing the large particle volume fraction ratio or the 

size ratio. Viscosities, elasticities, relaxation times and yield stresses all change rapidly as 

maximum packing fraction is approached. As a result, at a total fixed solid loading, 

addition of a second component can dramatically alter suspension flow properties. 

For particles experiencing repulsive interactions, the flow properties observed in 

suspensions of mixtures often appear as a delay in volume fraction where significant 

rheological transitions are observed. This is captured in scaling rheological parameters 

with the distance to maximum packing (i.e., as 1/(m-c), where m is the maximum 

packing fractions of the mixture and c is the total particle volume fraction in the 

suspension). In mixtures, m is a function of the mixing ratio.
8
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In low molecular weight polymer melts where particles experience volume exclusion 

interactions,
11

 flow properties tend to collapse onto similar curves when plotted as a 

function of (m-x)/(m-c) for different ratios of large to small particles despite there 

being a variety of nearest neighbor environments in which particles may find themselves 

in a mixture. Here x is the volume fraction at which onset of the glassy response 

occurs.
11

 This observation leads to an attempt to develop pseudo one-component models 

for mixtures where the suspension is treated as being composed of particles with some 

average size that has a mixture specific maximum packing ratio. The pseudo-one 

component diameter, <D>, is often treated as lying between the Ds and Dl where D is the 

particle diameter and subscripts s and l correspond to the small and the large component 

of the binary mixture and to have a dependence on R=l/c where l is the volume 

fraction of the large particle in a binary mixture. In this approach, <D> is independent of 

c. The maximum packing fraction is a function of R and =Dl/Ds and is often found to be 

similar to that expected of granular or non-Brownian particles.
1, 3, 11

 Given this pseudo 

one-component approach, the challenge to determining suspension flow properties lies in 

understanding the scaling relationships between relaxation times, viscosities, critical 

stresses and <D>, R, , and (ϕm-ϕx)/(ϕm-ϕc) with the constraints that when R=0 or 1, and 

the suspension is reduced to a suspension of a single component, reduced flow properties 

are identical. 

This picture is complicated by non-geometric factors when the particles do not 

experience volume exclusion interactions.
13-15

 In particular, under conditions where the 

particles are attractive, substantial changes in flow properties arise and thus complicate 

the use of a pseudo-one component approach.  Often the nature of the interactions 
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between the particles is poorly understood.  Under these conditions, characterizing flow 

properties in terms of an R- and  dependent maximum packing fraction becomes 

difficult.  

In this paper we explore the rheology of a binary mixture of spheres with =4.8 under 

the conditions where the particles experience short-range attractions. Previous studies 

characterized the flow properties of mixtures of the same particles under conditions 

where they experience near excluded volume interactions such that m(R) is well 

characterized. For these excluded volume interactions, with increasing volume fraction, 

glassy behavior was observed. The onset of the glassy response occurred at a volume 

fraction x(R) and we found that x/m =1.21 for all R. In addition, flow properties could 

be reduced in terms of a volume fraction averaged diameter (i.e., 

3/1]//)1[( 33  ls DRDRD  and a reduced volume fraction )/()(* cmxm    

in the form of a

x RFF *),(   where F is a rheological property such as plastic 

modulus, yield stress, or characteristic relaxation frequency, with F(x, R) being the 

property at x. The exponent a is independent of R, and F(x, R) was found to have a 

weak dependence on R.   

The experimental system displaying these characteristics was composed of 

Ds=127nm and Dl=612 nm diameter silica particles suspended in polyethylene glycol 

with a molecular weight of 400 (PEG400).  The index of refraction of the silica and the 

PEG is nearly matched thus greatly reducing the van der Waals attractions. PEG is 

known to adsorb to the silica surface resulting in a repulsive potential of mean force 

resulting in the formation of  colloidal glasses at elevated volume fractions.
16

 Detailed 

studies indicate that there is agreement between the polymer reference interaction site 
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model (PRISM) of Schweizer and coworkers for the particle and polymer microstructure, 

indicating that the polymer is in equilibrium with the particle surface.
17

 Agreement 

between theoretical and experimental particle and polymer structures degrades as 

polymer molecular weight increases.
18

  

Introducing colloids into pure polymer melts often results in enhancement of 

mechanical properties.
19-22

 For the PEG melt-silica particle system, this reinforcing  is 

augmented when polymer length is increased such the suspensions pass from fluid-like to 

gel-like at a volume fraction well  below that corresponding to localization associated 

with glass formation produced by excluded volume interactions.
18

 Scattering studies 

suggest that this change in properties can be interpreted as resulting from the particles 

experiencing polymer induced attractions despite being coated with polymer layers with a 

thickness that grows with the polymer’s radius of gyration.
18

 The onset of attractions has 

been attributed to an increased number of segments on the same molecule binding to the 

particle surface resulting in slowed exchange kinetics such that the polymer at the surface 

cannot achieve equilibrium configurations with polymer segments in the bulk. One 

consequence of this slowed exchange dynamics is that the particle surface appears to 

polymer segments in the bulk as if they are composed of  polymer segments such that the 

exchange enthalpy of a segment form the bulk to the particle surface is reduced. This 

reduced effective segmental enthalpy of attraction  results in  a weakly attractive potential 

of mean force.
17

  

In this paper we exploit this weak attraction to investigate the flow properties of 

binary mixtures of spherical particles under conditions where, on increasing volume 

fraction, the particles form gels and attractive glasses.  
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Theoretical studies have been carried out to understand the glass transition and 

gelation in binary mixtures of hard spheres (.e., those experience only excluded volume 

interactions)  and attractive spheres with comparable size.
23

 For weak strengths of 

attraction between the attractive spheres, at sufficiently high total volume fraction, the 

system enters a glassy state. As the strength of attraction between the attractive particles 

is increased, gels are formed at lower total volume fraction. With even stronger attraction 

between the sticky spheres, a fluid-fluid phase separation is predicted. The phase 

boundary is only changed quantitatively as the relative concentration of hard spheres is 

altered.
13, 23

 Experimentally, in this type of mixture the sticky particles form a 

homogeneous gel structure  while the  hard spheres either get trapped in the percolated 

network of sticky spheres or move freely.
15

 The gel elasticity increases with the volume 

fraction of sticky particles where it is found that the elastic modulus grows as 
6.5

' cG 

suggesting the formation of strong gel rather than a glass transition where 
14

' cG  .
24

 

Because the parameter space is so large and characterizing the strength of attraction is 

difficult, there have been few experimental studies where particle size and strength of 

attraction have been varied.  

We have previously studied binary mixtures of hard spheres (Ds=127nm and 

Dl=612nm) to characterize flow properties of binary mixtures in PEG400 at T=25°C for 

the same particles studied in this paper. As mentioned above a variety of flow properties 

were found to diverge at a maximum packing fraction of m and there was an onset of 

dynamic arrest at x.  In Table 4.1 we summarize the values of R, <D> used in the 

current paper and the values of x and m derived from these previous studies at these 

values of R for particles suspended in PEG400.
11

 As mentioned, for these systems where 
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the particles feel excluded volume interactions, m/x~1.21 independent of R with m 

passing through a maximum near R=0.8. As m is determined by geometric effects, we 

anticipate that m will not change when changing the medium to PEG2000; while if 

PEG2000 changes particle interactions, x will be altered.  

Previously we reported on the flow properties of suspensions of single sized particles 

of diameters Ds and Dl when suspended in PEG2000. At low volume fractions (c<0.10) 

the relative zero shear viscosity of the composites can be expressed:
22

 

2

0, )(5.21 ccr kHk  
       

(4.1) 

Where, k=eff/c, defining eff as the effective hard sphere volume fraction and the 

Huggins coefficient, H, is a measure of the strength of pair interactions. For hard spheres 

H = 5.9.
25

 For the small particles suspended in PEG2000, k=1.09±0.08 and H=7.6±1.1 

while for the large particles, k=1.02±0.04 and H=7.6±1.3. These results suggest that 

polymer binds to the particle surface, thus increasing their hydrodynamic diameter by a 

factor of approximately Rg, where Rg=1.9nm is the radius of gyration of PEG2000.  

Because the Rg/Dc <<1, the effects of the increased diameter on effective volume fraction 

are small. At the pair level, we conclude that the particles experience weak attractions 

giving rise to similar hydrodynamic effects. Bergenholtz and Wagner studied the Huggins 

coefficient of suspensions of particles experiencing a square well potential written:
26

  


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


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,0

,

0,

)( 0       (4.2) 

Due the very small values of Rg/<D> in our samples, we anticipate that the strength of 

attraction will be a weak function of particle size. If we use the results of Bergenholz and 
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Wagner and assume a square well depth U0~2kBT, we match the experimental Huggins 

coefficients with Δ=3.8±1.3Rg (Δ/Ds=0.057±0.019) for small spheres and Δ=12±6Rg 

(Δ/Dl=0.032±0.016) for large spheres. When c is increased, these weak particle 

interactions alter the flow properties substantially from those observed for the same 

particles when suspended in PEG400 at T=25°C.
22

 This attractive interaction in PEG2000 

melts have also been reported in studies of the microstructure of Dc=44nm particles.
18

 

With this background we report below on the flow properties of binary mixtures of 

particles with diameters Ds and Dl suspended in PEG2000 at T=75°C. We anticipate that 

there is a geometrical packing limit where all diffusion will stop at m that will be the 

same as that seen when the particles are suspended in PEG400 and we anticipate that the 

attractions produced by the higher molecular weight will alter x. Our studies show that 

for this system transitions in flow properties occur at nearly constant values of the 

average effective particle separation defined as in units of Rg which can be expressed as  

]1)/[(/ 3/1 


 cm

g

g
R

D
Rh         (4.3)  

While <D> is used to value the effect of particle size distribution controlled by R.  

Below we introduce the sample preparation procedure and measurement technique in 

Section 4.2. Results and discussions are presented in Section 4.3 with cross-over volume 

fraction characterized by changes in shear thinning behavior followed by an analysis of 

linear rheology and elasticities and yielding behavior. A summary of the results and 

conclusion are given in Section 4.4. 
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4.2 Experimental Methods 

4.2.1 Sample Preparation 

Monodispersed silica particles are synthesized by method that is developed by 

Stӧber
27

 and extended by Bogush et al.
28

 Particles with two different submicron-sizes are 

prepared. For large particles, Dl=612±20nm and for small particles Ds=127±7nm. Binary 

mixtures will be made using these two different particles. The product particles are 

suspended in ethanol solution containing water and ammonia hydroxide. The resulting 

suspension is concentrated to a mass fraction ~0.20 by heating up the suspension to 

evaporate the solvent and drive off the ammonia. Following previous studies,
21

 we chose 

to work with polyethylene glycol with MW~2000 (PEG2000, Sigma-Aldrich) at T=75°C 

as the polymer melts. PEG2000 is a Newtonian fluid with viscosity of 0.10 Pa·s at the 

condition where we study. The two concentrated silica particle suspensions with a fixed 

mass fraction ratio are mixed with PEG (with eventual large particle volume fraction 

ratio R=0, 0.29, 0.5, 0.71, 1) and the resulting suspension is placed into vacuum oven 

with temperature kept above Tm of PEG to remove ethanol.
22

 History of cooling down to 

the room temperature which is below the melting point of PEG2000 has shown no effect 

on the rheology of binary mixtures. 

4.2.2 Rheology 

Rheology experiment is carried out at C-VOR Bolin rheometer where a cone and 

plate geometry is used. The cone diameter is 20mm with a 4° angle. Here the temperature 

is kept at 75°C for PEG2000 to behave as a Newtonian fluid in pure melts to make sure 

that solid-like behavior is only controlled by particle. 
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Oscillatory stress is used to measure elastic modulus G’ and viscous modulus G” as a 

function of frequency f in the frequency sweep experiment with strain γ=0.01 held 

constant to make sure of searching in a linear region, and G’ and G” are measured by 

varying shear stress/strain at fixed frequency f=1Hz and 0.1Hz to study the nonlinear 

rheology and yielding behavior. And continuous stress is applied in the viscometry 

measurement to study the viscosity as a function of applied shear stress or shear rate to 

understand the shear thinning behavior and the shear thickening behavior. These 

experiments demonstrate that the flow properties observed are independent of shear-

history. 

4.3 Results and Discussions 

4.3.1 Continuous flow properties and the transition to dynamical arrest 

In this subsection we study the flow properties of the suspensions when continuous 

shear is applied. In Figure 4.1, the flow curves are presented with shear stress τ (Pa) 

plotted as a function of shear rate γ  (s-1
) for different R in panels (A)-(E) respectively. All 

these data sets display similar behavior for different R. At low volume fraction, the slope 

)log(/)log(  dd  is generally independent of γ  with a constant value of unity. With c 

increased, a dynamical shear stress plateau is gradually developed within the range of 

γ 1~γ 2. Below the point γ 1 the slope )log(/)log(  dd  is about 1 which suggests a low 

shear rate plateau viscosity, η0, is achieved. As a result we take γ 1 as a measure of the rate 

of deformation comparable to the rate of long range diffusion. For shear rates less than γ 1, 

the suspensions are in their equilibrium microstructures where diffusion and stress 

relaxation are governed by the equilibrium rate of long range diffusion. Within the 

context of the dynamical arrest theory of Schweizer and coworkers,
29

 for shear rates 
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above γ 1 the applied stress lowers the barrier to diffusion and particle diffusion is more 

rapid resulting in a lower viscosity. This is observed as shear thinning. Above γ 2 a high 

shear rate region is entered, where )log(/)log(  dd  again approaches unity, indicating 

the approach of a high shear rate plateau viscosity, η∞. In this region, stress transfer is 

dominated by hydrodynamic interactions where the effects of equilibrium caging are 

essentially eliminated. Between γ 1 and γ 2, the suspensions shear thin from η0 to η∞. With 

increasing c, the window of shear thinning region opens with γ 1 decreasing and γ 2 

increasing, and the value of )log(/)log(  dd between γ 1 and γ 2 is decreased. 

Despite the qualitative similarity in flow behavior for these five different data sets, 

there are special characteristics in the high shear region for all the high c samples at 

R=0.71 and R=1. Rather than approaching a constant value above γ 2, the slope 

)log(/)log(  dd  gradually increases and enters a region with the value larger than 1, 

which denotes the onset of continuous shear thickening as explained with a mechanism of 

hydrocluster formation.
30

 However, for the samples with highest c for R=0.29 

(c=0.571) and R=0.5 (c=0.592), there are an abrupt increase of slope )log(/)log(  dd  

in the high shear region which can be  explained as jamming resulting from the shear 

bringing the particle surfaces into close proximity. Supporting the conclusion, double 

thickening behavior is observed for R=1 at c=0.615 where the continuous thickening 

occurs due to hydrocluster formation and  discontinuous thickening due to jamming at 

higher shear stresses. 

We are interested in exploring how flow properties are altered as volume fractions are 

raised to the point where collective interactions begin to alter suspension dynamics. 

Within the frame work of dynamical arrest theory, this is not observed as a discontinuity 
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in flow properties. Instead it is observable in the rate of change in relaxation times with 

increasing volume fraction. In developing a measure of the onset of dynamical arrest, we 

focus on the shear thinning portion of the flow curves. 

Schweizer and co-workers define the cross over volume fraction, x, as demarking the 

onset of particle localization.
31

 Experimentally, determining the location of x is difficult. 

Often this is done with oscillatory shear experiments.
16, 32

 This approach is compromised 

when working with large particles in relatively viscous suspending fluids as the 

measurement window often lies in the high frequency range rendering it difficult to 

ensure we are operating at low enough frequencies to characterize times for particles to 

diffuse out of cages of nearest neighbors.
10, 33

 Here an alternative method is utilized 

motivated by empirical correlations developed for shear thinning suspensions containing 

Brownian fluids below the localization volume fraction, which has been used in previous 

studies in PEG400.
11

 Experimentally it is observed that for c<0.5, suspensions of 

Brownian particles experiencing a variety of pair potentials, shear thinned from a zero 

shear rate viscosity η0 to a high shear rate viscosity of η∞ as: 

 

 d

d



/1

1

0 









      (4.4) 

where τ is the applied stress andτd is the stress where the viscosity drops to half way 

between η0 and η∞. For hard particle, attractive and repulsive particles 1.4<d<1.8.
30

 This 

expression correlates shear thinning for hard spheres when c<0.5 and for attractive and 

repulsive particles below localization or disorder/order phase transition volume 

fractions.
34

 Here we choose to characterize shear thinning through a shear thinning 

exponent as )log(/)log(  ddp   evaluated at the shear rate where 0)log(/)log( 22  dd . 
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As the localization transition is approached, η0/η∞>>1, resulting in p=2/(2+d). From the 

observed values of d we find that for non-localized suspensions 0.53<p<0.59. At higher 

volume fractions the suspensions develop a dynamic yield stress plateau where p 

approaches zero. We locate x as the volume fraction where p<0.56.
22

 At volume 

fractions just below x, p ≥~0.56, and above x, p decreases sharply. This method yields 

x=0.511 for Ds=127nm and x=0.510 particles for Ds=612nm particles respectively when 

they are dispersed in PEG400. We note that this value  is close to MCT predictions for 

hard spheres.
4
 We choose this method of determining x as we find that it is robust to 

changes in particle size, size distribution and pair potential. 

In Figure 4.2 (A), we present the flow curves at =x at different R. Also shown in the 

inset of Figure 4.2 (A) are the flow curves plotted as dimensionless parameters where 

TkDPe Bp 4/3 3   and τ*=τ<D>
3
/8kBT. Here kBT is the product of Botlzmann constant 

and absolute temperature. 

As shown, at x
 
the suspensions display essentially the same flow properties over the 

entire shear thinning region. We emphasize that the superposition occurs for dimensional 

stress and shear rates; while if plotted in dimensionless terms (as in the insert), there is a 

much poorer superposition. When the same particles are suspended inPEG400 we find 

that x defined in the same way displays similar superposition when plotting flow curves 

with dimensionless stress as a function of Pe.
11

 The data presented in Figure 4.2(A) 

emphasizes that flow properties do not follow a hard sphere scaling as seen for the 

PEG400 mixtures. Here x=0.330, 0.375, 0.438, 0.504 and 0.549 for R=0, 0.29, 0.5, 0.71 

and 1 respectively. For R=0, 0.29, 0.5 and 0.71, x is far below the values of those in 
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PEG400 systems where we expect for the glassy cage formation. We attribute this to 

gelation resulting from attractions. 

 In Figure 4.2(B) we present the slope p as a function of c/x. A good superposition 

of data is shown independent of R. Generally in the low volume fraction limit, the 

suspensions behave as Newtonian fluid with p~1 and at high volume fraction limit 

strongly arrested state approached with p~0.1, x locates at the point when p decreases to 

the medium point of these two extreme values. Here we should emphasize that p≈0.53-

0.59 is only observed over a narrow volume fraction range below ϕx. The estimates of p 

demarking the onset of localization derived from the empirical correlations for universal 

shear thinning behavior are based on the assumption that η0/η∞>>1. As volume fractions 

drop increasingly below x, this condition is not matched such that there is not a step 

function from constant p to zero at x. Instead a gradual transition is observed. 

Nevertheless, we find empirically that p changes rapidly over a narrow volume fraction 

range in a remarkably universal manner, indicating this approach is a useful way to 

characterize the onset of localization for both hard sphere and attractive suspensions.  

For R=1, x=0.547 which is above the value observed for the same particles 

suspended in PEG400 where we expect the particles to form volume exclusion glasses. 

The low volume fraction viscosity data suggests the particles experience attractions. 

Based on this observation, we suggest the elevated value of x for R=1 arises from weak, 

short range attractions that push the suspensions into a reentrant glass region.
22

 In Table 

4.2 where we summarize x and the surface separation h at x based on Equation (4.2). 

While x is a monotonically increasing function of R, h/<D> at the dynamical arrest 

transition, is nearly a constant.  
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Little theoretical understanding has been developed for predicting the potential of 

mean force, U(r), for the silica particles suspended in a polymer melt when absorbed 

polymer is not in equilibrium with the polymer in the bulk. Here we apply a square well 

interacted system in form of Equation (4.2) to test our conclusions. For this system we 

assume the strength and range of the attraction are set by polymer binding density and 

that these are independent of <D>. We estimate U0 =2kBT as this value lies within the re-

entrant glass transition boundary for many theoretical systems.
23, 35

 We choose 

Δ=10.7nm=5.6Rg for the well width as this is the range of inter-particle attraction as this 

is the separation where substantial particle induced changes in polymer dynamics
36

 and 

suspension flow properties have been reported.
18

   

Bergenholz and Fuchs developed for predicting ϕx for gelling systems with Δ<0.2Dc 

yielding:
37

 

  22

0 /]1)/[exp(/12   TkUD Bxcc       (4.5)
 

where Γc~1.42 occurs at x. 

Based on these assumptions, we find that for the  four gelled systems with x in 

PE2000 where we are confident that changes in suspension dynamics are associated with 

bonding and not caging, (R=0, 0.29, 0.5, 0.71),  x=0.340, 0.380, 0.428, 0.508 (consistent 

with our experimental results in flow curves). For R=1, the calculated result exceeds 

unity indicating we are in the reentrant region. For square well systems where 

Δ/<D>=0.017 for large spheres and U0/kBT=2, full MCT calculations suggest x =0.510. 

In Table 4.2, we also present the results of x based on calculation of Equation (4.5) 

together with values of Δ/<D>.  
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Full MCT calculations predict that as Δ/<D> is increased from 0.03 to 0.05 reentrant 

glasses are no longer formed.
38

 Using a fixed value of Δ, we find that Δ/<D> changes 

sharply from 0.017 for R=1 to 0.056 for R=0.71 suggesting, in agreement with our 

measurements, that gel volume fraction will drop from above that observed for the hard 

sphere system (0.51 for this set of particles) to well below this value.  

These calculations thus support our notion that dynamical arrest properties of the 

binary mixtures are well described by an pseudo one-component system composed of 

particles with size <D> experiencing a short range attraction that with  a strength and a 

range that are independent of <D>. In the following subsections we will explore the 

consequence of these interactions in the viscoelastic response of the suspensions.  

4.3.2 Linear Rheology 

In order to characterize the mechanical properties of these suspensions above x, we 

investigate the linear response using frequency sweep experiments. In Figure 4.3, we 

present the linear elastic modulus G’ and linear viscous modulus G” as functions of strain 

frequency f. As with the continuous shear data, these five different data sets show very 

similar qualitative features. At high frequencies, a plateau in G’ is developed and a 

minimum in G” is formed within the frequency range f=0.1-1Hz. In this frequency range, 

G’>G” denoting that the samples are more elastic than viscous. At low frequencies, a 

terminal region is entered as G” passes through a maximum and G’ becomes smaller than 

G” as frequency is decreased. The crossing point generally moves to the lower 

frequencies with increasing c.  

We note that unlike relaxation of glasses formed by hard spheres,
16, 32

 complex 

behavior is observed in the low frequency range where multiple shoulders are displayed 
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in G’ and two maxima in  G” are observed with G’≈G”. Similar phenomenon have been 

observed in mixtures of particles and hyper-branched polymers with the spectrum of 

relaxation times begin associated with  relaxation of the polymer arms and particles 

within their cages.
39

 In our system, we suggest that the presence of multiple characteristic 

relaxation times at low frequencies is associated with the strain frequency exceeding 

characteristic time for particle diffusion and characteristic time associated with bound 

polymer layers. We do not attribute these multiple relaxations to the presence of two 

particle sizes as they are also observed when R=0 and R=1. This behavior is only 

observed for samples in medium range of c. At lower c, the particles are sufficiently far 

apart that adsorbed polymer layers do not interact and a single relaxation at low 

frequencies is observed associated with particle diffusion. At high c, particles are 

brought into close proximity confining the adsorbed polymer layers such that relaxations 

due to the polymer layer either occur at much lower frequencies or overlap with 

relaxations due to particle diffusion. The state diagram showing this behavior is presented 

in Figure 4.4. The lower volume fraction limit for this complex relaxation behavior 

shows the monotonic shape of dynamical arrest transition boundary and the upper volume 

fraction limit shows the non-monotonic shape of the R dependent maximum packing 

fraction.  

 In the high frequency range, as volume fraction is raised for all samples in Figure 

4.3, a plateau elasticity is reached. With increasing R, there is an increasing dependence 

of this plateau elasticity on deformation frequency. Here we use the value of G’ at the 

frequency fm where a minimum of G” is observed to characterize the plateau elastic 

modulus Gp’. The results of Gp’ are plotted as a function of c in Figure 4.5. For each R, 
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the data is well described by of 
b

cp AG ' where b increases with R. Based on our 

conclusions about the nature of the attraction experienced by the effective particles, we 

suggest that increasing the volume fraction ratio of spheres with a smaller attraction 

range results in a stronger volume fraction dependence of Gp’. This suggestion is 

consistent with the observation in the mixtures of repulsive and attractive particles, where 

increasing the volume fraction ratio of hard spheres can result in stronger volume fraction 

dependence of Gp’.
24

 

In Figure 4.6, we show that for all of the mixtures studied, Gp’h
2
<D>/kBT has a value 

near unity independent of c. This is a remarkable result. 

In star polymer solutions, Gp’δ
2
D/kBT=constant above overlap concentration where δ 

is the long time limit displacement of caged particles  physically representing  the largest 

excursion distance within which a caged microgel particle can diffuse  in the arrested 

state.
40

 This result is consistent with the predictions of  dynamical arrest theory where 

2
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41
 Here rloc is a diffusion distance in the short time limit. In 

comparing the experimental observation on microgels with the prediction of caged 

particles, we note that c can be approximately treated as a constant term with the 

value~0.5 thus we can suggest that for our systems the maximum diffusion distance in 

our gels occurs when rloc/h~0.54. Accepting this conclusion suggests that Gp’ is a 

correlated function of both <D> and h, where both parameters are sensitive to R.  The 

volume fraction dependence of rloc is then determined by h which is sensitive to both m 

and <D>.  . 
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4.3.3 Nonlinear Rheology and Yielding Behaviors 

To further investigate the nonlinear rheology and yielding behavior of the 

suspensions, we choose to apply dynamical stress sweeps at a fixed frequency f=1Hz 

which, except for the R=1 systems, lies close to fm where, the minimum of G” is formed, 

and below the crossing point of G’ and G”, fx2, in the high frequency region above which 

G”>G’. For the R=1 systems, f=1Hz lies near fx2. This frequency is chosen so that we are 

deforming the suspensions at a time scale that is shorter than that where the particles can 

diffuse out of their nearest neighbor cages but still long enough for the particles to fully 

explore its nearest neighbor cage during a deformation cycle. To achieve similar 

conditions for the R=1 systems we also report data at f=0.1Hz. 

With the strain frequency fixed, we increase the magnitude of the applied stress and 

determine G’ and G”. In the low strain limit, G’ and G” exhibit a constant plateau value 

of G0’ and G0” respectively with G0’>G0”. Above some large strain ~0.1, G’ starts to roll 

off the plateau and G” develops a maximum and rolls off passing that peak with G’<G” 

eventually. In Figure 4.7, we present dynamical stress sweep results in the panel of 

G’/G0’-τ/G0’ (main panel) and G”/G0”-τ/G0’ (inset) for three representative volume 

fractions at different R values. We summarize information from all samples in Table 4.3. 

The three volume fractions used in Figure 4.7 are chosen to give us comparable values of 

h/Rg at 14.4±1.8, 10.4±0.9 and 7.2±0.6 respectively. This ensures that at each value of h, 

G0’h
2
<D>/kBT and G0”h

2
<D>/kBT are similar, allowing us to focus on characterizing the 

differences in yielding as h is varied. There are small changes when R=1, but the absolute 

values of the R=1 sample become comparable to the lower values of R using f=0.1Hz. 
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In Figure 4.7, for all values of R, G’/G0’ rolls off with increasing applied stress to a 

power law decay form of   )'/("/' 00 GGG and G”/G0” develops a peak above the 

point of τ/G0’~0.1 with the peak of G”/G0” hard to observe for R=1 at both f=0.1Hz and 

f=1Hz. At a fixed value of R, when c is increased (h is decreased), G’/G0’ decreases 

more slowly at large shear stress (i.e., β increases)ing and the peak in G”/G0” becomes 

sharper.  

We present the results of dynamical stress sweeps at h/Rg=7.2±0.6 for different R in 

Figure 4.8. Below we make comparisons using the f=0.1Hz data for R=1 but include the 

f=1Hz data for comparison purposes. In the inset of Figure 4.8 (A), we present 

G0’h
2
<D>/kBT as a function of stress demonstrating again the remarkable scaling seen in 

Figure 4.6. From Figure 4.8(A), the curves of G’/G0’-τ/G0’ superimpose well with same 

functional form and magnitude with increasing stress. In Figure 4.8(B), the behavior is 

similar but the peak G”/G0” is a decreasing function of R. Significant differences are 

observed with R=1 at f=1Hz. We suggest that this behavior is a result of combined effects 

of shear thickening and that for this system f=1Hz approaches fx2. From these results we 

conclude that the nonlinear rheology of these mixtures is very similar at a fixed value of 

h.  

Yielding in colloidal glasses and gels at a particular deformation frequency is often 

associated with the stress τx (strain γx) required to make G’=G”=Gx, at which point the 

barrier of diffusion for breaking dynamical arrest states is driven to zero.
16, 42, 43

 In Figure 

4.9 we present the results of τx, Gx and γx as function of c. 

In Figure 4.9(A) and (B), similar increasing behavior of τx and Gx with increasing ϕc 

is observed as in Gp’, where monotonic decreasing of τx and Gx are enhanced c 
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dependence is attained with increasing R. In Figure 4.9(C), γx passes a maximum when 

increasing c, the magnitude of which is decreased as R increased. The volume fraction 

where the maximum is observed is 0.432, 0.474, 0.524, 0.545 and 0.590 for R=0, 0.29, 

0.5, 0.71 and 1 respectively, which we note is a monotonically increasing function of R. 

Again we find that nonlinear properties (τx and Gx) of these suspensions scale on 

h
2
<D>/kBT as shown in Figure 4.10 (A) and (B). The data for γx (Figure 4.10 (C)) 

displays a maximum in a narrow inter-particle surface separation range h/Rg=8-10 

independent of R.  

Continuous shear thickening is only present for the R=0.71 and R=1 samples. Again 

we seek to scale the critical stress on kBT/h
2
<D> and find superposition of the data 

τch
2
<D>/kBT is a linearly increasing function of h while τxh

2
<D>/kBT is generally 

constant. By extrapolating the data in Figure 4.11 to the point of overlap, we expect to 

reach a volume fraction where the suspensions will thicken before they yield will occur 

when h/Rg≈2.  

4.4 Conclusion 

Introducing colloidal particles into unentangled polymer melts results in enhancement 

of the mechanical properties and solid-like response at fixed shear strains and 

experimental time scales.
19-22

 This reinforcement is augmented such that gelation is 

observed at substantially lower volume fractions as polymer molecular weight is 

increased.
18

 For polymer molecular weights  far below the condition for entanglement 

and under conditions where particle-polymer segment attraction produces sterically 

stabilized particles, the dynamical arrest transition occurs at a high volume fraction and 

the model of hard spheres with an effectively size augmented by the adsorbed polymer 
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layer can be used to describe crystallization,
44

 or glass formation.
16

 When the polymer 

molecular weight is increased, a variety of explanations for the increased attractions have 

been introduced including surface confined entanglements,
45, 46

 polymer bridging 

between polymer stabilized particles,
20

 and depletion effects  of polymer matrix.
47

  

Schweizer and coworkers have developed polymer reference interaction site model 

(PRISM) to explain the depletion effect in polymer-colloid suspension.
48

 This model 

agrees with detailed studies of particle and polymer microstructure studies for low 

molecular weight polymers but agreement is increasingly poor as molecular weight is 

increased. Studies of flow properties and microstructure suggest that the increased 

molecular weight induces an attraction between the particles even though there is strong 

evidence that the polymer is adsorbed to the particle surface producing a layer with 

thickness that grows with the polymer molecular weight.
36

 The attractions are thought to 

be a consequence of adsorption of multiple segments from the same polymer chain to the 

particle surface which results in sluggish approach to equilibrium between segments 

bound to the particle surface with those in the bulk. In the limit where the adsorbed 

polymer cannot exchange with polymer in the bulk, this phenomenon can be thought of 

as producing a particle surface that is composed of polymer segments with a result that 

the enthalpy gain of moving a segment from the bulk to the particle’s effective surface is 

diminished. This in turn produces depletion attractions between the particles. 

Here we exploit this attraction to investigate the flow properties of binary mixtures 

which have short-range inter-particle attractions. We find that the dynamical arrests of 

the mixtures can be understood in terms of an attraction with strength of ~2kBT and width 

of ~5.6Rg, which is independent of the large particle volume fraction ratio. As a 
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consequence, the polymer induced inter-particle attraction is the same between like-

species and unlike-species. This short-range attraction is sufficiently weak that the 

particles respond very nearly like hard spheres at low volume fractions but gel and form 

glasses differently from hard spheres as volume fraction is raised. 
22

  

By studying the continuous flow properties the dynamical arrested transition 

boundaries are characterized for different R. The volume fractions at this boundary, x, is 

found to locate far below glass transition point of spheres experiencing volume exclusion 

interactions for R=0, 0.29, 0.5 and 0.71 denoting the formation of gels, while for R=1, x 

is higher than that for hard spheres suggesting a re-entrant phase behavior and formation 

of attractive glasses. This state transition occurs at the volume fraction where the 

effective single component particle surface separation is ~14Rg, which is larger than the 

distance within which the adsorbed polymer layer can interact. Therefore, this inter-

particle attraction cannot be explained as a result of polymer entanglement and instead is 

associated with the attractions resulting from the nonequilibrium dynamics of the 

adsorbed polymer layers.
18

  

The presence of the adsorbed polymer layers and their confinement upon gelation is 

observed in the linear response of the composite melts where for all R at low strain 

frequency a double relaxation is observed at medium c>x. The two relaxations are 

associated with particle diffusion and confined polymer layer relaxations. This 

phenomenon is shown in a wider volume fraction range for mixtures (R=0.29, R=0.5 and 

R=0.71) than single-component system. 

The plateau elastic modulus Gp’ monotonically increases with c, and is found to 

scale as kBT/h
2
<D>, denoting the localization length in the dynamical arrested state is 
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proportional to the inter-particle separation independent of R. This dependence of 

properties on average surface to surface separation is also observed for the yield stress 

and elastic modulus at the yield stress measured in stress sweep experiments. Finally the 

scaled critical stress for thickening τch
2
<D>/kBT is a linear function of h for R=0.71 and 

R=1.  

Our results suggest that the flow properties of these systems are controlled by a short 

range attractive pair potential that results in gelation and glass formation that is well 

described by the dynamic arrest theory and binary mixtures behave as if composed of 

particles with a uniform effective size <D>. Of significance to general studies of colloidal 

suspensions are our observations that the point of dynamic arrest is well characterized 

through the slope p and that flow properties diverge near ϕm independent of the presence 

of attractions while attractions impact ϕx. 

4.5 Tables and Figures 

Table 4.1 Summary of <D>, x and m for different R in PEG400 

R <D>/nm x m 

0 127 0.511 0.631 

0.29 142 0.557 0.661 

0.5 160 0.603 0.713 

0.71 190 0.605 0.719 

1 612 0.51 0.632 
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Figure 4.1 (continued on next page) 
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Figure 4.1 (continued on next page) 
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Figure 4.1 Flow curves for (A) R=0, (B) R=0.29, (C) R=0.5, (D) R=0.71, (E) R=1. The 

dashed lines represent a slope of 1. 
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Figure 4.2 (continued on next page) 
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Figure 4.2 (A) Flow curves of R=0 at c=0.330( ), R=0.29 at c =0.375( ), R=0.5 at ϕc 

=0.438 ( ), R=0.5 at c=0.504( ) and R=1 at c =0.549( ). The dashed line has a slope 

of p=0.56. Inset panel show the flow curves in the dimensionless panel. (B) The slope p 

as a function of c for R=0( ), R=0.29( ), R=0.5( ), R=0.71 ( ) and R=1( ).Solid 

line represents c/x=1. Dashed line represents p=0.56. 
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Table 4.2 <D>, experimental results of x, average particle surface separation based on 

Equation (4.2), corresponding values of Δ/<D> used in Equation (4.5) and theoretical 

prediction of x based on Equation (4.5). 

R <D>/nm x h/Rg Δ/<D> x (theory) 
0 127 0.330 16.1 0.084 0.340 

0.29 142 0.375 15.5 0.075 0.380 

0.5 160 0.438 14.9 0.067 0.428 

0.71 190 0.504 12.6 0.056 0.508 

1 612 0.549 15.5 0.017 0.510
a
 

a
 Obtained by extrapolating the plotted results of Ref 

38
 at U0/kBT=2 with increasing 

Δ/<D>. 
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Figure 4.3 (continued on next page) 

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
0

10
1

10
2

10
3

G
', 

G
"/

P
a

f /Hz

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

G
', 

G
"/

P
a

f /Hz

(A) 

(B) 



140 
 

 

 

Figure 4.3 (continued on next page) 
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Figure 4.3 Linear G’ (Close symbols) and G” (Open symbols) for (A) R=0 at 

c=0.369( ,  ), 0.398 ( , )  0.438 ( , ), 0.479 ( , ) and 0.501 ( , ); (B) 

R=0.29 at c=0.394( ,  ), 0.420 ( , )  0.480 ( , ), 0.524 ( , ) and 0.571 ( , ); 

(C)R=0.5 at c=0.458( ,  ), 0.481 ( , )  0.524 ( , ) and 0.569 ( , ) and 0.592 

( , ); (D)R=0.71 at c=0.525( ,  ), 0.547 ( , )  0.572 ( , ), 0.618 ( , ) and 

0.641 (( , ); (E) R=1 at c=0.549( ,  ), 0.570 ( , ), 0.592 ( , ) and 0.615 ( , 

). Arrows in (E) show single or double relaxation in low frequency limit. 
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Figure 4.4 State diagram with close stars (solid curve used to guide eyes) for x and open 

stars (dashed curve used to guide eyes) for m (in low MW polymer). Closed color 

symbols stand for samples with single relaxation at low frequency , half open color 

symbols stand for samples with double relaxation (and marked with shadow), and open 

color symbols stand for samples with coupled relaxations. 
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Figure 4.5 Gp
’ 
as function of c for R=0( ), R=0.29( ), R=0.5( ), R=0.71 ( ) and 

R=1( ). 
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Figure 4.6 Scaled Gp’ (with h
2
<D>/kBT) as function of h/Rg for R=0( ), R=0.29( ), 

R=0.5( ), R=0.71 ( ) and R=1( ). The dashed line shows a constant value of unity. 
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Figure 4.7 (continued on next page) 
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Figure 4.7 (continued on next page) 
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Figure 4.7 (continued on next page) 
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Figure 4.7 (continued on next page) 
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Figure 4.7 (continued on next page) 
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Figure 4.7 Dynamics stress sweeps at f=1Hz for (A) R=0, (B)R=0.29, (C)R=0.5, (D) 

R=0.71, (E) R=1 and (F) at f=0.1Hz for R=1 with G’/G0’ plotted with τ/G0’ (main panel) 

and G”/G0” plotted with τ/G0’ (inset). The information of samples is summarized in 

Table 4.3. 
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Table 4.3. Information of samples in Figure 4.7.  

R=0 

c h/Rg h(x)/h G0’/Pa (G0’h
2
<D>/kBT) G0”/Pa (G0”h

2
<D>/kBT) 

0.330 16.1 1 30.2  (0.75) 13.2  (0.33) 

0.398 11.1 1.45 98.2  (1.16) 16.9  (0.20) 

0.454 7.7 2.08 218.1 (1.23)  31.9  (0.18) 

R=0.29 

c h/Rg h(x)/h G0’/Pa (G0’h
2
<D>/kBT) G0”/Pa (G0”h

2
<D>/kBT) 

0.375 15.6 1 25.0  (0.64) 14.6 (0.37) 

0.437 11.0 1.41 100.1  (1.29) 17.2  (0.22) 

0.503 7.1 2.18 185.5  (1.00) 37.4  (0.20) 

R=0.5 

c h/Rg h(x)/h G0’/Pa (G0’h
2
<D>/kBT) G0”/Pa (G0”h

2
<D>/kBT) 

0.438 14.9 1 18.7  (0.50) 14.6  (0.39) 

0.501 10.5 1.41 87.9  (1.17) 23.9  (0.32) 

0.569 7.8 2.26 213.5  (1.56) 43.0  (0.31) 

R=0.71     

c h/Rg h(x)/h G0’/Pa (G0’h
2
<D>/kBT) G0”/Pa (G0”h

2
<D>/kBT) 

0.504 12.6 1 26.6  (0.60) 16.3  (0.37) 

0.547 9.5 1.32 80.3  (1.04) 18.1  (0.23) 

0.592 6.7 1.88 199.5  (1.28) 44.2  (0.28) 

R=1 (f=1Hz) 

c h/Rg h(x)/h G0’/Pa (G0’h
2
<D>/kBT) G0”/Pa (G0”h

2
<D>/kBT) 

0.549 15.5 1 10.3  (1.14) 9.3  (1.03) 

0.57 11.3 1.37 34.7  (2.04) 18.5  (1.09) 

0.592 7.1 2.18 79.7  (1.85) 35.1  (0.81) 

R=1 (f=0.1Hz) 

c h/Rg h(x)/h G0’/Pa (G0’h
2
<D>/kBT) G0”/Pa (G0”h

2
<D>/kBT) 

0.549 15.5 1 3.8  (0.42) 2.3  (0.26) 

0.57 11.3 1.37 13.1  (0.76) 5.7  (0.33) 

0.592 7.1 2.18 48.0  (1.12) 17.9 (0.42) 
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Figure 4.8 (continued on next page) 
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Figure 4.8 Dynamics stress sweeps at for at f=1Hz for R=0, c=0.454( ), R=0.29, 

c=0.503( ), R=0.5, c=0.569 ( ), R=0.71, c=0.592 ( ) and R=1, c=0.592( ) and at 

f=0.1Hz for R=1, c=0.592( ). with (A) G’/G0’ plotted with τ/G0’ and (B) G”/G0” 

plotted with τ/G0’. The inset of (A) is scaled G0’ as a function of R with dashed line 

represents a constant with value of unity. 
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Figure 4.9 (continued on next page) 
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Figure 4.9 (A) τx (B) Gx (C) γx at the cross point where G’=G”=Gx plot with volume 

fraction at f=1Hz for R=0( ), R=0.29( ), R=0.5( ), R=0.71 ( ) and R=1( ) and at 

f=0.1Hz for R=1( ). The curves (red for R=0, orange for R=0.29, green for R=0.5, 

purple for R=0.71, solid blue for R=1 at f=1Hz, and dashed blue for R=1 at f=0.1Hz) in 

(C) are used to guide eyes for the peak in γx. 
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Figure 4.10 (continued on next page) 
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Figure 4.10 (A) Scaled τx and (B) scaled Gx (with h
2
<D>/kBT) as function of h/Rg at 

f=1Hz for R=0( ), R=0.29( ), R=0.5( ), R=0.71 ( ) and R=1( ), and at f=0.1Hz for 

R=1 ( ). 
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Figure 4.11 Scaled τx (with h
2
<D>/kBT) as function of h/Rg at f=1Hz for R=0.71 ( ) and 

R=1( ), and at f=0.1Hz for R=1 ( ), and scaled τc (with h
2
<D>/kBT) as function of h/Rg 

for R=0.71 ( ) and R=1 ( ). 
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Chapter 5. The Effect of Shape Anisotropy on Dynamics of Dense Binary 

Colloidal Mixtures 

5.1 Introduction 

Mixing particles with different sizes will result in different flow properties as shown 

in many colloidal dispersion systems.
1-4

 Specifically mixing spheres experiencing volume 

exclusion interactions results in smaller shear viscosity at a given total volume fraction, 

and larger glass transition volume fractions
2, 5-7

. These phenomena can be explained as a 

resulting from the mixture inducing more free space in the dense packed systems as 

reflected in increased maximum packing fraction. When particle-particle interactions are 

varied, binary spherical mixtures display complicated dynamics. Experimental studies of 

structure for biphasic colloidal mixtures composed of attractive and repulsive spheres 

shows that attractive spheres form space-filling gel matrix and repulsive particles show 

heterogeneous dynamics with some particles trapped in the gel matrix while others 

diffuse freely.
8
  

Here we are interested in understanding changes to particle dynamics in suspensions 

when shape anisotropy is introduced to a binary mixture. In the past, experiments have 

been carried out to explore and suggest the principles of optimizing and controlling flow 

properties of colloidal mixtures when shape anisotropy is introduced.
9-13

 Small angle  

neutron scattering has been used to study the depletion effects in sphere-plate mixtures 

with large size asymmetry, where the sphere have diameter d=30±5nm and the plate has 

thickness L=5±1nm and diameter D=203±40nm.
11

 This work indicates that depletion 

interactions give rise to phase separations at elevated total volume fraction. Depletion 

effects have also been observed in mixtures of charged platelets (L=10.6±3.7nm and 

D=95.0±16.0 nm) and spheres (d=16.8nm), where the spheres act as depletants and locate 
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between the columnar stacks formed by the platelets in the equilibrium phase.
12

 Some 

other report has shown that spheres form boundaries of the arrested phase of rods.
14

 In 

addition to experimental characterization of microstructure of colloidal mixtures with 

variable shape, theoretical work has also opened up fundamental understanding of the 

dynamics of binary mixtures. These studies have been applied to gain understanding of 

colloid-polymer mixtures and binary mixtures of molecules.
15, 16

 Simulation studies
17

 

suggest very similar liquid-crystal phase separation observed in experiment as discussed 

above.
14

 In all of these systems, either the size ratio or the shape anisotropy is large with 

a key focus on the observed phase separation systems. However, it is necessary to 

systematically understand the dynamics in this nonergodic region when elevating the 

volume fractions results in glass transition or gelation and explain the different 

enhancement effects of varied shape on rheology of binary mixtures which has been 

suggested by previous experimental results. 
10, 18

 Therefore, here we investigate systems 

containing binary mixtures with small particles experiencing volume exclusive 

interactions and large particles experiencing weak attractions, where small shape 

anisotropy and modest size disparity are introduced to guarantee that no phase separation 

is observed due to strong depletion attraction.  

Recently, Zhang and Schweizer have studied the effects of shear stress on the 

rheology of hard uniaxial particles by generalizing the naïve Mode Coupling Theory 

(nMCT) and nonlinear Langevin equation to couple rotational and translational 

dynamics.
19, 20

 They demonstrate that for hard dicolloids composed of two fused spheres 

with a small aspect ratio, plastic glasses are formed within a wide volume fraction range 

with rotational and translational relaxation decoupled when elevating shear stress for 
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small aspect ratio. When the aspect ratio is increased above 1.4, only double glasses are 

formed upon raising volume fraction predicting the loss of double yielding phenomena as 

shear stress is increased.
19

 Experimentally, Kramb et al. observed such double-yielding 

behavior where the elastic modulus G’ shows two shoulders and viscous modulus G” 

shows two maxima by increasing shear stress τ at a fixed deformation frequency for hard 

dicolloids with aspect ratio L/D~1.3. Under similar volume fraction and pair interaction 

conditions, spheres display only single-yielding phenomenon where G’ shows one 

shoulder and G” shows one maximum when increasing shear stress τ at a fixed stress 

frequency).
21

 

Complexity is introduced when tuning interaction among particles.
22-24

 When weak 

attraction is introduced into suspensions of spheres, attractive glasses are formed at high 

concentrations with yielding occurring in two steps. Here, the first yielding event is 

associated with bond breaking between particles while the second yielding event is 

associated with cage breaking and the exchanges of nearest neighbors.
23

 While one might 

imagine that dense suspensions of weakly attractive anisotropic particles could yield with 

bond breaking, rotational relaxation, and cage deformation, yielding occurs in one or two 

steps in suspensions of weakly attractive anisotropic particles, suggesting that rotational 

and center of mass relaxations are tightly coupled in attractive systems.
25

 Recent 

experimental reports in dilute gel formed from introducing strong depletion attraction 

show double yielding representing rigid bond rotation and breakage in sequence, which is 

a mechanism than that observed in dense suspensions of particles experiencing weak 

attractions.
26
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Here we present a systematic study of colloidal mixtures to explore the effects of 

shape anisotropy on the rheological properties of binary mixtures with particular focus on 

constrains on particle relaxation in dense suspension. Two different binary mixtures of 

negatively charged polystyrene particles with size disparity δ~3 (δ=Dl/Ds) are studied. 

One is composed of small spheres (SSP) with Ds=330nm and large dumbbells (LDB) 

with Diameter Dl=845nm and length Ll=1131nm. To compare with this system, the 

analogue system is used composed of small spheres with Ds=330nm and large spheres 

(LSP) with diameter Dl=1097nm. Our goal is to investigate suspension properties at high 

volume fractions where nearest neighbors form cages and constrain rotational and center 

of mass (CM) relaxations. As large particles have a smaller self-diffusivity and dominate 

the dynamical arrest transitions with increasing total particle concentrations, we do not 

change the shape of the small particles. The particles are dispersed in an aqueous e 

solution with ionic strength I=0.01M which establishes a weak attraction between large 

particles (LSP and LDB) independent of shape and volume exclusion interactions 

between small particles (SSP). To characterize the arrest and relaxation processes of 

dense suspension as a function of volume fraction ϕc and shear stress τ, continuous shear 

and oscillatory shear have been applied. For the continuous shear, we focus on 

investigating the discontinuous shear thickening phenomenon at high shear stress. For 

oscillatory shear, the results of frequency sweep experiment have been first presented to 

clarify the motivation of stress sweep experiment on mixtures at f=1Hz. 

Below we introduce the procedure of sample preparation and rheological 

measurement in Section 5.2. Then results and discussions with a focus on nonlinear 

oscillatory rheology and underlying explanation of particle relaxation dynamics are 
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covered in Section 5.3. Finally we summarize the systems and give the main conclusions 

in Section 5.4.  

5.2 Experimental Approaches 

To obtain similar surface chemistry for small particles and large particles, a similar 

seeded emulsion polymerization synthesis technique which can produce shape anisotropy 

and has been pioneered by Sheu and coworkers
27

 is used to make all of the three particles.  

To make LDB, negatively charge polystyrene seeds cross-linked by 2wt% divinyl 

benzene (DVB) with diameter ~800nm were made first before the seeded emulsion 

polymerization using a soap-free emulsion polymerization recipe.
28

 The details have been 

introduced in previous literature.
29

 After the reaction have been completed, the volume 

fraction of the seed suspension was determined, by placing ~0.5mL suspension into 

20mL glass vial, drying the suspension in ~110  C oven and calculating the volume loss 

with measured weight loss based on a polystyrene density of 1.055g∙cm
-3

. Then the seed 

particle suspension was diluted to a volume fraction ~0.08 with deionized water (DIW) 

according to the measured volume fraction. To make LDB with seeded emulsion 

polymerization afterwards, 150mL diluted seed dispersion was discharged into a 500mL 

round-bottom glass flask which was fitted with a glass impeller carrying a PTFE blade 

and immersed into a water bath at room temperature. The impeller was connected to a 

Glas-Col 099D G31 stirring system which would operate at ~220rpm during the reaction. 

After everything has been set up, 0.64g 2,2′-Azobisisobutyronitrile (AIBN) was solved 

into 28mL styrene, and the mixture was added into the reactor. The stirring was kept 

throughout the process of swelling and secondary polymerization. After the swelling step 

proceeding for 24h, including 2.5h to allow the temperature to increase to 75 ºC, 6.0g 



166 
 

sodium dodecyl sulfate dissolved into 60mL DIW and 5.8g hydroquinone dissolved into 

100mL DIW were added into the reactor. The reaction proceeded for 24h. 

To make LSP, negatively charge polystyrene seeds cross-linked by 0wt% DVB with 

diameter ~800nm were made first before the seeded emulsion polymerization using a 

soap-free emulsion polymerization recipe which was similar to the recipe used to make 

LDB with no DVB added in the reaction. After the seeds were made, all the procedures 

of swelling and secondary polymerization in making LDB were followed to make LSP. 

To make SSP, first small negatively charged polystyrene seeds were made using a 

similar recipe as used in previous studies.
30

 A 1000mL round-bottom glass flask which 

was fitted with a glass impeller carrying a PTFE blade and immersed into a water bath at 

temperature about 75ºC. The impeller was connected to a Glas-Col 099D G31 stirring 

system which would operate at ~300rpm during the reaction. 400mL DIW, 46.6mL 

styrene and 0.50g SDS dissolved into 50mL DIW were discharged into the reactor. The 

container used to dissolve SDS was rinsed with 50mL DIW which was added into the the 

reactor afterwards. After 1h to allow the reaction system to reach the temperature, 1.55g 

potassium persulfate dissolved into 75mL DIW was added into the reactor to initiate the 

emulsion polymerization. The reaction was allowed to proceed for about 24h. Then the 

volume fraction of the seed suspension was determined, by placing ~0.5mL suspension 

into 20mL glass vial, drying the suspension in ~110  C oven and calculating the volume 

loss with measured weight loss based on a polystyrene density of 1.055g∙cm
-3

. To make 

SSP with seeded emulsion polymerization afterwards, 200mL seed dispersion with 

volume fraction about 0.07 was discharged into a 500mL round-bottom glass flask which 

was fitted with a glass impeller carrying a PTFE blade and immersed into a water bath at 
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room temperature. The impeller was connected to a Glas-Col 099D G31 stirring system 

which would operate at ~220rpm during the reaction. After everything has been set up, 

0.64g 2,2′-Azobisisobutyronitrile (AIBN) was dissolved into styrene to make sure the 

swelling ratio is 2:1, and the mixture was added into the reactor. The stirring rate was 

held constant throughout the process of swelling and secondary polymerization. After the 

swelling step proceeding for 24h, including 2.5h to allow the temperature to increase to 

75 ºC, 6.0g sodium dodecyl sulfate dissolved into 60mL DIW and 4g hydroquinone 

dissolved into 100mL DIW were added into the reactor. The reaction proceeded for 24h. 

The sizes of the resulting particles are measured with Scanning Electron Microscopy 

(SEM) with the pictures shown in Figure 5.1. SSP has a diameter Ds=330±5nm, LSP has 

diameter Dl=1097±9nm, LDB has length Ll=1131±30nm and diameter Dl=845±25nm 

(The aspect ratio is L/D=1.3). Basically these three sets of particles have narrow size 

distribution below 5%. 

The resulting particles were cleaned by dialysis. The suspensions were placed into a 

SpetroPor Dialysis tubing (molecular weight cutoff 12000-14000) and dialyzed against 

DIW for about 2-3 days with DIW outside the tubing being replaced for about 5-6 times 

until the conductivity outside the tubing reached constant. This will eliminate 

hydroquinone, oligomers and other species resulting from the reaction. Then about 200g 

polyethylene glycol with Mn~20000 (PEG20000, Sigma-Aldrich) was dissolved into the 

DIW out of the dialysis tubing to concentrate the suspension to a volume fraction ~0.30. 

This process was continued for about 2 days. PEG 20000 here was used to increase the 

osmotic pressure of the dialysate and raise the flow rate of the water which flew out of 

the tubing. 
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Then the resulting particles were coating with a monolayer of non-ionic surfactant n-

dodecyl-hexaethylene-glycol C12E6 based on adsorption isotherm results in previous 

study.
29

 The critical micelle concentration in pure DIW is about Ccmc=8×10
-5

M with 

saturated surface coverage for polystyrene is Г=1.5 molecules∙nm
-2

.   The amount of 

C12E6 necessary for monolayer coverage was calculated as follows:  

)A/(VAVM)C-(1VM)Em(C vpptscmccts612  c     (5. 1) 

where the molar weight for C12E6 is Ms=450g/mol, Vt and ϕc are the total volume and 

volume fraction of the suspension respectively, Av=6.02×10
23 

molecules/mol is Avogadro 

constant and Ap and Vp are surface area and volume of a single particle. The suspensions 

were placed in an oven with the temperature set at ~35ºC after the surfactant was added 

for about 1h. Sodium chloride solution containing C12E6 with Ccmc was used to tune the 

ionic strength to [I]=0.01M. Zeta-potential of the resulting particles were measured in the 

solution containing [NaCl]=0.01M and [C12E6]=8×10
-5

M. For SSP, the zeta-potential is 

about -28mV; for LSP and LDB, the zeta-potential is about -45mV.  

The resulting large particles and small particles were mixed afterwards according to 

desired large particle volume fraction ratio R which we would introduce below. The 

suspension was then discharged into a dialysis tubing which was placed in a ~1000mL 

container containing about 800mL solution with [NaCl]=0.01M and [C12E6]=8×10
-5

M 

and 60g PEG20000 for ~1 day. The resulting suspension has a volume fraction ~0.6-0.70 

with volume ~30mL, which was placed into a 50mL centrifuge tube.  

Rheological measurements were carried out on a Bohlin C-VOR rheometer with a 

cup and bob geometry, with ~3 ml samples loaded each time. The bob is made of 

roughened titanium with a diameter of ~14 mm and a ~0.7 mm gap remained when fitted 
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into the cup. The temperature was kept constant at ~25±0.2ºC. To guarantee uniform 

mixing, samples were pre-sheared by rotating the bob carefully by hand to avoid shear 

thickening. A solvent trap was placed to minimize the evaporation during the experiment, 

but the time for each running was still controlled within 20 min to guarantee no obvious 

change in volume fraction. After each measurement, ~0.5mL sample was taken from the 

cup and placed into a 20mL vial; the vial was kept in an oven with temperature ~110 ºC 

for ~20mL to evaporate the solvent and measure the mass loss during the evaporation. 

Then the volume fraction of the sample was calculated based on a polystyrene density 

~1.055g∙cm
-3

. Then residual suspension in the cup was placed back into the centrifuge 

tube and diluted with solution containing [NaCl]=0.01M and [C12E6]=8×10
-5

M. The cup 

and bob were cleaned with toluene and rinsed with DIW before the next experiment on 

the diluted suspension.  

 For rheology measurement, we apply both continuous shear and oscillatory shear. In 

the oscillatory shear, we mainly focused on stress sweep experiment with elastic modulus 

G’(Pa) and viscous modulus G”(Pa) measured as a function of shear stress τ(Pa) at a 

fixed frequency f=1Hz, with linear elastic modulus G0’(Pa) and linear viscous modulus 

G0”(Pa) measured below a shear strain γ~0.001. In the continuous shear, dynamic shear 

was applied to increase shear stress τ (Pa) with resulting viscosity η(Pa∙s) and shear rate 

 (s
-1

) measured.  

Here for further characterization purpose in understanding the rheology results by 

studying the dimensionless parameters, we introduce the concept of effective diameter for 

LDB, which characterizes the length scale for studying the dimensionless parameters in 

the rheology as following: 
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lleff DLD 23           (5.2) 

Therefore we have Deff=1026nm for LDB, which is close to the diameter value of 

LSP. In order to study the flow properties in mixtures, we introduce the volume average 

diameter <D> which is the value for single-component suspension containing the same 

volume fraction and density fraction as the binary mixtures; therefore it can be expressed 

as following:  

3/1

33
)

1
( 


sl D

R

D

R
D         (5.3) 

where we use Deff as the value of Dl for LDB, and R is the large particle volume 

fraction ratio. We studied six different values of R for both mixtures (0, 0.29 0.5, 0.71, 

0.85 and 1), SSP/LSP and SSP/LDB, with the volume average diameter <D> summarized 

in Table 5.1. 

Below we use these average particle sizes as the characteristic length scale for each 

value of R. 

5.3  Results and Discussions 

5.3.1 Surface Potential and Interaction Energy 

After truncating the van der Waals attraction using the non-ionic surfactant C12E6 as in 

previous studies by producing a steric layer with length ~4nm. We expect that the 

interaction energy between different sets of particles can be expressed as composed of 

three parts according to Equation (5.4), electrostatic repulsion (UE), van der Waals 

attraction (UV), and steric interaction (US): 

SVE UUUU           (5.4) 

where 
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Here, the relative dielectric constant ε is 80 for water, the dielectric constant for 

vacuum ε0 is 8.854×10
−12

 C
2
/N·m

2
. The diameter of the i

th
 kind of sphere is Di (i stands 

for s or l), and the closest surface separation between two spheres δ is 8 nm, which is 

twice the surfactant length.
31

 The surface potential of the i
th

 sphere is ψi (i stands for s or 

l), h is the surface distance between two particles, and κ
−1

 is the Debye thickness in 

nanometers, which is determined from 0.304/[I]
0.5

, which is 3.0nm here. The Boltzmann 

constant kB=1.38m
2
∙kg∙s

-2
∙K

-1
, and the absolute temperature is T=298K. The Hamaker 

constant is AH=1×10
-20

J.
31

  

As LSP and LDB have similar surface potential and effective diameter, here we just 

use the value of LSP to estimate different pair interaction in binary mixtures. Therefore 

the interaction energy is calculated as varying particle-particle separation h, with the 

result plotted in Figure 5.2. 

The interaction between SSP with either SSP or LSP is relatively small with a 

minimum larger than -1kBT. Therefore we treat SSP-SSP and SSP-LSP as experiencing 

volume exclusion interactions. However, LSP-LSP interaction energy has a minimum on 

the order ~-2kBT which is sufficient to later the dynamics of these particles and to observe 

re-entrant effect on dynamic arrest trasnition.
32

 These calculations suggest that we have 

mixtures of large and small particles where the small/mall and small/large interactions are 
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short ranged and harshly repulsive near contact while large/large interactions show a 

weak attraction followed by a harsh repulsion at smaller particle separations. 

5.3.2 Linear Shear Elasticity 

The frequency (ω) dependence of the elastic moduli are explored by carefully tuning 

the shear strain γ<~10
-3

 for a series of samples to ensure that the measurements lie in the 

linear response region. The frequency sweep experiment results are presented in Figure 

5.3 for the two extreme single-component cases R=0 and R=1 for SSP/LSP system. 

The data shown in Figure 5.3 indicate that as the volume fraction, ϕc, is raised, the 

characteristic relaxation time denoting where terminal low frequency behavior is reached 

shifts to lower frequencies.  In the volume fraction range studied, at high frequencies 

(f>1Hz), the plateau elastic modulus is approached. With ϕc kept high enough, f=1Hz is 

guaranteed to be located in the range of plateau. The f dependence of G” is different from 

that of G’, with a minimum observed when ϕc is large, and when ϕc is small, a plateau 

developed and terminal behavior reached at low frequencies.  We note here that there was 

no obvious minimum point observed in the curve of G” at high ϕc as reported in previous 

study in systems containing silica particles dispersed in PEG.
33

  Often the elastic modulus 

at the frequency of the minimum in G” is taken as a measure of the plateau elastic 

modulus Gp’.
33, 34

 For these systems, the lack of a minimum in G” presents an uncertainty 

in how to estimate Gp’. However, as the point of f=1Hz is located in the basin developed 

in the frequency sweep experiment, denoting that f=1Hz sets an observation time scale 

~1/2π s which is short enough to detect dynamic arrested states without letting the 

particles diffuse out of the nearest neighbor cages, and long enough to make sure the 

particle can respond to the applied shear. Nevertheless, the f dependence of G’ and G” 
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are weak around the point f=1Hz which sets the time scale to observe the characteristics 

of dynamic arrested state. Therefore we chose this frequency to study both linear moduli 

(G0’ and G0”) and yielding in the stress (τ) sweep experiments. 

In Figure 5.4, we show an example of dynamic stress sweep experiment results, 

where dimensionless elastic modulus G0’* and dimensionless viscous modulus G0”* are 

plotted as a function of dimensionless stress τ*, where TkDGG B/''* 3 , 

TkDGG B/""* 3  and TkD B/* 3 . 

In low stress limit, both G’* and G”* develop plateau values which were 

dimensionless linear elastic modulus G0’* and linear dimensionless viscous modulus 

G0”* respectively. Also the method of determining yielding point is also illustrated in 

Figure 5.4, which we would discuss in details below.  

In Figure 5.5, the results of linear elasticity G0’* are plotted as a function of ϕc based 

on different large particle volume fraction ratio R for both systems SSP/LSP and 

SSP/LDB. 

For both SSP/LSP and SSP/LDB mixtures, we can note two characteristics in 

common. First, G0’* increases as an exponential function of ϕc which has the form

)exp('*0 cbG  . Second, in single-component systems (R=0 and R=1), G0’* has a 

stronger dependence on ϕc compared to binary mixtures (R=0.29, R=0.5, R=0.71 and 

R=0.85), meaning that the parameter b is larger for binary mixtures than for suspensions 

of single-sized particles. However, a substantial difference is observed in the two systems 

in that the magnitude of G0’* at a fixed ϕc is non-monotonic function of R for SSP/LSP 

(reaching a minimum value for R=0.85), but is a monotonic function of R for SSP/LDB 

(reaching a minimum at R=1).  
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To understand this phenomenon, we discuss the results by introducing the concept of 

iso-elasticity line which is determined by the points with equal values of G0’* in the 

panel of ϕc-R. As shown in Figure 5.5, with mixture type and large particle volume 

fraction ratio R varied, the G0’* values are increased in the range of 10
3
-10

4
 by increasing 

ϕc, within this range we locate values ϕc when G0’*=10
3
, 3×10

3
 and 10

4
 for two binary 

mixture types for different values of R by interpolating the exponential fitting. The iso-

elasticity lines set as these three G0’* values are plotted for both SSP/LSP and SSP/LDB 

in the panel of ϕc-R in Figure 5.6. 

Both systems display very similar behaviors for R=0, R=0.29 and R=0.5, where the 

volume fraction ratio of small particles are substantially dominant (ϕs/ϕc≥0.50). As a 

result, we conclude that the flow properties are controlled by SSP without obvious effects 

of large particle shape anisotropy for these conditions. Difference between SSP/LSP and 

SSP/LDB are apparent for R=0.71, R=0.85 and R=1, where SSP/LSP shows a maximum 

in the iso-elasticity lines at R=0.85, but iso-elasticity lines of SSP/LDB consistently 

increases with ϕc when increasing R. In another aspect, for R=0.71 and R=0.85, SSP/LSP 

at a given elastic modulus has a larger volume fractions than SSP/LDB. However, for 

R=1, SSP/LSP has a smaller volume fractions than SSP/LDB at a given elastic modulus.  

NMCT has predicted that 

2.2
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AG , where rloc is the localization length and 

A is a constant weakly influenced by aspect ratio.
35

 The localization length characterizes 

the diffusion length scale for short time self-diffusion of a caged particle. As volume 

fraction increases, the localization length decrease in size and the modulus increase. The 

localization length is calculated from equilibrium structure factors and, in principle, can 
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be determined for any pair potential. In naïve Mode Coupling Theory and in Dynamic 

Localization Theory,
36

 1/rloc is infinite (indicating no caging) below dynamic arrest 

volume fraction ϕx and takes on a finite value at ϕx, demarking the onset of glassy 

behavior. rloc is known to scale well on (ϕc-ϕx) and on ϕ*=(ϕm-ϕx)/(ϕm-ϕc) where ϕm/ϕx is 

found to be a constant for hard shape anisotropic particles
37

 and binary mixtures of hard 

spheres.
38

 By choosing to look at lines of constant dimensionless modulus we are 

choosing to look at lines where rloc/Dc is a constant for different systems. 

Previous theoretical studies have shown that dumbbell shaped particles show non-

monotonic behavior in cross-over volume fraction ϕx with increasing aspect ratio L/D 

with a maximum achieved at L/D=1.4. Universal elasticity observed when scaling ϕc with 

ϕx, which suggests similar G0’* (similar rloc/Dc) are measured at substantially larger ϕc for 

weakly shape anisotropic particles (L/D=1.3) compared to spherical particles.
39

 These 

phenomena are associated with the more efficient packing of the anisotropic particles as 

the dumbbell shaped particles can be viewed as two fused spheres. As has been shown 

theoretically and experimentally for hard particles
37

 and weakly attractive particles.
40

 We 

conclude that the differences seen in the moduli for these two different systems with 

similar weakly attractive interactions at R=1 can be attributed to increases in maximum 

packing fraction due to the  minor increase in shape anisotropy in the LDB system.  

As shown theoretically for hard sphere binary mixtures and observed in weakly 

attractive binary mixtures adding a small volume of SSP into LSP enhances the packing 

efficiency and correlated relaxations. This is evidenced in the larger value of ϕc required 

to achieve the same dimensionless modulus at R=0.71 and R=0.85.
2, 5

 This enhanced 

relaxation has not been observed by adding a small amount of SSP into LDB as shown 
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from the iso-elasticity lines. We would expect, for example that if small spheres raise the 

dynamic arrest volume fractions in the same way for the LDB suspensions as for LSP 

systems, the line of constant elasticity would have negative slopes near R=1 and pass 

through a maximum above those of the SSP/LSP systems in the region of R=0.71 and 

R=0.85. Rather than increasing ϕx and thus increase rloc, addition of small spheres to large 

dumbbells decreases fm and rloc.  

Zhang and Schweizer recently generalized the nMCT and nonlinear Langevin 

equation theories of coupled rotational-translational dynamics of dumbbell shaped 

particles to predict linear elasticity and yielding behaviors in dense suspensions.
20

 They 

predict for weakly shape anisotropic particles (L/D=1.15 and 1.3) that linear elasticity is a 

function of both rloc and θloc, where θloc is the localization angle and changes from infinity 

to a finite value through a plastic glass-double glass transition when increasing ϕc. Based 

on this observation we suggest that the deceased value of ϕc to reach a particular 

elasticity in the SSP/LDB system results from a complicated localization mechanism with 

the cooperative relaxation of SSP and LDB due to shape anisotropy when SSP are added 

to suspensions of LDB. From SEM pictures in Figure 5.1, LDB particles clearly possess 

girdles in the middle, which can produce a source of cooperative localization in the 

suspensions. We expect the existence of this girdle to further alter the relaxation 

properties of mixtures of dumbbells and spheres that can be taped in the girdles. 

To further investigate this shape anisotropy effect in the rheology of dense suspension 

for binary mixtures, we will study the nonlinear rheology and yielding behaviors below.  
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5.3.3 Yielding Behaviors and Nonlinear Rheology 

In Figure 5.4, we have shown the method of determining the yield stress τx* which is 

determined as the point where G’*=G”*=Gx* in the dynamic stress sweep experiment. At 

lower shear stresses τ*<τx*, G’*>G”* with the suspension responding in a more elastic 

manner than as a viscous liquid, while for τ*>τx*, G’*<G”* where the suspension 

response is dominated by loss. At the yielding point, we also define the yield strain γx as 

the strain at τx*. In Figure 5.7, γx, τx* and Gx* are plotted as functions of ϕc for SSP/LSP 

and SSP/LDB. Again we see similar behaviors between SSP/LSP and SSP/LDB for R=0, 

R=0.29 and R=0.5, with differences observed for R=0.71, R=0.85 and R=1. 

For γx, other than R=0 where a maximum is observed similarly as reportedly 

previously for hard sphere systems,
33, 41, 42

 and R=0.85 for SSP/LDB where γx is 

independent of c, other systems show that γx is an exponential function of ϕc, with the 

magnitude of γx larger for single-component systems than binary mixtures. Indeed the 

mixtures have yield strains that are much smaller than for homogeneous suspensions. We 

note that under the framework of nMCT, the yield strain is the ratio of stress and 

modulus, where the stress is determined by the barrier height of the dynamic potential 

and the modulus is determined by the curvature of the dynamic potential at the minimum. 

Therefore, we would expect a significant change in the volume fraction dependence of γx 

when small changes are made to the barrier-controlled yielding. We note significant 

changes to the yield strains when adding small spheres to large spheres compared to 

adding small spheres to large dumbbells as seen in comparing the volume fraction 

dependence of yield strains at R=0.85.  
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τx* and Gx* are both exponential functions of ϕc for various systems. τx* data can be 

differentiated easily for different R in the SSP/LSP system.  However, τx* data cannot be 

differentiated for different R in the SSP/LDB system where we see very similar 

magnitudes for R=0.71, R=0.85 and R=1. We again conclude that introducing SSP into 

LDB does not change suspension flow properties through the mechanism of increasing 

the maximum packing fraction as expected if these systems behave in a manner similar to 

the SSP/LSP systems. The Gx* data are very similar to G0’* data regarding the difference 

between single-component systems and binary mixtures and the difference between 

SSP/LSP and SSP/LDB, however we note here that the data are superimposed well for 

binary mixtures for both systems which is different from G0’*. 

How can we understand the complicated cooperative localization produced by weak 

shape anisotropy in these weakly attractive systems? As substantial difference introduced 

by shape anisotropy is only observed for R=0.71, R=0.85 and R=1, we compare SSP/LSP 

and SSP/LDB by focusing on the nonlinear rheology for these three R values.   

In Figure 5.8(A)-(F), the results of dynamic stress sweeps are plotted in the panel of 

G’*/G0’*-τ*/G0’* and G”*/G0”*-τ*/G0’* (insets) for representative volume fractions. For 

the two different single-component systems (R=1), double yielding has been observed for 

both systems at all the volume fractions studied here as characterized by two shoulders in 

G’*/G0’* and two maxima in G”*/G0”* with increasing τ*/G0’*. For LSP suspensions as 

shown in Figure 5.8(E), the first yielding step is located in the region τ*/G0’*~10
-3

-10
-2

, 

with this location weakly influenced by ϕc, and the second yielding is located in the 

region τ*/G0’*~5×10
-2

-5, moving to larger values of τ*/G0’* with decreasing ϕc. In 

addition, we note that the peak in G”*/G0”* of the first yielding event is larger than in 
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the second yielding event as shown in the inset plot of Figure 5.8(E). We attribute this to 

a stronger first constraint in the yielding process. For LDB suspensions as shown in 

Figure 5.8(F), the location of the first yielding step is τ*/G0’*~5×10
-3

-5×10
-2 

and the 

location of the second yielding is τ*/G0’*~5×10
-1

-5, both moving to higher values of 

τ*/G0’* with decreasing ϕc. Significantly different from LSP suspensions, LDB 

suspensions display a “stronger” second yielding than first yielding which is reflected in 

the small first peak (G”*/G0”*~1) and substantial second peak (G”*/G0”*>1) in the 

G”*/G0”*-τ*/G0’* plot. In addition, in the main panel of Figure 5.8(F) is evidence of 

weak shear thickening in the second yielding step as G’*/G0’* is increased with τ*/G0’*. 

All these phenomena convince us that the LDB particles encounter a much stronger 

second constraint to yielding than the LSP suspensions. To understand the difference 

between the yielding mechanism of LSP and LDB, we explore the source of the double 

yielding phenomenon displayed by both large particles. 

The estimates shown in Figure 5.2, suggest that there is a weak attraction introduced 

between large particles due to van der Waals interactions, with a minimum in the 

interaction energy ~-2kBT. Following other studies,
22, 43

 we treat the first yielding in LSP 

as a consequence of overcoming the inter-particle bonding produced by this weak 

attraction, and the second yielding in LSP suspensions as an indication of particle 

escaping from the cage formed by nearest neighbors. The second yielding in the 

suspension becomes less obvious when decreasing ϕc, which is shown for the sample 

with ϕc~0.600. Similar double yielding events have been reported for weakly attractive 

systems of spheres.
22, 43

 For LDB suspensions, particles escape from the attractive 

potential well in the first yielding step, and overcome the combined rotational and 
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translational constrains in the second yielding step.
25

 For these systems we conclude that 

the second yielding event requires larger stresses and involves a greater loss of energy as 

measured by the value of G0”*. This double yielding due to bonds breaking and coupled 

translational-rotational dynamics for dumbbell shaped particles have also been reported 

for homogenous suspensions of weakly anisotropic particles.
25

 

Double yielding behavior is greatly weakened in the mixtures even when the large 

particle volume fraction ratio is as high as 0.85. For SSP/LSP mixtures at R=0.85, double 

yielding is still observed at high ϕc (ϕc >0.671) as shown in the main panel of Figure 

5.8(C) with two shoulders observed in the G’*/G0’*-τ*/G0’* plot. This phenomenon is 

still weakened as shown in the inset of Figure 5.8(C) where only the sample with ϕc 

=0.729 displays two shoulders in the G”*/G0”*-τ*/G0’* plot, but no maxima are seen in 

G’*/G0”* (G”*/G0”*<1 throughout the whole stress range). We attribute the loss of 

double yielding to the destruction of the attractive glass formed by LSP when adding 

SSP, as reported in theoretical prediction that addition of hard spheres in the suspension 

of sticky spheres will suppress the re-entrant behavior.
44

 For R=0.85 in the mixtures with 

size ratio used here (δ~3), the large particle number density fraction is only 0.17. 

However, for this value of R, when ϕc≥0.684, the volume fraction of large spheres lies in 

the glassy region (ϕl≥0.581). Thus the presence of small spheres is not sufficient to 

disrupt the attractive large sphere glass and double yielding is observed. However, no 

double yielding observed for R=0.71 for all the volume fractions studied here ((ϕc≤0.665, 

ϕl≤0.472), with the yielding only controlled by center of mass relaxation. Thus for all the 

volume fractions studied at R=0.71, the large particles are unable to form an attractive 

glass. 
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LDB’s are arrested at much lower volume fractions than suspensions of spheres. This 

can be understood as increased constraints to relaxation arising from changes to packing 

introduced by the geometry of large particles. The attractive glasses formed by LDB are 

disrupted at all the volume fractions (ϕc≤0.679, ϕl≤0.577) studied here even for R=0.85. 

For R=0.71, single yielding is still observed for SSP/LDB, suggesting that the small 

particles drive the larger particles into a glass at lower volume fraction but eliminate a 

mechanism for constraints release in a decoupled manner.  

5.3.4 Shear-Thickening  

Continuous shear has been applied to a different set of samples (with different ϕc 

range) in order to study the shear thickening phenomenon for SSP/LSP and SSP/LDB 

mixtures. In Figure 5.9, relative viscosity ηr is plotted as a function of dimensionless 

shear stress τ* at elevated ϕc for different sets of samples, where wr  / with viscosity 

of water ηw=9.1×10
-4

Pa·s and TkD B/* 3 .  

At low ϕc, only shear thinning is detected with ηr decreasing to an apparent high shear 

stress plateau with increasing τ*. We note here that zero-shear viscosity plateau was not 

observed due to long relaxation time making the zero-shear viscosity plateau out of the 

measurement range. For higher ϕc, shear thinning is interrupted at a certain shear stress 

τc*, with discontinuous shear thickening occurring when τ*>τc*. This discontinuous 

thickening suggests that jamming occurs when applied shear rate is relatively large 

compared to the rate of particle diffusion. Increasing R in either SSP/LSP or SSP/LDB 

mixtures results in stronger shear thickening at the same total volume fraction. In 

addition, introducing small particles increases the volume fraction above which shear 

thickening is observed. We define ϕt as this transition point below which no shear-
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thickening is observed and calculate this as the average of the two volume fractions 

bracketing the first observation of shear-thickening. Values are tabulated in Table 5.2.  

ϕt is increased with R decreased for both SSP/LSP and SSP/LDB, suggesting increased 

jamming volume fractions. The onset of shear thickening is expected to be purely 

hydrodynamic and as such is expected to track increases in ϕm. For R=1, ϕt for LDB is 

larger than for LSP indicating increased maximum packing fraction for the dumbbells 

with L/D~1.3. In mixtures for R=0.71 and R=0.85, SSP/LDB have smaller ϕt than 

SSP/LSP, indicating that SSP/LSP mixtures have more efficient packing than SSP/LDB.  

5.4 Conclusion 

In this study, we explore the effects of shape anisotropy on dynamics of binary 

colloidal mixtures by studying linear rheology and yielding behavior of binary mixtures 

which are composed of small spherical particles (SSP) and large particles with shape 

varied. Two large particles are explored. One set of samples are spheres (LSP) while the 

second set of particle are weakly anisotropic particles with a length to diameter ratio of 

~1.3 (LDB). Pair potentials are tuned by truncating the van der Waals attraction through 

coating the particles with a nonionic surfactant C12E6 and tuning the ionic strength to 

[I]=0.01M. Under these conditions, the large particles have weakly attractive interactions 

with a minimum ~-2kBT in the potential energy while the interactions between small 

particles or unlike species are essentially those with excluded volume. Six different large 

particle volume fraction ratio, R, are studied for both types of mixtures. We find that the 

effects of shape anisotropy are observed only for R=0.71, R=0.85 and R=1. 

Iso-elasticity curves generated from linear elastic moduli are plotted to compare the 

volume fractions at equal dimensionless elastic modulus. When R=1, at a fixed elastic 
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modulus, the volume fractions of the SSP/LDB occur at a higher ϕc than SSP/LSP. 

However, for R=0.71 and R=0.85, SSP/LDB reach the probe modulus at smaller ϕc than 

SSP/LSP. This phenomenon is explained as a consequence of small spheres hindering 

rotational relaxations of LDB. This phenomenon is absent when SSP is added into 

suspensions of LSP. 

The yielding behaviors confirms our argument about rotational constrain of shape 

anisotropic particles, with enhanced second yielding observed in attractive glass formed 

by LDB than that in the attractive glass formed by LSP. Upon adding SSP (R=0.71 and 

R=0.85), these attractive glasses are destroyed more quickly for SSP/LDB than SSP/LSP 

which can be viewed as a consequence of the spheres changing rotational constrain. 

When studying the discontinuous shear thickening behavior, for R=1, LDB has larger 

transition volume fraction for thickening than LSP, indicating larger maximum packing 

fractions of dumbbells over spheres. However, in mixtures with R=0.71 and R=0.85, the 

suspensions containing dumbbells have smaller ϕt than the suspensions containing 

spheres. This indicates that the mixtures of spheres have a larger maximum packing 

fraction than do mixtures of small spheres and large dumbbells.   
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5.5 Tables and Figures  

 

Figure 5.1 SEM pictures of (A) SSP, (B) LSP and (C) LDB. The scale bar has the length 

~500nm in (A) and ~1μm in (B,C). The important size parameters are labelled in the 

pictures.  

 

Table 5.1 Summary of volume average diameter <D> 

R 0 0.29 0.5 0.71 0.85 1 

SSP/LSP <D>/nm 330 369 412 488 592 1097 

SSP/LDB <D>/nm 330 368 411 486 586 1026 

 

   

Ds 
Dl Ll 

Dl 

(A) (B) (C) 
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Figure 5.2 Interaction energy between SSP and SSP (solid curve), LSP and LSP 

(dashed curve), LSP and SSP (dash-dot curve), shaded area dotes steric interaction 

induced by non-ionic surfactant. 
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Figure 5.3 (continued on next page) 
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Figure 5.3 Elastic modulus G’ (A, C) and viscous modulus G”(B, D) as a function of 

frequency f at different volume fractions for R=0 (A, B) and R=1(C, D) in SSP/LSP 

systems. 
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Figure 5.4 Dynamic stress sweep for SSP at ϕc=0.582 in the dimensionless parameter 

panel. The arrows illustrate the methods of determining linear elastic modulus G0’*, 

linear viscous modulus G0”* and yield stress τx*. 
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Figure 5.5 G0’* plotted as a function of ϕc based on different large particle volume 

fraction ratio R for both binary systems (A) SSP/LSP and (B) SSP/LDB. 
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Figure 5.6 Iso-elasticity lines for SSP/LSP (red) and SSP/LDB (blue) based on three 

different G0’* values. 
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Figure 5.7 (continued on next page) 
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Figure 5.7 (continued on next page) 
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Figure 5.7 γx (A, B), τx* (C, D) and Gx* (E, F) are plotted as functions of ϕc for SSP/LSP 

(A, C, E) and SSP/LDB (B, D, F). 
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Figure 5.8 (continued on next page) 
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Figure 5.8 (continued on next page) 
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Figure 5.8 Dynamic stress sweeps at four representative volume fractions for SSP/LSP 

(A, C, E) and SSP/LDB (B, D, F) at R=0.71(A, B), R=0.85 (C, D) and R=1 (E, F). The 

main panels show G’*/G0’* as a function of τ*/G0’* and the insets show G”*/G0”* as a 

function of τ*/G0’*. 
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Figure 5.9 (continued on next page) 
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Figure 5.9 (continued on next page) 
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Figure 5.9 Relative viscosity plotted as a function of dimensionless shear stress at five 

representative volume fractions for SSP/LSP(A, C, E) and SSP/LDB(B, D, F) at 

R=0.71(A, B), R=0.85(C, D) and R=1(E, F). The dashed lines in different panels have a 

slope ~1.  
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Table 5.2 ϕt at different R for SSP/LSP and SSP/LDB 

 

R 0.71 0.85 1 

SSP/LSP ϕt 0.706 0.689 0.600 

SSP/LDB ϕt 0.675 0.645 0.608 
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Chapter 6. Dynamic Localization and Shear Induced-Hopping of Particles: a 

Way to Understand the Rheology of Dense Colloidal Dispersions 

6.1 Introduction 

There are many strategies to tune the mechanics and state behaviors of dense 

colloidal dispersions including varying the particle softness,
1
 shape,

2
 strength of particle 

interactions
3
 and varying particle size distribution.

4
 Despite these many variables, the 

flow properties of the resulting suspensions often show similarities. These include liquid-

like behavior at low volume fractions and the development of dynamic yield stresses at 

high volume fractions. In detail, these suspensions show storage moduli, G’, that are 

lower than loss moduli, G” at low volume fractions while G’>G” at high volume 

fractions. Often when the suspensions take on solid like behavior (G’>G”), loss moduli 

show a characteristic separation of time scales indicating that self diffusion occurs rapidly 

for small distances but becomes sluggish for long diffusion distances. The transition 

volume fraction characterizing a transition from liquid-like behavior to solid-like 

behavior can be tuned with particle variables from very low (<0.01) to values in excess of 

0.58.
5
 Developing an understanding of the physical processes that underlie the 

commonality of suspension flow behavior remains a challenge. 

The ability to drive Brownian particles to aggregate has historically been a subject of 

intense study leading theory of colloidal stability in the years preceding and after the 

development of Derjaguin, Landau, Verwey and Overbeek (DLVO) theory.
6
 This theory 

balances van der Waals attractions with electrostatic repulsions and predicts the ionic 

strength where attractions overwhelm repulsions and make particles rapidly aggregate. 

Under conditions where particles aggregate, suspensions develop elastic plateaus and 

shear thinning properties and other characteristic of gels. These observations led to the 
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development of heuristic models for characterizing shear properties of a suspension with 

a Bingham constitutive equation where stress, τ,  is related to shear rate,  , through  

 
PLB   where the high shear rate behavior is viscous characterized by a viscosity 

PL , and the suspensions show a Bingham yield stress B in the limit as   goes to zero. 

The Bingham yield stress is characterized by the stress required to overcome the 

maximum restore force in pair potential and rupture the bonds which hold aggregates 

together. In the elastic floc model developed originally by Hunter an colleagues
7, 8

B  is 

linked to the volume fraction and pair potential based on the DLVO theory through:
9, 10
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Here ϕc is the volume fraction, K(ϕc) is the mean coordination number determined by 

volume fraction, Dc is the particle diameter. A is the Hamaker constant, H is the particle 

surface separation, ε is relative dielectric constant, ε0 is the dielectric constant for 

vacuum, κ is the Debye parameter and ζ is the surface potential of particle. Of 

significance this theory describes yielding in term of a structural parameter K(ϕc) that 

links the yield stress to suspension microstructure and particle properties of Hamaker 

coefficient, the distance of closest approach, particle surface potential, and through the 

Debye parameter, the suspending fluid ionic strength. Experimental tests of Equation 

(6.1) show remarkable success when normalized by the maximum value of the yield 

stress with the zeta-potential varied systematically by changing pH for amphoteric 

mineral particles.
9
 As originally developed, this theory also relates the elastic modulus of 

the suspension of the second derivative of the pair potential when the particles are held at 

a distance H. 
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While successful for aqueous mineral suspensions, this approach fails to capture the 

absolute magnitude of the yield stress and its volume fraction dependence and holds little 

useful information for systems where the suspensions experience non DLVO pair 

potentials. Numerous studies have been done to relate volume fractions dependencies of 

yield stress and elastic modulus to microstructure. In particular, following the observation 

that aggregated suspensions take on fractal microstructures and the fractal dimension of 

the suspension varies depending on the mechanism of aggregation, numerous models 

were developed linking volume fraction dependence to the fractal dimension of the 

suspension.
11-13

 These approaches link mechanics to mesoscopic structures relating 

elasticity to bending elasticities of aggregates. The elemental spring unit remains that of a 

pair but the volume fraction dependency of the modulus changes with the number of pairs 

per unit volume which is altered by the way particles are arranged in flocs and in the 

suspension. Again these models have limited success but fail to capture the point where 

suspensions take on solid-like properties and fail as the volume fraction at the gel point 

approaches close packing- i.e., when the suspensions experience largely excluded volume 

interactions.   

A separate approach to understanding gelled suspension mehcanics approaches 

gelation from the perspective of equilibrium dynamics where particles are assumed to be 

trapped in a pair potential well and the time constant for rearrangement of nearest 

neighbors is governed by diffusion out of the potential energy landscape in which the 

particles are trapped.
14

 If a suspension is driven by a stress to deform in a steady state 

manner, these models predict that the potential energy barrier is lowered as described by 

Eyring for the viscosity of liquids.
15

 In this model, the pair potentials set the potential 
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energy landscape and establish barriers over which particles must diffuse to for the 

suspension to undergo steady deformation. The viscosity is related to properties as thopG’ 

where G’ is typically taken as the elastic modulus at rest and thop is the time required for 

particles to diffuse our of a potential energy minimum. The hopping time is related to a 

barrier height which in turn is modified by an external stress.  As stress is increased, the 

diffusion barrier and hopping time is decreased resulting in shear thinning behavior. If the 

barrier height for diffusion is not sensitive to the applied stress, the stress becomes 

independent of shear rate, giving rise to a dynamic yield stress plateau. At a sufficiently 

large stress, the viscous dissipation of the liquid destroys the structure and the suspension 

develops a high shear rate Newtonian viscosity. 

In this approach, there is thus a low shear rate viscosity governed by the rate of self 

diffusion over the potential energy barrier that exists at rest. Shear thinning occurs when 

the stress drives the suspension at a rate faster than it can hop ( )0(1 hopt ~1, where thop(0) 

is determined by the barrier height at zero shear rate) a plateau stress, τy, and finally a 

second characteristic shear rate where τy~  2
  where η∞ is the high shear rate plateau 

viscosity. If the applied stress lowers the potential barrier, the stress increases 

proportionally to p . Here the shear-thinning exponent, p, characterizes the ability of the 

applied stress to alter hopping rate of particles which are trapped in the pair potential 

wells. The deeper the potential well is, the closer p is to zero. This model establishes that

)/exp()(~ min TkUKt Bchop  , where K(ϕc) is related to the number of nearest neighbors 

and saturates at high volume fraction and Umin is the minimum value of the pair potential. 

When applied to electro-rheological fluids where particles experience dipolar attractions, 

the concepts of this model were shown to largely capture the electric field dependence of 
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the flow properties of Brownian electrorheological suspensions.
16

 This model is 

important because it provides a natural link from the characteristics of Brownian hard 

sphere suspensions that set the viscosity of the suspension at high shear rates or low 

strength of attraction to a yield stress through increases in the absolute value of Umin. Of 

interest is the work of Baxter-Drayton and Brady, K(ϕc) is linked to the value of the pair 

distribution function which is seen to be a saturating but monotonically increasing 

function of the strength of attraction for particles experiencing highly anisotropic 

interactions.
14

 

These approaches then link elasticity, yield stress and characteristic shear rates to pair 

potential, continuous phase viscosity, volume fraction, and particle diffusivity.  The 

Bingham model is applicable for strongly interacting particles (high volume fraction and 

or large strengths of attraction) under conditions where )0(1 hopt >1. In applying these 

approaches, there has been an unambiguous link established between the strength of 

inter-particle attractions and the magnitude of the yield stress and gel elasticity. The 

models often fail at high volume fraction or low strength of attractions and are not 

designed to predict the onset of gel-like flow properties.  In particular the models fail to 

capture the onset of solid-like flow characteristics in suspensions of hard spheres where 

particles experience only volume exclusion interactions and yet display flow properties 

very similar to gels of Brownian particle produced with attractions. When attractive 

interactions are thought to be required for elasticity and yielding, hard spheres represent a 

pathological end point. Nevertheless, by associating mechanical properties of gels with 

the Brownian nature of the particles, the models establish that, given enough time 

systems can approach equilibrium. Thus for large absolute values of Umin, 1  may not be 
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measurable and p will approach 0. However, elasticity and shear thinning are associated 

with particles being localized by deformation with diffusion over localization barriers.    

The mechanical properties of hard sphere systems have been investigated for many 

years with particular attention to behavior at the approach to random close packing and 

the origin of a glass transition in molecular systems. Molecular glasses are distinguished 

from colloidal glasses because they are typically formed by lowering temperature which 

simultaneously extracts thermal energy out of the system and thus lowers hopping rates 

and typically increases the systems density of volume fraction.  In colloidal systems, 

altering the pair potential independent of the number density of particles in the 

suspension is routinely achieved. Only relatively recently has the understanding of 

colloidal systems been used to explore glass formation in molecular systems.  

Nevertheless, one of the first theories of the divergence of the molecular liquid viscosity 

on approach to a glass transition was that involving loss of free volume resulting in the 

increase in the viscosity to be written: 
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where C and γ are constants, and ϕm is maximum volume fraction. This concept has 

been applied to explain the hard sphere rheology in experiments.
17, 18

 The free volume 

model suggests that the divergence of zero shear rate viscosity is associated with 

approaching maximum packing fraction for hard sphere suspension. However, it was not 

constructed to describe the shear-thinning behavior above glass transition volume fraction 

and does not capture the effects of the attractions.  

More recent theoretical progress has been made by looking at force correlations 

between particles and recognizing the system dynamics is modified at high volume 
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fraction by correlated forces.  These ideas are central to the development of idealized
19

 

and naive mode coupling theories
20

 and have been extended to descriptions of flow in the 

development of dynamic localization theory (DLT) which rewrites force correlations that 

control particle diffusion in terms of a dynamical potential barrier that particles must 

cross to experience long range diffusion.
21

 DLT is based on equilibrium descriptions of 

suspension microstructure arguing that the suspension remains at equilibrium 

approaching random close packing. The relaxation times required for a disturbed system 

to achieve equilibrium after being disturbed become longer as volume fraction is raised 

and diverge at random close packing. Nevertheless, the theory is based on suspensions 

always remaining at equilibrium up to the point where long range diffusion ceases due to 

geometric constraints imposed by hard core particles.  This condition is set as the volume 

fraction where the pair distribution at contact diverges. 

The power of this theory comes in its predictions of the onset the rapid rise in zero-

shear viscosity at elevated volume fraction, the absolute viscosity as a function of volume 

fraction, the long range diffusion time and the dependence of the modulus on volume 

fraction for experimental hard sphere suspensions.
22

 The theory predicts that the glass 

transition depends of the deformation time scale used to probe the system and that when 

attractions are turned on between hard particles in a state above ϕx, initially diffusivity 

increases and viscosity decreases while at stronger attractions the systems become re-

localized and form gels. This re-entrant behavior is observed experimentally.
23, 24

 Of 

critical interest here is that DLT predicts the onset of a shear stress plateau where stress 

depends in a power law manner of shear rate with exponent p, where p moves towards 

zero as volume fraction or strength of attraction are raised.   



209 
 

Predictions of transport properties in dynamic localization theory are based on 

equilibrium pair distribution functions (or the corresponding structure factors) and are 

thus calculable from the knowledge of particle volume fraction and pair potential. A key 

feature of DLT is the prediction of a localization length, Lr , which describes the extent of 

motion of a particle due to self diffusion when time scales is shorter than thop. The 

prediction of Lr  is based on force correlations. At all volume fractions below the cross-

over volume fraction, particles are free to diffuse throughout the volume of the 

suspension. Above critical volume fractions, force correlations alter the dynamics of 

particle diffusion such that there is a separation of time scales.  At short times particles 

become localized and diffuse within a distance Lr  at a rate that is much larger than the 

rate of diffusion over distances larger than the particle size. By rewriting these fluctuating 

forces in terms of a dynamical potential, F(r), an intuitive picture emerges where 

particles become localized within a dynamical potential well where they diffuse freely 

but long-range diffusion requires activated transport over a dynamical potential barrier. 

The barrier height is termed FB and this barrier appears at ϕx and diverges at ϕm, the 

maximum volume fraction for the suspension. A self-consistent set of equations can be 

written allowing calculation of Lr , ϕx, F(r), and transport properties in terms of the 

suspensions equilibrium structure factor. Being based on pair correlations, the dynamical 

localization theory contains no information about the fractal dimension of aggregated 

systems. The integrals over structure factor which determine Lr  and FB are heavily 

weighted to large wave vector or, in real space, to small pair separations suggesting that 

transport properties of glasses and gels can be understood without resorting to fractal 

descriptions of aggregate and suspension structures.  
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In summary, DLT provides a consistent picture of suspension dynamics capturing the 

role of hard cores, longer range pair potentials, and volume fraction on the dynamics of 

suspensions. There are many emerging studies testing these ideas using well defined 

suspensions of spheres with well understood pair potentials. Here we are interested in 

exploring the ability of this theory to provide a framework for understanding the flow 

properties of more complicated compositions where the pair potential is not well 

understood and the particle size distribution is not monodisperse. In developing an 

understanding of DLT to predict the properties of complicated suspensions, we note that 

this theory defines critical volume fractions of ϕx, and ϕm and a critical stress τabs which is 

the stress required to eliminate the dynamical potential barrier allowing free diffusion. 

DLT relates properties to the localization length which is directly measurable with the 

plateau elastic modulus: 

23'











L

c

c

B

cp

r

D
A

Tk

DG
         (6.3) 

where A is an order 1 constant. Our goal is to take this understanding and develop 

methods for characterizing the flow properties of dense suspensions experiencing 

excluded volume and attractive interactions where we argue that from flow properties far 

from the zero shear rate limit we can extract ϕx, and the zero shear rate viscosity. 

Experimentally we work with a system containing silica particles dispersed in low 

molecular weight polyethylene glycol melts where particle interactions are poorly 

understood. As a result, we seek methods of gaining understanding of flow properties and 

pair interactions from generalization of DLT.  Specifically, we search the origin of shear 

stress plateau and use the magnitude of absolute yield stress and shear elasticity to predict 

the entropic barrier height, FB. By studying the volume fraction dependence of barrier 
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height in different systems with varying pair interactions and size disparity conditions, 

we build relations between FB and rheological properties including but not limited to the 

absolute yield stress. We also demonstrate the effects of FB and thop on yielding 

investigated in oscillatory stress sweep experiments. We compare our results with other 

experimental systems to prove the wide applicability of the method. 

In Section 6.2, we introduce the experimental method of sample preparation and 

rheology measurement. In Section 6.3, we introduce the basic information of DLT with 

our strategy in data analysis. In section 6.4, we present and discuss the main results, 

which are compared with theoretical predictions and other experimental systems. In 

section 6.5, we draw conclusions. 

6.2 Experimental Methods  

6.2.1 Sample Preparation 

Monodispersed silica particles are synthesized by method that is developed by 

Stӧber
25

 and extended by Bogush et al.
26

 Two different sizes are prepared with 

dl=612±20nm (referred to as large particles) and ds=127±7nm (referred to as small 

particles) with which binary mixtures will be made. The product particles are suspended 

in ethanol solution containing water and ammonia hydroxide. The resulting suspension is 

concentrated to a mass fraction ~0.20 by heating up the suspension to evaporate the 

solvent and drive off the ammonia. Following previous studies,
27

 we chose to work with 

polyethylene glycol with MW~400 (PEG400, Sigma-Aldrich) at T=25°C and 

polyethylene glycol with MW~2000 (PEG2000, Sigma-Aldrich) at T=75°C as the 

polymer melts. Both polymer are Newtonian fluid at the condition where we study with 

viscosity of 0.10 Pa·s. The two concentrated silica particle suspensions with a fixed mass 
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fraction ratio are mixed with PEG (with eventual large particle volume fraction ratio R=0, 

0.29, 0.5 for PEG400 and R=0, 0.29, 0.5, 0.71 for PEG2000 which guarantee observation 

of shear stress plateau and high-shear viscosity) and the resulting suspension is placed 

into vacuum oven with temperature kept above Tm of PEG to remove ethanol.
27

 

6.2.2 Rheology  

Flow measurements were carried out on a C-VOR Bolin rheometer with a cone and 

plate geometry. The cone diameter was 20mm with a 4° angle.  

Continuous stresses are applied to study the viscosity as a function of applied shear 

stress. Oscillatory stresses are applied to measure elastic modulus G’ and viscous 

modulus G” as functions of frequency ω in the frequency sweep experiments. In this 

work, the maximum strain was held at γ≤0.01 to ensure that only linear properties are 

reported. The samples are well behaved showing no thixotropy and the properties 

reported are independent of shear-history. 

Volume average diameter <D> is used for obtaining dimensionless parameters as 

introduced in previous study. 
28

 Also according to previous study, here we note that silica 

particles are essentially hard spheres in PEG400 and attractive in PEG2000 with the 

interaction energy captured by square well potential which has well depth ~2kBT and well 

width ~6Rg.
29

  

6.3 Dynamic Barriers and Activated Hopping 

In DLT, the nonlinear response of colloidal dispersion is a consequence of changes to 

single-particle dynamics when a suspension is exposed to an external constant 

deformation force f. Therefore the non-equilibrium dynamic  energy is modified as 

following:
21, 30
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frrFrF  )0;()(          (6.4) 

Here the microscopic force on a single tagged particle f is transferred from the 

macroscopic shear stress τ as  
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When τ=0, the non-equilibrium energy F(r; τ=0) is composed of two parts as 

IFFrF  0)(          (6.6) 

The first term F0 favors the fluidity and the second term FI denotes the contribution of 

particle interactions. When the particles are localized, at small displacement r, the 

approximations can be made: 

rrF /3/0  ,  rrFI  /        (6.7) 

From this three characteristic lengths are expected in the effective energy as a function 

of displacement: Lr <R*< Br . At Lr , a local minimum  develops in F(r) and a maximum is 

developed at Br .  As a result, 0
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The barrier height FB is defined as the energy required for particles hopping out of the 

dynamic energy local minimum such that )()( LBB rFrFF  . Assuming r/Dc<<1, we 

make the assumption here that 
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When applying an external shear stress, the F(r) changes according to Equation (6.4) 

with the R* unchanged and Lr and Br moving towards R*. With increasing stress )( BrF
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becomes smaller and )( LrF becomes larger such that the barrier which controls the rate of 

long distance diffusion decreases in magnitude. When an absolute yield stress τabs is 

achieved with f=fabs, both Lr and Br  merge into the inflection point and trapping barrier 

disappears, so 0
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Assuming that Lr <R*< Br <0.5Dc, the approximation in Equation (6.7) such that 

2*Rrr LB   demonstrating that R* is correlated with Lr in a consistent manner.  For hard 

spheres, cabsL DrR 18.0*  with 25.0abs for volume fractions substantially larger 

than ϕx (γabs=0 at ϕx and quickly increases to a value near 0.25 when increasing ϕc 

further).
30

 For systems experiencing short range attractions cL Dr / <<1 and γabs may be a 

function of pair potential. Estimates of the yield strain can be derived from measurements 

of the strain where G’=G” in strain sweep experiments. These strains are often seen to 

pass through a maximum and are measured in the range of 0.05-0.2 for both volume 

exclusion and attractive systems. As a result, we expect cL ADrR *  where A is a weak 

function of volume fraction and pair potential as predicted for hard spheres. It has been 

predicted in many systems where  particle shape and strength of pair attractions are 

varied that γabs=0 is a good approximation for ϕc>ϕx+0.04.
31

 Combining these 

assumptions with Equation (6.3), we can estimate the barrier height FB when τ=0 when 

obtaining macroscopic rheology Gp’* and τabs* as following 
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In ultra-local limit development for hard spheres, when no external shear stress is 

applied, the barrier height is strongly correlated to Lc rD /  as
32
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Here, Lr  is for the zero shear stress. Thus when the external shear stress is zero, we 

expect that FB is correlated with Gp’ when we combine Equation (6.11) with Equation 

(6.3) according to 

3/22/1 )/3()58.0/'*(/ cpBB GTkF          (6.12) 

Thus a correlation between τabs* and Gp’* is also derived as 
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The mean barrier hopping time for a single particle is correlated with the barrier 

height according to Kramer’s theory as
22
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Here, t0 is elementary Brownian diffusion time. K0 and KB are the absolute magnitudes 

of the harmonic curvatures of the minimum and barrier of F(r).
30

  

The analysis above summarizes conclusions drawn from DLT showing the effects of 

applied shear on the ability of particles to hop the dynamical energy barrier. At an applied 

stress of zero the hopping time is controlled by FB and the system has a zero shear rate 

viscosity determined from Green-Kubo approach that hopG  '0   . With increasing 
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stress, FB decreases, the hopping time is decreased and the viscosity is lower. At the 

absolute yield stress FB decreases to zero and the suspension viscosity is η∞.  

In this study, we work with colloidal mixtures where the pair interactions are varied 

and the ratio of large and small particle volume fractions are changed. Our goal is to test 

concepts developed for systems of uniform particles on suspensions with less well 

defined characteristics. We expect ϕx to remain sensitive to pair interactions as well as 

particle size distribution. We introduce the scaled volume fraction ϕ*=(ϕm-ϕx)/(ϕm-ϕc) to 

capture changes in flow properties as volume fraction is varied. This variable is designed 

to diverge as ϕc approaches ϕm and thus we expect transport properties to diverge as ϕ*
d
, 

where d depends of the rheological parameter investigated. For example, for spheres and 

weakly anisotropic particles, the plateau modulus Gp* diverges as ϕ*
4
 while for hard 

spheres FB diverges as ϕ*
2
, which is stronger than Doolittle or free volume model.

2, 32
 In 

addition we find that ϕm/ϕx is nearly constant for a variety of systems with volume 

exclusive interactions when the size distribution is varied.
28

 In previous studies we have 

developed method of determining ϕx and ϕm. ϕx is determined by determining p in the 

relationship of p   in the yield stress plateau region of suspensions. We find that p 

starts close to unity at low volume fraction and drops to close to zero at high volume 

fractions and that there is a universal curve when p is plotted as a function of  ϕc/ϕx where 

p has a value ~0.5 when ϕc/ϕx=1. Maximum packing fractions are determined as 

extrapolations to the point where high frequency viscosities ηr,∞’ diverge. We expect 

ηr,∞’~ϕ* and ϕm is chosen to achieve this result.  For the systems studied here, a summary 

of volume average diameter <D>, ϕm and ϕx is presented in the Table 6.1.  
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To understand the absolute yield stress, a continuous shear is applied on the colloidal 

dispersion to obtain flow curves (τ vs. ) with an example showing in the Figure 6.1. 

When increasing volume fraction to a sufficiently high value, a stress plateau is develop 

between two characteristic shear rates 1  and 2 .  Below 1 , a zero shear viscosity 

plateau is achieved thus    indicating applied shear rate is smaller than inverse of 

relaxation time. Above 2 , a high shear viscosity plateau is achieved thus    again 

indicating applied shear rate is larger than inverse of the characteristic time for Brownian 

diffusion. Between 1  and 2 ,  a stress plateau has a slope ~p with 
)(log

)(log

10

10





d

d
p   where 

0<p<1. In a finite shear rate window p is estimated as the value at the inflection point 

with 0
))((log

))((log
2

10

10

2






d

d
. Thus viscosity η is also a power law function of shear rate   

according to 1 p  . In this region, /1  is large enough to have particles respond to 

applied shear and smaller than the characteristic time for particle relaxation. We use the 

cross point of tangent lines of the shear plateau and high shear region τ2 as the surrogate 

of absolute yield stress τabs. Therefore we have the dimensionless absolute yield stress

TkD Babsabs /* 3 .  Based on Equation (6.14) and assuming that /1 is a good 

estimation of thop which is varied by shear stress and that 

75.1)/1(/))0((/ absBBBB TkFTkF   as predicted by Kobelev et al for hard sphere 

systems can be universally applied to other systems, it is easily to obtain for localized 

conditions that 1)/(888.1  TkFp BB  as an approximation for the inflection point. 

However, we note here that details of interaction and complexity of the suspensions will 

vary the dependence of shear stress of the barrier height with the resulting slope of shear 
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stress plateau and that it is difficult to define a development of shear stress plateau based 

on the view of DLT. Nevertheless, the decreasing tendency of shear-thinning exponent p 

with increasing FB/kBT is noticeable here which is different from the prediction in the 

original form of MCT.    

The plateau elastic modulus Gp’* is the defined as the value of G’* at the local 

minimum of G”* in the frequency sweep experiment, with the details introduced in 

previous study.
27

  

To explore links between the dynamic yield stress and the hopping time, we use the 

results of dynamic stress sweep experiment at a fixed frequency ω. An example of 

dynamic stress sweep experiment result is shown in Figure 6.2. We make the assumption 

that the dynamic yield, τx, is characterized by the stress required to drive the storage 

modulus to equal the loss modulus (G’=G”=Gx) when the suspension is driven at a 

frequency ωπf. This dynamic yield stress probes the ability of the particles to 

rearrange nearest neighbors in a time frame of an oscillation. As a result we suggest that 

at τx, we are probing the point where the deformation time is approximately the hopping 

time such that at τx, )/(*/1/ 2

00  DDtthop   with the diffusivity

mB DTkD   3/0  (ηm is the medium viscosity). Here we are arguing that for τ<<τx, 

FB remains sufficiently high that in a time scale of 1/ω, particles cannot diffuse over the 

dynamical barrier and exchange nearest neighbors. However, with increasing stress, the 

barrier is lowered and particles can diffuse over the barrier in a shorter time scale. For 

higher values of ω particles have less time to diffuse.  As a result we expect τx to increase 

with ω. 
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Below we will discuss our experimental results and compare these results with 

literature report and theoretical predictions. 

6.4 Results and Discussions 

6.4.1 Particle Localization and Development of Dynamic Stress Plateau  

As we discussed above, when increasing volume fraction in colloidal dispersions, a 

barrier will be developed in the effective energy when it is plotted as a function of 

particle displacement. This microscopic phenomenon is reflected as development of shear 

stress plateau when the suspensions are subjected to a steady shear. While the elastic floc 

model
7
 and hopping model of Braxter-Drayton and Brady

14
 estimate the magnitude of the 

yield stress plateau for attractive systems, the DLT predicts that flow curves will be 

similar at the same value of Lr  and Br  independent of the nature of the attraction between 

hard core particles.  In its original form, MCT predicts that, p>0 for all the liquid-like 

states decreasing with increasing ε ( xxc  /)(  ) to p=0 when ϕc=ϕx. Idealized mode 

coupling theory thus predicts that glasses will display a finite yield stress (i.e., there is no 

long range diffusion for volume fractions above the glass transition volume fraction.).
33

 

There is considerable evidence that zero shear rate viscosities and activated diffusion can 

be measured at volume fractions above the idealized mode coupling theory glass 

transition.
34-37

 As a result, we anticipate that p>0 even above glass-transition volume 

fraction. Accepting that activated transport can still occur after particles are localized by 

nearest neighbors, the schematic p-spin model theory predicts that the shear-thinning 

exponent p~1/3 for ideal glass transition and approaches 0 when deep in the glassy 

slates.
38

 Our experimental results and the prediction of DLT for hard sphere systems by 

Kobelev and coworkers
30

 are similar and close to this prediction, as shown in Figure 6.3 



220 
 

(A). In Figure 6.3(A) we also contain the data of Zhou and coworkers for weakly 

attractive metal oxide particle suspensions.
9
 We can see that from Figure 6.3(A) that 

volume fraction dependence of p for those single-component systems with weak 

interaction are very similar. 

There is no sophisticated description of the shear-thinning exponent p.  It is expected 

to start at a value close to unity for liquid like systems and decrease to a low value 

approaching zero deep into the glassy or gelled state. However, dynamic localization 

theory connects the shear-thinning exponent to distortion to the dynamic potential. The 

more easily the dynamic potential is flattened by the applied stresses, the closer p is to 

unity. If we assume the ability of the applied stress to distort the pair potential is a 

function of the magnitude of dynamic potential barrier, we would expect p to correlate 

with the onset of localization and as shown in Figure 6.3(B), we find universal behavior 

when p is plotted as a function of ϕc/ϕx. For the data reported by Zhou et al, ϕx=0.53 is 

used, and for the prediction by Kobelev et al, ϕx=0.51 is used to correlate the data. The 

data clearly show that there is a universal transition in flow behavior as the volume 

fraction passes through a characteristic volume fraction. We have chosen to define x as 

the cross-over volume fraction where particles become localized and that this occurs 

when p=0.5. In the following discussion about particle localization, we consider particles 

localized only if p is substantially smaller that 0.5 to ensure particle localization as 

reflected in the development of dynamic yield stress plateau. The remarkable collapse of 

data for all of these systems suggests that shear thinning depends only on how far the 

solids volume fraction is from the cross over volume fraction. Thus from a single flow 

curve where ϕc is known, one can predict x and the shear thinning exponent for all other 
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volume fractions. Thus when investigating the degree of shear thinning in a suspension, 

the information about pair potentials and particle size distributions is controlled by x.   

6.4.2 Barrier Height 

Following the methods introduced in section 6.3 we have extracted FB from the 

steady shear curves and the elasticity of the suspensions.  These value are shown in 

Figure 6.3 (A), with a comparison with the theoretical prediction based on the Percus-

Yevick hard sphere fluid structural input, which concludes that )2.12exp(30/ ccL Dr 

and 51.3/077.0 0  SFB (where 24

0 )21/()1( ccS   )).
30

 These results show that 

FB can be captured with the exponential fitting with )exp(/ cBB bATkF  for all the 

systems as shown in the inset of Figure 6.4(A). The slope b is nearly constant ~17 for all 

the experimental systems except for R=0 in PEG2000 in which b is smaller. For the 

samples resembling hard sphere single-component systems (R=0 in PEG400), the 

experimental results are smaller than theoretical predictions.  We can understand this as 

resulting from our using τ2 as a measure of abs which incorporate the influence of shear 

thickening in this stress region as volume fraction is increased. Due to these concerns, 

those systems with strong shear thickening behavior are not reported here (R=0.71 for 

PEG400 and R=1 for PEG400 and PEG2000). The exponential dependence does not 

capture divergence of elasticity and viscosity when approaching maximum packing 

fraction and the universal effects of entropic barrier on rheology when pair interactions 

are varied.  

The ultra-local approximation  establishes that the divergence of elasticity 

approaching maximum packing is an immediate consequence of the correlation

 1

LB rF .
32

 In Figure 6.3(B), FB/kBT is plotted as a function of  DrL / .  The 
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solid line is the prediction of the ultra-local theory for hard sphere Percus-Yevick 

structural input. We note that experimental curves converge to the theoretical values as 

Lr  decreases (c approaches m) but the data do not collapse for large values of Lr .   

We expect flow properties to correlate with FB for ϕx<ϕc<ϕm.  Figure 6.4(B) does not 

show the expected correlation. We argue that while hard cores dominate behavior as ϕc 

approaches ϕm, pair potentials are much more important as ϕc approaches ϕx. We find that 

a correlation between flow properties over the entire range of x<c<m, occurs if we 

characterize particle volume fraction with ϕ*=(ϕm-ϕx)/(ϕm-ϕc). This is shown in Figure 

6.4(C).  All the data collapse well at both extreme conditions: ϕ*1 and ϕ*∞ for hard 

sphere systems (PEG400). When initially entering the localization states, FB increases 

quickly from 0 and shows slower increase as the jamming condition is approached. We 

note here that there is increased scattering of data for the attractive systems (in PEG2000) 

at large ϕ* limit. We attribute this difference to the effect of attractions which will alter 

the contact value of the pair distribution function thus alter the correlation with hard 

sphere predictions.
28

 However, further development is necessary to build a better 

universal volume fraction scaling for FB when particle interactions are dominant (and 

x<< 0.3). 

DLT suggests that the entropic barrier, FB/kBT, for a single particle to overcome to 

achieve steady long time diffusion gives rise to macroscopic rheological properties of 

colloidal gels/glasses. To emphasize on this point, Gp’* and τabs* are plotted as a function 

of FB/kBT, as shown in Figure 6.5, with universal behavior clarified. 
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6.4.3 Zero-Shear Viscosity  

As we discussed above, the zero-shear viscosity plateau reflects the long-time 

relaxation behavior when the suspension is exposed to no external shear and 

approximately we assume the relaxation is equal to hopping time and thus to derive 

hopp tG '0           (6.15) 

According to Equation (6.12) and Equation (6.14), we anticipate a correlation 

between ηr,0 and FB(=0)/kBT.  In the limit of large barriers this can be written:  

BTkFTkFA BBBBr  )/exp()/( 2

0,       (6.16) 

Here the prefactor A is assumed to be a function of interaction and weakly influenced 

by concentration. And the constant B is a function of interaction and concentration, which 

reflects the value of zero shear viscosity at ϕx and is not as dominant as the first term 

when particles are deeply into the arrested state. When the suspension is exposed to a 

small external shear stress τ (τ<<τabs), the effective energy for particle hopping is not 

distorted in a large extent with FB/kBT is essentially kept high, we assume Equation (6.16) 

can also be applied to the viscosity in the shear thinning region where the prefactor is 

influenced by particle concentration and interaction and the constant term reflects all the 

effects other than the particle localization.  

For hard spheres, FB/kBT is predicted to decay in a universal manner with increasing 

τ/τabs which can be captured with   75.1)/1)(/)0,((/, absBcBBcB TkFTkF   .
30

 

With this approach, we can extract the information of correlation between ηr and FB/kBT 

in the shear thinning region, with an example shown in Figure 6.6 which plots ηr as a 

function of (FB/kBT)
2
exp(FB/kBT) for Dc=127nm silica particles dispersed in PEG400. In 

the inset of Figure 6.6, ηr is plotted as a function of FB/kBT. As shown in the large barrier 
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height region, the data increase according to a linear function of (FB/kBT)
2
exp(FB/kBT).    

Therefore we extract the information of zero shear viscosity according to the relevant 

fitting with FB=FB(τ=0). The results of ηr,0 is plotted as a function of 

(FB/kBT)
2
exp(FB/kBT) in Figure 6.7 (main panel) and as a function of FB/kBT in the inset. 

From Figure 6.7, the universal dependence of barrier height for zero shear viscosity is 

proved, as predicted by Equation (6.16). But we note that the constant term B reflects the 

important information of viscosity where the localization state is not achieved yet, which 

is varied by tuning interaction and size distribution and reaches minimum for single-

component hard sphere system (R=0 for silica particle dispersed into PEG400). When 

approaching the large value of FB, Equation (6.16) can capture the tendency well and 

uniformly. 

6.4.4  Dynamic Yield Stress and Barrier Hopping 

As discussed above, the application of an external shear stress will distort the 

dynamic potential energy curve, resulting in a decrease of the entropic barrier height and 

favoring delocalization of a particle. When τ=τabs, the barrier height completely 

disappears, with 0);(  absB rF   and the particle hopping time is reduced to zero: 

thop=0. When τ<τabs, 0);( rFB , and thop>0. When τ=0, the hopping time is correlated 

with α-relaxation time. Therefore, dynamic yield stress τy can be varied based on different 

desired hopping time through Equation (6.14). 

As a result, yielding, as defined as G’=G” in a stress sweep, will depend on the 

probing frequency.  With increased frequency, we anticipate larger yield stresses.   

In dynamic stress sweep experiment at a desired frequency f, yielding is expected 

when we match the experimental time scale to the hoping time scale: texp=thop. Here 
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texp=1/(2πf)=1/ω. As a result in a stress sweep experiment at yielding, we expect 

thop/t0=1/ω*. Experimentally we have investigated the yield stress at two frequencies 

f=0.1Hz (thop/t0=3.3) and f=1Hz (thop/t0=0.33) for single-component hard sphere 

suspensions(R=0 for PEG400). For this system t0=0.48s. The dynamic yield stress τx* 

again defined as the point where G’=G” =Gx, are plotted in Figure 6.8 where we also 

show the predictions of Kobelev et al
30

for  τabs* and τy* for three different hopping times. 

For the experimental systems we have used τ2* an estimate of τabs*. 

 From Figure 6.8, decreased dynamic stress is observed for increased hopping time, as 

predicted in theory, and the magnitude of τy* is essentially smaller than the theory 

prediction. These observations are consistent with previous experimental observation for 

Dc=44nm silica particles in PEG400.
39

 Figure 6.5 also shows the yield stress of 

Dc=270nm polystyrene particles suspended in an aqueous electrolyte where conditions 

have been tuned to render the particle interactions weakly attractive. For this system τy* 

was measured at f=1Hz (thop/t0=3.94). We note a stronger dependence on volume fraction 

than is observed for the silica particles. We attribute this to differences in pair potential. 

In particular we note that the conditions probed by Kramb et al may place the particles in 

an attractive glass regime where particles are localized both by hard core nearest 

neighbor interactions and attractions.  Nevertheless, the data is consistent showing that as 

volume fraction increases, the yield stress approaches the absolute value τabs* while as the 

probing frequency increases, the yield stress increases. 

In Figure 6.9, we compare the volume fraction dependence of the yield stress for the 

Dc=127nm silica particles in PEG400 where they interact as hard spheres and for the 

same particles suspended in PEG2000 where they experience an attraction. Obviously, 
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when attractions are introduced, at a fixed experimental probing frequency, τx* increases. 

However, we note that the increases in attraction also increase FB and thus increase thop/t0. 

We expect a universal scaling of yield stress at a fixed experimental strain frequency if 

we compare systems at the same value of FB. 

In Figure 6.10, dynamic yield stress τx* is plotted as a function of FB/kBT (τ=0) at both 

f=1Hz and f=0.1Hz for all the systems. It is again confirmed that decreased shear 

frequency results in decreased dynamic yield stress τx* when entropic barrier height is 

fixed. Here we note that for hard sphere systems (PEG400), when R is increased at fixed 

frequency f, the dynamic yield stress magnitude of τx* is slightly increased, which can be 

attributed to a slight decrease in thop/t0 as thop/t0=0.33 (3.3), 0.24 (2.4) and 0.17 (1.7) for 

R=0, 0.29 and 0.5 respectively at f=1Hz (0.1Hz). This weak influence of thop/t0 on τx* is 

not obvious for attractive systems. We attribute this effect as a consequence of long α-

relaxation time for attractive systems making thop>tα , therefore the yield stress is not 

strongly influenced at this condition, consistent with the result in Figure 6.9.  

6.5 Conclusion 

Here we use dynamic localization theory to explore the properties of particles 

interacting with volume exclusion pair potentials and weak attractions.  In addition we 

look at the flow properties of suspensions composed of particles of two distinct sizes and 

compare with literature values of flow properties for different systems. In the framework 

of DLT, particle interactions result in a dynamic potential barrier that limits the system 

dynamics but does not alter the equilibrium particle microstructure. The theory relates 

suspension dynamics in systems rendered dense by increased volume fraction or by 

increased attractions to the time it take a particle to diffuse out of a minimum in the 
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dynamic potential. This minimum traps particles in a local minimum of size Lrr  and 

requires particles to diffuse a distance Brr  to experience the maximum in the dynamic 

potential.  Long-range diffusion is limited by the ability of particles to diffuse over this 

dynamic potential barrier. DLT predicts properties of the dynamic potential from 

equilibrium suspension microstructure. Particle localization occurs for ϕc>ϕx, and the 

dynamic potential barrier height, FB, grows with volume fraction above x. Transport 

occurs through an activated process where the rate of diffusion is dominated by the time 

it takes particles to hop out of the local minimum in the dynamic potential. With 

increasing volume fraction or increased inter-particle attractions FB is increased, the 

hoping time decreases, and Lr  decreases resulting in increased suspension elasticity. 

When an external stress is applied, DLT uses an Eyring type analysis to distort the 

dynamic potential barrier, lowering FB and increasing Lr . At the absolute yield stress 

τabs*, FB drops to zero and particles exchange nearest neighbors without being hindered 

by the dynamic potential barrier.  

Applying these basic concepts, FB is extracted from experimental results for different 

systems where ϕx and the maximum packing fraction ϕm are varied by changes to particle 

size distribution and pair potential. We find that FB/kBT is essentially a universal function 

of dimensionless volume fraction )/()(* cmxm   , showing a universal behavior 

when exceeding dynamic arrest transition and approaching jamming condition. This 

behavior is consistent with previous studies on hard sphere systems showing scaling of 

elasticity and diffusivity with 1/(ϕm-ϕc) as ϕm/ϕx is found to be nearly constant for systems 

studied where m is varied but particles interact with volume exclusion potentials.  Linear 

plateau elasticity Gp’*, absolute yield stress τabs* and the extrapolated value of zero shear 
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viscosity ηr,0 are shown to have universal dependencies on FB. With this basic 

knowledge, the dynamic yield stress is studied as a function of strain frequency. DLT 

predicts that the dynamic yield stress will increase with increased strain frequency- an 

effect that is confirmed experimentally.  

Historically the commonality of flow behavior seen in suspensions as volume fraction 

has been tied to the pair potentials that cause Brownian particles to aggregate. 

Descriptions of yield stresses and elasticities have been developed based on pair 

potentials that do not vary with volume fraction and microstructures that are linked to 

fractal properties of aggregates. In DLT, the characteristic length giving rise to elasticity 

is controlled by both pair potential and volume fraction. As a result, DLT characterizes 

suspension flow properties in terms of equilibrium pair distribution functions with no 

reference to the fractal nature of the aggregates suspension. Application of DLT to a 

variety of suspensions suggests that the values of ϕc/ϕx and FB can be estimated from 

steady shear experiments and a measure of the suspension elasticity. While the power of 

the elastic floc model originally developed by Hunter
7
 and later carefully demonstrated 

by Scales  et al. 
10

 lies in linking yield stresses to details of the colloidal pair potentials, 

the results presented here suggest FB and ϕx can be extracted from steady shear curves 

when the pair potential is unknown while at the same time allowing for a connection 

between flow properties observed for hard sphere suspensions and the flow properties of 

suspensions where particles with hard cores experience strong attractions. 
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6.6 Tables and Figures 

Table 6.1 Summary of ϕx and ϕm for different systems 

R <D>/nm x (PEG400) x (PEG2000) m 

0 127 0.511 0.330 0.631 

0.29 140 0.557 0.375 0.661 

0.5 160 0.603 0.438 0.713 

0.71 190 0.605 0.504 0.719 

1 612 0.510 0.549 0.632 

 

 

Figure 6.1 Examples of flow curves for Dc=127nm particles dispersed into PEG2000 at 

three different volume fractions. The method of determining τ2 (τabs) is denoted in the 

plot.  
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Figure 6.2 (continued on next page) 
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Figure 6.2 Example of dynamic stress sweep result (Ds=127nm silica particles dispersed 

into PEG2000 at ϕc=0.398) with dynamic stress applied at (A) f=1Hz and (B) f=0.1Hz. 

The method of determining τx is denoted in (A) and (B). (C) shows the frequency sweep 

experiment result for this sample, f=1Hz and f=0.1Hz are plotted with solid line and 

dashed line respectively. 
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Figure 6.3 Shear-thinning exponent p as a function of (A) ϕc and (B) ϕc/ϕx for silica 

particles in PEG400: ( , R=0), ( , R=0.29), ( , R=0.5) and silica particles in PEG2000: 

( , R=0) ( , R=0.29) ( , R=0.5) ( , R=0.71),( , R=1). Prediction of DLT ( ) by 

Kobelev et al
30

 and the experimental data of metal oxide suspensions ( ) by Zhou et al
9
 

are also presented.  
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Figure 6.4 (continued on next page) 
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Figure 6.4 Entropic barrier height (τ=0) as a function of (A) ϕc (B)  DrL /  and (C) ϕ* 

for silica particles in PEG400: ( , R=0), ( , R=0.29), ( , R=0.5) and silica particles in 

PEG2000: ( , R=0), ( , R=0.29), ( , R=0.5), ( , R=0.71). The solid curves are 

predictions based on Percus-Yevick structure input. The inset of (A) shows FB/kBT vs. ϕc 

in the log-liner scale.  
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Figure 6.5 (A) Gp’* and (B) τabs* as a function of FB/kBT for silica particles in PEG400: 

( , R=0), ( , R=0.29), ( , R=0.5) and silica particles in PEG2000: ( , R=0), ( , 

R=0.29), ( , R=0.5), ( , R=0.71). The solid curves are predictions based on Percus-

Yevick structure input. 
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Figure 6.6 ηr as a function of (FB/kBT)
2
exp(FB/kBT) for Dc=127nm silica particles 

dispersed in PEG400 at different volume fractions. The solid line has a slope ~1 showing 

the liner increasing tendency of ηr when FB is large. The inset plots ηr as a function of 

FB/kBT.  
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Figure 6.7 ηr,0 is plotted as a function of (FB/kBT)
2
exp(FB/kBT)  for silica particles in 

PEG400: ( , R=0), ( , R=0.29), ( , R=0.5) and silica particles in PEG2000: ( , R=0), 

( , R=0.29), ( , R=0.5), ( , R=0.71). The solid line has a slope ~1 showing the liner 

increasing tendency of ηr,0. The inset plots ηr,0 as a function of FB/kBT. 
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Figure 6.8 Experimental results (Dc=127nm spheres in PEG400) of τ2* ( ) and τx* for 

thop/t0=0.33 ( ) and thop/t0=3.3 ( ). Theoretical predictions for τabs* (black solid curve at 

the top) and τy* for thop/t0=10 ( ) and thop/t0=100 ( ) and thop/t0=1000 (  ). The 

experimental data τx* for hard sphere reported by Kramb et al is also presented for 

thop/t0=3.94 (  ).The curves are used to guide eyes. 
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Figure 6.9 Experimental results of τ2* ( ) and τx* for f=1Hz ( ) and f=0.1Hz ( ) 

(Dc=127nm silica particles in PEG400). The corresponding open symbols represent the 

data for Dc=127nm silica particles in PEG2000. The solid curves are predictions for τabs* 

based on Percus-Yevick structure input. 
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Figure 6.10 (continued on next page) 
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Figure 6.10 τx* at (A) f=1Hz and (B) f=0.1Hz as a function of FB/kBT for silica particles 

in PEG400: ( , R=0, thop/t0=0.33 for f=1Hz and thop/t0=3.3 for f=0.1Hz), ( , R=0.29, 

thop/t0=0.24 for f=1Hz and thop/t0=2.4 for f=0.1Hz), ( , R=0.5, thop/t0=0.17 for f=1Hz and 

thop/t0=1.7 for f=0.1Hz) and silica particles in PEG2000: ( , R=0, thop/t0=0.39 for f=1Hz 

and thop/t0=3.9 for f=0.1Hz), ( , R=0.29, thop/t0=0.28 for f=1Hz and thop/t0=2.8 for 

f=0.1Hz), ( , R=0.5, thop/t0=0.19 for f=1Hz and thop/t0=1.9 for f=0.1Hz), ( , R=0.71, 

thop/t0=0.12 for f=1Hz and thop/t0=1.2 for f=0.1Hz). The solid curves are predictions for 

τabs* based on Percus-Yevick structure input. 
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Chapter 7. Conclusions 

In this thesis, the phase behavior and rheological properties of dense colloidal 

mixtures dispersed in different continuous phases are studied to explore the effects of 

interaction, concentration, size distribution, and shape anisotropy. For single-component 

hard sphere suspensions, dynamic localization theory predicts that with increasing colloid 

volume fraction, ϕc, dynamical localization of single particles results in the onset of 

glassy properties when the volume fraction crosses the dynamic arrest volume fraction ϕx. 

Above ϕx, particle delocalization and the resulting relaxation of stress are accomplished 

by applying an external stress or increasing the observation time scale to above the time 

required for particles to exchange nearest neighbors. When the maximum volume fraction, 

ϕm, is approached, stress relaxation by long range diffusion ceases. Varying particle 

interactions alter ϕx, while the maximum packing fraction ϕm can only be varied by tuning 

the particle geometry or the particle size distribution. 

Here we study, the universal rheology of dense colloidal dispersions when crossing ϕx 

and approaching ϕm, in different continuous media with binary particle size distributions.  

Different parameters are studied to systematically manipulate ϕx including variable 

particle interactions, variable volume fraction ratios of large and small particles and 

variable shape anisotropy. For hard sphere interactions, ϕx is correlated with ϕm ..  

In Chapter 2, suspensions containing silica particles with variable sizes (Dc=127nm, 

213nm, 612nm, 730nm) suspended in polyethylene glycol (PEG) with two different 

molecular weights below entanglement condition (PEG400 and PEG2000) are designed 

to investigate the effects of particle size and polymer molecular weight in terms of 

particle interaction potentials. It is concluded that particles with different sizes suspended 

in PEG400 are well represented as particles experiencing volume exclusion interactions. 
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Differences are only observed in shear thickening where details of soft repulsion result in 

different onset of thickening. In PEG2000, large colloids with Dc=612nm interact with 

weak attractions which still undergo dynamic arrest transitions at a high volume fractions 

and show a weakened shear thickening, while small colloids with Dc=127nm are strongly 

attractive which gel at a much lower dynamic arrest volume fraction and show no shear 

thickening.  

In Chapter 3, the effects of mixing different sized particles (ds=127nm and dl=612nm) 

under hard sphere conditions are explored by varying the large particle volume fraction 

ratio R systematically in PEG400 from 0 to 1. With medium values of R, both ϕx and ϕm 

are larger than single component systems (R=0 and 1). ϕx and ϕm are correlated for 

excluded volume interactions with a constant ratio ϕm/ϕx~1.2. The flow properties 

including elastic modulus, shear thickening stress and high frequency viscosity can be 

expressed as products of the values at ϕx and power law functions of a rescaled volume 

fraction as )/()(* cmxm   , and diverge at ϕm. 

In Chapter 4, when suspending the colloidal mixtures with same size distributions in 

PEG2000, polymer induced attraction is incorporated into the dense binary colloidal 

mixtures. Considering the small size of polymer compared to the particle sizes, an 

assumption is made here that ϕm is not varied compared to the systems in PEG400. 

However, the influence of attraction dominates for suspension containing sufficient small 

strongly attractive particles, thus ϕx is no strongly correlated with ϕm as in PEG400 which 

is a monotonic increasing function of large particle volume fraction ratio R. The 

rheological properties of colloidal dispersions diverge at ϕm in a different manner which 

become constant when scaled with kBT/<D>h
2
, where kBT is the product of Boltzmann 
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constant and absolute temperature, <D> is the volume average diameter and h is average 

particle-particle surface separation. 

In Chapter 5, to investigate the effects of particle shape on binary mixtures, a very 

different experimental system is designed containing polystyrene colloids with both 

shape anisotropy and size asymmetry which are dispersed into aqueous phase. Two 

different kinds of binary mixtures are studied here with similar size disparity ~3: small 

spheres (SSP) mixed with large spheres (LSP) and small spheres mixed with large 

dumbbells (LDB which has aspect ratio~1.3). With ionic strength carefully tuned to 

0.01M, small particles interact with large particles or small particles very weakly, while 

there is an attraction between two large particles with a minimum ~-2kBT. The interaction 

strength is essentially independent of particle shape. For single-component large particles, 

elasticity is consistently smaller for LDB than LSP at the same volume fraction, and the 

critical volume fraction for discontinuous shear thickening ϕt is larger for LDB. These 

phenomena denote increased ϕx and ϕm when introducing weak shape anisotropy in the 

single-component system. But when smaller particles are added into the suspensions, 

opposite changing tendencies for replacing LSP with LDB denote decreased ϕx and ϕm 

when introducing weak shape anisotropy in the binary mixtures. 

In Chapter 6, to understand the dynamic arrest transitions and resulting rheological 

properties when crossing ϕx and approaching ϕm, the results of silica particles where the 

discontinuous shear thickening is absent are understood in terms of dynamic localization 

of single particle in dense suspension. The power law dependence of the stress on shear 

rate is found to be a universal function of volume fraction normalized by the cross-over 

volume fraction, ϕc/ϕx. When ϕc>ϕx the barrier height out of which the particles must 
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diffuse to delocalize, FB, grows. When size distributions and interactions are varied, FB is 

a universal function of rescaled volume fraction as )/()(* cmxm   which shows 

both the appearance of localization when crossing ϕx and complete divergence of 

relaxation times when approaching ϕm. Experimentally, the dynamic yield stress 

measured in dynamic stress sweeps decreases with decreasing frequency.  The frequency 

is taken as a surrogate for inverse of thop, the time for a particle to hop out of the dynamic 

potential well.  At longer times for the same system, the barrier height at hopping will be 

larger thus a smaller yield stress is required to lowering the barrier height.  

This thesis focuses on exploration of dynamic arrest transitions and maximum 

packing fractions of dense colloidal dispersions by systematically varying particle 

interaction, size distribution and shape anisotropy. These studies confirm major 

predictions of dynamic localization theory linking the dynamic potential to macroscopic 

mechanical responses. 
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Appendix A. Composites Density and Volume Fraction 

The volume fractions of composites (silica particles dispersed into PEG) are 

determined by the equation c

c

T
c X















 , where Xc is the mass fraction of particles, ρc is 

the density of silica particle which is 1.6g/cm
3
 and T  is the density of composites which 

is measured by Mettler/KEM DA-100 density meter for low molecular weight polymer 

(PEG400) when ϕc<~0.50 at temperature (T≤40 ºC). It is assumed that the silica particle 

size does not vary the particle density ρc=1.6g/cm
3
 with which very consistent calculated 

results of ϕc are obtained independent of particles sizes as summarized in Figure A.1 

when T=25 ºC for four different sized particles (SEM pictures are presented in Figure 

A.2). Therefore, to determine the volume fractions of other samples (more concentrated 

samples with which measuring density is difficult and those binary mixtures), the smaller 

particle data in Figure A.1 are interpolated or extrapolated as a reasonably approximate 

method.  

To determine the composite density at higher temperature (T>40ºC), the densities for 

the same sets of composites are measured for T=25ºC, 30ºC, 35ºC, 40ºC and the data are 

extrapolated to a higher temperature. And the volume fraction at this higher temperature 

is determined in the same way as T=25ºC. It has been determined that the polymer 

molecular has little influence on the composites density, so the volume fraction for 

composites containing higher molecular weight PEG is assumed to be the same as those 

containing PEG400 at the same conditions.  
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Figure A.1 ϕc (calculated based on ρc=1.6g/cm
3
) as a function of Xc for silica particles 

with different sizes. 
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Figure A.2 SEM pictures for silica particles with four different sizes: (A) Dc=127±6nm, 

(B) Dc=213±9nm, (C) Dc=612±18nm, (D) Dc=730±8nm. 
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Appendix B. Supporting Information of Chapter 2  

Table B.1 Characteristic rheology parameters for different composites under continuous 

shear 
Small particles in PEG 400   

 c p h/nm τc* 

0.445 0.694 16.4 9.14 
0.466 0.658 14.2 15.06 
0.489 0.579 11.9 12.78 
0.511 0.503 9.9 14.76 
0.534 0.335 7.9 16.71 
0.557 0.316 6.1 21.69 
0.580 0.278 4.2 25.90 
0.604 0.215 2.5 30.27 
0.628 0.196 0.8 31.97 

Large particles in PEG 400   

 c p h/nm τc* 

0.448 - 77.1 60.25 
0.466 - 68.1 43.89 
0.488 - 58.0 82.70 
0.510 - 48.0 113.51 
0.533 - 38.4 113.51 
0.557 - 29.0 145.20 
0.580 - 20.5 201.16 
0.604 - 11.8 278.69 
0.629 - 3.7 278.69 

Small particles in PEG 2000   

 c p h/nm τc* 

0.237 0.762 49.9 - 
0.299 0.571 36.7 - 
0.330 0.469 31.4 - 
0.369 0.186 25.6 - 
0.398 0.144 21.8 - 
0.417 0.156 19.5 - 
0.438 0.150 17.1 - 
0.454 0.161 15.4 - 
0.479 0.164 12.9 - 
0.501 0.148 10.8 - 
0.520 

 

0.151 9.1 - 
Large particles in PEG 2000   

 c p h/nm τc* 

0.398 0.839 105.1 81.30 
0.419 0.794 92.9 81.30 
0.440 0.737 81.2 103.34 
0.459 0.771 71.9 71.26 
0.484 0.598 59.9 84.38 
0.504 0.578 50.6 103.34 
0.525 0.570 41.6 149.88 
0.549 0.506 32.2 149.88 

0.570 0.310 24.0 257.08 
0.592 0.303 16.2 238.01 
0.615 0.296 

 

8.0 238.01 
 



252 
 

Appendix C. The Effect of Size Ratio on Glass Transition of Binary Hard Sphere 

Mixtures 

The effects of size disparity (δ=dl/ds with dl and ds representing the diameters of large 

and small particles respectively) in colloidal mixtures with volume exclusive interactions 

are studied by dispersing silica particles in PEG400 at T=25ºC. Using the same approach 

introduced in Chapter 3, the glass transition volume fraction ϕx is determined by locating 

the point where stress plateau develops. Two different diameter ratios are studied with 

δ=3.4 (dl=730±8nm and ds=213±9nm) and δ=4.8 (dl=127±6nm and ds=612±18nm), and 

both size ratios are large enough to increase ϕx which is correlated with maximum 

volume fraction ϕm and small enough to avoid depletion induced phase separation. In 

Figure C.1, the increased value of ϕx compare to single component system is plotted as a 

function of large particle volume fraction ratio R, which is calculated as sxxx , 

with the glass transition volume fraction for single-component system ϕx,s estimated as 

)1()0()1(,  RRRR xxsx  . ∆ϕx is used here instead of ϕx to eliminate the 

effects of slight density variation, steric thickness difference and all the other systematic 

variation for particles with different sizes or from different batches, thus the results only 

reflect the effects of size disparity.  

As shown in Figure C.1, with size disparity slightly decreased compared to the 

system we have focused on in Chapter 3, ∆ϕx is slightly decreased for binary mixtures 

with the same large particle volume fraction ratios. This confirms again the correlation 

between ϕx and ϕm at this medium size disparity condition as ϕm is increased by increasing 

size disparity. The flow curves for binary mixtures at ϕx with δ=3.4 are plotted in Figure 

C.2. Considering no substantial difference reflected in glass transition brought by the size 
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disparity in this medium range, the studies of binary mixtures are focused on the fixed 

larger diameter ratio (δ=4.8) as shown in Chapter 3. 

 

Figure C.1 ∆ϕx as a function of R for two different particle diameter ratios for binary 

silica colloidal mixtures in PEG400 at T=25ºC. 
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Figure C.2 Flow curves of binary mixture with δ=3.4 for R=0 at ϕc=0.527( ), R=0.29 at 

ϕc =0.571( ), R=0.5 at ϕc =0.619( ), R=0.71 at ϕc=0.620( ) and R=1 at ϕc =0.543( ). The 

dashed line has a slope of 0.56. The superposition of flow curves at the shear thinning 

parts for the four single-component systems at ϕx is shown in the inset with 

Dc=127nm( ), Dc=213nm ( ), Dc=612nm ( ) and Dc=730nm ( ). 
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