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ABSTRACT 

Combustion characteristics of methane jets laden with pulverized coal were studied by 

using a vertically oriented solid particle injector that entrained pulverized coal particles using the 

Venturi effect. The dependence of entrainment rate on the size of coal particles was studied as a 

function of the flow rate. Particle Streak Velocimetry performed on coal-laden jets provided 

valuable insight into the relative velocity of entrained coal particles with respect to the fluid 

velocity. 

High-resolution still images and high-speed videos of laser-sheet light scattered by the 

coal particles helped determine the mode of interaction of entrained coal particles with the flame 

front. The effect of combustion on the entrained coal particles was analyzed both in terms of 

macrostructure and microstructure. Also, the effect of flame on coal-particle size was probed by 

analyzing the particle size distribution for premixed and non-premixed flames. Loose density 

measurements and Fraunhofer-diffraction-based particle size distribution measurements were 

carried out before and after combustion in order to characterize the effect of combustion on the 

macrostructure of coal particles. Based on the experimental results, it was established that the 

combustion process did not have any significant effect on the macrostructure of the coal 

particles. This was evidenced by the negligible changes observed in loose density and mean 

particle diameter after combustion. 

Scanned Electron Microscopy imaging was carried out in order to study the change in 

microstructure of coal particles as a result of combustion. Remarkable changes were observed in 

microstructure while there was hardly any change in the macrostructure of coal particles due to 

combustion. Based on these findings, it was established that the coal particles underwent only 

partial devolatilization during their passage through the flame due to the small residence time. 

Hence it was concluded, that this mode of combustion was a surface phenomenon.  The effect of 

oxidizer composition on the combustion of coal particles was studied by comparing the 

measured particle size distributions for CH4/air, CH4/O2/CO2 and CH4/O2 flames. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

 It is a well-established fact that energy generation from combustion of fossil fuels results 

in significant emission of greenhouse gases, the dominant contributor being CO2. The awareness 

about the increase in greenhouse gas emissions have led to various international legislation 

policies like the Kyoto protocol and the Intergovernmental Panel on Climate Change regarding 

the reduction greenhouse gas emissions in most economically well developed countries [1].          

It is well known that the use of alternative energy sources like nuclear power and renewable 

energy can significantly reduce the greenhouse gas emissions associated with energy production. 

Though the potential for renewable energy sources is expected to increase tremendously with our 

ever increasing future energy demand, the total contribution of these renewable energy sources in 

terms of total energy produced is significantly less when compared to conventional sources of 

energy like fossil fuels [2]. Since renewable energy sources hold hope for reducing greenhouse 

gas emissions only in an extremely long time frame, it is likely that coal will remain in an 

important position in the energy demand for the foreseeable future owing to its proven stability 

in terms of supply and cost [3]. This renewed interest has led to recent developments in coal 

combustion technologies over the past decade dealing with oxy-fuel combustion to obtain a 

steady stream of nitrogen free flue gas that is ready for carbon sequestration [4]. 

 

1.2 Pulverized Coal Combustion and Coal-Dust Flames: 

Pulverized coal combustion came into existence on account of their relatively high 

combustion intensities (0.5-1.5 MW per m2) and high heat transfer rates per unit surface area of 

the fuel (0.1-1.0 MW per m2) which made them superior to fluidized bed combustors [5].           

The underlying principle of pulverized coal combustion is fairly well understood and can be 

broadly divided into four major steps: heating up of pulverized coal particles, devolatilization, 

volatile combustion and the burning of char.  
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Though heating-up of coal particles is a fairly simple process, there are difficulties 

involved in defining the heat transfer quantitatively either by using convection or radiation 

phenomena and in determining the specific heat capacity of the coal particles [6]. As the process 

of devolatilization commences, mass transfer starts interfering with heat transfer rates i.e., due to 

the sudden efflux of volatiles, there is a drop in temperature in the immediate vicinity of the          

un-ignited particles and also an outward radial velocity against which the heat has to be 

conducted to the coal particles from the surrounding gas [5]. Devolatilization is not a completely 

homogenous process as the material is ejected by ‘jetting’ from pores or blow-holes with 

recorded velocities up to 1 m/s. It is commonly assumed that volatiles burn via the following 

steps: 

   Volatiles +  O2
yields
�⎯⎯� CO +  H2O    (1.1) 

    CO + 0.5 O2
yields
�⎯⎯� CO2    (1.2) 

The rates of the reaction are determined by the rates of mixing and the thermo-chemistry 

i.e., the heat of combustion of the volatiles determines the flame temperature. The flame 

structure is determined by the air-flow patterns and the rate of chemical heat release. For coal 

flames, this is a function of the air velocity, the amount of excess air and the size of pulverized 

coal particles [7]. The process of char combustion is not completely understood and is further 

complicated by the influence of particle size, char mineral content and fragmentation of char 

particles during combustion. The rate limiting step in the combustion of char particles can be 

chemical reactions or gaseous diffusion to the particles or a combination of these two factors [8]. 

Combustion of pulverized mixtures poses a series of intriguing theoretical challenges.             

In particular, many materials that are non-flammable in their bulk form become highly reactive 

and even explosive if dispersed as a cloud of very fine particles in air, due to significant increase 

in surface area for enhancing mass and heat transfer processes. Hence from a combustion 

perspective, it becomes necessary to investigate such phenomena as they can be both a benefit 

and hazard. Kenneth [9] measured the minimum explosible concentration, maximum explosion 

pressure, maximum rate of pressure rise and minimum oxygen concentration for coal explosion 

in mines. The minimum explosible concentration refers to the minimum concentration of 

airborne dust particles in a gas mixture below which a deflagration cannot propagate after it has 
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been initiated by a sufficiently strong ignition source. It was determined that the particle size and 

volatility were the most important parameters in determining the explosion hazard. Paul and          

co-workers [10] investigated the ignitability characteristics of coal-dust and coal-dust admixed 

with methane. It was observed that the lean flammability limit decreased with increasing ignition 

energy and methane concentration. Hertzberg et al. [11] observed that above certain 

characteristic diameter of the coal particle, the lean limit concentrations increased significantly 

with increasing particle size until a critical size was reached, above which the coal-dust was  

non-flammable for any concentration at ambient temperature and pressure. It was reported that 

both the characteristic diameter and the coarse size limit of flammability (critical diameter) 

increased monotonically with increasing coal-dust volatility and increasing oxygen content in the 

dispersing gas. Also Scanning Electron Microscopy (SEM) analysis performed on the coal 

particles before and after combustion revealed structural changes in coal particles as result of 

their participation in coal-dust explosions. It was observed that char residues that are 

pockmarked with blow-holes are typical of such coal-dust explosions. Also, the char residues 

fused into large agglomerated masses with increasing coal-dust concentration during the 

explosion. 

One of the fundamental properties which control the intensity of a coal-dust explosion is 

the burning velocity, i.e., the velocity normal to the flame front at which the flame propagates 

relative to the burnt mixture. Over decades, various thermal theories have been put forth in order 

to evaluate the burning velocity of a planar laminar premixed coal-dust flame. Ogle et al. [12] 

compared the burning velocities obtained using the Radiation-Convection-Conduction model 

(RCC) and the Radiation-Convection model (RC) against the Mallard Le Chatelier model (ML) 

[13] and the Mallard Le Chatelier model with Radiation (MLR) [14]. It was concluded that the 

conductive heat flux was negligible when compared with the contributions due to convection and 

radiation, this was substantiated by that the difference between the predicted burning velocity for 

the RC and RCC models was on the order of 0.01 %. Also, the ML model was found to be 

entirely inadequate as radiative flux cannot be ignored while computing the burning velocity. 
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Hordon and co-workers [15] used a flat flame burner to study the atmospheric flame 

velocities in coal-dust and air-systems. The flame velocity was determined to be a function of 

particle size, coal concentration and volatility. Krier et al. [16] reported the fundamental lean 

limit coal-dust concentration and the burning velocity as a function of coal-dust concentration 

while observing coal-dust flames propagating in a horizontal flammability apparatus called the 

Gravity Tumbler Flammability tube (GTFT). Liu et al. [17] studied the flame propagation in a 

hybrid mixture of coal-dust and methane. It was observed that the presence of methane along 

with coal-dust improved the flame propagation speed and maximum flame temperature 

significantly when compared to single-coal dust flames. It was also reported that the flame front 

temperature varied with the coal-dust concentration. 

There has been significant progress made in the study of fundamental aspects of        

coal-dust flames. The basic theory [5-8,12-14] underlying particle combustion has been well 

established and considerable amount of work carried out in the past has been focused on 

studying the effect of various parameters [9-11, 15-17] i.e., particle size, concentration and 

volatility on the burning velocity. But however, this field is still dominated by empiricism, due to 

the lack of supporting literature based on studies utilizing modern diagnostic tools, i.e., particle 

sizing, SEM etc., for studying pulverized coal combustion.  

 

1.3 Particle Laden Jet Flames 

Non-reactive jet flows that are laden with condensed-phase particles occur in a variety of 

natural and technological systems. These non-reactive jet flows can be subdivided as gas-solid 

and gas-droplet flows. The main difference between the two flows is that mass transfer does not 

occur in the former but occurs in the latter. The gas-particle flows are characterized by mass 

loading or particle loading which is defined as follows: 

𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝ℎ𝑀𝑀𝑀𝑀𝑝𝑝 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑔𝑔𝑀𝑀𝑀𝑀 𝑝𝑝ℎ𝑀𝑀𝑀𝑀𝑝𝑝

= 𝑚𝑚𝑝𝑝

𝑚𝑚𝑔𝑔
    (1.3) 

The particles can be treated as passive contaminants when the mass loading ratio of the 

particles is small. In turbulent gas-particle flows, turbulence modification can be expected to be 

negligible if the particle diameter is much smaller than the Kolmogorov scale. However, when 
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the particle mass loading ratio is increased, global turbulence modifications may be induced.           

If the particle diameter is larger than the Kolmogorov scale, the particle affects the energy 

distribution of the surrounding fluid [18]. An important dimensionless parameter which 

characterizes the gas-particle flows is the Stokes number [19] which is defined as follows: 

   𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑀𝑀𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑀𝑀𝑃𝑃𝑝𝑝𝑜𝑜𝑟𝑟 𝑃𝑃𝑝𝑝𝑚𝑚𝑝𝑝
𝐹𝐹𝑝𝑝𝑜𝑜𝐹𝐹 𝑃𝑃𝑝𝑝𝑚𝑚𝑝𝑝  𝑀𝑀𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝

= 𝜏𝜏𝑝𝑝
𝜏𝜏𝑓𝑓

    (1.4) 

    𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜌𝜌𝑝𝑝𝑑𝑑𝑝𝑝2𝑈𝑈
18𝜇𝜇𝜇𝜇

      (1.5)  

This dimensionless number determines how well the particles follow the motion of the 

surrounding gas. For small Stokes number (Stk ≪ 1), the particles can be considered to move 

with the same velocity as the carrier fluid. For large Stokes number (Stk ≫ 1), the particles do 

not follow fluid velocity, and this leads to significant momentum transfer from the particle to the 

fluid or vice-versa.  

Wagenknecht and Bohnet [20] were the first to study an injector type particle-feeder in 

order to create a gas-particle flow. They used a high velocity air stream issuing from a primary 

nozzle that entrains the particles into a secondary nozzle, where the necessary pressure is built up 

for conveying the particles. Most solid-particle injector designs relied on a nozzle that created a 

high velocity air flow which in turn carried the solid particles. Xie et al. [21] developed a vertical 

solid-particle injector that utilized the Venturi effect i.e., the pressure drop in the air flow across 

an orifice plate placed in a circular pipe was used to naturally entrain micron-sized solid particles 

such as coal-dust. 

Xie et al. [22] also studied the interaction of entrained coal-dust particles in lean      

methane-air premixed flames. They analyzed the laminar burning velocity of the coal-dust 

methane-air mixture by capturing shadowgraph images of the flames and processing them using 

the cone-angle method. Two competing effects namely volatile release and heat sink effect of the 

coal particles affected the flame temperature and the burning velocity. The volatile release 

increases the overall equivalence ratio and thus the flame temperature and burning velocity while 

heat sink effect i.e., the heat taken up by the coal particles to release the volatiles reduces the 

flame temperature and thereby the burning velocity.  Frachetti and co-workers [23] employed 

Large Eddy Simulation (LES) to pulverized coal jet flames that presented good agreement of the 

5 
 



computational results with the experimental data for both reactive and non-reactive case.       

Scott et al. [24] analyzed the effect of coal-dust on premixed turbulent methane-air flames on a 

new experimental platform using the Hybrid Flame analyzer (HFA) to measure the burning 

velocity. It was reported that the coal particles usually increase the turbulent burning velocity. 

Smaller particle sizes and larger concentrations were found to increase the turbulent burning 

velocity significantly when compared to larger particle sizes and lower concentrations.  

Preliminary studies on the combustion of coal particles entrained in premixed                

methane-air flames [22, 24] have been carried out. However studies regarding the combustion 

phenomenology i.e., the mechanism of interaction of solid particles with the flame front and the 

particle morphology pre and post-combustion are absent from the current literature for entrained 

coal particles in premixed methane-oxygen flames. Further no information is available on the 

interaction of coal particles entrained in pure methane diffusion flames. Also there is no 

background on the fluid mechanics happening during the interaction of coal particles with the 

flame in terms of particle and flow velocity as a function of Stokes number.  

 

1.4 Oxy-Coal Technology 

Conventional pulverized coal-fired boilers use atmospheric air for combustion in which 

the nitrogen from the air (approximate 79 % by volume) dilutes the CO2 concentration in the flue 

gas. The cost involved in capturing CO2 for carbon sequestration from such dilute mixtures using 

amine stripping or membrane-based separation technologies is substantial [25]. As the largest 

portion of the remaining flue gas consists of the atmospheric nitrogen introduced into the process 

with the combustion air, holding back this nitrogen before combustion ensures a significant 

increase in the CO2 concentration. Thus the underlying principle of oxy-coal combustion is to 

extract the nitrogen from the combustion air prior to combustion thereby feeding virtually pure 

oxygen to the combustion process [26]. In oxy-coal combustion, the pulverized coal is burnt 

using an oxidizer which is a combination of 95 % pure oxygen by volume and recycled flue gas. 

Using this process, the flue gas generated which is a mixture consisting mainly of CO2 and water 

vapor is ready for CO2 sequestration after simple purification and compression without the use of 

6 
 



expensive amine stripping technology used for separating CO2 from the flue gas. The recycled 

flue gas mixed along with fresh oxygen is used to control flame temperature.  

Due to the fundamental change in the oxidant used for combustion and the consequent 

change in the furnace gas environment, the oxy-coal technology affects the combustion process 

of pulverized coal and the associated processes like heat transfer and combustion chemistry. 

Numerous studies and research projects have been carried on focusing on many scientific and 

engineering fundamental issues of oxy-coal combustion including: recycled flue gas ratio, 

ignition, flame stability, heat transfer, combustion characteristics, and pollutant formation and 

reduction [27]. 

Oxy-coal combustion combined with CO2 sequestration from flue gases is a near-zero 

emission technology that can be adapted to both new and existing pulverized coal-fired power 

plants. CO2 sequestration is an area of ongoing active research, but for all CO2 sequestration 

techniques, the energy requirement for CO2 compression is reduced with increasing purity of 

CO2. In oxy-coal combustion, the concentration of CO2 in the flue gas is increased from 

approximately 17 % to 70 % by mass, thus making it a suitable candidate for carbon 

sequestration [4]. 

Though oxy-coal technology is undergoing rapid development towards 

commercialization, there are no full scale power plants using oxy-coal combustion in operation. 

However, theoretical studies combined with laboratory and pilot scale studies have provided an 

understanding of the relevant design parameters and operational issues. The Vantenfall project in 

Germany, the Callide project in Australia, the Clean Environment Development Facility (CEDF) 

Pilot in Ohio, USA are a few of the large scale (30 MW thermal) operational pilot plants  

employing oxy-coal technology which are used for validating the prospects of commercializing 

this technology [28].Wall et al. [29] provided a comprehensive overview on the most recent 

developments in pilot plants and demonstration projects worldwide for oxy-coal Carbon Capture 

and Storage (CCS) technology. The summary of the major semi-industrial scale and 

demonstration plant studies undertaken during the past decades is presented in Figure 1.1. 

 

7 
 



 

Figure 1.1: Historical progression of the scale of oxy-fuel pilot-plants and demonstrations [29]. 

 

1.5 Research Objectives 

The present study focuses on the interaction of coal particles with diffusion and premixed 

flames. The overarching goal of this thesis is to establish the flame phenomenology and 

combustion morphology of the coal particles, before and after combustion as a function of 

particle size for diffusion and premixed flames. In order to achieve this goal, the following 

research objectives were pursued: 

• Establish a particle seeding technique to entrain coal particles in a free jet stream. 

• Use Particle Streak Velocimetry (PSV) to compare particle velocity to actual flow 

velocity. 

• Characterize flame phenomenology using high-speed videos. 

8 
 



• Characterize the combustion morphology by studying the loose density and the 

particle size distribution of pulverized coal using Malvern diagnostic tool before 

and after combustion. 

• Analyze particle morphology before and after combustion using Scanning 

Electron Microscopy (SEM). 

Overall a seminal study was pursued that to my knowledge provided first-hand 

information about the interaction of coal particles entrained in diffusion and premixed flames on 

the basis of particle morphology and flame phenomenology for various particle sizes. 
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CHAPTER 2 

EXPERIMENTAL APPARATUS 

2.1 Coal Sizing and Loose Density Measurement 

 Coal samples were procured from Southern Illinois Power Cooperative. The samples 

consisted of milled coal meant for cyclone boilers. The coal samples had a varying size 

distribution ranging from huge lumps with a characteristic dimension of 1 cm to very fine coal 

dust, so they had to be graded according to particle size before being used in experiments.           

The coal particles were graded according the particle size by passing them sequentially through 

USA Standard 3’’ diameter sieves procured from Dual Manufacturing Co., Inc. 11 different 

samples with particle size ranging between 1000 μm to 178 μm were then used for further 

investigation. The details of the sieve analysis performed on the coal particles can be seen in 

Table 2.1 below. The loose density of the particles was then computed by accurately measuring 

the weight of a fixed volume of coal samples namely 100 cc using an Ohaus JR120 Precision 

Standard Electronic balance. 

Sample 
No. Sieve Number Diameter Upper 

Limit DU (μm) 
Diameter Lower 
Limit DL (μm) 

Mean Diameter 
DM (μm) 

1 18 - 20 1000 853 927 
2 20 - 25 853 710 782 
3 25 - 30 710 600 655 
4 30 - 35 600 500 550 
5 35 - 40 500 422 461 
6 40 - 45 422 354 388 
7 45 - 50 354 297 326 
8 50 - 60 297 251 274 
9 60 - 70 251 211 231 

10 70 - 80 211 178 195 
11 < 80 178 178 178 

Table 2.1: Sieve analysis of pulverized coal samples. 
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2.2 Coal Particle Laden Jet 

 Based on the work of Xie et al. [21], a vertically oriented solid particle injector was 

designed in order to create a coal particle laden jet. This particular injector utilized the Venturi 

effect in order to entrain particles inside the jet stream. The Venturi effect in this case was 

established by allowing the flow to pass through an orifice plate, resulting in an increase in the 

flow velocity and thereby causing a pressure drop which was utilized to seed coal particles onto 

the flow. The injection rate can simply be controlled by adjusting the flow rate and thereby 

modifying the pressure drop associated with the flow that drives the entrainment phenomenon. 

The schematic layout of the solid particle injector designed for the experiment is show in 

Figure 2.1. A small orifice plate was machined out from an aluminum slab, which had a hole of  

1 mm diameter placed centrally. This orifice plate was then mounted centrally with the help of 

compression springs onto a steel tube with an outer diameter of 12 mm, inner diameter of 11 mm 

and a length of 300 mm. Three circular holes 5 mm in diameter were drilled such that they were 

radially equi-spaced on the periphery of the steel tube just above the location of the orifice plate, 

so as to enable coal particles to be fed easily into the orifice plate for entrainment 

 A particle feeder arrangement namely a hopper device comprising of a hollow 60° 

inverted cone made of acrylic was attached to the steel tube with the help of socket screws.         

The socket screws helped to adjust the position the hopper arrangement on the steel tube relative 

to the position of the holes on the periphery of the steel tube. The feeder was made of acrylic so 

as to ensure a smooth sloping inner surface to minimize frictional losses in the assembly.          

The hopper arrangement was fitted with a Burgess Vibro-Graver Model 74 electric engraver to 

create vibrations and thereby start the entrainment process. This ensured that the particles did not 

agglomerate and thereby resulted in a smooth movement towards the holes on the periphery once 

entrainment was established. The hopper arrangement was also fitted with a lid made from 

acrylic that served as particle collection pan once the flow was laden with coal particles.          

This allowed collection of coal particles once they are entrained in the flow. The entire 

arrangement was secured an optical bench using suitable clamping and supports. For the purpose 

of entrainment studies, air supply fed into the steel tube was monitored using Omega FL-3840 G 

rotameters. 
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Figure 2.1: Schematic layout of the solid particle injector. 

 

2.3 Diffusion and Premixed Flames 

The steel tube of the solid particle injector assembly was then fitted with a suitable 

arrangement so as to ensure smooth supply of gaseous fuel (methane), oxidizer (air/oxygen) and 

diluent (nitrogen/carbon-di-oxide), the flow rates of each of these gases can be controlled 

individually using Omega rotameters. A very fine wire mesh was inserted into the steel tube 

below the orifice plate that served the purpose of a flame arrestor in case of a flashback 

happening inside the tube. In addition to this, the orifice plate itself offered some level of 

protection against flash back owing to the small size of the hole (1 mm in diameter). 
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 Methane and nitrogen/carbon-di-oxide supply were controlled using Omega FL-3839 ST 

while air/oxygen flow rate was controlled using Omega FL-3840 G rotameters. This arrangement 

ensured that a diffusion flame or a premixed flame of desired strength can be set up at ease for 

the purpose of experimentation. Nitrogen was used as a diluent in the diffusion flame to prevent 

the luminescence caused by soot that interfered with flow visualization. Also it helped in 

stabilizing the flame at the top of the steel tube and in increasing the total flow rate so as to get 

sufficient particle entrainment without having to increase the supply of the fuel.                               

The experimental setup for the study of coal-laden jets in diffusion and premixed flames is 

presented in Figure 2.2. 

 

Figure 2.2: Schematic layout of the experimental setup used for coal-laden diffusion and 

premixed flames. 
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2.4 Particle Size Measurement (Pre and Post-Combustion) 

The schematic layout of the experimental setup used for particle size measurement is 

shown in Figure 2.3. The particle size distribution of the different coal sample before and after 

combustion was obtained using a Malvern RT 97 Spraytec droplet-size measurement instrument. 

The Malvern system can compute particle size distribution based on the complete Mie theory or 

can use the Fraunhofer approximation technique, which is actually a simplified version of the 

Mie theory.  The Fraunhofer approximation assumes the particles whose size is being measured 

are opaque and hence no input of the refractive index of the particles is required. This being a 

crude approximation has proved to be erroneous when used for droplet-size measurement 

involving transparent droplets i.e, sprays, and aerosols [30]. Hence, for such measurements, it is 

always preferable to base the particle size measurement on the full Mie theory which requires the 

refractive index of the particles as one of the inputs. Since the coal particles were opaque as 

such, the value of refractive index did not have any significant effect on the particle size 

distribution; so it was reasonable to use the Fraunhofer approximation. The refractive index of 

the coal particles was set to the system default opaque refractive index of 1.5+0.50i and 1+0.00i 

for the refractive index of the surrounding medium namely air [31, 32]. 

The Malvern system uses a 670 nm He-Ne laser beam and a set of 31 concentric circles 

as the detector system for particle size measurement. The amount of light scattered from a 

particle is inversely proportional to the characteristic length of the particle. As the laser beam is 

directed across the test section, the particles scatter light and this scattered light is focused onto 

the detector system through a 200 μm-diameter pin-hole for analysis. Relying on the principles 

of Mie scattering, the Spraytec feeds data into the v5.6 of the RT Sizer software package for 

analysis. 
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Figure 2.3: Schematic layout of the experimental set up used for particle size measurements. 

Before every experiment was conducted, a background signal was collected using an 

empty test section without the coal-laden jet. The background signal served as a reference for the 

particle size distribution analysis and hence it was essential to record the background every time 

in close proximity to the actual test.  When the test section was empty, the laser was transmitted 

without any scatter onto the detector system. Hence, the signal intensity on the central ring of the 

detector system, namely ring 1, was to be above 1500 a.u., while the signal levels on the other 

rings are to stay at a minimal value. The transmitted signal intensity was measured in terms of a 

number on an arbitrary scale unit (a.u.) that quantified the strength of the signal. A value of 

around 1500 a.u. corresponded to a very strong signal but a signal of 2000 a.u. or above, flooded 

the detector and hence resulted in a saturation warning.  A typical background signal from the 

Malvern system is shown in Figure 2.4. 
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Figure 2.4: Typical background signal for the Malvern Spraytec system in the                          

RT Sizer program. 

In case of a drop in the signal level in the central ring below 1500 a.u., the system had to 

be aligned before further experiments can be conducted. The alignment was done by releasing 

the four lock nuts on the detector side and then sequentially moving the horizontal and vertical 

alignment screws so as to sweep across the entire detector systematically. The aim of this 

adjustment is to align the 200 μm-diameter pin-hole exactly with the center of the laser beam 

such that the signal intensity on the central ring is maximum (above 1500 a.u.) with the test 

section empty. In order to improve the quality of data, once in a while a background noise check 

was performed. This was similar to the background signal but was recorded with the laser off so 

that it took into account only the stray light entering into the detector system. A typical noise 

signal from the Malvern system is shown in Figure 2.5. 

16 
 



 

Figure 2.5: Typical noise signal for the Malvern Spraytec system in the RT Sizer program. 

Malvern-based size measurements can be performed either in real-time or in a flash 

mode. The real-time mode provides instantaneous size measurements, while the flash mode that 

provides averaged data acquired at a user-defined acquisition rate (up to 1000 Hz) over a             

user-defined acquisition time period. In our case, flash mode measurements were used.                

Data were acquired at a rate of 500 Hz over a time period of 2000 ms and were used to get the 

average particle size distributions. In addition to these two parameters, the duty cycle defines the 

fraction of the total amount of time (acquisition time period) during which a signal is actually 

acquired. This parameter was set to 20 % by default, but in our case, setting it to 50 % provided 

better consistency in terms of particle size distribution. Also, to provide ease of data storage,          

the RT Sizer software can also tag data sets, which can be used to store information regarding the 

experimental conditions. This tag is written and saved onto the data file and hence can be used 

for future reference. 
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Once the data has been acquired, the averaged particle size distribution is stored along 

with the time history. The time history file is store .pcl format that can be read only by using the 

RT Sizer program, whereas the averaged particle size distribution (PSD file) can be saved as .csv 

file (Comma separated values) that can be imported onto Microsoft Excel for post processing. 

The Malvern presents size distribution in terms of % number and % volume as a function of 

specified range of particle diameters distributed over various bins of different sizes.                     

For the analysis, instead of the continuous size distribution across the various bin sizes, the data 

is presented using an average particle diameter representing each bin by considering the average 

of the upper and the lower limits of each bin.  

For the 11 different samples of coal particles, particle size distribution was studied before 

and after the combustion process by creating a coal-laden jet using the experimental setup 

described in section 2.2. In order to avoid the effects of beam steering due to presence of the 

flame, post combustion particle size measurements were not carried out above the flame as the 

particles cross the flame zone. Instead, the burnt coal particles were collected once they passed 

through the flame and they were again entrained to create a jet now laden with burnt coal 

particles, which was used to determine the particle size distribution after combustion. 

 

2.5 High-Speed Visualization 

In order to characterize the combustion phenomenology of coal-laden jet flames,          

high-speed visualization techniques were invoked. A high-speed camera (Phantom v.7.0) capable 

of 4800 frames per second (fps) at a resolution of 800 x 600 pixels was used to capture           

high-speed videos. For the purposes of our study, a frame rate around 800 fps was found to 

provide the best results in terms of optimum balance between exposure time (i.e., signal strength) 

and frame rate (i.e., temporal resolution).All the visualizations were grayscale i.e., a pixel value 

of 0 corresponded to a dark signal whereas a value of 255 corresponded to the maximum 

recorded luminosity. Using a 50 mm f/1.8D Nikkor lens gave sufficient depth of field of the 

image plane for high-speed videos and occasionally a 105mm f/2.8D Nikkor lens was also used. 
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Initially a continuous Nd-Yag Wickedlaser E2, 75 mW (Class IIIb), lasing at 532 nm 

mounted on a ring stand was used as the illumination source.  A very fine laser sheet was created 

using a combination of optical lenses. The laser beam was first directed through a biconvex 

focusing lens with a focal length of 19 cm and then allowed to pass through a plano-convex 

cylindrical lens of focal length 119.4 mm. The biconvex lens focused the laser beam in both the 

X and Y directions into a fine point, while the cylindrical lens spread out the concentrated laser 

beam in the Y direction alone, thereby creating a laser sheet. By varying the distance between the 

two lenses, the position of the image plane with respect to the Y direction and the height of the 

laser sheet can be varied independently. High-speed movies were taken in a direction 

perpendicular to this laser sheet. The schematic layout illustrating the optical setup for creating a 

laser sheet is shown in Figure 2.6.  

 

 

Figure 2.6: Schematic layout of the optical setup used for creating a laser sheet. 

The flow was not seeded with any tracing particles (like TiO2) as such, but it was 

stipulated that the incandescence caused by the burning of coal particles as they cross the flame 

front coupled with the light scattered by the particles should provide a signal strong enough to be 

picked up by the high-speed camera. However a variety of problems was encountered during this 

phase of flow visualization. Firstly, the diffusion flame proved to be strongly luminescent as 

such because of soot formation. This inherent flame luminosity obscured any incandescence or 

scatter from the coal particles. In order to overcome this, a narrow band pass filter was used. 
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Videos taken using an Andover Corporation 532 1.0±0.2 nm band pass filter attached to the 

Nikkor camera lenses reduced flame luminosity but the scattered signal from the particles could 

not be distinguished and hence the idea of using a narrow band pass filter was dropped.  

As an alternative solution, the use of nitrogen gas as a diluent in the diffusion flame was 

considered in order to reduce soot formation and thereby eliminate flame luminosity. Also, using 

nitrogen could increase the overall flow rate without increasing the height of the flame, resulting 

in an increased pressure drop through the orifice and thereby entraining more coal particles onto 

the jet, as explained in section 2.3.  By using controlled quantities of nitrogen, a non-luminous 

blue flame could be stabilized at the tip of the steel tube in diffusion mode. This improved the 

quality of signal in the high-speed videos but nevertheless the signal due to the scatter from the 

coal particles seemed to be too weak to provide any valuable insight about the interactions of the 

solid particles with the flame front.  

Hence, it was decided to use an Argon Ion Laser as a stronger source of illumination 

instead of the Wickedlaser E2 so as to achieve a strong signal caused by the scatter of laser from 

coal particles that can be easily captured by the high-speed camera. A Spectra Physics Stabilite 

2017 Argon Ion 6 W laser with a multi-line output mainly at 457nm, 488nm, and 514nm was 

used with the same optical setup as described in section 2.5, in order to create the laser sheet for 

high-speed imaging. The laser beam from the Argon Ion laser was controlled using an aperture 

and steered into the optical arrangement by a combination of two prisms mounted on 

translational stages. The prisms helped in steering the beam to the required height and also 

aligning the position laser sheet with respect to center of the burner at ease. Also, a Fotodiox 

Canon EOS Macro Extension Tube Set Kit for Extreme Close-up was used along with the             

high-speed camera to mount the camera lenses in order to zoom into an area of interest within 

the flame zone. This configuration resulted in a stronger signal of scattered light. Together with 

the chemi-luminescence from the flame, it proved to be optimal for our case in visualizing the 

flow field and thereby providing intricate details about the combustion morphology of coal-laden 

flames. The schematic layout of the experimental setup along with optical system used for         

high-speed visualization is depicted in Figure 2.7.  
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Figure 2.7: Schematic layout of the experimental setup used for high-speed flow visualization. 

 

2.6 Particle Streak Velocimetry 

To compute the velocity of the coal particles in the flow field, a technique called Particle 

Streak Velocimetry (PSV) was used [33]. For this, the same optical setup used for the                      

high-speed flow visualization was employed but the Phantom high-speed camera was replaced 

by a Nikon D5100 to capture still images and high-definition movies. The camera had a 

maximum resolution of 4928 x 3264 pixels (16 MP) and shutter speed of up to 1/4000 s.              

The camera was connected to a workstation and was controlled remotely using the software            

Control-My-Nikon v4.0. This software seemed to be instrumental in adjusting the various 

parameters involved i.e., ISO, exposure, in order to obtain a good image suitable for PSV.           
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The aperture setting was usually set to wide open to capture most of the incandescence and 

scattered light from the coal particles. 

By using suitable long exposure rates, the particles are allowed to travel spatially within a 

single frame. This results in a streakline which defines the path travelled by a single particle over 

a known time period equal to the exposure rate. By measuring the length of the streaks, velocity 

data can be extracted. In order to extract velocity data out of these still images, an open source 

Java-based software called ImageJ developed by the National Institutes of Health was used.     

First, a reference length like the known outer diameter of the steel tube was used to correlate the 

pixels to actual length scale and thereby formulate a reference grid for each image. The images 

were then inverted such that the grayscale intensity of a pixel corresponding to 0 was set to 255 

and vice versa. The “Subtract background” tool was used in order to isolate and highlight the 

streaks effectively. The contrast and brightness of these processed images were then adjusted 

suitably in order to enhance the quality of the streaks.  The length of each streak corresponded to 

the distance traveled by the particle during the camera’s exposure time. This distance was 

measured using the “Measure” function as the length of the streakline. Using this information 

and the exposure time, the velocity of the particles can be calculated. The average flow velocity 

at the nozzle of the jet can be computed from the flow rate recorded by the rotameters, the cross 

sectional area of the tube, and the gas density. 

 

2.7 SEM Imaging 

In order to study the change in morphology of the coal particles as a result of combustion, 

Scanning Electron Microscopy (SEM) was used. The SEM images of the coal particles collected 

after combustion were compared to those obtained before combustion in order to reveal any 

structural changes in the coal particle as a result of combustion. SEM analysis was carried out on 

the Jeol 6060 LV SEM in the Frederick Seitz Materials Research Laboratory Central Facilities in 

the University of Illinois at Urbana-Champaign. The Jeol 6060 LV SEM was typically operated 

at high vacuum condition (10-5Torr) with the electron beam voltages varying from a few hundred 

volts up to 30 kV. The Jeol 6060 LV SEM was also specially equipped with a differentially 

pumped variable pressure system for operations up to 20 Torr in the specimen chamber for 
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imaging of uncoated non-conductive samples and samples not compatible with high vacuum. 

The Jeol 6060 LV SEM is capable of magnifications ranging from 5x to 200,000x. The cut-

section view showing the various parts of the Jeol 6060 LV SEM is shown in Figure 2.8. 

 

Figure 2.8: Cut-section view of the Jeol 6060 LV SEM 

If the instrument was operated above an electron beam voltage of 10 kV, significant 

charging of the samples led to deteriorating image quality for higher magnifications.                    

This happened because coal particles were electrically non-conductive. In order to prevent the 

samples from charging, the instrument had to be operated either in the Low Vacuum (LV) mode 
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or the sample had to be prepared before observation.  The sample was prepared by applying a 

thin coating of around 10 nm of Gold-Palladium alloy (Au-Pd) using a sputtering device.          

This Au-Pd coating makes the sample more conductive and thereby permits higher electron 

beam voltages for better resolution at high magnifications. 

Once the sample was coated, it was mounted on the sample holder and placed onto the 

Jeol 6060 LV for analysis. A working distance of 10 mm was found to be suitable for the range 

of magnification used in our analysis. In order to take quality SEM images for analysis, the 

following steps were followed: 

• Working Distance: The working distance was precisely adjusted to 10 mm by moving 

the stage holding the sample using the Z adjustment knob until a clear focused image was 

obtained on the screen. 

• Gun Alignment: The filament heating current was set so as to operate very near to the 

saturation regime, i.e, region where increase in filament current will not increase the 

brightness of the image any further. In case, if the brightness of image was found to 

decrease with increasing filament current then a gun alignment procedure had to be 

performed. This was done by systematically adjusting the X, Y-Shift and the X, Y-Tilt 

parameters manually. These parameters controlled the position and the tilt angle of the 

electron beam respectively as it passed through the alignment coils. This adjustment was 

performed until the gun was made to operate back again in the saturation regime. 

• Objective aperture alignment: If the image was found to move on the screen while 

manually focusing, the objective aperture needs to be aligned. The X and Y fine controls 

knobs on the SEM that control the objective aperture position were adjusted suitably until 

the motion of the image on the screen while focusing was reduced substantially. 

• Astigmatism Correction: If the image was found to be focused asymmetrically or with 

stretching or streaks, then astigmatism correction had to be performed. The X and Y 

stigmator coils were adjusted manually until the distortion of the image on the screen was 

minimized. 
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After the preliminary adjustments were performed, the sample was then ready for 

observation. High quality SEM images were acquired using appropriate beam voltages and 

magnification as required for analysis. The images were tagged using the “Tag” function with 

the operating conditions i.e, beam voltage, magnification, working distance etc., for future 

reference. The brightness and contrast were appropriately adjusted in order to get an image with 

well-defined features in shades of grey avoiding regions of saturation. The salient dimensions 

could also be measured on the image using the “Measure” function. The “Scan 1” and “Scan 2” 

modes were suitable for quick imaging needs like alignment, locating the sample etc.              

The actually SEM images used for analysis were taken using either the “Scan 4” or “Photo 

mode” at the maximum possible of resolution of 1280 x 960 pixels. This mode provided the best 

possible image quality by decreasing the noise. 
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CHAPTER 3 

RESULTS & DISCUSSION 

3.1 Effect of Combustion on Loose Density 

 The effect of combustion on the morphology and macroscopic properties of coal particles 

was analyzed by comparing the loose density of the coal particles before and after combustion 

process as they pass through the flame sheet. The details of the loose density analysis performed 

on the coal particles are presented in Table 3.1.  

Sample 
No. 

Sieve 
Number 

Mean 
Diameter 
DM (μm) 

Loose Density 
before combustion 

(g/cc) 

Loose Density 
after combustion 

(g/cc) 

% Change in 
Loose Density 

(%) 
1 18 - 20 927 0.733 0.732 -0.096 
2 20 - 25 782 0.735 0.733 -0.231 
3 25 - 30 655 0.738 0.736 -0.277 
4 30 - 35 550 0.743 0.741 -0.292 
5 35 - 40 461 0.750 0.747 -0.408 
6 40 - 45 388 0.755 0.751 -0.476 
7 45 - 50 326 0.763 0.758 -0.590 
8 50 - 60 274 0.772 0.767 -0.600 
9 60 - 70 231 0.775 0.771 -0.531 

10 70 - 80 195 0.781 0.776 -0.626 
11 < 80 178 0.784 0.779 -0.750 

Table 3.1: Loose density analysis of coal samples before and after combustion. 

 From this data, it is evident that the loose density of coal particles was dependent on the 

particle size to some extent. The loose density of the coal particles was found to increase 

progressively with decreasing particle size. The coal sample with a relatively larger mean 

diameter of 927 μm had the minimum loose density, 0.733 g/cm3 whereas fine coal dust with 

mean diameter of less than 178 μm had the maximum loose density, 0.784 g/cm3.                        

This corresponded to an increase of 7.08 % in terms of loose density. This increase in loose 

density of coal particles with progressively decreasing particle size can be explained in terms of 

porosity or void fraction. Void fraction or Porosity is a measure of the void spaces in a sample 

and is defined as the ratio of the total volume of voids to the total volume occupied by the 

sample. 
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    𝜑𝜑 = 𝑇𝑇𝑜𝑜𝑃𝑃𝑀𝑀𝑝𝑝 𝑣𝑣𝑜𝑜𝑝𝑝𝑣𝑣𝑚𝑚𝑝𝑝 𝑜𝑜𝑜𝑜 𝑣𝑣𝑜𝑜𝑝𝑝𝑑𝑑 𝑀𝑀𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝑀𝑀
𝐵𝐵𝑣𝑣𝑝𝑝𝐵𝐵  𝑉𝑉𝑜𝑜𝑝𝑝𝑣𝑣𝑚𝑚𝑝𝑝

= 𝑉𝑉𝑣𝑣
𝑉𝑉𝑡𝑡

                                          (3.1) 

           𝜑𝜑 = 1− 𝜇𝜇𝑜𝑜𝑜𝑜𝑀𝑀𝑝𝑝 𝑑𝑑𝑝𝑝𝑟𝑟𝑀𝑀𝑝𝑝𝑃𝑃𝑠𝑠
𝑃𝑃𝑀𝑀𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑝𝑝𝑟𝑟𝑀𝑀𝑝𝑝𝑃𝑃𝑠𝑠

                                                     (3.2) 

 For coarser particles, in an un-compacted sample like the one used for loose density 

measurements, the particles tend to form bigger voids within the sample that led to increase in 

the void fraction. This increase in void fraction due to larger particle size reflects as a direct 

decrease in the loose density of coarser coal samples. On the other hand, finer particles tend to 

form numerous voids that are much smaller and thereby result in an overall decreased void 

fraction. Thus finer coal samples had a slightly higher loose density owing to the decreased void 

fraction when compared to coarser coal samples. 

Similar loose density analysis was also performed on the ash particles that were collected 

after the coal samples were subjected to combustion by entraining them into a methane jet flame.  

From Table 3.1, it can be clearly seen that there was no significant change in the loose density of 

coal particles as a result of combustion. This is attributed to the small residence time on the order 

of 0.01 s for the coal particles inside the flame front in our experiments. This is about an order of 

magnitude less than the time required for complete devolatilization of pulverized coal as reported 

by I.W. Smith [34]. In essence, the combustion process hardly modified the macrostructure of 

these particles. Hence there was no considerable change in the loose density of the coal particles 

after combustion. But it is also evident that, the loose density of finer coal samples was affected 

to a relatively large extent due to the combustion process when compared to those of coarser coal 

samples. The loose density of the coal sample with a mean diameter of 927 μm changed by 

hardly 0.10 % to 0.732 g/cm3 as a result of the combustion process. On the other hand the loose 

density of the fine coal dust with mean diameter of less than 178 μm changed by almost 0.75 % 

to 0.779 g/cm3 after combustion. The variation of loose density of the coal particles before and 

after the combustion process for different samples based on mean diameter is presented in           

Figure 3.1. It is to be noted that the variation in the loose density of the coal particles as a 

function of the mean particle diameter before and after combustion can be closely approximated 

by a second order polynomial fit. The loose density of the coal particles after combustion was 

found to be hardly dependent on the nature of the flame i.e, diffusion flame, premixed flame etc. 

This is again due to the fact that the residence time in all these cases were so small (~ 0.01 s) that 
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the type of combustion process hardly mattered in modifying the macrostructure of the coal 

samples.  

 

 

Figure 3.1: Comparison of loose density of coal particles before and after combustion as a 

function of particle diameter. 

 

3.2 Effect of Particle Size on Entrainment Rate 

 To study the effect of particle size on entrainment rate, the hopper arrangement was filled 

with a coal sample of known mean diameter and the flow rate of air was increased in steps by 

using Omega FL-3840 G rotameter. The entrainment rate of the coal particles was calculated by 

collecting the entrained coal particles on a collection tray fitted on the hopper arrangement over a 

fixed period of time i.e., 20 s. This was then weighed on an Ohaus JR 120 Precision Standard 
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Electronic Balance to evaluate the entrainment rate. Each set of experiments was repeated five 

times to ensure consistency. The same procedure was repeated for all the 11 different samples 

that were earlier prepared based on particle size.  

The upstream pressure regulator which was connected to the Omega FL-3840 G 

rotameter that supplied air for the entrainment process was maintained at a fixed gauge pressure 

of 50 psi. The entrainment experiments were then carried out at ambient temperature of 75° F. 

For each of the coal samples, the air flow rate was carefully adjusted until a significant amount 

of coal particles got entrained in the flow and were collected in the collection pan. From that 

point on, the flow rate of air was increased in steps to study the total entrainment rate of coal 

particles as a function of flow rate of air. 

In order to calculate the actual volumetric flow rate of air under standard conditions of 

pressure and temperature using the rotameter, certain correction factors were to be evaluated. 

These correction factors accounted for the operating conditions of the rotameter (50 psig and           

75°F) which were different from its original calibrated conditions (14.7 psia and 70°F).                 

The pressure correction factor (PCF) and the temperature correction factor (TCF) were computed 

using the following equations [35]: 

    𝑃𝑃𝑃𝑃𝑃𝑃 = �𝑃𝑃 (𝑝𝑝𝑀𝑀𝑝𝑝𝑀𝑀)
𝑃𝑃0 (𝑝𝑝𝑀𝑀𝑝𝑝𝑀𝑀)

= �𝑃𝑃𝑔𝑔+14.7
14.7

     (3.3) 

    𝑇𝑇𝑃𝑃𝑃𝑃 = �𝑇𝑇0 (°R)
𝑇𝑇 (°R)

= � 530
𝑇𝑇+460

     (3.4) 

The corrected volumetric flow rate of air under standard conditions of pressure and 

temperature was then computed based on the correlation charts provided by the manufacturer 

and the evaluated correction factors as follows: 

               𝑄𝑄′ = 𝑄𝑄0 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑇𝑇𝑃𝑃𝑃𝑃      (3.5) 

Further by evaluating the density of air at the standards conditions, the volumetric flow 

rate of air was converted into an equivalent mass flow rate of air. 

 

29 
 



The entrainment rate of coal particles (grams per minute) as function of the air mass flow 

rate (grams per minute) for various sizes of coal particles ranging from sieve size: 18-20 to             

sieve size: < 80 is presented in Figures 3.2 - 3.5. From the Figures, it is evident that the particle 

entrainment rate was mainly dependent on the flow rate and the size of coal particles.              

In general, as the flow rate of air was increased, the particle entrainment rate also 

increased due to the increased Venturi effect. For all the cases considered in our analysis,                                       

the entrainment rate followed an almost linearly increasing trend. This is indicated in the graphs 

by the near perfect correlation with a linear fit. The error bars in the graphs correspond to one 

unit of standard deviation. The experimental results on particle entrainment rate were found to be 

fairly in good agreement with similar studies carried out by Xie et al. [21], in terms of the 

observed trend: linearly increasing entrainment rate with respect to air flow rate. 

For the ease of comparison, the entrainment rate for coarse (Sieve size: 18-20), mid-size                

(Sieve size: 40-45) and fine coal particles (Sieve size: < 80) is presented in Figure 3.6. It can be 

seen that the minimum flow rate at which significant entrainment occurs decreased considerably 

with decreasing particle size. For coarser particles, minimal entrainment happened for flow rates 

less than 21 g/min, while for finer particles significant entrainment happened even at a very low 

flow rate of around 6 g/min. For mid-size coal particles, the minimum entrainment flow rate had 

a nominal value of around 10 g/min.  

The pressure drop developed as result of the Venturi effect was used to overcome partly 

the frictional losses due to the interaction of the coal particles with holes on the circumference of 

the tube with and to carry the sheer inertia of the coal particles into the flow.  It is evident that for 

particles with a larger mean diameter, due to the increased frictional and inertia effects, a larger 

pressure drop was required to cause significant entrainment of particles onto the flow. This large 

pressure drop requirement resulted in an increase in the minimum flow rate of air required for 

significant entrainment of coarser particles. However it is to be noted that beyond this point of 

minimum flow rate for significant entrainment, the entrainment rate for all the cases increased 

linearly. The slopes of these linear dependencies increased with decreasing particle size due to 

significant decrease in friction and inertia effects. As a result of this, smaller particles tend to get 

entrained in the flow much more easily when compared to larger particles for the same flow 

conditions.  
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The mass loading or the particle loading for these flows as function of the particle 

diameter is presented in Figure 3.7. The error bars on the graph represent one unit of standard 

deviation. Based on the actual entrainment data collected during the experiments, mass loading 

factor was computed as: 

𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝ℎ𝑀𝑀𝑀𝑀𝑝𝑝 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑔𝑔𝑀𝑀𝑀𝑀 𝑝𝑝ℎ𝑀𝑀𝑀𝑀𝑝𝑝

= 𝑚𝑚𝑝𝑝

𝑚𝑚𝑔𝑔
    (3.6) 

 It can be seen that the mass loading as a function particle diameter can be fitted closely to 

a second order polynomial. Since the mass loading increased significantly with decreasing 

particle diameter, it is evident that global turbulent modifications can be easily induced for flows 

entraining finer coal particles than those entraining coarser coal particles.  

 

Figure 3.2: Coal particle entrainment rate as a function of air flow rate for different particle sizes 

(a) Sieve size: 18-20 (b) Sieve size: 20-25 (c) Sieve size: 25-30. 
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Figure 3.3: Coal particle entrainment rate as a function of air flow rate for different particle sizes 

(a) Sieve size: 30-35 (b) Sieve size: 35-40 (c) Sieve size: 40-45. 
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Figure 3.4: Coal particle entrainment rate as a function of air flow rate for different particle sizes 

(a) Sieve size: 45-50 (b) Sieve size: 50-60 (c) Sieve size: 60-70. 
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Figure 3.5: Coal particle entrainment rate as a function of air flow rate for different particle sizes 

(a) Sieve size: 70-80 (b) Sieve size: < 80. 
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Figure 3.6: Comparison of coal particle entrainment rate as a function of air flow rate for 

particle sizes (a) Sieve size: 18-20 (b) Sieve size: 40-45 (c) Sieve size: < 80. 
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Figure 3.7: Mass loading as a function of particle diameter based on (a) actual entrainment data          

(b) slope of the linear fit. 

 

 

 

 

 

36 
 



3.3 Particle Streak Velocimetry 

 In order to compute the velocity of the coal particles in relation to the flow field,            

Particle Streak Velocimetry (PSV) analysis was carried out. To obtain velocity information,         

a series of high-resolution images captured using the Nikon D5100 camera with a relatively long 

exposure time was analyzed using ImageJ software. The exposure time of the camera was 

suitably adjusted so that the moving particles in each frame appeared as streaks rather than 

individual particles. Using these streaklines, Particle Streak Velocimetry analysis was carried out 

to evaluate the velocity of the particles in relation to the flow field. The velocity measurements 

were taken at a plane coincident with the center of the tube. 

 The typical steps involved in image processing using ImageJ software for a selected 

image to evaluate the velocity of the particles using the method of Particle Streak Velocimetry is 

shown in Figure 3.8. The raw image as taken by the Nikon D5100 before any processing,            

the converted grey scale image with pixel intensities ranging from 0 to 255, and the final 

processed image after inversion using binary transformation is presented in Figure 3.8 (a), (b) 

and (c) respectively.  

By measuring the length of each streakline which now corresponded to the distance 

travelled by the particle in the selected exposure time, velocity information can easily be 

extracted from the images. For a typical exposure rate of 1/800 s, an uncertainty of 1 pixel in 

measuring the length of a streakline corresponded to an error of 0.01 m/s in terms of velocity.  

Zooming in on the streaklines closely for accurate length measurements coupled with ImageJ’s 

exceptional processing abilities made this method, a fairly adequate and reliable velocity 

measurement technique. 
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Figure 3.8: Typical steps involved in image processing using Image J for PSV. (a) Raw image 

captured by Nikon D5100 (b) Corresponding grey scale image (c) Inverted image after Binary 

transformation displaying streaks for PSV analysis. 
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In order to provide an overall picture of the PSV analysis performed, two important 

parameters namely the particle stoppage time τs and the Stokes number [19] associated with the 

flow were calculated based on Equations 3.7 and 3.8 respectively. The particle density ρp and the 

mean particle diameter dp were taken based on the values tabulated earlier in Table 3.1.            

The inner diameter of the tube was considered to be the characteristic length scale L in order to 

evaluate the Stokes number. 

𝜏𝜏𝑝𝑝 = 𝜌𝜌𝑝𝑝𝑑𝑑𝑝𝑝2

18𝜇𝜇
     (3.7) 

      𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜏𝜏𝑝𝑝𝑈𝑈
𝜇𝜇

     (3.8) 

In our case, the mean flow velocity U was computed to be 2.5 m/s based on the flow rate 

recorded by the rotameter, the cross sectional area of the tube and the gas density.                      

The stoppage time and the Stokes number for various coal samples are presented as function of 

the mean particle diameter in Figure 3.9 and 3.10 respectively.  

From Figure 3.10, it is clear that for all coal samples, the Stokes number is sufficiently 

large (namely Stk≫ 1), hence the particle velocity differs significantly from the fluid velocity.                   

This resulted in the particles diverting rather substantially from the fluid stream path and thereby 

leading to significant momentum transfer from the particles to the fluid. Thereby, the inertia 

effects of the particles become more prevalent and exert a significant influence on the 

background fluid. This finding was supported by the particle velocities measured using Particle 

Streak Velocimetry technique.  Figure 3.11 shows the variation of particle velocity as function of 

Stokes number for a mean flow velocity of 2.5 m/s. The error bars shown on the graphs represent 

one unit of standard deviation. It can be seen that even the smallest of the coal particle travelled 

at a sufficiently low velocity when compared to the velocity of the surrounding gas that can lead 

to significant momentum transfer from the particles to the fluid. 
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Figure 3.9: Relaxation time as a function of particle diameter. 
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Figure 3.10: Stokes number as a function of particle diameter for a mean                                          

flow velocity of 2.5 m/s. 
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Figure 3.11: Average Particle velocity measured by PSV as a function of Stokes number for                      

a mean flow velocity of 2.5 m/s. 
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3.4 Combustion Phenomenology 

In order to establish combustion phenomenology of the coal-laden jets, high-resolution 

images taken using the Nikon D5100 and high-speed videos taken using the Phantom v.7.0 were 

analyzed. This was done so as to reveal the mode of interaction of the entrained coal particles 

with the flame. High-resolution images showing the non-diluted CH4 diffusion flame,                     

the weakly diluted CH4 diffusion flame (CH4:N2 ~ 1:1 by mass) and the strongly diluted CH4 

diffusion flame (CH4:N2 ~ 1:2.5 by mass) are presented in Figure 3.12 (a), (b) and (c) 

respectively. It can be clearly seen that the pure diffusion flame was strongly luminescent due to 

soot formation. Diluting the flame with nitrogen decreased soot formation. By carefully adjusting 

the nitrogen flow rate, soot formation could be completely eliminated which resulted in               

achemi-luminescent blue diffusion, where the interaction of the entrained coal particles with the 

flame was studied. 

High-resolution images from the non-diluted, the weakly diluted (CH4:N2 ~ 1:1 by mass) 

and the strongly diluted (CH4:N2 ~ 1:2.5 by mass) CH4 diffusion flames are presented in              

Figure 3.13 (a), (b) and (c) respectively. Once flow is laden with coal particles due to 

entrainment caused by Venturi effect, the luminosity of the flame increased. This was because 

the coal particles started to incandesce as they crossed the flame front.  The coal particles are 

seen as brightly incandescent streaks once they cross the flame front as shown in Figure 3.13. 

However, since the coal particles did not incandesce until they were close enough to the 

flame front, Figure 3.13 does not reveal any information on how coal particles interact with the 

flame front as soon as they get entrained in the flow.  To make the coal particles visible as they 

approached the flame front, an Argon Ion laser sheet was utilized as described in section 2.5.   

The coal particles that were on the plane of the laser sheet scattered light thereby making them 

visible as shown in the images presented in Figures 3.14 and 3.15. The laser sheet shows the 

trajectory of the coal particles right from the tip of the burner to the point where they start to 

incandesce as they cross the flame front. It is clear from Figure 3.14, that the trajectory of the 

coal particles is hardly affected by the presence of the flame front. The coal particles appear to 

shoot right through the flame front without any change in their initial trajectory as they are 

entrained in the flow. And in this process, once they approach the flame front, the temperature of 
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the particle increases and they become luminescent. The coal particles start to burn and continue 

to get sintered as they traverse the flame front as shown in Figure 3.15. 

Successive frames from one of the high-speed videos captured using the Phantom v.7.0 is 

shown in Figure 3.16. These high-speed snapshots again clearly show that the coal particles 

shoot right through the flame front and in the process they start to burn thereby becoming 

incandescent. Using a Fotodiox Canon EOS Macro Extension Tube Set Kit for Extreme               

Close-up, high-speed videos focusing on the region where they coal particles interact with the 

flame front was captured. Successive frames from one such video is presented in Figure 3.17. 

The trajectory of the coal particles before and after the flame front can be clearly seen in these 

images. It is evident from Figure 3.17, that the trajectory of the coal particles was unaffected by 

the presence of the flame front as the particles simply appear to traverse across the flame front. 

Also the particles, after crossing the flame front are found to be more luminescent than before, 

which implied that the coal particles started to sinter as a result of interacting with the flame 

front that resulted in increased luminosity and they continued to burn as they cross the flame 

front. 

 A high-resolution image showing the acceleration of the coal particles as they approach 

the flame front is presented in Figure 3.18. It can be seen that small streaklines which correspond 

to individual coal particles become longer as they near the flame front. This means that the 

particles in the given exposure time of the camera happen to travel a longer distance as they 

approach the flame front. This implied that the coal particles happen to experience a significant 

increase in velocity as they approach the flame front i.e., the coal particles experience 

acceleration. Successive frames from the high-speed video depicting the acceleration of the coal 

particle approaching the normal flame front and the side of the flame are presented in                  

Figures 3.19 and 3.20 respectively. The red circle marked on the image tracks the streakline of 

an individual coal particle across different frames i.e., different instances of time. It can be 

clearly seen that the streamline get elongated in the successive frames owing to the increased 

distance travelled by the particle as it get accelerated towards the flame front. This acceleration 

of the coal particles as they approach the flame front can be attributed to the increase in the flow 

speed of coal-laden gas as it moves towards the flame. The gases get heated up as they approach 

flame front which results in a decrease in the density of the gases. Because of the decrease in 
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density, the gas has to accelerate towards the flame front in order to maintain a constant mass 

flow rate (conservation of mass). This acceleration in the carrier fluid is also partly transferred 

onto the entrained coal particles which also as result accelerate towards the flame front.              

Figure 3.20 shows an individual coal particle accelerating and luminescing as it interact with side 

of the flame.  

High-resolution images of the top view of the flame as the coal particles approaching and 

crossing the flame front is presented in Figures 3.21 and 3.22 respectively. From Figure 3.21,               

it is clear that the flame front gets punctured as result of the entrained coal particles shooting 

through the flame. The reason for this extinction is currently unclear.  It is however reasonable to 

assume that because of the small residence time, solid fuel combustion is not completed and the 

particles behave as almost inert, so extinction can be attributed to a combination of increased 

flame strain and heat losses to the inert particles. Once the coal particles cross the flame zone, 

they accelerate and are seen as bright luminescent streaks as shown in Figures 3.22. 
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Figure 3.12: (a) Non-diluted CH4 diffusion flame (b) Weakly diluted CH4 diffusion flame(c) 
Strongly diluted CH4 diffusion flame strongly diluted with N2. No laser sheet present. 
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Figure 3.13: Coal particles shooting through (a) Non-diluted CH4 diffusion flame                        
(b) Weakly diluted CH4 diffusion flame(c) Strongly diluted CH4 diffusion flame.                       

No laser sheet present. 

  

 

 

 

47 
 



 

Figure 3.14: Coal particles shooting through (a) Diffusion flame (b) Flame diluted with N2.   
Laser sheet present. 
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Figure 3.15: Coal particles interacting with the flame front (Laser sheet present). 
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Figure 3.16: High-speed snapshots showing coal particles as they shoot through the flame. 

Figure 3.17: High-speed snapshots showing the trajectory of coal particles as they shoot through 
the flame. 
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Figure 3.18: Coal particles accelerating as the approach the flame front (Laser sheet present). 
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Figure 3.19: High-speed snapshots showing coal particles accelerating as they approach the flame front. 

 

Figure 3.20: High-speed snapshots showing coal particles accelerating and interacting with the side of the flame front. 
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Figure 3.21: Top view of the flame showing the coal particles as they approach the flame front.                             
(No laser sheet present). 
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Figure 3.22: Top view of the flame showing the coal particles as they shoot through the                 
flame front. (No laser sheet present). 
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3.5 Particle Size Analysis 

3.5.1 Effect of Optical Properties of Coal on Particle Size Measurement 

 The Malvern RT 97 Spraytec droplet-size measurement instrument employs laser 

diffraction for particle size measurement. The system is capable of performing the particle size 

analysis either using the complete Mie theory or the Fraunhofer approximation, which is 

basically a simplified version of the Mie theory.  

Mie theory describes the scattering and absorption of electromagnetic radiation by 

spherical particles by providing complete solution to Maxwell equations. Mie theory uses the 

refractive index difference between the particle and the dispersing medium to predict the 

intensity of the scattered light. It also describes how the absorption characteristics of the particle 

affect the amount of light which is transmitted through the particle and either absorbed or 

refracted [36]. 

The Fraunhofer theory represents an approximation of the Mie theory. Fraunhofer 

approximation describes the portion of light deflection that occurs exclusively as a result of 

diffraction. For particles sufficiently large when compared to the wavelength of light,                         

the diffraction pattern in the far field can be determined according to the Fraunhofer theory by 

applying Huygens’s principle to the blocked wavefront, without reference to the particular 

optical properties of the blocking particle. One major advantage of Fraunhofer theory lies in the 

fact that no knowledge of the optical properties of the examined material is required. For particle 

diameters on the order of the wavelength of light, this approximation is inadmissible and the 

complete Mie theory must be utilized for the calculating particle size distributions [36].  

The Fraunhofer approximation represents the easiest model to set-up in the Spraytec 

systems as it does not require the user to provide any optical property information.  This is 

because the phase angle of the scattered light can be directly related to the particle size without 

using any of the optical properties. On the other hand the complete Mie theory requires the 

refractive index as one of the user input for computing the particle size distribution. The 

Fraunhofer approximation makes the following assumptions regarding the nature of the particles 

being measured: 
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• The particles being measured are spherical.  

• The particles being measured are opaque.  

• The particles are homogeneous. 

• Particles of all sizes scatter light with the same efficiency. 

• The suspension is dilute, such that the scattered light is measured before it is re-scattered 

by other particles.  

• Light is scattered only at narrow angles.  

• The refractive index difference between the particle and surrounding medium is infinite. 

 Particle size measurements for coal were performed using the simplified Fraunhofer 

approximation. The following considerations are to be kept in mind while using Fraunhofer 

approximation to measure particle size distribution [30]. 

• Particle Absorption: If the particles show some transparency (absorption < 0.2), then the 

Fraunhofer approximation will tend to yield inaccurate results for particles below 50 µm 

in size. If the absorption is high (> 0.2), good results may be obtained down to 2 µm in 

size, although this does depend on the refractive index. 

• Particle Refractive Index: If the refractive index difference between the particle and the 

medium which surrounds it is low (n-1 << 1), then the Fraunhofer model can show errors, 

even up to very large particle sizes (> 200 µm). 

• Particle Size: If the particle size distribution contains particles less than 2 µm in size then 

the Fraunhofer approximation will lead to an incorrect assessment of the fine particle 

fraction. 

For coal samples that were analyzed in our experiments, the particle absorption, 

refractive index and size were well within the limits of the above assumptions.  

• Particle Absorption: Pulverized coal particles are almost opaque and hardly show any 

transparency. The complex part of the refractive index indicates the amount of absorption 

loss as light passes through the material. For coal, this complex part ranges from around 

0.2 to 1.2 [31, 32], which is above the threshold limit of absorption required for the 

Fraunhofer approximation to work. Also since, most particles other than the only sample 

of fine coal dust were above 178 µm in terms of the particle diameter, fairly accurate 

results can be obtained even if absorption was less than 0.2.  
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• Particle Refractive Index: The real part of the refractive index of pulverized coal ranges 

from 1.6 to around 2.7 [31, 32]. This results in a considerable difference in the refractive 

index between the particle and the medium (air) which surrounds it, thereby minimizing 

the errors involved in particle size measurement using Fraunhofer approximation. 

• Particle Size: Since, most particles other than the only sample of fine coal dust were 

above 178µm in terms of the particle diameter which is much higher than the threshold 

limit of required particle size, Fraunhofer approximation will not lead to any incorrect 

assessment of the fine particle fraction. 

These justifications about the assumptions involved in the nature of particles were 

convincing enough to suggest the use of Fraunhofer approximation in the Malvern system to 

measure particle size distribution of coal particles. Thus the data obtained was reliable despite no 

optical properties being used for particle size analysis. The only caveat in this analysis is that 

both Mie theory as well as Fraunhofer approximation requires the particles to be spherical.               

Coal particles cannot be simply treated as spheres and Mie theory does not apply even when 

intensities are averaged over many particles [37]. But however SEM analysis done on particles 

reveal that most particles are almost spherical which makes this approximation a legitimate one. 

 Also some preliminary particle size distribution analysis was attempted using a PDA 

(Phase Doppler Anemometry) system. The objective was to compare two individual optical 

measurement techniques namely the PDA and the Malvern for particle size measurement of 

pulverized coal particles. The PDA can be operated in two modes: Refraction mode and 

Reflection mode. Since the coal particles were opaque, measurement could not be taken using 

the refraction mode. However data taken using the reflection mode was highly erratic and 

unreliable. The spherical validation that measures the sphericity of the particles was hardly 

around 5 %, whereas a minimum of 70 % was required in order for the system’s internal 

validation to classify the data as reliable and consistent. In addition to this, the particle size 

distribution generated a phase function that was scattered all around instead of the uni-modal 

distribution that was to be expected if the data had been reliable. Thus, based on the low 

spherical validation values, erratic and inconsistent data and scattered values of the phase 

function, it can be concluded that the PDA system simply cannot be used for non-spherical 

particles for size measurement. 
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3.5.2 Diffusion Flame 

Particle size distributions were obtained before and after combustion for all the 11 

different pre-sorted coal samples using the Malvern RT 97 Spraytec droplet-size measurement 

instrument by creating a coal-laden jet with the help of the experimental setup described in 

section 2.2. The Malvern system was used in the Fraunhofer approximation regime, which does 

not require any input of optical properties from the user for size distribution measurements.           

The Spraytec system was loaded with the calibration library ST45AIAC.cal which corresponded 

to a standard 450 mm lens on the detector side, a default opaque refractive index of 1.5+0.50i for 

the particles and a the refractive index of 1+0.00i for the surrounding air. 

The Malvern was operated in the flash mode; and data were acquired at a rate of 500 Hz 

over a time period of 2000 ms for each trial to get an average particle size distribution. The duty 

cycle was maintained at 50 % for all the experiments.  Before every experiment was conducted,         

a background and a reference noise signal were recorded. In order to minimize the effects of 

beam steering due to the flame, post-combustion particle size measurements were not carried out 

above the flame as the particles cross the flame zone. Instead, the burnt coal particles were 

collected once they passed through the flame and they were again entrained to create a jet now 

laden with burnt coal particles, which was used to determine the particle size distribution after 

combustion.  

Each experiment was repeated for at least five trials at a given set of conditions.          

The particle size distribution was then computed as the average of the five trials.                     

The mean volume percentages for each particle diameter for the different samples before and 

after combustion are presented graphically in this section. The error bars in the graph correspond 

to one unit of standard deviation. The abscissa for the graphs is the average between the lower 

and upper values of each particular bin size as recorded by the Malvern instrument. Detailed 

information on these bin sizes and the raw numeric data for each particle size distribution before 

after combustion along with the standard deviations from the five trials can be found in 

Appendix C. 
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The particle size distributions before and after combustion for the various sizes of coal 

particles ranging from sieve size: 18-20 to sieve size: < 80 is presented in Figures 3.23 - 3.33. 

From the figures, it is evident that the particle size distribution before and after combustion for 

almost all the samples is clearly uni-modal. The position of the uni-modal peak in each of the 

particle size distributions in terms of particle diameter is in good agreement with the average 

particle size diameter obtained previously through the sieving process. This good agreement in 

particle diameter from the Malvern size measurements and the sieving process can be considered 

that as a good indication that the Malvern size measurements are reliable and within the range of 

acceptable errors.  

It is to be noted that the uni-modal peak shifts progressively towards smaller particle 

diameters as one moves from Figure 3.23 to Figure 3.32, which indicates decreasing particle size 

of the coal samples. The only discrepancy in terms of the particle size distribution can be seen in 

Figure 3.33 for the case of fine coal dust. The mean diameter for this sample from the sieving 

process was estimated to be less than 178 μm, but however Malvern size distributions provide a 

uni-modal peak centered around 500 μm. However, there is also another small peak centered at 

around 170 μm which correlates well with the expected particle size diameter of the coal sample.  

This discrepancy in particle size distribution for the fine coal dust can be attributed due to 

the assumptions that were made earlier in employing Fraunhofer approximation for Malvern 

particle size measurements. This particular coal sample was near the limit of validity of the 

Fraunhofer approximation in terms of particle size (< 200 μm) [30]. The finest coal sample had a 

wide range of coal particles in terms of diameter ranging from a few microns to a few hundreds 

of microns. As discussed earlier in section 3.5.1, due to the smaller particle sizes in this sample, 

an incorrect assessment of fine particle fraction was to be expected. In addition to this, the 

calibration file ST45AIAC.cal used in the RT software included a default refractive index of 

1.5+0.50i for the particles. The Fraunhofer approximation basically assumes that the wave front 

is completely blocked so the higher the index of refraction the better. Though strictly speaking,              

Fraunhofer approximation is not applicable only in cases where the index of refraction of the 

particles is too small (n-1 << 1); in our case the relatively small difference between the refractive 

index of the particles and the surrounding medium (~ 0.5) could be a source of potential error as 
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the modifications imposed on the wavefront cannot be neglected. This could have led to 

significant errors in particle size measurements even for very large particle sizes (> 200 µm).  

When comparing the particle size distribution of coal particle before and after 

combustion in a pure CH4 diffusion flame, many interesting observations can be drawn.               

From Figures 3.23 - 3.33, it is clear that the particle size distributions before and after 

combustion are almost identical. It is also evident that the combustion process had a much 

pronounced effect on smaller coal samples (Sieve size: < 35) than on larger ones                             

(Sieve size: > 35). When considering the particle size distribution of a particular coal sample,                

it is clear that the combustion process decreased the volume fraction for both the smallest and the 

largest size coal particles in the sample. The decrease in the volume fraction of smaller coal 

particles was significant when compared to those of larger coal particles. On the other hand, 

there was always an increase in the volume fraction of the mid-sized particles in each of these 

distributions. This can be attributed to two different phenomena namely, the larger coal particles 

started to sinter and continued to burn as they crossed the flame front, leading to a decreased 

particle diameter; meanwhile some of the finer coal particles were either burnt completely or 

agglomerated thus generating larger-diameter particles. These two processes led to an increase in 

the volume fraction of mid-sized particles in almost all the samples. 

From the results, it is also evident that the combustion process hardly changed the mean 

particle diameter. This was due to the incomplete devolatilization of coal particles that led to 

hardly any change in mean particle diameter as result of combustion. For pulverized coal flames, 

it has been reported by I.W. Smith [34] that the time required for complete devolatilization is in 

the order of 0.1 s; but in our case, the residence time for the coal particles inside the flame front 

is estimated to be on the order of 0.01 s which results in only partial devolatilization, causing no 

change in mean particle diameter. This estimate was acquired by dividing an average particle 

speed with the thickness of the flame zone that was approximated as the thickness of the 

luminous zone in flame visualizations. 
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This finding is also well supported by the negligible changes observed in loose density 

after the combustion process. As discussed earlier in section 3.1, the loose density was found to 

be a function of the particle diameter. Since the particle diameter remained almost unchanged 

because of the small residence time, the loose density after combustion did not vary by any 

significant extent. Also, a slight shift was observed in the particle size distribution in terms of 

mean particle diameter for finer coal samples (Sieve size : < 70) towards smaller particle sizes 

after combustion. That shift was reflected as a significant change in the corresponding loose 

density measurements made after combustion for these samples when compared to coarser coal 

samples.  

 

 

Figure 3.23: Particle size distribution of coal particles before and after combustion.                                            
(CH4 diffusion flame; Sieve size: 18-20). 
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Figure 3.24: Particle size distribution of coal particles before and after combustion.                                              
(CH4 diffusion flame; Sieve size: 20-25). 
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Figure 3.25: Particle size distribution of coal particles before and after combustion.                                              
(CH4 diffusion flame; Sieve size: 25-30). 
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Figure 3.26: Particle size distribution of coal particles before and after combustion.                                              
(CH4 diffusion flame; Sieve size: 30-35). 
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Figure 3.27: Particle size distribution of coal particles before and after combustion.                                              
(CH4 diffusion flame; Sieve size: 35-40). 
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Figure 3.28: Particle size distribution of coal particles before and after combustion.                                              
(CH4 diffusion flame; Sieve size: 40-45). 

  

 

 

 

66 
 



 

 

 

 

 

 

Figure 3.29: Particle size distribution of coal particles before and after combustion.                                              
(CH4 diffusion flame; Sieve size: 45-50). 
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Figure 3.30: Particle size distribution of coal particles before and after combustion.                                              
(CH4 diffusion flame; Sieve size: 50-60). 
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Figure 3.31: Particle size distribution of coal particles before and after combustion.                                              
(CH4 diffusion flame; Sieve size: 60-70). 
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Figure 3.32: Particle size distribution of coal particles before and after combustion.                                              
(CH4 diffusion flame; Sieve size: 70-80). 
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Figure 3.33: Particle size distribution of coal particles before and after combustion.                                              
(CH4 diffusion flame; Sieve size: < 80). 
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3.5.3 Premixed Flame 

In order to compare the effect of nature of the flame on particle size distribution of coal 

particles before and after combustion, two representative coal samples namely sieve size: 40-45 

and < 80 were selected for analysis. These coal samples were then entrained and subjected to the 

following types of premixed flames: 

• CH4/air premixed flame at stoichiometric conditions (φ = 1). 
• CH4/O2/CO2 premixed flame at stoichiometric conditions (φ = 1). 
• CH4/O2 premixed flame at stoichiometric conditions (φ = 1). 

In addition to maintaining the air-fuel ratios of these flames at stoichiometric conditions, 

it was ensured that the CH4/air and the CH4/O2/CO2 premixed flame had the same adiabatic 

flame temperature by suitably adjusting the amount of CO2 in the combustible mixture.                

The relative proportion of the gases in the combustible mixture required in order to maintain 

constant adiabatic flame temperature was evaluated using a chemical equilibrium solver GASEQ 

by iteration. The mole fractions of the constituent gases in the premixed flame and the adiabatic 

flame temperatures are presented in Table 3.2. 

S.No
. 

Type of 
Premixed 

flame 

Adiabatic 
Flame 

Temperature 
(K) 

Mole 
Fraction of 

CH4 

Mole 
Fraction 

of N2 

Mole 
Fraction 

of O2 

Mole 
Fraction 
of CO2 

1 CH4/air 2226.4 0.095 0.715 0.190 - 
2 CH4/O2/CO2 2226.4 0.139 - 0.277 0.584 
3 CH4/O2 3053.9 0.333 - 0.667 - 

Table 3.2: Adiabatic flame temperature and mole fraction of constituent gases in the 

combustible mixture for various premixed flame types based on GASEQ. 

The particle size distributions before and after combustion for coarse (Sieve size: 40-45) 

and fine (Sieve size: < 80) coal particles presented in Figure 3.34 and 3.35 respectively.                 

It is evident from these graphs, that the particle size distributions obtained with the premixed 

flame is qualitatively similar to those obtained with the diffusion flame. This can be attributed to 

similar residence times (~ 0.01 s) associated with both types of flames.  
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The variation in particle size distribution was found to be more significant in case of finer 

coal particles. Similar to what was observed with the diffusion flame, there was a decrease in the 

volume fraction of both smaller and larger size coal particles and a nominal increase in the 

volume fraction of mid-sized particles. The particle size distribution for the premixed CH4/air 

and CH4/CO2/O2 flames were almost identical. This was to be expected due to same adiabatic 

flame temperatures (2226 K) in both the cases.  However for the CH4/O2 premixed flame, the 

variation in the particle size distribution after combustion was more pronounced. There is a 

slightly higher decrease in volume fraction for all diameters as shown in Figure 3.35. This was 

due to the fact that the coal particles in the case of CH4/O2 premixed flame was subjected to a 

slight higher adiabatic flame temperature (3053 K), that resulted in increased burning rate 

resulting in further decrease in particle size when compared to other premixed flames. 

 

 

Figure 3.34: Particle size distribution of coal particles before and after combustion.                                              
(CH4/air, CH4/O2/CO2, CH4/O2 premixed flames; Sieve size: 40-45). 
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Figure 3.35: Particle size distribution of coal particles before and after combustion.                                              
(CH4/air, CH4/O2/CO2, CH4/O2 premixed flames; Sieve size: < 80). 
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3.6 SEM Analysis 

 The morphological changes induced on the macrostructure and microstructure as result of 

combustion was studied by analyzing selected samples of coal particles using SEM imaging.             

SEM photographs taken on these samples before and after the combustion process were 

compared to reveal any interesting changes in the morphology of coal particles due to 

combustion. It is remarkable to note how different the effect on macro and microstructure is. 

 SEM images comparing the macrostructure of the coal particles for selected sizes before 

and after combustion are presented in Figures 3.36 - 3.39.  From these images, it is evident that 

the macrostructure of the coal particles was not affected to any significant extent due to the 

combustion process. This is attributed to the fact that the residence time for the coal particles 

inside the flame front was so small, that the particles did not have sufficient time to interact with 

the flame. So in spite of the particles undergoing a thermal shocking as they crossed the flame 

front; the small residence time prevented any permanent noticeable change on the macrostructure 

of these particles after combustion. The images presented in Figures 3.36 and 3.37, reveal that 

there is hardly any noticeable change in macrostructure after combustion for comparatively 

coarser coal particles. The coal particles even after combustion retained their sharp edges and 

angular features similar to that of unburnt coal particles. But on close observation it can be seen 

that the surface of the coal particles after combustion was less corrugated with fewer surface 

irregularities when compared to the one before combustion. On the other hand, the SEM images 

presented in Figures 3.38 and 3.39 reveal a few conspicuous changes in the overall 

macrostructure of the coal particles after combustion. The coal particles after combustion were 

more rounded with a comparatively smoother surface in contrast to the highly angular edges and 

corrugated surfaces before combustion. It is also interesting to note that, especially in the images 

presented in Figures 3.39 that many of the finer coal particles had completely vanished after 

combustion. This was due to the fact that these particles were too small that they had either got 

burnt completely or had fused together into larger particles due to the combustion process. 

SEM images comparing the microstructure of the coal particles for selected sizes before 

and after combustion are presented in Figures 3.40 - 3.43. From the images, it can be seen that 

the microstructure of the coal particles reveal a completely different picture in terms of the 

drastic changes that are evident as a result of combustion. It is clearly seen that the surface of the 
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coal particles after combustion lacked many of the surface features and embedded smaller 

particles that were present before combustion. Also the surface of the coal particles after 

combustion is pockmarked with minute holes. These holes referred to as “blow holes” are caused 

as a result of rapid devolatilization of volatiles as the coal particles interact with the flame front. 

The rapid devolatilization process creates adequate internal pressure to rupture the surface of the 

coal particle thereby generating a blow hole. In addition to the formation of blow holes, some 

particles also showed signs of plastic deformation as result of combustion.  These findings seem 

to be in good agreement with the observations made earlier by Hertzberg et al. [11].                         

The plastic deformation observed in certain cases has been theorized as the result of rapid 

heating of coal particles that cause them to pyrolyze, soften or melt into a plastic phase.          

The heavier products of pyrolysis are liquid that held together by surface tension forces causing 

them to assume a spherical shape. Other SEM images revealing some very interesting features 

about the morphology of coal particles as a result of combustion are presented in                       

Figures 3.44 - 3.47. Also Figure 3.48 shows SEM images of cenospheres, a characteristic 

formation seen in coal combustion. 

Since the macrostructure looks unaffected and the measured loose density does not 

change much, it is reasonable to conclude the combustion process of such entrained coal 

particles is a surface phenomenon. It looks like the generation of these “blow holes” takes a long 

time, much longer than the residence time in the flames. Hence, in order for a particle to volatize 

completely, enough time has to be provided for this process to be completed.               
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Figure 3.36: SEM photographs comparing the macrostructure of coal particles (Sieve size: 18-20) before (left) and after (right) 

combustion. 
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Figure 3.37: SEM photographs comparing the macrostructure of coal particles (Sieve size: 40-45) before (left) and after (right) 

combustion. 
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Figure 3.38: SEM photographs comparing the macrostructure of coal particles (Sieve size: 70-80) before (left) and after (right) 

combustion. 
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Figure 3.39: SEM photographs comparing the macrostructure of coal particles (Sieve size: < 80) before (left) and after (right) 

combustion. 
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Figure 3.40: SEM photographs comparing the microstructure of coal particles (Sieve size: 18-20) before (left) and after (right) 

combustion. 
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Figure 3.41: SEM photographs comparing the microstructure of coal particles (Sieve size: 40-45) before (left) and after (right) 

combustion. 
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Figure 3.42: SEM photographs comparing the microstructure of coal particles (Sieve size: 70-80) before (left) and after (right) 

combustion. 
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Figure 3.43: SEM photographs comparing the microstructure of coal particles (Sieve size: < 80) before (left) and after (right) 

combustion.
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Figure 3.44: SEM photograph revealing a series of blow holes on the surface after combustion. 

 

 

Figure 3.45: SEM photograph showing the collapse of a sintered surface after combustion.  
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Figure 3.46: SEM photograph showing a blow hole on a completely sintered surface after 

combustion.  

 

Figure 3.47: SEM photograph revealing the start of sintering process on the surface.  
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Figure 3.48: SEM photograph showing the formation of cenospheres as result of combustion.  
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CHAPTER 4 

SUMMARY, CONCLUSIONS & RECOMMENDATIONS 

4.1 Summary and Concluding Remarks 

In this study, a vertically oriented solid particle injector capable of creating a coal-laden 

particle jet utilizing the Venturi effect was designed and fabricated. The injector used the 

pressure drop created due to air flow across an orifice plate fitted inside a circular tube to entrain 

pulverized coal particles. The entrainment rate for different sizes of coal samples was studied as 

a function of mass flow rate of air. It was found that the entrainment increased almost linearly 

with mass flow rate of air. Also for a fixed flow rate, the entrainment rate was found to decrease 

with increase in particle size. It was also observed that there is a minimum flow rate for each 

particle size below which there is no significant entrainment of particles. Particle Streak 

Velocimetry was performed on coal-laden jets by tracking the streaklines of individual particles 

using the ImageJ software of the National Institutes of Health. It was observed that due to the 

large Stokes number associated with these flows, the particles deviated substantially from the 

fluid flow field resulting in significant momentum transfer from the coal particles to the 

surrounding fluid. 

The interaction of entrained coal particles with the flame front was studied.                       

High-resolution still images and high-speed videos were taken in order to establish the 

combustion phenomenology. It was concluded that the trajectory of the coal particles was 

unaffected by the presence of the flame front. The coal particles shot through the flame front and 

punctured it; the extinction of the flame front was attributed to a combination of increased flame 

strain and heat loss to the solid coal particles. The coal particles began to sinter and continued to 

burn as they crossed the flame. Despite no change in trajectory, clear acceleration of coal 

particles was observed as they approached the flame front. This was due to the increase in 

velocity of the fluid; as the gases approached the flame front, the velocity of the gas had to 

increase in order to compensate for the decreasing gas density due to the increase in temperature. 
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 The effect of combustion on the macrostructure of entrained coal particles was studied 

by analyzing the loose density and particle size distribution of coal particles before and after 

combustion using a CH4 diffusion flame. It was observed that there was no significant change in 

the loose density of the coal particles after combustion and that the mean diameter of the 

particles remained unchanged during passage through the flame. This hypothesis was confirmed 

by the particle size distributions of the coal particles obtained before and after combustion using 

Malvern RT 97 Spraytec droplet-size measurement instrument. The Fraunhofer diffraction 

approximation was used to obtain the particle size distribution thereby circumventing the lack of 

knowledge of the refractive index of pulverized coal particles. The measurement unambiguously 

showed that the mean particle diameter of the particles was almost unaffected by the combustion 

process; however a clear decrease in the volume fraction of smaller and larger coal particles was 

observed. Also, in all these distributions, a slight increase in the volume fraction of mid-sized 

particles was observed. This was due to the decrease in diameter of larger particles and/or 

agglomeration of smaller particles as a result of combustion. It can be thus concluded that the 

coal particles undergo only partial devolatilization due to the small residence times within the 

flame (~ 0.01 s) as  opposed to much larger time scales required for complete devolatilization            

(~ 0.1s). The effect of the nature of flame on the combustion of coal particles was also studied by 

analyzing the effect of premixed CH4/air, CH4/O2/CO2 and CH4/O2 flames on selected 

representative sizes of coal particles. It was found that the particle size distributions were 

qualitatively similar due to similar residence times in all these flames. However a slight decrease 

in the volume fraction for all particles, independent of size was observed in the premixed case 

especially in the CH4/O2 case when compared with the non-premixed case. This effect was more 

pronounced in the case of finer coal particles.  This was due to the increased rate of burning of 

coal particles in the CH4/O2 case as a result of higher adiabatic flame temperature due to the lack 

of dilution.  

Comparison of SEM images taken before and after combustion revealed a completely 

different picture in terms of microstructure of coal particles. The surface irregularities that were 

observed before combustion were entirely wiped out after combustion. In addition, the entire 

surface of the coal particles was seen to be pockmarked with “blow holes”, which were created 

as a result of release of volatile gases during the devolatilization of coal particles. The internal 

pressure generated during the combustion process caused the sintered surface of the coal 
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particles to rupture leaving behind these characteristic surface features. Negligible change in 

terms of loose density and mean particle diameter coupled with SEM images proved that the 

combustion of such entrained coal particles is a surface phenomenon because of the small 

residence times in the flames, which did not allow for substantial volatilization throughout the 

particle volume. 

 

4.2 Recommendations for Future Study 

The present study was successful in extracting both qualitative results in terms of 

characterizing combustion morphology of entrained coal particles in jet flames and quantitative 

results in terms of particle size distribution before and after combustion. However, it is clear that 

as result of insufficient residence time within the flame, the coal particles underwent only partial 

devolatilization. Hence, it is necessary to investigate the possibility of designing a burner capable 

of increasing the residence times of these particles within the flame for durations sufficiently 

long enough to cause complete devolatilization and char burnout.  

It was also evident that the effects of combustion were much more pronounced on finer 

coal particles as opposed to coarser ones. So studying the effect of combustion on much finer 

coal particles (tens of microns) is expected to provide more valuable insight on solid particle 

interaction with flames. 

Also this study presented a new outlook into pulverized oxy-coal combustion 

technologies. The possibility of developing a practical burner capable of entraining coal particles 

and/or fluidized biomass for combustion would be essential for oxy-coal technology in the long 

run. This is a crucial factor in oxy-coal technology as the burner should be capable of delivering 

high concentration CO2 ready for sequestration. Also, the prospects of designing a burner that 

would be capable of burning oxy-coal under pressure thereby improving not only the combustion 

efficiency but also the sequestration efficiency by delivering a steady stream of pressurized CO2 

gas is to be carried out. Such an oxy-coal burner design will be capable of drastically reducing 

the carbon footprint that is normally associated with coal combustion in existing conventional 

systems. The important finding of this thesis is that substantial residence times are needed for the 
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volatilization of coal particles.  This may be a challenge in the thin flames that are to be expected 

at high pressures. 
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APPENDIX A 

ROTAMETER CALIBRATION 

A.1 Omega FL-3839 ST 

  

 

Figure A.1: Calibration curves for Omega FL-3839 ST rotameter. 
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A.2 Omega FL-3840 G 

 

 

Figure A.2: Calibration curves for Omega FL-3840 G rotameter. 
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APPENDIX B 

PERSPECTIVE VIEW AT 45° TO LASER SHEET 

 

 

 

 

Figure B.1: Coal particles shooting through the flame front.                                                           

(Captured at a 45° angle to the laser sheet). 
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Figure B.2: Coal particles interacting with the flame front.                                                           

(Captured at a 45° angle to the laser sheet). 
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APPENDIX C 

PARTICLE SIZE DATA 

C.1 Malvern Bin Size 

Upper 
diameter 

(μm) 

Lower 
diameter 

(μm) 

Average 
diameter 

(μm) 

Upper 
diameter 

(μm) 

Lower 
diameter 

(μm) 

Average 
diameter 

(μm) 
0.1166 0.1000 0.1083 11.6591 10.0000 10.8296 
0.1359 0.1166 0.1263 13.5936 11.6591 12.6264 
0.1585 0.1359 0.1472 15.8489 13.5936 14.7213 
0.1848 0.1585 0.1717 18.4785 15.8489 17.1637 
0.2154 0.1848 0.2001 21.5443 18.4785 20.0114 
0.2512 0.2154 0.2333 25.1189 21.5443 23.3316 
0.2929 0.2512 0.2721 29.2864 25.1189 27.2027 
0.3415 0.2929 0.3172 34.1455 29.2864 31.7160 
0.3981 0.3415 0.3698 39.8107 34.1455 36.9781 
0.4642 0.3981 0.4312 46.4159 39.8107 43.1133 
0.5412 0.4642 0.5027 54.1170 46.4159 50.2665 
0.6310 0.5412 0.5861 63.0957 54.1170 58.6064 
0.7356 0.6310 0.6833 73.5642 63.0957 68.3300 
0.8577 0.7356 0.7967 85.7696 73.5642 79.6669 
1.0000 0.8577 0.9289 100.0000 85.7696 92.8848 
1.1659 1.0000 1.0830 116.5914 100.0000 108.2957 
1.3594 1.1659 1.2627 135.9356 116.5914 126.2635 
1.5849 1.3594 1.4722 158.4893 135.9356 147.2125 
1.8478 1.5849 1.7164 184.7850 158.4893 171.6372 
2.1544 1.8478 2.0011 215.4435 184.7850 200.1143 
2.5119 2.1544 2.3332 251.1886 215.4435 233.3161 
2.9286 2.5119 2.7203 292.8645 251.1886 272.0266 
3.4145 2.9286 3.1716 341.4549 292.8645 317.1597 
3.9811 3.4145 3.6978 398.1072 341.4549 369.7811 
4.6416 3.9811 4.3114 464.1589 398.1072 431.1331 
5.4117 4.6416 5.0267 541.1695 464.1589 502.6642 
6.3096 5.4117 5.8607 630.9573 541.1695 586.0634 
7.3564 6.3096 6.8330 735.6423 630.9573 683.2998 
8.5770 7.3564 7.9667 857.6959 735.6423 796.6691 
10.0000 8.5770 9.2885 1000.0000 857.6959 928.8480 

Table C.1: Average diameter based on upper and lower diameter limits of bin sizes 

provided by RT Sizer software.  
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C.2 Particle Size Distribution before Combustion  

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.01 0.01 
0.4312 0.00 0.00 43.1133 0.01 0.01 
0.5027 0.00 0.00 50.2665 0.01 0.01 
0.5861 0.00 0.00 58.6064 0.01 0.01 
0.6833 0.00 0.00 68.3300 0.01 0.01 
0.7967 0.00 0.00 79.6669 0.02 0.01 
0.9289 0.00 0.00 92.8848 0.03 0.02 
1.0830 0.00 0.00 108.2957 0.05 0.03 
1.2627 0.00 0.00 126.2635 0.07 0.05 
1.4722 0.00 0.00 147.2125 0.08 0.10 
1.7164 0.00 0.00 171.6372 0.12 0.19 
2.0011 0.00 0.00 200.1143 0.20 0.34 
2.3332 0.00 0.00 233.3161 0.37 0.50 
2.7203 0.00 0.00 272.0266 0.71 0.64 
3.1716 0.00 0.00 317.1597 1.33 0.73 
3.6978 0.00 0.00 369.7811 2.43 0.93 
4.3114 0.00 0.00 431.1331 4.42 1.53 
5.0267 0.00 0.00 502.6642 8.41 2.77 
5.8607 0.00 0.00 586.0634 17.44 3.16 
6.8330 0.00 0.00 683.2998 30.72 2.97 
7.9667 0.00 0.00 796.6691 27.83 6.51 
9.2885 0.00 0.00 928.8480 5.72 1.54 

Table C.2: Particle size distribution of coal particles before combustion (Sieve size: 18-20).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.01 
0.5027 0.00 0.00 50.2665 0.00 0.02 
0.5861 0.00 0.00 58.6064 0.00 0.02 
0.6833 0.00 0.00 68.3300 0.00 0.03 
0.7967 0.00 0.00 79.6669 0.00 0.04 
0.9289 0.00 0.00 92.8848 0.01 0.06 
1.0830 0.00 0.00 108.2957 0.02 0.09 
1.2627 0.00 0.00 126.2635 0.03 0.14 
1.4722 0.00 0.00 147.2125 0.06 0.19 
1.7164 0.00 0.00 171.6372 0.11 0.24 
2.0011 0.00 0.00 200.1143 0.20 0.27 
2.3332 0.00 0.00 233.3161 0.37 0.29 
2.7203 0.00 0.00 272.0266 0.71 0.29 
3.1716 0.00 0.00 317.1597 1.33 0.32 
3.6978 0.00 0.00 369.7811 2.71 0.44 
4.3114 0.00 0.00 431.1331 6.43 0.66 
5.0267 0.00 0.00 502.6642 15.46 1.16 
5.8607 0.00 0.00 586.0634 29.06 1.64 
6.8330 0.00 0.00 683.2998 29.72 2.02 
7.9667 0.00 0.00 796.6691 12.18 1.63 
9.2885 0.00 0.00 928.8480 1.62 0.24 

Table C.3: Particle size distribution of coal particles before combustion (Sieve size: 20-25). 
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.01 
0.4312 0.00 0.00 43.1133 0.01 0.01 
0.5027 0.00 0.00 50.2665 0.01 0.02 
0.5861 0.00 0.00 58.6064 0.02 0.02 
0.6833 0.00 0.00 68.3300 0.02 0.02 
0.7967 0.00 0.00 79.6669 0.03 0.02 
0.9289 0.00 0.00 92.8848 0.04 0.03 
1.0830 0.00 0.00 108.2957 0.07 0.06 
1.2627 0.00 0.00 126.2635 0.14 0.11 
1.4722 0.00 0.00 147.2125 0.27 0.20 
1.7164 0.00 0.00 171.6372 0.47 0.33 
2.0011 0.00 0.00 200.1143 0.74 0.48 
2.3332 0.00 0.00 233.3161 1.07 0.64 
2.7203 0.00 0.00 272.0266 1.53 0.82 
3.1716 0.00 0.00 317.1597 2.45 1.17 
3.6978 0.00 0.00 369.7811 4.84 1.86 
4.3114 0.00 0.00 431.1331 11.35 2.21 
5.0267 0.00 0.00 502.6642 23.65 2.44 
5.8607 0.00 0.00 586.0634 30.08 5.29 
6.8330 0.00 0.00 683.2998 17.88 1.67 
7.9667 0.00 0.00 796.6691 4.73 0.77 
9.2885 0.00 0.00 928.8480 0.57 0.14 

Table C.4: Particle size distribution of coal particles before combustion (Sieve size: 25-30).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.00 
0.5027 0.00 0.00 50.2665 0.01 0.01 
0.5861 0.00 0.00 58.6064 0.01 0.02 
0.6833 0.00 0.00 68.3300 0.03 0.03 
0.7967 0.00 0.00 79.6669 0.04 0.05 
0.9289 0.00 0.00 92.8848 0.07 0.08 
1.0830 0.00 0.00 108.2957 0.11 0.13 
1.2627 0.00 0.00 126.2635 0.19 0.20 
1.4722 0.00 0.00 147.2125 0.30 0.30 
1.7164 0.00 0.00 171.6372 0.45 0.39 
2.0011 0.00 0.00 200.1143 0.63 0.43 
2.3332 0.00 0.00 233.3161 0.93 0.48 
2.7203 0.00 0.00 272.0266 1.53 0.58 
3.1716 0.00 0.00 317.1597 3.23 0.83 
3.6978 0.00 0.00 369.7811 8.34 1.13 
4.3114 0.00 0.00 431.1331 21.08 0.56 
5.0267 0.00 0.00 502.6642 32.26 2.98 
5.8607 0.00 0.00 586.0634 22.15 1.73 
6.8330 0.00 0.00 683.2998 7.22 0.71 
7.9667 0.00 0.00 796.6691 1.29 0.32 
9.2885 0.00 0.00 928.8480 0.13 0.07 

Table C.5: Particle size distribution of coal particles before combustion (Sieve size: 30-35).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.01 0.00 
0.5027 0.00 0.00 50.2665 0.02 0.01 
0.5861 0.00 0.00 58.6064 0.05 0.04 
0.6833 0.00 0.00 68.3300 0.08 0.07 
0.7967 0.00 0.00 79.6669 0.14 0.11 
0.9289 0.00 0.00 92.8848 0.22 0.15 
1.0830 0.00 0.00 108.2957 0.33 0.20 
1.2627 0.00 0.00 126.2635 0.52 0.29 
1.4722 0.00 0.00 147.2125 0.75 0.41 
1.7164 0.00 0.00 171.6372 0.98 0.51 
2.0011 0.00 0.00 200.1143 1.23 0.56 
2.3332 0.00 0.00 233.3161 1.73 0.60 
2.7203 0.00 0.00 272.0266 3.08 0.70 
3.1716 0.00 0.00 317.1597 7.13 0.78 
3.6978 0.00 0.00 369.7811 17.38 0.52 
4.3114 0.00 0.00 431.1331 29.33 2.18 
5.0267 0.00 0.00 502.6642 23.55 1.96 
5.8607 0.00 0.00 586.0634 10.03 0.92 
6.8330 0.00 0.00 683.2998 2.80 0.38 
7.9667 0.00 0.00 796.6691 0.56 0.13 
9.2885 0.00 0.00 928.8480 0.07 0.03 

Table C.6: Particle size distribution of coal particles before combustion (Sieve size: 35-40).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.01 
0.5027 0.00 0.00 50.2665 0.01 0.01 
0.5861 0.00 0.00 58.6064 0.02 0.02 
0.6833 0.00 0.00 68.3300 0.04 0.02 
0.7967 0.00 0.00 79.6669 0.06 0.03 
0.9289 0.00 0.00 92.8848 0.10 0.05 
1.0830 0.00 0.00 108.2957 0.18 0.11 
1.2627 0.00 0.00 126.2635 0.34 0.22 
1.4722 0.00 0.00 147.2125 0.60 0.41 
1.7164 0.00 0.00 171.6372 0.96 0.55 
2.0011 0.00 0.00 200.1143 1.57 0.60 
2.3332 0.00 0.00 233.3161 2.97 0.62 
2.7203 0.00 0.00 272.0266 6.53 0.54 
3.1716 0.00 0.00 317.1597 14.60 0.43 
3.6978 0.00 0.00 369.7811 25.19 1.35 
4.3114 0.00 0.00 431.1331 25.39 1.75 
5.0267 0.00 0.00 502.6642 14.00 0.85 
5.8607 0.00 0.00 586.0634 5.40 0.43 
6.8330 0.00 0.00 683.2998 1.62 0.21 
7.9667 0.00 0.00 796.6691 0.35 0.06 
9.2885 0.00 0.00 928.8480 0.05 0.01 

Table C.7: Particle size distribution of coal particles before combustion (Sieve size: 40-45).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.01 0.00 
0.3698 0.00 0.00 36.9781 0.01 0.01 
0.4312 0.00 0.00 43.1133 0.03 0.01 
0.5027 0.00 0.00 50.2665 0.05 0.01 
0.5861 0.00 0.00 58.6064 0.09 0.02 
0.6833 0.00 0.00 68.3300 0.13 0.03 
0.7967 0.00 0.00 79.6669 0.21 0.06 
0.9289 0.00 0.00 92.8848 0.34 0.09 
1.0830 0.00 0.00 108.2957 0.58 0.15 
1.2627 0.00 0.00 126.2635 0.97 0.22 
1.4722 0.00 0.00 147.2125 1.56 0.32 
1.7164 0.00 0.00 171.6372 2.48 0.49 
2.0011 0.00 0.00 200.1143 4.30 0.75 
2.3332 0.00 0.00 233.3161 8.06 1.00 
2.7203 0.00 0.00 272.0266 14.53 0.79 
3.1716 0.00 0.00 317.1597 20.72 0.91 
3.6978 0.00 0.00 369.7811 20.02 1.41 
4.3114 0.00 0.00 431.1331 13.55 1.12 
5.0267 0.00 0.00 502.6642 7.16 0.57 
5.8607 0.00 0.00 586.0634 3.49 0.35 
6.8330 0.00 0.00 683.2998 1.34 0.20 
7.9667 0.00 0.00 796.6691 0.32 0.06 
9.2885 0.00 0.00 928.8480 0.05 0.02 

Table C.8: Particle size distribution of coal particles before combustion (Sieve size: 45-50).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.01 0.01 
0.3172 0.00 0.00 31.7160 0.01 0.00 
0.3698 0.00 0.00 36.9781 0.02 0.01 
0.4312 0.00 0.00 43.1133 0.04 0.01 
0.5027 0.00 0.00 50.2665 0.09 0.03 
0.5861 0.00 0.00 58.6064 0.15 0.05 
0.6833 0.00 0.00 68.3300 0.22 0.07 
0.7967 0.00 0.00 79.6669 0.32 0.08 
0.9289 0.00 0.00 92.8848 0.52 0.12 
1.0830 0.00 0.00 108.2957 0.93 0.21 
1.2627 0.00 0.00 126.2635 1.73 0.33 
1.4722 0.00 0.00 147.2125 3.16 0.48 
1.7164 0.00 0.00 171.6372 5.56 0.57 
2.0011 0.00 0.00 200.1143 9.63 0.50 
2.3332 0.00 0.00 233.3161 14.95 0.86 
2.7203 0.00 0.00 272.0266 17.96 1.78 
3.1716 0.00 0.00 317.1597 15.90 1.20 
3.6978 0.00 0.00 369.7811 11.42 0.56 
4.3114 0.00 0.00 431.1331 7.85 0.90 
5.0267 0.00 0.00 502.6642 5.21 1.02 
5.8607 0.00 0.00 586.0634 2.89 0.80 
6.8330 0.00 0.00 683.2998 1.10 0.36 
7.9667 0.00 0.00 796.6691 0.25 0.08 
9.2885 0.00 0.00 928.8480 0.08 0.08 

Table C.9: Particle size distribution of coal particles before combustion (Sieve size: 50-60). 
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.01 0.01 
0.3698 0.00 0.00 36.9781 0.01 0.02 
0.4312 0.00 0.00 43.1133 0.03 0.03 
0.5027 0.00 0.00 50.2665 0.05 0.05 
0.5861 0.00 0.00 58.6064 0.09 0.07 
0.6833 0.00 0.00 68.3300 0.14 0.09 
0.7967 0.00 0.00 79.6669 0.23 0.14 
0.9289 0.00 0.00 92.8848 0.42 0.24 
1.0830 0.00 0.00 108.2957 0.83 0.43 
1.2627 0.00 0.00 126.2635 1.77 0.74 
1.4722 0.00 0.00 147.2125 3.93 0.97 
1.7164 0.00 0.00 171.6372 8.22 0.79 
2.0011 0.00 0.00 200.1143 13.94 0.82 
2.3332 0.00 0.00 233.3161 16.35 1.46 
2.7203 0.00 0.00 272.0266 13.77 1.45 
3.1716 0.00 0.00 317.1597 10.51 1.31 
3.6978 0.00 0.00 369.7811 8.56 1.26 
4.3114 0.00 0.00 431.1331 7.69 1.32 
5.0267 0.00 0.00 502.6642 6.53 1.36 
5.8607 0.00 0.00 586.0634 4.33 1.23 
6.8330 0.00 0.00 683.2998 1.93 1.32 
7.9667 0.00 0.00 796.6691 0.57 0.69 
9.2885 0.00 0.00 928.8480 0.08 0.12 

Table C.10: Particle size distribution of coal particles before combustion (Sieve size: 60-70). 
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.01 
0.2721 0.00 0.00 27.2027 0.01 0.00 
0.3172 0.00 0.00 31.7160 0.02 0.01 
0.3698 0.00 0.00 36.9781 0.05 0.05 
0.4312 0.00 0.00 43.1133 0.14 0.18 
0.5027 0.00 0.00 50.2665 0.34 0.52 
0.5861 0.00 0.00 58.6064 0.65 1.04 
0.6833 0.00 0.00 68.3300 0.95 1.44 
0.7967 0.00 0.00 79.6669 1.30 1.75 
0.9289 0.00 0.00 92.8848 1.96 2.20 
1.0830 0.00 0.00 108.2957 3.37 2.81 
1.2627 0.00 0.00 126.2635 6.12 3.00 
1.4722 0.00 0.00 147.2125 10.14 1.52 
1.7164 0.00 0.00 171.6372 13.04 2.46 
2.0011 0.00 0.00 200.1143 12.27 3.79 
2.3332 0.00 0.00 233.3161 9.30 3.26 
2.7203 0.00 0.00 272.0266 7.05 2.52 
3.1716 0.00 0.00 317.1597 6.19 2.01 
3.6978 0.00 0.00 369.7811 6.34 1.67 
4.3114 0.00 0.00 431.1331 6.83 1.74 
5.0267 0.00 0.00 502.6642 6.21 1.40 
5.8607 0.00 0.00 586.0634 4.36 1.16 
6.8330 0.00 0.00 683.2998 2.23 0.87 
7.9667 0.00 0.00 796.6691 0.81 0.48 
9.2885 0.00 0.00 928.8480 0.30 0.46 

Table C.11: Particle size distribution of coal particles before combustion (Sieve size: 70-80).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.01 
0.1263 0.00 0.00 12.6264 0.01 0.00 
0.1472 0.00 0.00 14.7213 0.01 0.01 
0.1717 0.00 0.00 17.1637 0.01 0.01 
0.2001 0.00 0.00 20.0114 0.02 0.01 
0.2333 0.00 0.00 23.3316 0.03 0.02 
0.2721 0.00 0.00 27.2027 0.05 0.02 
0.3172 0.00 0.00 31.7160 0.07 0.02 
0.3698 0.00 0.00 36.9781 0.10 0.03 
0.4312 0.00 0.00 43.1133 0.16 0.04 
0.5027 0.00 0.00 50.2665 0.24 0.06 
0.5861 0.00 0.00 58.6064 0.36 0.09 
0.6833 0.00 0.00 68.3300 0.55 0.14 
0.7967 0.00 0.00 79.6669 0.86 0.23 
0.9289 0.00 0.00 92.8848 1.37 0.38 
1.0830 0.00 0.00 108.2957 2.15 0.63 
1.2627 0.00 0.00 126.2635 3.07 0.92 
1.4722 0.00 0.00 147.2125 3.76 1.12 
1.7164 0.00 0.00 171.6372 3.87 1.06 
2.0011 0.00 0.00 200.1143 3.63 0.87 
2.3332 0.00 0.00 233.3161 3.53 0.71 
2.7203 0.00 0.00 272.0266 3.89 0.68 
3.1716 0.00 0.00 317.1597 5.06 0.91 
3.6978 0.00 0.00 369.7811 7.87 1.24 
4.3114 0.00 0.00 431.1331 13.04 1.24 
5.0267 0.00 0.00 502.6642 17.77 1.12 
5.8607 0.00 0.00 586.0634 16.61 3.50 
6.8330 0.00 0.00 683.2998 8.94 2.97 
7.9667 0.00 0.00 796.6691 2.58 0.97 
9.2885 0.00 0.00 928.8480 0.40 0.18 

Table C.12: Particle size distribution of coal particles before combustion (Sieve size: < 80).  
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C.3 Particle Size Distribution after Combustion (CH4 Diffusion Flame)  

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.01 
0.5027 0.00 0.00 50.2665 0.01 0.00 
0.5861 0.00 0.00 58.6064 0.01 0.00 
0.6833 0.00 0.00 68.3300 0.01 0.00 
0.7967 0.00 0.00 79.6669 0.01 0.01 
0.9289 0.00 0.00 92.8848 0.01 0.01 
1.0830 0.00 0.00 108.2957 0.02 0.02 
1.2627 0.00 0.00 126.2635 0.04 0.01 
1.4722 0.00 0.00 147.2125 0.08 0.02 
1.7164 0.00 0.00 171.6372 0.13 0.03 
2.0011 0.00 0.00 200.1143 0.23 0.07 
2.3332 0.00 0.00 233.3161 0.42 0.11 
2.7203 0.00 0.00 272.0266 0.80 0.18 
3.1716 0.00 0.00 317.1597 1.45 0.24 
3.6978 0.00 0.00 369.7811 2.48 0.30 
4.3114 0.00 0.00 431.1331 4.43 0.56 
5.0267 0.00 0.00 502.6642 8.91 1.44 
5.8607 0.00 0.00 586.0634 19.67 3.20 
6.8330 0.00 0.00 683.2998 33.02 2.65 
7.9667 0.00 0.00 796.6691 24.25 5.23 
9.2885 0.00 0.00 928.8480 4.02 3.44 

Table C.13: Particle size distribution of coal particles after combustion - CH4 diffusion 

flame. (Sieve size: 18-20).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.01 
0.4312 0.00 0.00 43.1133 0.00 0.01 
0.5027 0.00 0.00 50.2665 0.00 0.01 
0.5861 0.00 0.00 58.6064 0.00 0.00 
0.6833 0.00 0.00 68.3300 0.00 0.00 
0.7967 0.00 0.00 79.6669 0.00 0.01 
0.9289 0.00 0.00 92.8848 0.00 0.02 
1.0830 0.00 0.00 108.2957 0.01 0.03 
1.2627 0.00 0.00 126.2635 0.02 0.02 
1.4722 0.00 0.00 147.2125 0.04 0.01 
1.7164 0.00 0.00 171.6372 0.07 0.02 
2.0011 0.00 0.00 200.1143 0.14 0.05 
2.3332 0.00 0.00 233.3161 0.28 0.09 
2.7203 0.00 0.00 272.0266 0.54 0.16 
3.1716 0.00 0.00 317.1597 1.04 0.24 
3.6978 0.00 0.00 369.7811 2.23 0.42 
4.3114 0.00 0.00 431.1331 5.63 1.02 
5.0267 0.00 0.00 502.6642 14.78 2.81 
5.8607 0.00 0.00 586.0634 30.27 5.09 
6.8330 0.00 0.00 683.2998 31.66 1.25 
7.9667 0.00 0.00 796.6691 11.88 7.49 
9.2885 0.00 0.00 928.8480 1.40 3.12 

Table C.14: Particle size distribution of coal particles after combustion - CH4 diffusion 

flame. (Sieve size: 20-25).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.00 
0.5027 0.00 0.00 50.2665 0.00 0.00 
0.5861 0.00 0.00 58.6064 0.00 0.00 
0.6833 0.00 0.00 68.3300 0.00 0.00 
0.7967 0.00 0.00 79.6669 0.01 0.01 
0.9289 0.00 0.00 92.8848 0.01 0.01 
1.0830 0.00 0.00 108.2957 0.02 0.01 
1.2627 0.00 0.00 126.2635 0.03 0.01 
1.4722 0.00 0.00 147.2125 0.05 0.01 
1.7164 0.00 0.00 171.6372 0.09 0.02 
2.0011 0.00 0.00 200.1143 0.18 0.03 
2.3332 0.00 0.00 233.3161 0.37 0.03 
2.7203 0.00 0.00 272.0266 0.74 0.03 
3.1716 0.00 0.00 317.1597 1.54 0.08 
3.6978 0.00 0.00 369.7811 3.74 0.37 
4.3114 0.00 0.00 431.1331 10.16 1.20 
5.0267 0.00 0.00 502.6642 23.70 2.05 
5.8607 0.00 0.00 586.0634 33.36 0.31 
6.8330 0.00 0.00 683.2998 20.55 2.31 
7.9667 0.00 0.00 796.6691 4.94 1.11 
9.2885 0.00 0.00 928.8480 0.49 0.16 

Table C.15: Particle size distribution of coal particles after combustion - CH4 diffusion 

flame. (Sieve size: 25-30).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.00 
0.5027 0.00 0.00 50.2665 0.00 0.00 
0.5861 0.00 0.00 58.6064 0.00 0.00 
0.6833 0.00 0.00 68.3300 0.00 0.00 
0.7967 0.00 0.00 79.6669 0.00 0.00 
0.9289 0.00 0.00 92.8848 0.00 0.00 
1.0830 0.00 0.00 108.2957 0.01 0.00 
1.2627 0.00 0.00 126.2635 0.02 0.01 
1.4722 0.00 0.00 147.2125 0.03 0.01 
1.7164 0.00 0.00 171.6372 0.06 0.01 
2.0011 0.00 0.00 200.1143 0.12 0.02 
2.3332 0.00 0.00 233.3161 0.27 0.03 
2.7203 0.00 0.00 272.0266 0.63 0.06 
3.1716 0.00 0.00 317.1597 1.77 0.18 
3.6978 0.00 0.00 369.7811 5.87 0.48 
4.3114 0.00 0.00 431.1331 18.57 0.55 
5.0267 0.00 0.00 502.6642 34.84 1.36 
5.8607 0.00 0.00 586.0634 27.21 0.43 
6.8330 0.00 0.00 683.2998 9.06 0.51 
7.9667 0.00 0.00 796.6691 1.44 0.15 
9.2885 0.00 0.00 928.8480 0.11 0.02 

Table C.16: Particle size distribution of coal particles after combustion - CH4 diffusion 

flame. (Sieve size: 30-35).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.00 
0.5027 0.00 0.00 50.2665 0.00 0.00 
0.5861 0.00 0.00 58.6064 0.00 0.00 
0.6833 0.00 0.00 68.3300 0.00 0.00 
0.7967 0.00 0.00 79.6669 0.00 0.00 
0.9289 0.00 0.00 92.8848 0.00 0.00 
1.0830 0.00 0.00 108.2957 0.01 0.01 
1.2627 0.00 0.00 126.2635 0.02 0.01 
1.4722 0.00 0.00 147.2125 0.03 0.01 
1.7164 0.00 0.00 171.6372 0.06 0.03 
2.0011 0.00 0.00 200.1143 0.14 0.06 
2.3332 0.00 0.00 233.3161 0.33 0.14 
2.7203 0.00 0.00 272.0266 1.03 0.34 
3.1716 0.00 0.00 317.1597 3.88 0.77 
3.6978 0.00 0.00 369.7811 15.03 0.94 
4.3114 0.00 0.00 431.1331 35.73 2.88 
5.0267 0.00 0.00 502.6642 30.45 1.39 
5.8607 0.00 0.00 586.0634 10.90 1.34 
6.8330 0.00 0.00 683.2998 2.13 0.50 
7.9667 0.00 0.00 796.6691 0.25 0.08 
9.2885 0.00 0.00 928.8480 0.01 0.01 

Table C.17: Particle size distribution of coal particles after combustion - CH4 diffusion 

flame. (Sieve size: 35-40).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.00 
0.5027 0.00 0.00 50.2665 0.00 0.00 
0.5861 0.00 0.00 58.6064 0.00 0.00 
0.6833 0.00 0.00 68.3300 0.00 0.01 
0.7967 0.00 0.00 79.6669 0.01 0.00 
0.9289 0.00 0.00 92.8848 0.01 0.01 
1.0830 0.00 0.00 108.2957 0.02 0.02 
1.2627 0.00 0.00 126.2635 0.04 0.03 
1.4722 0.00 0.00 147.2125 0.09 0.06 
1.7164 0.00 0.00 171.6372 0.21 0.11 
2.0011 0.00 0.00 200.1143 0.55 0.22 
2.3332 0.00 0.00 233.3161 1.61 0.46 
2.7203 0.00 0.00 272.0266 4.96 0.86 
3.1716 0.00 0.00 317.1597 14.34 1.05 
3.6978 0.00 0.00 369.7811 29.36 1.18 
4.3114 0.00 0.00 431.1331 29.54 1.41 
5.0267 0.00 0.00 502.6642 14.21 0.88 
5.8607 0.00 0.00 586.0634 4.13 0.41 
6.8330 0.00 0.00 683.2998 0.79 0.12 
7.9667 0.00 0.00 796.6691 0.10 0.02 
9.2885 0.00 0.00 928.8480 0.01 0.00 

Table C.18: Particle size distribution of coal particles after combustion - CH4 diffusion 

flame.  (Sieve size: 40-45).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.00 
0.5027 0.00 0.00 50.2665 0.00 0.00 
0.5861 0.00 0.00 58.6064 0.01 0.01 
0.6833 0.00 0.00 68.3300 0.01 0.01 
0.7967 0.00 0.00 79.6669 0.02 0.01 
0.9289 0.00 0.00 92.8848 0.04 0.02 
1.0830 0.00 0.00 108.2957 0.07 0.03 
1.2627 0.00 0.00 126.2635 0.16 0.06 
1.4722 0.00 0.00 147.2125 0.39 0.13 
1.7164 0.00 0.00 171.6372 1.04 0.27 
2.0011 0.00 0.00 200.1143 2.90 0.50 
2.3332 0.00 0.00 233.3161 7.52 0.73 
2.7203 0.00 0.00 272.0266 15.80 0.81 
3.1716 0.00 0.00 317.1597 23.94 0.47 
3.6978 0.00 0.00 369.7811 23.60 0.60 
4.3114 0.00 0.00 431.1331 15.09 1.14 
5.0267 0.00 0.00 502.6642 6.59 0.82 
5.8607 0.00 0.00 586.0634 2.22 0.36 
6.8330 0.00 0.00 683.2998 0.52 0.09 
7.9667 0.00 0.00 796.6691 0.07 0.01 
9.2885 0.00 0.00 928.8480 0.01 0.01 

Table C.19: Particle size distribution of coal particles after combustion - CH4 diffusion 

flame.  (Sieve size: 45-50).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.00 
0.5027 0.00 0.00 50.2665 0.01 0.01 
0.5861 0.00 0.00 58.6064 0.01 0.01 
0.6833 0.00 0.00 68.3300 0.02 0.01 
0.7967 0.00 0.00 79.6669 0.03 0.02 
0.9289 0.00 0.00 92.8848 0.06 0.03 
1.0830 0.00 0.00 108.2957 0.13 0.07 
1.2627 0.00 0.00 126.2635 0.36 0.20 
1.4722 0.00 0.00 147.2125 1.06 0.54 
1.7164 0.00 0.00 171.6372 3.05 1.35 
2.0011 0.00 0.00 200.1143 7.62 2.49 
2.3332 0.00 0.00 233.3161 14.80 2.13 
2.7203 0.00 0.00 272.0266 19.92 1.35 
3.1716 0.00 0.00 317.1597 19.64 1.18 
3.6978 0.00 0.00 369.7811 15.61 2.30 
4.3114 0.00 0.00 431.1331 10.20 2.50 
5.0267 0.00 0.00 502.6642 5.14 1.61 
5.8607 0.00 0.00 586.0634 1.89 0.65 
6.8330 0.00 0.00 683.2998 0.40 0.12 
7.9667 0.00 0.00 796.6691 0.05 0.03 
9.2885 0.00 0.00 928.8480 0.01 0.01 

Table C.20: Particle size distribution of coal particles after combustion - CH4 diffusion 

flame.  (Sieve size: 50-60).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.00 
0.5027 0.00 0.00 50.2665 0.01 0.01 
0.5861 0.00 0.00 58.6064 0.02 0.01 
0.6833 0.00 0.00 68.3300 0.03 0.01 
0.7967 0.00 0.00 79.6669 0.05 0.02 
0.9289 0.00 0.00 92.8848 0.10 0.05 
1.0830 0.00 0.00 108.2957 0.28 0.12 
1.2627 0.00 0.00 126.2635 0.87 0.35 
1.4722 0.00 0.00 147.2125 2.79 0.91 
1.7164 0.00 0.00 171.6372 7.33 1.51 
2.0011 0.00 0.00 200.1143 13.34 1.21 
2.3332 0.00 0.00 233.3161 15.98 1.14 
2.7203 0.00 0.00 272.0266 15.00 0.83 
3.1716 0.00 0.00 317.1597 13.63 0.28 
3.6978 0.00 0.00 369.7811 12.63 1.53 
4.3114 0.00 0.00 431.1331 10.30 2.12 
5.0267 0.00 0.00 502.6642 5.47 1.33 
5.8607 0.00 0.00 586.0634 1.77 0.45 
6.8330 0.00 0.00 683.2998 0.34 0.10 
7.9667 0.00 0.00 796.6691 0.05 0.02 
9.2885 0.00 0.00 928.8480 0.01 0.02 

Table C.21: Particle size distribution of coal particles after combustion - CH4 diffusion 

flame.  (Sieve size: 60-70).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.01 0.00 
0.4312 0.00 0.00 43.1133 0.01 0.00 
0.5027 0.00 0.00 50.2665 0.02 0.01 
0.5861 0.00 0.00 58.6064 0.03 0.01 
0.6833 0.00 0.00 68.3300 0.06 0.02 
0.7967 0.00 0.00 79.6669 0.13 0.04 
0.9289 0.00 0.00 92.8848 0.35 0.11 
1.0830 0.00 0.00 108.2957 1.09 0.34 
1.2627 0.00 0.00 126.2635 3.25 0.92 
1.4722 0.00 0.00 147.2125 7.57 1.69 
1.7164 0.00 0.00 171.6372 11.71 1.86 
2.0011 0.00 0.00 200.1143 12.33 1.51 
2.3332 0.00 0.00 233.3161 10.92 1.01 
2.7203 0.00 0.00 272.0266 10.04 0.48 
3.1716 0.00 0.00 317.1597 10.62 0.73 
3.6978 0.00 0.00 369.7811 11.59 1.85 
4.3114 0.00 0.00 431.1331 10.52 2.62 
5.0267 0.00 0.00 502.6642 6.42 2.08 
5.8607 0.00 0.00 586.0634 2.50 0.85 
6.8330 0.00 0.00 683.2998 0.65 0.19 
7.9667 0.00 0.00 796.6691 0.14 0.06 
9.2885 0.00 0.00 928.8480 0.05 0.05 

Table C.22: Particle size distribution of coal particles after combustion - CH4 diffusion 

flame. (Sieve size: 70-80).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.01 0.00 
0.2721 0.00 0.00 27.2027 0.01 0.00 
0.3172 0.00 0.00 31.7160 0.02 0.00 
0.3698 0.00 0.00 36.9781 0.04 0.00 
0.4312 0.00 0.00 43.1133 0.07 0.01 
0.5027 0.00 0.00 50.2665 0.13 0.02 
0.5861 0.00 0.00 58.6064 0.24 0.03 
0.6833 0.00 0.00 68.3300 0.44 0.04 
0.7967 0.00 0.00 79.6669 0.80 0.09 
0.9289 0.00 0.00 92.8848 1.42 0.18 
1.0830 0.00 0.00 108.2957 2.37 0.34 
1.2627 0.00 0.00 126.2635 3.55 0.48 
1.4722 0.00 0.00 147.2125 4.58 0.51 
1.7164 0.00 0.00 171.6372 5.15 0.43 
2.0011 0.00 0.00 200.1143 5.45 0.35 
2.3332 0.00 0.00 233.3161 5.91 0.36 
2.7203 0.00 0.00 272.0266 7.10 0.43 
3.1716 0.00 0.00 317.1597 9.68 0.51 
3.6978 0.00 0.00 369.7811 13.78 0.50 
4.3114 0.00 0.00 431.1331 16.61 1.01 
5.0267 0.00 0.00 502.6642 13.30 1.24 
5.8607 0.00 0.00 586.0634 6.68 0.81 
6.8330 0.00 0.00 683.2998 2.14 0.38 
7.9667 0.00 0.00 796.6691 0.45 0.10 
9.2885 0.00 0.00 928.8480 0.07 0.04 

Table C.23: Particle size distribution of coal particles after combustion - CH4 diffusion 

flame.  (Sieve size: < 80).  
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C.4 Particle Size Distribution after Combustion (CH4/air Premixed Flame)  

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.00 
0.5027 0.00 0.00 50.2665 0.00 0.00 
0.5861 0.00 0.00 58.6064 0.00 0.00 
0.6833 0.00 0.00 68.3300 0.00 0.00 
0.7967 0.00 0.00 79.6669 0.01 0.00 
0.9289 0.00 0.00 92.8848 0.01 0.01 
1.0830 0.00 0.00 108.2957 0.02 0.01 
1.2627 0.00 0.00 126.2635 0.04 0.02 
1.4722 0.00 0.00 147.2125 0.10 0.03 
1.7164 0.00 0.00 171.6372 0.25 0.06 
2.0011 0.00 0.00 200.1143 0.70 0.11 
2.3332 0.00 0.00 233.3161 2.11 0.23 
2.7203 0.00 0.00 272.0266 6.36 0.43 
3.1716 0.00 0.00 317.1597 16.47 0.53 
3.6978 0.00 0.00 369.7811 28.91 0.59 
4.3114 0.00 0.00 431.1331 27.19 0.71 
5.0267 0.00 0.00 502.6642 12.97 0.44 
5.8607 0.00 0.00 586.0634 3.92 0.21 
6.8330 0.00 0.00 683.2998 0.81 0.06 
7.9667 0.00 0.00 796.6691 0.11 0.01 
9.2885 0.00 0.00 928.8480 0.01 0.00 

Table C.24: Particle size distribution of coal particles after combustion - CH4/air 

premixed flame. (Sieve size: 40-45).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.01 0.00 
0.2721 0.00 0.00 27.2027 0.01 0.00 
0.3172 0.00 0.00 31.7160 0.02 0.00 
0.3698 0.00 0.00 36.9781 0.03 0.00 
0.4312 0.00 0.00 43.1133 0.05 0.00 
0.5027 0.00 0.00 50.2665 0.09 0.00 
0.5861 0.00 0.00 58.6064 0.17 0.01 
0.6833 0.00 0.00 68.3300 0.34 0.02 
0.7967 0.00 0.00 79.6669 0.66 0.02 
0.9289 0.00 0.00 92.8848 1.28 0.04 
1.0830 0.00 0.00 108.2957 2.34 0.06 
1.2627 0.00 0.00 126.2635 3.77 0.10 
1.4722 0.00 0.00 147.2125 5.11 0.15 
1.7164 0.00 0.00 171.6372 5.84 0.19 
2.0011 0.00 0.00 200.1143 6.10 0.22 
2.3332 0.00 0.00 233.3161 6.58 0.24 
2.7203 0.00 0.00 272.0266 7.84 0.29 
3.1716 0.00 0.00 317.1597 10.49 0.42 
3.6978 0.00 0.00 369.7811 14.27 0.56 
4.3114 0.00 0.00 431.1331 15.83 0.28 
5.0267 0.00 0.00 502.6642 11.58 1.49 
5.8607 0.00 0.00 586.0634 5.52 0.87 
6.8330 0.00 0.00 683.2998 1.70 0.35 
7.9667 0.00 0.00 796.6691 0.35 0.16 
9.2885 0.00 0.00 928.8480 0.04 0.03 

Table C.25: Particle size distribution of coal particles after combustion -CH4/air 

premixed flame. (Sieve size: < 80).  
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C.5 Particle Size Distribution after Combustion                                                        

(CH4/O2/CO2 Premixed Flame)  

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.00 
0.5027 0.00 0.00 50.2665 0.00 0.01 
0.5861 0.00 0.00 58.6064 0.00 0.02 
0.6833 0.00 0.00 68.3300 0.00 0.03 
0.7967 0.00 0.00 79.6669 0.01 0.05 
0.9289 0.00 0.00 92.8848 0.02 0.07 
1.0830 0.00 0.00 108.2957 0.03 0.10 
1.2627 0.00 0.00 126.2635 0.06 0.15 
1.4722 0.00 0.00 147.2125 0.13 0.21 
1.7164 0.00 0.00 171.6372 0.31 0.25 
2.0011 0.00 0.00 200.1143 0.77 0.28 
2.3332 0.00 0.00 233.3161 2.12 0.30 
2.7203 0.00 0.00 272.0266 5.98 0.35 
3.1716 0.00 0.00 317.1597 15.28 0.39 
3.6978 0.00 0.00 369.7811 27.93 0.26 
4.3114 0.00 0.00 431.1331 27.85 1.09 
5.0267 0.00 0.00 502.6642 14.03 0.98 
5.8607 0.00 0.00 586.0634 4.39 0.46 
6.8330 0.00 0.00 683.2998 0.93 0.19 
7.9667 0.00 0.00 796.6691 0.13 0.06 
9.2885 0.00 0.00 928.8480 0.01 0.01 

Table C.26: Particle size distribution of coal particles after combustion - CH4/O2/CO2 

premixed flame. (Sieve size: 40-45).  

 

 

125 
 



 

 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.01 0.00 
0.2721 0.00 0.00 27.2027 0.01 0.00 
0.3172 0.00 0.00 31.7160 0.02 0.00 
0.3698 0.00 0.00 36.9781 0.03 0.00 
0.4312 0.00 0.00 43.1133 0.06 0.00 
0.5027 0.00 0.00 50.2665 0.10 0.01 
0.5861 0.00 0.00 58.6064 0.20 0.02 
0.6833 0.00 0.00 68.3300 0.39 0.03 
0.7967 0.00 0.00 79.6669 0.77 0.05 
0.9289 0.00 0.00 92.8848 1.48 0.07 
1.0830 0.00 0.00 108.2957 2.65 0.10 
1.2627 0.00 0.00 126.2635 4.12 0.15 
1.4722 0.00 0.00 147.2125 5.33 0.21 
1.7164 0.00 0.00 171.6372 5.88 0.25 
2.0011 0.00 0.00 200.1143 6.06 0.28 
2.3332 0.00 0.00 233.3161 6.50 0.30 
2.7203 0.00 0.00 272.0266 7.72 0.35 
3.1716 0.00 0.00 317.1597 10.24 0.39 
3.6978 0.00 0.00 369.7811 13.68 0.26 
4.3114 0.00 0.00 431.1331 15.24 1.09 
5.0267 0.00 0.00 502.6642 11.53 0.98 
5.8607 0.00 0.00 586.0634 5.69 0.46 
6.8330 0.00 0.00 683.2998 1.84 0.19 
7.9667 0.00 0.00 796.6691 0.38 0.06 
9.2885 0.00 0.00 928.8480 0.06 0.01 

Table C.27: Particle size distribution of coal particles after combustion - CH4/O2/CO2 

premixed flame. (Sieve size: < 80).  
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C.6 Particle Size Distribution after Combustion (CH4/O2 Premixed Flame)  

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.00 0.00 
0.2721 0.00 0.00 27.2027 0.00 0.00 
0.3172 0.00 0.00 31.7160 0.00 0.00 
0.3698 0.00 0.00 36.9781 0.00 0.00 
0.4312 0.00 0.00 43.1133 0.00 0.00 
0.5027 0.00 0.00 50.2665 0.00 0.00 
0.5861 0.00 0.00 58.6064 0.00 0.01 
0.6833 0.00 0.00 68.3300 0.00 0.02 
0.7967 0.00 0.00 79.6669 0.01 0.03 
0.9289 0.00 0.00 92.8848 0.01 0.05 
1.0830 0.00 0.00 108.2957 0.02 0.07 
1.2627 0.00 0.00 126.2635 0.04 0.11 
1.4722 0.00 0.00 147.2125 0.09 0.16 
1.7164 0.00 0.00 171.6372 0.21 0.25 
2.0011 0.00 0.00 200.1143 0.55 0.38 
2.3332 0.00 0.00 233.3161 1.61 0.50 
2.7203 0.00 0.00 272.0266 4.96 0.40 
3.1716 0.00 0.00 317.1597 14.34 0.46 
3.6978 0.00 0.00 369.7811 29.36 0.71 
4.3114 0.00 0.00 431.1331 29.54 0.56 
5.0267 0.00 0.00 502.6642 14.21 0.29 
5.8607 0.00 0.00 586.0634 4.13 0.18 
6.8330 0.00 0.00 683.2998 0.79 0.10 
7.9667 0.00 0.00 796.6691 0.10 0.03 
9.2885 0.00 0.00 928.8480 0.01 0.01 

Table C.28: Particle size distribution of coal particles after combustion - CH4/O2 

premixed flame. (Sieve size: 40-45).  
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Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 

Average 
diameter 

(μm) 

 
Volume  

(%) 

Standard 
Deviation  

(%) 
0.1083 0.00 0.00 10.8296 0.00 0.00 
0.1263 0.00 0.00 12.6264 0.00 0.00 
0.1472 0.00 0.00 14.7213 0.00 0.00 
0.1717 0.00 0.00 17.1637 0.00 0.00 
0.2001 0.00 0.00 20.0114 0.00 0.00 
0.2333 0.00 0.00 23.3316 0.01 0.00 
0.2721 0.00 0.00 27.2027 0.01 0.00 
0.3172 0.00 0.00 31.7160 0.02 0.00 
0.3698 0.00 0.00 36.9781 0.03 0.00 
0.4312 0.00 0.00 43.1133 0.06 0.00 
0.5027 0.00 0.00 50.2665 0.11 0.00 
0.5861 0.00 0.00 58.6064 0.21 0.01 
0.6833 0.00 0.00 68.3300 0.40 0.02 
0.7967 0.00 0.00 79.6669 0.79 0.03 
0.9289 0.00 0.00 92.8848 1.54 0.05 
1.0830 0.00 0.00 108.2957 2.79 0.07 
1.2627 0.00 0.00 126.2635 4.35 0.11 
1.4722 0.00 0.00 147.2125 5.59 0.16 
1.7164 0.00 0.00 171.6372 6.07 0.25 
2.0011 0.00 0.00 200.1143 6.26 0.38 
2.3332 0.00 0.00 233.3161 6.80 0.50 
2.7203 0.00 0.00 272.0266 8.09 0.40 
3.1716 0.00 0.00 317.1597 10.42 0.46 
3.6978 0.00 0.00 369.7811 13.20 0.71 
4.3114 0.00 0.00 431.1331 14.25 0.56 
5.0267 0.00 0.00 502.6642 10.75 0.29 
5.8607 0.00 0.00 586.0634 5.62 0.18 
6.8330 0.00 0.00 683.2998 2.04 0.10 
7.9667 0.00 0.00 796.6691 0.46 0.03 
9.2885 0.00 0.00 928.8480 0.13 0.01 

Table C.29: Particle size distribution of coal particles after combustion - CH4/O2 

premixed flame. (Sieve size: < 80).  
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