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Abstract

Daily and seasonal variations in physiological characteristics of mammals can be considered adaptations to temporal habitat
variables. Across different ecosystems, physiological adjustments are expected to be sensitive to different environmental
signals such as changes in photoperiod, temperature or water and food availability; the relative importance of a particular
signal being dependent on the ecosystem in question. Energy intake, oxygen consumption (VO2) and body temperature
(Tb) daily rhythms were compared between two populations of the broad-toothed field mouse Apodemus mystacinus, one
from a Mediterranean and another from a sub-Alpine ecosystem. Mice were acclimated to short-day (SD) ‘winter’ and long-
day (LD) ‘summer’ photoperiods under different levels of salinity simulating osmotic challenges. Mediterranean mice had
higher VO2 values than sub-Alpine mice. In addition, mice exposed to short days had higher VO2 values when given water
with a high salinity compared with mice exposed to long days. By comparison, across both populations, increasing salinity
resulted in a decreased Tb in SD- but not in LD-mice. Thus, SD-mice may conserve energy by decreasing Tb during (‘winter’)
conditions which are expected to be cool, whereas LD-mice might do the opposite and maintain a higher Tb during
(‘summer’) conditions which are expected to be warm. LD-mice behaved to reduce energy expenditure, which might be
considered a useful trait during ‘summer’ conditions. Overall, increasing salinity was a clear signal for Mediterranean-mice
with resultant effects on VO2 and Tb daily rhythms but had less of an effect on sub-Alpine mice, which were more
responsive to changes in photoperiod. Results provide an insight into how different populations respond physiologically to
various environmental challenges.
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Introduction

Ecological physiology aims to understand how organisms

function in and respond to their natural environment [1–3]. In

many cases, environmental stresses are not constant over time but

take place on a cyclical/seasonal basis (e.g. daily or annually).

Animals subsequently display variations in their behavioural and

physiological traits, such as activity patterns and body temperature

(Tb) or oxygen consumption (VO2) daily rhythms; the latter

reflecting changes in metabolic processes [4–6]. Such endogenous

rhythms allow animals to inhabit different environments and can

normally be entrained by a ‘Zeitgeber’, such as photoperiod [7]. In

ecosystems that vary temporally, mammals often display daily and

seasonal variations in their thermoregulatory system, which are

considered necessary adaptations to their habitats [8,9,10].

Indeed, comparing physiological variables of closely related

individuals from different habitats or ecosystems using chronobi-

ological tools makes it possible to examine the potential outcome

of natural selection for physiological characteristics [11–13].

Environmental adjustments of terrestrial animals to different

habitats and different seasons may be achieved by seasonal

acclimatization of the digestive, thermoregulatory and osmoreg-

ulatory systems [14–19]. Small mammals inhabiting challenging

ecosystems with reduced water and food resources have lower

energy demands and an increased digestive efficiency compared

with those inhabiting mesic and more productive environments

[20–22]. By comparison, those that inhabit seasonally cold

environments regularly have increased metabolic capacities and

energy requirements for thermoregulation [18,23–25].

The Levant sub-region is one of extreme biogeographical

heterogeneity; large seasonal variations in ambient temperature,

water and food occur in a relatively restricted area [26]. Low-lying

hills, such as the Mount Carmel ridge, are characterised by short,

wet winters and long, hot and dry summers (8–9 months). By

comparison, high mountainous areas such as Mount Hermon are

characterised by low ambient temperatures (Tas) and snow during

the winter [27]. In this area of the eastern Mediterranean, many

species of plants and animals originating from different zoogeo-

graphical origins (e.g. Ethiopian and Palaearctic) coexist and reach

the limits of their geographical ranges [28]. For example, the

common spiny mouse Acomys cahirinus, of Ethiopian origin, which

has the northern-most limits of its distribution in southern Turkey
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[29], coexists with the broad-toothed field mouse Apodemus

mystacinus, of Palaearctic origin, which has the southern-most

limits of its distribution in the Judean hills [30]. The fact that such

species are at the edges of their geographical distribution ranges is

possibly indicative of limits to their ecophysiological abilities to

cope with the environmental challenges encountered in these

habitats [12]. Therefore, this offers a valuable natural opportunity

with which to explore physiological responses to environmental

challenges.

Populations of A. mystacinus are found in the Mediterranean

ecosystem in Israel as on the coastal slopes of Mount Carmel

(Mediterranean mice), with mean Tas in January and August of 12

and 26uC, respectively, and a mean annual precipitation of

550 mm. Populations of this species also exist on the slopes of

Mount Hermon on the eastern side of the Great African Rift

Valley at altitudes of 1650 m (sub-Alpine mice), a sub-alpine

ecosystem with mean Tas in January and August of 6 and 22uC,

respectively, and a mean annual precipitation of over 900 mm

[31]. These two populations appear to have been genetically

separated for some time, having originated from different

invasions [32,33]. In the Carmel, severe shortages of water at

the end of long hot and dry summers have been suggested to

present the most problematic environmental challenge for this

population [34,35]. During this season, the vegetation is expected

to have an increased particle (or osmotic) concentration due to the

high evaporation of water as a result of increased solar radiation

[36]. Indeed, increased salinity in the water source or food can

effectively induce dehydration responses to both VO2 and Tb

[16,37]. By comparison, cold winters and snow are presumed to

present the most challenging conditions for active (non-hibernat-

ing) mice inhabiting the sub-alpine ecosystem [34]. Bearing in

mind the differences between the two ecosystems, Mediterranean

mice may face greater challenges with respect to osmotic load

whereas sub-Alpine mice may face greater challenges with respect

to low Tas. Results of previous studies have revealed that

acclimation to short photoperiod is an environmental cue for

winter acclimatization of the thermoregulatory system whilst

acclimation to long photoperiod simulates heat acclimation or

summer acclimatization [4,14,38–41] We therefore propose the

following hypothesis: ‘‘If Mount Carmel is a less thermally but

more xerically challenging environment than Mount Hermon, the

latter sub-Alpine population is predicted to be more responsive to

changes in photoperiod such as short day conditions (simulating

winter) whereas the former Mediterranean population should be

more responsive to osmotic load (simulating aridity)’’. Conse-

quently we aimed to examine whether physiological responses to

photoperiod and osmotic load would reflect differences in the

abilities of mice from these two populations to cope with the

seasonal challenges faced in their natural environments. Although

it is not possible to establish the effects of an independent variable,

such as salinity or photoperiod, by the study of only two species or

populations that differ in this trait [42], we present the results of

VO2 and Tb daily rhythms, variation in Heterothermy index (HI),

a species-independent index of Tb [43], as well as energy intake for

two populations of A. mystacinus as an indication of the role that

climatic differences might play in shaping physiological diversity.

Methods

Ethics Statement
Permission was granted from the Nature and Parks Authority of

Israel to collect mice from both field sites (below). The protocol

was approved by the committee on the ethics of animal

experiments of the University of Haifa (permit number 016

2002). The study was performed in accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health.

Animals
Studied individuals of A. mystacinus were captured from a site on

the slopes of Mount Hermon representing a sub-alpine ecosystem

(35u009 E 33u009 N; 1650 m elevation) in December 2002 (‘sub-

Alpine’mice) and in June 2003 and from Har Horshan region on

the Carmel ridge representing a Mediterranean ecosystem (32u439

E 34u589 N; 100 m elevation) in March 2003 (‘Mediterranean’

mice). Young or juvenile animals and females that were obviously

pregnant or lactating were released. Mice were taken to the

laboratory at the University of Haifa Oranim campus, Kiryat

Tivon where they were maintained individually in cages

(35625615 cm) and provided with sawdust and tissue paper as

bedding material. Mice were kept in the laboratory for at least

three weeks to establish whether any of the females were pregnant.

No females were pregnant. They were acclimated to laboratory

conditions after capture from the wild for at least two months

(short-day; ‘SD’ - 8L: 16D, lights on between 08:00–16:00 h)

before any measurements were taken. They were offered dried

rodent chow (21% crude protein, 4% crude fat, 4% cellulose, 13%

moisture, 7% ash, 17.4 kJ/g gross energy; Koffolk, Israel) ad libitum

and agar gel (20 g of agar gel dissolved in 1000 ml of water) as

a source of moisture. Mice were then subjected to various

measurements of different physiological variables (digestibility,

VO2, and Tb measurements, sections 2.3, 2.4 and 2.5) at three

different salinity levels. The same mice were used for the different

experiments which were always conducted in the same sequence,

i.e. digestibility, VO2 and then Tb measurements. They were then

acclimated to a long photoperiod (long day; ‘LD’ - (16L: 8D, lights

were on between 06:00–22:00 h) for two months and all

measurements were repeated. These photoperiod regimes simu-

lated thermogenic acclimation that would have been a result of

seasonal acclimatization in the wild, as photoperiod is the primary

cue for seasonal acclimatisation [4,35,41]. In this case, Ta was kept

constant at 2560.1uC throughout the entire experimental period.

The intensity of light during the photophase was 450 lux, which

was provided by white fluorescent lighting with a dominant wave

length of about 470 nm. A dim red light in the corner of the room

was on continuously (25 lux) which allowed experimenters to work

during the ‘dark’ periods [44,45]. The current study is a contin-

uation of previous work by the authors on measurements of the

daily rhythms of Tb and VO2 in A. mystacinus [6], of measurements

from Mount Hermon [34] and Mount Carmel [35] populations,

and of osmoregulatory variation in Mediterranean and sub-Alpine

mice [46]. There is no data overlap with the present study.

Osmotic Loading
To simulate changes of osmotic load experienced in the wild

across the seasons, animals were exposed to different levels of

osmotic load by altering the level of salt (NaCl) dissolved into the

agar that was provided as their water source [12,46]. We dissolved

NaCl in the agar at concentrations of 0.9%, 1.4% and 1.8%; the

lowest salinity (0.9%) representing the osmotic loading that they

would experience in the wild [36]. Several physiological variables

were then measured for each of the six different treatment

conditions (i.e. for the two photoperiods and the three salinity

levels) for mice from both ecosystems. Acclimation to each

increase in salinity, at a given photoperiod regime, lasted for two

weeks (which is sufficient time for acclimation of the thermoreg-

ulatory system [47–50]).

Comparative Energetics of Mouse Populations
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Energy Intake
Mice were transferred to cages with paper towelling (4 sheets,

approximately 40630 cm per sheet), with no sawdust at the

beginning of a 7-day trial period. They were offered an amount of

food (c. 80 g 60.01 g) dried to constant weight. One week later,

the remaining food and the faeces produced were removed from

each cage and dried to constant weight in an oven (Memmert,

Germany; 60uC). Subsequently, for each mouse, at each level of

salinity and photoperiod regime, the dry food and faeces remains

were separated by hand, weighed (Sartorius, Germany; 60.01 g),

homogenised, and the faecal calorific value (FE, kJ/g) determined

by adiabatic bomb calorimetry (Semi-micro Calorimeter 1425.

Parr, USA). We assume that bacterial breakdown of faeces was

negligible since conditions were dry and even under ideal

conditions faecal breakdown for this time period is typically less

than 10% [51]. We obtained measures of food intake and faecal

output at each level of salinity and photoperiod regime. We

determined dry matter intake (DMI, g) as the mean dry food

consumed per day and faecal output (FO, g) as the mean dry

faeces produced per day. Both variables were calculated per gram

body mass (Wb). Apparent digestible energy intake (ADEI, kJ/day)

and digestible efficiency (DE) was then calculated [52] as:

ADEI(kJ=day)~½DMI(g)x17:4(kJ=g)�{½FO(g)xFE(kJ=g)� ð1Þ

DE~½(DMI{FO)=DMI � ð2Þ

Daily Rhythms of Oxygen Consumption (VO2)
Oxygen consumption (VO2) daily rhythms were monitored

using a 6-chamber switching device in an open circuit system

[53,54]. Five metabolic chambers (5020 ml volume for each) were

used for measuring VO2 with the sixth used to obtain a baseline.

Each chamber was sampled in turn and concentrations of O2 in

the dried efflux air were monitored in 100 s time bins with flush-

out times of 100 s [55,56]) using a Servomex Xentra 4100

automated oxygen analyser linked to a computer (Logal hardware

and software for VO2 analysis, MODCON systems, Wonderware

InTouch 7,1,0,0; Tuchenhagen, Ireland, Ltd.). Oxygen consump-

tion readings were taken during the stable period after the 100 s

flush-out which provided measurements of VO2 for each mouse

approximately every 20 minutes. We verified that there were no

air leaks in the system before each measurement. Air was dried

before entry into the metabolic chambers by passing it through

a freeze-dryer at 270uC, and again before entering the analyser.

The flow rate through each chamber was set to 500 ml/min

(mass-flow meter, Modcon systems, Israel) which was calibrated

with a bubble flowmeter [57]. The oxygen analyser was calibrated

to an upper value (20?95% O2, atmospheric air) prior to each

measurement and to a lower value (0?0% O2, N2 gas) every 2

weeks. The thermocouples within the metabolic chamber were

calibrated to 0.0uC prior to each measurement by placing them in

ice water. Mice were placed in the chambers at midday for 72 h

with food and agar gel provided ad libitum (c. 50 g of rodent chow

and 20 g of fresh agar was placed in the chamber with each

animal). Chambers were placed inside an incubator (Labline),

which was set at 25uC and had an internal lighting regime

(including a dim red light) that was consistent with laboratory

acclimation conditions. Four sheets of paper towelling (40630 cm

per sheet) were provided as bedding material. We analysed the

final 48 h of VO2 data and not the first 24 h to allow mice to

become accustomed to chamber conditions.

Daily Rhythms of Body Temperature (Tb)
Rectal Tbs were measured for a total of 36 h using a copper-

constantan thermocouple connected to a TH-65 Wescor ther-

mometer. To minimise the disturbance to each animal, mice were

measured in two batches with only half of the animals measured

every four hours thus each individual animal was measured only

once every eight hours [58]. For each measurement, the

thermocouple was inserted 2.5 cm into the rectum of a mouse

for no more than 30 seconds. We did not implant data logging

devices or transmitters because we had ethical concerns working

with such small (20–30 g) animals [59,60].

Statistics
General linear models were used to determine differences

between groups in DMI and ADEI and a Generalized Linear

Model with a logit link function was used to assess differences in

DE. Body mass and salinity entered as covariates while habitat and

photoperiod were entered as factors [61]. Cosinor analysis was

used to determine the VO2 and the Tb daily rhythms of measured

individuals with the period set to 24 h. The mean (mesor) values,

amplitude and the acrophase of the VO2 and Tb daily rhythms

were calculated for each individual [62,63]. While cosine curves

adequately fitted the VO2 data, they were less adept at fitting the

Tb data. Therefore, Repeated measures ANOVA was used to

examine the variation in cosinor parameters (mesor, amplitude,

acrophase) of VO2 with habitat and photoperiod entered as

factors. Restricted maximum likelihood was used to estimate the

model parameters. By comparison, general additive models were

used to examine variation in Tb data [64–66]. Finally, variation in

HI was reported. Heterothermy index was calculated as the square

root of the sum of the squares of the individual differences between

the modal Tb and each individual Tb [43] for each animal, under

each condition. Relationships between photoperiod, habitat and

salinity with HI were investigated using general linear models.

Results

Energy Intake
Mean body mass of all animals was 32.165.67 g. There were

no effects of habitat, photoperiod or salinity on body mass

(F1,105 = 0.51, p = 0.475; F1,105 = 0.13, p = 0.717 and F1,105 = 0.18,

p = 0.677 respectively, Table 1). There were consistent differences

in body mass between individuals, with large individuals remain-

ing large. Dry matter intake decreased with increasing salinity in

mice from both populations and under the two photoperiod

regimes (F1,104 = 34.68, p,0.001) (Fig. 1A). Mediterranean mice

had significantly greater DE values than sub-Alpine mice

(x2 = 5.33, p = 0.021) (Fig. 1B). A significant interaction was noted

between photoperiod and salinity (x2 = 22.33, P,0.001); DE

values were greater for mice exposed to long days at low levels of

salinity but greater for mice exposed to short days at higher levels

of salinity. For ADEI the overall effect of increasing salinity

resulted in a decrease of energy intake in both populations.

However, there was a significant interaction between photoperiod

and salinity with ADEI higher in LD- than in SD-acclimated mice

at low levels of salinity but not at higher levels (F1,103 = 4.42,

P = 0.034) (Fig. 1C).

Daily Rhythms of Oxygen Consumption (VO2)
There were differences in VO2 between populations under the

different challenges. Mesor values were significantly higher in

Comparative Energetics of Mouse Populations
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Figure 1. Digestibility Experiments. (A) Dry matter intake (DMI: g/100 g Wb.day); (B) Digestible efficiency (DE) and (C) apparent digestible
energy intake (ADEI: kJ/100 g Wb.day) of A. mystacinus at salinity regimes of 0.9, 1.4 and 1.8%. Open and dotted bars denote long-day (16L:8D)
Mediterranean and sub-Alpine mice; dark bars and hashed bars denote short-day (16D:8L) Mediterranean and sub-Alpine mice, respectively. ‘‘/100 g
Wb.day’’ denotes per 100 g body mass per day. Error bars denote standard errors.
doi:10.1371/journal.pone.0051247.g001

Comparative Energetics of Mouse Populations
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Mediterranean- than sub-Alpine mice (F1,6 = 8.02, p = 0.050)

(Table 1, Fig. 2). Compared to mice exposed to long days, those

exposed to short days maintained higher VO2 values when given

water with high salinity than they did when given water with low

salinity (F1,6 = 32.82, p,0.001). By comparison, amplitude values

were significantly greater in Mediterranean than sub-Alpine mice

(F1,6 = 6.15, p = 0.048), however, there were no effects of

photoperiod or salinity (F1,6 = 0.19, p = 0.681; F1,6 = 0.08,

p = 0.932, respectively). Finally, acrophase also differed signifi-

cantly between populations (F1,6 = 8.89, p = 0.025); Mediterra-

nean-mice exhibited a VO2 peak at approximately 02:30 h while

sub-Alpine-mice showed a peak at approximately 00:45 h (Fig. 2).

Daily Rhythms of Body Temperature (Tb)
Significant differences between populations under the different

photoperiod regimes and different salinity levels were noted in the

variables describing the Tb daily rhythms. Tb values were

significantly higher in sub-Alpine- than Mediterranean mice

(F1,7 = 19.93, p,0.001) (Fig. 3). Compared to mice exposed to

short days, those exposed to long days maintained warmer bodies

when given water with high salinity than they did when given

water with low salinity (F1,7 = 26.90, p,0.001). Under the

different salinity conditions acrophase responded significantly to

photoperiod in mice from both populations (F1,8 = 8.02,

p = 0.022). Mean HI value across all individuals was

0.45360.463uC. Compared with mice exposed to long days,

those exposed to short days maintained higher HI values when

given water with low salinity (0.9% and 1.4%) than they did when

given water with a high salinity (1.8%) (F1,116 = 8.31, p = 0.005).

Combined Energy Intake and Energy Expenditure
Average daily energy intake (ADEI) calculated from food intake

and average daily energy expenditure (DEE) calculated from VO2

data were compared. Whilst there was no direct effect of habitat

under LD-acclimation, there was a significant effect of salinity with

mice from lower salinity regimes having a greater ADEI than those

from higher salinity regimes (F2,39 = 20.34, p,0.001) (Fig. 4A). By

comparison, under SD-acclimation, the effect of salinity was

weaker but mice from lower salinities continued to have greater

energy intakes than those under higher salinity regimes

(F2,19 = 4.49, p = 0.025) (Fig. 4B). The interaction between salinity

and habitat failed to reach significance (F2,19 = 2.90, p = 0.079).

This effect was caused primarily by the different responses of mice

on 1.8% salinity compared with mice on lower salinity regimes.

Post-hoc analyses revealed that, at 1.8% salinity and SD

conditions, there was a significant interaction between habitat

and photoperiod (F1,18 = 5.56, p = 0.030) with Mediterranean

mice having a higher energy expenditure relative to energy intake

than sub-Alpine mice.

Discussion

Variation in physiological capabilities between populations

inhabiting different environments has been suggested to provide

an insight into the dynamics of evolutionary changes [1,67].

Across different zoogeographical zones, there is a large corre-

sponding variation in small mammal energy metabolism [68,69].

Physiological variations within a population may allow adaptation

to environments differing in temperature, aridity and productivity

[70,71]. Comparing differences in the daily rhythms and

photoperiod-induced changes of physiological characteristics can

Table 1. Daily rhythms of oxygen consumption and body temperature.

CARMEL HERMON

SD LD SD LD

Salinity 0.9 1.4 1.8 0.9 1.4 1.8 0.9 1.4 1.8 0.9 1.4 1.8

n 7 7 9 8 8 8 13 9 12 11 6 11

body mass (g) 30.37 32.73 31.28 32.40 30.10 31.05 30.21 33.01 33.15 32.91 34.08 32.93

se 4.02 2.14 2.19 2.31 1.00 1.08 1.78 2.13 2.43 1.39 2.71 1.60

VO2 daily rhythms

n 5 6 5 7 7 7 7 7 7 8 8 8

Mesor (ml O2/g.h) 2.11 3.17 4.03 3.34 2.94 3.33 1.91 2.87 2.14 2.36 2.52 2.21

Amplitude (ml O2/g.h) 0.660 0.695 0.463 0.876 0.537 0.722 0.322 0.517 0.517 0.634 0.418 0.574

Acrophase 2:58 2:01 2:58 1:24 1:48 1:55 23:24 2:31 0:02 1:47 0:32 0:37

% rhythm 63.90 63.92 55.56 43.30 42.79 44.69 54.97 50.79 65.20 50.24 43.50 37.25

p value 0.05 0.02 0.10 0.04 0.03 0.02 0.05 0.03 0.15 0.05 0.002 0.02

Tb daily rhythms

n 8 10 11 9 8 8 13 11 12 11 11 11

Mesor (uC) 37.03 37.13 0.35 37.31 38.15 38.02 37.71 37.26 37.22 37.80 38.18 38.45

Amplitude (uC) 0.651 0.130 36.610 0.244 0.282 0.812 0.214 0.558 0.182 0.107 0.093 0.165

Acrophase 2:41 11:36 19:41 14:22 22:48 0:19 7:44 10:18 8:33 0:44 15:08 23:20

% rhythm 61.81 2.41 58.46 15.80 32.64 84.93 19.24 23.36 6.49 4.52 6.30 31.17

p value 0.01 0.91 0.03 0.60 0.31 0.003 0.36 0.35 0.76 0.87 0.83 0.33

Mean and standard errors (se) of body mass (g) as well as mesor, amplitude and acrophase values of oxygen consumption (VO2, mlO2/g.h) and body temperature (Tb,
uC) daily rhythms of A. mystacinus from Mount Carmel (‘Carmel’) and Mount Hermon (‘Hermon’) acclimated to short day (SD, 16D: 8L) and long day (LD, 16L:8D)
photoperiods and to salinity regimes of 0.9, 1.4 and 1.8%. Percent rhythm and probability (p values) of the goodness of fit of the cosine curve [63] are shown.
doi:10.1371/journal.pone.0051247.t001

Comparative Energetics of Mouse Populations
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Figure 2. Oxygen consumption daily rhythms. Oxygen consumption (VO2: mlO2/g.h) daily rhythms of short day (SD: open circles, continuous
line) and long day (LD: closed circles, bold line) acclimated A. mystacinus at salinity regimes of 0.9, 1.4 and 1.8% from Mount Carmel and Mount
Hermon. Curves denote best-fit cosine functions [54]. Error bars denote standard errors.
doi:10.1371/journal.pone.0051247.g002

Figure 3. Body temperature daily rhythms. Body temperature (Tb: uC) daily rhythms of short day (SD: open circles, continuous line) and long
day (LD: closed circles, bold line) acclimated A. mystacinus at salinity regimes of 0.9, 1.4 and 1.8% from Mount Carmel and Mount Hermon. Curves
denote best-fit cosine functions [54]. Error bars denote standard errors.
doi:10.1371/journal.pone.0051247.g003
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add another important dimension, namely responses to a temporal

environment. Various studies have shown that changes in osmotic

loading can affect the VO2 and Tb of small mammal populations

from different habitats or ecosystems in different ways [12,16,35]

and that this variation might indicate physiological plasticity or

adaptation to local conditions [6,46]. In the current study, we used

two environmental signals - photoperiod and osmotic load - that

affect energy metabolism and body temperature regulation in

different ways. Our setup can therefore be considered: (1) when

both signals convey the same season (e.g. either ‘summer’ - LD and

high osmotic load or ‘winter’ - SD and no osmotic load), and (2)

where signals convey conflicting information (e.g. SD and high

osmotic load or LD and no osmotic load) (Table 2). The

interaction between these effects is of particular importance in

elucidating site-dependant differences in the sensitivity to these

signals, which may indicate population level differences in

physiological characteristics.

Energy Intake
The general physiological response to increased osmotic load is

a reduction in food intake [72] which reduces stress on the kidneys

by decreasing urea secretion. In the current study, there were no

effects of salinity on body mass. However, we did note that A.

mystacinus could not maintain their body mass when offered

a salinity loading of 2.5% (M. Scantlebury and A. Haim

unpublished data). Hence, one can conclude that while 1.8%

osmotic loading did have a physiological effect on the mice, the

maximum osmotic load chosen may not have been reached. For

both populations, DMI and ADEI decreased with increasing

salinity, confirming the expected response. However, there was

also an interaction between photoperiod and salinity for DE and

ADEI. LD-mice had greater DE values at the low salinity whereas

SD-mice had greater DE values at the highest salinity. In general,

animals living in less productive environments have an increased

digestive efficiency, compared with those from more productive

environments [22]. There were differences in the rates and

digestive efficiency between populations of common spiny mice

acclimatised to different seasons and acclimated to different

photoperiod regimes [73,74]. The fact that SD-mice in the current

study were able to increase DE at a higher salinity load suggests

that they were able to conserve energy by utilising the food source

more efficiently and conserve water by decreasing faecal output

[74]. However, the fact that LD-mice decreased their DE with

increasing salinity suggests that they may have reduced water loss

in other avenues, for example by producing dryer faeces, by

dissipating more heat through non-evaporative routes or by

increasing the efficiency of their kidneys [46]. Hence, the LD

signal can be presumed to ‘prepare’ mice for the dry season, which

is characterised by water limitations and osmotic load [41].

Indeed, under the two higher salinities, LD-mice had significantly

higher mesor values of Tb than SD-mice (Fig. 3).

Daily Energy Expenditure (DEE)
In a previous study in which the VO2 daily rhythms of

Mediterranean-mice were measured under a photoperiod of

12L:12D at their lower critical temperature and fresh carrots

provided as a water source [6], the mesor values obtained (2.89

mlO2/g.h) were similar to those of SD and LD-mice when they

were kept on 1.4% NaCl. Of note is that salinity had a large effect

on SD-mice (Fig. 2). In particular, increasing salinity resulted in

increased VO2 values in SD Mediterranean-mice whereas no such

change was observed in LD-mice. This may be because SD is the

environmental signal for water availability in Mount Carmel,

which results in an expected reduction in osmotic load [46].

However, when photoperiod and salinity signals were presented in

opposing directions (i.e. SD and high salinity) the response of mice

was an increase in energy expenditure. It can be presumed that

this shows a potential energetic cost of osmoregulation for mice not

‘accustomed’ to dealing with these ‘confusing’ conditions. In the

case of sub-Alpine mice, a smaller increase in VO2 was noted

when salinity was increased under SD-acclimation compared with

Mediterranean mice. One possibility why sub-Alpine mice had

a reduced response to photoperiod might be that temperature is

a more important environmental cue for them than salinity.

Results of a previous study on A. mystacinus showed that sub-

Alpine-mice exhibited a higher resistance to cold and significantly

higher VO2 values upon exposure to low ambient temperature

compared with Mediterranean-mice [34]. This would make sense

Figure 4. Energy intake and energy expenditure. Energy intake
(Apparent digestible energy intake, ADEI, kJ/100 g Wb.day) measured
by food intake and faecal output against energy expenditure (DEE, kJ/
100 g Wb.day) measured by oxygen consumption for Mount Carmel
(MC) and Mount Hermon (MH) A. mystacinus acclimated to (A) long
day (LD; 16L:8D) and (B) short day (SD; 16D: 8L) photoperiod regimes.
0.9% salinity MC mice are denoted by solid squares and a solid line (‘a’);
0.9% salinity MH mice are denoted by open squares and a dotted line
(‘b’); 1.8% salinity MH mice are denoted by open circles and a hashed
line (‘c’) and 1.8% salinity MC mice are denoted by solid circles and
a dot-hashed line (‘d’). ‘‘/100 g Wb.day’’ denotes per 100 g body mass
per day.
doi:10.1371/journal.pone.0051247.g004
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as the environment in Mount Hermon is manifest as greater

seasonal variability in Ta compared with that of Mount Carmel.

The lack of response to photoperiod observed in sub-Alpine-mice

could therefore be due in part to lack of exposure to low Tas (at or

below 6uC).

Interestingly, Mediterranean-mice had greater amplitudes of

variation than sub-Alpine-mice (Fig. 2). One possibility might be

that Mediterranean mice were attempting to conserve water and

energy by reducing the Tb-to-Ta gradient [60] suggesting that

Mediterranean mice might be more suited to live in conditions

with high osmotic load. Finally, there were differences in

acrophase between the two populations with sub-Alpine mice

peaking in VO2 earlier in the dark phase than Mediterranean

mice, indicating differences in activity patterns (Fig. 2). These

differences could emerge for several reasons, both biotic and

abiotic. For example, A. mystacinus on Mount Carmel coexist with

the competitively superior common spiny mouse Acomys cahirinus

that has been suggested to lead to temporal exclusion [75]. It is

also possible that differences in acrophase occur because there are

differences in Ta values between the habitats - i.e. as nocturnal

animals; sub-Alpine-mice might be active earlier than Mediterra-

nean mice, before the night becomes too cold.

Balance of Energy Intake and Energy Expenditure
There were differences in energy flux between the different

groups of mice. This can be seen as differences in the gradients of

the graphs describing the relationships between ADEI and DEE

under LD acclimation (Fig. 4). Under SD and a high salinity load,

the gradient [i.e. delta (X)/delta (Y)] between ADEI and DEE

increased and mice expended more energy relative to food intake,

whereas the opposite was true for a low salinity load. If it is

assumed that activity was independent of salinity, then one

possibility is that the kidneys utilised energy to process the high

levels of salt intake. This was more notable for SD-mice, which as

previously suggested, may not be ‘expecting’ osmotic load under

this photoperiod.

Body Temperature Daily Rhythms
Body temperature daily rhythms are an outcome of two

different other rhythms, namely heat production and heat

dissipation and are suggested to be related to feeding and activity

patterns [6,76,77]. Short photoperiod acclimated fat jirds (Meriones

crassus) had longer periods of maximal Tb compared with long

photoperiod acclimated individuals under the same Ta, which was

interpreted as an adaptation enabling jirds to forage for longer

periods during the winter [14]. Similarly, Rubal et al. [6]

suggested that higher Tb values for a longer period within the

24 h cycle indicated adaptation to a cooler environment in A.

mystacinus. The results of the current study can be compared with

those obtained earlier on A. mystacinus from Mount Carmel and

Mount Hermon populations in which mice were not challenged

with photoperiod manipulations [6] or salinity [34,35]. Values

obtained for Mediterranean mice for both photoperiod regimes

under a salinity of 0.9% were significantly lower than those

obtained previously (38.4460.06uC) [6] (p,0.001 for both LD

and SD acclimation). Sub-Alpine mice in the current study also

had lower values than sub-Alpine mice acclimated to 12L:12D at

the same ambient temperature [34]. However, for both popula-

tions, the values of LD-acclimated mice at 1.4% and 1.8% were

similar to those that appear in literature [6,34]. The reasons why

salinity may be linked to Tb may emerge from the fact that LD

conditions co-occur with increasing salinity (osmolality or partic-

ulate matter) in food items and higher Ta’s. Hence, by providing

opposing signals to mice (e.g. high salinity under SD conditions)

one ‘confuses’ their thermoregulatory system. The higher Tb

values noted in LD-mice under high salinity of both populations

may confer an advantage for heat dissipation under restricted

water conditions. However, SD-mice did not increase their Tb

values with increasing salinity. This can be understood in terms of

their inability to raise Tb in order to dissipate heat at a time of the

year (i.e. short photoperiod conditions representing winter) when

water deprivation and osmotic load do not co-occur. Interestingly,

at 1.8% salinity, LD sub-Alpine mice did not show a Tb daily

Table 2. Expected ambient conditions for each treatment.

Photoperiod Habitat Expected Expected Expected Salinity Conflicting

Ta aridity osmolarity regime signal

Short day Mediterranean Cool mesic/wet low 0.9 No

low 1.4

low 1.8 Yes*

sub-Alpine Cold freezing low 0.9 No

low 1.4

low 1.8 Yes*

Long day Mediterranean Hot arid high 0.9 Yes**

high 1.4

high 1.8 No

sub-Alpine Hot arid high 0.9 Yes**

high 1.4

high 1.8 No

Expected conditions of ambient temperature (Ta), aridity, and osmolarity of the food source for Mount Carmel (Mediterranean) and Mount Hermon (sub-Alpine) mice
exposed to short day (winter) and long day (summer) conditions. The laboratory conditions of short day (8L:16D) and long day (16L:8D) and salinity regimes of the
drinking water source (0.9%, 1.4% and 1.8%) present mice with environmental signals which can either represent what occurs in the wild, in which case the
environmental signals are not conflicting (No); or they can represent different conditions to what the mice experience in the wild, in which case the environmental
signals are conflicting (Yes). * indicates a potentially stressful situation as mice do not expect a high salinity load; ** indicates a potentially stressful situation as mice do
not expect a low salinity load.
doi:10.1371/journal.pone.0051247.t002
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rhythm pattern whilst LD Mediterranean mice had a clear

pattern. This is consistent with previous studies which show that

both seasonal acclimatization (July) and acclimation to LD resulted

in arrhythmic Tb daily rhythms in Mediterranean mice with no

water stress [35]. A possible interpretation of the fact that a high

salinity signal resulted in a clear daily rhythm pattern only for

Mediterranean mice is that salinity is likely to be a more important

cue for challenging Mediterranean mice; whereas, as previously

mentioned, other cues such as low temperature could be more

important for sub-Alpine mice. Finally, both photoperiod and

salinity had a significant effect on HI. Observed values were

greater in SD than LD-acclimated individuals at lower levels of

salinity, but greater in LD than SD-acclimated individuals at the

highest level of salinity. This is consistent with the notion that

animals are able to increase Tb variation when they are

experiencing realistic ‘winter’ or SD conditions (i.e. SD and low

salinity) or realistic ‘summer’ or LD conditions (i.e. LD and high

salinity) but are less able to effect Tb variation when the ambient

conditions are conflicting (i.e. SD and high salinity or LD and low

salinity).

Conclusions
Daily rhythms of thermoregulatory variables of two populations

of mice from different ecosystems separated by the Great African

Rift Valley were assessed for their responses to photoperiod and

osmotic load. Mediterranean mice were more responsive to

osmotic load than sub-Alpine mice, with salinity acting as a clear

signal for changes in Tb daily rhythms and an increase of VO2.

This indicates that Mediterranean mice may be able to respond to

and cope with variations in osmotic load whereas sub-Alpine mice

may be more sensitive to and able to cope with variations in

ambient temperature [34]. In addition, LD-mice behaved

differently to SD-mice upon exposure to increased salinity, with

the former appearing to adopt mechanisms to reduce energy

expenditure and water loss. Under LD-acclimation, mice were

able to cope better with osmotic load which they may have been

‘expecting’ as a stressor.

The links between physiological adaptation and species

distribution have received particular interest in the light of climate

change and the requirements for prediction of future biodiversity

[68,78,79]. Bacigalupe et al. [80] suggest that it is important to

consider how the thermal environment may shape inter-popula-

tion differences in physiology over evolutionary time. The results

of our study highlight how daily rhythms of energy expenditure

and Tb may vary across populations of the same species as a result

of differences in photoperiod and water stress. Whilst we are aware

that phenotypic plasticity may account for many of the differences

noted between the populations, intraspecific comparisons such as

this can be seen as a first approach towards understanding whether

differences in traits can be adaptive.
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