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Summary 

There is increasing evidence in vitro that intercellular communication plays a significant 

role in radiation response. However, it has not yet been established if these in vitro results 

can be reconciled with established clinical knowledge. Here, a series of prostate 

radiotherapy treatment plans were assessed using a theoretical model of radiation 

response incorporating intercellular communication, to evaluate possible impacts of 

signalling and highlight areas for future investigation. 
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Abstract 

Purpose 

Recent in vitro results have shown significant contributions to cell killing from signalling 

effects at doses which are typically used in radiotherapy. This study investigates whether 

these in vitro observations can be reconciled with in vivo knowledge and how signalling 

may impact on future developments in radiotherapy. 

Methods and Materials 

Prostate cancer treatment plans were generated for a series of 10 patients, using 3D 

Conformal Therapy, Intensity Modulated Radiotherapy and Volumetric Modulated Arc 

Therapy techniques. These plans were evaluated using mathematical models of survival 

following modulated radiation exposures which were developed from in vitro observations 

and incorporate the effects of intercellular signalling. The impact on dose volume 

histograms and mean doses were evaluated by converting these survival levels into 

“signalling-adjusted doses” for comparison. 

Results 

Inclusion of intercellular communication leads to significant differences between the 

signalling-adjusted and physical doses across a large volume. Organs in low-dose regions 

near target volumes see the largest increases, with mean signalling-adjusted bladder 

doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high dose regions there 

is a small decrease in signalling-adjusted dose, due to reduced contributions from 

neighbouring cells, with PTV mean doses falling from 74 to 71 Gy in IMRT. Overall, 

however, the dose distributions remain broadly similar, and comparisons between the 
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treatment modalities are largely unchanged whether physical or signalling-adjusted dose is 

compared. 

Conclusions 

Although incorporating cellular signalling significantly affects cell killing in low-dose regions 

and suggests a different interpretation for many phenomena, their effect in high dose 

regions for typical planning techniques is comparatively small. This indicates that the 

significant signalling effects observed in vitro are not contradicted by comparison with 

clinical observations. Future investigations are needed to validate these effects in vivo and 

to quantify their ranges and potential impact on more advanced radiotherapy techniques. 
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Introduction 

Recent years have seen dramatic improvements in the technical delivery of radiotherapy, 

with sophisticated techniques like Intensity Modulated Radiotherapy (IMRT) and 

Volumetric Modulated Arc Therapy (VMAT) providing superior conformation of dose to 

target volumes while sparing surrounding healthy tissue. These techniques offer many 

more degrees of freedom than older techniques, allowing for sophisticated optimisation of 

dose delivery. 

An important question raised by this increased flexibility is how to define “optimum” dose 

delivery. Most radiotherapy plans are currently designed with the goal of delivering a high, 

uniform dose to the target volume and minimising dose delivered to surrounding organs at 

risk. Improvements in dose delivery are thus typically used to improve dose conformation 

to target volumes, possibly by reducing margins. However, there is also increasing interest 

in “dose-painting” techniques, where inhomogeneous doses are delivered to the target 

volume, specifically targeting high-risk regions of the tumour volume (e.g. characterised by 

hypoxia or high levels of proliferation), which may be identified through the use of 

functional imaging (1). One of the key assumptions underlying both of these approaches is 

that the survival of a population of cells is determined by the dose received by that 

population. 

However, a series of recent investigations of the response of cell populations to modulated 

fields has shown that their survival depends not only on the dose they experience but also 

on that delivered to neighbouring populations (2, 3). These effects have been attributed to 

intercellular communication, often termed “bystander” effects (4). Bystander effects are 

typically associated with cell populations exposed to extremely low doses, such as those 

which are completely shielded in vitro, or wholly outside treatment fields and exposed only 
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to scattered radiation amounting to a few percent of the treatment dose in vivo, More 

recently, however, analysis by several groups (5–7) has suggested that these signals are 

not only significant in regions which are completely outside treatment fields (“out-of-field” 

regions), but also play a role in the survival of cells exposed to higher doses. These can be 

not only in organs at risk which are exposed to a low dose (e.g. 0.5 to 1 Gy per fraction) 

due to being traversed by a single treatment field, but even within the high-dose regions of 

the target itself which are exposed to doses of several Gy per fraction(8).   

These results present a strikingly different interpretation of many basic radiobiological data 

and suggest there is value in assessing the impact of these effects in clinical scenarios. 

This is further emphasised by in vivo observation of significant out-of-field toxicity and 

second cancer induction in animals exposed to modulated radiation exposures (9). It is 

important to note, however, that established practice in clinical radiotherapy and radiation 

protection is primarily based around the evaluation of physical doses, and this has useful 

(albeit imperfect) predictive power. Accordingly, any description of radiation response 

which incorporates these signalling factors must be compatible with established clinical 

observations, as they implicitly incorporate any underlying biology. 

This work presents an initial assessment of the impact of intercellular communication on a 

series of prostate radiotherapy treatment plans. This approach is based on a recently 

published theoretical model which describes radiation response incorporating both direct 

damage and that resulting from intercellular signalling.(6, 7). Evaluating these effects for a 

series of delivery techniques and signal ranges is an important first step in understanding 

the in vivo impact of the signalling effects which are observed in vitro, as significant 

divergences between the model's predictions and clinical observations would indicate an 

incompatibility of the model with in vivo conditions.  
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Materials and Methods 

Cellular Response Model 

This work builds on previously published models which describe cellular responses to 

modulated radiation fields incorporating cell cycling, cell arrest, and DNA damage induced 

both by direct radiation exposure and indirect, cell-signalling mediated effects. It is 

reviewed briefly below for completeness, with full descriptions of the model and its 

validation in in vitro systems published elsewhere (6, 7, 10). 

In this model, cells experience damage from two sources – direct radiation and 

intercellular communication – which is accumulated as a number of discrete “hits”, 

representing damage to the cell. For direct radiation exposures, the mean number of hits 

induced per cell is directly proportional to the delivered dose, and are taken to be Poisson-

distributed throughout the population. 

This direct damage is combined with damage resulting from responses to intercellular 

communication. It is assumed that cells exposed to ionising radiation begin to secrete a 

signalling molecule responsible for these damaging effects, and continue to do so for a 

time proportional to the delivered dose (i.e. t= γ D ). The signals are taken to be unstable, 

decaying with decay constant λ, and so the signal concentration (ρ) initially builds up to an 

equilibrium value before decaying away as cells cease signalling, schematically illustrated 

in Figure 1. 

Bystander responses are mediated by a threshold concentration (ρt), below which no 

response occurs, and above which response is induced at a constant rate. Thus, the 

probability of a cell experiencing a bystander response is given by PB= 1− e− κ τ

, where τ is 

the total time for which the cell is exposed to a signal above the threshold value, and κ is a 
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characteristic of the cell line. Cells undergoing a bystander response see the induction of 

additional damage, Poisson-distributed around a mean of HB, again a characteristic of the 

cell line. 

Following radiation exposure, a cell population would thus have accumulated damage due 

to both direct and indirect effects. This damage is then related to cell cycling and arrest 

checkpoints, which can be calculated either on a cell-by-cell basis (6, 10), or using 

population-level statistics (7), to produce predictions of survival which can be compared to 

experimental results. 

Signalling in Three-Dimensional Tissues 

In in vitro experiments, cells are typically maintained within a growth medium which allows 

for extremely rapid signal diffusion, removing any significant spatial effects. However, any 

signalling molecules which are produced in vivo must propagate through tissue, traversing 

cells and the intercellular matrix, which is known to significantly reduce their diffusion 

Figure 1: Schematic illustration of signalling kinetics. Left: Illustration of average signal 
concentration in a population uniformly irradiated to a dose D at time 0. Signal is produced by the 
cells and approaches equilibrium with signal decay until a time γD, when the irradiated cells cease 

signalling and the signal decays away. Bystander response is determined by τ= tmax− tmin , the time 
for which the signal level is above the response threshold ρt. Right: Illustration of equilibrium signal 
distribution around an idealised rectangular beam. Even for a perfectly sharp beam, diffusion can 
lead to significant changes in equilibrium signal levels at the margins, which can translate into 
differences in bystander response. 
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coefficient (11) and propagation. 

As in vivo signal propagation is a complex, inhomogeneous phenomenon influenced by 

the structure, composition and vasculature of different tissues, a full description of this 

behaviour is outside the scope of this work. Instead, signal propagation is here modelled 

as a simple homogeneous diffusion process. While this is necessarily a simplification of 

the true behaviour, it provides a useful starting point for evaluating the compatibility of 

intercellular communication models with established in vivo knowledge and preliminary 

quantifications of their biological significance. 

The signal diffusion is implemented in a numerical model, dividing the volume under 

consideration into a series of voxels (each containing uniform signal concentration) in 

three dimensions, with signal spreading according to the diffusion equation, 

dρ
d t

= − D ∇ 2ρ
 

∇where D is the diffusion coefficient, ρ is the local signal concentration at each point, and 2 

is the Laplacian operator. 

The simulation begins from a time t=0 when radiation is delivered and proceeds in a series 

of time-steps. At each timestep, from t to t+∆t, the signal evolves as follows: 

1. Additional signal is produced within voxels, if they have been exposed to a dose 

sufficient that t<γD; 

2. Signal diffuses between adjacent voxels, according to the diffusion equation; 

3. A portion of the signal decays, determined by the characteristic decay coefficient, λ. 

This model proceeds until all cells have stopped signalling and the maximum 

concentration in the simulation has fallen below the response threshold. For each voxel, 

the level of bystander response is determined by the length of time, τ, it was exposed to 
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signals above the response threshold, ρt, as outlined above. An illustration of the signal 

distribution and resulting exposure time is shown in Figure 1. 

Once the signalling simulation is completed, the total level of damage in each voxel is 

calculated by combining direct and signalling-induced damage, and survival is calculated 

based on population-level statistics, as mentioned above (7). For comparison with physical 

dose in treatment plans, this survival is then converted into a “signalling-adjusted” dose 

(Ds) by calculating the uniform physical dose which would lead to the same level of 

survival. 

Analysis of Bystander Signalling 

Plans were created using CT datasets of ten successive prostate cancer patients (Ethics 

REC ref 09/NIR02/28). 3D-Conformal, IMRT and VMAT plans were designed for delivery 

on a Varian 2100CD linear accelerator using 6 MV photons, with a prescribed target dose 

of 74 Gy, delivered in 37 fractions of 2 Gy across 7.5 weeks. Target volumes and organs at 

risk were delineated according to the CHHiP protocol (12). Further detail on planning 

techniques used can be found elsewhere (13). Treatment delivery time is neglected in this 

analysis, as they are significantly shorter than the typical timescales associated with 

bystander responses (14, 15). 

In addition to the physically planned dose, signalling-adjusted dose distributions were 

calculated for each treatment plan. All cells were modelled using parameters describing 

human fibroblast AGO-1522 cells (7), according to the methods outlined above. This cell 

line was selected as an example of normal cell response, but fitting parameters for a range 

of other cell types lead to similar conclusions to those presented here. 

One parameter which remains uncertain from in vitro measurements is the diffusion 

coefficient, D. While this is likely to depend on tissue type, structure and vasculature, 
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isotropic diffusion has been assumed here as these variations are currently poorly 

quantified. Here, the diffusion coefficient has been quantified in terms of its one 

dimensional equilibrium range, r= √D / λ . Signalling-adjusted dose distributions were 

calculated for each plan for values of r varying from 0 to 20 mm. Although the upper limit 

was constrained by computational performance considerations, it encompasses a 

reasonable range for isotropic diffusion, with longer ranges likely involving some form of 

active transport, which is outside the scope of this work. 

Mean organ doses and Equivalent Uniform Doses (EUD) were calculated under each 

condition to enable comparison of the impact of bystander signalling processes for 

different organs and treatment modalities. EUDs were calculated through DVH reduction 

(16), according to the relationship EUD= (∑ Di

1
n vi)

n
, where vi is the fraction of the organ 

exposed to a dose Di, and n is an organ-specific scaling parameter. 

Results 

Impact on Dose Distributions 

Figure 2 presents an illustrative slice from an IMRT prostate treatment plan, showing the 

physical dose distribution and the predicted changes in signalling-adjusted dose for a 

signal range of 15 mm. As expected, intercellular signalling leads to increased cell killing in 

out-of-field areas near steep dose gradients, and thus higher signalling-adjusted doses. It 

can also be seen that in regions of high local dose (primarily within beams), there is a 

reduction in signalling-adjusted dose due to more rapid signal fall-off than expected in a 

uniform exposure. However, this effect is relatively small, with reductions of less than 4 Gy 

on a 74 Gy plan, compared to increases of up to 25 Gy. Similar results were observed for 



Implications of Intercellular Signalling for Radiation Therapy: A Theoretical Dose-Planning Study 12 

CRT and VMAT plans, which are illustrated in supplementary figure e1. 

 

Figure 2: Impact of bystander signalling on dose distributions for an example IMRT prostate 
cancer treatment plan, with a signal range of 15 mm. Top: Physical dose distribution generated by 
the treatment planning system. Middle:  Heat-map indicating change between physical and 
signalling-adjusted dose.  Green indicates regions which see increases in cell killing compared to 
physical dose alone, while red shows reduced killing. Bottom: Resulting signalling-adjusted dose 
plans. Directly exposed areas see a small reduction (< 5% of prescribed dose), while areas near 
beams see substantial increases (up to 30 % of prescribed dose). 
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Impact on Dose Volume Histograms 

Figure 3 presents dose-volume histograms averaged over all patients for the Planning 

Target Volume (PTV), rectum and bladder, shown for both physical dose and signalling-

adjusted dose with a range of 20 mm. 

As would be expected, the largest difference between physical and signalling-adjusted 

 

Figure 3: Comparison of dose-volume histograms with and without a signalling 
component, averaged across 10 patients for CRT, IMRT and VMAT. Top: Physical DVHs 
for CRT (solid), IMRT (dashed) and VMAT (dotted) treatments, in bladder (blue), rectum 
(red) and target (black) volumes. Bottom: Signalling-adjusted DVHs for a signal range of 
20 mm. It can be seen that these show significantly higher doses in low-dose regions, and 
significantly reduced differences between different plans. 
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doses is in the lowest dose regions (< 30 Gy), where communication from high-dose 

regions has the most significant impact, while in intermediate dose regions (30-50 Gy) 

there is a smaller effect. At the highest doses (>55 Gy) signalling-adjusted doses are 

actually smaller than the physical dose, typically by a few percent. 

The impact of varying signal range on different treatments is illustrated in supplementary 

figure e2, showing that these effects build up rapidly at moderate ranges, but begin to 

saturate at higher ranges, as large portions of the volume are then entirely within the range 

of signalling from local dose maxima (particularly the case for the rectum, due to its 

proximity to the target volume). 

Impact on Mean Dose & EUD 

Figure 4 shows the change in mean dose and EUD for the three organs under 

consideration as a function of signal range for each different planning technique, again 

averaged across all patients. 

In organs at risk it can be seen that there is a significant increase in mean dose, on the 

order of 7 Gy for the rectum and 10 Gy for the bladder. By contrast, the PTV sees a 

reduction in mean dose, up to nearly 3 Gy at 20 mm ranges. Due to the importance of 

high-dose regions in EUD calculations, the effect on these values is much less striking, 

with smaller increases in bladder EUD (n=0.5 (17)) and a shift to a small decrease in the 

rectum EUD (n=0.09 (18)). 

Dosimetric Parameters 

Table 1 presents a summary of dosimetric parameters for the Rectum, Bladder, and PTV. 

Again, it can be seen that there are dramatic increases in the fraction of organ at risk 

volumes exposed to low doses across all treatment plans. However, higher dose-levels 
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which are typically used to evaluate treatment plans (e.g. V68, V81, V100) are all much less 

affected, by at most a few percent.  As a result, assessment of a given plan against these 

 

Figure 4: Impact of signalling range on mean signalling-adjusted dose and EUD, for CRT, 
IMRT and VMAT plans calculated for rectum, bladder and prostate. For organs outside the 
treatment field, there is a significant increase in mean dose, while there is a smaller 
reduction in the mean target dose. However, these effects are reduced when EUD is 
considered, due to the greater emphasis on high-dose regions. 
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metrics would not be significantly affected by whether physical or signalling-adjusted 

doses were considered. There is also typically a small decrease in the mean dose 

delivered to the target, on the order of 2 to 3 Gy, but this is uniform across all techniques. 

Discussion 

The implication that intercellular communication plays an important role at clinically-

relevant doses is a significant departure from traditional radiobiology. Despite numerous in 

vitro results reporting these effects, a key question remains whether these observations 

are applicable to the in vivo conditions targeted in radiotherapy. One of the key initial tests 

of any model of the effects of intercellular communication is confirming that its predictions 

can be reconciled with clinical knowledge and practice.  

Applying the theoretical model presented in this work leads to a distortion in dose 

distributions in organs near treatment fields which are exposed to low doses. This 

suggests that these effects may play a more important role in relatively parallel organs 

which are sensitive to lower dose regions (such as lung or bladder (17)). By contrast, 

these effects are much smaller in the high dose regions that are more significant in serial 

organs which are sensitive to dose hot-spots. Indeed, in organs which are both highly 

serial and exposed to a limited high dose region (such as the rectum), this actually 

translates into a reduction in EUD,  which may sometimes prove significant in treatment 

planning, although this is typically small in magnitude. As these high dose regions are 

typically the constraints in therapy planning, assessment of different treatment plans in 

light of these effects leads to broadly similar conclusions as assessments based purely on 

physical dose, across all signal ranges. 

Despite the limitations of the current model, this suggests that, even in the limit of relatively 

long signal ranges, the incorporation of a component of intercellular signalling leads to 
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similar predictions of cellular survival within the high-dose regions typically used to 

evaluate conventional radiotherapy plans. Thus, these radiation response models are not 

contradicted by comparison to clinical experience. 

Similarly, this model and experimental results in modulated fields suggest an exponential 

dependence of damage resulting from intercellular communication, which translates into 

an approximately linear response in low-dose regions which see enough dose to drive 

signalling effects (e.g. 0.1 to 0.5 Gy per fraction (6, 15)). As a result, these effects are 

broadly compatible with the traditionally-assumed linear risk of cancer induction with dose 

(19) rather than introducing a strongly non-linear component at low doses which has 

sometimes been suggested. 

The overall similarity of the conclusions drawn from physical and signalling-adjusted doses 

for different modalities is further emphasised by the similar optimisation criteria used in 

each of these planning approaches. The aim of a high, uniform target dose and minimal 

dose in surrounding healthy tissue means that the dose distributions in the vicinity of the 

target are broadly similar. As a result, all signalling-adjusted dose plans contain a similar, 

slowly-varying contribution in the vicinity of the target, which serves to reduce the 

distinction between different techniques (as seen in Figure 3). These effects mean that 

while there may be some improvements in predictive power from incorporating signalling 

into planning models, this is likely to be at the limits of clinical uncertainties for comparing 

different modalities used to deliver similarly-optimised plans. 

However, intercellular signalling has the potential to play a much more significant role 

when comparing treatments which differ in other ways. For example, reduction of margins 

to take advantage of improved target delineation may have a negative impact on cell-killing 

at the tumour periphery. Similarly, the benefits of dose-painting or heavy ion therapies may 
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be significantly diminished if precisely targeted hot-spots within the tumour volume are 

blurred by signalling effects. Given interest in increasingly personalised treatment delivery, 

a more detailed understanding of these factors is necessary to fully optimise these 

techniques. This also offers a promising target for novel therapeutics, as it has been 

demonstrated that these effects can be inhibited both in vitro and in vivo, preferentially 

sparing out-of-field cells and those exposed to low doses. 

Immediate clinical validation of these effects is likely to prove challenging. In addition to 

the relatively subtle variations suggested for the treatment plans considered in this work, 

the model presented here does not incorporate the impact of other factors which are 

known to influence therapeutic response, such regions of hypoxia, variation in the genetic 

profile of the cells within and around the tumour, and inter-fraction variation within the 

tumour. Any comprehensive model of radiation response must incorporate the relative 

effects of these parameters on both direct and signalling-driven responses, but this 

remains poorly quantified. Small-animal radiotherapy platforms (20) offer the possibility to 

probe these effects by delivering complex treatments to tumour-bearing animals with high 

precision to test potential impacts of intercellular communication in a more relevant 

system. 

While the current model is sufficient for an initial theoretical evaluation of the impacts of 

intercellular signalling, there are still refinements required before it is in a position to 

generate clinical predictions. One of the most significant of these is a more accurate 

description of the signalling itself, as the current description of homogeneous signalling is 

clearly a simplification. Likewise, the range of these signals in vivo remains poorly 

characterised. While reports from in vitro skin models have suggested ranges on the order 

of 1 mm (21), there have also been reports of elevated cell killing outside treatment fields 

in Ptch1+/− mice, suggesting significantly longer signalling ranges (9). Additionally, the 
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signalling model in this work assumes that fractions are independent and identical. 

However, this validity of this assumption is much less sure for signalling-driven effects than 

for conventional exposures, as signalling effects may persist over time-frames longer than 

a single fraction, or be affected by changes in tumour size and composition through the 

treatment. Experiments to more precisely quantify all of these effects, both in vivo and in 

vitro would be a significant benefit to further development of this model. 

Conclusions 

Applying models developed to describe in vitro impacts of intercellular communication 

suggests that a significant proportion of the biological responses following radiotherapy 

result from intercellular communication, rather than direct damage. However, when  

physical and signalling-adjusted dose distributions are compared, it was found that 

predicted levels of survival were broadly similar in dose regions typically used to evaluate 

treatment plans, suggesting that these models can be reconciled with clinical experience. 
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Table 1: Dosimetric parameters comparing physically planned doses with signalling-

adjusted doses for bystander signals of range 20 mm. Values are medians across the 10 

patients. Vx=percentage of the organ exposed to X% of the prescribed dose. 

EUD=equivalent uniform dose. CI = conformity index. 
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Table 1: Impact of intercellular signalling on dosimetric parameters 

 CRT IMRT VMAT 

Rectum       

 Physical Ds, Range 

20 mm 

Physical Ds, Range 

20 mm 

Physical Ds, Range 

20 mm 

V14 (%) 95.01 100.00 97.53 100.00 90.28 100.00 

V27 (%) 90.14 100.00 93.64 100.00 75.04 99.67 

V41 (%) 74.53 97.27 84.16 97.02 53.68 91.53 

V54 (%) 53.15 76.02 61.78 79.65 37.22 59.46 

V68 (%) 46.79 50.41 33.67 45.41 28.94 33.71 

V81 (%) 37.41 36.41 18.41 18.28 17.82 18.34 

V100 (%) 0.03 0.00 0.04 0.00 0.05 0.00 

Mean Dose (Gy) 45.38 51.59 43.54 49.14 36.19 45.60 

EUD (Gy) 62.63 60.95 58.88 57.66 58.40 57.17 

       

Bladder       

V14 (%) 55.76 97.88 59.38 94.38 59.26 96.38 

V27 (%) 51.25 79.88 45.13 71.63 47.89 73.76 

V41 (%) 43.63 57.88 33.76 51.50 33.89 52.64 

V54 (%) 27.63 38.88 22.38 33.26 22.26 32.26 
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V68 (%) 17.38 21.13 15.63 19.13 16.63 19.51 

V81 (%) 14.01 14.51 10.88 11.13 11.14 11.64 

V100 (%) 2.26 0.00 0.88 0.00 0.89 0.00 

Mean Dose (Gy) 25.20 36.28 23.49 33.36 23.34 33.44 

EUD (Gy) 34.91 40.48 32.65 37.99 32.18 38.05 

       

PTV       

Min Dose (Gy) 71.84 69.22 71.49 68.95 70.65 68.30 

Median Dose 

(Gy) 

74.08 71.13 73.69 70.71 73.33 70.54 

Mean Dose (Gy) 74.47 71.42 74.52 71.34 73.96 70.99 

CI 2.04 2.18 1.71 1.88 1.76 1.92 
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