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Abstract

We present a comparison of several local image descriptors in the context of visual

Simultaneous Localization and Mapping (SLAM). In visual SLAM a set of points in the

environment are extracted from images and used as landmarks. The points are represented

by local descriptors used to resolve the association between landmarks. In this paper, we

study the class separability of several descriptors under changes in viewpoint and scale.

Several experiments were carried out using sequences of images in 2D and 3D scenes.

1 Introduction

Building a map of the environment is a fundamental skill for a mobile robot, since maps are

required for a series of high level tasks. Typical approaches use range sensors to build maps

in two or three dimensions (e.g. [5, 6] [3, 14]).

Recently, the interest on using cameras as the main sensors to build the map has increased

significantly. Such approach is denoted as visual SLAM. Typically, approaches using vision

apply a feature-based SLAM (e.g, [2, 4, 8]), in which significant points in the environment

are used as landmarks. Two steps can be distinguished in the utilization of visual landmarks:

The detection of interest points and the description of the selected points. The first step

involves the selection of suitable points in the images that can be used as landmarks. The

points should be detected at different distances and viewing angles, since they will be observed

by the robot from different poses. In a second step the landmarks are described by a feature

vector which is computed using local image information. The descriptor is used to solve the

data association problem: when the robot observes a landmark in the environment, it must

decide whether the observation corresponds to a previously seen landmark or to a new one.

The data association is a fundamental part of the SLAM process, since wrong associations will

produce incorrect maps. In practice, however, the interest points detected in the images are

not very stable, and the matching between different views becomes difficult. In consequence,
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the problem of selecting a suitable interest point detector and descriptor for visual SLAM is

still open. In a previous work [11], we evaluated some interest point detectors to be used as

landmarks in visual SLAM. The Harris corner detector was found to be the most suitable for

visual SLAM applications. In this paper we present a comparison of different interest point

descriptors using Harris corner detector as point detector.

In [10], Mikolajczyk and Schmid evaluated a set of local descriptors using a criterion based

on the number of correct and false matches between pairs of images. Instead, in this work

we concentrate on the variation of the descriptor when viewed from different angles and dis-

tances. We apply a pattern recognition approach using validity clustering measurements [13]

to estimate how well the descriptors representing the same landmark along a sequence are

grouped in the different descriptor spaces. This measurements will indicate which descriptor

has better separability properties, facilitating the data association. Several experiments have

been carried out using sequences of real indoor environment images. We believe that these

results would help the selection of visual landmarks for SLAM applications.

2 Visual Descriptors

Next, we list the set of different descriptors that have been evaluated in this study. For all of

them we compute the descriptors at the local neighborhood of the points detected by Harris.

SIFT: The Scale-Invariant Feature Transform (SIFT) detects distinctive key points in images

and computes a descriptor for them. The algorithm, developed by Lowe, was initially

used for object recognition tasks [9]. SIFT features are located at maxima and minima

of a difference of Gaussian functions applied in scale space. Next, the descriptors are

computed based on orientation histograms at a 4x4 subregion around the interest point,

resulting in a 128 dimensional vector.

SURF: Speeded Up Robust Features (SURF) is a scale and rotation invariant descriptor

presented by Bay et al. [1]. The detection process is based on the Hessian matrix.

SURF descriptors are based on sums of 2D Haar wavelet responses, calculated in a 4x4

subregion around each interest point. The standard SURF descriptor has a dimension

of 64 and the Extended version (e-SURF) of 128. The u-SURF version is not invariant

to rotation and has a dimension of 64.

Gray level patch: This method describes each landmark using the gray level values at a

subregion around the interest point. This method has been used in [2] as descriptor of

Harris points in a visual SLAM framework.

Orientation Histograms: The orientation histograms are computed from the gradient im-

age, which represents the gray value variations in the x and y direction. In [7] orientation

histograms are applied for navigation tasks.
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Figure 1: The upper sequence shows a planar object (a poster) under different viewpoints.

The bottom sequence depicts a 3D scene under different scale changes.

Zernike Moments: The moment formulation of the Zernike polynomials [15] appears to

be one of the most popular in terms of noise resilience, information redundancy and

reconstruction capability. They are are constructed using a set of complex polynomials

which form a complete orthogonal basis set defined on the unit disc.

3 Descriptor Evaluation

To evaluate the stability of the different interest point descriptors under changes in viewpoint

and scale we track each interest point along different images in a sequence. Examples of se-

quences are shown in Fig. 1. The interest points are extracted using Harris corner detector as

shown in [11]. To track the points along the different images we have implemented two differ-

ent algorithms for 2D and 3D images respectively. In the first case, we used the homography

matrix as in [12]. In the case of 3D images, we have implemented a method that is based on

the fundamental matrix. This method is divided in two steps. First, seven correspondences

between each pair of images are selected, which allows to compute a fundamental matrix

F . Using the fundamental matrix F we find a set of preliminary correspondences that are

used as input for the computation of a second fundamental matrix F ′. In this second step,

the fundamental matrix is computed using a RANSAC approach, which results in a more

accurate matrix F ′, that permits to find the correspondences with more precision.

For each tracked interest point p in a sequence of images S = {i1, . . . , iN}, we obtain a

set Dp of descriptor vectors Dp = {dp1
, . . . , dpN

}. Each descriptor dpn
represents the interest
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Table 1: J ′
3

values computed in the viewpoint changing sequences
Sequence SIFT SURF e-SURF u-SURF Patch Histogram Zernike

2D sequences

1 22.90 36.87 34.18 126.63 15.53 2.48 6.39

2 15.89 39.45 34.00 119.58 9.03 1.83 2.93

3 10.18 30.49 25.81 118.64 6.06 1.85 2.90

4 27.24 68.32 57.81 184.06 15.78 2.13 6.54

5 23.75 27.60 28.32 55.94 13.59 2.02 5.87

6 13.38 29.45 23.47 67.36 6.83 1.77 3.68

3D sequences

7 5.71 10.70 10.70 35.93 2.59 1.46 2.13

8 17.62 16.45 18.96 73.23 5.99 1.51 4.33

9 7.11 7.83 7.65 25.17 3.33 1.72 2.35

10 16.44 14.47 16.60 50.58 7.37 1.54 5.54

11 6.22 9.60 9.41 30.33 2.76 1.78 2.25

12 10.26 9.63 11.13 41.09 4.00 1.43 3.43

point p in the image in. The set Dp forms a cluster in the vector space representing the

interest point p in the images along the sequence.

In this work, we use the J3 separability criterion [13] to measure the separability of the

clusters representing the interest points. This measure is based on two scatter matrices: Sw

and Sb. Sw is called within-class scatter matrix, and measures the compactness of the clusters.

The between-class scatter matrix Sb measures the separability between vectors belonging to

different clusters. In our case, Sw measures the invariance of the descriptor to viewpoint

and scale changes, whereas Sb measures the distinctiveness of the points described. The J3

criterion is defined as:

J3 = trace(S−1

w Sm), (1)

where Sm is the mixture scatter matrix and is computed as Sm = Sw + Sb. A good descrip-

tor has a low value of Sw, since the variability of the vectors describing the same class is

small. Furthermore, it is desirable that vectors describing different points are as distinctive

as possible, resulting in a high value of Sb. In consequence, a suitable descriptor would have

a high value of J3. This descriptor would have good results in terms of the data association

problem, despite of changes in the imaging conditions, such as viewpoint and scale changes.

To compare descriptors with different length we use a normalized version J ′
3

= J3

N
, where N

is the descriptor length.

4 Experiments

Tables 1 and 2 show the results of applying the J ′
3

criterion to different sequences of 2D

and 3D scenes. The u-SURF descriptor achieves the highest value of separability in 96% of

the sequences However u-SURF is not rotational invariant. When comparing only rotational
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Table 2: J ′
3

values computed in the scale changing sequences
Sequence SIFT SURF e-SURF u-SURF Patch Histogram Zernike

2D sequences

1 7.10 3.29 2.87 8.82 2.32 1.78 2.15

2 7.97 6.27 5.89 13.67 2.59 1.51 2.45

3 9.42 4.47 4.50 13.03 3.45 1.92 2.81

4 14.09 7.00 9.05 26.89 4.22 1.94 2.70

5 103.36 17.58 38.58 131.54 27.73 0.87 14.20

6 4.24 3.51 3.22 8.56 2.81 1.12 2.32

7 7.34 4.03 4.90 12.71 4.87 1.77 2.73

8 26.49 5.99 10.62 22.65 12.34 2.89 9.05

3D sequences

9 7.06 10.12 10.24 28.01 4.47 1.70 3.10

10 14.48 10.39 14.97 47.48 5.98 1.67 4.54

11 8.76 9.18 10.02 24.72 3.47 2.48 3.95

12 22.22 15.53 23.09 67.38 8.50 2.15 5.61

13 6.28 8.84 10.00 25.56 3.56 1.94 3.06

14 17.45 11.10 16.86 42.37 7.37 2.10 5.88

invariant descriptors, SURF and e-SURF present similar results. In this case, the computa-

tional cost of computing the extended version of SURF is not worthy, since the results are not

improved substantially. E-SURF always outperforms SIFT in changes in viewpoint. However,

in scale changes it is only better in 43% of the cases (2D sequences).

Taking into account the results of Tables 1 and 2 together with the results of our previous

work [11], we believe that the u-SURF descriptor in combination with the Harris corner

detector is suitable for the common situation in which a robot explores the environment with

a camera that only rotates around the vertical axis.

5 Conclusions

We have performed an evaluation of visual local descriptors to be applied for SLAM tasks.

For this purpose, we analyzed each descriptor according to its separability. The results of the

experiments showed the behavior of seven different descriptors under changes in viewpoint

and scale. We believe that this information will be useful when selecting an interest point

descriptor as visual landmark for SLAM.
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