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Abstract 

 
We provide numerical evidence of passive and broadband targeted energy transfer from a linear 
flexible beam under shock excitation to a local essentially nonlinear lightweight attachment that 
acts, in essence, as nonlinear energy sink—NES. It is shown that the NES absorbs shock energy 
in a one-way, irreversible fashion and dissipates this energy locally, without _spreading_ it back to 

the linear beam. Moreover, we show numerically that an appropriately designed and placed NES 
can passively absorb and locally dissipate a major portion of the shock energy of the beam, up to 
an optimal value of 87%. The implementation of the NES concept to the shock isolation of 
practical engineering structures and to other applications is discussed. 
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1. Introduction 

 

In previous works [1,2] it was shown that essentially nonlinear oscillators attached to linear 

discrete structures can act as broadband passive absorbers of vibration energy. In particular, it 

was shown that transient resonance captures of the transient dynamics in neighborhoods of 

resonance manifolds of the phase space of a dynamical system [3,4] may initiate one-way, 

irreversible targeted energy transfer from a linear (main) subsystem to a local essentially 

nonlinear attachment, which acts, in essence, as nonlinear energy sink (NES) [5,6]. Moreover, in 

contract to the classical linear vibration absorber, the NES may passively absorb broadband 

energy over wide frequency ranges; this due to the essential stiffness nonlinearity of the NES, 

which enables resonance capture of the NES with any mode of the linear subsystem, irrespective 

of its frequency. 

 Up to now passive targeted energy transfer was studied only in discrete systems of 

coupled oscillators. This communication demonstrates both computationally and experimentally 

that the NES concept can be extended to flexible systems as well. Specifically, we show that an 

appropriately designed and placed essentially nonlinear local attachment may absorb and locally 

dissipate a significant portion of shock-induced vibration energy of a beam, a result that paves 

the way for the practical implementation of the NES concept to flexible systems.  

 

2. Dynamical System and Truncated Model 

 

The system considered in appears in Figure 1. It consists of an impulsively forced, simply 

supported, damped linear beam, with an attached essentially nonlinear, damped single-degree-of-

freedom oscillator. We will show that the nonlinear attachment can passively and irreversibly 

absorb a major portion of the vibration energy of the beam induced by the impulse, thus acting as 

NES. Moreover, the targeted energy transfer from the linear beam to the NES can be optimized 

by appropriate design and placement of the attachment. 

(Figure 1) 

Assuming that the beam dynamics is governed by linear Bernoulli theory, the equations of 

motion of the system are given by, 
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with zero initial conditions. Assuming that 0 1   , the system possesses light viscous 

damping, and the attachment is lightweight compared to the beam. This last assumption is 

important for the practical implementation of the NES concept. In addition, the attachment 

possesses essential cubic stiffness nonlinearity, which, together with viscous damping dissipation 

are prerequisites for the realization of targeted energy transfer in this system [1,2].  

The transient response of system (1) is computed by projecting the dynamics of the 

partial differential equation in the complete and orthonormal base of the linear vibration modes 

of the simply supported beam with no nonlinear attachment, 

       
1/21/ 2 2 4

r r(x) 2 / mL sin r x / L , r EI / mL , r 1,2,...                   (2a) 

where r  is the natural frequency of the r-th mode. The base eigenfunctions satisfy the 

following modal equations and orthonormality conditions, 
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where 
ij  is Kronecker’s symbol. 

 To project the dynamics of (1) in the infinite-dimensional orthonormal basis (2) we 

express the transverse displacement field y(x, t)  in the series form, 

r r
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which upon substitution in (1) and use of the above orthonormality relations yields the following 

infinite set of coupled oscillators with cubic stiffness nonlinearities: 
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where p=1,2,… We note that the essential nonlinearity couples all modes through the infinite 

summation terms, whereas, the linear part of the system uncouples completely.  

To numerically solve the set (4) in order to compute the transient dynamics of the system 

of Figure 1, it is necessary to truncate the expansion (3) to a finite number of modes, e.g., to 

perform an approximate projection of the dynamics to a finite-dimensional basis of orthonormal 

eigenfunctions. A numerical convergence analysis was performed, and it was found that N=5 

modes are sufficient for accurately computing the transient dynamics. Examples of two such 

convergence results are depicted in Figures 2a and 2b, where the portion of input energy 

dissipated by the damper of the NES at t=150 is plotted as function of the nonlinear coefficient C 

and the position d of the NES. For these simulations the impulsive force was selected as the half 

sine pulse, 

 Asin 2 t / T , 0 t T / 2
F(t)

0 , t T / 2

   
 


                                             (5) 

with A=10.0, T=0.4/π, and the system parameters were assigned the values, 

EI 1.0, m 1.0, L 1.0, 0.1, a 0.3, 0.5                                          (6) 

and d 0.65  for Figure 2a, 3C 1.322 10   for Figure 2b. The portion of input energy dissipated 

at the damper of the NES at time t is computed by the expression, 
2t N
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where N is the number of modes retained in the expansion (3). It is expected that for shock 

excitation of the damped system (1), as time increases the energy ratio (7) reaches an asymptotic 

limit t 1  representing the total portion of input shock energy of the beam that is passively 

absorbed and locally dissipated by the NES. In the numerical simulations of Figures 2a,b the 

limiting ratio t 1  was computed by computing the dynamics up to t=150, since by that time 
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instant the transient dynamics was nearly damped, and the asymptotic limit of energy dissipation 

t 1  was approximately reached.  

Studying the plots of Figures 2a,b we note convergence of the results for N=5 modes, 

justifying the mode truncation implemented in the following results. Considering the dependence 

of the portion of energy dissipated at the NES on the nonlinear coefficient (Fig.2a), we note that 

for C of 3O(10 )  it is significant, reaching as high as 0.87. Considering the dependence of the 

portion of energy dissipated at the NES on its position (Fig.2b), we note two regions of high 

values (of the order of 0.85) when the NES is placed between the boundaries and the center of 

the beam, whereas significantly lower values are realized when the NES is placed near the center 

of the beam (where the second and fourth modes possess a node), or near the boundaries of the 

beam where all modes possess zero displacements. These results indicate that an appropriately 

designed and placed NES can passively absorb and dissipate a major portion of the energy 

induced to the beam by the external shock; moreover, this passive energy absorption is 

broadband and irreversible (e.g., once it is absorbed by the NES is does not ‘spread back’ to the 

beam), as verified by the significant levels of energy that is eventually dissipated by the damper 

of the NES. 

In the following section we present the results of an optimization study of the NES with 

the goal of maximizing the portion of the input energy that is eventually absorbed and dissipated 

by the NES, and discuss the implementation of the NES concept to shock isolation of flexible 

systems. 

(Figure 2) 

 

3. Optimization of Passive Energy Transfer and Dissipation at the NES 

 

The following simulations were performed for shock excitation (5) with A=10.0, T=0.4/π, and 

system parameters, EI 1.0, m 1.0, L 1.0, 0.1, a 0.3, 0.5        . In addition, motivated by 

the convergence study we truncated the discretized set of equations (4) by retaining only the five 

leading modes of the linear beam. Keeping the (light) mass of the NES constant we computed 

the approximate asymptotic limit t 1  reached by the NES energy measure   defined in (7). In 

Figure 3 the asymptotic energy limit t 1  is depicted as function of the nonlinearity coefficient 

C and the position d of the NES (viewed in context, the plots of Figure 2 can be regarded as 

being two ‘slices’ of the three dimensional plot of Figure 3a). 

(Figure 3) 

There are two regions of effective performance of the NES in the (C,d) plane, with 

optimal NES energy dissipation reaching the value of 0.833 realized for 3C 1.320 10   and 

d=0.348. Moreover, for C of 3O(10 )  the effectiveness of the NES appears to be robust in 

variations of C; this is indicated by the two distinct ‘strips’ of high values of energy dissipation 

in the plots of Figure 3. At the same time, the plots of Figure 3 reveal a strong dependence of the 

portion of energy dissipated by the NES on its placement position d. This should be expected, 

given that, by placing the NES close to the center or the boundaries of the beam prevents strong 

absorption and dissipation of shock energy from beam modes possessing nodes near the position 

of the NES. However, a general conclusion drawn from the plots of Figures 3 is that a 

lightweight, essentially nonlinear NES can be designed and appropriately placed to passively 

absorb a major portion (of the order of 80%) of shock energy induced in the beam. This result is 

novel, as the described energy absorption is broadband (as it involves shock energy and multi-
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modal beam resepose), realized over wide frequency ranges; as such, it contrasts clearly to the 

action of classical linear absorbers where energy absorption is narrowband. 

(Figure 4) 

To demonstrate the significant reduction of the level of beam vibrations caused by the 

action of the NES, in Figure 4 we depict the transient responses of the NES and the point of 

attachment of the beam for the system with parameters 3C 1.320 10   and d 0.65 . For 

comparison purposes we also show the response of the same point of the beam with no NES 

attached. Note the drastic reduction of the envelope of oscillation of the point of the beam caused 

by the rapid absorption and dissipation of energy by the NES. The multi-frequency content 

clearly evidenced in the NES transient response (high frequencies at early time with a transition 

to lower frequencies as time increases) indicates absorption of energy from different structural 

modes of the beam, and demonstrates clearly the capacity of the NES to absorb and dissipated 

broadband energy from the beam.  

The dynamical mechanisms governing passive targeted energy transfer from linear to 

nonlinear oscillators are discussed in previous works [5,6]. Two of these mechanisms rely on 

resonance capture of the damped dynamics on either fundamental or subharmonic resonant 

manifolds in the phase space of the dynamical system; viewed from an alternative perspective, 

irreversible targeted energy transfer from the linear oscillator to the nonlinear attachment takes 

place when the dynamics is restricted to a damped nonlinear normal mode invariant manifold, 

whose mode shape becomes strongly localized to the nonlinear attachment as the energy 

deceases due to damping dissipation. A third mechanism for passive targeted energy transfer 

relies on nonlinear beat phenomena to initiate (but not cause) strong energy pumping; these beats 

act as ‘bridging orbits’ (or ‘catalysts’) for facilitating energy transfer by activating either one of 

the previous fundamental or subharmonic resonance capture mechanisms. It is interesting to note 

that these phenomena occur in spite of the lightness of the NES compared to the linear oscillator 

and the complete absence of any active (energy source) element in the system. These dynamical 

mechanisms are expected to be present in the numerical results presented in this note, and to 

govern passive targeted energy transfer from linear flexible systems to attached NESs.  

 

5. Concluding Remarks 

 

The considered nonlinear attachment holds promise as an efficient, robust, lightweight and 

modular passive absorbing device for eliminating undesired shock-induced broadband 

disturbances in small- or large-scale flexible structures. Viewed in that context, the NES can be 

viewed as a passive, broadband boundary controller, and as such can find application in diverse 

problems in engineering and physics, including shock isolation of machines and structures, 

seismic mitigation, packaging, and instability suppression (such as limit cycle aeroelastic 

oscillations or flutter). 

 



 6 

References 

 

1. VAKAKIS A.F., MANEVITCH L.I., GENDELMAN O., BERGMAN L. 2003, Journal of 

Sound and Vibration, 264, 559-577, Dynamics of linear discrete systems connected to local 

essentially nonlinear attachments. 

 

2. PANAGOPOULOS, P.N., VAKAKIS, A.F., TSAKIRTZIS, S. 2004, International Journal of 

Solids and Sructures, Transient resonant interactions of linear chains with essentially nonlinear 

end attachments leading to passive energy pumping. 

 

3. QUINN, D. AND RAND, R.H. 1995, Nonlinear Dynamics 8, 1-20, The Dynamics of 

Resonance Capture. 

 

4. QUINN, D. 1997, Nonlinear Dynamics, 14, 309-333, Resonance Capture in a Three Degree of 

Freedom Mechanical System. 

 

5. LEE Y.S., KERSCHEN G., VAKAKIS A.F., PANAGOPOULOS P.N., BERGMAN L.A., 

McFARLAND D.M. 2005, Physica D, Complicated Dynamics of a Linear Oscillator with a 

Light, Essentially Nonlinear Attachment (in press). 

 

6. KERSCHEN G., LEE Y.S., VAKAKIS A.F., McFARLAND D.M., BERGMAN L.A., 2005, 

SIAM Journal on Applied Mathematics, Irreversible Passive Energy Transfer in Coupled 

Oscillators with Essential Nonlinearity (submitted). 

 

 



 7 

Figure Captions 

 

1. Linear beam with local, essentially nonlinear NES. 

2. Convergence study of the portion of input energy absorbed and dissipated by the NES, for a 

truncated system with N=1,2 and 5 modes, as function of (a) the NES stiffness C, (b) the NES 

position d. 

3. Dependence of the portion of input energy absorbed and dissipated by the NES as function of 

the NES stiffness C and position d: (a) full three-dimensional plot, (b) contour projection in 

the (C,d) plane. 

4. Transient responses of, (a) the NES, (b) the point of attachment of the beam, for 
3C 1.322 10   and d 0.65.  



 8 

Figures 

 

 
 

Figure 1 
Nonlinear energy sink - NES 
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Figure 2 

Energy in NES, t=150, 1 mode 
Energy in NES, t=150, 2 modes 
Energy in NES, t=150, 5 modes 
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Figure 3 
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Figure 4 


