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Abstract 

 

We examine nonlinear resonant interactions between a damped and forced dispersive linear finite 

rod and a lightweight essentially nonlinear end attachment. We show that these interactions may 

lead to passive, broadband and on-way targeted energy flow from the rod to the attachment, 

which acts, in essence, as nonlinear energy sink (NES). The transient dynamics of this system 

subject to shock excitation is examined numerically using a Finite Element (FE) formulation. 

Parametric studies are performed to examine the regions in parameter space where optimal 

(maximal) efficiency of targeted energy pumping from the rod to the NES occurs. Signal 

processing of the transient time series is then performed, employing energy transfer and/or 

exchange measures, wavelet transforms, empirical mode decomposition and Hilbert transforms. 

By computing Intrinsic Mode Functions (IMFs) of the transient responses of the NES and the 

edge of the rod, and examining resonance captures that occur between them, we are able to 

identify the nonlinear resonance mechanisms that govern the (strong or weak) one-way energy 

transfers from the rod to the NES. The present study demonstrates the efficacy of using local 

lightweight nonlinear attachments (NESs) as passive broadband energy absorbers of unwanted 

disturbances in continuous elastic structures, and investigates the dynamical mechanisms that 

govern the resonance interactions influencing this passive nonlinear energy absorption. 
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1. Introduction 

 

 We study the transient forced dynamics of a linear dispersive rod with a lightweight, 

essentially nonlinear, ungrounded end attachment. Recent works reported interesting energy 

exchange phenomena in this type of coupled oscillators, including numerous coexisting branches 

of fundamental, subharmonic and superharmonic periodic solutions (Lee et al., 2005), and one-

way, irreversible transfer of energy from the linear oscillator to the nonlinear attachment, termed 

targeted nonlinear energy pumping. Such energy exchanges are often associated with transient or 

sustained resonance captures (Lee et al., 2005; Kerschen et al., 2005; McFarland et al., 2005), 

whereby the essentially nonlinear attachment engages in transient resonance with the linear 

oscillator, before the dynamics ‘escape’ to a different regime of the motion (Arnold, 1988; Quinn, 

1997). In cases where the nonlinear attachment acts as passive recipient of vibration energy from 

the linear oscillator, it essentially acts as nonlinear energy sink (NES). 

 This work aims to systematically study passive broadband targeted energy transfer from a 

linear elastic continuum to an attached ungrounded NES. What clearly distinguishes this from 

previous studies is that due to the essentially nonlinear coupling between the continuum and the 

NES there is simultaneous nonlinear coupling between the NES and the infinity of modes of the 

rod, leading to very complicated dynamical interactions. It will be shown, however, that it is 

precisely due to these complicated dynamic interactions that strong targeted energy transfer 

phenomena may occur in this system configuration. We mention at this point that although the 

NES is simultaneously coupled to all modes of the rod, it can only extract energy from one mode 

at a time; this is due to the fact that the NES can engage in transient resonance capture with only 

one rod mode at a time, though resonance capture cascades (resulting in sequential energy 

transfers from sets of rod modes) do occur in this system.  

 In a related preliminary numerical study, Georgiadis et al. (2005) considered a beam with 

an attached NES, and demonstrated that targeted energy pumping in that system was indeed 

possible and, under appropriate design, very efficient. Moreover, in (Vakakis et al., 2004a) the 

different regimes of dynamic interactions of a semi-infinite dispersive rod with a grounded 

essentially nonlinear attachment were analytically and numerically studied, but no attempt to 

study targeted energy pumping was undertaken. In that work it was shown that the attachment 

initially engages in nonlinear resonance with incoming traveling elastic waves; as the energy of 
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the attachment decreases due to damping and radiation back to the rod, the attachment engages in 

1:1 resonance capture with the in-phase mode of the dispersive rod, which is the condition under 

which targeted energy pumping from the rod to the attachment might occur; further decrease of 

energy of the attachment leads to escape of the dynamics from resonance capture and settlement 

of the dynamics to linearized regimes. No study of the efficiency of energy pumping, however, 

was undertaken in that work. The computational and analytical results in (Vakakis et al., 2004a) 

reveal that resonant interactions of elastic continua with local essentially nonlinear attachments 

can give rise to quite complex resonant phenomena, which can be justified by the observation 

that the local essentially nonlinear attachments considered may introduce global changes in the 

dynamics of the combined system. 

 

2. Formulation of the Problem and Methods for Post processing the Numerical Results 

 

 The system under consideration consists of an linear elastic rod of mass distribution M 

and length L resting on an elastic foundation with distributed stiffness k and distributed viscous 

damping δ, and coupled to an ungrounded, lightweight end attachment of mass m<<M by means 

of an essentially nonlinear cubic stiffness of constant C, in parallel to a viscous damper ελ (cf. 

Figure 1). Assuming that the left boundary of the rod is clamped, that a transient external force 

F(t) is applied at position x d  of the rod (where x is measured from the left clamped end of the 

rod), and that the system is initially at rest, the governing equations of motion are given by: 
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Moreover, it is assumed that all geometric and material properties of the rod are uniform.  

(Figure 1) 
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 The examination of the equations of motion reveals some challenging aspects of this 

problem, which are summarized below: 

- Due to its essential nonlinearity, the attachment (NES) is directly coupled to all modes of the 

rod; this is expected to lead to complex nonlinear resonant interactions between the NES and 

different flexible modes of the rod, which need to be systematically categorized and analyzed. 

- Since we aim to study broadband passive targeted energy transfer from the rod to the 

attachment, it is necessary to consider a strongly (essentially) nonlinear and transient dynam-

ical problem involving a coupled set of partial and ordinary differential equations. 

- No mode superposition can be used to express the dynamical response of the linear rod, since 

the essential stiffness nonlinearity of the attachment amounts to a nonlinear, time-varying 

boundary condition at its right end. 

These challenging aspects dictate a computational approach for solving this problem, together 

with the use of advanced post processing techniques, capable of decomposing the different 

nonlinear resonance interactions that are expected to occur between the various modes of the rod 

and the NES. 

 The equations of motions were numerically solved with Matlab by employing a finite 

element (FE) formulation and an implicit time integration scheme based on an adapted Newmark 

algorithm (Geradin and Rixen, 1997). To ensure proper spatial discretization, a total of 501 FE 

was used; moreover, the sampling frequency was selected to account for 122 modes of the rod 

oscillation. At each time step of the numerical integration the total energy balance was computed 

in order to ensure that, (a) the relative energy error between subsequent steps of the computation 

was less than 0.001%, and (b) that the error on the conservation of the total energy was less than 

1%.  

 The system parameters were assigned the values: 

L 1, EA 1.0, M 1.0, 0.05, m 0.1, 0.1, 0.5                                   (2) 

The transient (shock) excitation was chosen to be a half sine pulse of amplitude F and duration 

0.1 T1, where 1T  is the period of the first mode of the linear rod; it is assumed that the shock is 

applied at position d 0.3  on the rod. In Table 1 we present the leading eigenfrequencies of the 

uncoupled and undamped rod (with NES detached) with parameters given by (2) (but zero 

damping), and elastic foundation equal to k 1 . 

(Table 1) 
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 In addition to tracking the total energy of the system at each time step of the computation, 

we computed also the energy transactions (exchanges) between the linear rod and the NES; in 

the following results, positive energy transactions correspond to energy flow from the (directly 

excited) rod to the (initially unexcited) NES, whereas negative energy transactions correspond to 

backscattering of energy from the NES back to the rod. Clearly, efficient passive targeted energy 

pumping from the rod to the NES is signified by strong positive energy transactions throughout 

the transient response of the system. 

 Post processing of the numerically computed time series of the rod and the NES was 

performed in two different ways. First, the transient data was analyzed by Wavelet Transforms 

(WT) employing a Matlab-based algorithm developed at Université de Liège by Dr.V.Lenaerts in 

collaboration with Dr.P.Argoul from the ‘Ecole Nationale des Ponts et Chaussees’. Although the 

algorithm provides the opportunity to use two kinds of mother wavelets, namely Morlet and 

Cauchy, in the applications presented herein only the Morlet mother wavelet has been used; this 

is a Gaussian-windowed complex sinusoid of frequency 0  (in rad/sec), 
tj2/t

M
0

2

ee)t(
  . 

The frequency 0  (or 0f  in Hz) is the user parameter which enables one to tune the frequency 

and time resolution of the results. Occasionally the signals were divided in two phases (early- 

and late-phase) for the application of the WT, since as the amplitudes get smaller with respect to 

their initial values the corresponding wavelet traces are too light to be visible. The WT contour 

plots (WT spectra) shown below depict the amplitude of the WT of the signal as function of 

frequency (vertical axis) and time (horizontal axis). Heavy shaded areas correspond to regions 

where the amplitude of the WT is high, whereas lightly shaded ones correspond to low 

amplitudes of the WT. Such plots enable one to deduce the temporal evolutions of the dominant 

frequency components of the signals analyzed, as well as, transitions between different modes 

that participate in the transient nonlinear responses (Lee et al., 2005; Kerschen et al., 2005). 

 Further analysis of the numerical time series was performed using a combination of 

Empirical Mode Decomposition (EMD) and Hilbert Transform. EMD is a method to decompose 

a signal (time series) in terms components called Intrinsic Mode Functions (IMFs) (Huang et al., 

1998; Veltcheva and Soares, 2004; Zhang et al., 2005). The IMFs satisfy the following three 

main conditions:  

- For the duration of the entire time series, the number of extrema and of zero crossings of each 

IMF should either be equal or differ at most by one 
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- At any given time instant, the mean value (moving average) of the local envelopes of the IMFs 

defined by their local maxima and minima should be zero 

- The superposition of all IMFs should reconstructs the time series 

Hence, EMD analysis extracts oscillating modulations or modes imbedded in the data. It follows 

that the essence of the EMD method is to empirically identify the intrinsic oscillatory modes in 

the data (time series), and to categorize them in terms of their characteristic time scales, by 

considering the successive extreme values of the signal. The IMFs have usually a physical 

interpretation as far as their characteristic scales are concerned (indeed, as shown below, certain 

IMFs possess instantaneous frequencies that are nearly identical to resonance frequencies of the 

rod or the NES); but this need not always be the case. This implies that certain IMFs may 

represent artificial (non-physical) oscillating modes of the data. Moreover, as explained in the 

Appendix, by Hilbert – transforming the IMFs one computes temporal evolutions of their 

instantaneous amplitudes and frequencies, which, in turn, can be used for the construction of the 

Hilbert spectrum of the signal (Huang et al., 1998). Nevertheless there are cases where at a 

certain time scale a transient phenomenon is intermittent – for example, turbulence in fluid 

motion (Huang et al., 1998, 2003). In these cases, the decomposed components could contain 

two scales embedded in a single IMF component, and an intermittency criterion should be 

adopted during the decomposition of the signal (Huang et al., 2003). A synopsis of EMD and the 

Hilbert transform of the extracted IMFs is presented in the Appendix. In this work these 

computational approaches were implemented in Matlab 

 In synopsis, by post processing the transient responses of the rod and the attached NES 

by means of EMD and Hilbert transform, we aim to study in detail the complex nonlinear 

resonance interactions taking place between the essentially nonlinear attachment and the various 

modes of the rod. As we will see in section 5, by combining the results of the Hilbert transform 

with the corresponding wavelet spectra of the transient responses, we can identify the dominant 

IMFs of the rod and NES transient responses, and analyze the most important resonance 

interactions between the rod and the NES that are responsible for the nonlinear energy exchanges 

between these two subsystems. Hence, we will show that by studying the resonance interactions 

between dominant IMFs of the NES and the rod responses, we can gain insight into the question 

of efficiency of passive and irreversible absorption by the NES of broadband vibration energy 

from the rod. 
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3. Passive Targeted Energy Pumping From the Rod to the NES 

 

 We performed four main sets of FE simulations with parameter values given by (2) and 

half-sine applied external shock as discussed in the previous section. What distinguished the first 

and second sets of FE simulations were the parameter values for the elastic foundation of the rod, 

k, the NES stiffness, C, and the magnitude of the applied shock, F. Specifically, the first set of 

simulations was performed for a dispersive rod with distributed elastic foundation k 1.0 , for 22 

values of the nonlinear characteristic in the range C [0.001,20] , and 15 values of the shock 

amplitude in the range F [0,500] . This gave a total of 22 15 330   possible pairs (C,F) , all of 

which were simulated in the first series. Similarly, the second set of numerical simulations 

involved the same 330 numerical simulations but for elastic foundation k 0 , corresponding to a 

nondispersive rod. Each of the transient simulations of the first two series was performed for a 

sufficiently large time interval, so that at the end of the simulation at least 99% of the input 

shock energy was damped by the distributed viscous damping of the rod and the discrete viscous 

damper of the NES. This damped energy measure ensured that no dynamics was missed in the 

transient simulations due to insufficient time of integration. 

(Figure 2) 

 In Figure 2 we depict contour plots of the percentage of shock energy eventually 

dissipated by the damper of the NES as function of the parameters C and F for the first two series 

of FE simulations. This energy measure is computed by the relation: 

2t

0
t 1 T

0

u(L, )
v( ) d

lim 100
u(d, )

F( ) d



   
         

  
  

  





                                       (3) 

The integral in the numerator represents the energy dissipated by the damper of the NES up to 

time instant t; the integral in the denominator (with upper limit T equal to the duration of the 

applied shock) represents the total input energy applied to the rod by the external shock. Given 

that the system under consideration is dissipative, it holds that for t 1  the measure   should 

approach a definite asymptotic limit, which represents the percentage of input energy that is 
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eventually absorbed and dissipated by the NES. In the remainder of this work, wherever we 

mention the energy measure  , we will be implying its long-term asymptotic limit. 

 Clearly, regions of the plots of Figure 2 where the energy measure   is relatively large 

correspond to strong and effective targeted energy pumping from the rod to the NES, as a 

significant percentage of the shock energy of the rod is eventually absorbed and dissipated by the 

NES. The numerical results of Figure 2 reveal that when strong shocks are applied (high input 

energy), enhanced energy transfers occur (with more than 75% of shock energy eventually 

dissipated by the NES) when the essential stiffness nonlinearity is relatively weak. By contrast, 

when smaller shocks are applied, strong targeted energy transfers occur ( 75% ) over a wide 

range of values of the essentially nonlinear stiffness of the NES. This should be expected, since 

when the energy is high, a stiff essential nonlinearity amounts to a near-rigid connection between 

the rod and the NES, leading to small relative velocities across the NES damper, and thus, to 

small energy dissipation capacity of the NES. An additional remark regarding the plots of Figure 

2 is that there are only small quantitative and qualitative differences between the dispersive and 

nondispersive cases, indicating that the efficiency of targeted energy pumping from the rod to the 

NES is rather insensitive to the existence or absence of dispersion in the elastic continuum. 

 Two additional sets of FE simulations were performed for both dispersive (k 1)  and 

nondispersive (k 0)  rods. In each of these sets we considered three distinct values of the 

nonlinear stiffness of the NES, namely, C 0.004,2 and 10 , and varied the mass of the NES in 

the range m [0.01,0.1]  (for a total of 11 values), and the input amplitude in the range 

F [1,420]  (for a total of 13 values). Therefore for each value of C there were 11 13 143   

possible pairs (m,F) , all of which were realized in the numerical simulations. Again, to ensure 

that the numerical integration was of sufficient duration, we imposed the requirement that at least 

99% of the shock energy should be dissipated at the end of each of FE simulation. 

 As in the previous two sets of simulations, we observed only small differences in the 

energy dissipation plots between the dispersive and nondispersive cases; hence, only the results 

for the dispersive rod will be discussed from here on. In Figure 3 we depict the NES energy 

dissipation measure   [relation (3)] as function of the NES mass m and the shock strength F, for 

four chosen values of the nonlinear stiffness characteristic (C 0.004, 0.01, 2 and 10 ). As in 

Figure 2, we deduce that there are parameter regions where strong targeted energy pumping from 
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the rod to the NES occurs, as indicated by the high values of   (over 75% at certain parameter 

ranges). Moreover, as the value of the nonlinear stiffness characteristic, C, increases the region 

of relatively strong targeted energy pumping shifts to smaller shock strengths and becomes 

narrower. In addition, in parameter ranges where relatively strong targeted energy pumping 

occurs there appears to be nearly negligible dependence of the NES energy dissipation measure 

  on the NES mass m, for values of m 0.02 . 

(Figure 3) 

 These results indicate that the essentially nonlinear attachment (the NES) can be designed 

to passively absorb and locally dissipate a significant portion of the applied (broadband) shock 

energy in the rod. Moreover, the NES can be designed so that the strong energy pumping is 

robust to small changes in the input energy and the system parameters. These results demonstrate 

the efficacy of using lightweight essentially nonlinear local attachments as passive absorbers and 

local energy dissipaters of broadband energy from elastic continua. This result extends analogous 

results reported in previous works where discrete linear oscillators with local essentially 

nonlinear attachments were studied. In the next section we proceed to a detailed analysis of the 

dynamics that govern strong targeted energy pumping in the system of Figure 1. 

 

4. Nonlinear Resonance Interactions between the Rod and the NES 

 

 Considering the case when the rod is dispersive (k 1) , we considered in detail 21 FE 

simulations (termed from now on ‘Applications’) in the first set of results (cf. Figure 2). In Table 

2 we present the system parameters used for each Application, together with the NES energy 

dissipation measure   and the types of phenomena observed: ‘B’ indicates the occurrence of 

nonlinear beat phenomena in the transient responses of the rod and the NES; ‘I’ indicates 

irreversible (one-way) energy transfer from the rod to the NES (however, even in these cases 

there exists a very small initial region where very early nonlinear beat phenomena occur, but this 

region is small, so we may designate the phenomenon as being predominantly irreversible energy 

transfer); whereas, ‘B-I’ indicates early nonlinear beat phenomena in the transient dynamics, 

followed by irreversible energy transfer from the rod to the NES. A simple comparison of the 

different Applications listed in Table 2 reveals that, with the exception of 7, 16, and 21, all 

Applications correspond to rather strong energy pumping, as a major part of the input (broad-
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band) vibration energy in the rod is passively absorbed by and dissipated at the NES. This 

observation is itself interesting since it shows that strong energy pumping in the system under 

consideration occurs for wide combinations of input energy and system parameters. It follows 

that comparisons between energy pumping efficiency between different Applications can only be 

performed on a relative basis, and in that context the measure η can only be considered as a 

relative indicator of efficiency of energy pumping. Specific examples for all three types of the 

aforementioned dynamics (‘B’, ‘B-I’ and ‘I’) are discussed below. 

(Table 2) 

 The Applications listed in Table 2 are partitioned into three main groups. Group (a) 

consists of Applications 3,4,5,8,17,19 and 20 with relatively strong energy transfers from the rod 

to the NES and relatively small input energies (shocks). All three dynamical mechanisms (B, I, 

and B-I) are realized in the Applications of Group (a). The second group of Applications 

1,2,9,10,11,12,14 and 15 (labelled Group (b)) is again characterized by relatively strong energy 

transfers and higher levels of input energy; these Applications involve the dynamical mecha-

nisms B and B-I. Finally, Group (c) consists of Applications 6,7,13,16,18 and 21 with relatively 

weak energy transfers and higher levels of input energy; all Applications in this Group are 

characterized by persistent nonlinear beat phenomena (mechanism B), involving continuous 

energy exchanges between the rod and the NES.  

 Typical transient responses of the edge of the rod and of the NES are depicted in Figures 

4 and 5, with the corresponding relative displacements of the NES with respect to the edge of the 

rod presented in Figures 6 and 7. In each of these plots (as in the following ones) each 

Application is characterized by its Group and the governing dynamical mechanism (for example, 

in Figure 4, Application 1 is labelled by (b,B), and so on). The measure of relative displacement 

between the NES and the edge of the rod affects directly the efficiency of targeted energy 

pumping, since the capacity of the NES to dissipate energy transferred from the rod is directly 

related to the relative velocity across its viscous damper; it follows that enhanced energy 

dissipation by the NES is achieved when this relative displacement (and its derivative) attains 

large magnitudes, especially in the critical initial regime of the motion where the energy is still 

relatively large (and energy dissipation due to damping in the rod is still small). Examples of 

large, early relative displacement between the rod and the NES are Applications 1 (Fig.6) and 2 

(Fig.7) with corresponding energy dissipation percentages of 76%  and 72% , respectively, 
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whereas an example of small relative displacement is Application 7 (Fig. 7) corresponding to 

51% . 

 An interesting feature of the NES is its capacity to interact with more than one structural 

modes of the rod (this is done sequentially through resonance capture cascades, see below). 

Indeed, due to the essential coupling nonlinearity, the NES is simultaneously ‘coupled’ to all 

modes of the rod (as can be realized from the differential equations (1)), and, hence, it has the 

capacity to nonlinearly resonate with structural modes over wide frequency ranges (provided, of 

course, that the initial conditions are appropriate). Such multi-modal interactions of the NES 

with the rod may lead to multi-frequency energy pumping, or to complex dynamic phenomena, 

such as, abrupt transitions between different dynamical regimes (Vakakis et al., 2004b; Lee et 

al., 2005). These interactions become apparent in the wavelet transform spectra of the dynamics, 

although in some cases they may be visible in the time series themselves (for instance, in Figure 

6 – Application 1 the frequency content of the NES is rich, and the resonance capture cascade is 

evident; this is also the case in Figure 7 – Application 14). 

(Figures 4,5,6,7) 

 A useful computational tool for studying the dynamic interaction between the rod and the 

NES is to consider the transient energy transaction history between these two subsystems. In 

Figure 8 we depict the energy transaction histories between the NES and the rod for Applications 

1 and 17, where strong targeted energy pumping from the rod to the NES occurs (76% of shock 

energy dissipated by the NES in Application 1, and 71% in Application 17). Note in these plots 

the strong positive spikes of energy transmission from the rod to the NES, and the small negative 

spikes of energy backscattered from the NES to the rod, which explains the relatively high values 

of the energy dissipation measure   realized in these Applications. In addition, in both 

Applications there is a positive net balance of energy transferred from the rod to the NES during 

the critical early regime of the response where the overall energy of the motion is relatively high 

since energy dissipation by the dampers of the rod is relatively small. In Figure 9 we depict the 

energy transaction histories for two Applications (7 and 21) where relatively weak targeted 

energy pumping occurs (51% of shock energy eventually dissipated by the NES in Application 7, 

and 21% in Application 21); note in these simulations the strong backscattering of energy from 

the NES to the rod, which explains the weaker energy transfers in this case. Moreover, in all 

simulations considered, the energy exchanges between the rod and the NES are realized in the 
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form of spikes, which reflects the fact that the external excitation itself is in the form of a spike 

(short pulse), that generates forward – and backward – propagating pulses in the rod which are, 

either reflected at the left (clamped) boundary of the rod, or are partially reflected and 

transmitted into the NES at its right boundary.  

 It should be clear that an alternating series of positive and negative spikes of energy 

transfers is an indication that nonlinear beat phenomena between the rod and the NES occur 

(dynamical mechanism B in Table 2). This is especially evident in the energy transaction history 

of Application 1 (cf. Figure 8), where nonlinear beat phenomena with strong positive spikes are 

clearly detected. In Application 17 (cf. Figure 8) the series of strong initial nonlinear beats is 

followed by irreversible (one-way) energy transfer (dynamical mechanism I in Table 2) from the 

rod to the NES, as evidenced by the late series of positive – only energy spikes.  

 Similar persisting nonlinear beats are observed in the energy transaction histories 

depicted in Figure 9 where Applications with relatively weaker targeted energy pumping are 

depicted. The distinctive feature of the beats in these cases is that the negative and positive 

energy spikes are of comparable magnitudes, preventing strong ‘flow of energy’ from the rod to 

the NES. Finally, in Figure 10 we depict the energy transaction for Application 20 where 

irreversible energy transfers from the rod to the NES occur right from the beginning of the 

dynamics, and nonlinear beat phenomena are completely absent; indeed, in Applications 8 and 

20 there is only irreversible ‘flow of energy’ from rod to the NES, where the energy is localized 

at the NES and finally dissipated by the NES damper. The resulting targeted energy pumping is 

relatively strong in this case, and comparable to the strong energy pumping results for 

Applications governed by the dynamical mechanisms B and B-I. 

(Figures 8,9,10) 

 In Figure 11 we depict the Wavelet Transform (WT) spectra of the relative transient 

responses between the edge of the rod (from now referred to as ‘the rod’) and the NES, for four 

cases where strong (cases (a,B-I) – Application 17, (a,B) – Application 3, and (a,I) – Application 

20), and weaker (case (c,B) – Application 7) targeted energy pumping occurs. The WT spectra 

reveal the dominant frequency components of the corresponding responses, as well as their 

temporal evolutions with decreasing energy due to damping dissipation. 

 Regarding Application 17 (case (a,B-I)) where strong targeted energy pumping occurs 

(cf. Figure 11a), we observe early (e.g., high energy) transient resonant interactions of the NES 
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with predominantly the first and second modes of the rod, as well as a weaker early NES 

resonant interaction with the third mode of the rod; all these early interactions are in the form of 

nonlinear beats. Moreover, we observe a nonlinear transition of the dominant frequency 

component of the dynamics to a nonlinear mode whose frequency shifts below the first linearized 

mode of the rod. During this low-frequency transition the dynamics localizes gradually to the 

NES with decreasing energy due to damping dissipation; similar transitions were found in 

previous works (Lee et al., 2005; Kerschen et al., 2005) where the dynamics of discrete linear 

oscillators coupled to NESs was analytically and computationally examined. The aforementioned 

early resonant interactions explain the nonlinear beats observed in the early response (mecha-

nism ‘B’), whereas the low frequency transition of the dominant harmonic produces one-way 

irreversible energy transfers from the rod to the NES (mechanism ‘I’) in this Application. 

(Figure 11) 

 Similar transition of the dynamics to a nonlinear mode is observed in the WT plot of 

Figure 11b (Application 3 – (a,B)), however, in this case the frequency variation of the nonlinear 

mode (dominant harmonic) takes place between the first and second eigenfrequencies of the rod. 

Similarly to Application 17 (Figure 11a), this transition results in strong targeted energy 

pumping from the rod to the NES. Additional early beats between the NES and the second and 

third modes of the rod and the NES take place (mechanism ‘B’, as in Application 17); more 

importantly, however, there occurs a secondary late transition of the dynamics from the 

nonlinear mode to the first rod mode, after which additional persistent beats between the NES 

and the first rod mode take place (mechanism ‘B’). This late transition is qualitatively different 

from the dynamics depicted in Figure 11a. 

 No such low frequency transitions occur in the WTs of the relative transient responses of 

Applications 7 (case (c,B) – weaker targeted energy pumping) and 20 (case (a,I) – strong 

targeted energy pumping), presented in Figures 11c and d, respectively. In the case of weaker 

energy pumping (Figure 11c) we observe strong and persistent resonance locking of the relative 

response at the second linearized mode of the rod, which explains the corresponding persistent 

nonlinear beats observed in the transient response. It is interesting to note that in this case there 

is complete absence of resonance interactions between the relative response and the first mode 

of the rod. In the case of stronger targeted energy pumping in Application 20 (Figure 11d) there 

is similar resonance locking of the relative response at the first linearized mode of the rod, 
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which, however, is not as persistent as in the WT of Figure 11c. In both cases, there is no 

transition of the early (high energy) relative motion to a nonlinear mode localized at the NES (as 

in Figures 11a,b).  

 As a final remark concerning the WT spectra of Figure 11, we note clearly the multi-

modal content of the dynamics of rod-NES interaction, reaffirming our previous comment on the 

capacity of the NES to sequentially interact with a set of linearized modes of the rod. In general, 

such multimodal resonant interactions enhance the effectiveness of nonlinear energy pumping in 

the system, and lead to complex dynamical phenomena such as resonance capture cascades. A 

more detailed dynamic analysis of such multi-modal resonance interactions will be presented in a 

future work. The WT spectra of Figures 11, when combined with Empirical Mode Decomposi-

tion (EMD) analysis of the transient responses of the rod and the NES form a powerful 

computational tool that can be utilized to reveal additional features of the resonance interactions 

that occur between the rod and the NES. This is discussed in what follows. 

 Representative results of EMD analysis for Applications 7, 17 and 20 are listed in Table 

3. To increase the accuracy of the analysis, the early and late transient responses of Application 7 

were analyzed separately, whereas, no such separation was deemed necessary for the other two 

Applications. In each case we analyzed through EMD the transient responses of the edge of the 

rod and of the NES. Examination of the IMFs of these transient responses and their instantaneous 

frequencies provides insightful information concerning the resonance interactions between the 

rod and the NES. Indeed, the computation of the instantaneous frequencies of the IMFs, 

combined with the WT spectra depicted in Figure 11 provide us with the opportunity to interpret 

the WT results in terms of resonance interactions between specific IMFs of the rod and the NES. 

In what follows we will apply this methodology to examine in detail resonance interactions in 

Applications 17 (case (a,B-I)) and 7 (case (c,B)). 

 In Figure 12a we present IMF – based reconstructions of the transient responses of the 

edge of the rod and the NES for Application 17; complete agreement between numerical 

simulation and IMF – based reconstruction is observed, proving the validity of the EMD analysis 

for decomposing the transient nonlinear responses through IMFs. Representative IMFs are 

depicted in Figure 12b. Next, decompositions of the IMFs in terms of their instantaneous 

amplitudes and phases were performed in order to examine their individual frequency contents. 

This information should be analyzed together with the corresponding WT spectrum of the 



 15 

relative transient response between the edge of the rod and the NES (cf. Figure 11a); in that plot 

it is clearly observed that in this case strong nonlinear energy pumping is associated with a low 

frequency ‘locking’ of the dynamics to a nonlinear mode below the first eigenfrequency of the 

rod (0.29 Hz). In Figure 13a we depict the transient evolutions of the IMF frequency components 

of the rod and the NES, e.g., the instantaneous frequencies 2NES 9Rod(t) and (t)  , respectively, 

superimposed to the wavelet spectra of the respective numerical time series. Several conclusions 

can be drawn from these results: 

(i) It is clear that the 2
nd

 IMF of the NES and the 9
th

 IMF of the rod possess nearly constant 

instantaneous frequencies precisely at the low frequency range of the nonlinear mode of 

the WT spectrum of Figure 11a; hence, these IMFs engage in 1:1 resonance capture in the 

initial (high energy) stage of the transient dynamics.  

(ii) This 1:1 resonance capture becomes apparent by considering the corresponding phase 

plot of the phase difference 2NES 9Rod(t) (t)   in the early time window where the 1:1 

resonance capture occurs (cf. Figure 13b). Indeed, resonance capture between two IMFs 

is indicated by the non time – like, ‘slow’ evolution of the difference between their corre-

sponding phase difference, so that the averaging theorem cannot be applied with respect 

to that phase difference and preventing averaging out of the dynamics. It is precisely such 

resonance captures that lead to passive targeted energy pumping from the rod to the NES, 

as quantified by the energy dissipation measure   (Lee et al., 2005; Kerschen et al., 

2005). Moreover, the fact that the described 1:1 resonance capture takes place in the 

early stage of the dynamics where the energy of the system is high, explains the strong 

targeted energy pumping observed in this Application. 

(iii) In the mentioned resonance capture regime, the 2
nd

 (dominant) IMF of the rod coincides 

in frequency with the dominant harmonic component of the transient response of the 

NES, whereas the 9
th

 IMF of the rod coincides with the lowest of the dominant harmonic 

components of the transient response of the edge of the rod.  

These results (together the ones presented below) demonstrate the capacity of the EMD-WT 

analysis to accurately ‘pinpoint’ the oscillatory components of the rod and NES time series that 

engage in resonance capture, and, are responsible for the passive energy pumping phenomena 

from the rod to the NES. 

(Figures 12,13) 
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 In Figure 14a we depict the simulated and IMF – based reconstructed responses for 

Application 7 (case (c,B) – weaker targeted energy pumping), from which again complete 

agreement between simulations and IMF – reconstructions is observed. Representative IMFs of 

the early (high energy) responses of the edge of the rod and the NES are depicted in Figure 14b. 

Consideration of the resonance interactions between the IMFs of the rod and the NES reveals the 

reason behind the weak targeted energy pumping in this Application. Referring to the WT 

spectrum of the relative response between the edge of the rod and the NES for this Application 

(cf. Figure 11c), we established ‘locking’ of the dynamics in the vicinity of the second linearized 

eigenfrequency of the rod (close to 0.77 Hz). Examining the temporal evolutions of the 

instantaneous frequencies of the IMFs of the early transient responses of the edge of the rod and 

the NES, Figures 15a and 15b, respectively, we note that the 1
st
 IMF of the NES and the 5

th
 IMF 

of the rod develop delayed frequency ‘plateaus’ close to 0.77 Hz for t 12  (cf. Figures 15a,b). 

Moreover, examining the phase plot of the phase difference 1NES 5Rod(t) (t)   over the time 

window where the frequency plateaus are realized, we observe the characteristic loops that 

indicate a clear 1:1 resonance capture between these two IMFs. However, since this resonance 

capture occurs at a later stage of the response (e.g., at a stage where a significant portion of the 

initial energy of the system has already been dissipated due to damping), the resulting targeted 

energy pumping from the rod to the NES is not as strong as in the previously discussed 

Application 17, where the corresponding resonance capture takes place at the critical early stage 

of the motion where the energy of the system is at its highest level. In Figure 15 we also show 

that in Application 7 there occurs an additional ‘delayed’ 1:1 resonance capture between the 2
nd

 

IMF of the NES and the 6
th

 IMF of the edge of the rod at a frequency near the first eigenfrequen-

cy of the rod (0.29 Hz), which, however, does not lead to significant energy transfer from the rod 

to the NES. Finally, from Figures 15a,b we note that, by superimposing the instantaneous IMF 

frequencies to the WT spectra of the respective numerical time series, we infer that the 1
st
 and 2

nd
 

IMFs of the NES coincide with the higher and lower dominant harmonics, respectively, of the 

time series of the NES, but only during the later stage of the motion. Similar conclusions can be 

drawn with regard to the 5
th

 and 6
th

 IMF of the rod. 

(Figures 14,15) 

 Summarizing, it appears that strong targeted energy pumping in the system under 

consideration is associated with resonance captures between IMFs of the NES and rod responses 
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at specific frequency ranges and at the critical early stage of the motion where the energy level 

is high; delayed resonance captures between IMFs of the rod and the NES that occur at 

diminished energy levels result in weaker targeted energy pumping from the rod to the NES. In 

terms of the corresponding WT spectra, strong energy exchanges and early resonance captures 

between IMFs are associated with ‘locking’ of the dynamics with nonlinear normal modes that 

localize at the NES as the energy of the system diminishes due to damping dissipation.  

 

5. Discussion 

 

 The results of this work demonstrate the efficacy of using lightweight essentially 

nonlinear attachments – termed Nonlinear Energy Sinks (NESs) – as passive absorbers of 

broadband (shock) energy from elastic structures. The resulting irreversible targeted energy 

pumping of shock energy to the NESs, eliminate in an effective way unwanted structural 

disturbances. Hence, the proposed design provides a new paradigm for passive shock isolation of 

elastic structures.  

 An interesting (and appealing) feature of the NES concept is that, although an NES 

represents a local alteration of the physical configuration of a structure, it can affect the global 

structural dynamics. The reason behind this seemingly paradoxical finding (and also the basic 

feature that distinguishes the NES from previous absorber designs of the literature), is the 

essential stiffness nonlinearity of the NES, which enables its resonance interactions (resonance 

captures) with structural modes at arbitrary frequency ranges, provided, of course, that the point 

of attachment is not close to nodes of the structural modes of interest. In addition, the lack of a 

preferential resonance frequency of the NES enables it to engage in nonlinear resonance with a 

series of structural modes, passively extracting energy from each mode before shifting in 

frequency (due to decreasing energy) and engaging in resonance with the next; such resonance 

capture cascades were computationally studied in previous works (Vakakis et al., 2004b; 

Kerschen et al., 2005), and result in multi-frequency targeted energy pumping. 

 An additional new feature presented in this work is the use of combined Wavelet 

Transforms (WTs) and Empirical Mode Decomposition (EMD) as a tool for identifying the 

specific resonance captures responsible for the nonlinear interactions (and the passive 

irreversible energy transfers) between the NES and the structure to which it is attached. The 
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analysis presented herein indicates that strong targeted energy pumping from the structure to the 

NES are associated with 1:1 resonance captures between oscillatory Intrinsic Mode Functions 

(IMFs) of the two structural components, occurring during the initial, high energy stage of the 

dynamics. In contrast, weak targeted energy pumping is associated with delayed 1:1 resonance 

captures between IMFs, occurring at later regimes of the dynamics, where the energy has been 

significantly reduced due to damping dissipation. Future systematic work needs to be performed 

to verify this interesting conjecture. 

 It was found that there exist at least three distinct dynamical mechanisms governing the 

NES – rod nonlinear resonance interactions; namely, nonlinear beat phenomena (mechanism 

‘B’), direct one-way irreversible energy transfers from the rod to the NES (mechanism ‘I’), and a 

combination of the two (mechanism ‘B-I’). Although no direct association of any one of these 

three mechanisms to the efficiency of energy pumping of the NES can be discerned based on the 

results presented in this work, some interesting observations based on the previous computation-

al findings can still be made. Indeed, from the results listed in Table 2 we note that nearly all 

(with the exception of Applications 8 and 20) relatively high values of the percentage of energy 

dissipated at the NES, η, are associated with the occurrence of early nonlinear beats in the 

response (cases ‘B’ and ‘B-I’); this is not to say, however, that nonlinear beats always give rise 

to relatively high values of η (counterexamples are Applications 7, 16, 18 and 21 in the same 

Table). These observations regarding early nonlinear beats are consistent with earlier results 

reported in (Kerschen et al., 2005). In that work it was found that the most efficient nonlinear 

energy pumping in a linear oscillator coupled to an ungrounded NES is always ‘triggered’ by 

early nonlinear beats; this occurred, however, only when these nonlinear beats took place in a 

certain area of the frequency-energy plot of the periodic orbits of the underlying hamiltonian 

system (in essence, these beats acted as ‘bridging orbits’ that ‘guided’ the dynamics of the 

system to a state where strong energy pumping to the NES occurred). Away from this area of the 

frequency – energy plot (or away from the corresponding ranges of parameters) early nonlinear 

beats were counterproductive, producing weak energy interactions between the linear and 

nonlinear subsystems, and eventually, inefficient energy pumping. Returning to the results 

reported in this work and motivated by the previous discussion, we conjecture that strong energy 

pumping in the rod-NES configuration is similarly ‘triggered’ by early nonlinear beat phenome-

na occurring in a certain area of the frequency – energy plot of the underlying hamiltonian 
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system (e.g., of the undamped rod with undamped attached NES). To prove this conjecture one 

needs to follow certain steps; first to construct the nonlinear frequency – energy plot of the 

periodic (and quasi-periodic) orbits of the underlying hamiltonian system (a challenging task in 

itself); then, compute periodic and quasi-periodic orbits with initial conditions that ‘trigger’ 

strong energy pumping; finally, superimpose the computed frequency – energy plot to wavelet 

transform spectra of the numerical transient responses of the damped system (similarly to the 

methodology followed in (Kerschen et al., 2005) for discrete systems) that would prove that 

transient responses producing strong energy pumping are ‘triggered’ by periodic or quasiperiodic 

nonlinear beats in a certain area of the frequency – energy plot. 

 In synopsis, this work presents an extension of the concept of NES to continuous elastic 

structures, and provides basic computational tools for analyzing the nonlinear dynamics that 

influence the capacity of the NES to passively absorb and dissipate shock energy from these 

structures. Ongoing work focuses on the application of the NES concept to eliminate unwanted 

disturbances (and instabilities) that occur in practical structures modeled by finite elements, and 

on the development of NESs with alternative configurations that improve their robustness and 

their capacity to absorb broadband energy from flexible structures. 
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Appendix: Empirical Mode Decomposition (EMD) and Hilbert Transforms of the extracted 

IMFs 

 

 The EMD algorithm for computing the intrinsic mode functions (IMFs) of a signal (time 

series) x(t)  involves the following steps (Huang et al., 1998): 

- Consider separately the envelopes defined by the local maxima and minima of x(t) . 

Interpolate the locus of all local maxima of x(t)  through a spline approximation, thus 

constructing an upper envelope of the signal; similarly interpolate the locus of all local 

minima of x(t)  thus creating a lower envelope of the signal. 

- Compute the moving average 1m (t)  between the lower and the upper envelopes, and 

define the modified, zero-mean signal 1 1h (t) x(t) m (t)  . 

- Repeat this procedure k times starting from 1h (t)  until the signal computed at the k-th 

iteration, say 1k 1h (t) c (t) , satisfies the properties of an IMF. This holds, provided that 

the following standard deviation between the (k-1)-th and k-th steps, 

2
T

1(k 1) 1(k)

2

t 0 1(k 1)

h (t) h (t)
SD , T signal duration

h (t)



 

 
 
 
 

          (A-1) 

lies between a preset tolerance, which in this work was chosen in the range [0.2, 0.3]. 

Practically, this criterion implies that the k-th iteration 1k 1h (t) c (t)  is approximately 

(within a tolerance) zero-mean. This process yields the first IMF of the signal x(t), 

namely 1c (t) . 

- The second-order remainder of the signal, 2x (t) , is defined by the relation 

2 1x (t) x(t) c (t)  , on which the previous procedure is repeated to extract the second 

IMF 2c (t) . 

- The outlined procedure is repeated until the n-th order remainder nx (t)  becomes a 

monotonic function of time. 

By construction, the lowest order IMFs contain the oscillatory components of the signal with the 

highest frequency components; as the orders of the IMFs increase, their frequency contents also 

decrease. 
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 After the EMD of the time series, the extracted IMFs are Hilbert transformed in order to 

compute their approximate transient amplitudes and phases. The Hilbert transform ˆH[c(t)] c(t)  

of a signal (time series) c(t) is defined as follows, 

1 c( ) 1
ĉ(t) d *c(t)

t t





 
   

    
                                           (A-2) 

where (*) denotes the convolution operator. In the context of the following analysis, the Hilbert 

transform of the signal c(t)  can be regarded as the ‘imaginary’ part of the signal, enabling one to 

complexify the signal. Indeed, defining the complexified analytical signal, 

ˆ(t) c(t) jc(t)                                                          (A-3) 

we compute its amplitude A(t)  and phase (t)  by expressing the complexification in polar 

form: 

j (t)(t) A(t) e A(t) cos (t) jA(t)sin (t)       

It follows that the signal can be represented in the form, 

c(t) A(t) cos (t)                                                      (A-4) 

with amplitude and phase given by: 

2 2ˆA(t) c(t) c(t)  ,     1 ĉ(t)
(t) tan

c(t)

  
   

 
                                 (A-5) 

The representations (A-5,6) enable one to compute the instantaneous frequency of the signal 

c(t)  according to the following definition: 

2 2

ˆ ˆ(t) c(t)c(t) c(t)c(t)
f (t)

2 ˆ2 c(t) c(t)

 
 

    

                                          (A-6) 

 It is precisely these results that make the combined EMD – Hilbert Transform useful for 

the problem considered in this work. Indeed, the decomposition of the rod and NES transient 

responses in terms of their oscillatory components (the IMFs), and the subsequent computation 

of their instantaneous frequencies, provide a useful tool for studying nonlinear resonant 

interactions between the NES and the various modes of the rod. To this end, we say that a k:m 

resonance capture occurs between an IMF of the rod 1c (t)  and an IMF of the NES 2c (t)  with 

phases 1 2(t) and (t)  , respectively, whenever their instantaneous frequencies satisfy the 

following approximate relation: 
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1 2 1 2k (t) m (t) const, for t [T ,T ]j - j » Ξ& &                                (A-7) 

The time interval 1 2[T ,T ]  defines the duration of the resonance capture. As shown in the next 

section, a more complete picture of the resonance capture between the two mentioned IMFs can 

be gained by constructing appropriate phase plots that involve the phase difference 

12 1 2(t) (t) (t)     and its derivative. More specifically, a resonance capture is signified by 

the existence of a small loop in the phase plot of 12 (t)  versus 12 (t) , whereas absence of (or 

escape from) resonance capture is signified by time-like (that is, monotonically varying) 

behavior of 12 (t)  and 12 (t) . In addition, the ratio of instantaneous frequencies of the IMFs, 

1 2(t) / (t)  , provides an estimate of the order of the resonance capture k:m. 
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Tables 

 

 

 

Table 1: The leading eigenfrequencies of the uncoupled dispersive undamped rod (k 1)  

Mode 1 2 3 4 5 6 7 8 

Eigenfrequencies (Hz) 0.29 0.77 1.26 1.76 2.26 2.75 3.25 3.75 

 

 

 

 

 

Table 2: FE simulations of the first series studied in detail 

FE Simulation – 
Application No 

Phenomena Group C F   (%) 

1 B b 0.02 180 76 

2 B-I b 0.004 180 72 

3 B a 6 10 76 

4 B a 9 10 74 

5 B a 2 20 75 

6 B c 5 50 60 

7 B c 5 100 51 

8 I a 0.01 20 67 

9 B b 0.01 260 76 

10 B b 0.005 400 75 

11 B b 0.02 200 75 

12 B b 0.06 100 76 

13 B c 0.08 420 60 

14 B b 0.09 100 74 

15 B b 0.1 60 74 

16 B c 0.2 460 52 

17 B-I a 0.8 10 71 

18 B c 0.8 180 56 

19 B-I a 5 3 69 

20 I a 0.2 5 67 

21 B c 20 500 21 
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Table 3: Number of IMFs used in the EMD of each application 

 

Application 
No of IMFs in 

Early Rod  
Response 

No of IMFs in 
Late Rod  
Response 

No of IMFs in 
Early NES  
Response 

No of IMFs in 
Late NES 
Response 

7 – (c,B) 
15 

(0 t 45)   

12 

(45 t 80)   

12 

(0 t 45)   

10 

(45 t 80)   

17 – (a,B-I) 
16 

(0 t 30)   
- 

9 

(0 t 30)   
- 

20 – (a,I) 
15 

(0 t 35)   
- 

10 

(0 t 35)   
- 

 

 

 

 



 27 

Figure Captions 

 

1. Linear elastic rod with essentially nonlinear end attachment (NES). 

2. Contour plots of the percentage of shock energy eventually dissipated by the NES,  , as 

function of the nonlinear stiffness, C, and the strength of the shock, F, for both dispersive 

(k 1)  and nondispersive (k 0)  rods. 

3. Contour plots of the portion of shock energy eventually dissipated by the NES,  , as function 

of the NES mass, m, and the strength of the shock, F; three different values of the nonlinear 

stiffness, C, are considered, and a dispersive rod (k 1)  is assumed. 

4. Responses of the end of the rod and of the NES for applications 1,17,20 (first series of FE 

simulations – Table 2). 

5. Responses of the end of the rod and of the NES for applications 2,7,14,19 (first series of FE 

simulations – Table 2). 

6. Relative responses between the end of the rod and the NES for applications 1,17,20 (first 

series of FE simulations – Table 2). 

7. Relative responses between the end of the rod and the NES for applications 2,7,14,19 (first 

series of FE simulations – Table 2). 

8. Energy transaction history between the rod and the NES for applications 1 (case ‘B’) and 17 

(case ‘B-I’) where strong targeted energy pumping from the rod to the NES occurs; the series 

of nonlinear beat phenomena are clearly visible. 

9. Energy transaction history between the rod and the NES for applications 7 and 21 (cases ‘B’) 

where weak targeted energy pumping from the rod to the NES occurs; note the persistent 

series of nonlinear beat phenomena that prevent irreversible energy transfer to the NES. 

10. Energy transaction history between the rod and the NES for application 20 (case ‘I’) where 

strong but nonoptimal energy pumping from the rod to the NES occurs; note the absence of 

nonlinear beat phenomena, and the immediate irreversible energy transfers to the NES right 

from the beginning of the motion. 

11. Morlet Wavelet transform of the relative motion of the NES with respect to the edge of the 

rod: (a) Application 17 – case ‘B-I’; (b) Application 3 – case ‘B’; (c) Application 7 – case 

‘B’; (d) Application 20 – case ‘I’. The first three eigenfrequencies of the uncoupled rod are 

indicated. 

12. EMD analysis of Application 17 – case ‘B-I’: (a) IMF-based reconstructed transient 

responses of the edge of the rod and the NES versus numerical simulations; (b) Selected 

IMFs of the transient responses of the edge of the rod and the NES. 

13. Nonlinear 1:1 resonance capture in Application 17 between the 2
nd

 IMF of the NES and the 

9
th

 IMF of the edge of the rod: (a) Instantaneous frequencies of the two IMFs; (b) phase plot 

of the phase difference indicating the 1:1 resonance capture. 

14. EMD analysis of Application 7 – case ‘B’: (a) IMF-based reconstructed transient responses 

of the edge of the rod and the NES versus numerical simulations – early and late responses 

are treated separately; (b) Selected IMFs of the early transient responses of the edge of the 

rod and the NES. 

15. Nonlinear 1:1 resonance captures in Application 7 between the 1
st
 IMF of the NES and the 

5
th

 IMF of the edge of the rod, and the 2
nd

 IMF of the NES and the 6
th

 IMF of the rod: (a) 

Instantaneous frequencies of the IMFs of the NES; (b) Instantaneous frequencies of the IMFs 

of the edge of the rod; (c) phase plots of the phase differences indicating the two 1:1 reso-

nance captures. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 12(a) 
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Figure 14(a) 
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