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Abstract 

We study multi-frequency transitions in the transient dynamics of a viscously damped 
dispersive finite rod with an essentially nonlinear end attachment. The attachment consists of 
a small mass connected to the rod by means of an essentially nonlinear stiffness in parallel to 
a viscous damper. First, the periodic orbits of the underlying hamiltonian system with no 
damping are computed, and depicted in a frequency-energy plot (FEP). This representation 
enables one to clearly distinguish between the different types of periodic motions, forming 
back bone curves and subharmonic tongues. Then the damped dynamics of the system is 
computed; the rod and attachment responses are initially analyzed by the numerical Morlet 
Wavelet Transform (WT), and then by the Empirical Mode Decomposition (EMD) or 
Hilbert-Huang Transform (HTT), whereby, the time series are decomposed in terms of 
intrinsic mode functions (IMFs) at different characteristic time scales (or, equivalently, 
frequency scales). Comparisons of the evolutions of the instantaneous frequencies of the 
IMFs to the WT spectra of the time series, enables one to identify the dominant IMFs of the 
signals, as well as, the time scales at which the dominant dynamics evolve at different time 
windows of the responses; hence, it is possible to reconstruct complex transient responses as 
superpositions of the dominant IMFs involving different time scales of the dynamical 
response. Moreover, by superimposing the WT spectra and the instantaneous frequencies of 
the IMFs to the FEPs of the underlying hamiltonian system, one is able to clearly identify the 
multi-scaled transitions that occur in the transient damped dynamics, and to interpret them as 
‘jumps’ between different branches of periodic orbits of the underlying hamiltonian system. 
As a result, this work develops a physics-based, multi-scaled framework and provides the 
necessary computational tools for multi-scaled analysis of complex multi-frequency 
transitions of essentially nonlinear dynamical systems. 
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1. Introduction 
 
 In this work we study complex nonlinear dynamic interactions between a linear 
dispersive rod and a strongly nonlinear end attachment. As such, this work is a continuation 
of previous works (Vakakis et al., 2004; Georgiadis et al., 2006) where elastic wave 
interactions and nonlinear resonance captures in systems of elastic continua with essentially 
nonlinear end attachments were analytically and computationally studied. New elements in 
the present analysis is the utilization of frequency energy-plots (FEPs) for depicting and 
interpreting essentially nonlinear damped transitions in terms of the undamped dynamics, 
and, additionally, application of Hilbert-Huang transforms – HHTs (Huang et al., 1998a; 
2003) (also called Empirical Mode Decomposition – EMD) for decomposing the transient 
dynamics in terms of multi-scaled intrinsic mode functions (IMFs) that enable accurate 
multi-scaled identification and modeling of the dominant nonlinear resonant interactions that 
occur in the measured time series. By interpreting damped nonlinear transitions in the 
frequency-energy plot in terms of resonant interactions of the dominant IMFs of these 
transitions we aim to formulate a new integrated physics-based, multi-scale method for 
analyzing and modeling the strongly nonlinear, complex dynamical interactions occurring 
between elastic continua and nonlinear boundary attachments. 
 The HHT (or EMD analysis) extracts oscillating modulations or modes imbedded in a 
measured time series. The method applies to nonlinear as well as nonlinear transient 
responses empirically identifies intrinsic oscillatory modes (the IMFs) in the time series, and 
categorizes them in terms of their characteristic time scales. The IMFs have usually a 
physical interpretation but this need not always be the case. HHT has been applied to a 
diverse field of system identification applications, including nonlinear water waves (Huang, 
1999), biomedical engineering (Huang et al., 1998b), climate modelling (Wu et al., 1999), 
and costal sea wave modelling (Veltcheva, 2002). It is interesting to note that although the 
HHT has been proven to be effective in identifying and modelling multi-frequency time 
series, until recently no rigorous theoretical framework of the method existed; Kerschen et 
al., (2006b, 2006c), provided proof that the dominant IMFs of the time series extracted by the 
HHT coincide with the slow flow responses of the corresponding dynamical system, thus 
providing a theoretical framework for formulating a rigorous nonlinear system identification 
methodology based on the HHT. A first application of the HHT to a problem involving 
strongly nonlinear resonant interactions was provided in (Georgiades et al., 2006), where the 
transient damped dynamics of a finite rod with an essentially nonlinear end attachement was 
decomposed by means of the HHT, and the dominant IMFs of the rod and attachment 
dynamics identified. This decomposition enabled the identification of the frequencies at 
which the dominant resonant interactions between the rod and the attachment occurred, 
giving rise to targeted energy transfer phenomena. 
 
2. Frequency – Energy Plot (FEP) of the Periodic Orbits of the Hamiltonian System 
 
 We consider a finite, elastically supported (dispersive) linear rod clamped at its left end, 
and coupled to a light mass by means of an essentially nonlinear (nonlinearizable) stiffness at 
its other boundary; the small mass of the attachment is scaled by the small parameter 

, 0 1ε ε< << , whereas the viscous damping of the system is also assumed to be weak, of 
( )O ε . The nonlinear attachment will also be referred to as nonlinear energy sink (NES), 

since, if properly designed (Georgiades et al., 2006), may passively absorb and dissipate a 
significant portion of the vibration energy of the rod. Denoting by ( )v t  and ( , )u x t , the 
displacements of the nonlinear attachment and the rod at the point x , respectively, we derive 
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the following mathematical problem (governing equations of motion complemented by 
boundary and initial conditions) in normalized form, 
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where ( ), ( )r x s x  are the initial displacement and velocity distributions of the rod, 1, 2λ λ  are 
viscous damping coefficients, L  the length of the rod, and C  the coefficient of the stiffness 
nonlinearity of the attachment. We note that the attachment is coupled to the rod by an 
essentially nonlinear (e.g., nonlinearizable) stiffness, and that the frequency 0ω  (the 
nondimensional distributed elastic support of the rod) represents the cut-off frequency of the 
uncoupled dispersive rod, e.g., the bounding frequency that separates its attenuation and 
propagation zones. 
 As a first step, we wish to provide an interpretation of the transient damped dynamics in 
terms of the time-periodic orbits of the corresponding undamped (hamiltonian) system. 
Hence, we consider the corresponding undamped mathematical problem by setting 

1 20, 0λ λ= =  in equations (1): 
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Initial conditions are omitted from (2) since the problem of computing the undamped 
periodic orbits is a nonlinear boundary value problem (NLBVP), in contrast to the damped 
problem (1) which is formulated as a Cauchy (initial value) problem.  
 To compute the T-periodic solutions of system (1), we express the displacements in the 
following series forms, 
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where by 2 /TπΩ =  denotes the basic frequency of the periodic motion. Substituting (3) into 
the partial differential equation in (2) and taking into account the imposed boundary 
conditions, we obtain the following series of linear boundary value problems (BVPs) 
governing the spatial distributions ( )kC x  and ( ), 1,2,...kS x k = : 
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The solutions of these problems are expressed as, 
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We note at this point that expressions (5a-c) are valid in the entire range of frequencies 
[ )0,Ω∈ ∞ , e.g., for harmonics with frequencies in both the propagation and attenuation 

zones of the uncoupled linear rod. Indeed, for values of Ω  for which ( )2 2 2
02 1 0k ω− Ω − <  

for some k N +∈ , the following well-known relations are employed, 
sin( ) sinh( ), cos( ) cosh( )j j jα α α α= =  with 1j = − , rendering expressions (5a) real 
quantities, with attenuating spatial envelopes. 
 Expressions (5a-c) are derived in terms of the amplitudes ,s kV  and ,c kV  of the harmonics 
of the nonlinear attachment. These are computed by substituting (3) and (5a-c) into the 
nonlinear ordinary differential equation in (2), leading to the following algebraic expression 
containing infinite series with index k : 
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Expanding the power in (6), and setting the coefficients of the trigonometric functions 
( ) ( )cos 2 1 , sin 2 1 , 1,2,...k t k t k− Ω − Ω =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  separately equal to zero, one derives an infinite 

set of nonlinear algebraic equations for the coefficients ,c kV  and ,s kV  that determine the 
periodic solutions of the hamiltonian system. For numerical reasons, this infinite set was 
truncated by considering terms only up to the fifth harmonic (e.g., 1,2,3k = ), and omitting 
higher harmonics. The resulting truncated set of six nonlinear algebraic equations is then 
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numerically solved for the amplitudes ,s kV  and ,c kV , which also determine approximately the 
periodic motion of the system through relations (3) and (5).  
 In Figure 1 the relative displacement [ ( ) ( , )]v t u L t−  of the truncated system (e.g., the 
periodic solutions of the hamiltonian system) are depicted for parameters 

00.05, 1.0, 1.0, 1.0C Lε ω= = = =  and 1 2 0λ λ= =  in a frequency – energy plot (FEP); only 
the frequency range covering the two leading modes of the uncoupled linear rod is 
considered. The FEP depicts the logarithm of the energy of a given periodic orbit, 10 ( )Log E , 
versus the fundamental frequency Ω  (in rad/sec) of the same orbit. The (conserved) energy 
E  of the periodic orbit is computed by the following expression: 
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(Figure 1) 
 Considering the FEP, one discerns the existence of two low-frequency asymptotes 
corresponding to the two leading modes of the linear uncoupled rod: 
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For the parameters used for computing the FEP one computes 1 1.8621 / secradω =  and 

2 4.8173 / secradω = . In addition, there exist two high-frequency asymptotes. Noting that at 
high energies and finite frequencies the essentially nonlinear stiffness of system (2) behaves 
as a massless rigid link, the high-frequency asymptotes are computed as the eigenfrequencies 
of the following alternative limiting linear system, 
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e.g., the dispersive rod with a mass ε  attached to its right end. The eigenfrequencies of this 
limiting system are computed by solving the following transcendental equation: 

2 2
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For the parameters corresponding to the FEP of Figure 1 one computes the two leading high-
energy asymptotes as, 1ˆ 1.7728 / secradω =  and 2ˆ 4.5916 / secradω = . 
 Since the principal aim for constructing the FEP is to interpret the (weakly) damped 
dynamics of system (1), it is necessary to discuss the structure of the various branches of 
periodic orbits of the underlying hamiltonian system (2), and to distinguish between the 
dynamical responses that occur at different frequency and energy ranges. The FEP of Figure 
1 possesses two types of branches of periodic motions, namely backbone (global) branches 
and subharmonic tongues (local branches). Backbone branches consist of nearly 
monochromatic periodic solutions possessing a dominant harmonic component and higher 
harmonics at integer multiples of the dominant harmonic. These branches are defined over 
extended frequency and energy ranges, and are composed of periodic solutions that are 
mainly localized at the nonlinear attachment, except in neighborhoods of the linearized 
eigenfrequencies of the rod, 1 2, ,...ω ω  (where the spatial distributions of the periodic motions 
resemble those of the corresponding rod mode shapes and are localized at the rod), and in 
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neighborhoods of the high-energy asymptotes 1 2ˆ ˆ, ,...ω ω  (where the relative motions between 
the nonlinear attachment and the rod end tend to zero). In Figure 2 representative periodic 
motions lying on backbone branches of the system are depicted. These can be considered as 
analytically predicted periodic solutions of the system, since their initial conditions are 
determined by solving the truncated system (6). To check the correctness of the analytical 
results, comparisons were made with direct numerical simulations of the dynamics based on 
a finite element (FE) model for the rod (to be described in the next section); these 
comparisons proved that the analytically predicted branches of periodic orbits were indeed 
accurate, and, hence, validated the analytical formulation and the FEP of Figure 1. 

(Figures 2,3) 
 A different set of periodic solutions lie on subharmonic tongues (local branches); these 
are multi-frequency periodic motions, with frequencies being approximately equal to rational 
multiples of the eigenfrequencies nω  of the uncoupled rod. Each tongue is defined over a 
finite energy range, and is composed of two distinct branches of subharmonic solutions; at a 
critical energy level the two branches coalesce in a bifurcation that signifies the end of that 
particular tongue and the elimination of the corresponding subharmonic motions at higher 
energy values. It can be proven that there exists a countable infinity of tonques emanating 
from the backbone branches at frequencies in rational relation to the eigenfrequencies of the 
uncoupled linear rod nω . It follows that subharmonic motions on the tongues possess 
dominant harmonics that are integrably related to certain eigenfrequencies of the uncoupled 
rod. On a given tongue the responses of any point the rod and of the attachment resemble 
those of two linear oscillators, albeit possessing different (but integrably related) 
eigenfrequencies. Hence, the interesting (and paradoxical) observation can be drawn, 
namely, that on the essentially nonlinear tongues (they are characterized as such since they 
exist due to the essential stiffness nonlinearity) the rod-attachment system behaves nearly as 
an equivalent two-frequency linear system.  
 In the FEP of Figure 1, only a subset of leading tongues are depicted; for example, the 
tongue depicted in Region I (Fig. 1b) is in the vicinity of 4 / 3ω , so that, in subharmonic 
motions on this tongue the response of the nonlinear attachment possesses a dominant 
harmonic with frequency 4 / 3ω  (and a minor harmonic at 4ω ), whereas the response of the 
rod end possesses a dominant harmonic at 4ω  (and a minor harmonic at 4 / 3ω ). In what 
follows a tongue labeled ( )

/
n

p qT  denotes the branch of subharmonic motions where the 
frequency of the dominant harmonic component of the nonlinear attachment is nearly equal 
to ( / ) np q ω , whereas that of the rod end is equal to nω ; it follows that the relative 
displacement [ ( ) ( , )]v t u L t−  for subharmonic motion on tongue ( )

/
n

p qT , is signified by two 
main harmonics at frequencies nω  and ( / ) np q ω . Using this notation, the subharmonic 
tongue depicted in Figure 1b is labeled as (4)

1/3T . In Figure 3 three subharmonic orbits on the 
tongue (4)

1/3T  of the FEP are depicted in the neighborhood of 4 / 3ω . Again, comparisons to 
direct FE simulations of the dynamics were made, which proved the correctness of the 
analytically predicted subharmonic motions. 
 In the next section the damped responses of system (1) are studied in detail. By wavelet 
transforming the measured time series of the attachment and the rod end and superimposing 
the resulting wavelet spectra to the FEP, one may discern a direct link between the damped 
and undamped dynamics. This enables one to classify and understand the nonlinear 
transitions that occur in the damped dynamics as the energy (and frequency) of the response 
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decreases. Further analysis of the damped dynamics is performed by post processing the time 
series by the Hilbert Huang Tranform (HHT). 
 
3. Study of Multi-scaled Transitions in the Damped Dynamics 
 
 The study of the damped dynamics of system (1) was performed through direct 
simulations of the equations (1) and post processing of the transient results. The responses of 
the rod-attachment system were computed by the finite elements method (FEM). For these 
computations the rod was discretized in 200 finite elements, which ensured a five-digit 
convergence of the computations of the three leading modes of the rod. Regarding the 
numerical integrations of the equations of motion (1), the Newmark algorithm was utilized 
with parameters chosen to ensure unconditional stability of the numerical algorithm. Finally, 
the sampling frequency was such that the eigenfrequencies of the leading three modes of the 
rod are less than 6% of the sampling frequency. Regarding viscous dissipation, proportional 
damping in the rod was assumed, by expressing the damping matrix as, 1 2a a= +D M K , 
where M and K are the mass and stiffness matrices of the rod. The parameters used for the 
FEM computations were chosen as 0.05,ε =  01.0, 1.0, 1.0,= = =C L ω  2 10.2, 0.001,λ α= =  
and 2 0.0α = , and the damped response is initiated for different sets of initial conditions of 
the rod and the nonlinear attachment. 
 The resulting damped transient responses of the system are post processed by applying 
two different algorithms, namely, numerical wavelet transforms (WTs) and Hilbert Huang 
Transforms (HHTs). First, the time series are analyzed by employing a Matlab-based Morlet 
WT algorithm developed at Université de Liège by Dr.V.Lenaerts in collaboration with 
Dr.P.Argoul from the ‘Ecole Nationale des Ponts et Chaussees’ [for recent works of this 
group see (Argoul and Le, 2003) and (Le and Argoul, 2004)]. As output of this analysis one 
computed WT contour plots (WT spectra) depicting the amplitudes of the WT of the 
analyzed signals as functions of frequency and time; heavy shaded areas correspond to 
regions where the amplitude of the WT is high, whereas lightly shaded ones correspond to 
low amplitudes of the WT. These plots enable one to deduce the temporal evolutions of the 
dominant frequency components of the signals analyzed, as well as, transitions between 
different modes that participate in the transient nonlinear responses (Lee et al., 2005; 
Kerschen et al., 2006a). 
 Further analysis of the numerical time series was performed by applying the Hilbert 
Huang Transform (HHT). This is a method to decompose a signal (time series) in terms 
components called Intrinsic Mode Functions (IMFs) satisfying the following three main ad 
hoc conditions:  

- For the duration of the entire time series, the number of extrema and of zero crossings 
of each IMF should either be equal or differ at most by one 

- At any given time instant, the mean value (moving average) of the local envelopes of 
the IMFs defined by their local maxima and minima should be zero 

- The superposition of all IMFs should reconstructs the time series 
Hence, this extracts oscillating modulations or modes imbedded in the data. In essence, one 
empirically identifies intrinsic oscillatory modes in the damped time series, and categorizes 
them in terms of their characteristic time scales, by considering the successive extreme 
values of the signal. The IMFs have usually a physical interpretation as far as their 
characteristic scales are concerned (indeed, as shown below, certain IMFs possess 
instantaneous frequencies that are nearly identical to resonance frequencies of the rod or the 
nonlinear attachment); but this need not always be the case. This implies that certain IMFs 
may represent artificial (non-physical) oscillating modes of the data. In an additional step, 
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Hilbert – transform of the IMFs is performed to compute the temporal evolutions of their 
instantaneous amplitudes and frequencies, which, in turn, can be used for the construction of 
the Hilbert spectra of the time series. In this work the HHT was implemented in Matlab. 
 The HHT combined with the WT enables one to determine the dominant IMFs in the 
damped time series. This is achieved by superimposing the plots of instantaneous frequencies 
of the IMFs to the corresponding wavelet spectra of the time series; clearly, the instantaneous 
frequencies of the dominant IMFs should coincide with the main harmonic components of 
the corresponding wavelet spectra in the time windows where they are dominant. It follows, 
that by combining WTs and HHTs one is able to determine the main dominant oscillating 
components in the measured time series and, hence, to perform order reduction and low-
order modelling of the measured transient signals. This process provides also the 
characteristic time scales where the dominant nonlinear dynamics of the rod-attachment 
interaction take place. Moreover, by adopting this analysis one can identify and analyze the 
most important nonlinear resonance interactions between the rod and the attachment, that are 
responsible for the nonlinear energy exchanges between these two subsystems. Hence, as 
shown below, by studying the resonance interactions between dominant IMFs of the 
attachment and the rod responses, one can gain insight into the complex resonant dynamics 
that govern passive broadband energy exchanges between the rod to the attachment. To better 
study such exchanges, in the following numerical simulations the energy transaction history 
for each simulation has been computed, with positive values denoting energy transfer from 
rod to attachment, and negative values indicating reverse energy flow. 
 In what follows the damped transitions of system (1) resulting from different sets of 
initial conditions will be analyzed. First, initial conditions corresponding to point A on the 
main backbone branch of the FEP are considered, at frequency 0.6 /rad sω =  (cf. Figure 1). 
The initial conditions for the rod and the nonlinear attachment are approximately computed 
using the method of section 2 as follows, 
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with , 1 2 30.1597, 0.0054, 0.0001= − = − =c c cV V V , 1
ˆ 0.0027,=C  2

ˆ 0.0079,= −C  and 

3
ˆ 0.00002= −C . In the undamped system these initial conditions correspond to a periodic 

motion which is predominantly localized to the nonlinear attachment. In Figure 4 the damped 
responses of the attachment and the point of connection of the rod are depicted, together with 
the depiction of the wavelet spectrum of the damped relative motion [ ]( ) ( , )v t u L t−  
superimposed on the FEP of the hamiltonian system. It is observed that as energy decreases 
due to damping dissipation the motion makes a transition following closely the main 
backbone branch of the corresponding hamiltonian system; this observation confirms that for 
sufficiently weak damping the damped response is dominated by the dynamics of the 
underlying hamiltonian system. The nonlinear dynamic interaction between the rod and the 
attachment is now examined in more detail.  
 The transient energy transaction history between the rod and the nonlinear attachment is 
depicted in Figure 5. Positive spikes indicate energy transmission from the rod to the 
attachment, whereas negative spikes indicate energy backscattered from the attachment back 
to the rod. The energy transaction history of Figure 5 indicates the presence of (weak) 
nonlinear beat phenomena between the two subsystems, with continuous energy being 
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exchanged between them; it is noted that in the damped transition of Figure 4 the motion is 
predominantly localized in the nonlinear attachment throughout the motion, so that only 
weak energy exchanges occurring between the two subsystems. As shown in (Georgiades et 
al., 2006) for different sets of initial conditions stronger energy exchanges may occur, 
resulting in vigorous targeted energy transfers from the rod to the nonlinear attachment; these 
transfers may be realized either through nonlinear beats, through one-way energy transfers 
from the rod to the attachment (evidenced represented by a series of only positive spikes in 
the energy transaction diagram), or through a combination of both.  

(Figures 4,5) 
 In Figure 6 the results of the Hilbert-Huang Transformations (HHTs) of the damped 
responses of the nonlinear attachment and the rod end are depicted. The three leading IMFs 
of the damped responses are presented, and in Figure 7 IMF-based reconstructions of the 
same damped responses are shown. It is shown that the transient response of the nonlinear 
attachment is approximately reconstructed using only its first and second IMFs, whereas the 
response of the rod end is approximated by only its first IMF; given the relation between the 
leading IMFs and the reduced slow-flow dynamics of the rod-attachment system (Kerschen 
et al., 2006b), the results presented in Figure 7 imply that the transient nonlinear dynamics of 
Figure 4 can be approximated by low-dimensional reduced-order models. 

(Figures 6,7) 
 An interesting series of nonlinear transitions is depicted in the second numerical 
simulation of the damped dynamics depicted in Figure 8, corresponding to initial conditions 
at point B on the subharmonic tongue (4)

1/5T  of the FEP (e.g., an undamped subharmonic orbit 
with dominant frequencies 42.214 / / 5rad sω ω= ≈  and 4ω −  cf. Figure 1). The existence of 
transitions is evidenced by the irregular amplitude modulations of the time series (especially 
the one corresponding to the nonlinear attachment), or equivalently, by their multi-frequency 
content. A better representation of the transitions in the damped dynamics is achieved by 
superimposing the wavelet spectrum of the relative motion [ ]( ) (0, )−v t u t  to the FEP of the 
undamped system (cf. Figure 8b); the following transitions are then discerned: 

I. Initial high energy transition from the subharmonic tongue (4)
1/5T  to tongue (1)

2 /3T  
(note the appearance of two dominant harmonics at frequencies 4ω  and 4 / 5ω  
during this Stage at the FEP of Figure 8c). 

II. Subharmonic capture on (1)
2/3T  with the nonlinear attachment possessing a nearly 

constant dominant harmonic component of frequency 12 / 3ω  (but also a minor 
harmonic of frequency 1ω ) 

III. Transition from tongue (1)
2/3T  to tongue (1)

1/3T  and subharmonic capture on (1)
1/3T  

(signified by a strong harmonic at frequency 1 / 3ω  and a weaker harmonic at 
frequency 1ω ) 

IV. Final low-energy transition to a linearized state, where the response of the 
nonlinear attachment approaches zero and the dynamics is dominated by the 
response of the linear rod (where the motion is nearly confined) 

These complex transitions are due to the fact that the essentially nonlinear attachment lacks a 
preferential frequency of oscillation (since it possesses zero linearized stiffness), which 
enables it to engage in fundamental or subharmonic resonance captures (Lee et al., 2005; 
Kerschen et al., 2006a) with different modes of the linear rod, at arbitrary frequency ranges; 
equivalently, the essential stiffness nonlinearity of the attachment leads to a series of 
resonance capture cascades with the rod. As discussed in (Kerschen et al., 2006a) such 
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resonance capture cascades may lead to strong targeted energy transfer phenomena from the 
rod to the attachment, which then acts, in essence, as nonlinear energy sink [for a detailed 
study of these targeted energy transfers in the system under consideration the reader is 
referred to (Georgiades et al., 2006)].  

(Figure 8) 
 The damped transitions depicted in Figure 8 are now analyzed in detail by HHT. The 
stages outlined above will be examined separately, with the aim to model the dynamics and 
to determine the time scales of the nonlinear interaction between the rod and the nonlinear 
attachment (or NES). Starting with the initial high-energy transition from tongue (4)

1/5T  to 
tongue (1)

2/3T  (Stage 1, 0 160t s< < ), HHT analysis indicates that the NES response is 
dominated by its 1st IMF (cf. Figure 9), whereas, the rod end response is approximately 
modeled by two dominant IMFs, namely, its 1st and 2nd IMFs (cf. Figure 10). Indeed, 
noticing that the instantaneous frequencies of the aforementioned dominant IMFs coincide 
with dominant harmonic components of the corresponding transient responses, one concludes 
that the nonlinear dynamics of the rod-NES transient interaction is low-dimensional, with the 
dynamics of the NES resembling the response of a single-DOF oscillator with frequency 
approximately 4 / 5 2.214 / sradω ≈ , whereas the dynamics of the rod end resembling the 
superposition of two single-DOF oscillators with frequencies 4ω  and 4 / 5ω , respectively. 
Moreover, the 1st IMF of the NES is in near 1:5 resonance with 1st IMFof the rod end, and in 
near 1:1 resonance with 2nd IMF of the rod end. Hence, HHT analysis indicates there is one 
dominant time scale in the transient dynamics of the NES and two dominant time scales in 
the dynamics of the rod end. These results are confirmed by the time series reconstructions 
depicted in Figures 9b and 10b, which prove the low-dimensionality of the NES – rod end 
nonlinear interaction during this initial (and high energy) stage of the motion. 

(Figures 9,10) 
 Proceeding now to the more complicated damped transition occurring in Stage II 
(160 420t s< < ) where the dynamics is captured at tongue (1)

2 /3T , the NES response appears to 
be dominated (and modeled) by its leading two IMFs (cf. Figure 11), which indicates that in 
this case the NES responds like a two-DOF oscillator. Considering the rod end response, one 
establishes the existence of three dominant IMFs (the leading three IMFs depicted in Figure 
12), with the instantaneous frequency of the 1st IMF appearing to undergo modulated 
oscillations, and that of the 2nd IMF to suffer sudden transitions (jumps) with increasing time. 
This type of complex behavior of the IMFs is distinctly different from that observed in Stage 
I and is characteristic of intrawaves in the time series (Huang et al., 1998a). This means that 
a dominant harmonic component of an oscillatory mode (IMF) of the response possesses a 
frequency that oscillates about a constant value. The existence of intrawaves in oscillatory 
modes (IMFs) is one of the nonlinear effects detected in typical nonlinear systems, such as 
the forced Duffing oscillator, the Lorenz system, and the Rossler chaotic attractor where the 
wavelet spectra couldn’t detect them; as mentioned in (Huang et al., 1998a), ‘…in fact such 
an instantaneous frequency presentation actually reveals more details of the system: it reveals 
the variation of the frequency within one period, a view never seen before…’ The time series 
reconstructions depicted in Figures 11b and 12b confirm that the superpositions of the 
dominant IMFs accurately model the damped transition during this Stage of the motion. Note 
that the higher dimensionality of the NES and rod end responses observed in this case, 
signifies that the complexity of the dynamics increases compared to Stage I. 
 Considering the resonance interactions between the IMFs of the NES and the rod end 
responses during Stage II of the damped response, the 1st IMF of the NES is in near 2:3 
internal resonance with the 2nd IMF of the rod end in the time interval 160 250t s< < , and 
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with the 3rd IMF of the rod end in the interval 250 350t s< < ; moreover, there appears to be 
1:1 internal resonance between the 1st IMF of the NES and the 3rd IMF of the rod end in the 
time interval 160 250t s< < . The transition of the dynamics from tongue (1)

2 /3T  to tongue (1)
1/3T  

is signified by the decrease of the instantaneous frequency of the 1st IMF of the NES in the 
interval 350t s> . The 1st IMF of the rod end possesses an oscillatory instantaneous 
frequency about 4ω  in the interval 160 300t s< < , and about 3ω  and 4ω  in the interval 
300 420t s< <  (due to intrawaves, as discussed above); this result of the HHT agrees 
qualitatively with the late excitation of the 3rd linear mode of the rod, as indicated by the 
wavelet transform of the signal. The 2nd IMF of the rod end possesses an instantaneous 
frequency which is approximately equal to 1ω  for 160 250t s< < , and is oscillatory about 

2ω  for 250 350t s< < ; this, when the wavelet transform of the time series of the rod end 
response does not indicate any excitation of the second mode of the rod at Stage II (which 
demonstrates the clear advantages of the HHT in analyzing complex signals compared to the 
wavelet transform). 

(Figures 11,12) 
 In Figures 13-15 the results of the HHT analysis of Stages III and IV ( 420t s> ) are 
depicted. In this case the NES response possesses three dominant IMFs, whereas that of the 
rod end four. The resonance capture of the dynamics on tongue (1)

1/3T  is signified by the fact 
that the instantaneous frequency of the 1st IMF of the NES response is approximately equal 
to 1 / 3ω  in the time interval 420 820t s< <  (with the exception of a ‘high frequency burst’ in 
the neighborhood of 500t s= ), whereas, the transition from (1)

1/3T  to the linearized regime is 
signified by the decrease of the instantaneous frequency of the same IMF for 820t s> . It is 
interesting to note that in the time interval where the ‘high frequency burst’ of the 1st IMF of 
the NES occurs, the 2nd IMF of the NES ‘locks’ to the value 1 / 3ω , and, hence, through 
superposition provides the necessary correction in the reconstruction of the overall time 
series in that time interval. Moreover, by studying the waveform of the 3rd IMF of the NES 
one notes that this IMF dominates the transition from (1)

1/3T  to the linearized regime occurring 
for 800t s> . Considering the IMFs of the rod end response, one notes intrawave effects 
centered at the linearized eigenfrequencies of the rod, 1 4,...,ω ω , similarly to what was 
observed in the HHT results of the response in Stage II. 

(Figures 13,14,15) 
 The presented results demonstrate the usefulness of the HHT as a computational tool for 
postprocessing nonlinear dynamics that involve multiple resonance captures and escapes. In 
fact, the previous results indicate that the HHT can capture delicate features of the dynamics 
(such as intrawave effects or excitation of modes) that are not evident in the corresponding 
wavelet transforms. Nevertheless, the presented computational analysis shows that the 
combination of HHT and wavelet analysis forms a powerful computational methodology for 
postprocessing and modeling of complex nonlinear transient responses of practical structural 
systems. 
 
4. Concluding Remarks 
 
The analysis of complex, multi-frequency nonlinear transitions in the damped dynamics of a 
viscously damped dispersive finite rod coupled to an essentially nonlinear oscillator was 
considered. It was shown that for weak damping, a clear understanding of dynamical 
transitions in this system can be gained by wavelet transforming the time series and 
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superimposing the resulting wavelet spectra in the frequency – energy plot (FEP) of the 
periodic orbits of the underlying hamiltonian system. This should not be surprising, given 
that the effect of weak damping in the response can be considered to be parasitic, e.g., it is 
not expected to give rise to any new dynamical phenomena; as a result, as energy decreases 
with time the weakly damped nonlinear dynamics either follow damped manifolds close to 
manifolds of periodic orbits of the hamiltonian system, or suffer sudden transitions (jumps) 
between different branches of solutions. These transitions can be clearly represented in the 
FEP. 
 The damped responses of the system were initially analyzed by the numerical Morlet 
Wavelet Transform (WT), and then by the Empirical Mode Decomposition (EMD) or 
Hilbert-Huang Transform (HTT), whereby, the time series are decomposed in terms of 
intrinsic mode functions (IMFs) at different characteristic time scales (or, equivalently, 
frequency scales). It was shown that the HHT is capable of analyzing even complex 
nonlinear transitions, by providing the dominant frequency components (or equivalently, 
time scales) were the nonlinear phenomena take place. In addition, the HHT can detect 
delicate features of the dynamics, such as intrawaves – e.g., IMFs with modulated 
instantaneous frequencies, that the wavelet transform cannot. More importantly, due to the 
HHT algorithm, the superposition of the dominant IMFs of the signal reconstructs the signal 
itself, and, hence, these dominant IMFs may be interpreted as outputs of intrinsic modal 
oscillators. It follows, that the determination of the dominant IMFs of a complex nonlinear 
signal, paves the way for modeling this signal, for determining the dimensionality of its 
dynamics, and for ultimately performing multi-scaled system identification of the underlying 
dynamics of the system. 
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Figure Captions 
 
1. FEP of the hamiltonian system: (a) Backbone branches of periodic motions and tongues of 
subharmonic motions; (b,c) Details of regions I and II; numbers (▼) correspond to the periodic 
orbits depicted in Figures 2 and 3, and letters (●) to the numerical simulations of section 3. 
2. Periodic orbits on backbone branches of the FEP: (1) 0.6 / secradω = , (2) 1.3 / secradω = , 
(3) 1.75 / secradω = , (4) 2.3 / secradω = , (5) 4.5 / secradω = , (6) 1.87 / secradω = , (7) 

4.83 / secradω = ; _________ Rod end, _ _ _ _ _ _ Nonlinear attachment. 
3. Subharmonic periodic orbits on the subharmonic tongue (4)

1/3T  (region I of the FEP): (8) 
3.72 / sec, ( ) 0.645rad Log Energyω = = , (9) 3.72 / sec, ( ) 1.015rad Log Energyω = = , (10) 
3.72 / sec, ( ) 0.48rad Log Energyω = = ; _________ Rod end, _ _ _ _ _ _ Nonlinear Attachment. 

4. Damped response initiated at point A of the FEP of Figure 1: (a) Transient responses ( )v t  
and ( , )u x t ; (b) Wavelet spectrum of the relative response [ ( ) ( , )]v t u L t−  superimposed to the 
FEP of the hamiltonian system. 
5. History of energy transaction between the rod and the nonlinear attachment for the damped 
responses of Figure 4. 
6. Leading IMFs of the nonlinear attachment and the rod end for the damped responses of 
Figure 4. 
7. Time series reconstructions of the damped responses of Figure 4 taking into account the 
leading two IMFs of the response of the nonlinear attachment, and the leading IMF of the rod 
end response. 
8. Damped response initiated at point B of the FEP of Figure 1: (a) Transient responses ( )v t  
and ( , )u L t ; (b) History of energy transaction between the rod and the nonlinear attachment; 
(c) Wavelet spectrum of the relative response [ ( ) ( , )]v t u L t−  superimposed to the FEP of the 
hamiltonian system. 
9. HHT analysis of the NES response, Stage I of the damped transition of Figure 8: (a) 
Instantaneous frequency of the 1st IMF superimposed to the wavelet transform of the transient 
response; (b) Reconstruction of the transient response using the 1st IMF. 
10. HHT analysis of the rod end response, Stage I of the damped transition of Figure 8: (a) 
Instantaneous frequencies of the 1st and 2nd IMF superimposed to the wavelet transform of the 
transient response; (b) Reconstruction of the transient response using the 1st and 2nd IMF. 
11. HHT analysis of the NES response, Stage II of the damped transition of Figure 8: (a) 
Instantaneous frequency of the 1st IMF superimposed to the wavelet transform of the transient 
response; (b) Reconstruction of the transient response using the 1st IMF. 
12. HHT analysis of the rod end response, Stage II of the damped transition of Figure 8: (a) 
Instantaneous frequencies of the 1st, 2nd and 3rd IMF superimposed to the wavelet transform of 
the transient response; (b) Reconstruction of the transient response using the 1st, 2nd and 3rd 
IMF. 
13. HHT analysis of the NES response, Stages III and IV of the damped transition of Figure 8: 
Instantaneous frequencies (superimposed on the wavelet transform of the response), and time 
series of the (dominant) 3rd, 4th and 5th IMFs. 
14. HHT analysis of the NES response, Stages III and IV of the damped transition of Figure 8: 
Reconstruction of the response by superposing the three dominant IMFs. 
15. HHT analysis of the rod end response, Stages III and IV of the damped transition of Figure 
8: (a) Instantaneous frequencies (superimposed on the wavelet transform of the response) of 
the (dominant) 1rd, 2nd, 3rd and 4th IMF, (b) Reconstruction of the response by superposing the 
four dominant IMFs. 
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