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Abstract 

 

We study Targeted Energy Transfers (TETs) and nonlinear modal interactions 

attachments occurring in the dynamics of a thin cantilever plate on an elastic 

foundation with strongly nonlinear lightweight attachments of different configurations 

in a more complicated system towards industrial applications. We examine two types 

of shock excitations that excite a subset of plate modes, and systematically study, 

nonlinear modal interactions and passive broadband targeted energy transfer 

phenomena occurring between the plate and the attachments. The following 

attachment configurations are considered: (i) a single ungrounded, strongly 

(essentially) nonlinear single-degree-of-freedom (SDOF) attachment – termed 

nonlinear energy sink (NES); (ii) a set of two SDOF NESs attached at different points 

of the plate; and (iii) a single multi-degree-of-freedom (MDOF) NES with multiple 

essential stiffness nonlinearities. We perform parametric studies by varying the 

parameters and locations of the NESs, in order to optimize passive TETs from the 

plate modes to the attachments, and we showed that the optimal position for the NES 

attachments are at the antinodes of the linear modes of the plate. The parametric study 

of the damping coefficient of the SDOF NES showed that TETs decreasing with 

lower values of the coefficient and moreover we showed that the threshold of 

maximum energy level of the system with strong TETs occured in discrete models is 

by far beyond the limits of the engineering design of the continua. We examine in 

detail the underlying dynamical mechanisms influencing TETs by means of Empirical 

Mode Decomposition (EMD) in combination with Wavelet Transforms. This 

integrated approach enables us to systematically study the strong modal interactions 

occurring between the essentially nonlinear NESs and different plate modes, and to 

detect the dominant resonance captures between the plate modes and the NESs that 

cause the observed TETs. Moreover, we perform comparative studies of the 

performance of different types of  NESs and of the linear Tuned-Mass-Dampers 
(TMDs) attached to the plate instead of the NESs. Finally, the efficacy of using this 

type of essentially nonlinear attachments as passive absorbers of broadband vibration 

energy is discussed. 
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1. Introduction 

 

Towards industrial applications, we study a thin plate lying on an elastic 

foundation with essentially nonlinear attachments of different configurations attached 

to it. We discretize the partial differential equation of motion of the thin plate using a 

Finite Element (FE) formulation to extract the structural matrices of the system, and 

then add the essentially nonlinear attachments with different configurations. For the 

class of systems considered in this work (e.g., a primary linear structure with an 

essentially nonlinear attachment at its boundary), it has been shown that at certain 

energy levels there may occur passive targeted energy transfer (TET) phenomena 

from the primary system to the nonlinear attachment, which acts, in essence as 

nonlinear energy sink (NES) (Vakakis, 2001). When TET takes place, there occurs 

passive, broadband, directed (on the average) energy transfer from the primary, 

directly excited structure to the NES (that is initially at rest), where this energy gets 

localized (spatially confined) and locally dissipated without major backscattering to 

the primary structure. 

In previous works the dynamical mechanisms governing passive TET have been 

studied; these include nonlinear beat phenomena, and fundamental and subharmonic 

resonance captures between the linear part and the NES attachment (Gendelman et al., 

2001; Vakakis and Gendelman, 2001; Kerschen et al., 2005; Lee et al., 2005). 

The present work aims to systematically study the nonlinear modal interactions 

and compare passive broadband targeted energy transfer (TET) phenomena between 

the linear dispersive plate and the following configurations of NES attachments: (i) a 

single ungrounded, strongly (essentially) nonlinear single-degree-of-freedom (SDOF) 

NES; (ii) multiple nonlinear SDOF NESs attached at different points of the plate; (iii) 

a single, multi-degree-of-freedom (MDOF) NES with essential stiffness 

nonlinearities; and (iv) a single Linear Tuned Mass Damper (TMD) attachment to the 

plate. We examine conditions for optimal TETs from the plate to the attached NESs, 

and we compare the performance of the different NESs to linear TMDs. 

In these studies we examined TETs with two different types of input force applied 

to the plate, either a single shock that directly excites at least the five leading plate 

modes, or multiple shocks that excite equivalently, at least three leading plate modes. 

We examine the capacity of the NESs to passively absorb and locally dissipate 

broadband shock energy from the plate. What clearly distinguishes this work from 

other TET studies is the systematic study of transient, strongly nonlinear TET in an 

elastic continuum – NES system of far more complicated configuration that those 

these examined in the literature thus far –towards industrial applications-, the 

parametric study of TETs with the applied amplitude of the force within the design 

limits of the linear structure, the comparative studies of TETs between different 

NESs, TMD attachments and different types of forces that excites higher than the 

three first modes of the linear system.    

In related works on elastic continua with attached NESs, Georgiades and Vakakis 

(2007) have studied numerically TETs from a beam to a SDOF NES attachment, and 
found conditions for optimal TET; in that work as much as 87% of the shock energy 

of the beam could be transferred and locally dissipated by the NES. Georgiades et al. 

(2007) have studied TETs from a dispersive rod (linearly elastic rod on an elastic 

foundation) to a SDOF NES attachment. In that work Wavelet transforms and 

Empirical Mode Decomposition (EMD) were used to analyze the nonlinear resonance 

captures that govern TET in that system. TET from a dispersive rod under shock 

excitation to an attached MDOF NES at its boundary was studied in (Tsakirtzis et al., 

2007). In an earlier work (Tsakirtzis et al., 2005) the dynamics and TET in discrete 

oscillators with an attached MDOF NES have been studied. The present work aims to 

extend these previous results, by studying TET and complex nonlinear modal 
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interactions of an elastic system with more complicated configuration with essentially 

nonlinear attachments. 

 

2. Finite Element (FE) Formulation for the Plate Dynamics and Different NES 

Configurations 

 

The plate on the linear elastic foundation is depicted in Figure 1a. It consists of a 

linear isotropic elastic plate with mass distribution per unit area M, width W, length 

L, thickness h, and distributed proportional viscous damping per unit area d (this 

corresponds either to distributed viscous damping in the foundation or to Rayleigh 

damping in the plate with β=0). The plate is clamped on one edge only, with all other 

edges remaining traction-free, and is resting on a distributed elastic foundation with 

stiffness per unit area equal to K. The plate is assumed to be sufficiently thin, so that 

its shear deformation may be neglected (the so called Kirchhoff assumptions). Hence, 

the governing partial differential equation of motion with the associated boundary 

conditions is given by (assuming that the plate is initially at rest): 

 

1 1 2 2

i i

2
4

ext,1 x y ext,2 x y2

i x y

i

w w
D w M d k w F (x d , y d ) F (x d , y d )

t t

F (t) (x b , y b )

 
            

 

  
 

w(x,0, t) 0 , 
w(x,0, t)

0
x





, w(x, y,0) 0 , 

w(x, y,0)
0

t





 

y y yM (0, y, t) M (W,y, t) M (x,L, t) 0    

y y yQ (0, y, t) Q (W,y, t) Q (x,L, t) 0                                   (1.1) 

 

Depending on the specific forms of the forcing terms in (1.1) we will consider 

different models as outlined below: 

 

Model 1: Simple plate without attachments: ext,1 ext,2F F 0                                    (1.2) 

 

Model 2: Plate with SDOF NES attachment:  

1 1 1 1

3

ext,1 x y x yF C w(d ,d ) v(t) w(d ,d ) v(t)            (1.3) 

ext,2F 0      (1.4) 

1 1 1 1

3

x y x yv(t) C v(t) w(d ,d ) v(t) w(d ,d ) 0           
, v(0) 0, v(0) 0   (1.5) 

 

Model 3: Plate with Multi-SDOF NES attachment:  

1 1 1 1

3

ext,1 x y x yF C w(d ,d ) v(t) w(d ,d ) v(t)            (1.6) 

2 2 2 2

3

ext,2 x y x yF C w(d ,d ) s(t) w(d ,d ) s(t)            (1.7) 

1 1 1 1

3

x y x yv(t) C v(t) w(d ,d ) v(t) w(d ,d ) 0           
, v(0) 0, v(0) 0   (1.8) 

2 2 2 2

3

x y x ys(t) C s(t) w(d ,d ) s(t) w(d ,d ) 0           
, s(0) 0, s(0) 0   (1.9) 

 

Model 4:  Plate with MDOF NES attachment:  

1 1ext,1 0 x yF C w(d ,d ) v(t)        (1.10) 

ext,2F 0      (1.11) 

   
1 1

3

1 0 x y 1m v(t) C v(t) w(d ,d ) v(t) u(t) C v(t) u(t) 0, v(0) 0, v(0) 0          
 (1.12) 
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   
3

2 1m u(t) u(t) v(t) C u(t) v(t)          

   
3

2u(t) s(t) C u(t) s(t) 0, u(0) 0, u(0) 0         (1.13) 

   
3

3 2m s(t) s(t) u(t) C s(t) u(t) 0, s(0) 0, s(0) 0         (1.14) 

 

Model 5:  Plate with TMD attachment:  

1 1 1 1ext,1 ln x y x yF k w(d ,d ) v(t) w(d ,d ) v(t)            (1.15) 

ext,2F 0      (1.16) 

1 1 1 1ln x y x yv(t) k v(t) w(d ,d ) v(t) w(d ,d ) 0           
, v(0) 0, v(0) 0   (1.17) 
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(b) 

 

Figure 1. Cantilever plate with elastic foundation: (a) Configuration of the plate, (b) 

the 4-node quadrilateral finite element indicating the local coordinates ( , )  . 

 

 

In these models F(t)  is the applied external excitation, ( , )    is Dirac’s generalized 

function, and the differential operator   applies to both x and y directions. In (1) the 

variables 
y yM ( , ) and Q ( , )     denote the internal bending moments about the y-axis, and 

the shear forces along the y-axis of the plate, respectively (cf. Figure 1). Moreover, 

the flexibility D in the equation of the plate is defined as, 
3

2

Eh
D

12(1 )



                                                      (2) 

where E is the modulus of elasticity, and  is Poisson’s ratio for the material of the plate 

(Leissa, 1993). 

 

Equations (1.1) and (1.2) have been nondimensionalised, with the following 

numerical values assigned for the plate parameters, 

W L 1, h 0.01, M 1, D 1, 0.3, k 100                              (3) 

which are in accordance to the assumptions of thin plate theory; the damping 

coefficient is assigned the value d=0.10 for the case of a single force (shock) applied 

to the plate, and d=0.15 for the case of multiple forces applied to the plate, in order to 

perform comparative studies of TET efficiency between various configurations of 

NESs and linear tuned mass dampers (TMDs). In SDOF NES configurations a single 

mass is attached to the plate by means of an essentially nonlinear stiffness in parallel 

to a viscous damper. In MDOF NES configurations a 3-DOF NES system is 

connected to the plate through a linear coupling stiffness without a dissipative 

element; also, two essentially nonlinear stiffness elements in parallel to two viscous 

damping elements are used to connect the three masses of the MDOF NES. In all 

cases, the masses of the NESs are assumed to oscillate transversely with respect to the 

plate. 

Additionally, we assume that at t 0  a single or a set of transient forces (shocks) 

Fi(t) is applied to the plate. Each shock has the form of a half sine impulse: 

x y 

z 

η 

k 

l i 

j 

(xc,yc) 

ξ 
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i

i

A sin(2 t / T), 0 t T / 2
F (t)

0, t T / 2

  
 


                                  (4) 

In the case of a single applied shock, its position on the plate is given by, (bx, by) = 

(1,1); whereas, in the case of multiple applied shocks, their positions on the plate are 

given by, (bx1, by1)=(0.6,0.5) (shock 1), (bx2, by2) = (0.5,0.5) (shock 2) and (bx3, by3) = 

(0.4,0.5) (shock 3). 

Unless otherwise stated, in the following computations for single forcing the 

amplitude of the force is selected as, A=100, with period T = 0.1  T5, where T5 is the 
period of the fifth eigenmode of the linear plate (e.g., the plate with no attachment). 

This requirement ensures that the applied shock excitation has sufficiently small 

duration compared to the period of the first eigenmode of the plate, which can be 

regarded as the characteristic time scale of the problem; in turn, this ensures that the 

applied shock directly excites a sufficiently large number of eigenmodes of the plate 

(in this case the first five), which enables us to study the capacity of the NES(s) to 

passively absorb broadband vibration energy from multiple plate modes. 

Alternatively, in the case of multiple applied shocks, the forcing amplitudes are 

selected as, A1 = 25, A2 = -100, and A3 = 25 with period T = 0.1  T5, where T5 is the 

period of the fifth eigenmode of the linear plate, and examination of the response at 

the free corner of the simple plate with wavelet spectra showed that there are three 

excited modes with almost equivalent energy (the 1
st
, 4

th
 and 6

th
 modes). 

The partial differential equation in (1.1) with (1.2) is discretized using a 4-

node quadrilateral element, as well as non-conforming shape functions with corner 

nodes (with 12 degrees of freedom) (Zeinkiewicz and Taylor, 2000; Liu and Quek, 

2003). In each node, we consider the transverse displacement (w) and the rotations 

over the x and y axis. For this specific finite element, the explicit forms of the matrix 

of shape functions, N, was derived by Melosh (1963), and expressed simply in terms 

of local normalized coordinates (ξ,η) at each node as follows (Zeinkiewicz and 

Taylor, 2000), 
1 2 2

p 0 0

m T 2 2

p p 0 0 p

3 2

p p

N 2
1

(N ) N (1 )(1 ) b (1 )
8

N (1 )

       
   

         
       

                 (5) 

where p(=i,j,k,l) is the number of node and (m) is the index denoting to which 

element of the vector qp does the shape function correspond; the local coordinates are 

defined as, 

c
0 p

x x
,


    


                                              (6) 

c
0 p

y y
,

b


                                                  (7) 

where p  and p  are the local coordinates for node p, and c c(x , y )  denote the 

coordinates of the center of the finite element (cf. Figure 1b).  

There are several ways to discretize the partial differential equation in (1 .1) 

with (1.2). In this work we found more convenient to use the energy approach 

based on the estimation of energies of a single finite element from Kirchoff’s 

plate theory, and using the results to estimate the corresponding FE mass 

matrices and FE displacements. Using a connection matrix that indicates which 

nodes are connected in adjacent elements we may construct the full structural 

matrices of the plate as follows (see details in Appendix 1): 
I,II

dK q M q Dq P(t)                                             (8) 

In (8) q is a column vector containing the vertical displacement and the rotations 

about the x and y axis at each node; Md is the mass structural matrix and K
I,II

 is the 
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stiffness matrix; and P(t) is a column vector with zero elements, except for nodes 

where excitations forces (shocks) are applied. In equation (1) proportional distributed 

viscous damping is considered; hence, in the discrete model (8) the damping matrix D 

appears, which is proportional to the mass matrix Md (see details in Appendix 1).  

The discrete system (8) was solved numerically using the Newmark Adaptive 

Algorithm [for details see (Geradin and Rixen, 1997)]. A sensitivity analysis for the 

required number of discrete elements needed for convergence showed that a 

total of 10×10 elements (10 in each direction) was sufficient. Initially a 

verification of the accuracy of the natural frequencies was performed for the 

case of no elastic foundation (k=0) using a model in ANSYS, and comparing 

with the results reported in (Leissa, 1993). In Table 1 we present the natural 

frequencies for the unforced and undamped plate estimated using the FE 

simulation, together with the corresponding eigenshapes and for comparison 

purposes there are the eigenfrequencies arised by Leissa (1993) that shows good 

agreement with the determined values.  

 

 

Table 1. FE computations of the leading eigenmodes of the plate on elastic foundation 

(k=100), with no NES attached. 

Eigenmode No. 1 2 3 

 Eigenfrequency  

 (Leissa 1993) 
1.686 2.093 3.765 

Eigenfrequency (Hz) 1.685 2.090 3.750 

% Critical damping 

ratios for d=0.10 0.472 0.381 0.212 

% Critical damping 

ratios for d=0.15 0.708 0.571 0.319 

 

 

Eigenshapes- 

Nodal Lines ( ) 

   

 

Eigenmode No. 4 5 

 Eigenfrequency  

 (Ref. Leissa 1993) 
4.651 5.209 

Eigenfrequency (Hz) 4.607 5.179 

% Critical damping 

ratios for d=10 0.173 0.154 

% Critical damping 

ratios for d=15 0.259 0.230 

Eigenshape 

  

 

We now assume that a single essentially nonlinear attachment (referred to 

from now on as ‘nonlinear energy sink’ – NES) is attached at position (x,y) = 

(dx,dy) of the plate, model 2 with equations (1.1,1.3-1.5). The NES is assumed 
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to be lightweight – of mass ε, and to possess an essentially nonlinear 

(nonlinearizable) cubic stiffness with characteristic C, in parallel to a viscous 

damper λ.  

The partial differential equation in (1.1) was discretized using the 

aforementioned FE formulation, and the dynamics of the NES at (x,y) = (dx,dy) 

is incorporated into the discretized equations of motion by expanding 

accordingly the system matrices, and adding a nonlinear st iffness component 

(due to the essential cubic nonlinearity).  

The efficiency of the NES to passively absorb and locally dissipate the 

shock energy of the plate, can be studied by estimating the following energy 

dissipation measure (EDM): 
t

2

x y

damp,NES 0

t

in

x y

0

w(d ,d , ) v( ) d
E (t)

(t)
E

F( ) w(b ,b , )d

      
  

  





                       (9) 

This represents the portion of the shock energy of the plate that is dissipated by the 

damper of the NES at time t, and hence, can be used as a measure of TET efficiency. 

It is clear that with increasing time the EDM reaches an asymptotic limit, 

t 1 t 1lim (t)                                                 (10) 

which represents the portion of the shock energy of the plate that is eventually 

dissipated by the NES by the end of the oscillation. 

 The portion of the input shock energy dissipated by the distributed viscous 

damping of the plate up to time instant t is computed by, 

 
L W t 2

damp,plate 0 0 0
plate t

in

x y

0

1 w(x, )
d d dx dy

2E (t)
(t)

E
F( ) w(b ,b , )d

  
  

  

  

  



                         (11) 

Combining (9) and (11), the portion of the input shock energy dissipated by the 

integrated plate-NES system up to time instant t is computed as follows, 

total plate(t) (t) (t)                                            (12) 

Similar formulations hold when multiple SDOF NESs  or the linear TMD and the 

equations of motion for the integrated plate – Multi SDOF NES system considered in 

this work are given by model 3 equations (1.1, 1.6-1.9) and for the integrated plate-

TMD system considered in this work are given by model 5 equations (1.1, 1.15-1.17). 

Some remarks are now appropriate concerning the use of MDOF NES attachments. 

In (Tsakirtzis et al., 2005; 2007) a MDOF NES composed of three masses coupled by 

essentially nonlinear springs and dampers was attached to a system of linear coupled 

oscillators. This MDOF NES configuration was introduced due to its capacity to 

passively absorb broadband shock energy from a linear system with enhanced 

effectiveness and robustness compared to SDOF NESs and an easily realizable 

attachment in an existing structure by a common linear spring.. The enhanced efficiency 

of the MDOF NES is attributed to the complex nonlinear modal interactions (and, 

hence, transient resonance captures) that occur between multiple nonlinear modes of the 

NES and linear modes of the system to which it is attached; for example, MDOF NESs 

were shown to be effective in passive energy absorption even in low-amplitude regimes 

(Tsakirtzis et al., 2007), in contrast to SDOF NESs which are ‘activated’ only above a 

definite energy threshold. These results provide us with the motivation to test the 

performance of the MDOF NES to the present problem of plate vibration. 
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The equations of motion for the integrated plate – MDOF NES system considered 

in this work are given by model 4 equations (1.1, 1.10-1.14). The MDOF NES 

attachment is consists of three masses coupled together with nonlinear spring 

and damper with the same damping coefficinet and the third mass coupled with 

the plate by linear spring. 

Details of the FE formulation and the corresponding structural matrices of the 

integrated system can be found in Appendix 1. The effectiveness of the NES to 

passively absorb and locally dissipate the shock energy of the plate (e.g., the TET 

efficiency) can be quantitatively studied by computing the following energy 

dissipation measures (EMDs), 

 
1

t
2

damp,NES 0
1 t

in

x y

0

u( ) v( ) d
E (t)

(t)
E

F( ) w(b ,b , )d

    

  

  





                           (13) 

and  

 
2

t
2

damp,NES 0
2 t

in

x y

0

s( ) u( ) d
E (t)

(t)
E

F( ) w(b ,b , )d

    

  

  





                           (14) 

e.g., the portion of shock energy dissipated by each of the two dampers of the 

MDOF NES at time t. The summation of these two EMDs provides a measure of 

the TET efficiency of the MDOF NES. It is clear that the two EMDs reach 

asymptotic limits, 1,2 t 1 t 1 1,2lim (t)    . 

 

3. Methods of Post-processing the Computational Results 

 

The results of the simulations are post-processed based on energy and frequency 

points of view. From the energy point of view, we examine the energy dissipation in 

the system and especially the amount of energy that each part of the system (the 

elastic continuum and the attachment) is dissipating. Moreover in certain simulations 

we examine the energy transaction (ETrans – the ratio ETrans/Δt when Δt tends to zero 

represents the power flow from the plate to the attachment and vice versa) between 

the plate and the attachment at any given instant of time.  

Post processing of the numerically computed time series of the plate and the 

NES was performed in two different ways as discussed in (Georgiades et al., 

2007). First, the dynamic response was analyzed using a Wavelet Transform 

(WT) employing a Matlab code developed in University of Liege by Dr. V. 

Lenaerts in collaboration with Dr. P. Argoul from the ‘Ecole Nationale des Ponts et 

Chaussees’. In this work, the Morlet motherwavelet was used for the WT computations; 

that is a Gaussian-windowed complex sinusoid of frequency 0  (in rad/sec), 

tj2/t

M
0

2

ee)t(
 . The frequency 0  (or 0f  in Hz) is the user parameter that enables 

one to tune the frequency and time resolution of the results. Using this tool we can 

extract the Wavelet Transform Spectra that are contour plots depicting the amplitude of 

the WT of the signal as function of frequency (vertical axis) and time (horizontal axis) 

(Lee et al., 2005; Kerschen et al., 2005). 

Further analysis of the numerical responses was performed using a combination of 

the Empirical Mode Decomposition (EMD) with Hilbert transform. EMD is a method 

to decompose a signal in monofrequency oscillatory modes called Intrinsic Mode 

Functions (IMFs) (Huang et al., 1998; 2003; Veltcheva and Soares, 2004; Zhang et al., 

2005). In essence, IMFs are oscillatory modes embedded in the time series, and their 
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linear superposition regenerates the time series. By Hilbert transforming the set of IMFs 

one computes their instantaneous phases and frequencies. By post processing the 

transient responses of the plate and the attached NES by means of EMD and Hilbert 

transform, we aim to study in detail the complex nonlinear resonance interactions 

taking place between the essentially nonlinear attachment and the various modes of the 

plate. By combining the results of the Hilbert transform with the corresponding wavelet 

spectra of the transient responses, we can identify the dominant IMFs of the plate and 

NES transient responses, and further on analyze the most important modal resonance 

interactions between the plate and the NES that are responsible for the nonlinear energy 

exchanges (and TET) between these two subsystems. Details of the EMD method with 

Hilbert transform and their applications for the determination of the resonance captures 

between elastic continua and the NES attachments could be found in the PhD Thesis by 

Georgiades (2006) and also in Georgiades et al., 2007. 

In the following sections all the simulations were performed for a sufficiently large 

time window so at least 96.5% of the energy of the system has been dissipated by the 

dampers of the subsystems. This total dissipated energy measure (termed total) ensured 
that no essential dynamics was missed in the transient simulations due to insufficient 

time of numerical integration. All sets of simulations with SDOF nonlinear attachments 

were performed with using a (10×10) FE mesh for the plate. In the presented results we 

divide the plate in ‘y-slices’ corresponding to fixed values of y to present the dynamics. 

The parametric studies of the plate with MDOF attachments were performed with 

attachments located all over x-positions on three ‘y-slices,’ namely, y = 1, 0.7, 0.3 of 

the plate, again using a (10×10) FE mesh. 

 

 

4. Parametric Studies of TET from the Plate to a SDOF NES 

 

In our first parametric study we examine TET in a plate forced by single or multiple 

shocks, possessing a single SDOF NES attachment. We perform four main sets of FE 

simulations with parameter values for the integrated plate – SDOF NES system, model 

2 with equations (1.1, 1.3-1.5). In these sets of simulations we examine the influence of 

the variation of the NES parameters and input energy on the targeted energy transfers 

(TETs) from the plate to the NES, using as criterion of NES effectiveness (and 

efficiency) the portion of total energy eventually dissipated by the NES (e.g., the energy 

dissipation measure – EDM), 
t 1 t 1lim (t)     defined by (10). Hence, from now on, 

TET efficiency will be judged by the asymptotic value t 1 . Unless otherwise stated, 

the mass of the NES is taken as ε = 0.05, its nonlinear stiffness characteristic as 

C=1000, and its damping coefficient as λ=0.1. 

In the first set of simulations we examined the influence of the nonlinear stiffness 

coefficient C, and of the position of the NES on the TET efficiency from the plate to the 

NES. For each simulation we determined the % of instantaneous total energy of the 

system over the input energy in order to have a measure of the error of the determined 

energy of the system in cases that the maximum and the minimum of the % of the total 

energy values is not in acceptable range we increased the sampling frequency and 

repeat the simulations. For the simulations with single forcing the sampling frequency 

used is 441.5 Hz that corresponds to a Nyquist frequency of 220 Hz (10 times more 

than the frequency of the 15
th
 linear mode which is equal to 22.075 Hz). The minimum 

and maximum values of the instantaneous total energy of the system (including the 

energy dissipated by the dampers) at each time step of the performed simulations were 

99.07% and 100.4% of the applied shock energy, indicating accuracy of the 

computations. For the simulations with multiple applied shocks the sampling frequency 

was chosen as 800 Hz corresponding to a Nyquist frequency of 400 Hz (18 times more 

than the frequency of the 15
th
 linear mode that is 22.075 Hz); the corresponding bounds 
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of the instantaneous energy for all performed simulations were 99.97% and 100.00%, 

which indicates that the total energy (including energy dissipated by damping) was 

appliximately conserved at each time step of the numerical simulations. In Figures 2a,b 

we depict the asymptotic limit of energy dissipation measure (EMD), 
t 1 , as function 

of C, and the x-position of the NES on the ‘slice’ y = 1. In Figure 2a (with 

C [100,3000] ) the results of simulations with single shock excitation are depicted, 

whereas in Figure 2b (with C [100,1000] ) the results for multi-shock excitation are 

depicted; for the simulations depicted in Figure 2b the mass of NES was fixed to a 

smaller value ε = 0.005. 

Judging from these results we conclude that for a fixed x-position of the NES the 

TET effectiveness of the NES is robust in variations of C, for C is in the range 2O(10 )  - 
3O(10 ) . Moreover, the variation of the x-position of the NES on a fixed ‘y-slice’ affects 

strongly the TET efficiency; this sensitivity can be explained by the fact that certain 

locations of the NES may be close to nodal curves of the different modes of the plate, in 

which case the capacity of the NES to passively absorb and dissipate energy from these 

particular modes is greatly diminished. 

This becomes clear when we depict the TET efficiency of the NES as function of 

the (x,y) coordinates of the NES, for fixed values of C, cf. Figure 3; we note that the 

maximum efficiency of the NES damper occurs for positions of the NES at the 

corners of the plate, with maximum values of t 1  reaching levels of 87.72% and 

89.28%, for (x,y) = (0,1) and (x,y) = (1,1), respectively. 

 
 

Figure 2a 

 

Single SDOF NES attached to plate at Y=1, ε=0.05 
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Figure 2b. Parametric study of TET efficiency as function of NES stiffness C, 

and x-position on the plate for the ‘y-slice’ y = 1: (a) Case of single shock with 

NES mass ε=0.05, and (b) case of multiple shocks with NES mass ε=0.005. 

 

The interpretation of the results depicted in this Figure 3 (which correspond to 

single shock excitation) must be performed in conjunction with the results of Table 1, 

which depicts the nodal curves of the five leading modes of the linear cantilever plate 

(with no NES attached). Note that in the strips close to the ‘y-slices’ y = 0.8 and y = 0.9 

(adjacent to the end of the plate and corresponding to the nodal lines of the 3
rd

 and 5
th

 

plate modes) the NES efficiency is low; this is due to the fact that when the NES is 

attached at points in these regions, its capacity to passively absorb and dissipate energy 

from these modes is impaired. Similarly, at strips positioned close to x = 0.2, x = 0.3, x 

= 0.7, and x = 0.8, the NES efficiency is relatively low (of the order of 40%); again, this 

can be interpreted by the fact that these strips are in neighborhoods of nodal curves of 

the 4
th

 mode of the plate. Finally, there is a strip in the middle of the plate (e.g., for x = 

0.5) where the lowest NES efficiency is observed; this is reasonable, given that this 

region is in the neighborhood of nodes of the 2
nd

 and 5
th
 modes of the plate.  

 

 

Single SDOF NES attached to plate at Y=1, ε=0.005 
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Figure 3. Parametric study for TET efficiency as function of NES position on the 

plate for C=1000 and NES mass ε=0.005; the clamped boundary condition is at 

‘y-slice’ y = 0. 

Moreover, as depicted in Figure 3 the efficiency of the NES decreases when the 

NES is located closer to the clamped end where the displacements of the plate are 

reduced and the nonlinear effects are diminished. 

In the second set of simulations we consider single shocks applied to the plate, 

and examine the influence of the NES mass, ε, on the efficiency of the NES, when it 

is attached at every possible position on the plate. For the second set of simulations 

with single forcing the sampling frequency used is 441.5 Hz corresponding to a 

Nyquist frequency of 220 Hz (10 times more than the frequency of the 15
th

 linear 

mode that is 22.075 Hz); the instantaneous energy of the system (including the energy 

dissipated by the dampers) is between 99.34% and 100.50% of the applied shock 

energy at each time step of the simulations, which demonstrates the accuracy of the 

numerical results. In addition, we examine in more detail the TET efficiency when the 

NES is attached at the position corresponding to optimal TET, in order to identify the 

threshold of NES mass below which the TET efficiency starts to deteriorate; similar 

critical mass thresholds were detected in previous works focusing on linear coupled 

oscillators with SDOF NESs attached [see for example, (Kerschen et al., 2005)]. In 

Figure 4a we depict the asymptotic value of the EDM, 1 , as function of the mass 

of the NES ( [0.005,0.1] ), and its x-position on the ‘y-slice’ y=1. We note that for 

each x-position of the NES, its effectiveness appears to be robust for variations of its 

mass. For a SDOF NES located at position (x,y)=(0,1), which is the optimal position 

for TET (away from the excitation point), we perform an additional series of 

simulations in order to identify the threshold value of NES mass below which the 

TET efficiency starts to deteriorate. In Figure 4b we depict the plot of TET efficiency 

for varying NES mass; from this plot we conclude that the efficiency of the NES is 

high, even for small values of mass, and that there is a threshold of the NES mass 

between 43 10 and 44 10  below which the TET efficiency is less than 65%. This 

Single SDOF NES attached to plate C=1000, ε=0.005 
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indicates that even very lightweight NESs (of the order of 0.04% of the plate mass) 

can be efficient passive shock absorbers with efficiency more than 65%. As in the 

first set of simulations, we note that when the NES is located at positions close to 

nodal lines of plate modes, its efficiency is significantly diminished.  

In the third set of numerical simulations, single shocks are applied to the plate, and 

we examine the influence of the damping coefficient λ on the efficiency of the NES, 

when it is attached at every possible position on the plate. For the third set of 

simulations the sampling frequency used is 441.5 Hz that corresponds to Nyquist 

frequency of 220 Hz (10 times more than the frequency of the 15
th
 linear mode that is 

22.075 Hz) with instantaneous total energy being between 97.49% and 100.30% of the 

applied shock energy. In Figure 5 we depict the asymptotic EDM value 
1 , as 

function of the NES damping coefficient, λ ( [0.01,0.5] ), and the x-position of the 

NES for a representative ‘y-slice’ corresponding to y=1. We note a deterioration of 

NES efficiency with decreasing damping coefficient. This trend, however, does not 

necessarily mean that by indefinitely increasing NES damping to larger values we will 

achieve a corresponding monotonic increase of NES efficiency. Indeed, for sufficiently 

large values of NES damping the relative motion between the NES and the plate is 

expected to significantly decrease (as the connection between the plate and the NES 

becomes more rigid), which, in turn, will result to a decrease of the relative motion 

across the damper of the NES, and, hence, to a decrease of the capacity of the NES 

damper to dissipate shock energy; this will lead to a deterioration of NES efficiency. 

In the final set of simulations of this series, we examine the influence of the input 

energy and the nonlinear stiffness characteristic C on the performance of the NES, 

when it is located at position (x,y)=(0.1) of the plate. A single shock is assumed to 

apply to the plate and the NES mass is ε=0.005. For this set of simulations the 

sampling frequency used is 800 Hz that corresponds to Nyquist frequency of 400 Hz 

(18 times more than the frequency of the 15
th

 linear mode that is 22.075 Hz) with 

instantaneous total energy being between between 97.67% and 100.03% of the 

applied shock energy. We can determine the range of energies that of practical 

(engineering) interest, e.g., the range of energies for which the vibration of the plate is 

of interest from an engineering point of view; hence, we examine shock amplitudes in 

the range  A 0.001, 100  (input energy) for which the plate without NES is vibrating 

with maximum absolute displacement within the range max[abs(w)] 
6[9.7 10 ,0.97]  (note that the linear dimensions of the plate are normalized to 1). 
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Figure 4a 

 
Figure 4b. Parametric study of TET efficiency, (a) as function of NES mass and x-

position of the NES on the plate for fixed y = 1; and (b) as function of NES mass when 

the NES is located at the optimal position (x,y)=(0,1). 

 

Single SDOF NES attached to plate at Y=1, C=1000 
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Figure 5. Parametric study of NES efficiency as function of its damping 

coefficient, and its x-position on the plate for fixed y = 1. 

 

 
Figure 6. Parametric study of NES efficiency as function of the input amplitude 

(energy) and its stiffness C, at position (x,y)=(0,1). 

 

In Figures 6a,b we depict the results of this parametric study. Note the weak 

dependence of TET efficiency on the input energy: indeed, TET efficiency for low 

input amplitudes and all values of C is of the order of 87%, but as the input amplitude 

and the nonlinear stiffness characteristic increase the TET efficiency decreases but 

within a very small range, less than 7%. Similar results have been reported by 

Georgiades et al. (2007) but without paying attention to restrict the examination of the 

energy dissipation within a range of input energy that it is of interest in engineering 

point of view. 

A general conclusion from this first parametric study is that strong TETs can be 

realised from a plate with single or multiple shock excitation to a SDOF essentially 

nonlinear attachment, especially, when the NES is located at points of the plate 

corresponding to antinodes of energetically high plate modes. Indeed, it is possible to 

Single SDOF NES attached to plate at Y=1, C=1000, ε=0.05 

Single SDOF NES attached to plate at (X,Y)=(0,1) Single SDOF NES attached to plate at (X,Y)=(0,1) 
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passively transfer and locally dissipate at the NES as much as 87% of the shock 

energy of the plate. Moreover, the integrated plate-NES system can be designed so 

that TET efficiency is insignificantly affected by the magnitude of the applied shock 

within a specified range of design interest. 

We now wish to study in more detail the nonlinear modal interactions that 

give rise to TET in the plate – SDOF NES system under consideration. To this 

end, we isolate a specific case corresponding to a plate with parameters given 

by (3), and an NES with nonlinear stiffness characteristic C = 1000, damping 

coefficient λ = 0.1, and mass, ε = 0.05. We assume that there is a single applied 

shock in the form of a half-sine (as defined in the previous section) at (x,y) = 

(1,1), e.g., at one of the free corners of the plate. Moreover, we assume that the 

SDOF NES is attached to the plate at position (x,y) = (0,0.5). In this specific case 

64.35% of the shock energy of the plate gets eventually transferred to and locally 

dissipated by the NES. The sampling frequency for this simulation is 800 Hz that 

corresponds to Nyquist frequency 400 Hz (18 times more than the frequency of the 

15
th

 linear mode that is 22.075 Hz) with total instantaneous energy varying between  

99.86% and 100.01% of the applied shock energy. 

We examine the transient nonlinear resonance interactions (transient resonance 

captures - TRCs) between the plate response at the point of attachment to the NES, 

and the NES response. We focus mainly in the early stage of the transient dynamics, 

where the energy of the system is at high levels and the nonlinear effects are expected 

to be more profound; hence, we examine TRCs in the early time interval 0 < t < 5, 

during which more than 75% of the shock energy is been dissipated by the dampers of 

the integrated system. The responses of the plate and the NES are decomposed in 

terms of Intrinsic Mode Functions (IMFs) using Empirical Mode Decomposition 

(EMD) (Georgiades, 2006); these are oscillatory modes embedded in the respective 

time series. Then, we apply the Hilbert transform to each IMF to determine its 

instantaneous amplitude and frequency. By superimposing the instantaneous 

frequencies of the IMFs to the wavelet spectra of the corresponding responses we can 

determine the dominant IMFs as depicted in Figures 7a-e; this technique was first 

developed in (Georgiades et al., 2007). The determination of the dominant IMFs of 

the plate and NES responses enables us to detect the dominant TRCs that govern TET 

in this case. 

Considering the plate response, the 5
th

 and 6
th

 IMF are dominant (cf. Figures 

8a,b), whereas, the 1
st
, 2

nd
 and 3

rd
 IMF of the NES response are dominant as well (cf. 

Figures 8c-e). By computing the ratios of the instantaneous frequencies of the 

dominant IMFs of the plate and the NES responses we can identify the possible types 

of ( k : m ) TRCs that occur in the transient dynamics, as well as, the corresponding 

time intervals where these TRCs take place. Considering the instantaneous frequency 

plots depicted in Figure 8 we detect the following 1:1 TRCs between, (a) the 5
th

 IMF 

of the plate and the 3
rd

 IMF of the NES at frequency close to 1.9 Hz in the time 

interval 0.25 < t < 3.25 (TRC I); (b) the 5
th

 IMF of the plate and the 1
st
 IMF of the 

NES close to 1.9 Hz in the time interval 6 < t < 12 (TRC II); and, (c) the 6
th
 IMF of 

the plate and the 2
nd

 IMF of the NES close to 1.9 Hz in the time interval 8 < t < 14 

(TRC III). These TRCs are responsible for passive TET in the specific case under 

examination and the presented analysis helps to identify the corresponding nonlinear 

resonance interactions between the embedded oscillatory modes in the plate and NES 
responses.  
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Figure 7. Dominant IMFs of the response of the SDOF NES, and of the plate 

response at the point of attachment to the NES, superimposed to the corresponding 

time series. 
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Figure 8. Instantaneous frequencies of the dominant IMFs superimposed to the 

corresponding Wavelet Transform spectra: (a,b) 6
th

 and 7
th

 IMF of the plate response, 

(c,d,e,f) 1
st
, 2

nd
, 3rd and 4

th
 IMF of the SDOF NES response; dominant 1:1 TRCs 

between IMFs are indicated by I, II and III. 
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5. Parametric Studies of TET from the Plate to multiple SDOF NESs 

 

The parametric study of TET efficiency in terms of NES location on the plate 

carried out in section 4 revealed locations where TET efficiency is low (when the NES 

is attached close to nodal curves of plate modes), and alternative locations where the 

TET efficiency is high (of the order of more than 70%). The computational study 

carried out in this section aims to examine enhancement of TET through the use 

of multiple SDOF NESs, model 3 with equations (1.1, 1.6-1.9). The parameters 

used for the plate and the input force in the following numerical simulations are 

identical to those employed in the simulations of section 4. Two SDOF NES are 

attached to the plate, with each possessing mass ε = 0.005 (e.g., 0.5% of the 

total mass of the plate), stiffness C = 1000, and damping coeff icient λ = 0.1. A 

single shock excitation is applied to the plate, of the same form and position as 

in the previous section. For this set of simulations the sampling frequency used is 

441.5 Hz that corresponds to Nyquist frequency of 220 Hz (10 times more than the 

frequency of the 15
th
 linear mode that is 22.075 Hz), except for the final case which was 

carried out with a sampling frequency of 2208 Hz which corresponding to a Nyquist 

frequency of 1104 Hz (50 times more than the frequency of the 15
th

 linear mode that is 

22.075 Hz); the total instantaneous energy varied between 99.67% and 100.31% of the 

applied shock energy. 

 
Figure 9. Comparative study of TET efficiency when using two single NESs, 

and a set of two NESs; single shock excitation of the plate.  
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In the numerical simulations that follow we examine seven specific cases 

(designated Cases A-G) where two NESs are located at various positions on the plate. 

Of specific interest are cases where the NESs are located at nodal curves of plate 

modes. In Figure 9 we depict a bar diagram depicting NES efficiencies for all seven 

cases considered; we compare the efficiencies of single NESs located in either one of 

the two locations occupied by that positions the set of NESs, to the efficiency of the 

set of two NESs when they are both attached to the plate at the same time. In each 

case we indicate the position of the two NESs. For case A the TET achieved when 

using single (isolated) NESs is 36.13% and 21.58%, respectively, whereas when using 

the combined set of two NESs at the same locations TET increases to 61.02%, e.g., it 

exceeds the sum of TETs when the two NESs are applied in isolation. This 

demonstrates a positive synergy effect of the set of two NESs, which, however, is not 

expected to persist in the other cases where NES locations more favourable to TET 

are considered. 

In case B, the first NES is located at position (x,y) = (0.2,0.8) which is a crossing 

point of the nodal curves of the 3
rd

 and 4
th

 plate modes, and the second NES at (x,y) = 

(0.5,1), e.g., the location that led to the lowest TET efficiency when a single NES was 

used. Again, in this case the efficiency of the set of two NESs increases significantly 

to 60.4% (cf. Fig. 9), which again exceeds the summation of the individual NES 

efficiencies when applied in isolation at the same locations. Again, this demonstrates 

positive synergy of the set of two NESs. Hence, it appears that the minimum level of 

TET that one achieves when using a set of two SDOF NES exceeds 60%, which 

represents an improvement compared to the case when a single NES is used; this 

result is further enhanced by the positive synergy achieved when the pair of NESs is 

used.  

In cases C, D, E and F we located the set of NESs at different positions of the 

plate to investigate the synergistic TET efficiency when the NESs are located at 

regions of high individual TET efficiency for the SDOF NES (between 60-70% - such 

locations are at the edges of the plate at x = 0 and x = 1). For cases C, D, E and F we 

place the NESs at the edges of the plate, x = 0, 1, with y = 0.6, 0.7, 0.8 and 0.9, 

respectively. For these cases we note a slight improvement (about 10%) of the 

synergistic efficiency of the set of two NESs (cf. Fig. 9). 

Finally, there are two locations where the efficiency of the single SDOF NES is 

very high (more than 80%); these are the two free corners of the plate. The numerical 

simulations indicate that by attaching the set of two NESs at these locations (case G), 

we obtain a combined TET efficiency of 89.9%, which can be considered as the 

optimal synergistic TET efficiency that can be achieved by the set of two NESs on the 

plate. We note, however, that the improvement in TET efficiency compared to using 

the two NESs in isolation at the same locations is only marginal. 

A general conclusion drawn from the mentioned simulations is that the use of the 

set of two NESs improves TET efficiency in regions where the use of single (isolated) 

NESs leads to poor TET performance. In such regions there occur positive synergisms 

between the two NESs of the set, which leads to TET efficiencies that exceed the sum 
of the efficiencies of single NESs when these are used in isolation. The use of 

multiple NESs, however, improves only marginally TET efficiency in locations where 

the isolated NESs already provide good TET performance. 

 

6. Parametric Studies of TET from the Plate to a single MDOF NES 

 

We now consider TET from the plate to a single MDOF NES. The equations 

of motion of this system are given by model 4 with equations (1.1, 1.10-1.14), 

and the TET efficiency is judged by the energy dissipation measures (13) and 

(14) and their long-time asymptotic values. The first set of numerical 
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simulations of this series was performed in order to examine the influence of the 

linear coupling stiffness between the plate and the MDOF NES to TET 

efficiency. The parameters used for the plate are identical to the ones used for 

the case of SDOF NES attachment, relations (3), and the applied shock is 

identical to the half-sine excitation used in previous simulations, relation (4); 

the duration of the applied shock was selected sufficiently small to directly 

excite at least the leading five modes of the plate – however, as mentioned in 

previous Sections additional plate modes may be indirectly excited by nonlinear 

coupling provided by the MDOF NES. The three masses of the MDOF NES are 

assumed to be small, m1 = m2 = m3 = 0.0017 (≈0.005/3), e.g., the total mass of 

the MDOF NES is assumed to be identical to the smallest mass of the SDOF 

NES used in the parametric study of section 4. In this way we wish to study the 

relative advantage of replacing the SDOF NES by a MDOF one, without 

burdening the plate with additional mass. The two nonlinear stiffnesses of the 

NES are selected as, C1 = 5, and C2 = 0.1, whereas the two dampers of the NES 

possess the same coefficient, λ=0.1. For this set of simulations the sampling 

frequency used is 800 Hz that corresponds to Nyquist frequency of 400 Hz (18 times 

more than the frequency of the 15
th

 linear mode that is 22.075 Hz), with total 

instantaneous energy varying between 100.0% and 100.90% of the applied shock 

energy. 

 

 

 
 

Figure 10. Parametric study of TET efficiency as function of the (linear) coupling 

stiffness 0C  of a MDOF NES and its x-position, for fixed y = 1. 

 

In Figure 10 we depict the long-time asymptotic value 

 1t 1 2t 1 t 1 1 2lim (t) (t)        (which represents the portion of shock energy of 

the plate that is eventually dissipated by the two dampers of the MDOF NES) as 

function of the coupling stiffness 0C  ( 0C [10,1000] ), and the x-position of the NES 

for the representative ‘y-slice’ y=1. A first conclusion from these numerical results is 

Single MDOF NES attached to plate at Y=1 
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that TET efficiency appears to be robust as C0 varies above the threshold of C0=100, for 

every x-location of the NES (as depicted in Figure 10). Moreover, strong (efficient) 

TET from the plate to the MDOF NES is realized for relatively stiff coupling stiffness. 

Maximum TET efficiency of the MDOF NES reaches levels of 80%, which are 

comparable to maximum TET efficiency achieved by SDOF NESs. Similarly to the 

case of the SDOF NES, the variation of the position of the MDOF NES appears to 

strongly affect TET from the plate to the NES, as depicted in Figure 10; however, this 

will be more evident in the second set of simulations that we now proceed to discuss. 

 

 
 

Figure 11. Parametric study of TET efficiency for a MDOF NES located at every 

possible position on the plate, for coupling stiffness 0C 300 . 

 

In the second set of simulations we examine the influence of the MDOF NES 

position on TET; for this, we examine MDOF NES placement at every possible 

position on the plate (with a mesh of 1010 elements), not restricting our study to 
any specific ‘y-slices.’ We use the same set of NES parameter values with the 

previous set of simulations, and fix the coupling stiffness to C0=300. For this set of 

simulations the sampling frequency used is 800 Hz that corresponds to Nyquist 

frequency of 400 Hz (18 times more than the frequency of the 15
th
 linear mode that is 

22.075 Hz), with total instantaneous energy varying between 100.0% and 100.90% of 

the applied shock energy. 

In Figure 11 we depict TET efficiency for the NES located at every possible 

position on the plate. Predictably, the highest values of efficiency of the MDOF 

NES are obtained at the free corners of the plate, reaching 85.85% when the 

NES is located at (x,y) = (1,1), and 76.67% when located at (x,y) = (0,1); as 

explained in previous Sections, at these positions the MDOF NES can interact 

with all plate modes, as no nodal curves of low order plate modes are located 

nearby and the plate posses the maximum displacement. Similarly to the case of 

SDOF NES, the interpretation of the results depicted in Figure 11 should be 

Single MDOF NES attached to plate, C0=300 
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carried out in conjunction with Table 1, which depicts the nodal curves of the first five 

modes of the linear, uncoupled plate with no dispersion (the ‘plate modes’). Moreover, 

the efficiency of the NES decreases when the NES is located closer to the clamped end, 

where the displacements of the plate are small and the nonlinear effects are less 

profound. Since passive TET is the result of nonlinear resonance interactions 

(resonance captures) between the plate and the NES it is reasonable to expect that in 

low-amplitude regimes the effectiveness of the MDOF should deteriorate. As 

demonstrated, however, in (Tsakirtzis et al., 2007) it is possible (under certain forcing 

conditions and at definite ranges of NES parameters) to achieve efficient TET from a 

directly forced linear system to a MDOF NES, even at low amplitude regimes; such a 

case, however, was not realized in the simulations considered herein. 

 

 
 

Figure 12. Parametric study of MDOF NES efficiency as function of the 

shock amplitude (energy) and coupling stiffness 0C . 

 

 

The third set of numerical simulations of this series was performed in order 

to examine the influence of the magnitude of the applied shock and the (linear) 

coupling stiffness 0C  to TET efficiency. The parameters of the system used for 

this set of simulations are identical to the first set of simulations reported in this 

section, for varying shock amplitude in the range  A 0.001,100 . For the third set 

of simulations the sampling frequency used is 800 Hz that corresponds to Nyquist 

frequency of 400 Hz (18 times more than the frequency of the 15
th
 linear mode that is 

22.075 Hz) with total instantaneous energy varying between 100.0% and 102.3% of the 

applied shock energy. 

In Figures 12a,b we depict the results of this parametric study. We note that TET 

efficiency does not depend significantly on the variation of shock input; indeed, the 

variation of TET efficiency for the range of shocks examined is less than 6%, lying 

within the range 72-77.5%. Additionally, TET efficiency is uniformly more than 72% 

in these simulations, which assures satisfactory NES performance in the entire range 

of parameters considered. 

The fourth set of numerical simulations of this series was performed in order to 

examine the optimum values of the other stiffness parameters C1,C2 when the NES is 

located at the free corner (x,y)=(0,1) of the plate (highest efficiency away from the 

excitation point) with the optimum coupling stiffness C0=300. The parameters of the 

Single MDOF NES attached to plate at (X,Y)=(0,1) Single MDOF NES attached to plate at (X,Y)=(0,1) 
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plate and damping coefficients were identical to the other sets of simulations of this 

section. For the fourth set of simulations the sampling frequency used was 1000 Hz that 

corresponds to Nyquist frequency of 500 Hz (45 times more than the frequency of the 

15
th
 linear mode that is 22.075 Hz), with total instantaneous energy varying between 

100.0% and 101.70% of the applied shock energy. The results for this set of simulations 

are depicted in Figure 13. We note that strong TET is realized over a broad range of 

values of C1,C2, with optimal stiffness values being realized for C1≈3000 and C2≈10. 

We note that increasing the value of the nonlinear stiffness coefficients does not 

necessarily result in TET enhancement; this is due to the fact that very stiff nonlinear 

connections in the MDOF preclude the realization of large relative motions between the 

masses of the NES, and as a result to smaller amounts of energy dissipated by its 

dampers. Moreover, we note that optimal TET occurs in highly asymmetric MDOF 

NES configurations, a result that agrees with the findings of a previous work on discrete 

oscillators with MDOF NESs attached (Tsakirtzis et al., 2007). This is due to the fact 

that in such highly asymmetric MDOF NESs, a part of the NES (the one in closer 

proximity to the plate corresponding to the stiffer stiffness C1) acts as broadband 

resonator that engages modes of the plate in transient resonance captures (TRCs), 

whereas the complement of the NES (the one further away from the plate corresponding 

to the weaker stiffness C2) acts as dissipater of shock energy.  

 

 
Figure 13. Parametric study of MDOF NES efficiency as function of 

nonlinear stiffness 1C  and 2C . 

 

The analysis of the complex nonlinear modal interactions and of the 

corresponding transient resonance captures that govern TET in this system can 

be performed by applying the previous combined Wavelet/EMD postprocessing 

methodology. As the analysis becomes quite involved (since there the transient 

responses of three different masses of the NES that must be considered in this 

case), the reader is referred to (Georgiades, 2006) for a detailed presentation of 

the results of this analysis for specific cases. In the next section we consider the 
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alternative of using a linear vibration absorber in order to demonstrate the 

qualitative differences of the proposed essentially nonlinear designs. 

 

7. The Linear Alternative: Tuned Mass Damper (TMD) – Comparative Study 

 

In this section we present the results of a parametric study of the plate with a 

linear Tuned Mass Damper (TMD) attached, model 5 with equations (1.1, 1.15-1.17). 

We assess the capacity of the TMD to absorb and locally dissipate shock energy from 

the plate, by varying the TMD parameters and its position on the plate. We perform a 

series of simulations considering single and multiple shock excitations applied to the 

plate. In each of these sets, the efficiency of the TMD to passively absorb and locally 

dissipate shock energy from the plate is estimated by the following limit, 
t
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x y

damp,NES 0
t 1 t 1 t

in

x y

0

w(d ,d , ) v( ) d
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  





        (15) 

where v(t)  is the response of the TMD. This represents the portion of the shock 

energy of the plate that is eventually dissipated by the damper of the TMD, and is 

similar to the energy measures defined previously to assess the efficiency of SDOF 

and MDOF NESs. 

In the first set of simulations we examine the efficiency of the TMD to absorb and 

dissipate shock energy by varying its stiffness and its location on the plate, for single 

shock excitation [as defined by (4)]. The system parameters of the plate properties are 

defined in (3), the TMD mass is ε = 0.05, and its damping coefficient is λ = 0.1; these 

were identical to the parameters used for the simulations with the SDOF NES 

attachment (section 4), so the two sets of simulations can be directly compared. For this 

set of simulations the sampling frequency used is 600 Hz that corresponds to Nyquist 

frequency of 300 Hz (13 times more than the frequency of the 15
th
 linear mode that is 

22.075 Hz), with total instantaneous energy being conserved (within an error of less 

than 0.001% of the applied shock) when energy dissipated by the dampers of the system 

is taken into account. 

 In Figure 14 we depict the efficiency of the TMD depending on its stiffness and 

on its x-position on the plate for the fixed ‘y-slice’ y = 1 (e.g., at the free end of the 

cantilever plate). This result should be compared to the plot of Figure 2a for the 

SDOF NES. We note that the variation of the location of the TMD strongly affects its 

efficiency, in a similar manner to the SDOF and MDOF NES attachments examined 

previously. Indeed, when the TMD is located at positions close to nodal lines of the 

plate, the TMD can not interact with the corresponding plate modes, and therefore the 

absorption of shock energy from the plate deteriorates. Moreover, when the TMD is 

‘tuned’ to the i-th plate mode, e.g., when its stiffness is equal to 2

ln ik     (undamped 

case), where ωi is the i-th natural frequency of the (uncoupled and linear) plate, its 

efficiency in extracting energy from that mode is high. It must be noted that the 

difference in the efficiency between the two extreme corners (x=0, and x=1) in the 

attached potions (left part and right part of Figure 13) is due to the fact that the 

excitation force is on the right corner (x=1) and therefore there is an effect that the 

TMD is absorbing energy from the excitation force directly. However, for relatively 

high stiffness values of the TMD, e.g., when it is ‘detuned’ from the leading plate 

modes, its efficiency deteriorates; this result is in agreement with similar results 

reported in the literature (Frahm 1911, Den Hartog 1947). Comparing to plot of 

Figure 2a we note that the efficiency of the SDOF NES does not show such 

dependence on stiffness, and hence, its performance is more robust to stiffness 

variations. 
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Figure 14. Efficiency of the linear vibration absorber-TMD as function of its 

stiffness and its x-position on the plate for the ‘y-slice’ y = 1, single shock 

excitation. 

 

In the second set of simulations we examine the efficiency of the TMD for variation 

of its stiffness and location of the TMD for multiple shock excitations. The parameters 

used are identical to the first set of simulations, but the damping coefficient of the plate 

was selected as, d = 15, and the TMD mass as, ε = 0.005; these system parameters are 

identical to the ones used in section 5, where the efficiency of the SDOF NES for 

multiple shock excitations was examined. For the second set of simulations the 

sampling frequency used is 164.6 Hz that corresponds to Nyquist frequency of 82.3 Hz 

(3.5 times more than the frequency of the 15
th
 linear mode that is 22.075 Hz) and again 

the total energy of the system being conserved for the entire durations of the 

simulations when dissipative terms are included. 

In Figure 15 we present the results for this set of simulations. Again, the stiffness 

and position of the TMD strongly affect its efficiency. Comparing these results to the 

plot of Figure 2b we again note the insensitivity of the performance of the SDOF NES 

to stiffness variations for multiple shock excitation. 

In the third set of simulations we examine the effect of varying the TMD mass on 

its energy absorption efficiency. Single shock excitation is considered for this set of 

simulations. For this set of simulations the sampling frequency used is 300 Hz that 

corresponds to Nyquist frequency of 150 Hz (6 times more than the frequency of the 

15
th

 linear mode that is 22.075 Hz). 

Single TMD attached to plate at Y=1 
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Figure 15. Efficiency of the linear vibration absorber-TMD as function of its 

stiffness and its x-position on the plate for the ‘y-slice’ y = 1, multiple shock 

excitations. 

 

 

In similarly to the case of SDOF NES we aim to identify the threshold of mass value of 

the TMD above which the TMD is capable of absorbing at least 65 % of the shock 

energy of the plate. This threshold was computed to ε = 0.0004, e.g., slightly higher 

than the case of the SDOF NES attachment (cf. Figure 4b). 

In order to compare the performance of the various nonlinear and linear attachment 

configurations considered in this work, we performed an additional set of simulations 

for fixed attachment placement at (x,y) = (0,1) on the plate, and away from the source 

of the (single) input shock at (bx, by) = (1,1)]. For this set of simulations the plate 

parameters are defined in (3). All SDOF attachments considered possess mass equal to 

0.005   (or 0.005% of the plate mass), and viscous damper coefficients equal to λ = 

0.1. For the simulations with SDOF attachment the sampling frequency used is 1766 Hz 

that corresponds to Nyquist frequency of 883 Hz (80 times more than the frequency of 

the 15
th
 linear mode that is 22.075 Hz) and the minimum and maximum values of the % 

instantaneous total energy all over the simulations are 99.93% and 100.02% 

correspondingly, therefore the error is less than 0.1% in the determined values of 

energy. 

For the MDOF NES each mass was chosen equal to 0.005/3, and the two viscous 

damping coefficients where selected as λ = 0.1; for simulations where the coupling 

stiffness (C0) varies the two nonlinear stiffness coefficients are C1 = 3000 and C2 = 15; 

when the stiffness C1 varies the other stiffness coefficients are C0 = 300 and C2 = 15; 

whereas, when C2 varies stiffness the other stiffness coefficients are C0=300 and 

C1=3000. For the simulations with MDOF attachment the sampling frequency used is 

1000 Hz that corresponds to Nyquist frequency of 500 Hz (45 times more than the 

frequency of the 15
th
 linear mode that is 22.075 Hz); the total instantaneous energy 

varies between 100.0% and 101.75% of the applied shock energy. 

Single TMD attached to plate at Y=1 
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Figure 16. Comparison of TET efficiency of the different nonlinear and linear 

attachment considered in this work for varying coupling stiffness.  

 

 

In Figure 16 we depict the results of this set of simulations, from which we deduce 

that the highest TET efficiency and robustness is achieved for the case of SDOF NES. 

As expected, the TMD is effective only when is ‘tuned’ to energetically strong plate 

modes, and its performance rapidly deteriorates when ‘detuning’ occurs. In contract, 

the essentially nonlinear SDOF and MDOF NESs possess no such detuning 

limitations as they lack a preferential ‘tuning’ frequency; hence, they are capable of 

engaging in transient resonance (resonance capture) with plate modes at arbitrary 

frequency ranges, with the only controlling parameter determining the resulting 

sequence of resonance captures being their instantaneous energies which ‘tune’ 

accordingly their instantaneous frequencies. The sequence of resonance captures that 

govern TETs can be studied in detail with the post processing methodology outlined 

in section 4. 

Finally, we examine the performances of optimal configurations of the SDOF 

NES and the TMD, in order to compare their corresponding rates of targeted energy 

transfer for single forcing and for multiple forcing. In case of single forcing there is 

not significant difference but for multiple shock excitations as shown in Figure 17 

there is significant difference. The plate parameters are given by (3) and distributed 

damping coefficient d = 15, with the attachments located at one of the free corners of 

the plate, (x,y) = (0,1), and their parameters given by, 0.005  , λ = 0.1, C = 100 for 

the SDOF NES, and kln = 4.196 for the TMD (e.g., tuned to the 4
th

 natural frequency 

of the uncoupled linear plate) and moreover for the TMD with kln = 0.5142 (e.g., 

tuned to the 1
st
 natural frequency of the uncoupled linear plate). 
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Figure 17. Time history of the total energy dissipated for single shock excitation 

for a plate with no attachments, and the same plate when a SDOF NES or a 

linear vibration absorber are attached. 

 

For the specific optimal configurations considered, the corresponding TET 

efficiencies are 88.94% for the SDOF NES, and 82.24% and 82.14 for the TMD 

correspondingly to kln = 4.196 and kln = 0.5142. 

. For the simulations with SDOF attachment the sampling frequency used is 1766 

Hz that corresponds to Nyquist frequency of 883 Hz (80 times more than the 

frequency of the 15
th

 linear mode that is 22.075 Hz), with total instantaneous energy 

varying between 99.93% and 100.02% of the applied shock energy. For the 

simulations with TMD attachment and the single plate the sampling frequency used is 

800 Hz that corresponds to Nyquist frequency of 400 Hz (18 times more than the 

frequency of the 15
th

 linear mode that is 22.075 Hz), and conserved total energy of the 

system (when dissipated energy is taken into account) at each time step of the 

simulations. Although the portions of shock energy eventually dissipated by these two 

configurations are comparable, the rates of TET for these two configurations differ 

drastically. The rates of shock energy dissipation can be deduced from the plots of 

Figure 17, where the total energy dissipation measure total (t)  is depicted as function 

of time; for comparison purposes the rate of energy dissipation in the uncoupled plate 

(e.g., the plate with no attachment where total plate(t) (t)   ) is also depicted. We note 

that for multi-shock excitation the required time for the integrated plate – TMD 

system to dissipate 90% of the applied shock energy is approximately t 8 and t 

10.5, whereas the corresponding time for the integrated plate – SDOF NES system is 
less than t = 3. Hence, nonlinear dissipation of shock energy occurs at a faster time 

scale, a result which is in agreement with the findings of previous works; actually, as 

shown in the Thesis by Georgiades (2006), the rate of nonlinear energy dissipation 

can be further increased by employing NESs with non-smooth stiffness 

characteristics, a feature which has already been explored in seismic mitigation 

designs (Nucera et al., 2007). In conclusion, apart from the lack of robustness of the 
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TMD for changes of parameters compared to the NESs (as depicted in Figure 16), the 

rate of shock energy absorption and dissipation in the linear design is smaller 

compared to the nonlinear design.  

 

8. Concluding Remarks  

 

We examined targeted energy transfers (TETs) from a shock-excited plate on an 

elastic foundation to nonlinear and linear attachments of alternative configurations: 

single SDOF NESs, multiple SDOF NESs, single MDOF NESs and single Tuned 

Mass Dampers (TDMs). In all cases examined the NESs considered were lightweight 

and possessed essentially nonlinear stiffnesses in parallel to linear viscous dampers. It 

was shown that the essential nonlinearities enable broadband TETs, e.g., sequences of 

transient resonance captures (TRCs) of the NESs with multiple modes of the plate 

over wide frequency ranges; moreover, for appropriate design of the NES parameters, 

the NES dampers were capable of dissipating the passively absorbed shock energy at 

sufficiently rapid pace, before this energy could backscatter to the plate. 

The parametric study of the transient nonlinear dynamics of the SDOF NES 

attached to the plate demonstrated that the capacity of the NES to dissipate a 

significant portion of shock energy was robust to variations of NES stiffness, for both 

kinds of shock excitations, in the range of study ( 2O(10 ) - 3O(10 ) ), and that there was 

a strong dependency of TET efficiency on the location of the NES on the plate. In 

fact, the highest values of NES efficiency (as judged by its capacity to passively 

absorb and dissipate a significant portion of the shock energy of the plate) were 

realized when the NES was placed at the free corners of the plate (where the plate 

response is maximum and away from nodal lines of the excited modes), whereas, it 

was significantly reduced when the NES was attached at locations close to the 

clamped end of the cantilever plate, or close to nodal lines of the plate modes. This is 

explained by noting that nonlinear effects (and, hence, TRCs leading to strong TETs) 

are realized mainly at high-amplitude regimes of the motion. Moreover, the variation 

of NES mass did not appear to affect the TET efficiency. Indeed, even for extremely 

small mass values, of the order of 0.04% of the plate mass, the NES efficiency was 

proved to remain robust (of the order of 70% of total input shock energy). This 

finding is significant from a practical point of view, as it shows that lightweight, 

essentially nonlinear attachments can indeed be designed as efficient passive shock 

absorbers, with minimal structural modification and mass addition to the system to be 

protected.  

On the other hand, the variation of the damping coefficient of the NES affected 

significantly TET efficiency. In general, improved NES efficiency was achieved for 

relatively higher values of damping provided that the damping remained weak (strong 

damping would be disadvantageous to TET as it would restrict the capacity of the 

NES mass to achieve high relative displacements, so that the NES damper would not 

be efficient).  

The parametric study of the input amplitude with stiffness restricted to the 

designed operating conditions of the plate shows that TETs are not affect so much and 
practically it is not a drawback the existence of the upper threshold beyond this level 

the TETs are getting very weak as showed in discrete cases so far.  

In a continuation of the work by Georgiades et al. (2007), we showed that a 

combined Wavelet / EMD analysis is capable of identifying the strong nonlinear 

modal interactions that govern TETs in the system under examination. Specifically, 

we showed that TETs can be related to series of TRCs between IMFs of the responses 

of the plate and the SDOF NES; moreover, strong TETs were associated with TRCs 

occuring at the early, high-energy regime of the dynamics. This result is in agreement 

with the findings of Georgiades et al. (2007), where it was also shown that weak 
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TETs are associated with delayed TRCs occurring at energetically lower regimes of 

the dynamics. Hence, the outlined postprocessing approach is capable of identifying 

the main oscillatory components of strongly nonlinear time series, as well as, transient 

resonance interactions between them that give rise to strong energy exchanges 

between subsystems of a complex system. 

The use of multiple SDOF NESs attached to the plate could enhance significantly 

weak TETs when NESs are attached at points close to nodal lines of plate modes. This 

is due to positive synergy between the NESs. Alternatively, MDOF NESs could be 

used instead of SDOF ones. It was shown that the TET efficiency of MDOF NESs is 

high only in cases of strong coupling with the plate; this is explained by noting that 

coupling stiffness must be sufficiently stiff in order to enable the MDOF NES to 

excite and engage in nonlinear resonance interactions a sufficiently large number of 

plate modes. The resulting TETs are broadband, as a significant set of plate modes 

engage in TRCs with the NNMs of the MDOF NES. Similarly to the SDOF NES 

case, when the MDOF NES is located at points close to nodal lines of plate modes, 

the nonlinear modal interactions between the NES and the plate are weak, and, as a 

result TET from the plate to the MDOF NES is also weak. 

Therefore the optimal position for highest TETs of a single NES of any type is at 

the antinodes of the linear modal analysis of the structure. 

A comparative study of the aforementioned NES configurations and the classical 

TMD showed the improved robustness of the nonlinear designs and that there is no 

preferable type of NES for shock isolation of the structure, as well as the faster rate of 

shock energy dissipation achieved for the nonlinear case. This is an expected finding, 

given that the NESs do not possess the single-tuning-frequency limitation of the 

TMD; instead, since they possess no preferential set of resonance frequencies and 

depending on their instantaneous energy, they are capable of engaging in TRC any 

plate mode (provided that that mode has no node close to the point of attachment to 

the NES), at wide frequency ranges. It is this capacity for broadband energy 

absorption that renders the NES an efficient and adaptive passive boundary controller. 

From a practical point of view, it is often encountered in engineering practice that due 

to fatigue or joint degradation the natural frequencies of a structure can gradually 

change, rendering attached TMDs inefficient; in such situations an NES would be 

able to still remain ‘tuned’ to structural modes and thus retain its efficiency, with no 

further design modification, moreover the TMD seems inappropriate to be used in 

case that the structure is subjected to multiple successive shocks. In additional 

considered problems involving aeroelastic flutter suppression (Lee et al., 2007), 

seismic mitigation (Nucera et al., 2007) and drill-string instability suppression (Viguie 

et al., 2007), the use of appropriately designed NESs was found to hold promise for a 

simple, passive, lightweight and robust solution. 
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Appendix-1 

 

In this Appendix we show how the structural matrices arise from the discretization of 

the equations of motion (1). The element displacement vector, qe, contains the 12 

displacements (in the z-direction) and rotations (about the x- and y-axes) of the nodes 

of the elements; hence, qe is a (121) vector defined as follows, 
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       (A.1) 

 

Therefore, through the use of shape functions the distributed displacements and 

rotations at any position of an element, we(x,y), can be expressed in terms of the 

displacements and rotations at the nodes of the element, as follows: 
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    (A.2) 

 

This expression defines the matrix of shape functions, N, for a single finite 

element of the type used herein. 

 The determination of the stiffness matrix, I

eK , of a single FE can be 

performed using the strain energy 
es,pE  of that element, given by: 
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where, 
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and the strain e  within the element is defined from linear elasticity; using the 

Kirchoff assumptions the strain is expressed as, 
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In (A.5), x y xy, and    are the components of the strain tensor, ez  is the z-

coordinate within the element, and L is the operator, 
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Finally, 
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From equation (A.8) we define the stiffness matrix of the FE as follows:  
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The explicit forms of the elements Kij are presented in Appendix 2, by 

performing the required integrations in equation (A.8). 

The determination of the mass matrix of the FE, Me, can be performed 

employing the kinetic energy (
eK,pE ) of that element of the plate, 
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where, 
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and, 
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Therefore, we express the kinetic energy of the FE as, 
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Finally, from equation (A.12) we define the Mass matrix for one plate el ement 

as follows: 
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The elements Mij of the matrix Melem are determined analytically in Appendix 2. 

 The determination of the stiffness matrix of the FE due to the elastic 

foundation, II

eK , can be performed employing the dynamic energy, 
eu,pE , of that 

element of a plate: 
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The dynamic energy 
eu,pE  is computed by,  
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Therefore, the stiffness matrix of the FE due to the elastic foundation is expressed as 

follows: 
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The total stiffness matrix for each element I,II

eK  is the sum of the matrices  

I,II I II
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 The determination of the damping matrix of the FE, eDa , can be computed 

through the estimation of the energy dissipation of the plate defined as follows, 
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leading to the following expression: 
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Figure A.1. Mesh of the plate; elements are labeled as e-p, p=1,…,(n×n), 

whereas nodes are numbered individually in the range [1,…,(n+1)×(n+1)]. 
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Using the derived expressions for the mass, stiffness and damping matrices for 

the FE, we proceed to construct the full (global) matrices for the plate, that discretize 

the partial differential equation in equation (1). The matrix-ct (or connectivity table) is 

now formulated in order to divide the plate into a number of finite elements. This 

matrix defines the location of the nodes in the discrete plate, indicating the position of 

each node in terms of the global coordinates (x,y) positions, and the common nodes 

between adjacent elements (cf. Figure A.1).  

The convention followed herein is that the x-positions correspond to the rows, 

and the y-positions to the columns of the ct-matrix corresponding to the plate 

discretization shown in Figure A.1. For example, position (x,y) at the plate 

corresponds the node defined by the (x/n+1)-row and (y/n+1)-column of the ct-

matrix:  

 

1 n 2 n(n 1) 1

2 n 3
ct

n 1 2(n 1) (n 1)(n 1)
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                              (A.20) 

 

By using the ct-matrix and the elementary mass, stiffness and damping matrices 

defined previously we can construct the full (global) matrices of the plate and 

discretize the first equation in eq. (1) by summing up the elementary matrices as 

indicates the connectivity matrix for each node that correspond to many different 

elements. Finally we apply the boundary conditions by eliminating the nodes from the 

structural matrices that corresponds to the clamped end of the cantilever plate. 
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Appendix 2 

 

Using the local coordinates and the shape functions defined in eq. (5-7) we obtain the 

following expressions, 
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(A.21) 

where α and b are the dimensions of the element, and the coordinates of the nodes are, 

 

Node i:  (ξi,ηi)=(-1,-1) 

Node j:  (ξj,ηj)=(1,-1) 

Node k: (ξk,ηk)=(-1,1) 

Node l:  (ξl,ηl)=(1,1) 

 

The stiffness matrix of the plate is symmetrical, therefore it suffices to calculate its 

diagonal elements and the lower triagonal part of the matrix: 
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The Mel matrix is symmetrical, therefore, it suffices to calculate the diagonal elements 

and the upper triangular part of the matrix: 
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