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1. Introduction 

Since the 1960s there has been continuous interest in the dynamics of L-shaped coupled structures 

exhibiting certain nonlinearities. Roberts and Cartmell in [Roberts and Cartmell 1984, Cartmell and 

Roberts 1987] studied autoparametric and combination resonances within an L-shaped beam structure, 

and Balachandran and Nayfeh performed nonlinear modal analysis considering only in-plane motions 

[Balachandran and Nayfeh 1990]. Warminski et al in [Warminski et al 2008], formulated the third 

order partial differential nonlinear equations of an L-shaped beam structure with different flexibilities 

in the two orthogonal directions, without taking into account rotary inertia effects. Ozonato et al 

studied post-buckled chaotic vibrations of an L-shaped beam structure considering only the in-plane 

bending nonlinear motions [Ozonato et al 2012]. In considering single beams Barbero and 

Raftoyiannis in [Barbero and Raftoyiannis 1994] studied the buckling modes and their coupling for 

pultruded I-beams subjected to various loading conditions. Fratenali in [Fratenali 1996] studied the 

formulation of models of layered composite, considering delamination effects using interfacial 

constitutive laws and delamination growth. In [Fratenali and Bilotti 1997], the one-dimensional theory 

was derived and a finite element model was given for the stress analysis of laminated curved 

composite beams, considering moderate large rotations, moderate large shear strains and different 

elastic behaviour of material in tension and in compression. In [Barbero 2000] the theoretical buckling 

mode interaction constant is considered,  for pultruded structural shapes, using stability theory which 

demonstrated the existence of such buckling mode interaction. In  [Fraternali and Feo 2000] the 

Vlasov theory of sectorial areas was used to formulate small strain and moderate rotations to model  

laminate composite thin walled beams. A finite element approximation of the theory was also carried 

out and several numerical applications were developed with reference to lateral buckling of the thin-

walled members. Finally it should mentioned that modelling of composite beams with warping 

functions was studied by Librescu in [Librescu 2006]. 

In this article we consider  Euler-Bernoulli beams made by isotropic material and we derive the  first 

order approximation, the linear equations of motion for an L-shaped beam considering also rotary 

inertia effects. Examination of the equations of motion indicates that in-plane bending and other 

motions are well separated at the first  order approximation. We show that in the absence of rotary 

inertia when considering the out-of-plane bending, the torsional equation of motion of the secondary 

beam is fully decoupled from the other equations of motion. We perform, numerically, linear modal 

analysis of two models for the L-shaped beam structure and we confirm that the modes are well 

separated in the two kinds of motions – in-plane and out-of-plane. Also, we compare the theoretical 

natural frequencies for decoupled torsional motion of the secondary beam with these obtained from 

finite element analysis, which shows that they are in disagreement, therefore the rotary inertia terms 

for out-of-plane bending should necessarily be considered in the equations of motions. Also, 

examination of the mode shapes corresponding to torsional motion of the secondary beam shows that 

torsion is coupled with the rest of the out-of-plane motions. This work  is essential in order to perform 
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accurate linear modal analysis of an L-shaped beam, and for the development in the near future of a 

new nonlinear model for L-shaped beam structures.      

2. Theory 

2.1 Equations of motion 

We consider Euler-Bernoulli beams made up from an isotropic material and with constant cross-

section with respect to the longitudinal direction (x1 for the primary beam and x2 for the secondary 

beam). According to the Vlasov theory [Librescu 2006], when considering that the beam’s a wall 

thickness is h, d is any characteristic dimension, and l is its length, and then the beam can be 

considered as a thin-walled beam  when, 

 

          ,      ,     (1a,b) 

 

and therefore in this case, the shear forces can be neglected. 

 In advance of any consideration of a variational formulation for the system shown in Figure 1, we 

define the curvatures and rotary terms using local displacements, and so for the primary beam these 

are given by [Nayfeh and Pai 2004, Warminski et al 2008], 
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and for secondary  beam they are given by,  
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In order to follow the effect of rotary inertia terms at the end of the formulation a switching function in 

the form of the Kronecker delta (δi ) is used with (i=1-5).

Figure 1. Indication of axis orientations and displacements for (a) the primary beam,  (b) the 

secondary beam, (c) cross section of primary beam, and (d) cross section of secondary beam. 

Translational velocities for the primary beam are given by, 

   
  ̇ ,    

  ̇ ,      ̇ .    (4a-c) 

 

In the secondary beam the translational velocity    of the centre of the cross section,  due to  the 

motion of point C, (clamped end, in local displacements) can be determined by considering the 

relative velocity   , and also the translational and angular motions of the origin of        at point C. 

Therefore velocity    in vector form is given by, 
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with, 
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where T denotes the transpose of the matrix. 

Substitution of equations 6a-d, into eq. 5, and retaining the first order terms, leads to the following 

definition of translational velocities for the secondary beam, 
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The kinetic and potential energies are given by, 
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with i=1,2 indicating the primary or secondary beams respectively. 

In this work we assume that the beams are inextensional, therefore the following constraints are also 

imposed, 
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It should be noted that    is the Lagrange multiplier, and that once again i=1,2 indicates the primary 

and secondary beams respectively. 

The linear equations of motion are derived using Hamilton’s principle of least action, such that, 
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taking into consideration the right hand sides of eq. (8-10). 

The variations are defined, as follows, 
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Therefore by considering equations (12a-f) as substitutions within equation (11), and using integration 

by parts, then this leads to the following equation, 
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Evaluation of the partial derivatives of equation (13), and using equations (2-4, 7-10) leads to the 

following equations of motion: 

 

-for the primary beam, 

 

a) Axial motion,  
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d) Torsional motion, 
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-for the secondary beam, 

 

a)   Axial motion,  
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c) Out-of-plane bending, 
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d) Torsional motion, 
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and the inextensionality conditions, are given by, 
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The boundary conditions for equations (14-21), as shown in Appendix-A, arise from equation (13), 

from equations (2-4, 7-10), and also noting that the local displacements and rotations at the clamped 

ends for both beams are zero. Therefore the boundary conditions are, 
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c) Out-of-plane bending, 
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d) Torsional motion, 
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-for the secondary beam, 

 

a) Axial motion,  
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d) Torsional motion, 
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Taking into account the inextensionality conditions as shown in [Warminski et al 2008] then the axial 

displacements and accelerations are of second order and can be neglected since here we only consider  

a first order approximation, which is essentially the linear problem.  

Using the axial equations of motion and the boundary conditions, then after integration, as shown in 

Appendix-B, the Lagrange multipliers are given by, 
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where the superscripts denote the order of the nonlinearity, a identification which is useful in order to 

derive the final equations of motion and the associated boundary conditions. 

Finally, by considering the Langrange multipliers the linear equations of motion (neglecting axial 

motion since we just consider an inextensional beam), using eq. (14-22) and the boundary conditions 

eq. (23-30) take their final form, 
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Out-of-plane motions,  

 

i) bending, 
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ii) torsion, 
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It should be noted that by neglecting the rotary inertia term in the out-of-plane bending of the primary 

beam then        , and the equation for torsion of the secondary beam is completely uncoupled 

from the out-of-plane motions, and  is given by, 
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with boundary conditions, as follows, 
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This can be explained by the fact that the rotary inertia terms are related to the curvature, therefore 

also with the angle of rotation at the end of the primary beam  (point C), this being the initial rotation 

of the secondary beam. In this case (eq. 44,45) the theoretical natural frequency for torsion is trivial in 

form and is given by, 
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√

   

   
,    (46). 

It should be noted that in case of a composite thin-walled beam the torsional equations (eq. 38,39) are 

no longer of second order but are of fourth order due to the bimoment of warping [Librescu 2006], 

therefore our model is not valid for such beams. 

3. Physical Models  
We consider two physical models, with the same beam dimensions but with different secondary beam 

orientations. Configuration 1 is shown in  Figures 2a and 2b , and configuration 2 is given in Figures 

2c and 2d. The material used for both beams is aluminium, with density ρ = 2800 kg/m
3
, Young’s 

Modulus E = 70 MPa, Poisson’s ratio ν = 0.33, and Shear Modulus, G12 = 26.32 MPa. The dimensions 

of the beams are, 

L1×b1×h1= 0.18 m×0.00216 m×0.01295 m, L2×b2×h2= 0.21 m×0.00216 m×0.01295 m.  

 

The inertia term and torsional rigidity for  the secondary beam, and also considering the warping effect 

by using Timoshenko’s correction coefficient [Nayfeh and Pai 2004], are given by 
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In the case that the torsional motion is given by equation (44) (without consideration of the rotary 

inertia terms) the natural frequencies are given by equation (46), and by considering the parameters 

defined in eq. (47) the first 3 modes are as shown in Table 1.  

 

Table 1. Theoretical natural frequencies of the secondary beam in torsion as simple cantilever beam. 

Mode 

Freq. 

Theory  

(Hz) 

Freq.  

Finite 

Element 

(Hz) 

% Relative 

Difference 

1 1136.02 1131.40 0.4 

2 3408.07 3394.08 0.4 

3 5680.11 5656.38 0.4 

 

Table 2. Natural frequencies for in plane motions. 

 Model-1 Model-2 
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Abaqus software was used for the modal analysis and for each model two elements were taken for the 

modelling a) wire elements (B31) and b) shell elements (S4R). In the case of the wire elements and 

also the shell elements for model-1, the  mesh comprised 150 elements for each beam. In the case of 

model-2 using shell elements 180 elements were used for the primary beam and 150 elements  for the 

secondary beam. Also, in order to confirm the theoretical natural frequencies for the secondary beam 

in torsion a numerical modal analysis was performed using Abaqus for the clamped beam (Table 1). 

Comparison of the theoretical values for the secondary beam in torsion with those from the finite 

element simulations are in good agreement (Table 1).  

Examination of the mode shapes verified that each mode is for in-plane motion or out-of-plane 

motion. In Table 2(3) it is shown that the natural frequencies for both models in the case of in-plane 

(out-of-plane) mode shapes and for the wire and shell models have no significant differences (less than 

5%). Figure 2a (c), depict a representative mode shape for in-plane motion for model 1 (2). Figure 2b 

(d) shows a representative mode shape for out-of-plane motion for model 1 (2). The coupling between 

torsion of the secondary beam with out-of-plane bending is clearly demonstrated. Also, comparison of 

Table 1 (theoretical results without the rotary inertia effect) with the out-of-plane frequencies of the 

finite element model (Table 2) indicates that there is no proper correlation of the theoretical results 

with the finite element simulations, therefore neglecting the inertia terms for out-of-plane bending lead 

to completely different results for the torsional modes.  
4. Conclusions 
The linear equations of motion were derived for an L-shaped beam considering the rotary inertia 

terms. 

 

Table 3. Natural frequencies for out-of-plane motions. 

Mode 
FE-

Mode 

Freq. 

(S4R el.) 

(Hz) 

Freq. 

(B31- el.) 

(Hz) 

% 

relative 

diff. 

FE- 

Mode 

Freq. 

(S4R el.) 

(Hz) 

Freq. 

(B31 el.)  

(Hz) 

% 

relative 

diff. 

1 1 15.3 15.2 0 1 16.0 15.9 0 

2 3 41.6 41.4 0 3 56.9 55.4 3 

3 4 192.6 192.3 0 6 372.8 360.1 3 

4 6 323.1 321.1 1 8 944.9 927.4 2 

5 7 613.8 612.2 0 9 1088.3 1070.6 2 

6 8 884.6 878.9 1 13 1928.6 1857.1 4 

7 11 1263.8 1258.6 0 16 3070.7 3005.0 2 

8 12 1734.5 1722.6 1 18 3333.9 3278.5 2 

9 14 2144.8 2132.2 1 21 4714.6 4526.9 4 

10 16 2864.6 2842.5 1 25 5961.6 5965.4 0 

 Model-1 Model-2 

Mode 
FE-

Mode 

Freq. 

(S4R el.) 

(Hz) 

Freq. 

(B31 el.) 

(Hz) 

% 

relative 

diff. 

FE- 

Mode 

Freq. 

(S4R el.) 

(Hz) 

Freq. 

(B31 el.)  

(Hz) 

% 

relative 

diff. 

1 2 24.3 23.9 2 2 20.8 20.6 1 

2 5 217.4 217.6 0 4 157.5 157.5 0 

3 9 1120.6 1111.1 1 5 297.4 297.4 0 

4 10 1161.0 1160.3 0 7 625.7 624.6 0 

5 13 1781.4 1782.8 0 10 1101.7 1115.2 -1 

6 15 2695.6 2621.1 3 11 1200.6 1197.0 0 

7 18 3422.0 3377.7 1 12 1761.3 1760.4 0 
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Figure 2. (a) Configuration 1, in-plane motions, (b) configuration 1, out-of-plane motions, (c) 

configuration 2, in-plane motions, (d) configuration 2, out-of-plane motions. 

 The equations of motion indicate that for the first order approximation the in-plane bending motions 

are coupled together, and fully uncoupled from out-of-plane motions, whereas all the other motions 

are coupled together. When neglecting the rotary inertia terms in out-of-plane bending, the equation 

for torsion of the secondary beam becomes uncoupled from the other out-of-plane motions. Numerical 

modal analysis was performed for two configurations of the L-shaped beam, and it was shown that the 

mode shapes can be distinguished for the in-plane and out-of-plane motions. Also the theoretical 

modal analysis for torsion, in the absence of rotary inertia terms, leads to completely different results 

to those from finite element analysis. Examination of the mode shapes shows that the out-of-plane 

bending is coupled to torsion of the secondary beam. Therefore it is necessary to consider rotary 

inertia for out-of-plane bending. The next step in this work will be to perform theoretical modal 

analysis of an L-shaped beam by solving the equations of motion and then comparing the obtained 

solutions with those from the finite element models. 
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7. Appendix-A 

The boundary conditions are shown here for the primary beam, since it is not a straightforward 

analysis from the variational equation (13). 

-Axial motion, 
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leads to, 
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Using eq. (19) then (A.2) yields, 
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By using the boundary conditions for the secondary beam (eq.28), then the final equation is obtained, 
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-In-plane bending motion, 
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By using equation (18), equation (A.5a), takes the form, 
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Considering also the boundary conditions for the secondary beam (eq. 27b) then the final form 

becomes, 
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Similarly, for equation (A.5b) using eq. (19) and its derivative with respect to s2, leads to, 
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then with integration by parts one obtains,  
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Considering the boundary conditions for the secondary beam (eq.28) leads to,  
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-Out-of-plane bending motion, 
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then we get 
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Applying equation (20), means that equation (A.9a), takes the form, 
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By considering also the boundary conditions of the secondary beam (eq.29) then it is possible to show 

that,  

 

      
 ̈ 

 (    )    (    )  
 (    )     

  
   (    )        ̈ (    )       

   (   )   .(25c) 

 

Similarly, for equation (A.9b) when taking into account eq. (21), we get , 
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considering also the boundary conditions of the secondary beam (eq.30) leads to,  
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-Torsional motion, 
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Using equation (20) and its derivative with respect to space, then equation (A.12), after integration by 

parts, takes the form, 
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(A.13) 

Finally, by considering the boundary conditions of the secondary beam eq.(29), we get 
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8. Appendix-B 

 

In this section the Lagrange multipliers are determined. Integration of the axial equation of motion for 

the primary beam (eq.14) leads to, 
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applying the boundary conditions for the axial equation of the primary beam (eq.29b) we get, 
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Therefore, by using (B.2), equation (B.1) takes the form, 
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or, by considering also the expansion of the fraction in series form, 
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In the case of the secondary beam, we use a transformation by expressing the displacement in global 

coordinates,  
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therefore the equation for axial motion (eq. 19) takes the form, 
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with the boundary condition (eq. 28b)   
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Integration of equation (B.4) leads to,  
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using also the boundary condition equation (B.5) we get, 
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Therefore the second Lagrange multiplier (  ) is given by, 
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or, by using local displacement, 
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and also the expansion of the fraction in series form, then this leads to the final form, 
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