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333 

Abstract 334 

Arctic terrestrial ecosystems are generally considered to be species poor, fragile and often 335 

isolated. Nonetheless, their intricate complexity, especially that of the invertebrate 336 

component, is beginning to emerge. Attention has become focused on the Arctic both due to 337 

the importance of this rapidly changing region in the Earth System and also the inherent 338 

interest of an extreme and unique environment.  The three archipelagoes considered here, 339 

Svalbard, Franz Josef Land and Novaya Zemlya, delineate the Barents Sea to the west, north 340 

and east.  This is a region of convergence for Palearctic and Nearctic faunas re-colonising the 341 

Arctic following the retreat of ice after the Last Glacial Maximum (LGM).  Despite the harsh 342 

Arctic environment and the short period since deglaciation, the archipelagoes of the Barents 343 

Sea are inhabited by diverse invertebrate communities. There is an obvious imbalance in our 344 

understanding of the biodiversity of each archipelago, and in our knowledge of many taxa.  345 

Research effort in Svalbard is increasing rapidly while there are still few reports, particularly 346 

in the western literature, from Franz Josef Land and Novaya Zemlya. Nevertheless, there 347 

appears to be a surprising degree of dissimilarity between the invertebrate faunas, possibly 348 

reflecting colonization history.  We provide a baseline synthesis of the terrestrial and 349 

freshwater invertebrate fauna of the Barents Sea archipelagoes, highlight the taxa present, the 350 

characteristic elements of fauna and the complexity of biogeography. In doing so, we provide 351 

a background from which to assess responses to environmental change for a region under 352 

increasing international attention from scientific, industrial and political communities as well 353 

as non-governmental organizations and the general public.  354 

 355 

Key words. 356 
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1. Introduction 360 

 361 

Arctic terrestrial ecosystems are often considered to be species poor and fragile.  The high 362 

latitude archipelagoes of the Barents Sea are also isolated due to their geographic separation 363 

from Eurasia.  Nonetheless, their intricate complexity, especially that of the invertebrate 364 

component of their communities, is beginning to emerge.  . The known terrestrial and 365 

freshwater invertebrate fauna of this archipelago currently contains over 1,000 named species 366 

(Coulson and Refseth, 2004; Coulson, 2007a, 2013b). Vascular plant diversity totals 74 367 

species in Franz Josef Land (Tkach et al., 2008), 173 in Svalbard (Elven and Elvebakk, 1996) 368 

and 216 in Novaya Zemlya (Tkach et al., 2008). Bryophyta (mosses, liverworts and 369 

hornworts) form an important component of the environment in the Arctic (Turetsky et al. 370 

2012). In Svalbard there are currently 373 accepted species (Frisvoll and Elvebakk, 1996) 371 

while lichens are more speciose, 597 species being recorded (Elvebakk and Hertel, 1996).  372 

Recent inventories of the bryophytes or lichens of Novaya Zemlya and Franz Josef Land are 373 

not available.  374 

 375 

Investigations of poorly sampled regions within the islands along with studies of genetic 376 

diversity, including identification and quantification of cryptic speciation, are likely to lead to 377 

considerable increases in invertebrate diversity estimates (Ávila-Jiménez, 2011).  The existing 378 

species inventories also suffer from taxonomic limitations, in particular relating to 379 

unidentified synonymies and misidentifications (Coulson, 2007a; Ávila-Jiménez et al., 2011; 380 

Bayartogtokh et al., 2011).  Detailed knowledge of the distributions and biogeography of the 381 

majority of invertebrate species remains limited.  Even in comparatively well-known regions 382 

such as western Svalbard, the publication of new species records for the archipelago is 383 

frequent, and new taxa continue to be formally described (e.g. Pilskog, 2011; Chaubet et al., 384 
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2013; Gwiazdowicz et al., 2012a, 2012b; Kaczmarek et al., 2012).  Even in comparison with 385 

the uncertainties applying to Svalbard, diversity of the Russian archipelagoes of Franz Josef 386 

Land and Novaya Zemlya remains understudied, while much of the information that is 387 

available is not readily accessible in the western (English language) literature. 388 

  389 

It is clear that the invertebrate community plays a central role in many key ecosystem 390 

processes, such as nutrient cycling, energy flow, decomposition, bioaccumulation of 391 

pollutants, herbivory, pollination and parasitism (Petersen and Luxton, 1982; Speight et al., 392 

1999; Bardgett, 2005; Evenset et al. 2005; Ott et al., 2012).  However, the relationship 393 

between species (alpha) diversity and ecosystem function often remains unclear despite 394 

considerable debate around the importance, or otherwise, of ‘functional redundancy’ in 395 

maintaining ecosystem stability (Brussaard et al., 2007).  Polar (Arctic and Antarctic) 396 

ecosystems are considered to be particularly valuable for studies addressing such fundamental 397 

questions of ecosystem function, providing examples across a wide range of levels of 398 

assemblage structure (Hodkinson et al., 2003, 2004; Adams et al., 2006; Post et al., 2009). In 399 

the context of these ecosystems, the relatively high species-level biodiversity of the terrestrial 400 

and freshwater ecosystems of the High Arctic (in comparison, for instance, with those of 401 

Antarctic regions; Convey, 2007, 2013) may provide them with a robustness and stability to 402 

the characteristically large annual variation in climate and hence also provide resilience to 403 

environmental change.  Nonetheless, despite this possibly inherent resilience to natural 404 

environmental variability, these High Arctic systems may be particularly vulnerable to human 405 

disturbance (Jónsdóttir, 2005) predominantly due to lengthy recovery and regeneration times.  406 

 407 

Attention has recently become focused on the Arctic due both to the importance of this 408 

rapidly changing region in the Earth System and to the inherent interest of an extreme and 409 
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unique environment.  Perhaps nowhere is this more evident than in Svalbard with the 410 

establishment of the Kongsfjorden International Research Base (KIRB) at Ny-Ålesund.  411 

Nevertheless, despite close to 600 published articles concerning the invertebrate fauna of 412 

Svalbard (Coulson, 2007a, 2013a, 2013b), research has largely been fragmented and 413 

individual, with little attempt at large scale coordination.  Hence there is a disparity in our 414 

knowledge between the charismatic and the less studied taxa.  The recent publication of  415 

species inventories (e.g. Coulson, 2007a; Ávila-Jiménez et al., 2011) has highlighted the 416 

Svalbard archipelago as having perhaps the most complete inventory of the invertebrate fauna 417 

of any Arctic region (Hodkinson, in press).  Nonetheless, an overall synthesis is lacking, 418 

either for Svalbard itself, or for the archipelagoes of the wider Barents Sea region.  Now is a 419 

particularly opportune moment to provide such a synthesis, with a recent consideration of the 420 

Arctic invertebrate fauna calling for the establishment of an inventory of Arctic species as a 421 

high priority (Hodkinson, in press).  Moreover, the quantity of invertebrate studies is 422 

increasing rapidly, as is the importance of Svalbard as a High Arctic research platform, 423 

including the current agenda within Norway to establish the eastern regions of Svalbard as a 424 

“reference area for research” (Ministry of Justice and the Police, 2009) and the planned 425 

Svalbard Integrated Arctic Earth Observing System (SIOS) international initiative, which 426 

forms part of the European Strategy Forum on Research Infrastructures (ESFRI) programme 427 

(European Commission, 2012).  Currently, there is no overall context into which to set these 428 

international initiatives.   429 

 430 

The three archipelagoes considered here comprise a natural geographic unit.  This is a region 431 

of convergence for the Palearctic and Nearctic biota re-colonising following the ice retreat 432 

from the marginal coastline of Spitsbergen that commenced around 15,800 – 14,800 433 

calibrated years Before Present (cal BP). Franz Josef Land began to be deglaciated around 434 
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11,200 cal BP (Landvik et al., 1995; Lubinski et al., 1999) while southern areas of Novaya 435 

Zemlya remained ice free throughout the LGM (Serebryanny et al., 1998; Velichko, 2002). 436 

 437 

This article was catalysed by the expertise brought together for an international workshop on 438 

the Terrestrial and Freshwater Invertebrate Fauna of Svalbard held at the University Centre in 439 

Svalbard (UNIS) in 2011. We summarize the current state of knowledge of the invertebrate 440 

faunas of these archipelagoes, including biodiversity, dispersal, colonization and responses to 441 

environmental change. Of the three archipelagoes, by far the most detailed studies of the 442 

invertebrate fauna are available for Svalbard.  Hence, while we focus primarily on this 443 

archipelago, we exploit the opportunity to include, wherever possible, the less well described 444 

archipelagoes of Franz Josef Land and Novaya Zemlya.  445 

 446 

 447 

2. The archipelagoes 448 

 449 

The three island groups ringing the Barents Sea consist of Svalbard, Franz Josef Land and 450 

Novaya Zemlya (Fig. 1).  Svalbard is defined as the land area lying within the coordinates of 451 

10° and 35°E and 74° and 81°N, and consists of four main islands, Spitsbergen, 452 

Nordaustlandet, Edgeøya and Barentsøya, along with the ‘outlier’ Bjørnøya (Bear Island; Fig. 453 

2).  It has a land area of approximately 63,000 km2 of which 60% is today permanently 454 

covered by ice and snow (Hisdal, 1985). The archipelago is under Norwegian sovereignty but 455 

governed by the terms of the “Svalbard Treaty” (Treaty of Spitsbergen, 1920).  Novaya 456 

Zemlya lies to the north of the Nenetsia Russian coast and is comprised of two principle 457 

islands separated by the Matochkin Shar strait, and numerous lesser islands, lying between 458 

70° to 77°N and 51 to 69°E (Fig. 3).  The main island stretches almost 900 km along a north-459 
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east axis and is up to 145 km wide (Aleksandrova, 1977) with an area of 81,280 km2 of which 460 

27% is currently glaciated (Zeeberg, 2002).  During the Cold War Novaya Zemlya was used 461 

as a nuclear test site, with the result that for many years it has been a closed military region 462 

and thus difficult for biologists to visit (Zeeberg and Forman, 2001).  Franz Josef Land lies to 463 

the north-east of Svalbard between 79°73’ and 81°93’N and 37° and 65°50’E.  It consists of 464 

approximately 190 largely ice-covered islands forming a total area of 12,334 km2, 85% of 465 

which is glaciated (Aleksandrova, 1977; Zeeberg and Forman, 2001). As with Novaya 466 

Zemlya, Franz Josef Land was a closed military area for much of the Twentieth Century and 467 

access today still requires permission from the Russian authorities, including the Federal 468 

Service of National Security and Administration of Reserves and Protected Areas. 469 

 470 

Insert Figure 1 here 471 

 472 

The three archipelagoes all have an Arctic climate.  The most northerly, Franz Josef Land, has 473 

the most extreme climate with mean July (mid-summer) temperature varying between -1.2 474 

and +1.6ºC depending on the specific island considered (Aleksandrova, 1977).  Cloudy skies 475 

occur approximately 90% of the time, reducing solar heating of the ground (Aleksandrova, 476 

1983).  Annual precipitation amounts to 300 mm, most falling as snow (Aleksandrova, 1983).   477 

 478 

In Svalbard the annual mean air temperature recorded at the official meteorological station at 479 

the airport in Longyearbyen in the west of the archipelago (Fig. 2) is -4.6°C (mean summer 480 

temperature +5.2ºC), with 191 mm annual precipitation for the period 1981-2010 (Førland et 481 

al., 2011).  Precipitation is particularly variable across this archipelago, decreasing rapidly 482 

from the west coast towards the interior.  Barentsburg and Isfjord Radio, approximately 50-80 483 

km to the west of Longyearbyen and on the coast, receive 525 and 480 mm respectively per 484 
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year (Norwegian Meteorological Institute, 2013).  Air temperature is also heavily influenced 485 

by the surrounding ocean and in particular the dominant local current systems. To the west, a 486 

northwards branch of the North Atlantic Drift carries relatively warm water (c. +3°C; 487 

Skogseth et al., 2005), past the archipelago.  The east coast, however, is influenced by the 488 

cold water of the East Spitsbergen Current carrying polar water south at between 0.5° and -489 

1.0°C (Skogseth et al., 2005).  Hence air temperatures in the north and east of Svalbard are 490 

generally lower than in the west.  Throughout the archipelago, soils may be snow-covered and 491 

frozen for at least nine months of the year (Coulson et al., 1995).   492 

 493 

Insert Figure 2 here 494 

 495 

The latitudinal span of Novaya Zemlya results in a considerable climatic gradient (Zeeberg 496 

and Forman, 2001).  Annual mean temperature decreases from -5.4°C on the south-west coast 497 

to -10.3°C at the northern extremity.  While winters (December, January) are cold, averaging 498 

around -15°C, the summers are relatively mild with July/August mean air temperature around 499 

+6°C.  Annual precipitation also varies, decreasing south to north from 386 mm to 283 mm.  500 

However, as with Svalbard, the climate of Novaya Zemlya is heavily influenced by the 501 

surrounding marine environment, with advected warm North Atlantic water on the west coast 502 

while the east coast adjoins the cold Kara Sea which is ice-bound during the winter.  503 

 504 

Insert Figure 3 here 505 

 506 

A particular feature of the climate of the High Arctic is the extreme variation in photoperiod.  507 

For the settlement of Longyearbyen on Spitsbergen, Svalbard, the sun does not rise above the 508 

horizon between October 26 and February 16 (113 days). Conversely, during the period of the 509 
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midnight sun, from April 19 until August 23 (127 days), the sun remains constantly above the 510 

horizon.  However, although the sun may be permanently above the horizon from mid-April, 511 

the ground is not released from snow and ice until later in the season. For Svalbard this may 512 

be mid-June (Coulson, 2013a) and the growing season in vegetated regions, if measured from 513 

the approximate period the ground begins to clear of snow until the end of the midnight sun, 514 

may be less than 70 days.  Some photosynthesis will continue to be possible longer into the 515 

autumn but the majority of higher plants shut down by mid-August.  For Franz Josef Land the 516 

period of the midnight sun is approximately from April 15 until August  24 with polar night 517 

extending from October 19 until February 21. With a north-south axis the photoperiod of the 518 

islands of the Novaya Zemlya archipelago varies considerably. In the south the period of the 519 

midnight sun is only from May 21 – July 22 while in the north this period is extended, 520 

beginning around April 25 and ending August 17. The polar night is similarly shorter in the 521 

south commencing on November 22 with the sun returning on January 20 while in the north 522 

the period lasts from October 29 to February 13.  523 

 524 

Environmental change is particularly rapid in the Arctic land areas and air temperatures are 525 

increasing more rapidly than global means, an exampe of the ‘polar amplification’ of the 526 

global process (ACIA, 2005; IPCC, 2007). The causes of this fast change are unclear but may 527 

be a consequence of general background warming, reduced sea ice cover and changes in 528 

oceanic and atmospheric circulation (Serreze et al., 2011).  Annual temperatures in Svalbard 529 

over the period 1981-2010 have increased by 2.1°C over the 1961-1990 mean while winter 530 

and summer means have increased by 3.4 and 1°C respectively (Førland et al., 2011). These 531 

increases are likely to be linked with variations in atmospheric circulations, with increased 532 

frequency of southerly and south-west winds (Hanssen-Bauer and Førland 1998). Overall 533 

annual precipitation has increased marginally with a slight trend towards wetter summers and 534 
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dryer winters (Førland et al., 2011) also linked to the changes in atmospheric circulation 535 

patterns (Hanssen-Bauer and Førland 1998).  By the end of the current century the average 536 

winter temperatures may be up to 10°C greater than the present normal.  Currently, air 537 

temperatures fall below -28°C on approximately three to four days per year.  Projections 538 

suggest that winter warming by 2050 may result in air temperatures declining to only -23°C at 539 

a similar frequency (Førland et al., 2011).  Similar detailed analyses for Franz Josef Land and 540 

Novaya Zemlya are not available but it is likely that these will experience similar overall 541 

general trends in temperatures and precipitation.  However, current scenarios include poor sea 542 

ice representation, and recent loss of sea ice may have enhanced regional warming at the same 543 

time weakening the accuracy of these projections (Førland et al., 2011).  544 

 545 

The history of the LGM in the Barents Sea region is complex but it is clear that Svalbard, 546 

Franz Josef Land and much of Novaya Zemlya were largely covered by a dynamic ice sheet 547 

(Gataullin et al., 2001) becoming exposed progressively as the ice began to retreat.  Recent 548 

studies suggest that large areas of the Amsterdamøya plateau in the north-west of Svalbard 549 

remained ice free during the LGM (Landvik et al., 2003) providing possible glacial refugia for 550 

invertebrates, and that other regions were also periodically exposed during this period 551 

(Ingólfsson and Landvik, 2013). There is, hence, the possibility that some invertebrates 552 

survived in situ, but evidence is currently lacking and the predominant view remains that the 553 

present fauna is the result of recent immigration since the retreat of the ice.  Similarly, it is 554 

likely that few, if any, plants survived in situ during the LGM (Alsos et al., 2007) although a 555 

number of recent studies, both biological and glaciological, have hinted at the possible 556 

existence of refugia (Westergaard et al., 2011), and current thinking is that flora and fauna of 557 

Svalbard is the result of recent immigration.  The South Island of Novaya Zemlya remained 558 

ice-free with shrub vegetation (Serebryanny et al., 1998; Velichko, 2002).   559 
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 560 

The relatively short period since deglaciation, combined with the Arctic climate and 561 

continuing periglacial soil processes, have strongly influenced habitats and ecosystems. As 562 

seen across the Arctic, the environment is characteristically highly heterogenous with, for 563 

example, dry stony ridges, periglacial features, areas of late snow melt, heath or wet moss all 564 

in close proximity (Thomas et al., 2008).   Large areas have been recently reworked by glacial 565 

action and possess continuous underlying permafrost influencing the soil hydrology.  On a 566 

regional basis, northern areas consist largely of polar desert characterized by low precipitation 567 

and a short snow-free growing season.  Vascular plant cover is often limited, restricted to less 568 

than 15% in both Svalbard and Franz Josef Land (Aleksandrova, 1983; Jónsdóttir, 2005; 569 

Cooper, 2011).  Along the west coast of Svalbard and the southern areas of Novaya Zemlya 570 

areas of dwarf shrub tundra or heath may develop.Bare soil in all three archipelagoes often 571 

possesses a “biological crust” of cyanobacteria, bacteria, algae and lichens.     572 

 573 

On a landscape scale the habitat is comprised of a heterogeneous mosaic (Jónsdóttir, 2005). 574 

The ridge tops, blown free of winter snow, or areas kept clear of snow by wind eddies, 575 

occasionally experience winter temperatures approaching -40°C while organic soils protected 576 

under deeper snow face temperatures no lower than -10°C and often considerably higher 577 

(Coulson et al., 1995).  Melting snow and permafrost may also provide a constant cold water 578 

source throughout the summer resulting in chronically cold, wet and boggy areas in direct 579 

proximity to drier polar desert vegetation.   The shallow active layer in the permafrost 580 

exaggerates this effect by hindering drainage. Soils may also vary considerably in depth and 581 

form over short distances.  Generally the soils are thin, rarely more than a few centimeters 582 

thick, and overlie moraine debris, patterned ground or bedrock.   In wetter areas, moss may 583 

develop into thick carpets or turfs some tens of centimeters deep, efficiently insulating the 584 
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ground beneath against insolation (Coulson et al., 1993a).  Under bird cliffs significant 585 

allochthonous nutrient input may occur. Under little auk (Alle alle) colonies, circa 60 tonnes 586 

dry matter guano per km2 may be deposited each season (Stempniewicz et al. 2006).  In such 587 

nutrient enriched areas, organic soils of over 10 cm depth may also accumulate illustrating the 588 

impact of nutrient flow from the marine environment to the often nutrient limited terrestrial 589 

habitat (Odasz, 1994).  These ornithogenic soils and their associated vegetation (Odasz, 1994; 590 

Zmudczyńska et al., 2009, Zwolicki et al., 2013) form a characteristic element of the High 591 

Arctic environment (Jónsdóttir, 2005; Zmudczyńska et al., 2012) and one that may be 592 

especially vulnerable to the introduction of non-native species (Coulson et al., 2013a). 593 

 594 

The physical and chemical properties of Arctic inland waters vary greatly including glacier-595 

fed rivers, snow-melt streams, cold oligotrophic lakes and shallow temporary or permanent 596 

ponds. Running freshwaters are characterised by a dominance of glacial meltwater inputs, 597 

typically in large braided river systems with high sediment loads, highly irregular flows (even 598 

cessation after the main period of snow melt), and very low temperatures even in summer. 599 

However, in coastal, glacier-free areas, there are snowmelt and spring-fed streams, as well as 600 

lake outflows (Füreder and Brittain, 2006), where conditions can be more favourable, 601 

although even here many snowmelt streams dry up in summer. There are also warm springs in 602 

two areas in the western part of Spitsbergen that have been the subject of chemical and 603 

microbiological studies (Hammer et al., 2005; Jamtveit et al., 2006; Lauritzen and Bottrell, 604 

1994). In Svalbard, river flow may initiate in late June to early July.  Ice break-up however 605 

occurs later, from mid-July until late-August (Svenning and Gullestad, 2002).  The lakes and 606 

ponds in the archipelagoes of the Barents Sea are typically found in coastal, lowland areas as 607 

in most other Arctic regions (Bøyum and Kjensmo, 1978; Pienitz et al., 2008; Rautio et al., 608 

2011). Temporary thaw ponds, permanent shallow ponds and small lakes are numerous and, 609 
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because of the low water depth (usually less than 2 m) or small catchments, these water 610 

bodies tend to freeze solid during winter while shallower ones can dry out completely during 611 

summer.  612 

 613 

Shallow ponds are often hotspots of biodiversity and production for micro-organisms, plants 614 

and animals in most Arctic regions (Smol and Douglas, 2007), although containing no fish 615 

populations. Nutrient input from grazing geese may be significant (Van Geest et al., 2007).  616 

Larger and deeper lakes are also present, although are not as numerous as, for example, in 617 

West Greenland and Alaska. Lakes with a water depth of more than 3 m are more stable, not 618 

freezing solid or drying out, and can host a permanent fish population.  However, the 619 

environmental conditions for organisms in High Arctic lakes are different from other northern 620 

climatic zones as the ice-free period is very short (typically 1-2 months), water temperatures 621 

and nutrient concentrations are constantly low and the intensity of ultraviolet radiation is 622 

often high compared to more temperate regions. Furthermore, there are physical barriers 623 

restricting colonisation such as ice caps or remoteness. As a consequence, the biodiversity of 624 

freshwater organisms in still waters in Svalbard and other isolated islands is expected to be 625 

low even compared to other High Arctic regions such as West Greenland and Alaska 626 

(Gíslason, 2005; Samchyshyna et al., 2008).  Arctic rivers, ponds and lakes have a 627 

biocomplexity that resembles that of temperate regions, including phototropic biota (algae and 628 

macrophytes), invertebrates (insects, crustaceans and rotifers) and fish, although with much 629 

fewer taxa and thus with a simpler food web structure than temperate lakes (Christoffersen et 630 

al., 2008).   631 

 632 

Set against this environmental background, we here provide a synthesis of the known 633 

invertebrate fauna of the terrestrial and limnic environments of the three archipelagoes 634 
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enclosing the Barents Sea, as a baseline for future ecological studies.  Examination of 635 

complex ecological linkages is beyond the scope of this review. Nonetheless, we attempt to 636 

set each taxonomic group in context and discuss the biodiversity of the islands. In particular, 637 

we address the history of research and knowledge development, highlighting gaps in our 638 

understanding (which varies considerably between the archipelagoes).   639 

 640 

 641 

3. The invertebrate fauna. 642 

 643 

3.1 Rotifera 644 

Studies on the rotifer fauna of Svalbard commenced in the second half of the Nineteenth  645 

Century, when von Goes (1862) reported two bdelloid ‘Callidina’ species and Ehrenberg 646 

(1874) reported Callidina (now Pleuretra) alpium (Ehrenberg, 1853) from moss collected in 647 

Spitsbergen.  Further early records of the rotifer fauna of terrestrial mosses from Spitsbergen, 648 

mainly bdelloids, were provided by Bryce (1897, 1922), Murray (1908) and Summerhayes 649 

and Elton (1923). Early planktonic rotifer reports were restricted to monogononts, mostly 650 

from Spitsbergen (Richard, 1898; Olofsson, 1918). In the second half of the Twentieth 651 

Century, studies focused on monogononts from the plankton and/or periphyton of Barentsøya 652 

(Pejler, 1974; De Smet, 1993), Bjørnøya (De Smet, 1988), Edgeøya (De Smet et al., 1988), 653 

Hopen (De Smet, 1990), Nordaustlandet (Thomasson, 1958) and Spitsbergen (Thomasson, 654 

1961; Amrén 1964a, b, c; Vestby, 1983; De Smet et al., 1987; Kubíček and Terek, 1991; 655 

Jørgensen and Eie, 1993; De Smet, 1995; Janiec, 1996; Janiec and Salwicka, 1996).  Amrén 656 

(1964a, b) carried out long-term population studies of Keratella quadrata (Müller, 1786) and 657 

Polyarthra dolichoptera (Idelson, 1925) in ponds on Spitsbergen, finding temporal 658 

morphological variation in K. quadrata and thereby demonstrating that the phenomenon was 659 
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not limited to low altitudes and latitudes as was previously thought. Interest in bdelloids has 660 

recently been revived by Kaya et al. (2010) studying representatives from terrestrial mosses 661 

from different localities in Svalbard. Limited physiological studies are available, excepting 662 

Opaliński and Klekowski (1989, 1992), who measured oxygen consumption in Macrotrachela 663 

musculosa (Milne, 1886) and Trichotria truncata (Whitelegge, 1889) obtained from 664 

Spitsbergen tundra.  These studies demonstrated relative temperature independence in the 665 

range of 2-6°C for M. musculosa, suggesting metabolic cold adaptation.  Limited older 666 

literature, and no recent studies, are available for Novaya Zemlya (Murray, 1908; Idelson, 667 

1925; Økland, 1928; Gorbunow, 1929; Retowski, 1935) and Franz Josef Land (Murray, 1908; 668 

Retowski, 1935).  669 

 670 

3.1.1.Bdelloidea.  671 

Of the two major divisions of Rotifera, the Bdelloidea have been largely neglected because of 672 

difficulties with identification. Their diversity is underestimated since most studies use 673 

animals recovered from rehydrated moss samples, precluding recovery of species lacking, or 674 

with poor, capacity to form dormant anhydrobiotic stages.  Moreover, as is likely to be the 675 

case in many groups, recent molecular biological studies have demonstrated that cryptic 676 

diversity is high in bdelloids (Fontaneto et al., 2007).   677 

 678 

A total of 68 formally identified bdelloid morphospecies have been recorded from the Barents 679 

Sea archipelagoes, with around 15% of the current global diversity of Bdelloidea (460 680 

morphospecies distributed over 20 genera; Segers, 2008) being present in Svalbard. These 681 

include the majority (85%) of the bdelloids known from the Arctic region (De Smet unpubl.). 682 

Virtually all the species reported from these archipelagoes are widespread or cosmopolitan, 683 

with Pleuretra hystrix Bartos, 1950 being the only Arctic-Alpine endemic. However, the 684 
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discovery of more endemics may be expected as generalists exhibit the highest cryptic 685 

diversity (Fontaneto et al., 2009). Data for Svalbard are only available from the islands of 686 

Edgeøya, Prins Karls Forland and Spitsbergen. The known Svalbard fauna comprises 67 687 

morphospecies. Only three and two morphospecies, respectively, have been reported from 688 

Franz Josef Land and Novaya Zemlya. All morphospecies recorded in the Barents Sea 689 

archipelagoes occur in limno-terrestrial habitats (mosses, lichens) with 15 also reported from 690 

freshwater habitats (permanently submerged vegetation, cryoconite).  691 

 692 

3.1.2. Monogononta.  693 

In this group, older reports are biased in favour of the loricates, a group that includes species 694 

with a rigid body wall that fix well and are amenable to microscopic study. Species with a soft 695 

integument, the illoricates, contract on fixation and become unrecognizable.  Furthermore, re-696 

examination of historical samples (Olofsson, 1918), has shown that loricate diversity per 697 

sample was on average 2-4 times higher than in the original publication (De Smet unpubl.). 698 

Interpretation of older data may also be compromised due to taxonomic inconsistencies. For 699 

example, several monogononts show large phenotypic plasticity, while some taxa originally 700 

considered to exhibit wide morphological variation are now recognized to consist of several 701 

species. Given these reservations it is impossible to differentiate, for instance, the currently 702 

recognised species Keratella hiemalis Carlin, 1943, K. quadrata and K. testudo (Ehrenberg, 703 

1832) in earlier reports of ‘Anuraea (Keratella) aculeata’ and its forms in the absence of 704 

preserved material. Many monogononts have, again, been shown also to be complexes of 705 

cryptic species (e.g. Suatoni et al., 2006).  706 

 707 

To date, 163 limno-terrestrial and aquatic monogonont morphospecies have been reported 708 

from the Barents Sea archipelagoes, with 134 species from Svalbard, 20 from Franz Josef 709 
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Land and 71 from Novaya Zemlya.  Unequal sampling effort across the different islands and 710 

habitats within the archipelagoes clearly hampers comparison of their rotifer biodiversity.  711 

The global diversity of non-marine Monogononta totals approximately 1,500 species (Segers, 712 

2008), of which 11% occur in the Barents Sea archipelagoes. In the Arctic region as a whole 713 

327 species are known (De Smet unpubl.) of which 50% have been reported from these 714 

archipelagoes.  Only 16 species occur occasionally in aerophytic moss, with the most 715 

frequently found being Encentrum incisum Wulfert, 1936, Lecane arcuata (Bryce, 1891) and 716 

Lepadella patella (Müller, 1786).  As with the bdelloids, the majority of the monogonont 717 

species are cosmopolitan or widespread, although a small proportion show more restricted 718 

distributions: the Arctic endemic Notholca latistyla  (Olofsson, 1918) occurs in all three 719 

archipelagoes; Trichocerca longistyla (Olofsson, 1918), described from Spitsbergen, is also 720 

known from Novaya Zemlya and Swedish Lapland;  Encentrum boreale Harring and Myers, 721 

1928, E. dieteri (De Smet, 1995),  E. murrayi Bryce, 1922 are currently thought to be 722 

endemic to Spitsbergen, and the sub-species Synchaeta lakowitziana arctica De Smet, 1988 is 723 

restricted to Bjørnøya.  724 

 725 

 726 

3.2 Gastrotricha 727 

The phylum Gastrotricha is a group of aquatic microinvertebrates. They are a common and 728 

important component of the benthic, epibenthic and epiphytic communities in all types of 729 

freshwater, brackish water and marine habitats (Balsamo et al., 2008; Todaro and Hummon, 730 

2012; Todaro et al., 2012). The Gastrotricha are, as a group, considered cosmopolitan 731 

(Balsamo et al. 2008).  732 

 733 
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Arctic Gastrotricha are extremely poorly known. No comprehensive studies have been 734 

conducted on the Svalbard archipelago. Scourfield (1897) and De Smet et al. (1987) recorded 735 

the genus Chaetonotus from Spitsbergen and De Smet  (1993) noted that Gastrotricha 736 

compose  1 - 18% of the invertebrate taxa obtained from submerged moss samples from 737 

Barentsøya. The taxon has never been studied on Franz Joseph Land or Novaya Zemlya. 738 

 739 

In the light of our poor knowledge of Gastrotricha from the Barents Sea region, future studies 740 

are likely to find many more species in habitats such as cryoconite holes, raised bogs, water 741 

bodies, moist soil, fjords and marine interstitial zones (Valdecasas et al., 2006; Todaro and 742 

Hummon, 2012). 743 

 744 

3.3. Helminthofauna  745 

3.3.1. Free-living terrestrial and freshwater Nematoda.  746 

Despite widespread recognition of the almost ubiquitous presence of nematodes in soil faunas 747 

globally and their particular importance in soils of some Antarctic ecosystems where most 748 

other invertebrates are poorly or not represented (Freckman and Virginia, 1997; Adams et al., 749 

2006; Maslen and Convey, 2006), this group has received limited attention in the 750 

archipelagoes of the Barents Sea and there are no records from Franz Josef Land. The first 751 

record of terrestrial nematodes from Svalbard is that of Aurivillius (1883a) who described the 752 

new species Aphelenchus nivalis (Aurivillius, 1884) found in algae on the snow. Menzel 753 

(1920) recorded four species, A. nivalis, Dorylaimus sp., Acrobeloides bütschlii Gadea, 1954 754 

and Plectus cirratus Bastian, 1865.  To date, the only extensive collection of terrestrial 755 

nematodes in Svalbard (specifically from Spitsbergen) was carried out by H. van Rossen in 756 

1965. These samples contained about 75 taxa of which 15 were described as new species 757 

(Loof, 1971).  Samples collected in the area around Ny-Ålesund by G. Rudbäck in 1985 were 758 
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examined in part by Boström (1987, 1988, 1989) resulting in the description of one new 759 

species but otherwise mainly corroborating the findings of Loof (1971). Although a few other 760 

records are available (for example Klekowski and Opaliński, 1986; Janiec, 1996), the 761 

majority of information available on the terrestrial nematode fauna of Svalbard remains that 762 

provided by Loof (1971).  Checklists of terrestrial and freshwater nematode species found in 763 

Svalbard include 95 taxa (Coulson and Refseth, 2004). 764 

 765 

The first recorded collections of terrestrial nematodes from Novaya Zemlya are those of L. 766 

Stapfer in 1907 (Steiner, 1916), which included 27 species from 13 genera. More recently, 767 

Gagarin (1997a, b, c, 1999, 2000) has described many new species from these islands. In total 768 

Gagarin (2001) lists 63 species of terrestrial and freshwater nematodes for the archipelago, 769 

although 18 of the species recorded by Steiner (1916) are not included among them.  There 770 

are 24 species in common between Svalbard and Novaya Zemlya, all taxa which are more or 771 

less cosmopolitan. 772 

 773 

Free-living terrestrial and freshwater nematodes have been largely omitted from soil ecology 774 

studies conducted in Svalbard and hence almost nothing is known concerning their 775 

abundance, biomass or ecological or functional importance. In 1994, B. Sohlenius collected 776 

samples in Adventdalen and Gluudneset (Kongsfjorden) confirming the presence of high 777 

diversities and population densities. The mean population density was 78 nematodes g-1 soil 778 

dry mass in Adventdalen and 119 g-1 dry mass at Gluudneset (B. Sohlenius unpublished data), 779 

values similar to reports from other Arctic areas. Between 24 and 27 taxa of nematodes were 780 

identified. At both sites, the genera Eudorylaimus, Plectus and Teratocephalus were found in 781 

all samples examined and were amongst the most abundant taxa. In most samples, 782 

Adenophorea bacterial feeders and dorylaims were most abundant. Only very few 783 
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representatives of obligate plant parasitic nematodes were found. The fauna found thus 784 

closely resembles that of other cold areas both in the Arctic (Kuzmin, 1976; Procter, 1977; 785 

Sohlenius et al., 1997; Ruess et al., 1999a) and in the sub- and maritime Antarctic (Andrássy, 786 

1998; Convey and Wynn-Williams, 2002; Maslen and Convey, 2006). 787 

 788 

3.3.2. Animal parasitic taxa.  789 

The most detailed investigations of parasitic nematodes in Svalbard are from terrestrial 790 

mammals, where five species have been identified. Studies have focussed on the parasitic 791 

nematodes of the Svalbard reindeer (Rangifer tarandus plathyrynchus), and are reviewed by 792 

Halvorsen and Bye (1999). The abomasal nematode community consists of three polymorphic 793 

species of the order Strongylida, where two dimorphic and one trimorphic species have been 794 

identified with major and minor morphotypes. Additionally, Nematodirus eggs have also been 795 

found in faecal samples. The major morphs, O. gruhneri Skrjabin, 1929 and M. marshalli 796 

(Ransom, 1907), represent 95% of the parasite population in adult reindeer of both sexes. 797 

Ostertagia gruehneri is host specific to reindeer whilst M. marshalli has a wide host and 798 

geographical distribution, infecting both bovid and cervid species. It is typically a parasite of 799 

cold deserts (Halvorsen, 1986; Halvorsen and Bye, 1999; Irvine et al., 2000). The adult O. 800 

gruehneri load can reach up to 8,000 worms per adult reindeer, while that of M. marshalli can 801 

exceed 15,000 (Irvine et al., 2001). These nematodes have a direct life cycle in which 802 

transmission of the infective stage to the host occurs during grazing. Experimental work has 803 

implicated the parasite as a significant factor in regulating population dynamics of Svalbard 804 

reindeer through negative effects on fecundity (Irvine et al., 2000; Albon et al., 2002; Stien et 805 

al., 2002). As is common for most gut nematodes, O. gruehneri is transmitted in the summer 806 

when conditions are favourable for survival and development of the free-living stages in the 807 

terrestrial environment. Faecal egg densities in the summer vary between 124 – 241 eggs per 808 
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gram fresh weight (van der Wal et al., 2000) but no eggs are produced during the winter 809 

period (Irvine et al. 2001).  Providing a surprising contrast, therefore, M. marshalli is 810 

transmitted from October to April, which is also when peak egg output occurs at around 8 811 

eggs per gram faecal material (Irvine et al., 2000; 2001, Carlsson et al., 2012, 2013).  812 

 813 

Nematodes of the genus Trichinella are common throughout the world, with the species 814 

Trichinella nativa Britov and Boev, 1972 being the most common in the Arctic with the polar 815 

bear (Ursus maritimus) as the main reservoir. A recent sero-prevalance survey found a higher 816 

prevalence of this parasite in the Svalbard region (78%) than in the Barents Sea (east of 817 

longitude 30˚E) (51%) (Asbakk et al., 2010).  Ascaridoid nematodes, likely to be  818 

predominantly Toxascaris leonine (Linstow, 1902), have been found at a prevalence of 33% 819 

in the Arctic fox (Vulpes lagopus) (Stien et al., 2010). This is a common parasite of Arctic 820 

foxes and has a direct life cycle although it may also use rodents as a paratenic host. Other 821 

parasite species found in Arctic foxes from Spitsbergen include cestodes (Echinococcus 822 

multilocularis Leuckart, 1863, Taenia crassiceps (Zeder 1800), T. polycantha (Leucart, 823 

1856), T. krabbei Moniez 1879 and Diphyllobothrium sp.) and Ancanthocephala (Stien et al., 824 

2010). The taeniid tapeworm E. multilocularis is sylvatic, with foxes comprising the 825 

definitive host and the vole Microtus levis (initially described as Microtus 826 

rossiaemeridionalis) the secondary host. The vole-transmitted cestodes, E. multilocularis, T. 827 

crassiceps and T. polycantha, decrease in prevalence in the fox population with increasing 828 

distance from the intermediate host population (Stien et al., 2010) which is extremely 829 

restricted in Svalbard and centered on the abandoned coal mine at Grumont, Isfjord 830 

(Henttonen et al., 2001). The local conditions here enable the survival of the vole, but it is 831 

thought unlikely to be able to expand its range (Fuglei et al., 2008).  Echinococcus 832 
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multilocularis is known from Novaya Zemlya (Davidson et al., 2012) but is unlikely to be 833 

present in Franz Josef Land due to the lack of intermediate host.  834 

 835 

Helminth parasites of the Svalbard reindeer include Moniezia benedina Moniez, 1872 and 836 

Taenia ovis krabbei (Moniez, 1879) Verster, 1969 (Bye, 1985).  Moniezia benedina is present 837 

in around 43% of Svalbard reindeer, a similar level of infection as observed in Greenland 838 

(Bye, 1985).  Moniezia benedina forms a link with the soil microarthropod fauna as oribatid 839 

mites comprise the intermediate host. Taenia ovis krabbei appears to have large population 840 

cycles, with infection rates between 1981 and 1982 decreasing from 61% to 29% (Bye, 1985).   841 

 842 

The fauna of parasitic nematodes identified in the seabirds of the Barents Sea archipelagoes 843 

consists of predominantly widespread species (Kuklin and Kuklina, 2005). For some 844 

(Anisakis sp. and Hysterothylacium aduncum (Rudolphi, 1802)) birds are not primary hosts 845 

but the nematodes may enter together with ingested fish.  The first records of parasitic 846 

helminths from seabirds in the Barents Sea region were obtained from material collected off 847 

the western coast of Svalbard during the Swedish Zoological Expedition of 1900 (Odhner, 848 

1905; Zschokke, 1903).  Since then, there have been few studies of the avian helminthofauna 849 

of Svalbard (Kuklin et al., 2004; Kuklin and Kuklina, 2005).  Markov (1941) published on the 850 

helminthofauna of Novaya Zemlya (from Bezymyannaya Bay, on the South Island) (Fig. 3) 851 

while Kuklin surveyed the helminth fauna of seabirds from Archangelskaya Bay (North 852 

Island) (Kuklin 2000, 2001). In 1926, Skryabin published an examination of the 853 

helminthological collections of the Sedov expeditions to the North Pole (1912-1914) and it is 854 

likely that the majority of this material was collected from Franz Josef Land.  More recent 855 

studies were performed in Franz Josef Land in 1990-93 (Galaktionov and Marasaev, 1992; 856 

Galaktionov, 1996).   857 
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 858 

Throughout the archipelagoes of the Barents Sea, parasitilogical studies exist from 11 species 859 

of seabirds (Markov, 1941; Galaktionov, 1996; Kuklin, 2001; Kuklin et al., 2004). From 860 

these, 47 species of parasitic worm species comprising 10 trematodes, 23 cestodes, 10 861 

nematodes and four acanthocephalans have been identified.   A characteristic feature of the 862 

helminthofauna of seabirds in Arctic regions, noted for North Island of Novaya Zemlya and in 863 

Franz Josef Land (Galaktionov, 1996; Kuklin, 2001), is the extremely low species diversity of 864 

the trematode fauna. This is likely due to the lack of intermediate hosts, predominantly littoral 865 

molluscs, in Arctic ecosystems (Dunton, 1992) and the extreme climatic conditions 866 

preventing completion of the life cycle; primarily by restricting free-swimming larval stages 867 

(Baer, 1962; Galaktionov and Bustness, 1999).   868 

 869 

Typical of the cestodes from seabirds in the northern archipelagoes is their broad range of 870 

host species. For example, Microsomacanthus diorchis (Fuhrmann, 1913) (otherwise specific 871 

for anatides) and Arctotaenia tetrabothrioides (Loenberg, 1890) (previously found only in 872 

waders) are recorded parasitizing glaucous gulls (Larus hyperboreus) on Spitsbergen and 873 

Microsomacanthus ductilus (Linton, 1927) (a widespread parasite of gulls) is found in 874 

common eiders (Somateria mollissima) and Brünnich’s guillemots (Uria lomvia) in Franz 875 

Josef Land (Galaktionov, 1996; Kuklin et al., 2004). This ability is likely to enhance their 876 

persistence at the northern boundary of their distribution 877 

 878 

 879 

3.4. Oligochaeta  880 

Enchytraeids are engaged both directly and indirectly in decomposition processes and nutrient 881 

mineralization in the soil (Williams and Griffiths, 1989).  Records of Enchytraeidae from 882 
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Svalbard are to date limited to Spitsbergen, and other regions of Svalbard are poorly 883 

investigated.   Early records from Svalbard include those of Michaelsen (1900), Ude  (1902) 884 

and Stephenson (1922, 1924, 1925). During the 1990s several locations were intensively 885 

sampled for enchytraeids (Adventdalen, Bjørndalen, Grumant and Ny-Ålesund), recording 13 886 

species of which two (Mesenchytraeus argentatus Nurminen, 1973, Bryodrilus parvus 887 

Nurminen, 1970) were new to Spitsbergen (Birkemoe and Dozsa-Farkas, 1994; Sømme and 888 

Birkemoe, 1997; Birkemoe et al., 2000).  In total, 42 species of Enchytraeidae from nine 889 

genera have been recorded from Spitsbergen (Nurminen, 1965; Birkemoe and Dozsa-Farkas, 890 

1994; Sømme and Birkemoe, 1997; Birkemoe et al., 2000; Coulson et al., 2013a). Even with 891 

the limited sampling available, their diversity in Spitsbergen is high compared to other High 892 

Arctic locations, for example north-eastern Greenland and the Arctic archipelagoes of Canada 893 

where only 12 and 18 species have so far have been reported, respectively (Christensen and 894 

Dozsa-Farkas, 2006; Sørensen et al., 2006). All the recorded genera in Spitsbergen are 895 

Holarctic, but the common and widely distributed genus Achaeta has so far not been recorded 896 

in Svalbard or at any other High Arctic location.  It is also noteworthy that Cognettia 897 

sphagnetorum (Vejdovsky, 1878) has only been recorded once from a single location on 898 

Spitsbergen despite this species being abundant in cold and wet environments such as 899 

heathland, tundra and boreal forest throughout the sub-Arctic (Nurminen, 1966, 1967; 900 

Maraldo and Holmstrup, 2010). In general, members of the enchytraeid fauna of Spitsbergen 901 

are also found in northern Europe, and it has been suggested that the entire Oligochaeta fauna 902 

is of recent origin (Nurminen, 1965; Christensen and Dozsa-Farkas, 2006).  No data are 903 

available from Franz Josef Land and Novaya Zemlya.  904 

 905 

Nurminen (1965) reported the observation of a single damaged and undeterminable lumbricid 906 

on Spitsbergen, while Coulson et al. (2013a,b) recently recorded two species, Dendrodrilus 907 
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rubidus (Savigny, 1826) and Dendrobaena hortensis (Michaelsen, 1890), in anthropogenic 908 

soils below the abandoned cowsheds in Barentsburg.  These latter species appear to have been 909 

introduced to Svalbard with imported soils for the greenhouse or fodder and have not been 910 

recorded beyond the unusual manure-augmented soils in the town. Lumbricidae have also 911 

been observed in Novaya Zemlya where Dendrobaena octaedra (Savigny, 1826) is recorded 912 

(Stöp-Bowitz, 1969).   913 

 914 

3.5. Tardigrada  915 

The Tardigrada is a relatively small group of micrometazoans that contains more than 1,000 916 

described species (Degma et al., 2013). Tardigrades are known from almost all ecosystems, 917 

from polar and high altitude regions to the tropics on land, and to the abyssal depths in the 918 

sea. Terrestrial species are most often encountered in mosses, lichens and liverworts but they 919 

can be found also in leaf litter and soil. Freshwater and marine species can be found in 920 

sediment, on aquatic plants and sometimes in the pelagic zone. A particular feature of 921 

tardigrades is their high tolerance to unfavorable environmental conditions, including 922 

desiccation, freezing and radiation stresses, in some cases being able to tolerate exposure to 923 

levels of these stresses (such as being submerged in liquid nitrogen, liquid helium or the 924 

vacuum of space) that lie well beyond the extreme values ever naturally experienced. They 925 

have the ability to enter different types of anabiotic states (anabiosis) in response to these 926 

stressors, but they can also survive some extremes in an active state (Wełnicz et al., 2011). 927 

 928 

Although terrestrial and freshwater Tardigrada have been studied in Arctic regions since the 929 

early Twentieth Century only fragmentary and mostly faunistic data are available. The most 930 

frequently studied Arctic regions are the Svalbard archipelago and Greenland, but some 931 

studies have also addressed Arctic regions of Canada, Jan Mayen, Franz Josef Land and 932 
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Novaya Zemlya (McInnes, 1994), and Alaska (Johansson et al., 2013). Around 200 terrestrial 933 

and freshwater tardigrade species have been recorded from Arctic regions (Pugh and 934 

McInnes, 1998) 935 

 936 

The first record of terrestrial tardigrades in Svalbard is that of Scourfield (1897) describing 937 

the new species Testechniscus spitsbergensis (Scourfield, 1897), while Richard (1898) 938 

reported the first freshwater tardigrade from Spitsbergen, Dactylobiotus macronyx (Dujardin, 939 

1851). Increasingly intensive studies were conducted during the Twentieth Century. Early 940 

papers of Murray (1907) and Richters (1903, 1904, 1911), were followed by studies from a 941 

number of authors (Marcus, 1928; Węglarska, 1965; Binda et al., 1980; Pilato et al., 1982; 942 

Dastych, 1983, 1985; Klekowski and Opaliński, 1986, 1989; Pilato and Binda, 1987; De Smet 943 

et al., 1987, 1988; Van Rompu and De Smet, 1988, 1991, 1994; De Smet and Van Rompu 944 

1994; Maucci, 1996; Pugh and McInnes, 1998; Łagisz, 1999; Tumanov, 2006; Smykla et al., 945 

2011; Kaczmarek et al., 2012; Zawierucha et al. in press). Most of these studies were limited 946 

to reports and descriptions of new species, and only Węglarska (1965), Dastych (1985), 947 

Maucci (1996); Pugh and McInnes (1998) and Kaczmarek et al. (2012) undertook more 948 

comprehensive studies, including discussion of ecology, origin of the Arctic Tardigrada, and 949 

remarks on taxonomy and zoogeography. The majority of studies have concentrated on the 950 

largest island in the archipelago, Spitsbergen, and only De Smet et al. (1988) and Van Rompu 951 

and De Smet (1988, 1991, 1994) studied freshwater tardigrades on other islands in the 952 

archipelago, including Barentsøya, Bjørnøya, Edgeøya and Hopen. Across all these studies, 953 

89 Tardigrade taxa have been reported, although some older reports have not been verified 954 

based on modern taxonomy (Kaczmarek et al., 2012). Among the species known from this 955 

region, 17 were described as new to science and four are currently considered endemic. It is 956 
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clear that Svalbard has been studied very selectively and a comprehensive study of the entire 957 

archipelago is still required.  958 

 959 

The tardigrades of Franz Josef Land have been reported only by Murray (1907) and Richters 960 

(1911). Murray (1907) reported 21 taxa (19 species and two varietas) of which, based on 961 

modern taxonomy, 17 species are currently valid. Richters (1911) reported a total of seven 962 

taxa (six currently valid species). Therefore, in total, only 19 species are currently known 963 

from Franz Josef Land. 964 

 965 

Older studies of the tardigrades of Novaya Zemlya are again limited to Murray (1907) and 966 

Richters (1911), who reported a total of eight species. Biserov (1996, 1998) published the first 967 

modern studies of Tardigrada from Novaya Zemlya, reporting 42 species. Biserov (1999) then 968 

reviewed the available knowledge of Novaya Zemlya tardigrades.  Based on all published 969 

papers, 81 taxa (68 valid species) are currently known from this archipelago, including one 970 

marine taxon, eight marked as “cf.”, “gr.” or “aff.” (uncertain identification) species and four 971 

taxa identified only to the genus level. 972 

 973 

3.6. Chelicerata 974 

3.6.1. Acari  975 

3.6.1.1. Mesostigmata 976 

The first records of mesostigmatid mites from Svalbard are those of Trouessart (1895), who 977 

reported Uroseius acuminatus (C.L. Koch, 1847) and Laelaps sp. In early publications 978 

classifying the natural communities of Svalbard, Summerhayes and Elton (1923, 1928) 979 

recorded Haemogamasus ambulans Thorell, 1872.  Thor (1930) described two genera 980 

(Arctoseius, Vitzthumia) and four species new to science from Svalbard. Unfortunately, the 981 
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type material has not survived (Winston, 1999) and the original photographic documentation 982 

included in the study is inadequate for verification and revision of these species.  The status of 983 

the type species of the genus Arctoseius, A. laterincisus Thor, 1930, is therefore unclear as 984 

this species has not been observed since its initial description, although nine other species of 985 

Arctoseius are now known from the archipelago (Ávila-Jiménez et al., 2011). Lindquist and 986 

Makarova (2011) considered that, although the genus Arctoseius was established on a 987 

presumed monotypy, the type series could include specimens of two (or several) 988 

morphologically similar species.  989 

 990 

More recent studies have included further descriptions of new species or redescription 991 

(Hirschmann, 1966; Petrova and Makarova, 1991; Gwiazdowicz and Rakowski, 2009; 992 

Gwiazdowicz et al. 2011a, b; Lindquist and Makarova, 2011), faunistic records (Makarova, 993 

1999, 2000a, 2000c, 2011, 2012; Gwiazdowicz and Gulvik, 2008; Gwiazdowicz et al., 2009, 994 

2012a, 2012b; Coulson et al., 2011), and the ecology of the group, especially in soil 995 

communities (Byzova et. al., 1995; Gwiazdowicz and Coulson, 2011), the specific parasitic 996 

complex associated with the introduced vole, Microtus levis (Krumpàl et al., 1991) and 997 

phoretic associations with Diptera (Gwiazdowicz and Coulson, 2010). 998 

 999 

Twenty-nine species of mesostigmatid mites are currently known from Svalbard, with two 1000 

apparently restricted to Bjørnøya (Summerhayes and Elton, 1923, 1928; Ávila-Jiménez et al., 1001 

2011, Gwiazdowicz et al., 2012a, 2012b; Makarova, 2013; Coulson et al., 2013b). This 1002 

diversity is comparable with that of other High Arctic sites such as Ellesmere Island and 1003 

northern Taymyr (Makarova, in press). The majority of these species are characteristic of 1004 

polar areas, but many (44%) also have European or Holarctic temperate, boreal or polyzonal 1005 

distributions.  Four vertebrate parasitic species are present, usually associated with bird nests 1006 
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or small mammals (Krumpàl et al., 1991), and one ectoparasite of birds (Gwiazdowicz et al., 1007 

2012a). Phoresy is also known, for example Thinoseius spinosus (Willmann, 1939). This 1008 

species, usually found on the Holarctic seashore and dispersing on various species of Diptera 1009 

(Makarova and Böcher, 2009), has been found on the calliphorid fly Protophormia 1010 

terraenovae (Robineau-Desvoidy, 1830) (Gwiazdowicz and Coulson, 2010).  1011 

 1012 

Along the western coasts of the Svalbard archipelago, which experience a milder climate, a 1013 

relatively high mesostigmatid diversity is present but, in constrast, in polar desert landscapes 1014 

only five gamasid species were recorded by Ávila-Jiménez et al. (2011). Population densities 1015 

on this milder coast of Spitsbergen vary widely between habitats, from 20 to 4,200 individuals 1016 

m-2, with the maximum density recorded being found in mossy vegetation near a colony of 1017 

little auks (Alle alle) (Seniczak and Plichta, 1978; Byzova, et al., 1995). High density (1,000-1018 

1,840 individuals m-2) and species diversity have also been observed at other locations with 1019 

rich vegetation cover (Byzova et al., 1995; Ávila-Jiménez et al., 2011). Poorly vegetated areas 1020 

such as saline meadows generally contain fewer species and lower densities (Gwiazdowicz 1021 

and Coulson, 2011).  1022 

 1023 

There are no detailed investigations of gamasid mites in the Novaya Zemlya archipelago. The 1024 

first information, based on material of large-scale Arctic expeditions, was published in the 1025 

late Nineteenth and early Twentieth Centuries (L. Koch, 1879; Trägårdh, 1904, 1928) and 1026 

cited only five species. A further nine species were identified during the revision of High 1027 

Arctic Arctoseius species from the collections of V.I. Bulavintsev (Makarova, 2000b, 2000c; 1028 

Lindquist and Makarova, 2011). Thirteen additional species have been found in samples 1029 

collected by G.V. Khakhin and S.V. Goryachkin. The total number of species of 1030 

Mesostigmata from Novaya Zemlya now numbers 27, similar number to the diversity on 1031 
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Svalbard (Ávila-Jiménez et al., 2011).  Considering the long latitudinal gradient, providing a 1032 

range of environmental conditions, and the current lack of acarological studies, this number is 1033 

likely to increase. Eleven species of gamasid are common to both Novaya Zemlya and 1034 

Svalbard (Makarova, 2009). Unlike Svalbard, the South Island of the Novaya Zemlya 1035 

archipelago was mainly free of ice during the LGM (Velichko, 2002), retaining shrub 1036 

vegetation (Serebryanny et al., 1998). This, as well as subsequent immigration, may explain 1037 

the presence of bumble bees, lemmings and their associated gamasid mite fauna (members of 1038 

genera Laelaps, Parasitellus, Melichares), in Novaya Zemlya. With the exception of L. 1039 

hilaris, associated with the introduced vole in the derelict mining town of Grumant (Krumpàl 1040 

et al. 1991), these genera are absent in Svalbard (Ávila-Jiménez et al., 2011). In both 1041 

archipelagoes a third of the gamasid species belong to the genus Arctoseius, most of which 1042 

(61-74%) have Arctic or alpine ranges. 1043 

 1044 

Six species of gamasid mites are recorded from Franz Josef Land (Bulavintsev and Babenko, 1045 

1983; Makarova, 1999, 2000c, 2013), five of which belong to the genus Arctoseius and one to 1046 

Zercon (Z. michaeli Halaškova, 1977). 1047 

 1048 

3.6.1.2. Ixodida  1049 

The bird tick Ixodes uriae (White, 1852) is common on seabirds breeding on Bjørnøya but has 1050 

only recently begun to be observed in large numbers in colonies on Spitsbergen (Coulson et 1051 

al., 2009). It is unclear why the tick populations in the northern regions of Svalbard are 1052 

becoming more apparent but a recent study has implicated warmer winters (Descamps, 2013). 1053 

Ixodes uriae is very widely distributed, circumpolar and bipolar, but recorded only from 1054 

marine birds and their breeding sites. The species is reported from 52 bird species, the main 1055 

hosts being auks, tube-nosed sea birds, cormorants, seagulls and penguins. In the north 1056 
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Atlantic, ticks are most common on guillemots (Uria aalge, U.  lomvia), black guillemot 1057 

(Cepphus grylle), razorbill (Alca torda), puffin (Fratercula arctica) and herring gull (Larus 1058 

argentatus) (Mehl and Traavik, 1983). 1059 

 1060 

3.6.1.3. Oribatida 1061 

The Oribatida is a suborder of the Sarcoptiformes (Krantz and Walter, 2009). They are often 1062 

the dominant arthropod group in soil-litter systems, including those of the High Arctic and 1063 

maritime Antarctic (Block & Convey, 1995; Norton and Behan-Pelletier, 2009).  Early 1064 

records of oribatids from Svalbard date back to Thorell (1871), who described four species 1065 

new to science of which three, Diapterobates notatus (as Oribata notata), Ameronothrus 1066 

lineatus (as Eremaeus lineatus) and Hermannia reticulata are common throughout the 1067 

archipelago.  Thorell also described Camisia borealis from the islands, a species which is 1068 

thought today to be within the variability of Camisia horrida (Hermann 1804) (Seniczak et 1069 

al., 2006). Following on from Thorell, various reports discussing Oribatidae from Svalbard 1070 

appeared (for example Trouessart, 1895; Trägårdh, 1904; Hull, 1922; Summerhayes and 1071 

Elton, 1923, 1928; Thor, 1930, 1934; Hammer, 1946). Additional reports during the past 50 1072 

years (for example Forsslund, 1957, 1964; Block, 1966; Karppinen, 1967; Niedbała, 1971; 1073 

Solhøy, 1976; Seniczak and Plichta, 1978; Byzova et al., 1995) have resulted in a current 1074 

inventory of 81 species of oribatid mites belonging to 17 superfamilies and 25 families from 1075 

Svalbard (Bayartogtokh et al., 2011). However, these authors did not include several known 1076 

representatives of the genera Brachychthonius, Spatiodamaeus, Achipteria (mentioned in 1077 

Lebedeva et al., 2006); Gymnodamaeus and Microtritia (in Seniczak and Plichta, 1978) or 1078 

Berniniella sp. (in Coulson, 2007a). With inclusion of these taxa the checklist of oribatid 1079 

mites of Svalbard includes 87 species from 17 superfamilies and 27 families. However, 1080 

taxonomic confusion remains a significant problem with the current inventory. For example, 1081 
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the genus Camisia requires revision based on modern taxonomic methodologies 1082 

(Bayartogtokh et al., 2011). For others, the species status is currently being debated, for 1083 

example Bayartogtokh et al. (2011) regards Moritzoppia neerlandica (Oudemans, 1900) and 1084 

Oppia translamellata Willmann, 1923 as the same species (neerlandica) while Weigmann 1085 

(2006) regards them as separate species.  Such confusion is mirrored in other species and 1086 

genera of oribatid mites. Often the specimens originally described or identified no longer 1087 

exist. A new inventory based on fresh material lodged in appropriate museums is urgently 1088 

required.   1089 

 1090 

The density of oribatid mites in the Arctic tundra of Svalbard is quite high, often between 1091 

9,168  to 81,400 individuals m-2 (Seniczak and Plichta, 1978; Byzova et al., 1995), 1092 

comparable with values recorded in the northern tundra of the European part of Russia 1093 

(Melekhina and Zinovjeva, 2012). These values are also comparable with studies in the 1094 

maritime Antarctic, where oribatid mites are one of the dominant groups of the terrestrial 1095 

invertebrate fauna (e.g. Block and Convey, 1995; Convey and Smith, 1997). 1096 

 1097 

Recent work on the oribatids of Svalbard has focused on ornithogenic substrates (Lebedeva 1098 

and Krivolutsky, 2003; Lebedeva et al., 2006, Pilskog, 2011) and has implicated phoresy with 1099 

migrating birds as a possible dispersal pathway for soil mites from the mainland to remote 1100 

Arctic islands and archipelagos (Lebedeva and Lebedev, 2008). 1101 

 1102 

Oribatid mite research commenced in the Russian Arctic in the late Nineteenth to early 1103 

Twentieth Centuries. The first information concerning the oribatid mites of Novaya Zemlya 1104 

were published by L. Koch (1879) who identified and described mites that Nordenskiöld 1105 

collected during the Swedish Arctic expedition of 1875. L. Koch named seven species of 1106 
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oribatid mites for Novaya Zemlya. He described three species new to science, Ceratoppia 1107 

sphaerica (L. Koch, 1879) (as Oppia sphaerica), Oromurcia lucens (L. Koch, 1879) (as 1108 

Oribata lucens) and Platynothrus punctatus (C. L. Koch, 1839), (as Nothrus punctatus). 1109 

Furthermore, he described as new to science the species Oribata crassipes. Later Trägårdh 1110 

(1904) identified this species as the variable species Notaspis exilis Nicolet 1855, now 1111 

transferred to the genus Zygoribatula.  L. Koch also recorded Ameronothrus lineatus (Thorell, 1112 

1871) (as Eremaeus lineatus), Camisia borealis (Trägårdh, 1902),  Nothrus borealis (Thorell, 1113 

1871) and Diapterobates notatus (Thorell, 1871) (as Oribata notata) from Novaya Zemlya. 1114 

Further information on the oribatid mites of Novaya Zemlya appeared in Trägårdh (1901, 1115 

1904, 1928). Based on museum collections of Nordenskiöld’s samples, Trägårdh (1904) noted 1116 

nine species from Novaya Zemlya. However, three of these (Ameronothrus nigrofemoratus L. 1117 

Koch, 1879, Hermannia reticulata Thorell, 1871 and Hermannia scabra L. Koch, 1879) 1118 

Nordenskiöld were collected from the island of Vaigach which is not formally part of the 1119 

Novaya Zemlya archipelago (Kох, 1879).  Intensive studies of soil oribatid mites on the 1120 

islands and archipelagoes of the Russian sector of the Arctic were carried out during 1989-1121 

2003.  Krivolutsky and Kalyakin (1993) found 23 species of oribatid mites in Novaya 1122 

Zemlya. Krivolutsky et al. (2003) presented a summary checklist of oribatid mites from the 1123 

Russian Arctic reporting 58 taxa of oribatid mites, of which 52 were identified to species and 1124 

six identified to genus from 27 families in Novaya Zemlya. Currently, 64 oribatid mite taxa, 1125 

of which 58 are identified to species, representing 28 families are known from Novaya 1126 

Zemlya. 1127 

 1128 

Less is known for Franz Josef Land than from Svalbard or Novaya Zemlya.  In his 1129 

monograph Trägårdh (1904) recorded two species of oribatid mite from Franz Josef Land: D. 1130 

notatus and Oribata fischeri Michael (the current taxonomic status of the latter is unclear). 1131 
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Krivolutsky and Kalyakin (1993) recorded one species of oribatid mite (Fuscozetes sellnicki 1132 

Hammer, 1952) from Franz Josef Land.	The 15 taxa now known include nine identified to 1133 

species and six identified to genus level representing 13 families of oribatid mites 1134 

(Krivolutsky et al., 2003). Further investigations in Novaya Zemlya and Franz Josef Land will 1135 

undoubtedly increase the species inventories of these archipelagos. 1136 

 1137 

In the three archipelagos the greatest number of species belong to the families 1138 

Brachychthoniidae, Camisiidae, Oppiidae, Suctobelbidae and Ceratozetidae, as is also seen in 1139 

the mite communities of the European mainland tundra of the Arctic (Melekhina, 2011). 1140 

Thirty nine species of oribatid mites are common to both Svalbard and Novaya Zemlya 1141 

(representing 48% of the 81 species of Svalbard and 67% of the 58 species of Novaya 1142 

Zemlya). The oribatid mite fauna of Svalbard shows only a low similarity to the fauna of the 1143 

continental tundra. Of the 81 species of oribatid mites in Svalbard, only 36 (44%) were found 1144 

in the tundra of the Kola Peninsula, although caution must be applied in interpreting these 1145 

figures given the taxonomic challenges described earlier in this section.  Most of the oribatid 1146 

mites in the three archipelagoes are Holarctic and cosmopolitan in distribution. Only a few are 1147 

restricted to the Arctic, for example Ceratozetes spitsbergensis (Thor, 1934), Svalbardia 1148 

paludicola (Thor, 1930), Autogneta kaisilai, Oribatella arctica (Thor, 1930), Ceratoppia 1149 

sphaerica (Koch, 1879), Iugoribates gracilis (Sellnick, 1944) and Trichoribates setiger 1150 

(Trägårdh, 1910) from Svalbard, while only two species found in Novaya Zemlya are truly 1151 

Arctic, S. paludicola and O. arctica.  1152 

 1153 

 1154 

3.6.1.4. Trombidiformes   1155 

 1156 
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 1157 

 1158 

3.6.2. Araneae   1159 

Spiders are major invertebrate predators in virtually all terrestrial ecosystems on Earth (with 1160 

the exception of Antarctica) (Oedekoven and Joern, 2000; Platnick, 2012). They have filled a 1161 

large spectrum of niches and recent research suggests they may have an important control 1162 

function on their prey populations. Spiders possess good dispersal abilities and are amongst 1163 

the first colonisers of new ground revealed by retreating glaciers in Svalbard (Hodkinson et 1164 

al., 2001). In common with other groups of animals and plants, their diversity generally 1165 

decreases with latitude and tropical faunas are by far the most diverse. However, one 1166 

important family, the Linyphiidae (dwarf spiders and sheet-weavers) second only to the 1167 

jumping spiders (Salticidae) in terms of species numbers (Platnick, 2012), reaches its highest 1168 

species diversity in the northern region of the Northern Hemisphere (van Helsdingen, 1984) 1169 

and attains dominant levels furthest north. The Linyphiidae is also the only family of Araneae 1170 

represented in the sub-Antarctic islands (Pugh, 1994).  1171 

 1172 

The spider fauna of the Svalbard archipelago is comparatively well known. Holm (1958) 1173 

provided a review of earlier literature and reported a total of 15 species. Since then only two 1174 

further species have been reported, Oreoentides vaginatus (Thorell, 1872) from the warm 1175 

spring area in Bockfjorden (Tambs-Lyche, 1967) and Thanatus formicinus (Clerck, 1757) 1176 

from Ny-Ålesund (Aakra and Hauge, 2003). Of this total of 17 species, three are clearly 1177 

introduced to Svalbard (see Holm, 1958; Aakra and Hauge, 2003) - Hahnia helveola Simon, 1178 

1875, Tapinocyba insecta (L. Koch, 1869) and T. formicinus. The 14 naturally occurring 1179 

species are all Arctic-alpine in distribution and all, except one, belong to the Linyphiidae. The 1180 

exception, Micaria constricta (Emerton, 1882) (previously listed as M. eltonii Jackson, 1922, 1181 
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for example by Aakra and Hauge, 2003), belongs to the ground spider family Gnaphosidae. It 1182 

is so far only known from a few localities around Billefjorden in Spitsbergen. Given the total 1183 

area of Svalbard, the spider fauna is impoverished, probably a result of  both environmental 1184 

severity and geographic isolation.  Most spiders are widely distributed across the archipelago 1185 

but some have only been found in one or a few localities. Other than M. constricta, 1186 

geographically restricted species include O. vaginatus, Collinsia thulensis (Jackson, 1924) 1187 

and Walckenaeria karpinskii (O. P. Cambridge, 1873). The most common and widely 1188 

distributed species, Collinsia spetsbergensis (Thorell, 1872), Erigone arctica palaearctica 1189 

Braendegaard, 1934, E. psychrophila Thorell, 1872, Hilaria glacialis (Thorell, 1871) and 1190 

Mughiphantes sobrius (Thorell, 1872), are recorded from all, or most of, the major islands. 1191 

 1192 

The majority of spider species known from Svalbard are also found in northern Fennoscandia 1193 

and neighboring parts of Russia, but there are three exceptions, Collinsia thulensis (Jackson, 1194 

1934), Hilaira glacialis (Thorell, 1871) and Mughiphantes sobrius (Thorell, 1872). These are 1195 

High Arctic species also known from Alaska, Canada and Greenland (C. thulensis) and 1196 

Russia (H. glacialis and M. sobrius), but not currently from Fennoscandia (see Platnick, 1197 

2012). The native species are all found below rocks and in the sparse vegetation cover. One, 1198 

O. vaginatus, may be restricted to warm spring habitats where a more diverse flora and fauna 1199 

can be found. Although known native diversity in this group is unlikely to increase 1200 

significantly, there are areas of Svalbard that are insufficiently studied and which may yield 1201 

new species. As with work on many groups, most investigations have concentrated on the 1202 

main island, Spitsbergen (see Hauge and Sømme, 1997), and any future studies targeting 1203 

spider diversity should be focussed on the remaining islands and, in particular, their 1204 

easternmost parts including Kong Karls Land, Svenskøya and Hopen.  1205 

 1206 
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The spider fauna of Novaya Zemlya is also well-studied, comprising 20 species of linyphiids, 1207 

only eight of which are in common with Svalbard. These shared species are all widespread 1208 

Arctic species (Agyneta nigripes, Collinsia holmgreni, C. spetsbergensis, Erigone arctica 1209 

palearctica, E. psychrophila, E. tirolensis, Hilaira glacilalis and M. sobrius) (see 1210 

Tanasevitch, 2012), and are likely to be excellent aerial dispersers. The spider fauna of 1211 

Novaya Zemlya includes some species near their western limit in Europe and that do not 1212 

occur on Svalbard, including Erigone remota, Collinisa borea, C. proletaria, 1213 

Hybauchenidium aquilonare, Masikia indistincta, Oreoneta leviceps, Praestigia groenlandica 1214 

and Semljicola arcticus (see Nentwig et al., 2012). This fauna is clearly strongly influenced 1215 

by that of the adjacent continental mainland.  1216 

 1217 

In clear contrast with both Svalbard and Novaya Zemlya, only two species of spider have 1218 

been recorded from Franz Josef Land (Tanasevitch, 2012). These species, C. spetsbergensis 1219 

and E. psychrophila, are, as previously mentioned, common and widespread species in the 1220 

region. 1221 

 1222 

3.7 Hexapoda 1223 

3.7.1 Collembola 1224 

The first comprehensive collections of Collembola from the European Arctic were those of 1225 

the Swedish Nordenskiöld expeditions along the north coast of Russia during 1875-1880. The 1226 

pioneering work of Tullberg (1876) reported 15 species from Novaya Zemlya and five from 1227 

Svalbard. Prior to that, Boheman (1865) was the first to record a collembolan from Svalbard, 1228 

“Podura hyperborea”, a taxon which has subsequently proved impossible to determine under 1229 

current taxonomy. Schött (1899) reported four species from Franz Josef Land. Other major 1230 

works from this initial phase of Arctic exploration include those of Schäffer (1895, 1900), 1231 
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Skorikow (1900) and Lubbock (1898).  In the period 1900-1960 the faunistics and 1232 

biogeography of the Arctic archipelagoes were further elaborated, in particular in the Atlantic 1233 

sector of the Arctic (Brown, 1936; Carpenter, 1900, 1927; Carpenter and Phillips, 1922; 1234 

Schött, 1923; Zschokke, 1926; Thor, 1930; Linnaniemi, 1935a, b). Stach (1962) and Valpas 1235 

(1967) provided good overviews of the Svalbard springtail fauna and Fjellberg (1994) 1236 

provided the first illustrated identification key to the Collembola species from the Norwegian 1237 

Arctic islands.  A recent inventory of the Svalbard fauna was published by Coulson and 1238 

Refseth (2004), while Babenko and Fjellberg (2006) provided an extensively referenced 1239 

catalogue of the Collembola of the whole circumpolar Arctic.  From 1960 onwards the focus 1240 

of research shifted to understanding the ecological functions of soil invertebrates in the Arctic 1241 

and the physical and genetic mechanisms underlying distributional patterns (Ávila-Jiménez, 1242 

2011).  1243 

 1244 

A critical review of published and unpublished species lists from Svalbard results in 68 1245 

recognized species including a few probably introduced species. Corresponding numbers 1246 

from Novaya Zemlya and Franz Josef Land are 53 and 14. Franz Josef Land clearly has a 1247 

depauperate fauna consisting of mainly circumpolar species. Two of these, Hypogastrura 1248 

trybomi (Schött, 1893) and Vertagopus brevicaudus (Carpenter, 1900) are not present in 1249 

Svalbard although they are known from both the Russian and Canadian sectors of the Arctic. 1250 

The springtail fauna of Novaya Zemlya has clear affinities to the rich fauna of the northern 1251 

parts of the Russian mainland. Almost 60% of the species from Novaya Zemlya (33 of the 53 1252 

species) are not recorded from Svalbard. These include a large proportion of boreal species 1253 

which also are not known from Fennoscandia. Similarly, more than 70% of the Svalbard 1254 

fauna (49 of its 68 species) are not recorded from Novaya Zemlya, illustrating the strong 1255 

North Atlantic influence on the Svalbard springtail fauna. The proportion of true Arctic (i.e. 1256 
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not recorded from the Fennoscandian mainland) species in Svalbard is low, only 14 of 68 1257 

species (21%). Most of these are more or less circumpolar in distribution, although there is a 1258 

small but significant group with an eastern Palearctic affinity which appears to show a 1259 

distribution restricted to the eastern part of Svalbard.  1260 

 1261 

The long history of human presence in Svalbard may have resulted in introduction and 1262 

subsequent dispersal of new Collembola species. Some of these may have become naturalized 1263 

to such a degree that their dispersal history is no longer evident. Others may still be present 1264 

only in their original locations. Recently, five species new to Svalbard were identified in 1265 

imported soils in the Russian settlement in Barentsburg (Coulson et al., 2013a). One of these, 1266 

Deuteraphorura variablis (Stach, 1964), is not present in Fennoscandia but is well known as a 1267 

species associated with human settlements in mainland Europe. This species is also common 1268 

in several natural northern communities of the European part of Russia, the Karelian coast of 1269 

the White Sea (Pomorski and Skarzynski, 1995), flood-lands in northern taiga of the Komi 1270 

Republic (Taskaeva, 2009) and coastal tundra of the same region (Taskaeva and Nakul, 2010) 1271 

Pomorski and Skarzynski (2001) reported the species as being particularly common in 1272 

ornithogenic soils of the Karelian coast of the White Sea. Now that it has achieved a foothold 1273 

on Svalbard, it may have the potential of becoming established as an invasive species in 1274 

nutrient-enriched soils near seabird colonies. The widespread boreal species Vertagopus 1275 

pseudocinereus Fjellberg, 1975 was originally reported from under bark on imported timber 1276 

at Ny-Ålesund (Fjellberg, 1975) but is unlikely to become naturalised in Svalbard and has not 1277 

been recorded since. 1278 

 1279 

Collembola may attain very high population densities. In Svalbard densities of almost 1280 

600,000 individuals m-2 have been reported in enriched moss tundra beneath bird cliffs 1281 
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(Bengtson et al., 1974; Byzova et al., 1995) while in ornithogenic substrates in Novaya 1282 

Zemlya, Babenko and Bulavintsev (1993) observed densities of 1,200,000 individuals m-2. 1283 

With the absence of large detritivores such as earthworms and terrestrial isopods the 1284 

Collembola may assume a major role in primary decomposition and mineralization of plant 1285 

material, though their precise contribution is yet to be quantified. The abundance and easy 1286 

accessibility of surface-active species are exploited by feeding birds such as the purple 1287 

sandpiper (Bengtson et al., 1975; Leinaas and Ambrose, 1992, 1999). 1288 

 1289 

The very obvious patchiness of habitats and the sharp environmental gradients have been the 1290 

focus for several studies regarding population dynamics and structure (Birkemoe and Leinaas, 1291 

2001; Hertzberg et al., 2000; Coulson et al., 2003a; Ims et al., 2004). Similar characteristics 1292 

are seen in Antarctic terrestrial habitats (Usher and Booth 1984, 1986), although Antarctic 1293 

and even sub-Antarctic collembolan assemblages are much simpler than those of the Arctic 1294 

with typically only 1-3 species being encountered regularly in any given habitat (e.g. Usher 1295 

and Booth, 1984; Richard et al., 1994; Greenslade, 1995; Convey and Smith, 1997).  Cold 1296 

adaptation and survival under the harsh environmental stresses has also attracted considerable 1297 

research (Coulson and Birkemoe, 2000; Coulson et al., 2000; Hodkinson and Bird, 2004). In 1298 

particular, the initial studies of Holmstrup and Sømme (1998) and Worland et al. (1998) on 1299 

dehydration and cold hardiness in Megaphorura arctica (Tullberg, 1876) (previously 1300 

Onychiurus arcticus) shed light on the important and previously undescribed survival 1301 

mechanism of cryoprotective dehydration in Arctic invertebrates (Sørensen and Holmstrup 1302 

2011). 1303 

 1304 

3.7.2 Insecta 1305 

3.7.2.1 Phthiraptera  1306 
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The Phthiraptera (lice) are obligate ectoparasites of birds and mammals. Since they lack a free 1307 

dispersal stage the Phthiraptera known from any given area are strongly correlated with the 1308 

available hosts (Clay, 1976; Price et al., 2003). The history of phthirapteran studies on 1309 

Svalbard is patchy, beginning with Boheman (1865), Giebel (1874), Mjöberg (1910), 1310 

Waterston (1922a) and Timmermann (1957), who identified a total of 11 species. The first 1311 

thorough survey of the Phthiraptera of Svalbard was performed by Hackman and Nyholm 1312 

(1968) who included 44 species (all from birds). However, many of these were limited to 1313 

Bjørnøya, were identified to genus level only, or the samples and identifications consisted 1314 

only of nymphs. Kaisila (1973a) added one species of mammal louse. Mehl et al. (1982) 1315 

reviewed the species list of avian lice of Svalbard, omitting 19 of Hackman and Nyholm’s 1316 

(1968) records as unidentified or uncertain and adding 11 new records. The number of 1317 

phthirapteran species recognized from Svalbard currently stands at 37 including two only 1318 

recorded from Bjørnøya and two subspecies. To this can be added four species recorded by 1319 

Hackman and Nyholm (1968) that were not determined to species level but which are known 1320 

from adult individuals that could potentially be reliably determined.  1321 

 1322 

Three suborders of Phthiraptera have been recorded from Svalbard from 22 species of bird 1323 

and two species of mammal (Kaisila, 1973a; Mehl et al., 1982). The most speciose suborder is 1324 

the Ischnocera (27 species, two only found on Bjørnøya), while the Amblycera (eight species) 1325 

and the Anoplura (two species) are less represented. This reflects both the global diversity in 1326 

each group (Price et al., 2003), and the fact that ischnoceran lice are typically more common 1327 

on birds than are the amblycerans (e.g. Eveleigh and Threlfall, 1976; Hunter and Colwell, 1328 

1994).  1329 

 1330 
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The Ischnocera of Svalbard have all been obtained from birds, with most (18 of 27 species) 1331 

from shorebirds (Charadriiformes). The two most speciose genera on Svalbard are 1332 

Saemundssonia (10 species and two subspecies) and Quadraceps (six species), both primarily 1333 

parasites of shorebirds. Other Ischnoceran genera include Lunaceps, Lagopoecus, Perineus 1334 

and Anaticola.  1335 

     1336 

As with the Ischnocera, the majority of the Amblycera recorded on Svalbard have been 1337 

obtained from shorebirds (five of eight species). While the genus Austromenopon has been 1338 

recorded from five shorebird species on Svalbard, the quill-boring  (Waterston, 1922a) 1339 

shorebird louse genus Actornithophilus has been recorded so far only as nymphs (Hackman 1340 

and Nyholm, 1968) and the species was omitted from Mehl et al.’s (1982) list. Two 1341 

amblyceran species have been recorded from the Arctic fulmar (Fulmarus glacialis) and one 1342 

from two species of geese; barnacle (Branta leucopsis) and pink-footed (Anser 1343 

brachyrhynchus) (Waterston 1922a). 1344 

 1345 

Quill-boring lice, such as Actornithophilus and Holomenopon, have been implicated in feather 1346 

loss or “wet-feather” disorder in hosts which may subsequently die from pneumonia 1347 

(Humphreys, 1975; Taylor, 1981). Hosts infested with these lice may be more likely to die 1348 

before the parasite can transfer to a new host individual and these louse genera may therefore 1349 

be missing or rare in the High Arctic. However, more thorough sampling of potential hosts of 1350 

Actornithophilus (shorebirds) and Holomenopon (ducks and geese) is required to confirm this. 1351 

 1352 

No Phthiraptera have been recorded from Franz Josef Land.  A total of seven have been 1353 

reported from Novaya Zemlya (Ferris, 1923; Markov, 1937) but there are no recent published 1354 
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records. Of these, one is from the Amblycera and the remainder from the Ischnocera. Four of 1355 

these species have also been recorded from Svalbard.  1356 

 1357 

3.7.2.2. Ephemeroptera, Tricoptera and Plecoptera 1358 

No Plecoptera are known from Svalbard or Franz Josef Land. Three species were recorded 1359 

from Novaya Zemlya by Morten (1923): Capnia vidua (Aubert, 1950), C. zaicevi (Klapalek, 1360 

1914) and Nemoura arctica Esben-Petersen, 1910. There is only one dubious record of a 1361 

mayfly (Ephemeroptera) from Svalbard (Jørgensen and Eie, 1993; Coulson and Refseth, 1362 

2004; Coulson, 2007a), but Acentrella lapponica Bengtsson, 1912 has been recorded from 1363 

Novaya Zemyla (Ulmer, 1925).  The circumpolar trichopteran, Apatania zonella Zetterstedt, 1364 

1840 occurs sporadically throughout the western parts of the Svalbard archipelago, as well as 1365 

on Bjørnøya (Bertram and Lack, 1938) and Novaya Zemlya (Ulmer, 1925).  Although mainly 1366 

found in lakes, A.  zonella also occurs in and around lake outflows. 1367 

 1368 

3.7.2.3. Hemiptera  1369 

Virtually all records of Hemiptera species from the archipelagoes of the Barents Sea are 1370 

restricted to Svalbard and are exclusively of aphids (Hemiptera: Aphididae). A single 1371 

published aphid record exists for the South Island (Fig. 3) of the Novaya Zemlya archipelago 1372 

(Aphis (s.l.) sp.) (Økland, 1928). The earliest reports of Svalbard aphids are from Parry's 1373 

North Pole Expedition (Parry, 1828). However, these reports were of aphid specimens found 1374 

on pack ice or floating trees and were probably transported by wind, ships or sea currents 1375 

from distant sources (Elton, 1925a). The first inventory of the aphid fauna from Svalbard 1376 

(Heikinheimo, 1968) was based on previous published works (Ossiannilsson, 1958) or 1377 

collections and described "seven or eight species". Two of these were reported as endemic, 1378 

Acyrthosiphon calvulus (Ossiannilsson, 1958) (later revised to Sitobion calvulum (Eastop and 1379 
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Blackman, 2005)) and Acyrthosiphon svalbardicum Heikinheimo, 1968,  one as Arctic 1380 

(Pemphigus groenlandicus (Rübsamer, 1898)), one as boreal (Cinara abieticola 1381 

(Cholodkovsky, 1899)) and four not identified to species level.  1382 

 1383 

In their catalogue of the terrestrial and marine fauna of Svalbard, Coulson and Refseth (2004) 1384 

listed two resident aphid species (A. calvulus and A. svalbardicum (formerly listed as A. 1385 

svalbardicus by Heikinheimo (1968)), and five migrant aphid species (Aphis borealis (Curtis, 1386 

1828), Aphis sp., Cavariella salicis (Monell, 1879), Cinara abieticola (Cholodkovsky, 1899) 1387 

and Pemphigus groenlandicus Rübsaamen, 1898). Finally, Coulson (unpublished data) has 1388 

located a third resident species in Krossfjord whose identity has not yet been formally 1389 

confirmed but most likely corresponds to P. groenlandicus, a species reported from Iceland, 1390 

Greenland and the Canadian Arctic (Hille Ris Lambers, 1960; Richards, 1963). Thus, there is 1391 

clear evidence that at least three aphid species are currently resident on Svalbard: A. 1392 

svalbardicum which appears to feed exclusively on Dryas octopetala (Strathdee et al., 1993), 1393 

S. calvulum which feeds primarily on Salix polaris but also on Pedicularis hirsuta (Gillespie 1394 

et al., 2007) and Pemphigus sp. which apparently feeds on roots of Poa spp. in Svalbard. Hille 1395 

Ris Lambers (1952) reports this species feeding on the roots of various Gramineae in 1396 

Greenland. Other earlier aphid records are unlikely to be resident in Svalbard as they have not 1397 

been subsequently observed and their host plants generally do not occur. Sitobion calvulum is 1398 

restricted to only few sites on the west coast of Spitsbergen, namely Adventdalen and 1399 

Colesdalen (Gillespie et al., 2007) and Grøndalen. Acyrthosiphon svalbardicum is more 1400 

common along the west coast of Spitsbergen but its spatial distribution is very patchy at the 1401 

local scale (Strathdee and Bale, 1995; Ávila-Jiménez and Coulson, 2011b), its occurrence 1402 

perhaps being partially determined by winter snow depth modulating the length of the 1403 

summer growing season (Strathdee et al., 1993; Ávila-Jiménez and Coulson, 2011b).  1404 
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Pemphigus sp. feeds on roots and is unlikely to be observed without targeted specialist 1405 

surveys, and therefore its distribution is likely to be currently underestimated.  1406 

 1407 

Ecological studies on Svalbard aphids commenced in the early 1990s (Strathdee et al., 1993; 1408 

Gillespie et al., 2007; Hullé et al., 2008; Simon et al., 2008; Ávila-Jiménez and Coulson, 1409 

2011b) and have focused on the two resident aphid species, A. svalbardicum and S. calvulum. 1410 

These studies have highlighted peculiar traits and life histories thought to result from 1411 

adaptations and constraints exerted by the harsh conditions of the High Arctic (Table 1). Both 1412 

species have an extremely reduced life cycle compared to their temperate counterparts. 1413 

Sitobion calvulum displays a two-generation life cycle with a first generation of asexual 1414 

females hatching from cold-resistant eggs in early June and a second generation of sexual 1415 

forms that mate and lay eggs before the arrival of frost in early August. Acyrthosiphon 1416 

svalbardicum has a similar life cycle but, in some instances, may produce an extra 1417 

intermediate generation although there are uncertainties whether this is achieved in the field 1418 

(Strathdee et al., 1993; Hullé et al., 2008). When A. svalbardicum displays this three-1419 

generation life cycle, the first generation hatching from the overwintering egg produces a 1420 

mixture of asexual and sexual morphs with the former then generating a third generation 1421 

exclusively composed of sexual individuals. In field environmental manipulation 1422 

experiments, the inclusion of the extra generation leads to an order of magnitude increase in 1423 

the numbers of overwintering eggs (Strathdee et al., 1993, 1995). Although the cascade 1424 

effects of this potential change in primary consumer population density have not been 1425 

researched there are indications that predator and parasitoid densities may increase (Dollery et 1426 

al., 2006). In the sexual generations of the two species, the sex ratio is biased towards females 1427 

as a result of local mate competition (Strathdee et al., 1993; Gillespie et al., 2007). Both 1428 

species also have reduced dispersal capabilities. Sitobion calvulum has no known winged 1429 



   

 
 

53

form and its populations occur as small, isolated colonies (Gillespie et al., 2007). Populations 1430 

of A. svalbardicum are also patchily distributed (Strathdee and Bale, 1995) and winged 1431 

individuals were unknown until the discovery of one alate on Storholmen island (Kongsfjord) 1432 

(Hodkinson et al., 2002) and several additional specimens in other areas around Ny-Ålesund 1433 

(Simon et al., 2008). Whether this apparently recent appearance of small numbers of winged 1434 

morphs in A. svalbardicum results from the recent warming of Svalbard, from other factors 1435 

that may operate locally and only in certain years, or indeed simply from researchers not 1436 

previously encountering them, is unclear (Hodkinson et al., 2002; Simon et al., 2008).  1437 

 1438 

Insert Table 1 here 1439 

 1440 

Very little is known of the biology of natural enemies of Svalbard aphids. Two newly 1441 

described parasitoid wasps (Hymenoptera: Braconidae) exploit Svalbard aphids as hosts 1442 

(Chaubet et al., 2013). Diaeretellus svalbardicum Chaubert, 2012 parasitizes exclusively the 1443 

aphid A. svalbardicum and displays a unique case of wing polymorphism with macropterous 1444 

and micropterous forms in both genders. By contrast, Aphidius leclanti Chaubert, 2012 can 1445 

utilize both aphid species as host. Parasitism rates in field-collected aphids are extremely 1446 

variable between individuals and collection sites, although can reach up to 50% (Outreman et 1447 

al., unpublished). 1448 

 1449 

3.7.2.4. Coleoptera  1450 

The first report of Coleoptera from Svalbard was of a dead specimen of Philonthus collected 1451 

from under seaweed on a beach by the Swedish polar expedition in 1868 (Holmgren, 1869). 1452 

In the light of current knowledge of the beetle fauna this specimen is of uncertain origin, 1453 

although likely originating from ship ballast (Strand, 1942). In 1882, the first living beetle 1454 
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was reported from Billefjord (Beetlefjord) by Nathorst (1884).  Although the material was not 1455 

collected a new sample was taken in 1898 and Atheta graminicola (Gravenhorst, 1806) 1456 

Boreophila (Atheta) subplana (J. Sahlberg, 1880), and Isochnus flagellum (Erichson, 1902) 1457 

were recorded (Sahlberg, 1901).  A review of the Coleoptera from Svalbard was published by 1458 

Strand (1942), and subsequent additional reports of new species for the archipelago were 1459 

provided by Strand (1969), Kangas (1967, 1973), Bengtson et al. (1975) and Fjellberg (1983), 1460 

as well as further information being included in several reviews (Sømme, 1979; Klemetsen et 1461 

al., 1985; Coulson and Refseth, 2004; Coulson, 2007a).  1462 

 1463 

A total of 19 species of Coleoptera are currently known from Svalbard, including six only 1464 

recorded from Bjørnøya.  However, only 14 of these species have been confirmed to be native 1465 

to the archipelago. Just B. subplana, A. graminicola and I. flagellum are commonly recorded, 1466 

whilst most species are found only occasionally. Most of the species have a wide distribution 1467 

throughout Arctic regions and none are restricted to Svalbard.  Two species, Coccinella 1468 

septempunctata L., 1758 and Oryzaephilus mercator (Fauvel, 1889), have only been found 1469 

inside buildings and are considered to be introduced and, if resident rather than transient, then 1470 

synanthropic. Atomaria lewisi Reitter, 1877 has certainly colonized in recent times and is 1471 

mainly associated with synanthropic habitats (Ødegaard and Tømmerås, 2000). The single 1472 

specimen of Gonioctena (Phytodecta) sp. collected by the Oxford Expedition in 1924 is lost 1473 

and it is not now possible to confirm its identity although, based on general biogeography, 1474 

this is most probably G. arctica (affinis) (Strand, 1942). Only one species of weevil, I. 1475 

flagellum is recorded from Spitsbergen, with the report of I. foliorum (saliceti) (Coulson and 1476 

Refseth, 2004) referring to the same species (see Strand, 1942).   1477 

 1478 
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In recent times, there have been only two studies that have attempted to search for Coleoptera 1479 

in Franz Josef Land (Bulavintsev and Babenko, 1983; Bulavintsev, 1999) and, as yet, none 1480 

have been found.  Only a few expeditions have collected Coleoptera from Novaya Zemlya. 1481 

The Nordenskiöld expedition in 1875 reported nine species (Mäklin, 1881). In 1879 the area 1482 

was further investigated (Markham, 1881) and in 1897 the Russian entomologist Georgii G. 1483 

Jacobson spent a summer there.  Both expeditions provided new additions to the beetle fauna 1484 

(Jacobson, 1898; Sahlberg, 1897). By 1910, 16 beetle species were known from Novaya 1485 

Zemlya, of which Upis ceramboides (L. 1758) and Pediacus fuscus (Erichson, 1845) are 1486 

considered to be introduced. Poppius (1910) added Hyporoprus acutangulus (published as H. 1487 

sumakowi Popp.).  A major contribution was made by the Norwegian expedition to Novaya 1488 

Zemlya in 1921, where F. Økland and R. Tveten collected some 300 specimens of beetles 1489 

which were identified by T. Münster (Münster, 1925).  There have been no recent collections 1490 

or reports of beetles from Novaya Zemlya, excepting Yunakov and Korotyaev’s (2007) 1491 

addition of Phyllobius pomaceus (leg. K. Baer) to the species identified from the Russian 1492 

expedition in 1827.  1493 

 1494 

A number of taxonomic advances have been made since these older collections and 1495 

publications. Both Boreophilia frigida and B. sibirica are recorded from Novaya Zemlya in 1496 

Mäklin (1881) and Münster (1925), but these species are now synonymised (Löbl and 1497 

Smetana 2004). The record of Olophrum boreale (Paykull, 1792) from Novaya Zemlya 1498 

(Münster, 1935) is likely to be incorrect. Both Münster (1925) and Poppius (1910) mention 1499 

the specimen from the island of Vaigatsh published by Mäklin (1881), which may have led to 1500 

confusion. Moreover, Vaigatsh is not politically part of Novaya Zemlya.  Finally, according 1501 

to Poppius (1910) and Münster (1925), Tachinus apterus (T. arcticus) is found in Novaya 1502 

Zemlya.  Tachinus arcticus Motsch, 1860 is now regarded as separate species from T. apterus 1503 
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(Ullrich and Campbell, 1974). According to the current distribution of the two species 1504 

(Ullrich and Campbell, 1974), it is undoubtedly T. arcticus occurring in Novaya Zemlya. In 1505 

total, and incorporating updated taxonomy, there are 31 species of beetle known from Novaya 1506 

Zemlya, 27 of which are considered native. Most have a wide distribution in Arctic areas 1507 

(Münster, 1925), but three are currently reported only from Novaya Zemlya, Phyllodrepa 1508 

polaris (J. Sahlberg, 1897), Atheta holtedahli (Münster, 1925) and Oxypoda oeklandi 1509 

(Münster, 1925) (Löbl and Smetana, 2004). Novaya Zemlya has only one species of 1510 

coleopteran in common with Svalbard, O. boreale.  1511 

 1512 

3.7.2.5. Diptera  1513 

Diptera are better adapted to the cold and harsh climate in the Arctic than any other order of 1514 

insects and comprise an important part of the insect fauna both with regard to species number 1515 

(for example Coulson and Refseth, 2004) and biomass (for example Bengtson et al., 1974). 1516 

Nevertheless, our knowledge of Diptera diversity in the Barents Sea archipelagoes is still 1517 

insufficient, in particular for the most remote and inaccessible islands such as the 1518 

Nordaustlandet (Svalbard), Franz Josef Land and Novaya Zemlya. 1519 

  1520 

Within the Barents Sea archipelagoes, the best known and well documented dipteran fauna is 1521 

that of Svalbard (including Bjørnøya) (Coulson and Refseth, 2004; Coulson, 2007a), 1522 

including a total of 122 species. Of these, the Chironomidae comprise more than 66 1523 

recognised species and at least four undescribed taxa (Sæther and Spies, 2012; Ekrem and 1524 

Stur, unpublished data). Taxonomic confusions endure, for example Orthocladius mixtus 1525 

(Holmgren, 1869), originally described from Svalbard but currently regarded as nomen 1526 

dubium.  1527 

 1528 
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Seventeen fly species are known from Bjørnøya, excluding the Chironomidae, which 1529 

probably are represented by up to 40 species (Ekrem and Stur, unpublished data; Sømme 1530 

1979). Among the non-chironomids, four have not been reported from elsewhere in Svalbard 1531 

including the simuliid Prosimulium ursinum (Edwards, 1935) (Edwards, 1935). A similar 1532 

situation exists for the Chironomidae, where certain species are restricted to one or two 1533 

smaller areas in the Svalbard archipelago. A noteworthy example is Micropsectra logani 1534 

Johannsen, 1928 which is widely distributed in the northern Holarctic and also numerous on 1535 

Bjørnøya. It is, however, not recorded from the other islands of Svalbard.  1536 

 1537 

The first records of Diptera from Novaya Zemlya are those of Holmgren (1883) collected 1538 

during Nordenskiöld’s expedition. In total, 81 species were recorded, including many new 1539 

species. Further species were added by the Norwegian Novaya Zemlya Expedition in 1921 1540 

(Alexander, 1922; Lenz and Thienemann, 1922; Sack, 1923; Kieffer, 1922, 1923). Since then 1541 

only scattered records have been published. The most recent list contains 147 species (and 1542 

subspecies) (Fauna Europaea, 2011), but this is far from complete as several species already 1543 

reported by Holmgren (1883) are missing (e.g. Tanytarsus gracilentus Holmgren, 1883) and 1544 

additional chironomid taxa have been added (Makarchenko et al., 1998). About 49% of the 1545 

Diptera species (73 spp.) recorded from Novaya Zemlya are chironomids (Makarchenko et al., 1546 

1998, Sæther and Spies, 2012). Due to the region’s proximity to the Eurasian continent and its 1547 

geographic extent, the dipteran fauna of Novaya Zemlya is likely to be the most diverse 1548 

among the archipelagoes. Nine families recorded here have not been reported from Svalbard, 1549 

among them 3 families in the superfamily Tipuloidea (Limonidae, Pediciidae, and Tipulidae). 1550 

The two archipelagoes have only about 30 species of Diptera in common. This disparity 1551 

probably does reflect true differences, but may in part also be underlain by different 1552 
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taxonomic traditions between Russian and European dipterists, highlighting the need for 1553 

taxonomic revision and collaboration.   1554 

 1555 

The Dipteran fauna of Franz Josef Land is very poorly known. Uspenskiy et al. (1987), based 1556 

on a Russian expedition in 1980-81, mentions five species of Diptera belonging to the 1557 

Chironomidae and Mycetophilidae (of which the latter probably refers to Sciaridae). Four 1558 

species are listed in Fauna Europaea (2011), Hydrobaenus conformis (Holmgren, 1869), 1559 

Ditaeniella grisescens (Meigen, 1830), Myennis octopunctata (Coqubert, 1798) and Seioptera 1560 

vibrans (L.  1758), of which the latter two are most unlikely to inhabit the islands.  1561 

 1562 

 1563 

3.7.2.6. Siphonaptera 1564 

Two species of flea (Siphonaptera) are present in Svalbard, Ceratophyllus vagabundus 1565 

vagabundus Boheman, 1866 and Mioctenopsylla arctica arctica Rothschild, 1922 (Coulson 1566 

and Refseth, 2004), both belonging to the Ceratophyllidae. The first record of C. v. 1567 

vagabundus was in 1864 (Boheman, 1865) and the species was later observed in pink-footed 1568 

geese nests by Dampf (1911). Other studies concerning the fleas of Svalbard include Thor 1569 

(1930), Cyprich and Krumpàl (1991), Mehl (1992), Coulson et al. (2009) and Pilskog (2011).  1570 

Only one species of Siphonaptera is recorded from Novaya Zemlya, M. a. arctica. This 1571 

species was first described from Novaya Zemlya (Rothschild, 1922) and later recorded in 1572 

Svalbard in 1965 in a room in Longyearbyen where black-legged kittiwakes had been skinned 1573 

(Kaisila, 1973a). There appear to be no reports of Siphonaptera from Franz Josef Land. 1574 

 1575 

Ceratophyllus v. vagabundus has a northern Holarctic distribution and is common on 1576 

members of the bird families Anatidae and Laridae and their predators (Brinck-Lindroth and 1577 
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Smit, 2007). In Svalbard it is recorded as an ectoparasite of the common eider duck 1578 

(Somateria mollissima), barnacle goose (Branta leucopsis), pink-foot goose (Anser 1579 

brachyrhynchus) and glaucous gull (Larus hyperboreus) (Dampf, 1911; Pilskog, 2011) and 1580 

has also been recorded in nests of snow bunting (Plectrophenax nivalis) (Pilskog, 2011). As 1581 

C. v. vagabundus is a generalist that uses hosts belonging to different families of birds (Tripet 1582 

et al., 2002; Brinck-Lindroth and Smit, 2007) further studies are likely to increase the list of 1583 

host species present in Svalbard. The second species, M. a. arctica, is also known from 1584 

northern Norway (including Jan Mayen), Iceland and Alaska (Mehl, 1992; Brinck-Lindroth 1585 

and Smit, 2007).  This species currently has two subspecies, M. a. arctica and M. a. hadweni 1586 

Ewing, 1927. However, although only M. a. arctica is recorded as present in Svalbard, it is 1587 

possible that the sub-specific division is not valid (R.E. Lewis pers. comm.).  Mioctenopsylla 1588 

a. arctica is a host-specific flea only present on black-legged kittiwakes (Rissa tridactyla) in 1589 

Svalbard and, with the exception of Coulson et al. (2009), all records have been obtained from 1590 

black-legged kittiwake plumage and nests (Kaisila, 1973a; Cyprich and Krumpàl, 1991; Mehl, 1591 

1992; Pilskog, 2011) or in the immediate vicinity of their colonies (Hågvar, 1971). The 1592 

finding of adult M. a. arctica in nests of common eider duck and glaucous gull in 1593 

Kongsfjorden in Svalbard by Coulson et al. (2009) was probably a misidentification, as this 1594 

species was not found by Pilskog (2011) in a more thorough investigation of the common 1595 

eider duck nests in the same area. The effect the fleas have on the host birds is unknown, but 1596 

high flea infestations generally reduce breeding success in some species of bird including 1597 

geese breeding in the Arctic such as Ross’s, Chen rossii, and lesser snow geese, Chen 1598 

caerulescens caerulescens (Harriman and Alisauskas, 2010).   1599 

 1600 

Bird fleas spend most of their lives in the nests of their host where they feed on adult birds 1601 

and chicks (Lewis and Stone, 2001). High densities of adult fleas and juvenile stages can be 1602 
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present in bird nests in Svalbard (Cyprich and Krumpàl, 1991; Mehl, 1992; Pilskog, 2011), 1603 

often being the numerically dominant arthropods in the nests of common eider duck, barnacle 1604 

goose, black-legged kittiwake and glaucous gull breeding in the Kongsfjord area (Pilskog, 1605 

2011). Although the bird fleas are known to bite humans (Mehl, 1992; B. Moe pers.comm.), 1606 

no fleas have been reported from mammals in Svalbard.  1607 

 1608 

3.7.2.7. Lepidoptera 1609 

Twenty-three species of Lepidoptera have been recorded from Svalbard and Novaya Zemlya, 1610 

seven of which (30%) are considered to be vagrants and not resident in the archipelagoes.  No 1611 

Lepidoptera have been recorded from Franz Josef Land.  Kaisila (1973b) summarized the 1612 

Lepidoptera from Svalbard reporting six species, four of which were considered to be 1613 

resident. With recent additions (Sendstad et al., 1976; Laasonen 1985; Coulson, 2007a) the 1614 

total observed in Svalbard, including accidental migrants, has risen to 10 species, but with no 1615 

increase in the number of resident species. The resident species total now is considered to be 1616 

three; Plutella polaris Zeller, 1880 (Bengtsson and Johansson, 2011) (Plutellidae), Matilella 1617 

fusca (Haworth, 1811) (Pyralidae) (Coulson et al., 2003b) and Apamea exulis (Lefèbvre, 1618 

1836) (Noctuidae) (Rebel, 1925; Alendal et al., 1980; Hodkinson, 2004). Kaisila (1973b) also 1619 

considered Plutella xylostella (L., 1758) as resident. However, while this cosmopolitan and 1620 

migratory species often disperses in great numbers, and has been recorded on several 1621 

occasions in the Arctic (and likewise in the Southern Hemisphere (Convey, 2005)), it is 1622 

unlikely that it can overwinter in the archipelago. The closely related P. polaris is a distinct 1623 

species so far only known from Svalbard (Bengtsson and Johansson, 2011).  It is unclear why 1624 

this species has not been observed since it was first recorded, but the type material of P. 1625 

polaris is held in the Natural History Museum, London, and was studied by Baraniak (2007) 1626 

who drew wings and male genitalia, the distinct features of which currently support the 1627 
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specific status of P. polaris. Ideally, molecular studies would be required to confirm the 1628 

relationship between these two species.Apamea exulis has been recorded from Svalbard under 1629 

three different species names, A. exulis, A. maillardi and A. zeta, and this has caused some 1630 

confusion.  According to current taxonomy, A. maillardi and A. zeta are both species from 1631 

mountainous regions in southern and central Europe and do not occur at more northern 1632 

latitudes (Zilli et al., 2009). Matilella fusca, often reported as Pyla fusca in the Svalbard 1633 

literature, was recorded from Svalbard in 1974 (Aagaard et al., 1975) and 2002 (Coulson et 1634 

al., 2003b). The old record of Pempelia dilutella (Denis and Schiffermüller, 1775) (Elton, 1635 

1925b) probably also refers to M. fusca. The latter species is clearly able to maintain 1636 

populations in Arctic environments as it is also present in Greenland, Labrador and Alaska 1637 

(Kaisila, 1973b). Matilella fusca is a polyphagous species, with Salix polaris and S. reticulata 1638 

being indicated as possible food plants in Svalbard (Coulson et al., 2003b). 1639 

 1640 

Lepidoptera recorded from the Swedish Nordenskiöld expedition to Novaya Zemlya were 1641 

published by Aurivillius (1883b) and those of the Norwegian expedition in 1921 by Rebel 1642 

(1923). Of the 15 species recorded from Novaya Zemlya only one species, P. xylostella, is 1643 

considered an immigrant resulting in a resident total of 14. Moreover, P. xylostella is the only 1644 

lepidopteran species that Novaya Zemlya and Svalbard have in common and is also the only 1645 

species of Lepidoptera recorded from Bjørnøya (Lack, 1933; Sømme, 1979) but is again 1646 

unlikely to be resident (although, note the caveat mentioned above with reference to the 1647 

separation of this species from P. polaris). The lepidopteran fauna of Novaya Zemlya is 1648 

composed mainly of species with broad circumpolar Arctic distributions. However, the record 1649 

of Argyroploce mengelana (Fernald, 1894) (Tortricidae) in Novaya Zemlya is the only 1650 

observation of this species so far from the Eurasian continent. This species is otherwise 1651 

known from Greenland, Canada (North West Territory, Yukon), and Alaska (Jalava and 1652 
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Miller, 1998), and Glacies coracina (Esper, 1796) (Geometridae) is known only from the 1653 

Palearctic, and is distributed from Fennoscandia to Japan (Skou, 1984). 1654 

 1655 

3.7.2.8. Hymenoptera  1656 

The Hymenoptera is one of the most speciose orders of insects. The majority of species are 1657 

parasitoids, attacking a wide variety of insects and other invertebrates. Where there are 1658 

possible hosts present there are usually hymenopterans and they may occur even in the 1659 

harshest climate.  Nonetheless, it is notable that no species are associated with the two 1660 

resident Diptera or microarthropods of the Antarctic Peninsula and that very few species are 1661 

known from the sub-Antarctic islands, both of which have climates less extreme than those of 1662 

the Barents Sea archipelagoes (Greenslade, 2006; Gressitt, 1970; Convey, 2013).  1663 

 1664 

A total of 39 species of Hymenoptera are currently recorded from Svalbard (Waterston,  1665 

1922b; Yu et al., 2005; Coulson and Refseth, 2004; Coulson, 2007a; Jong, 2011). The 1666 

majority are parasitoids belonging to the families Ichneumonidae (22 species) and Braconidae 1667 

(five species) in the suborder Apocrita.  In addition, the Symphyta is represented by seven 1668 

species of Tenthredinidae.  1669 

 1670 

Braconids are known to parasitise the two Svalbard endemic aphid species.  No 1671 

hymenopterans have yet been reported from Franz Josef Land, although since some vascular 1672 

plants (e.g. Salix polaris) and associated insects are present (Hanssen and Lid, 1932; Jong, 1673 

2011) it is plausible that they may occur.  1674 

 1675 

Novaya Zemlya has only 40 species of hymenopteran recorded, probably reflecting low 1676 

collecting activity given the archipelago’s sizeable land area and the close proximity to the 1677 
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continental mainland. The Swedish Nordenskjöld expedition (Holmgren, 1883) and the 1678 

Norwegian Novaya Zemlya expedition (Friese, 1923) were of great importance in 1679 

investigating the hymenopteran fauna of this archipelago. Most of the recorded species again 1680 

belong to the families Ichneumonidae (20 species) and Braconidae (four species).  Overall, 1681 

there are few hymenopteran species shared between Svalbard and Novaya Zemlya, which 1682 

may support different underlying immigration patterns. Three species of bumblebee are also 1683 

present (Holmgren, 1883; Friese, 1923), a family not resident in Svalbard.  The honey bee, 1684 

Apis mellifera L., 1758 has been reported from all three archipelagoes (Jong, 2011) as an 1685 

accidental migrant. Records of two species of Camponotus (Formicidae) in Novaya Zemlya 1686 

are unconfirmed.  1687 

 1688 

 1689 

3.8  Freshwater ecosystems  1690 

3.8.1. Ecosystem function in lakes and ponds  1691 

Investigations of freshwater invertebrates on the major islands of the Barents Sea date back 1692 

more than a hundred years to pioneers such as Bryce (1897), Scourfield (1897) and Olofsson 1693 

(1918).  Summerhayes and Elton (1923) visited Bjørnøya and Spitsbergen in 1921 and 1694 

sampled ponds and lakes while Økland (1928) reported on species distribution from a 1695 

Norwegian expedition to Novaya Zemlya in 1921. More recent investigations in Svalbard 1696 

have typically been carried out in areas close to established research stations on Spitsbergen 1697 

in Isfjorden (Colesdalen and Kapp Linné), Kongsfjorden (Ny-Ålesund and Brøggerhalvøya), 1698 

Hornsund and Mosselbukta (Halvorsen and Gullestad, 1976; Husmann et al., 1978; Jørgensen 1699 

and Eie, 1993; Janiec, 1996), and Bjørnøya (Koch and Meijering, 1985). The branchiopod 1700 

fauna of Novaya Zemlya is summarized by Vekhoff (1997). Information on the freshwater 1701 

crustacean fauna of the Franz Joseph land archipelago is exceedingly scarce and primarily 1702 
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based on a single report from Scott (1899). Apart from this area there is a fairly good 1703 

understanding of the biodiversity of some organisms (crustaceans and fish); however, 1704 

knowledge of microscopic groups such as protozoans is less developed (e.g. Opravilova, 1705 

1989; Beyens and Chardez, 1995; De Jonckheere, 2006).  Comparison of different Arctic 1706 

regions based on crustacean species richness (Gíslason, 2005, Samchyshyna et al., 2008) 1707 

indicates that glaciation history has played an important role in determining community 1708 

diversity. 1709 

 1710 

The list of Rotifera (section 3.1) and crustacean species recorded from the Barents Sea 1711 

archipelagoes is diverse. All of these are currently thought to be circumpolar and the 1712 

communities do not differ greatly from sub-Arctic regions in Europe, Russia or North 1713 

America (Ghilarov, 1967; Samchyshyna et al., 2008). The zooplankton species distribution 1714 

resembles that of Greenland and Alaska, with dominance by cladoceran over copepod species. 1715 

Several calanoid copepod species (e.g. Eurytemora raboti Richard, 1897 and Limnocalanus 1716 

marcus G.O. Sars, 1863) are widely distributed in the lakes of Novaya Zemlya and Svalbard 1717 

(Olofsson, 1918; Halvorsen and Gullestad, 1976; Vekhoff, 1997). 1718 

 1719 

The large branchiopods living in the Barents Sea region occupy the most extreme aquatic 1720 

environments in Arctic regions (Vekhoff 1997). Vekhoff (1997) lists four species of 1721 

Anostraca (Polyartemia forcipata (S. Fischer), Artemiopsis bungei plovmornini (Jaschnov, 1722 

1925), Branchinecta paludosa  (Gajl, 1933), and Branchinectella media (Schmankewitsch, 1723 

1873)) and two species of Spinicaudata, Caenestheria propinqua (Sars, 1901) and C. 1724 

sahlbergi (Simon, 1886), in addition to Lepidurus arcticus (Pallas, 1793) (Branchiopoda, 1725 

Notostraca) at Novaya Zemlya.  It is notable that the northern-most known occurrence of B. 1726 

paludosa is at Ivanov Bay (77oN) in the Novaya Zemlya archipelago (Fig. 3, Vekhoff, 1997). 1727 
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Lepidurus arcticus frequently occupies shallow freshwater lakes and ponds with no fish 1728 

population (Jeppesen et al., 2001) but may exceptionally co-occur with fish in some deep 1729 

lakes, in shallow cold lakes or in lakes with refugia from fish at the southern-most edges of its 1730 

distribution range in sub-Arctic regions of mainland Norway and in Iceland (Primicerio and 1731 

Klemetsen, 1999; Woods, 2011). Lepidurus arcticus has been recorded in multiple sites on 1732 

Spitsbergen, Bjørnøya, Novaya Zemlya and Franz Josef Land (Olofsson, 1918; Janiec, 1996; 1733 

Vekhoff, 1997 (and references therein); Hessen et al., 2004). The crustacean can utilize 1734 

different habitats in sub-Arctic and Arctic regions including shallow near-shore habitats in 1735 

Svalbard (Lakka, 2013) and deeper regions of lakes on mainland Norway (Sømme, 1934). 1736 

Food web studies in Bjørnøya have shown that environmental contaminants can enter the 1737 

Arctic aquatic food web and that L. arcticus, chironomids and Arctic charr can contain 1738 

elevated levels of both PCBs and DDT (Evenset et al. 2005). Lepidurus arcticus is sensitive 1739 

to various environmental disturbances and therefore can be used as an indicator species of 1740 

ongoing environmental change in the Arctic and sub-Arctic (Lakka, 2013). 1741 

 1742 

Bottom-dwelling macroinvertebrate species belonging to Nematoda, Oligochaeta, Ostracoda, 1743 

Hydracarina, Chironomidae, and Trichoptera have been reported in several studies 1744 

(Summerhayes and Elton, 1923; Jørgensen and Eie, 1993; Janiec, 1996) but there is no 1745 

detailed information on the biology of the groups. The chironomid diversity is substantial 1746 

(Styczynski and Rakusa-Susczzewski, 1963; Hirvenoja, 1967; Section 3.7.2.5).  1747 

 1748 

Five species of cestode are known to parasitize the Arctic char (Salvelinius alpinus) in 1749 

Svalbard. Two of these, Eubothrium salvelini (Schrank, 1790) and Proteocephalus exiguous 1750 

(Swiderski and Subilia, 1978), utilize Arctic char as their final host, whereas 1751 

Diphyllobothrium ditremum (Creplin, 1825) employs various fish-eating birds as the definite 1752 
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host which, in Svalbard, is likely to be the red-throated diver (Gavia stellate) (Hammar, 1753 

2000). Additional groups known to parasitize Arctic char in Svalbard include one species of 1754 

nematode (Philonema oncorhynchi Kuitunen-Ekbaum, 1933) and a copepod (Salmoncola 1755 

edwardsii Olsson 1869, Siphonostomatoida) (Kennedy, 1978; Sobecka and Piasecki, 1993). 1756 

 1757 

Studies of food web structure in lakes and ponds are limited, but a number of recent 1758 

experimental studies have focused on nutrient addition to lakes and ponds by geese (van 1759 

Geest et al., 2007), the role of dissolved organic carbon for microbial communities (Hessen et 1760 

al., 2004), the implications of UV radiation on plankton growth (van Donk et al., 2001) and 1761 

the dynamics of microbial communities (Ellis-Evans et al., 2001; Laybourn-Parry and 1762 

Marshall, 2003). Such studies are important in order to understand the complexity of Arctic 1763 

aquatic ecosystems and to be able to predict effects of human activities and environmental 1764 

change (Prowse et al., 2006). Furthermore, van der Wal and Hessen (2009) have highlighted 1765 

important analogies between aquatic and terrestrial food webs in the High Arctic, as a result 1766 

of harsh conditions leading to grazer dominated food web dynamics. 1767 

 1768 

3.8.2  Ecosystem function in streams and rivers 1769 

Biodiversity in running waters in Svalbard is low, as is probably also the case in Franz Josef 1770 

Land, although there is little information on the latter. Freshwater biodiversity is however, 1771 

higher in Novaya Zemlya due to its proximity to the mainland and its more southerly location. 1772 

Colonisation by freshwater invertebrate fauna is limited by the isolation of the archipelagoes 1773 

(Gíslason, 2005). In addition, the short summer season and the cessation of flow in most river 1774 

systems during the long winter render environmental conditions unsuitable for many taxa.  1775 

 1776 
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There have been few ecological studies of Svalbard streams and rivers compared to terrestrial 1777 

or even lake systems, and almost none from Novaya Zemlya or Franz Josef Land. Studies of 1778 

hydrological and chemical processes, especially in glacier-fed systems are, however, more 1779 

common (e.g. Gokhman, 1988; Hagen and Lefauconnier, 1995; Bogen and Bønsnes, 2003; 1780 

Killingtveit et al., 2003; Krawczyk and Pettersson, 2007; McKnight et al., 2008). The 1781 

significance of microbial activity for nutrient processes in glacial meltwater has also been 1782 

highlighted from Svalbard studies (Hodson et al., 2008) and there have been studies of 1783 

freshwater algae and cyanobacteria in the vicinity of Ny-Ålesund (Kim et al., 2011). 1784 

 1785 

Freshwater invertebrate species records derive from both early expeditions and more recent 1786 

collecting trips (e.g. Morten, 1923; Ulmer, 1925; Bertram and Lack, 1938), or from studies of 1787 

the aerial insect fauna (Hodkinson et al., 1996; Coulson et al., 2003b).  These records are 1788 

frequently based on collections of adults, mainly chironomids, making it difficult to assign 1789 

them to the larval environment - terrestrial, wetlands, lakes or streams. The invertebrate fauna 1790 

of streams and rivers is dominated by chironomids, especially Diamesinae, although 1791 

Nematoda, Enchytraeidae and Tardigrada have also been recorded from freshwater habitats in 1792 

Svalbard (Styczynski and Rakusa-Susczzewski, 1963; Hirvenoja, 1967; Janiec, 1996; Coulson 1793 

and Refseth, 2004). Planktonic and benthic crustaceans can also be found drifting downstream 1794 

of lakes (Maiolini et al., 2006).   1795 

 1796 

In recent years there has been an increasing focus towards understanding the influence of 1797 

hydrological processes on stream fauna (ecohydrology). Studies of the influence of water 1798 

source on benthic stream communities have been undertaken on Svalbard  (Brittain and 1799 

Milner, 2001), demonstrating the importance of channel stability and water temperature in 1800 

structuring benthic invertebrate communities (Castella et al., 2001; Lods-Crozet et al., 2001; 1801 
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Milner et al., 2001). . These studies have focused on two contrasting rivers in Svalbard in the 1802 

vicinity of Ny-Ålesund, Bayelva and Londonelva. These rivers have been monitored for 1803 

discharge, sediment transport and water temperature for over 20 years (Bogen and Bønsnes, 1804 

2003; Brittain et al., 2009). Bayelva is a glacier-fed river, whereas Londonelva is fed by rain 1805 

and snowmelt. This difference in water source gives rise to distinct differences in their 1806 

chironomid faunas, with higher densities in Londonelva, a greater proportion of 1807 

Orthocladiinae and different species of Diamesa (Diamesinae) (Lods-Crozet et al., 2007). 1808 

Chironomidae (especially the genus Diamesa) dominate in the glacial system, whereas in the 1809 

non-glacial systemtheir relative abundance decreases, and the subfamily Orthocladiinae as 1810 

well as other taxa including Oligochaeta, Copepoda, Acari, Collembola and Tardigrada 1811 

become more frequent (Füreder and Brittain, 2006). At species level, most of those occurring 1812 

in these systems are in common with those of nearby sub-Arctic areas such as the coastal 1813 

regions of the Barents Sea, or to more temperate areas.  Subsequent studies in a wider range 1814 

of streams (Füreder and Brittain, 2006) have shown that species number, abundance and food 1815 

web complexity follow a gradient with regard to catchment characteristics such extent of ice 1816 

cover and the extent of nutrient input from bird cliffs or upstream lakes.  1817 

 1818 

Invertebrate drift is generally a widespread and important phenomenon in running waters, and 1819 

this is again the case on Svalbard. Studies during the Arctic summer in a stream near Ny-1820 

Ålesund (Maiolini et al., 2006; Marziali et al., 2009) showed that drift rates can be high and 1821 

that there are distinct diurnal patterns, even in continuous daylight, which are controlled by 1822 

environmental variables such as water temperature and discharge rate. Drift rates were 1823 

enhanced by artificial shading of the stream, indicating a strong behavioural component. 1824 

Invertebrate drift from streams and glacial outlet rivers contributes a significant source of 1825 
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food for seabirds and waders (Mehlum, 1984). It is clear that freshwaters on Svalbard are an 1826 

important link for nutrients and biota between terrestrial, estuarine and marine ecosystems. 1827 

 1828 

 1829 

4. Adaptation to conditions – ecophysiology and life histories 1830 

 1831 

The climates of all three archipelagoes are characterized by low precipitation, subzero 1832 

temperatures for most of the year, and only a short summer season allowing the growth and 1833 

reproduction of invertebrates. The low winter air temperatures (monthly means of -10 to -1834 

15°C for at least 6 months, and much lower extreme minima) combined with permafrost and 1835 

shallow depth of snow pose a significant challenge to the invertebrates, because thermally 1836 

buffered microhabitats are often not available above or in the soil (Coulson et al., 1995). 1837 

Clearly, the species occurring in these archipelagoes have appropriate ecophysiological and 1838 

more general life history adaptations to their harsh conditions, and these have formed a focus 1839 

of polar invertebrate research generally and that in Svalbard specifically.  1840 

 1841 

Two primary cold tolerance strategies are widely used by Arctic invertebrates. Freeze-tolerant 1842 

animals have the capacity to survive ice formation in extracellular body fluid compartments 1843 

whereas freeze-avoiding species possess physiological mechanisms that promote extensive 1844 

supercooling of body fluids throughout the winter (for reviews of, and an introduction to, the 1845 

biology of extreme environments and the wider cold tolerance literature see Zachariassen, 1846 

1985; Sømme, 1999; Wharton, 2002; Thomas et al., 2008; Ávila-Jiménez et al., 2010; 1847 

Denlinger and Lee, 2010; Bell, 2012). These two main strategies for survival of extreme 1848 

conditions ensure that body water is more or less conserved during winter, either trapped as 1849 



   

 
 

70

ice (in freeze-tolerant species) or because typical freeze-avoiding species often have a 1850 

relatively impermeable cuticle that limits evaporative water loss.  1851 

 1852 

Many soil and freshwater invertebrates such as tardigrades, nematodes, enchytraeids, 1853 

prostigmatid mites and Collembola are often of small size (<5 mm length) and have little 1854 

resistance to evaporative water loss through their cuticle (Harrisson et al., 1991; Convey et al., 1855 

2003). At the same time, groups such as nematodes, annelids and tardigrades, which are 1856 

active within the surface layer of water on soil particles and in moss / peat are also susceptible 1857 

to inoculative spreading of ice to body fluids when the soil or sediment water that they are in 1858 

contact with freezes, meaning that freeze-avoidance by supercooling is not possible (e.g. 1859 

Wharton, 1986, 2002; Convey and Worland, 2000). Thus, such invertebrates have only two 1860 

options: survive freezing of body fluids or avoid freezing by other means than supercooling 1861 

(Pedersen and Holmstrup, 2003).  Encasement in air spaces in frozen soil or sediment may 1862 

lead to desiccation of small species with low resistance to water loss, as water inevitably 1863 

transfers from the liquid state within the animal’s body to the ice crystals surrounding it 1864 

(Scholander et al., 1953; Danks, 1971; Holmstrup and Westh, 1994). A few invertebrates have 1865 

taken advantage of this process, developing a third strategy, termed cryoprotective 1866 

dehydration, driven by differences in water vapour pressure between the unfrozen body fluids 1867 

and surrounding ice (Salt, 1963; Worland et al., 1998; Holmstrup et al., 2002; Sørensen and 1868 

Holmstrup, 2011).   1869 

 1870 

Many Arctic invertebrates, due to the short growing season, show extended development, and 1871 

often Arctic populations have life cycles of two or more years whereas the same or closely 1872 

related species in temperate regions have annual life cycles or more than one generation each 1873 

year (Danks, 1992; Strathdee and Bale, 1998). Thus, Collembola, enchytraeids and Acari 1874 
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from Svalbard may have two-year life cycles or longer (Birkemoe and Sømme, 1998; 1875 

Birkemoe and Leinaas, 1999; Birkemoe et al., 2000; Søvik, 2004). These life cycles may 1876 

become closely adapted to, and synchronised with, the local environmental conditions. For 1877 

example, chironomids may have sufficient life cycle flexibility to permit one or two periods 1878 

of adult emergence each summer, probably depending on temperature conditions (Hodkinson 1879 

et al., 1996). One striking example is the Svalbard endemic aphid, A. svalbardicum (see 1880 

Section 3.7.2.3) which has a highly modified programmed life cycle (Strathdee et al., 1993, 1881 

1995; Table 1). 1882 

 1883 

 1884 

5. Paleocommunities - trends of the past 1885 

 1886 

Svalbard was covered by extensive glaciers during the LGM (c. 30,000–18,000 calibrated 1887 

years BP (cal BP) (Landvik et al., 1998). At approximately 14,800 cal BP ocean warming 1888 

commenced at the continental margin off western Svalbard and the western Barents Sea (Hald 1889 

et al., 1996). The ice sheet started to recede from the marginal coastline of Spitsbergen around 1890 

15,800 – 14,800 cal BP (13,000 – 12,500 14C years BP), whereas the central fjord region 1891 

became ice-free around 11,500-10,800 cal BP (Lehman and Forman, 1992; Mangerud et al., 1892 

1992). Towards the south, Bjørnøya was deglaciated at around 11,500 cal BP (Wohlfarth et 1893 

al., 1995) and towards the east, Edgeøya, Barentsøya and Franz Josef Land were fully 1894 

deglaciated at around 11,200 cal BP (Landvik et al., 1995; Lubinski et al., 1999).  The early 1895 

Holocene summer temperatures of Spitsbergen were about 2°C warmer than today (Birks, 1896 

1991) causing local cirque glaciers to retreat or disappear in western Svalbard (Svendsen and 1897 

Mangerud, 1997). These glaciers re-appeared from about 4,000-3,000 cal BP during the mid-1898 

Holocene cooling and generally advanced towards the Little Ice Age. The environmental 1899 
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conditions have been close to those prevailing today during the last 2,500-2,000 years with 1900 

the coldest period occurring during the Little Ice Age (Birks, 1991; Velle et al., 2011). For 1901 

much of the Holocene, temperatures on Franz Josef Land were 4 to 1°C warmer than today 1902 

with retracted glaciers and snowfields (Lubinski et al., 1999; Forman et al., 2000). Reindeer 1903 

(Rangifer tarandus) have been absent in historical time in Franz Josef Land, but antlers dated 1904 

to 6,400 – 1,300 cal BP suggest a viable population has existed previously and was possibly 1905 

driven to extinction during a distinct glacial advance around 1,000 cal. BP (Forman et al., 1906 

2000). 1907 

 1908 

Some areas of the archipelagoes of the Barents Sea were ice free during parts of the last 1909 

glaciation, including nunataks above 300 meters altitude in northwest Svalbard (Landvik et 1910 

al., 2003), low lying areas along the west coast of Spitsbergen and Prins Karls Forland down 1911 

at sea level (Andersson et al., 2000; Ingólfsson and Landvik, 2013), and substantial parts of 1912 

Novaya Zemlya (Mangerud et al., 2008).  Nunataks have been proposed to act as refugia for 1913 

some crustaceans with the ability to survive as relicts due to their hardy resting eggs 1914 

(Samchyshyna et al., 2008). However, most biota could not survive on nunataks (Brochmann 1915 

et al., 2003; Schneeweiss and Schönswetter, 2011) due to the prevailing polar desert 1916 

conditions in the ice free areas (Andersson et al., 2000).  These harsh conditions and the 1917 

general observation that a relatively limited number of species currently occur on nunataks is 1918 

consistent with the tabula rasa hypothesis; that is, that few if any plants or animals survived 1919 

in Svalbard during the LGM and that the communities observed today are the result of recent 1920 

immigration after the retreat of the ice.  However, local microclimatic and microhabitat 1921 

conditions vary widely on small spatial scales, as do species distributions, and survival in 1922 

small but particularly benign ice-free refugia at either low or higher altitudes cannot 1923 

automatically be discounted (Landvik et al., 2003; Paus et al., 2006; Skrede et al., 2006; 1924 
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Westergaard et al., 2011). Notwithstanding this, the general contempory view is that post-1925 

glacial colonization has been the major process populating the area. Furthermore, species 1926 

richness is often found to be lower in areas that are known to have been covered by ice sheets 1927 

during the last glaciation, suggesting that dispersal limitation has been a key factor structuring 1928 

many contemporary communities in the Arctic (Samchyshyna et al., 2008; Strecker et al., 1929 

2008; Ávila-Jiménez and Coulson, 2011a).  1930 

 1931 

Relatively few Late Quaternary and Holocene palaeozoological studies have been performed 1932 

in freshwater or terrestrial environments in Svalbard and to our knowledge such studies are 1933 

lacking in Franz Josef Land and Novaya Zemlya. The oldest terrestrial sub-fossils from 1934 

Svalbard are recorded from Visdalen (Edgeøya) and dated to 14,700 ± 500 cal BP (Bennike 1935 

and Hedenas, 1995), suggesting very early post-glacial colonization or perhaps the presence 1936 

of glacial refugia (rapidity of colonisation being consistent with local refugia, cf. Convey et 1937 

al., 2008). The assemblage includes L. arcticus, Candona sp. (Crustacea, Podocopida) and a 1938 

questionable Lepidoptera. Several other taxa are recorded from Visdalen during the early 1939 

Holocene, including Oribatida, Chironomidae, a questionable Ichneumonidae, Olophrum 1940 

boreale, Daphnia pulex and Erigone sp. (Bennike and Hedenas, 1995). The presence of 1941 

Lepidurus, Daphnia and Candona suggests that mesotrophic ponds existed in the area. The 1942 

staphylinid beetle Olophritm boreale has also been recorded from Early Holocene lake 1943 

sediments on Bjørnøya (Wohlfarth et al., 1995) together with the beetles Agabus bipustulatus 1944 

and Eucnecosum tenue. The only Trichoptera in the palaeoecological record, noted as 1945 

Limnephilidae indet, was also found in the Early Holocene sediments of Bjørnøya, as well as 1946 

Lepidurus sp. and an unidentified Hymenoptera (Wohlfarth et al., 1995). In addition to the 1947 

abovementioned studies, rotifer resting eggs and testate amoeba have been retrieved from 1948 
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sediments in Kongressvatn (Grønfjord) on Spitsbergen and Rosenbergdalen on Edgeøya, 1949 

respectively (Beyens and Chardez, 1987; Guilizzoni et al., 2006). 1950 

 1951 

Remains of Chironomidae and Cladocera have received the greatest attention in 1952 

palaeozoological studies from Svalbard. Unidentified chironomids have been recorded from 1953 

Bjørnøya (Wohlfarth et al., 1995) and Edgeøya (Bennike and Hedenas, 1995), while studies 1954 

from Nordaustlandet (Luoto et al., 2011) and from five lakes on Spitsbergen (Brooks and 1955 

Birks, 2004; Fadnes, 2010; Velle et al., 2011) included detailed identifications and 1956 

environmental interpretations based on the chironomid assemblages. These records typically 1957 

include about 10 taxa and show large among-site differences in species assemblages. Most 1958 

likely, some sites experienced nutrient enrichment from bird guano or proximity to the sea, 1959 

whereas others were influenced by glacial meltwater.  In a survey of chironomid sub-fossils 1960 

retrieved from the upper 1 cm of sediment (representing about 25 years) from 23 western 1961 

Svalbard lakes, 18 taxa were found. The abundance and distribution of these taxa were 1962 

primarily influenced by pH, nutrient concentrations, water temperature and water depth 1963 

(Brooks and Birks, 2004). 1964 

 1965 

Cladocera sub-fossils have been retrieved from lake sediments in Kongressvatn and in the 1966 

Hornsund area of Spitsbergen (Guilizzoni et al., 2006; Zawisza and Szeroczyńska, 2011), in 1967 

Visdalen on Edgeøya (Bennike and Hedenas, 1995), and in Lake Einstaken on Nordaustlandet 1968 

(Luoto et al., 2011; Nevalainen et al., 2012). The sub-fossil Cladocera assemblages often have 1969 

a low diversity compared to contemporary assemblages, although this may be the result of 1970 

physical and chemical processes influencing the preservation of the remains in sediments, 1971 

such as bottom water freezing during winter (Sywula et al., 1994; Zawisza and Szeroczyńska, 1972 

2011). 1973 
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 1974 

 1975 

6. Invertebrate immigration, dispersal and biogeography in the archipelagoes of the 1976 

Barents Sea.  1977 

 1978 

Molecular studies have hinted at plant refugia in Svalbard during the LGM (Westergaard et 1979 

al., 2011). This, however, awaits confirmation and, as mentioned above, it is currently 1980 

generally assumed that no invertebrates survived this period in situ. Hence, the contemporary 1981 

invertebrate fauna is currently thought to be primarily the result of recent immigration and 1982 

colonization processes. Pugh and McInnes (1998) suggested that the biogeography of 1983 

Tardigrada in the Arctic can be explained by colonization from a Nearctic source following 1984 

the retreat of the ice.  Similarly, the community structure of Collembola throughout the Arctic 1985 

appears to be the result of colonization from numerous source populations outside of the 1986 

Arctic with subsequent dispersal within the Arctic (Ávila-Jiménez and Coulson 2011a; Fig. 1987 

4). Arctic plant communities are considered to have been selected for species with high 1988 

dispersability by the repeated cycle of glaciation in the Arctic (Alsos et al., 2007). Parts of the 1989 

South Island, Novaya Zemlya, were certainly ice-free, with shrub vegetation surviving 1990 

throughout the last glaciation (Serebryanny et al., 1998; Velichko, 2002; Mangerud et al., 1991 

2008), providing source populations for the colonization of other islands in the archipelago as 1992 

the ice retreated.   1993 

 1994 

With the existence of widespread plant refugia on Novaya Zemlya, and the putative presence 1995 

of plant refugia and /or deglaciated areas on Svalbard, it is highly likely that invertebrate 1996 

faunas also existed in these refugia.  Studies from Antarctica have demonstrated that, even in 1997 

the most climatically extreme and isolated ice-free areas, there is a viable, if limited, 1998 



   

 
 

76

terrestrial fauna (Convey, 2013).  But, although a glacial refugium has been proposed for 1999 

certain freshwater species such as the Daphnia pulex complex in the Canadian High Arctic 2000 

archipelago (Weider and Hobæk, 2000), no evidence of in situ faunal survival has yet been 2001 

described for Svalbard or Franz Josef Land. Increasingly, molecular and bioinformatic 2002 

analytical techniques devoted to defining biogeographic and phylogeographic patterns are 2003 

being applied to studies in the polar regions. These approaches permit more accurate 2004 

definition of the timing of divergence events, both between species and between populations 2005 

within species, potentially allowing detailed descriptions of dispersal and colonization 2006 

patterns (Allegrucci et al., 2006; Stevens, 2006; Stevens et al., 2006,  2007; McGaughran et 2007 

al., 2010; Mortimer et al., 2011). Their application has led to a paradigm shift in the 2008 

interpretation of the antiquity of the contemporary Antarctic terrestrial biota (Convey and 2009 

Stevens, 2007; Convey et al., 2008, 2009; Vyverman et al., 2010). However, as yet these 2010 

approaches have not been applied to the study of Arctic terrestrial invertebrates, and have so 2011 

far generally focused on floral biogeography (Abbott and Brochmann, 2003; Brochmann et 2012 

al., 2003; Alsos et al., 2007; Ávila-Jiménez, 2011). 2013 

 2014 

Insert Figure 4 here 2015 

 2016 

Several dispersal vectors have been suggested for invertebrate species colonizing the polar 2017 

regions. Airborne dispersal by active flight may account for many winged species. Chernov 2018 

and Makarova (2008) consider the Coleoptera fauna of Svalbard to consist of flighted 2019 

migratory species. Passive dispersal with air currents (anemochory) may be also responsible 2020 

for many of the species or taxa seen in the islands, for example Tardigrada, Aphididae, 2021 

Syrphidae, Tipulidae and Lepidoptera (Elton, 1925a, 1934; Kaisila, 1973b; Pugh and 2022 

McInnes, 1998; Coulson et al., 2002b).  Similarly, passive dispersal by ocean currents 2023 



   

 
 

77

(hydrochory), either floating on the ocean surface or rafting with floating debris of terrestrial 2024 

or marine origin, such as tree trunks, seaweed rafts, or human rubbish may account for the 2025 

arrival of others (Coulson et al., 2002a). Further species may hitch with migratory birds or 2026 

mammals (zoochory). Lebedeva and Lebedev (2008) speculated on the possible role of birds 2027 

in transporting soil microarthropods to the Arctic, although clear confirmation of the 2028 

occurrence of this process is lacking. Non-parasitic mites have also been described as phoretic 2029 

on larger invertebrate species such as Diptera (Coulson, 2009; Gwiazdowicz and Coulson, 2030 

2010).  Transport assisted by human processes (anthropochory) may be an increasingly 2031 

common immigration route.  This is especially the case with plants, where around 100 2032 

vascular plant species are now known to have been introduced to Svalbard via human activity 2033 

compared to the natural flora of 164 species (Alsos et al., 2013). The effect of human-2034 

mediated dispersal on invertebrate immigration patterns has not been quantified in the High 2035 

Arctic, although it is recognised as a factor far outweighing natural dispersal events in the 2036 

Antarctic (Frenot et al., 2005) where it has also been highlighted as a major threat to 2037 

biodiversity (Hughes and Convey, 2010, 2012; Chown et al., 2012a 2012b; Greenslade and 2038 

Convey 2012).   In the anthropogenic soils of the mining town of Barentsburg (Svalbard), 11 2039 

of the 46 identified invertebrate species (24%) were non-native (Coulson et al., 2013a, 2040 

2013b).  Svalbard may be particularly vulnerable to anthropogenic introduction of alien 2041 

species due to the high volume of visitors arriving both by ship and aeroplane (Ware et al., 2042 

2011). In contrast, access to Franz Josef Land and Novaya Zemlya is currently more 2043 

restricted, albeit after a long history of military usage with, presumably, little or no attention 2044 

to biosecurity issues.   2045 

 2046 

A range of synanthropic species have also been described from the Svalbard archipelago in 2047 

human settlements (Coulson, 2007b) which are, in the main, unlikely to establish in the 2048 
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natural environment due to the Arctic conditions. However, as is characteristic of human 2049 

introductions elsewhere, and in particular in the Antarctic (Frenot et al., 2005: Greenslade et 2050 

al., 2012), a proportion of such species are likely to be able to survive in the natural 2051 

environment and subsequently become invasive. Furthermore, the majority of invertebrate 2052 

fauna are cryptic and require specialist expertise for recognition and the probability of 2053 

successful remedial extermination once establishment has occurred is likely to be low (see 2054 

Hughes and Convey, 2012 for discussion of these issues in a parallel Antarctic context). 2055 

 2056 

Most terrestrial invertebrate biogeographic studies carried out to date in Arctic areas are based 2057 

on community assemblages and have examined groups such as Collembola (Hågvar, 2010; 2058 

Ávila-Jiménez and Coulson, 2011a; Fig. 4), Tardigrada (Pugh and McInnes, 1998), or 2059 

Rotifera (Gíslason, 2005). For many groups meaningful comparisons of the invertebrate 2060 

communities between the archipelagoes are not possible due primarily to lack of sampling 2061 

effort and taxonomic confusion.  However, for some groups it is feasible to make an overall 2062 

assessment of similarities (Table 2).  Within data limitations it is notable that, for many 2063 

groups, the species diversities of Svalbard and Novaya Zemlya are numerically similar, but 2064 

that they have few or very few species in common, indicating limited connectivity between 2065 

the archipelagoes. 2066 

 2067 

Insert Table 2 here 2068 

 2069 

 2070 

7. Environmental change  2071 

 2072 
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The archipelagoes of the Barents Sea lie in the High Arctic region that is expected to be 2073 

particularly sensitive to oceanographic and climatic changes, and a strong indicator of their 2074 

biological consequences (ACIA, 2005: Chapin III et al., 2005: Convey et al., 2012). Svalbard, 2075 

and even Novaya Zemlya, are subject to warm North Atlantic influences from the west, and 2076 

cold Arctic Ocean influences from the east, as well as lying at the boundary of the region 2077 

experiencing large-scale changes in winter and multi-year Arctic sea ice extent (Serreze et al., 2078 

2007). All three archipelagoes lie at the high latitudes subject to the ‘polar amplification’ of 2079 

general global climate trends, although Svalbard is the only location of the three 2080 

archipelagoes considered here to have a detailed publically accessible long term 2081 

meteorological record by which to confirm recent warming trends (Førland et al., 2011). 2082 

Increasingly sophisticated general circulation models continue to predict considerable further 2083 

warming over the next century in the high latitude polar regions (IPCC 2007). Temperature 2084 

warming is accompanied by a suite of other changes of biological relevance, including in the 2085 

form and amount of precipitation, cloudiness, humidity and insolation, and the timing and 2086 

frequency of freeze-thaw events. Finally, although the Arctic does not normally experience 2087 

the organized formation of a seasonal ozone hole, as is seen in the Antarctic through 2088 

accumulation of anthropogenic atmospheric pollutants and catalytic destruction of 2089 

stratospheric ozone in the austral spring, intermittent and significant depletion does occur 2090 

spatially at Arctic latitudes throughout the Arctic summer, with a number of potential 2091 

biological impacts identified (e.g. Rozema, 1999). 2092 

 2093 

The general biological responses to environmental change in the Arctic have received 2094 

considerable attention (e.g. for review see Callaghan et al., 2004a, 2004b; Chapin III et al., 2095 

2005;  AMAP, 2011). However, studies on the impacts of climate change on soil animal 2096 

communities in High Arctic environments are limited. Although environmental manipulation 2097 
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methodologies have been applied widely in the context of ITEX studies to a range of Arctic 2098 

vegetation habitats, generally these studies have focussed on vegetation responses and have 2099 

not addressed, or included, the soil or other elements of the invertebrate fauna. Studies of soil 2100 

nematode communities at Abisko, Sweden, have indicated that, while population densities are 2101 

increased, biodiversity is generally affected negatively and distinct changes in trophic 2102 

structure are caused by environmental perturbations (Ruess et al., 1999a). This seems to be an 2103 

indirect effect of changes in vegetation cover, plant species composition, litter quality and 2104 

below-ground input by plants, which in turn will have a major impact on nutrient turnover 2105 

through microorganisms and soil fauna (Ruess et al., 1999b; Sohlenius and Boström, 1999; 2106 

Simmons et al., 2009). Similar initial responses to manipulations have also been reported in 2107 

Antarctic studies, which also identified that caution needs to be used in separating initial and 2108 

sometimes drastic artefactual changes in population density and diversity from those that 2109 

appear to become established after longer periods of manipulation have permitted the 2110 

impacted communities to stabilise (Convey and Wynn-Williams, 2002).  2111 

 2112 

Webb et al. (1998), in a three year open-topped chamber manipulation at Ny-Ålesund, found 2113 

very little change in soil oribatid mite community composition, although noting possible 2114 

subtle changes in species relative abundances. These authors concluded that the soil 2115 

microhabitat would be more buffered from short-term changes in temperature than would be 2116 

the case for invertebrates of the overlying vegetation. This difference is perhaps illustrated by 2117 

the striking findings of Strathdee et al. (1993), who reported an order of magnitude increase in 2118 

overwintering aphid eggs within versus outside chamber-manipulated vegetation, indicating a 2119 

possible step change in the population dynamics of this species under realistic warming 2120 

scenarios. However, as noted above, a similar response has not been observed in recent 2121 
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studies of natural aphid populations in areas that are thought to have warmed already by a 2122 

similar amount in recent decades. 2123 

 2124 

In general terms, the two most important environmental variables subject to change in Arctic 2125 

(and Antarctic) terrestrial ecosystems of relevance to the invertebrate fauna are those relating 2126 

to temperature and the availability of liquid water. While water may provide the primary 2127 

limiting factor to the temporal activity of invertebrates in these ecosystems, temperature 2128 

provides the energy required to fuel biological processes. In many instances, where climate 2129 

change leads to relaxation of the constraints provided by either or both of these variables, the 2130 

invertebrate biota are likely to benefit, with expectation of increased production, biomass, 2131 

population size, community complexity, and colonisation (Convey, 2011; Nielsen et al., 2011; 2132 

Nielsen and Wall, 2013). However, in terms of biodiversity, these positive impacts of climate 2133 

change may then be outweighed by other impacts of human activities, in particular the 2134 

establishment of invasive non-indigenous species. 2135 

 2136 

More broadly, anthropogenic climate change poses a serious threat to freshwater ecosystems 2137 

in Barents Sea region. Widely reported reductions in sea ice have been mirrored in freshwater 2138 

systems. For example, an extended ice free period has resulted higher water temperatures and 2139 

lower water levels in Kongresvatnet in Svalbard (Holm et al., 2011). Elevated snow fall may 2140 

increase the opacity of translucent block-ice delaying the start of primary production in the 2141 

spring (Svenning et al., 2007).  Recently, lakes on granitic bed rock appear to have become 2142 

more acid, perhaps due to increased acid precipitation, a spring influx of low pH water during 2143 

the melt and the low buffering capacity of granitic rocks (Betts-Piper et al., 2004).  2144 

 2145 
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It is important to recognize that increased temperature due to global warming may induce a 2146 

multitude of changes in detail in the High Arctic environment, in addition to the broad 2147 

generalizations described above. Included amongst these are increased snow depth, earlier 2148 

snow melt and more frequent freeze-thaw cycles in winter (Christensen et al., 2007; AMAP, 2149 

2011; Wilson et al., 2013). In particular, the presence of a solid ice cover directly on the soil 2150 

surface may seriously affect the Collembola and presumably other communities (Coulson et 2151 

al., 2000). Changes in local faunal composition are likely to occur under current warming 2152 

scenarios, but over the short to medium term (years to decades) the Svalbard environment 2153 

probably has sufficient buffer capacity to offer suitable habitats for even the most cold-2154 

adapted species. In terms of biodiversity conservation, special attention should be given to 2155 

monitoring the status of species which are absent from Arctic continental mainland 2156 

landmasses, as these may be the first to be pushed towards extinction. 2157 

 2158 

 2159 

8. Conclusions and future research priorities 2160 

 2161 

The archipelagoes of the Barents Sea are inhabited by diverse communities of invertebrates, 2162 

despite the short period since deglaciation and the clear environmental challenges. There is an 2163 

obvious imbalance in our understanding of the biodiversity of the three archipelagoes.  2164 

Research in Svalbard is increasing rapidly while there are still few reports, particularly in the 2165 

western literature, from Franz Josef Land and Novaya Zemlya. Our knowledge of the faunas 2166 

of all three archipelagoes is relatively recent, the majority of records commencing in the early 2167 

Twentieth Century.   2168 

 2169 
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In attempting to describe or compare the invertebrate fauna of the archipelagoes of the 2170 

Barents Sea it is immediately clear from the consideration of all taxa here that great problems 2171 

exist that challenge our understanding of the region. First, there is the lack of comprehensive 2172 

sampling campaigns. Many locations have only been sampled on one occasion, sampling 2173 

locations were often selected primarily due to logistical considerations, sampling was carried 2174 

out by non-specialists, and often a limited range of taxa were focused on driven by the skills 2175 

and interests of the particular taxonomists / ecologists associated with the sampling 2176 

programme.   There is a strong need for repeated sampling campaigns designed to capture 2177 

seasonal and interannual variation in the Barents Sea region.  For Novaya Zemlya and Franz 2178 

Josef Land there has been the added problem of access to a closed military region. Hence, we 2179 

often have a very prejudiced knowledge biased towards locations with relative ease of access 2180 

and to particular taxa. The second hurdle to surmount is the taxonomic confusion existing in 2181 

the historic literature and the current ongoing debates within particular taxa.  Several 2182 

invertebrate taxa present in the Arctic may belong to species groups with an intricate 2183 

taxonomy and which are challenging to identify.  There are multiple instances of 2184 

misidentifications and synonyms in the literature. Of the 88 Tardigrade taxa currently 2185 

recognised in the literature from Svalbard many originate from older reports and 2186 

identifications have not been verified based on modern taxonomy (Kaczmarek et al., 2012).  2187 

Another example is given by the 87 species of oribatid mite reported from Svalbard, many of 2188 

which have not recently been observed and where synonyms and misidentifications may be 2189 

suspected. This situation exists with most, if not all, the taxa discussed in this article. To 2190 

complicate the situation further, material from earlier sampling may no longer exist, either 2191 

being lost or, as in the case of much of Thor’s material (including type specimens), 2192 

deliberately destroyed (Winston, 1999).  Hence, re-examination using modern taxonomic 2193 

principles is no longer possible and a new inventory based on fresh material lodged in 2194 
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appropriate museums and collections is urgently required.  Furthermore, forthcoming studies 2195 

should employ molecular methods such as DNA-barcoding, which have yielded promising 2196 

results in recent studies of Chironomidae (Stur and Ekrem, 2011). Molecular data may prove 2197 

to be valuable in the identification of dispersal routes and timescales for the invertebrate fauna 2198 

of the Barents Sea archipelagoes. Based on morphological studies, efforts should also be 2199 

made in preparing good and well-illustrated identification keys accessible to non-specialists 2200 

so as to increase the taxonomic value of upcoming ecological studies and enable future 2201 

monitoring programs in the Arctic.    2202 

 2203 

For both the terrestrial and freshwater systems there is clearly a need to assess  biodiversity in 2204 

areas away from the main settlements, and in specific habitats such as warm springs, naturally 2205 

nutrient-rich locations and more extreme habitats. Better understanding of food webs, life 2206 

history strategies and the interactions between freshwater, terrestrial and marine ecosystems 2207 

in different regions of the Arctic is also required. Work is underway to develop a monitoring 2208 

network for freshwater biodiversity in the Arctic under the auspices of the Arctic Council 2209 

(Culp et al., 2011), including locations on Svalbard, and the same is required in the terrestrial 2210 

environment.   2211 

 2212 

Current knowledge indicates that there are relatively few species endemic either to individual 2213 

archipelagoes or to the region as a whole.  This most likely reflects either the young age of the 2214 

communities or relatively high linkage to mainland populations, both issues that may be 2215 

resolved by the application of molecular methodologies.  Observed endemism levels may also 2216 

be more apparent than real, and reflect the limited sampling effort in other Arctic regions.  2217 

Aspects of the dissimilarity of the invertebrate faunas of the different archipelagoes are 2218 

striking. In particular, it might have been expected that Novaya Zemlya and Svalbard would 2219 
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show greater similarity or overlap in diversity than this study has found (Table 2). 2220 

Clarification of the relative importance of eastern and western sources of colonizing diversity 2221 

over time and in relation with regional glacial processes for both archipelagoes is clearly 2222 

required.  2223 

 2224 

This extensive synthesis of Barents Sea archipelago invertebrate biodiversity provides both a 2225 

benchmark for the region and the foundation for future research in several key areas. In 2226 

summary, we highlight the need for: 2227 

 explicit phylogeographical studies across the entire region (and more widely in the 2228 

High Arctic),  2229 

 resolution of taxonomic confusion and the development of combined molecular and 2230 

morphological approaches, 2231 

 strengthening of the linkages across biological and physical disciplines (e.g. 2232 

glaciology, geomorphology, geology) in order to more clearly identify potentially ice-2233 

free areas,  2234 

 integration with oceanography and climatology in the context of understanding the 2235 

role currents play in the occurrence and frequency of transfer events,  2236 

 linkage with regional climate change studies, to provide baselines for the 2237 

documentation of, and studies of, colonizing species (including those associated with 2238 

anthropogenic influence) and their impacts,  2239 

 integration of biodiversity studies across groups to give better description of 2240 

ecosystem structure and function, especially in the context of large-scale carbon and 2241 

nitrogen cycles, linkages between terrestrial and marine environments, and linkages 2242 

between terrestrial and freshwater environments at catchment scale 2243 
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