

Greenwich Academic Literature Archive (GALA) – the University of Greenwich open access repository <u>http://gala.gre.ac.uk</u>

Citation for published version:

Stubbs, Brendon, Binnekade, Tarik, Eggermont, Laura, Sepehry, Amir A., Patchay, Sandhi and Schofield, Pat (2014) Pain and the risk for falls in community-dwelling older adults: systematic review and meta-analysis. Archives of Physical Medicine and Rehabilitation, 95 (1). 175-187.e9. ISSN 0003-9993 (Print), 1532-821X (Online) (doi:10.1016/j.apmr.2013.08.241)

Publisher's version available at: http://dx.doi.org/10.1016/j.apmr.2013.08.241

Please note that where the full text version provided on GALA is not the final published version, the version made available will be the most up-to-date full-text (post-print) version as provided by the author(s). Where possible, or if citing, it is recommended that the publisher's (definitive) version be consulted to ensure any subsequent changes to the text are noted.

Citation for this version held on GALA:

Stubbs, Brendon, Binnekade, Tarik, Eggermont, Laura, Sepehry, Amir A., Patchay, Sandhi and Schofield, Pat (2014) Pain and the risk for falls in community-dwelling older adults: systematic review and meta-analysis. London: Greenwich Academic Literature Archive. Available at: <u>http://gala.gre.ac.uk/10250/</u>

Contact: gala@gre.ac.uk

Accepted Manuscript

Pain and the risk for falls in community dwelling older adults: A systematic review and Meta-analysis

Brendon Stubbs, MSc Laura Eggermont, PhD Tarik Binnekade, MSc Amir Sephery, MSc Sandhi Patchay, PhD S Pat Schofield, PhD

PII: S0003-9993(13)00892-7

DOI: 10.1016/j.apmr.2013.08.241

Reference: YAPMR 55575

To appear in: ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION

Received Date: 7 May 2013

Revised Date: 14 August 2013

Accepted Date: 24 August 2013

Please cite this article as: Stubbs B, Eggermont L, Binnekade T, Sephery A, Patchay S, Schofield SP, Pain and the risk for falls in community dwelling older adults: A systematic review and Metaanalysis, *ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION* (2013), doi: 10.1016/ j.apmr.2013.08.241.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Word count: 4990

Archives of Physical Medicine and Rehabilitation

Pain and the risk for falls in community dwelling older adults:

A systematic review and Meta-analysis

Running title: Falls in older adults with chronic pain

Authors: Brendon Stubbs, Laura Eggermont, Tarik Binnekade, Amir Sephery, Sandhi Patchay, S Pat Schofield.

Mr Brendon Stubbs*, MSc	Physiotherapist, PhD candidate
	School of Health and Social Care,
	University of Greenwich,
	London, United Kingdom.
Dr Laura H.P. Eggermont, PhD	Assistant professor
	Department of Clinical Neuropsychology
	VU University Amsterdam
	Van der Boechorststraat 1
	1081 BT Amsterdam, The Netherlands
Tarik T. Binnekade, MSc	PhD candidate
	Department of Clinical Neuropsychology
	VU University Amsterdam
	Van der Boechorststraat 1
	1081 BT Amsterdam, The Netherlands
Amir A. Sepehry, MSc	PhD candidate
	College for Interdisciplinary Studies,
	Graduate program in Neuroscience,
	University of British Columbia, Vancouver,
	British Columbia, Canada.

Dr Sandhi Patchay, PhD

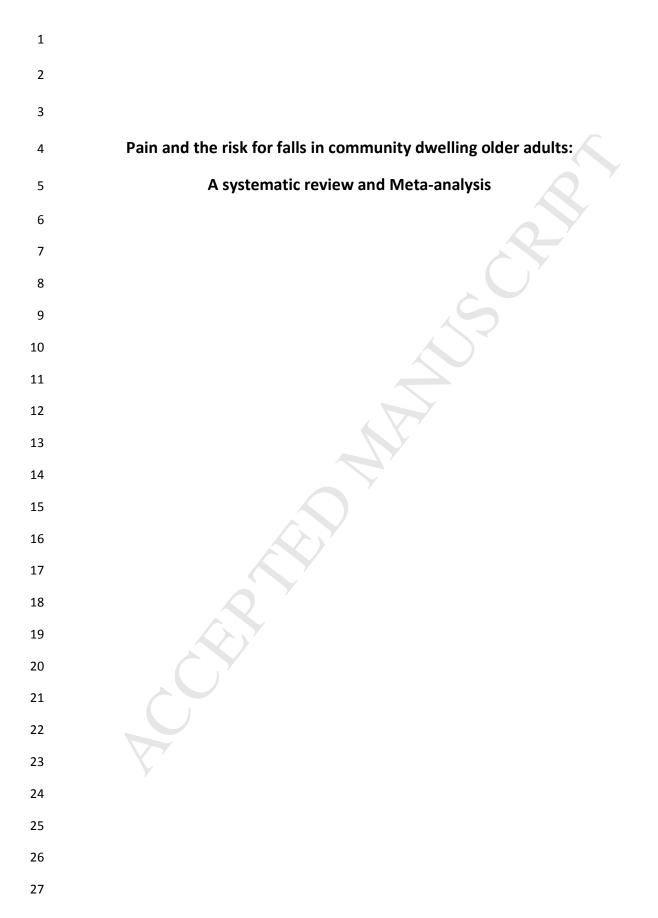
Principal lecturer, School of Psychology University of Greenwich, London, United Kingdom

Prof Pat Schofield, PhD

Professor of Nursing, School of Health and Social Care,

University of Greenwich,

London, United Kingdom.


*Corresponding author: Brendon Stubbs, <u>b.stubbs@greenwich.ac.uk</u> 004447447 489 242

Conflict of Interest

None to declare by any author

Acknowledgements

We would like to thank the authors who kindly provided additional data for the meta-analysis, including Prof Suzanne Leveille, Dr Daina Sturnieks, Dr M Kwan and Professor SR Lord, Dr Jason Leung, Dr Yagci, Dr Bekibele.

28 Abstract

- 29 Objective
- 30 To conduct a systematic review and meta-analysis to establish the association between pain and falls
- 31 in community dwelling older adults.
- 32 Data Sources
- 33 Electronic databases from inception until 1st March 2013 including Cochrane Library, CINAHL, EBSCO,
- 34 EMBASE, PubMed and PsycINFO.
- 35 Study Selection

Two reviewers independently conducted the searches and completed methodological assessment of all included studies. Studies were included that (a) focussed on older adults over 60 years old, (b) recorded falls over 6 or more months, (c) identified a group with and without pain. Studies were excluded that (d) included participants with dementia, a neurological condition (e.g. stroke), (e) participants whose pain was caused by a previous fall, (f) individuals with surgery/ fractures in the past 6 months.

- 42 Data extraction
- 43 One author extracted all data and this was independently validated by another author.
- 44 Data synthesis

1,334 articles were screened and 21 studies met the eligibility criteria. 50.5% of older adults with pain reported one or more fall over 12 months compared to 25.7% of controls (p<0.001). A global meta-analysis with 14 studies (n=17,926) demonstrated that pain was associated with an increased odds of falling (OR: 1.56, 95% Confidence Interval (CI): 1.36 to 1.79, l^2 =53%). A subgroup metaanalysis incorporating studies that monitored falls prospectively established that the odds of falling

- 50 was significantly higher in those with pain (n=4,674; OR: 1.71, CI: 1.48 to 1.98, l^2 =0%). Foot pain was
- strongly associated with falls (n=691; OR: 2.38, CI: 1.62 to 3.48, l^2 =8%) as was chronic pain (n= 5,367;
- 52 OR 1.80, CI: 1.56 to 2.09, *l*²=0%).
- 53 Conclusion
- 54 Community dwelling older adults with pain were more likely to have fallen in the past 12 months
- and fall again in the future. Foot and chronic pain were particularly strong risk factors for falls and
- 56 clinicians should routinely enquire about these when completing falls risk assessments.
- 57 Key words: falls, older adults, risk factors, systematic review, pain, elderly

58 Abbreviations

- 59 PRISMA Preferred Reporting Items for Systematic Reviews and Meta-analysis statement
- 60 OR odds ratio
- 61 RaR rate ratio
- 62 CI Confidence interval (all reported at 95%)
- 63 NOS Newcastle Ottawa Scale
- 64 RCT randomised controlled trials

65

Falls are a leading cause of unintentional injury and death in older age ¹⁻² and can also result 66 in impaired mobility, disability, fear of falling and reduced quality of life ³⁻⁶. In addition, falls are very 67 costly to health and social care systems ⁷. Unsurprisingly, the prevention of falls in older adults is a 68 public health priority in many countries across the world ⁸⁻¹⁰. A key component in preventing falls is 69 the identification of important factors that may increase the risk of falls ^{4, 9, 11}. However, the 'gold 70 standard' multifactorial interventions to reduce falls have had relatively limited success 11 , which 71 may be because some important risk factors remain elusive ⁶. One important and potentially 72 significant risk factor that appears to be continually overlooked is pain ^{6, 12-13}. For example, the 73 American and British Geriatric Societies¹⁴ provide detailed guidance on the assessment of 74 75 individuals at risk of falls but there is no specific mention of the assessment of pain or its importance 76 as a falls risk factor. This is surprising for a number of reasons. Firstly, pain is associated with mobility deficits, impaired gait and balance deficits, all of which are well established internal risk factors for 77 falls^{4, 6, 12, 15-16}. Secondly, pain is very common in older people, with. up to 76% of older people in the 78 community experiencing it ¹⁷. 79

80 It is likely that pain has not been identified as a risk factor for falls due to the relative dearth of research specifically investigating the association of pain and falls in older people 6 . Whilst there 81 has been comparatively few authors primarily investigating this, in 1999 Arden and colleagues ¹⁸ 82 83 demonstrated that the presence of severe chronic knee pain was associated with a 50% increased risk of multiple falls. More recently, Leveille and colleagues ⁶ also established that chronic pain was 84 associated with a significantly increased risk of falls. A recent review ² investigated 31 common risk 85 factors for falls in community dwelling older adults did provide some consideration of the influence 86 87 of pain with falls. The authors established that pain (yes/ no) was associated with an increased risk 88 of single falls (2 studies; OR 1.39 (CI 95%: 1.14 to 1.62) and multiple falls (6 studies; OR 1.60 (CI 95%: 89 1.44 to 1.78). However, the results were overshadowed by a focus on other risk factors. Whilst this

90 review provides a useful insight, its generic focus means that it was not able to provide a detailed
91 exploration of the association of pain and falls and this is warranted.

Studies that explore the association between pain and the risk of falling offer valuable information for clinicians working with older people. In order to address this we set out to conduct a systematic review of studies investigating the association between pain and falls. . Previous research ^{6, 13, 18} has suggested that certain sites and duration (e.g. chronic) of pain may heighten the risk for falls. Therefore, wherever possible we will establish details of the site, location and duration of pain and the influence of these on the risk of falls. A number of authors ^{4, 8, 19-20} have emphasised the importance of developing a common taxonomy when reporting falls within trials to enable replication and comparison. In order to address this, we will also establish current definitions employed and methods of ascertaining falls within the literature. The primary aim of this systematic review and meta-analysis is to establish if pain is associated with increased odds of falling in community dwelling older people.

1	1	2
т.	-	~

113

114 Methods

The study is reported in accordance with the Preferred Reporting Items for Systematic Reviews and
 Meta-analysis statement (PRIMSA)²¹.

117 Eligibility criteria

118 Studies were considered for inclusion if they (a) focussed on community dwelling older adults with a 119 mean age > 60 years, (b) recorded falls as an outcome, including single and multiple falls, (c) falls 120 were ascertained over 6 months or more through either a prospective or retrospective suitable 121 method (e.g. self-report questionnaire or interview, falls calendars, postcards, telephone 122 interviews). (d) The sample included: older adults that were identified as having pain and older 123 adults without pain. We accepted the assessment of pain through any method, including validated 124 outcome measures, clinical diagnosis and self-report measures. Papers were excluded if they: (e) 125 included participants with dementia, due to the difficulty obtaining the accurate ascertainment of falls and the increased risk of falls seen in this population ²². (f) Reported on a sample whose pain 126 127 was identified as being caused by a previous fall in order to reduce the likelihood of reverse 128 causality. (g) Reported on falls in any neurological condition (e.g. stroke, multiple sclerosis) in an attempt to reduce the influence of comorbidity on falls risk ²³ or (h) included participants with a 129 130 recent history of trauma (any fractures within the last 6 months) or orthopaedic surgery (in the last 6 131 months). The type and design of the studies considered for inclusion were not limited, but reviews, 132 expert opinions and PhD theses were excluded. We only considered studies that were written in 133 English.

134 Information Sources

A systematic review of the literature was conducted according to the general guidance provided by Cochrane reviewer's handbook ²⁴. Major electronic databases were searched from inception until 1st March 2013, including the Cochrane Library, CINAHL, EBSCO, EMBASE, PubMed and PsycINFO. Online searches of key journals were conducted including the 'in press' sections of the Journal of the American Geriatrics Society, Archives of Physical Medicine and Rehabilitation and Age and Ageing. In addition the reference lists of relevant recent systematic reviews were also reviewed.

141 Systematic Search Strategy

The search terms used were categorised in population (older adults, aged, elderly, old age, frail) condition (pain*, chronic pain, persistent pain, musculoskeletal pain) and outcome (fall*, accidental falls). (See Supplemental Appendix 1., available online.) Key authors were contacted to establish if any key studies were missed or currently being undertaken that warranted inclusion. In addition, we contacted primary authors up to three times if additional clarification/ information were required to determine if an article was eligible.

148 Study Selection

Two reviewers independently (BS/TB) conducted the search strategy, screening article titles, key words and abstracts to assess for eligibility. Articles that met the eligibility criteria were considered in a full text review by the same independent reviewers (BS/TB) and a final list of included articles was established by consensus. A third reviewer was utilised for mediation (LE). If studies reported on the same data in different publications, we utilised the data from the largest and/ or most recent sample.

155 Data Collection

Data extraction was initially conducted by one reviewer (BS) and independently validated by a second reviewer (TB). The data extracted from each article included: year of publication, design, sample size, participant information (age, % females, comorbidity), method of pain assessment,

159 location/duration/severity of pain, fall definition, method of falls ascertainment and number of 160 fallers (one or more falls in a set time period) in the pain and control samples. Wherever possible we 161 also extracted any reported association statistics (e.g. odds ratio (OR), rate ratio (RaR) etc.) 162 investigating the relationship between pain and falls together with 95% confidence interval (CI), 163 standard error and p value. If association statistics were not available, we extracted the raw data 164 and calculated the unadjusted odds ratio with a 2 X 2 table (together with a 95% CI and p value for 165 each analysis). These results will be hereafter described as 'unadjusted odd ratios based on raw 166 data'.

167 Methodological and Risk of Bias Assessment

168 Two reviewers (BS/TB) independently completed the methodological assessment of included articles 169 using the Newcastle Ottawa Scale (NOS)²⁵. The NOS provides an assessment of the quality of non-170 randomised controlled trials and its content validity and reliability have been established ²⁵. 171 Included studies are judged across three key areas: selection, comparability and outcomes. The NOS 172 provides an overall score for methodological quality of up to 9 stars and scores of 5 and above are considered of satisfactory quality ²⁶. The NOS provides pre-defined scoring criteria, but can be 173 174 further specified for the topic of study. We adapted the NOS to provide one star accounting for age 175 and another for gender or comorbidity when considering the comparability of included studies. In 176 addition, we updated the requirements for a star when considering the ascertainment of falls in the 177 exposure category.

178 Summary measures

Whenever possible we extracted association statistics (together with 95% CI and *p* value) investigating the relationship between pain and falls, together with any adjusted confounding factors. In addition, we extracted the raw data from each study to establish an unadjusted OR for the association between pain and falls in a 2 X 2 table. If necessary 2 X 3 or 2 X 4 study designs were

pooled to generate a 2 X 2 table. If the raw data was not available we attempted to contact the
primary authors up to three times to enable inclusion in the meta-analysis.

185 In order to establish the annual percentage of older people with and without pain that reported one 186 or more falls, we utilised the raw data from the 2 X 2 tables and calculate point estimate for the two 187 groups.

188 Data Synthesis

Due to the variation in the reporting and adjustment for multiple confounding factors in each study, we only pooled studies when we were able to calculate the unadjusted OR from the raw data. To assess the impact of the duration of the pain, we conducted a subgroup analysis investigating the association between chronic pain (pain lasting three or more months) and non-chronic pain (pain lasting less than three months). In addition we conducted a subgroup analysis in order to determine the relationship between the location of pain and the method of ascertaining falls (prospective or retrospective) on the odds of falling. For each analysis we calculated the 95% Cl and p value.

196 Due to the heterogeneity of the data acquired, a random effects model (DerSimonian-Laird ²⁷) was 197 employed. This provides a more conservative score than a fixed effects model given that it incorporates within and between study variance 28 . To measure heterogeneity l^2 statistic was 198 199 calculated and scores of 25%, 50% and 75% were considered low, moderate and high heterogeneity 200 respectively ²⁹. All data synthesis was conducted with the Comprehensive Meta-Analysis (Vers. 2.0) 201 STATA. In order to assess for publication bias, we undertook a visual inspection of a funnel plot for the studies included in the global meta-analysis and removed any outliers in a sensitivity analysis ²⁴. 202 203 In addition, where possible we conducted a meta-regression using the mean age and gender as 204 moderators. This provided an assessment of the influence of these factors on the observed effect 205 seen in each analysis.

206 Outline of Results

The results of the narrative synthesis and meta-analysis are reported together. First, we considered the percentage of fallers over 12 months for older adults with and without pain utilising the raw data from the 2 X 2 tables. Second, we considered the results of the individual studies in the narrative synthesis and report a global meta-analysis investigating the association between pain and falls. We then undertook a subgroup analysis to establish the influence of falls ascertainment (prospective/ retrospective), location of the pain and the duration of the pain (chronic/ non chronic) on the relationship between pain and falls.

228

229 Results

230 Study Selection

The original electronic search produced 1334 hits and 10 additional articles were found from other sources. After the removal of duplicates, 795 abstracts were examined and 69 articles were considered in the full text review. At this stage, we contacted 13 authors requesting additional information and 4 of these were subsequently included in the review ³⁰⁻³³. In total, 48 articles were excluded with reasons and 21 studies were included in the narrative review ^{5-6, 12-13, 18, 30-45} and 14 of these ^{5-6, 12, 33-36, 38, 40-42} (n=17,926) were included in the meta-analysis. The search strategy is presented in Figure 1.

238

Insert Figure 1 about here

239 Study and participant characteristics

240 The summary of the 21 included studies is presented in Supplemental Table 1 (available online). Seven studies had a case-control design ^{13, 30, 32-36} and 14 were cohort studies ^{5-6, 12, 18, 31, 37-45}. The 241 sample sizes in each study varied considerably, Arden et al ³⁷ was the largest and included 6,441 242 older adults with 1,427 of those reporting prevalent knee pain, whilst Levinger et al ³⁰ was the 243 244 smallest and included 62 older adults with 35 experiencing knee pain. The method of ascertaining 245 pain and the location and duration varied considerably in each study and is summarised in 246 Supplemental Table 1. Data on the mean age and gender for two comparative groups (either (a) the pain/ no pain group or (b) fallers/ non fallers), were only available for 13 of the included studies ^{6, 12-} 247 ^{13, 30-31, 33-35, 37-38, 40-42} and is presented in Supplemental Table 1. There was considerable inconsistency 248 249 and heterogeneity in the reporting of comorbidities in each study, with few studies providing clear 250 information on this, but wherever available these are presented in Supplemental Table 1.

251 Definition and ascertainment of falls

Nine studies did not provide a definition for a fall ^{12, 18, 30, 34-38, 43}. Seven studies provided a definition for a fall referenced by the literature and the most common was that offered by the Kellogg International working group ⁴⁶ (n=4) ^{5-6, 33, 45} and the definition offered by Tinnetti ⁴⁷ (n=3) ^{13, 41-42} whilst a further 5 studies offered a definition, but this was not referenced by the literature ^{31-32, 39-40,} ⁴⁴ see Supplemental Table 1.

- 257 Prevalence of falls reported by older adults with and without pain
- 258 We calculated the mean percentage of fallers (one or more fall) over 12 months for the older adults
- with and without pain utilising the raw data from 12 studies ^{5, 12, 30-33, 35-36, 38, 40-42} with the data from
- the 2 X 2 tables. This established that 50.5% of older adults with pain reported one or more fall over
- 261 12 months compared to 25.76% of the control group (p<0.001).
- 262 Association between pain and falls in the individual studies
- Twelve studies reported an adjusted association statistic to quantify the relationship between pain and falls ^{5-6, 12-13, 18, 34, 37-39, 43-45} and each of these reported at least one positive association between pain and falls. A wide range of association statistics were used together with the adjustment of multiple confounding factors and this information is summarised in Table 1.
- 267

Insert Table 1 about here

It was possible to calculate the unadjusted OR from the raw data for 14 studies ^{5-6, 12, 30-36, 38, 40-42} and each is presented in Table 1. The primary author of 6 studies provided additional data for the metaanalysis ^{5-6, 31-33, 38}. Within the meta-analysis, we pooled the data of three studies into a 2 X 2 study design ^{6, 12, 33}.

272

273 Meta-analysis of Overall Odds of falling

A global meta-analysis was conducted with 14 studies ^{5-6, 12, 30-36, 38, 40-42} (n= 17,926: 5,825 with pain and 12,101 without pain) and established that pain was associated with a 56% increased odds of falling (OR: 1.56, CI: 1.36 to 1.79, p<0.0001). The data was heterogeneous (l^2 =52%, p <0.05, see Figure 2a. A visual inspection of a funnel plot established one study ³² was at risk of publication bias and was subsequently excluded from all further subgroup analysis ²⁴ (see Figure 2b.)

279

- 280 Meta-analysis of falls risk according to the method of falls ascertainment
- A meta-analysis with the five studies ^{5-6, 31, 41-42} (n=4,674) that collected falls data prospectively, established that older adults with pain had an increased odds of falling by 71% (OR: 1.71, CI: 1.48 to 1.98, p<0.0001). The data was homogenous (l^2 =0% p=0.5). A subgroup analysis was conducted with nine studies ^{12, 30, 32-36, 38, 40} (n=13,012) that collected falls data retrospectively and this established the odds of falling was increased by 43% (OR: 1.43, CI: 1.22 to 1.69, p <0.0001). This subgroup analysis was heterogeneous (l^2 =49%, p<0.05), see figure 3.
- 287

Insert figure 3 about here

288 Different pain locations and association with falls.

289 The results of studies looking at single sites of pain and the association with falls showed 290 inconsistent results. For instance, only 2 of the 6 studies that examined falls in people with hip pain found a significantly increased risk for falls ^{18, 44}. Three out of six studies established that knee pain 291 292 demonstrated an increased falls risk ^{13, 37, 40}, but 1 study found that this risk was only increased in those multiple fallers ¹³. Similarly, three out of five studies ^{13, 38, 43} demonstrated that back/ neck pain 293 was associated with falls and two found the risk was particularly increased for multiple falls ^{13, 43}. 294 295 Three out of four studies established that foot pain was associated with an increased risk of falls ranging from 87% and 260% ^{34, 42-43}. When looking at 'body pain' of an undefined location or mixed 296 pain sites, 6 studies 5, 31-32, 38, 43, 45 out of seven demonstrated that pain was associated with an 297

increased risk of falls. It was possible to calculate the unadjusted OR calculated for two of these studies ^{5, 38} and it was within 6% from that reported in the adjusted association reported in each paper. Finally, both studies ^{6, 12} investigating multisite/ widespread pain established an increased risk of falls. The adjusted association statistics and unadjusted OR calculated from the raw data are presented in Table 1.

303 Meta-analysis of falls risk according to location of pain

A subgroup meta-analysis with 3 studies ^{34, 41-42} (n=691) found that foot pain was associated with a 304 305 138% increased odds of falling (OR: 2.38, CI: 1.62 to 3.48, p< 0.0001). The data was homogeneous $(l^2=8\%, p=0.33)$. A subgroup meta-analysis with 3 studies ^{31, 36, 40} (n=2,786) established hip pain was 306 307 associated with a 36% increased odds of falling (OR: 1.36, CI: 1.00 to 1.84, p=0.05). The data was homogenous ($l^2 = 0\%$, p = 0.67). A subgroup analysis with 3 studies ^{30-31, 40} (n=2,634) did not establish a 308 309 significant relationship between knee pain and falls whilst a subgroup analysis of 'other' types of pain with 5 studies ^{5-6, 12, 31, 38} (total n =6,397) established a 54% increased odds of falling (OR: 1.54, 310 CI: 1.25 to 1.88, p < 0.0001, $l^2 = 58\%$, p < 0.05). See Figure 4 for each meta-analysis. 311

312

Insert Figure 4 about here

313 Pain severity

Each of the 3 studies ⁶, ³³, ³⁹ that investigated the relationship between pain severity and falls established that the risk of falls was higher as pain severity and its interference with activities increased.

317 Chronic Pain

All of the seven studies included ^{6, 18, 38, 13, 43, 31-32} established that chronic pain was associated with an increased risk of falls although this was only true for recurrent fallers in three of these ^{13, 18, 43}.

320

321 Meta-analysis of falls risk according to the duration of pain

A subgroup meta-analysis with 3 studies ^{6, 31, 38} (n=5,367) established the odds of falling was increased by 80% with chronic pain (OR 1.80, CI: 1.56 to 2.09, p<0.0001,) and the data was homogenous (l^2 =0% p=0.6). A subgroup meta-analysis with nine studies ^{5, 12, 30, 34-36, 40-42} (n=5,435) demonstrated that non chronic pain was associated with a 61% increased odds of falling (OR: 1.61, CI: 1.39 to 1.86, p<0.0001, l^2 = 4% p=0.4). See Figure 5.

327

Insert Figure 5 about here

328 Meta-regression

We conducted a number of meta-regression analyses using the mixed effects model with the available data for mean age or percentage of females, for both the pain/no-pain and fall/no-fall

331 groups and neither moderator had any significant effect on the outcomes of any of the analysis.

332 Methodological Quality Assessment

The NOS scores were of acceptable quality for the case controlled (mean 6.28±0.48) and cohort studies (mean 6.6±0.84). Therefore, no studies warranted exclusion over concerns about methodological quality. The NOS scores are presented in Supplemental Table 2 (online).

336

337

338

339

340 Discussion

The present study involving over 17,000 older adults is to our knowledge the first systematic

342 review and meta-analysis focussing on the association between pain and falls in community dwelling

343 older adults. The global meta-analysis established that pain was associated with a 56% increased 344 odds of falling. We conducted a number of subgroup analyses (according to method of falls 345 ascertainment, location of pain and duration of pain) and consistently found that pain was 346 associated with increased odds of falling. In addition, all of the 12 studies within the narrative 347 review which reported an adjusted association statistic, demonstrated that pain was associated with 348 increased risk of falling. This review also demonstrated that 50.5% of older adults with pain reported 349 one or more falls over 12 months compared to 25.7% of the control group (p<0.001). This figure of 350 falls is considerably higher than the 30% of community dwelling older adults that fall each year 4, 48-49. 351

352 A subgroup meta-analysis utilising prospective falls data established that the odds of falling 353 were increased by over 70% for those with pain. Ascertaining falls with prospective measurement is 354 regarded more accurate than retrospective recall, although there is still some debate around the 355 optimal method to monitor falls $^{8, 50-51}$. The data from this analysis was homogenous ($l^2=0\%$) and for 356 these reasons it may represent the most accurate association between pain and falls from all of our 357 analyses. Our subgroup meta-analysis investigating the association between pain and falls recorded 358 retrospectively (n=13,012) established a more moderate association with falling (OR: 1.43, CI: 1.22 to 1.69,) which is not surprising as the retrospective recall of falls is often under reported ⁵²⁻⁵³. 359

A previous review² only utilised prospective falls data to avoid reverse causality, which is 360 361 clearly a consideration for our results where falls were obtained retrospectively. However, we 362 attempted to negate this by excluding studies where participant's pain was identified from a 363 previous fall. Retrospective recall of falls over 12 months is relatively specific (91-95%) although less sensitive than prospective measurement of falls ⁵¹. The result that older adults with pain are 43% 364 365 more likely to have fallen in the past year is important, since a history of falls is strongly associated with future falls ^{1-2, 51} and is commonly advocated as a valid indicator/ assessment in clinical practice 366 14. 367

368 We set out to establish if the location and duration of pain is associated with differing risks 369 of falling since this information would provide valuable information to clinicians. Our meta-analysis 370 established that foot pain was strongly associated with falls (n=691, OR: 2.38, CI: 1.62 to 3.4). We 371 also established that hip pain was associated with falls (n=2,786, OR 1.36, CI: 1.00 to 1.84) which is in 372 line with the adjusted association statistics reported from large cohort studies which established an increased risk when falls are measured retrospectively ¹⁸ or prospectively ⁴⁴. Our sub group analysis 373 374 with older reporting knee pain (n=2,634) established that knee pain was not associated with falls. 375 However, several individual studies reported knee pain is associated with an increased risk of falls when the pain is severe ³⁷ or chronic ¹³. We conducted an analysis of pain classified as 'other' (any 376 377 bodily pain or non-knee, foot, hip or spinal pain) and found a pronounced increased odds of falling 378 (OR: 1.54, CI: 1.25 to 1.88), but this data was heterogeneous. Finally, our subgroup meta-analysis 379 with 5,367 older adults established that chronic pain was associated with increased odds of falling by 80% (OR 1.80, CI: 1.56 to 2.09, $l^2=0\%$). This is in line with Leveille and colleagues' ⁶ study who 380 381 demonstrated that chronic polyarticular pain was associated with a 70% increased risk of falling. We 382 also conducted an analysis for non-chronic pain and this established the odds of falling was 383 increased by 61% (OR: 1.61, CI: 1.39 to 1.86, $l^2 = 4\%$).

384 The underlying reasons for the association between pain and falls are likely to be multifaceted, since pain in itself is a very complex phenomenon. Previous researchers ⁶ have 385 386 postulated that the mechanisms by which chronic musculoskeletal pain increases the risk of falls 387 may be the result of three possible causes: 1) local joint pathology (e.g. osteoarthritis), 2) the 388 neuromuscular effects of pain and 3) central mechanisms, where pain interferes with the older 389 adult's cognition and executive function. Another factor that could possibly contribute is 390 psychological concerns related to falling (fear of falling, falls efficacy), since these are known to increase the risk of falls in their own right² and are associated with pain⁵⁴. The strength of 391 392 association between foot pain and chronic pain with falls is higher than several commonly 393 considered risk factors such as cognitive impairment (OR 1.36, CI: 1.12 to 1.65, ²), depression (OR

1.63, CI: 1.36 to 1.94²), visual impairment (OR 1.35, CI: 1.18 to 1.54²) and the use of sedative 394 395 medication (OR 1.38, CI: 1.15 to 1.66)². The results for our meta-analysis were consistently higher 396 than the reported association between pain and falls reported in another review which only included two studies in the faller's category². Our results suggest it is advisable that clinicians working within 397 398 rehabilitation of the older person at risk of falling should routinely assess pain, paying particular 399 attention to foot and chronic pain. In addition, clinicians working with older adults who present with 400 pain ought to routinely ask the patient about their history of falls, recognising they may be at 401 increased risk of future falls. Adequate pain management is likely to be very important in the older 402 person's rehabilitation and may serve to reduce the risk of falls. The strong association of foot pain 403 with falls advocates the importance of podiatrists within the rehabilitation multidisciplinary team to 404 prevent falls. Previous research has demonstrated that multifaceted interventions delivered by 405 podiatrists to older people with foot pain can have a reduction in the rate of falls which is comparable to other well established interventions such as tai chi⁵⁵. 406

407 Within this study we encountered a wide range of association statistics being utilised 408 together with a plethora of adjustments for confounding factors making the meta-analysis very 409 difficult. We contacted numerous authors and relied upon the unadjusted OR from the raw data for 410 the meta-analysis. The use of adjusted OR are considered more reliable, however only considering the adjusted OR may lead to an over estimation of the influence of pain on falls². We calculated the 411 412 unadjusted OR and observed small differences compared to the reported adjusted association statistics in several instances ^{5-6, 38}. In addition, all 12 studies included in the narrative review that 413 414 reported an adjusted association statistic established that pain increased the risk of falls.

Our review found 9 studies (43%) did not provide a definition for a fall, this is concerning but consistent with previous research in the wider falls literature ^{8, 19}. Standardisation in the definitions employed within research is essential to enable replication and also to enhance quality of research and enabling meta-analyses to be completed ⁵³. The PROFANE European falls network ¹⁹ offers an

excellent comprehensive falls taxonomy that ensures continuity and consistency in research
investigating falls. Most studies included within this review ascertained falls retrospectively, whilst
this is still insightful, documentation of falls prospectively does have advantages in terms of accuracy
and reducing concerns of reverse causality.

423 Limitations

424 It is important that a number of considerations are made when interpreting the results from 425 this review. First, it is not possible to rule out reverse causality for the meta-analysis that 426 incorporates the results of falls ascertained retrospectively. Second, the assessment and 427 classification of pain in each study varied considerably and future research should seek to unify the 428 way pain is defined and assessed and we have made recommendations for this elsewhere ⁵⁶. Third, 429 we only conducted meta-analyses utilising unadjusted OR. In addition the information available on 430 mean age, gender and comorbidity in each study was limited and we could not consistently adjust 431 for these in each analysis. In order to explore the influence of age and gender on the observed 432 effects, we conducted numerous meta-regression analyses with these factors as moderators and 433 none reached statistical significance. In addition within each study, two reviewers independently 434 considered age, gender or comorbidity in the NOS. Age was met in all but one study whilst only 11 435 met the criteria for gender or comorbidity since the information was not clear in a further 8 studies. 436 Although we attempted to exclude certain comorbidities in our exclusion criteria (e.g. stroke, 437 dementia) it is possible that other comorbidities (e.g. osteoarthritis) were present among the study populations and could have influenced the observed effects ²³. We only conducted a review of the 438 439 methodological quality of included articles and did not conduct a specific risk of bias assessment. 440 This is now recommended by the Cochrane collaboration and may have affected the interpretation 441 of our results. In addition, we did not consider articles that were not written in English and we may 442 have missed some data. We also excluded studies conducted in individuals with dementia, 443 neurological conditions and recent orthopaedic trauma since this would have introduced further

heterogeneity in our sample and may have impacted the results. Finally, we did not consider singleand recurrent fallers separately and since this is an at risk group this warrants further exploration.

446 Future research

447 Only twelve studies included in this review reported an association statistic for the relationship 448 between pain and falls and very few set out to investigate this as their primary aim. This exemplifies 449 the low consideration given within the literature to investigate pain as an independent risk factor for 450 falls. Future research should clearly assess the location, duration and severity of pain in older adults ⁵⁶ and falls ascertained prospectively for 12 months ¹⁹. The research should follow the reporting of 451 falls trials suggested by the PROFANE falls network ¹⁹. This would enable accurate associations to be 452 established between pain and falls, avoid problems with reverse causality and ensure future meta-453 analyses are less complex. A number of studies ^{6, 13, 39, 43} established that the risk of multiple falls is 454 455 higher than single falls for older adults with pain and this warrants investigation in well conducted 456 clinical trials. We did not encounter any randomised controlled trials (RCT's) investigating the 457 relationship between pain and falls. A RCT would provide higher quality evidence to explore this 458 relationship and reduce concerns about the risk of bias. Future prospective RCT's could consider a 459 screening and intervention for those with pain versus normal care and consider falls rates thereafter.

460 Conclusions

The results of this meta-analysis established that older adults with pain are at increased risk of falls. We found that 50.5% older adults with pain reported one or more falls in a year compared to 25.7% (p<0.001) in those without pain. In addition, we found that foot pain and chronic pain were strongly associated with falls in community dwelling older adults. Clinicians completing falls risk assessments should routinely enquire about the older person's current pain and pay particular attention to foot and chronic pain. There is a need for well-designed prospective epidemiological studies to further

- 467 establish this link which can inform future intervention studies to manage pain in older people which
- 468 in turn may reduce the risk of falls in clinical practice.

- 470 Conflict of Interest
- 471 None to declare by any author
- 472 References
- Deandrea, S., Bravi, F., Turati, F., Lucenteforte, E., La Vecchia, C., & Negri, E. (2013). Risk factors for falls in older people in nursing homes and hospitals. A systematic review and meta-analysis. Arch Gerontol Geriatr, 56(3), 407-415. doi: 10.1016/j.archger.2012.12.006
- 476
 2. Deandrea, S., Lucenteforte, E., Bravi, F., Foschi, R., La Vecchia, C., & Negri, E. (2010). Risk factors for falls in community-dwelling older people: a systematic review and meta-analysis. Epidemiology, 21(5), 658-668.
 478 doi: 10.1097/EDE.0b013e3181e89905
- da Costa, B. R., Rutjes, A. W., Mendy, A., Freund-Heritage, R., & Vieira, E. R. (2012). Can falls risk
 prediction tools correctly identify fall-prone elderly rehabilitation inpatients? A systematic review and
 meta-analysis PLoS One (Vol. 7, pp. e41061). United States.
- Gillespie, L. D., Robertson, M. C., Gillespie, W. J., Sherrington, C., Gates, S., Clemson, L. M., & Lamb, S. E.
 (2012). Interventions for preventing falls in older people living in the community. Cochrane Database Of
 Systematic Reviews (Online), 9, CD007146. doi: 10.1002/14651858.CD007146.pub3
- Kwan, M. M., Tsang, W. W., Lin, S. I., Greenaway, M., Close, J. C., & Lord, S. R. (2013). Increased Concern Is
 Protective for Falls in Chinese Older People: The Chopstix Fall Risk Study J Gerontol A Biol Sci Med Sci.
- 487 6. Leveille, S. G., Jones, R. N., Kiely, D. K., Hausdorff, J. M., Shmerling, R. H., Guralnik, J. M., Bean, J. F. (2009).
 488 Chronic musculoskeletal pain and the occurrence of falls in an older population. JAMA, Journal of the
 489 American Medical Association, 302(20), 2214-2221.
- 490 7. Centre for Disease Control and Prevention (CDC). Cost Of falls among older adults.
- 491 http://www.cdc.gov/homeandrecreationalsafety/falls/fallcost.html last accessed on 4/26/2013
- 492 8. Hauer K, Lamb SE, Jorstad EC, Todd C, Becker C; PROFANE-Group. Systematic review of definitions and
 493 methods of measuring falls in randomised controlled fall prevention trials. Age Ageing. 2006 Jan;35(1):5494 10.
- 495 9. Lamb SE, Becker C, Gillespie LD, Smith JL, Finnegan S, Potter R, Pfeiffer K; Taxonomy Investigators.
 496 Reporting of complex interventions in clinical trials: development of a taxonomy to classify and describe
 497 fall-prevention interventions. Trials. 2011 May 17;12:125. doi: 10.1186/1745-6215-12-125
- Karlsson MK, Magnusson H, von Schewelov T, Rosengren BE. Prevention of falls in the elderly--a review.
 Osteoporos Int. 2013 Mar;24(3):747-62. doi: 10.1007/s00198-012-2256-7. Epub 2013 Jan 8.
- 500 11. Gates S, Fisher JD, Cooke MW, Carter YH, Lamb SE. Multifactorial assessment and targeted intervention
 501 for preventing falls and injuries among older people in community and emergency care settings:
 502 systematic review and meta-analysis. BMJ. 2008 Jan 19;336(7636):130-3. Epub 2007 Dec 18.
- Leveille, S. G., Bean, J., Bandeen-Roche, K., Jones, R., Hochberg, M., & Guralnik, J. M. (2002).
 Musculoskeletal pain and risk for falls in older disabled women living in the community. Journal of the
 American Geriatrics Society, 50(4), 671-678. doi: <u>http://dx.doi.org/10.1046/j.1532-5415.2002.50161.x</u>
- Muraki, S., Akune, T., Oka, H., En-Yo, Y., Yoshida, M., Nakamura, K., Yoshimura, N. (2011). Prevalence of falls and the association with knee osteoarthritis and lumbar spondylosis as well as knee and lower back pain in Japanese men and women. Arthritis Care Res (Hoboken), 63(10), 1425-1431. doi: 10.1002/acr.20562
- American Geriatrics Society and British Geriatrics Society, Panel on Prevention of Falls in Older Persons,
 Summary of the Updated American Geriatrics Society/British Geriatrics Society clinical practice guideline

512		for prevention of falls in older persons. J Am Geriatr Soc. 2011 Jan;59(1):148-57. doi: 10.1111/j.1532-
513		5415.2010.03234.
514	15.	Rudy, T. E., D. K. Weiner, S. J. Lieber, J. Slaboda& J. R. Boston. The impact of chronic low back pain on older
515		adults: a comparative study of patients and controls. Pain 2007, 131: 293-301.
516	16.	Rubenstein LZ. Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing.
517		2006 Sep;35 Suppl 2:ii37-ii41.
518	17.	Abdulla A, Adams N, Bone M, Elliott AM, Gaffin J, Jones D, Knaggs R, Martin D, Sampson L, Schofield P.
519		Guidance on the management of pain in older people. Age Ageing. 2013 Mar;42 Suppl 1:i1-57. doi:
520		10.1093/ageing/afs200.
521	18.	Arden, N. K., Nevitt, M. C., Lane, N. E., Gore, L. R., Hochberg, M. C., Scott, J. C., Cummings, S. R. (1999).
522		Osteoarthritis and risk of falls, rates of bone loss, and osteoporotic fractures. Study of Osteoporotic
523		Fractures Research Group. Arthritis Rheum, 42(7), 1378-1385. doi: 10.1002/1529-
524		0131(199907)42:7<1378::aid-anr11>3.0.co;2-i
525	19	Lamb SE, Jørstad-Stein EC, Hauer K, Becker C; Prevention of Falls Network Europe and Outcomes
526	10.	Consensus Group. Development of a common outcome data set for fall injury prevention trials: the
527		Prevention of Falls Network Europe consensus. J Am Geriatr Soc. 2005 Sep;53(9):1618-22
528	20	Skelton DA, Todd CJ; ProFaNE Group. Prevention of Falls Network Europe: a thematic network aimed at
529	20.	introducing good practice in effective falls prevention across Europe. Four years on. J Musculoskelet
530		Neuronal Interact. 2007a Jul-Sep;7(3):273-8. Review
531	21	Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for
532	21.	Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097.
533		
	22	doi:10.1371/journal.pmed1000097
534	22.	Zieschang T, Schwenk M, Becker C, Oster P, Hauer K. Feasibility and accuracy of fall reports in persons with
535	22	dementia: a prospective observational study. Int Psychogeriatr. 2011 Dec 6:1-12.
536	23.	Berry SD, Miller RR. Falls: epidemiology, pathophysiology, and relationship to fracture. Curr Osteoporos
537		Rep. 2008 Dec;6(4):149-54.
538	24.	Higgins, J & Green, P. Cochrane Reviewers handbook for systematic reviews of Interventions. The
539		Cochrane Collaboration, Version 5.1.0, 2011.
540	25.	Wells, GA., Shea., B., O'Connell, D., Peterson, J et al . The Newcastle-Ottawa Scale (NOS) for assessing the
541		quality of nonrandomised studies in meta-analyses.
542		http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp Last accessed 25/01/2013
543	26.	Kwon, B. K., D. M. Roffey, P. B. Bishop, S. Dagenais E. K. Wai. Systematic review: occupational physical
544		activity and low back pain. In Occup Med (Lond) 2011, 541-8.
545		DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986 Sep;7(3):177-88.
546		Riley, RD., Higgins, JP., & Deeks, JJ. Interpretation of random effects meta-analysis. BMJ, 2011, 342, d549.
547	29.	Higgins JP, Thompson SG, Deeks JJ, Altman DG. (2003). Measuring inconsistency in meta-analyses. BMJ.
548		2003 Sep 6;327(7414):557-60
549	30.	Levinger, P., Menz, H. B., Wee, E., Feller, J. A., Bartlett, J. R., & Bergman, N. R. (2011). Physiological risk
550		factors for falls in people with knee osteoarthritis before and early after knee replacement surgery. Knee
551		Surg Sports Traumatol Arthrosc, 19(7), 1082-1089. doi: 10.1007/s00167-010-1325-8
552	31.	Woo, J., Leung, J., & Lau, E. (2009). Prevalence and correlates of musculoskeletal pain in Chinese elderly
553		and the impact on 4-year physical function and quality of life. Public Health (Elsevier), 123(8), 549-556.
554		doi: 10.1016/j.puhe.2009.07.006
555	32.	Yagci, N., Cavlak, U., Aslan, U. B., & Akdag, B. (2007). Relationship between balance performance and
556		musculoskeletal pain in lower body comparison healthy middle aged and older adults Arch Gerontol
557		Geriatr (Vol. 45, pp. 109-119). Netherlands.
558	33.	Sturnieks, D. L., Tiedemann, A., Chapman, K., Munro, B., Murray, S. M., & Lord, S. R. (2004). Physiological
559		risk factors for falls in older people with lower limb arthritis. Journal of Rheumatology, 31(11), 2272-2279.
560	34.	Chaiwanichsiri, D., Janchai, S., & Tantisiriwat, N. (2009). Foot disorders and falls in older persons
561		Gerontology (Vol. 55, pp. 296-302). Switzerland: 2008 S. Karger AG, Basel.
562	35.	Dai B, Ware WB, Giuliani CA. A structural equation model relating physical function, pain, impaired
563		mobility (IM), and falls in older adults. Arch Gerontol Geriatr. 2012 Nov-Dec;55(3):645-52. doi:
564		10.1016/j.archger.2012.06.005. Epub 2012 Jul 3.
565	36.	Nahit, E. S., Silman, A. J., & Macfarlane, G. J. (1998). The occurrence of falls among patients with a new
566	201	episode of hip pain. Ann Rheum Dis, 57(3), 166-168.
567	37	Arden, N. K., Crozier, S., Smith, H., Anderson, F., Edwards, C., Raphael, H., & Cooper, C. (2006). Knee pain,
568		knee osteoarthritis, and the risk of fracture. Arthritis Rheum, 55(4), 610-615. doi: 10.1002/art.22088

569	38.	Bekibele, C. O., & Gureje, O. (2010). Fall incidence in a population of elderly persons in Nigeria.
570	20	Gerontology, 56(3), 278-283. doi: 10.1159/000236327
571 572	39.	Blyth, F. M., Cumming, R., Mitchell, P., & Wang, J. J. (2007). Pain and falls in older people Eur J Pain (Vol. 11, pp. 564-571). England.
573	40.	Cecchi, F., Molino-Lova, R., Di Iorio, A., Conti, A. A., Mannoni, A., Lauretani, F., Ferrucci, L. (2009).
574		Measures of physical performance capture the excess disability associated with hip pain or knee pain in
575		older persons J Gerontol A Biol Sci Med Sci (Vol. 64, pp. 1316-1324). United States.
576	41.	Menz, H. B., Morris, M. E., & Lord, S. R. (2006). Foot and ankle risk factors for falls in older people: a
577		prospective study J Gerontol A Biol Sci Med Sci (Vol. 61, pp. 866-870). United States.
578	42.	Mickle, K. J., Munro, B. J., Lord, S. R., Menz, H. B., & Steele, J. R. (2010). Foot Pain, Plantar Pressures, and
579		Falls in Older People: A Prospective Study. Journal of the American Geriatrics Society, 58(10), 1936-1940.
580		doi: 10.1111/j.1532-5415.2010.03061.x
581	43.	Morris, M., Osborne, D., Hill, K., Kendig, H., Lundgren-Lindquist, B., Browning, C., & Reid, J. (2004).
582		Predisposing factors for occasional and multiple falls in older Australians who live at home. Australian
583		Journal of Physiotherapy, 50(3), 153-159.
584	44.	Nevitt, M. C., Cummings, S. R., Kidd, S., & Black, D. (1989). Risk factors for recurrent nonsyncopal falls. A
585		prospective study. JAMA, 261(18), 2663-2668.
586	45.	Tromp, A. M., Smit, J. H., Deeg, D. J., Bouter, L. M., & Lips, P. (1998). Predictors for falls and fractures in
587		the Longitudinal Aging Study Amsterdam. J Bone Miner Res, 13(12), 1932-1939. doi:
588		10.1359/jbmr.1998.13.12.1932
589	46.	Gibson, MJ, Andres, RO., Isaacs, B., Radebaugh, T., Worm-Peterson J. The prevention of falls in later life. A
590		report of the Kellogg International work group on the prevention of falls by the elderly. Danish Medical
591		Bulletin, 1987; 43 (suppl 4) 1-24.
592	47.	Tinetti, ME., Speechley, M., Ginter, SF. Risk factors for falls among elderly persons living in the community.
593		New England Journal of Medicine 1988, 3;19:1701-7.
594	48.	Taylor ME, Delbaere K, Lord SR, Mikolaizak AS, Close JC. Physical impairments in cognitively impaired older
595		people: implications for risk of falls. Int Psychogeriatr. 2013 Jan;25(1):148-56. doi:
596		10.1017/S1041610212001184. Epub 2012 Jul 26.
597	49.	Kwan, M. M., Close, J. C., Wong, A. K., & Lord, S. R. (2011). Falls incidence, risk factors, and consequences
598		in Chinese older people: a systematic review. J Am Geriatr Soc, 59(3), 536-543. doi: 10.1111/j.1532-
599		5415.2010.03286.x
600	50.	Schwenk M, Lauenroth A, Stock C, Moreno RR, Oster P, McHugh G, Todd C, Hauer K. Definitions and
601		methods of measuring and reporting on injurious falls in randomised controlled fall prevention trials: a
602		systematic review. BMC Med Res Methodol. 2012 Apr 17;12:50. doi: 10.1186/1471-2288-12-50
603	51.	Ganz DA, Higashi T, Rubenstein LZ. Monitoring falls in cohort studies of community-dwelling older people:
604		effect of the recall interval. J Am Geriatr Soc. 2005 Dec;53(12):2190-4.
605	52.	Mackenzie L, Byles J, D'Este C. Validation of self-reported fall events in intervention studies. Clin Rehabil.
606		2006 Apr;20(4):331-9
607		Skelton DA, Hauer K, Lamb S. Re: 'falls definition validation'. Age Ageing. 2007 Jan;36(1):111-2.
608	54.	Stubbs, B., West, E., Patchay S., Schofield, P. Is pain associated with psychological concerns related to
609		falling? A systematic review. In review.
610	55.	Spink MJ, Menz HB, Fotoohabadi MR, Wee E, Landorf KB, Hill KD, Lord SR. Effectiveness of a multifaceted
611		podiatry intervention to prevent falls in community dwelling older people with disabling foot pain:
612		randomised controlled trial. BMJ. 2011 Jun 16;342:d3411. doi: 10.1136/bmj.d3411.
613	56.	Stubbs, B., Binnekarde, T., Soundy, A., Schofield, P., Huijnen, I., & Eggermont, L. Are older adults with
614		chronic pain less active than older adults without chronic pain? A systematic review and meta-analysis.
615		Pain Medicine in press.
616	Figu	ure listings

- 617 Figure 1 PRISMA search strategy
- 618 Figure 2a. Global Meta-analysis for all studies investigating the association of pain with falls

- 619 Figure 2b funnel plot of included studies for global meta-analysis
- 620 Figure 3. Meta-analysis comparing falls data collected prospectively and retrospectively
- 621 Figure 4. Sub group Meta-analysis investigating location of pain and association with falls
- Figure 5. Sub group Meta-analysis investigating the association of chronic and non-chronic pain with
- 623 Falls
- 624
- 625
- ----
- 626

520

627

Example search strategy using MESH headings

- 1. Pain and fall*
- 2. Musculoskeletal pain and falls
- 3. Pain and accidental falls
- 4. Musculoskeletal pain and accidental falls
- 5. Chronic pain and falls
- 6. Chronic musculoskeletal pain and falls
- 7. Chronic pain and accidental falls
- 8. Chronic musculoskeletal pain and falls
- 9. 1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 AND older adult
- 10. 1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 AND elderly
- 11. 1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 AND aged

Table 1. Adjusted Association statistics and Unadjusted Odd ratios

Study	Pain	Falls Ascertainment	Association Statistic for falls risk	Adjusted for
Hip Pain				
Arden et al 1999	Chronic Hip pain	12 months (R)	RR 1.5 (CI: 1.3 to 1.8) for 2> falls	Age, knee height, weight, clinic.
Leveille et al 2009	Chronic Hip pain	18 months (P)	RaR 1.23 (CI: 0.56 to 2.69)	≠
Nevitt et al 1989	Current hip/ knee pain	12 months (P)	RR 1.9 (CI: 1.3 to 3.7) <i>for 2> falls</i>	Unadjusted
Cecchi et al 2009	Hip pain over last 4 weeks	12 months (R)	OR 1.33 (0.85 to 2.10) P = 0.2082	Raw Data
Nahit et al 1998	Current Hip pain	12 months (R)	OR 1.70 (0.90-3.21) p= 0.0976	Raw Data
Woo et al 2009	Chronic Hip pain	12 months (R)	OR 1.16 (0.66-2.03) p=0.5879	Raw Data
Knee pain				
Arden et al 2006	Knee pain over last month	6 months (R)	HR: 1.26 (Cl: 1.17 to 1.36)	Unclear
Arden et al 2006	Severe knee pain over last month	6 months (R)	HR: 1.51 (CI:1.32 to 1.72)	Unclear
Leveille et al 2009	Chronic Knee pain	18 months (P)	RaR 0.95 (CI 0.60 to1.49)	≠
Muraki et al 2011	Chronic Knee pain	12 months (R)	1> fall OR 1.20 (CI: 0.79 to 1.81) 1> fall OR 1.00 (CI: 0.62 to 1.61) 1> fall OR 0.99 (CI: 0.60 to 1.61)	Unadjusted † ‡
			2> fall OR 2.52 (Cl: 1.58 to 4.02) 2> fall OR 1.61 (Cl: 0.92 to 2.79)	Unadjusted †

Table 1. Adjusted Association statistics and Unadjusted Odd ratios

			2> fall OR 1.87 (CI: 1.06 to 3.28)	‡
			A	
Cecchi et al 2009	Knee pain over last 4 weeks	12 months (R)	OR 1.75 (Cl =1.26 to 2.45) P = 0.0009*	Raw data
Levinger et al 2011	L Current knee pain	12 months (R)	OR 2.24 (0.77 to 6.46) P = 0.1349	Raw data
Woo et al 2009	Chronic knee pain	12 months (R)	OR 1.0039 (0.72-1.39) p=0.9813	Raw data
			Ś	
Back/ Neck Pa	lin			
Bekibele & Gureje 2010	Chronic Back/ neck pain	12 months (R)	OR 1.3 (Cl: 1.0 to 1.7)	Age & gender
Leveille et al 2009	Chronic back pain	18 months (P)	RaR 1.37 (CI: 0.75 to 2.50)	≠
Morris et al 2004	Chronic Back pain	12 months (R)	1 > fall OR 1.54 (CI: 1.10 to 2.16) P=0.01*	Unadjusted
			2> Fall OR 3.90 (CI: 2.49 to 6.16) P<0.001*	Unadjusted
Muraki et al 2011	Chronic LBP	12 months (R)	1> fall OR 1.28 (CI: 0.82 to 1.96)	Unadjusted
			1> OR fall 1.34 (CI: 0.84 to 2.08)	+
			1> fall OR 1.33 (CI: 0.84 to 2.08)	‡
			2> fall OR 2.14 (CI: 1.30 to 3.46)	Unadjusted
			2> fall OR 1.72 (CI: 1.01 to 2.88)	+
			2> fall OR 1.58 (CI: 0.91 to 2.70)	+
Woo et al 2009	Chronic back pain	12 months (R)	OR 1.14 (0.85-1.51) p=0.3625	Raw data
	Chronic back pain causing interference with activities		OR 0.87 (0.48-1.56) p=0.6474	Raw data

Foot Pain

Table 1. Adjusted Association statistics and Unadjusted Odd ratios

Leveille et al 2009	Chronic foot pain	18 months (P)	RaR 1.07 (CI: 0.62 to 1.84)	≠
Chaiwanichsiri et al 2009	Current foot pain	6 months (R)	OR 3.60 (1.59 to 8.16) P = 0.0021*	Raw data
Chaiwanichsiri et al 2009	Current foot pain	6 months (R)	OR 2.5 (1.03 to 6.12) p=0.043*	Unclear
Menz et al 2006	Foot pain over last month	12 months (P)	OR 2.84 (1.35-5.95) p=0.0056*	Raw data
Mickle et al 2010	Current foot pain	12 months (P)	OR 1.87 (1.16-3.02) p=0.0098*	Raw data

Unspecified/ Any Body Pain

Unspecified/ Aı	ny Body Pain			
Bekibele & Gureje 2010	Chronic body pain	12 month (R)	OR 196 (1.51 to 2.55) P<0.0001*	Raw data
Bekibele & Gureje 2010	Chronic body pain	12 months (R)	OR 1.9 (CI: 1.1 to 3.4)	Age and gender
Dai et al 2012	Current body pain	12 months (P)	OR 1.37 (CI: 0.87 to 2.14) p=0.1648	Raw Data
Kwan et al 2013	Current Body pain	12 months (P)	OR 1.46 (1.078 – 1.985) P=0.014*	Raw data
Kwan et al 2013	Current body pain	12-18 months prospective	IRR: 1.40 (CI: 1.08 to 1.80)	Age and gender
Morris et al 2004	Chronic body pain frequency 'sometimes'	12 months (R)	1>Fall OR 1.52 (CI: 0.98 to 2.35) P=0.06 2> fall OR 2.52 (CI: 1.41 to 4.51) P=0.002*	Unadjusted

Table 1. Adjusted Association statistics and Unadjusted Odd ratios

	Chronic body pain 'frequent'		1> fall OR 1.19 (CI: 0.80 to 1.77) 2> fall OR 2.86 (CI: 1.74 to 4.71) P<0.001*	Unadjusted
Woo et al 2009	Chronic pain mixed	4 year (P)	OR 1.67(1.34-2.08) p=0.0000*	Raw data
Yagci et al 2007	Chronic body pain	12 months (R)	OR 11.79 (2.76- 50.26) P = 0.0008*	Raw data
Tromp et al 1998	Current body pain	12 months (R)	1>fall OR 1.1 (CI: 1.0 to 1.2) p< 0.05* 2> OR 1.2 (CI: 1.1 to 1.4) P< 0.05*	Unclear

X

Single site vs. Widespread Pain

Leveille et al 2002	Other pain last month	Risk of falls over 3 year follow up	OR 1.36 (CI: 1.02 to 1.82)	£
	Lower extremity pain last month		OR 1.27 (Cl: 0.97 to 1.66)	£
	Widespread pain last month	Risk recurrent falls over 6 months	OR 1.66 (CI: 1.25 to 2.21)	£
	Other pain last month		OR 1.54 (Cl: 1.01 to 2.35)	£
	Lower extremity pain last month	R	OR 1.38 (Cl: 0.93 to 2.03)	£
	Widespread pain last month		OR 1.66 (CI: 1.10 to 2.50)	£
Leveille et al 2002	Pain over last month:	12 months (R)		
	Pooled pain data of all types of pain		OR 1.39 (1.00 -1.92) p=0.0450*	Raw data
	Other pain		OR 1.39 (0.92-2.099)	Raw data
	Lower extremity pain		OR 1.17 (0.807-1.714)	Raw data

Table 1. Adjusted Association statistics and Unadjusted Odd ratios

	Widespread pain		OR 1.718 (1.16-2.53) p=0.007*	Raw data
Leveille et al 2009	Chronic pain overall:	12 months (R)	OR 1.83 (1.33-2.53) p=0.000*	Raw data
	Single site		OR 1.57 (1.05 - 2.35) P = 0.0261*	Raw data
	Polyarticular		OR 2.01 (1.41 - 2.85) P = 0.0001*	Raw data
Leveille et al 2009	Single site pain Polyarticular pain	18 months (P)	RaR 1.19 (CI: 0.90 to 1.56) RaR 1.70 (CI: 1.34 to 2.20)	Age, sex, education
Leveille et al 2009	Pooled chronic pain	12 months (P)	OR 1.86(Cl: 1.37 to 2.52 p=0.0001*	Raw data

Pain severity / interference with activity

	' interference with (
Blyth et al 2007	Pain last 4 weeks &	12 months (R)	No interference	Age & Gender
	interference with		1>fall PR 1.15 (CI: 0.97 to 1.37)	
	activity		2>PR 1.31 (CI: 0.92 to 1.86)	
			Slight interference	
			1>fall PR 1.37 (CI: 1.16 to 1.62) 0.0002*	
			2>fall PR 1.66 (CI: 1.19 to 2.33) 0.0032*	
			Moderate interference	
			1>fall PR 1.72 (CI : 1.47 to 2.00) <0.0001*	
			2> PR 2.29 (CI: 1.67 to 3.13) <0.0001*	

Table 1. Adjusted Association statistics and Unadjusted Odd ratios

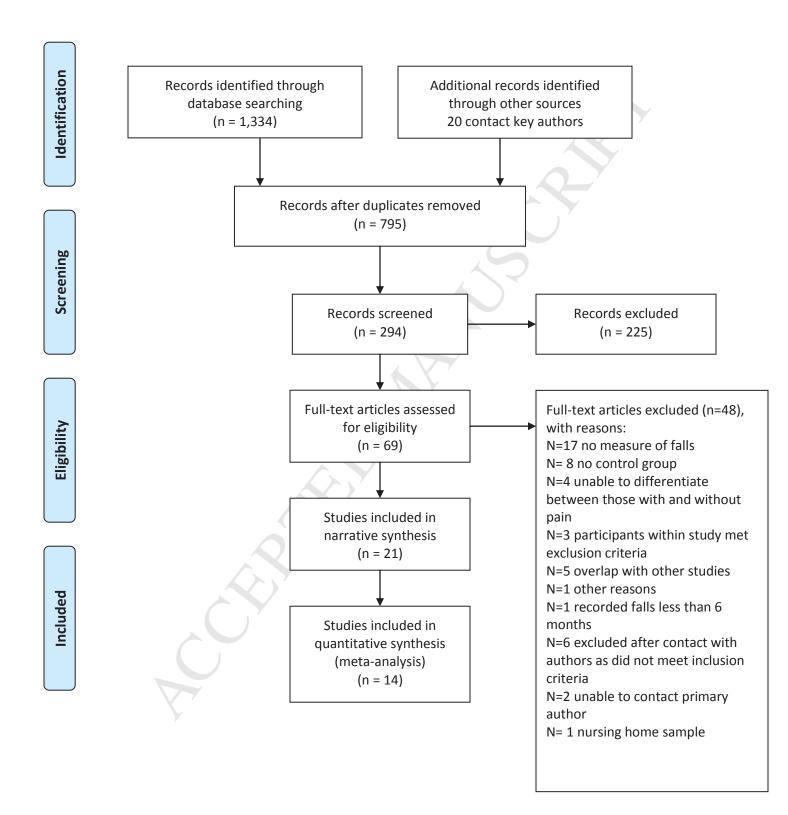
Sturneiks et al	Severity of pain: 12 months (R	
2004	Pooled pain data	OR 1.57 (CI: 1.14 to 2.18)p=0.0059 🖉 Raw data
	A bit of pain	OR 1.27 (CI=0.82 to 1.95) P = 0.2734 Raw data
	Moderate pain	OR 1.41 (CI=0.85 to 2.34) P = 0.1810 Raw data
	Quite a lot of pain	OR 2.58 (CI=1.41 to 4.71) P = 0.0019* Raw data
	A lot of pain	OR 10.74 (CI=0.55 to 209.38) P = 0.1171 Raw data
Leveille et al 2009	Chronic Pain severity 18 months (P) Moderate RaR 1.19 (0.92-1.53) Age, gender & education
		High RaR 1.54 1.18-2.01)
	Chronic pain	Moderate Interference: RaR 1.44 (1.11-1.85)
	interference with activities	High Interference: RaR 1.67 (1.31-2.14)
Кеу		
RR – Relative risk	HR – Hazard ratio	(P) – Prospective ascertainment of falls (R) – Retrospective ascertainment of falls
RaR – Rate Ratio	OR – Odds Ratio	IRR – Incidence risk ratio PR – Prevalence ratio LBP – Iow back pain

Raw data - unadjusted OR calculated from raw data

Key for Adjustment of confounding factors:

≠= Leveille et al 2009 binomial regression - age, sex, race, education, heart disease, diabetes, Parkinson disease, history of stroke, vision score, body mass index, neuropathy, cognitive function, physical activity, balance test score, repeated chair stand time, gait speed, use of psychotherapeutic medications, daily use of analgesic medications, hand and knee osteoarthritis clinical criteria excluding pain

† = Muraki et al 2011 multinomial logistic regression analysis with age, body mass index, cognitive impairment, radiographic knee OA, knee pain, radiographic LS, and lower back pain as independent variables


Table 1. Adjusted Association statistics and Unadjusted Odd ratios

‡ = Muraki et al 2011 multinomial logistic regression analysis with grip strength, 6-meter walking time, and chair stand time in addition to **†** independent variables

£ - Leveille et al 2002 - Adjusted from discrete time survival analysis (using logistic regression), updating pain level to most recent follow-up interview before event. Covariates included age, race, education, body-mass index, confirmed diseases (hip fracture, angina pectoris, diabetes mellitus, peripheral arterial disease, stroke, Parkinson's disease), walking disability, fell in 12 months before baseline, Mini-Mental State Examination score, daily use of psychoactive medications, daily use of analgesic medications, gait speed, balance test score, proxy respondent, and follow-up round.

CHR HIN


Figure 1. PRISMA 2009 flow diagram for search strategy

Iodel Study name		Subgroup within study	Sta	tistics fo	or each st	udy	Fall /	Total	Odds	ratio and 95% CI
			Odds ratio	Lower limit	Upper limit	p-Value	Pain	No-Pain		
Cecchi et al	1 2009	Hip Pain	1.338	0.850	2.107	0.208	29/110	187 / 886		+ □+
Cecchi et al	1 2009	Knee Pain	1.758	1.260	2.453	0.001	69/225	157 / 781		
Chaiwanich	nsiri et al 2009	Foot pain	3.608	1.595	8.166	0.002	13/30	32/183		
Dai et al 20	012	Current Pain	1.373	0.878	2.148	0.165	38/118	101 / 393		+0+
Levinger et	al 2011	Knee Pain	2.243	0.778	6.469	0.135	17/35	8/27		
Menz et al	2006	Foot pain	2,843	1.358	5.954	0.006	23/38	48/137		
Mickle et a	12010	Foot pain	1.876	1.164	3.023	0.010	62 / 107	83 / 196		
Nahit et al	1998	Hip Pain	1.707	0.907	3.213	0.098	23 / 76	30/148		<u>∔o</u> }
Woo et al 2	2009	Back Pain	1.141	0.859	1.514	0.362	92/555	150/1011		d⊒⊢
Woo et al 2	2009	Back pain-interferance	0.873	0.488	1.562	0.647	14 / 101	228/1465		
Woo et al 2	2009	Chronic pain	1.677	1.346	2.089	0.000	173 / 393	658/2061		
Woo et al 2	2009	Hip Pain	1.167	0.668	2.038	0.588	16/91	228/1475		
Woo et al 2	2009	Knee Pain	1.004	0.724	1.392	0.981	55/355	187/1211		
Yagci et al	2007	Lower Body	11.794	2.768	50.262	0.001	39 / 163	2/77		
Leveille et	al 2002	Pooled pain data	1.393	1.007	1.926	0.045	251/707	66/233		
Sturneiks e	t al 2004	Pooled pain data	1.577	1.140	2.181	0.006	117/231	164/416		
Leveille et	al 2009	Pooled pain data	1.862	1.375	2.522	0.000	257/493	100/271		
Bekibele &	Gureje 2010		1.967	1.514	2.557	0.000	1479 / 1700	347/449		
Kwan et al	-	Current activity limiting pain	1.463	1.078	1.986	0.015	90/297	156/681		
ndom			1.562	1.362	1.791	0.000				

R C

Figure 2a. Global Meta-analysis for all studies investigating the association of pain with falls (Online supplementary file)

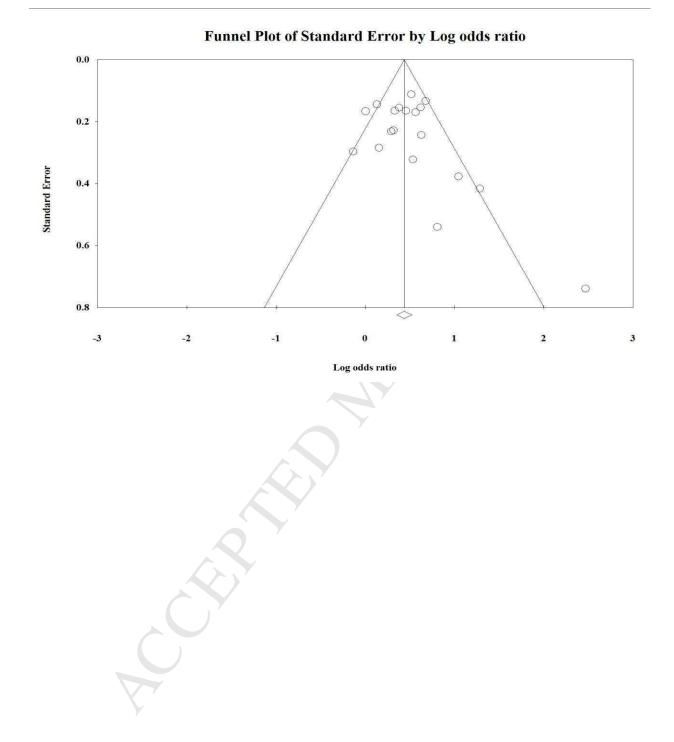
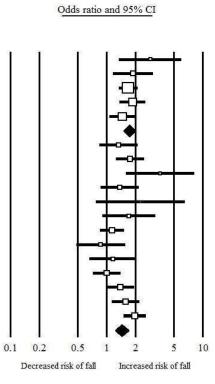



Figure 2b. Funnel plot to assess risk of bias in Global Meta-analysis

Figure 3. Meta-analysis comparing falls data collected prospectively and retrospectively

U		5 1 0					<i>,</i>	1	5
Model		Study name	Subgroup within study	Sta	atistics fo	or each	study	Fall /	Total
	Design			Odds ratio	Lower limit		p-Value	Pain	No-Pain
	Prospective	Menz et al 2006	Foot pain	2.843	1.358	5.954	0.006	23 / 38	48 / 137
	Prospective	Mickle et al 2010	Foot pain	1.876	1.164	3.023	0.010	62 / 107	83 / 196
	Prospective	Woo et al 2009	Chronic pain	1.677	1.346	2.089	0.000	173 / 393	658 / 2061
	Prospective	Leveille et al 2009	Pooled pain data	1.862	1.375	2.522	0.000	257 / 493	100 / 271
	Prospective	Kwan et al 2013	Current activity limiting pain	1.463	1.078	1.986	0.015	90 / 297	156 / 681
Random	Prospective			1.716	1.487	1.981	0.000		
	Retrospective	Cecchi et al 2009	Hip Pain	1.338	0.850	2.107	0.208	29 / 110	187 / 886
	Retrospective	Cecchi et al 2009	Knee Pain	1.758	1.260	2.453	0.001	69 / 225	157 / 781
	Retrospective	Chaiwanichsiri et al 2009	Foot pain	3.608	1.595	8.166	0.002	13 / 30	32 / 183
	Retrospective	Dai et al 2012	Current Pain	1.373	0.878	2.148	0.165	38 / 118	101 / 393
	Retrospective	Levinger et al 2011	Knee Pain	2.243	0.778	6.469	0.135	17/35	8 / 27
	Retrospective	Nahit et al 1998	Hip Pain	1.707	0.907	3.213	0.098	23 / 76	30 / 148
	Retrospective	Woo et al 2009	Back Pain	1.141	0.859	1.514	0.362	92 / 555	150 / 1011
	Retrospective	Woo et al 2009	Back pain-interferance	0.873	0.488	1.562	0.647	14 / 101	228 / 1465
	Retrospective	Woo et al 2009	Hip Pain	1.167	0.668	2.038	0.588	16 / 91	228 / 1475
	Retrospective	Woo et al 2009	Knee Pain	1.004	0.724	1.392	0.981	55 / 355	187 / 1211
	Retrospective	Leveille et al 2002	Pooled pain data	1.393	1.007	1.926	0.045	251 / 707	66 / 233
	Retrospective	Sturneiks et al 2004	Pooled pain data	1.577	1.140	2.181	0.006	117/231	164 / 416
	Retrospective	Bekibele & Gureje 2010	Chronic Pain	1.967	1.514	2.557	0.000	1479 / 1700	347 / 449
Random	Retrospective			1.439	1.222	1.694	0.000		

Figure 4. Sub group Meta-analysis investigating location of pain and association with falls

Model	Group by	Study name	Subgroup within study	Sta	tistics fo	or each	study Design	Fall /	Total		Od	ls ratio and 95% C
	Site specific			Odds ratio	Lower limit		p-Value	Pain	No-Pain			
	Foot	Chaiwanichsiri et al 2009	Foot Pain	3.608	1.595	8.166	0.002 Retrospective	13 / 30	32 / 183	1993		I [
	Foot	Menz et al 2006	Foot pain	2.843	1.358	5.954	0.006 Prospective	23 / 38	48 / 137			
	Foot	Mickle et al 2010	Foot pain	1.876	1.164	3.023	0.010 Prospective	62 / 107	83 / 196			
Random	Foot			2.380	1.626	3.483	0.000					
	Hip	Cecchi et al 2009	Hip Pain	1.338	0.850	2.107	0.208 Retrospective	29 / 110	187 / 886			│ -+□
	Hip	Nahit et al 1998	Hip Pain	1.707	0.907	3.213	0.098 Retrospective	23 / 76	30 / 148			 □
	Hip	Woo et al 2009	Hip Pain	1.167	0.668	2.038	0.588 Retrospective	16 / 91	228 / 1475			
Random	Hip			1.360	1.000	1.849	0.050					
	Knee	Cecchi et al 2009	Knee Pain	1.758	1.260	2.453	0.001 Retrospective	69 / 225	157 / 781			
	Knee	Levinger et al 2011	Knee Pain	2.243	0.778	6.469	0.135 Retrospective	17/35	8 / 27			
	Knee	Woo et al 2009	Knee Pain	1.004	0.724	1.392	0.981 Retrospective	55 / 355	187 / 1211			│╺╧╼│
Random	Knee			1.434	0.890	2.311	0.139					
	Other	Woo et al 2009	Back Pain	1.141	0.859	1.514	0.362 Retrospective	92 / 555	150 / 1011			
	Other	Leveille et al 2002	Pooled pain data	1.393	1.007	1.926	0.045 Retrospective	251 / 707	66 / 233			-0-
	Other	Leveille et al 2009	Pooled pain data	1.862	1.375	2.522	0.000 Prospective	257 / 493	100 / 271			
	Other	Bekibele & Gureje 2010	Chronic Pain	1.967	1.514	2.557	0.000 Retrospective	1479 / 1700	347 / 449			-\$-
	Other	Kwan et al 2013	Current activity limiting pa	in 1.463	1.078	1.986	0.015 Prospective	90 / 297	156 / 681			
Random	Other		Company and Cold Provide the Local		1.255	1.890						
										0.1 ().2 (0.5 1 2

C C E

Decreased risk of fall

10

5

Increased risk of fall

Figure 5. Sub group Meta-analysis investigating the association of chronic and non-chronic pain with

	Group by	Study name	Subgroup within study	Sta	tistics fo	r each s	study Desig	gn	Fall /	Total		0	dds ratio	and 95% (
]	Duration of Pain			Odds ratio	Lower limit		p-Value		Pain	No-Pain				
(Chronic	Woo et al 2009	Chronic pain	1.677	1.346	2.089	0.000 Pros	pective	173 / 393	658 / 2061	1			
(Chronic	Leveille et al 2009	Pooled pain data	1.862	1.375	2.522	0.000 Prosp	pective	257 / 493	100 / 271				
(Chronic	Bekibele & Gureje 2010	Chronic Pain	1.967	1.514	2.557	0.000 Retro	ospective 1	479 / 1700	347 / 449				- _ -
Random (Chronic			1.807	1.560	2.094	0.000							
1	Non-chronic	Cecchi et al 2009	Hip Pain	1.338	0.850	2.107	0.208 Retro	ospective	29 / 110	187 / 886				-0
1	Non-chronic	Cecchi et al 2009	Knee Pain	1.758	1.260	2.453	0.001 Retro	ospective	69 / 225	157 / 781				-0-
1	Non-chronic	Chaiwanichsiri et al 2009	Foot Pain	3.608	1.595	8.166	0.002 Retro	ospective	13 / 30	32 / 183				-
1	Non-chronic	Dai et al 2012	Current Pain	1.373	0.878	2.148	0.165 Retro	ospective	38 / 118	101 / 393			, i	
1	Non-chronic	Leveille et al 2002	Pooled Pain data	1.393	1.007	1.926	0.045 Retro	ospective	251 / 707	66 / 233				-0-
1	Non-chronic	Levinger et al 2011	Knee Pain	2.243	0.778	6.469	0.135 Retro	ospective	17/35	8/27			-	
1	Non-chronic	Menz et al 2006	Foot pain	2.843	1.358	5.954	0.006 Pros	pective	23 / 38	48 / 137				0
1	Non-chronic	Mickle et al 2010	Foot pain	1.876	1.164	3.023	0.010 Pros	pective	62 / 107	83 / 196				
1	Non-chronic	Nahit et al 1998	Hip Pain	1.707	0.907	3.213	0.098 Retro	ospective	23 / 76	30 / 148			t i	
1	Non-chronic	Kwan et al 2013	Current activity limiting pain	1.463	1.078	1.986	0.015 Pros	pective	90 / 297	156 / 681				-0-
Random 1	Non-chronic			1.617	1.398	1.870	0.000							۲
											0.1	0.2	0.5	1 2

5 10

Increased risk of fall

Decreased risk of fall

falls

CERTE

Study	Design	Setting	Participant information	Pain ascertainment location severity	Falls reference period	Mode of falls assessment	Definition of falls	Prevalence of Falls (1≥ falls)
Arden et al 1999	Cohort study	Community (USA)	N = 5552 71.4 ± 5.1 years 100% female	Self-report chronic hip pain over 12 months.	(R) 12 months	Number of falls in first 12 month follows up. Asked about	Not given	Not given
			60.6% confirmed they had self- report physician diagnosed OA. 11.6% had definite radiographic hip OA.	Chronic hip pain N = 1914 (34.5%) sample	5	falls every 4 months.		
			Cases matched for both groups. Excluded for RA, Paget's disease, previous hip fracture/ surgery.					
Arden et al 2006	Cross- sectional	Community (UK)	Total N = 6641 N = 4026 no knee pain: 78.7 years (76.7 - 81.5) 50.8% female = 1427 prevalent knee pain 78.6 years (76.7 - 81.3 ns) 56.3% females (p <0.01). Excluded for renal failure, bilateral hip replacement & current cancer. Patient with knee pain more likely to use walking aid (p <0.001).	Asked if had pain around the knee had most / all days in last month.	(R) 6 months	Questionnaire for falls history	Not given	Not given

Study	Design	Setting	Participant information	Pain ascertainment location severity	Falls reference period	Mode of falls assessment	Definition of falls	Prevalence of Falls (1≥ falls)
Bekibele & Gureje 2010	Cross- sectional	Community (NGA)	N = 2,096 75.0 ± 9.2 years 47.5% female N = 1700 with chronic pain Fallers 75.2 years vs. non fallers 75.1 years (ns) 78.1% fallers had arthritis vs. 67.7% without arthritis who fell (OR 1.7, CI: 1.0 to 2.7)	Questionnaire on persistent pain in last 12 months	(R) 12 months	Questionnaire for falls history	Not given	 (R) Chronic Body pain 87.0% vs. no pain 77.3% (R) Chronic back pain 56.9% vs. no pain 50.1%
Blyth et al 2007	Cross- sectional	Community (AU)	N = 3181 65.1% female N = 2227 pain in last 4 weeks (with or without interfering with activity) N = 710 slight pain causing interference N = 711 moderate-severe pain causing interference N = 784 no pain Fallers more likely to use walking aid (p <0.0001), have history of stroke (p <0.0001), arthritis (p <0.0001) use psychotropic medication (p <0.0001)	SF 36 – bodily pain and pain interfering with activities. Last 4 weeks.	(R) 12 months	Questionnaire for falls history	No reference 'During the past 12 months, have you had any falls where you have landed on the ground or floor'	(R)Pain over last 4 weeks: No interference 25.6% Slight interference 23.1% Moderate/ severe pain 23.2% vs. no pain 28.1%

Study	Design	Setting	Participant information	Pain	Falls	Mode of falls	Definition	Prevalence
	U	U	•	ascertainment	reference	assessment	of falls	of Falls
				location	period			(1≥ falls)
				severity				· · · ·
Cecchi	Cohort	Community	N = 1006	Questionnaire	(R) 12	Questionnaire	'An incident	(R) Hip pain
et al		(IT)	75.2 ± 7.1 years	literature 'over	months	of if fallen	resulting in	32.5% vs. no
2009			56.1% female	the past four		1≥ times in past	the	hip pain
			N = 120 with hip pain:	weeks, did you		12 months	participant	21.1% <i>p</i> =
			Pain 76.2% females	ever experience			coming	0.027
			No pain 53.4% females (<i>p</i> <0.01)	hip/ knee pain?'			unexpected-	
			Pain 75.2 ± 7.2 years	Also completed			ly to the	(R) Knee pain
			No pain 75.2 ± 7.1 years (ns)	WOMAC			ground'.	30.7% vs. no
							No reference	knee pain
			N = 225 with knee pain:					20.1% <i>p</i> =
			Pain 74.3% females					0.01
			No pain 50.9% females (p <0.01)					
			Pain = 75.4 ± 6.9					
			No pain = 75.2 ± 7.2 (ns)					
			Covariates: hypertension,					
			peripheral artery diseases,					
			stroke, cardiovascular					
			disease and depression. Foot					
			pain was present in 16-30% of					
			participants.					

Study	Design	Setting	Participant information	Pain ascertainment location severity	Falls reference period	Mode of falls assessment	Definition of falls	Prevalence of Falls (1≥ falls)
Chaiwan ichsiri et al 2009	Cross- sectional	Community (TH)	N = 213 68.6 ± 5.4 years 49.2% female N = 30 with foot pain Male: Fallers 70.2 ± 6.4 years Non fall 68.4 ± 5.0 years Significant $p < 0.001$ Female: Fallers 69.5 ± 4.2 years Non fall 68.2 ± 6.0 years (ns) Fallers more likely to be female ($p < 0.05$), have knee OA ($p < 0.05$)	Foot pain confirmed by physician. Duration/ severity unknown	(R) 6 months	Interview history of falls	Not given	(R) ≥1 Fall over 6 months Males with foot pain 7.1% vs. no pain 5.3% Females with foot pain 38.7% vs. no pain 16.2%
Dai et al 2012	Cross- sectional	Community (USA)	N = 511 N = 372 non fall group: 71 \pm 9.3 years 56.9% female N = 139 in fall group: 75 \pm 11 years (p <0.01) 68.3% female 23% had pain Excluded only if physician or	Current bodily pain confirmed via questionnaire. No details on location & duration	(R) 12 months	Questionnaire history of falls	Not given	Current pain 32.2% vs. no pain 25.7%

Supplemental Table S1 Summary of included studies

Study	Design	Setting	Participant information	Pain ascertainment location severity	Falls reference period	Mode of falls assessment	Definition of falls	Prevalence of Falls (1≥ falls)
Kwan et al 2013	Cohort	Community (TW, CN & AU)	N = 1456 N = 692 Chinese and Taiwanese: 74.9 ± 6.4 years 59.4% female N = 764 White Australians: 77.6 ±4.7 years 56% female 28% (277/989) ¹ had pain interfering with activity. Comorbidities analysed were cerebro- and cardiovascular conditions, diabetes, osteoarthritis, incontinence, dizziness, Parkinson's disease and depressive symptoms. Separate comorbidity data for each groups were not available.	Questionnaire on current pain interfering with activity. No details on location & duration	(P) 12-24 months	Chinese sample: monthly telephone calls for 12-24 months. Australian white sample monthly falls calendars 12-24 months.	Gibson et al 1987 ⁴⁶	Not given

tester regarded it unsafe

¹ Raw data provided by authors

Study	Design	Setting	Participant information	Pain ascertainment location severity	Falls reference period	Mode of falls assessment	Definition of falls	Prevalence of Falls (1≥ falls)
Leveille et al 2002	Cohort	Community (USA)	N = 1002 100% female N = 295 no pain N = 189 other pain N = 293 lower extremity pain N = 225 widespread pain Age (years) No pain 80.2 ± 8.1 Other pain 78.8 ± 7.7 Lower extremity pain 77.3 ± 8.4 Widespread pain 76.5 ± 7.3 (p <0.001) OA of knee: No pain 12.9% Other pain 30.7% Lower extremity 49.8% widespread pain 49.3% (p <0.001). OA of hip No pain 1.2%, Other pain 7.4% Lower extremity pain 11.6%	severity NRS for hip and knee pain over past month	(R) 12 months	Interview on falls history past 12 months. Home interview every 6 months to establish further falls	Not given	(R) Other pain 35.5% (R) Lower extremity pain 31.9% (R) Widespread pain 40.4% vs. no pain 28.5%

Study	Design	Setting	Participant information	Pain ascertainment location severity	Falls reference period	Mode of falls assess	Definition of falls	Prevalence of Falls (1≥ falls)
Leveille et al 2009	Cohort	Community (USA)	N = 748 All >70 years 63.2% female N = 267 no pain (35.6%) N = 181 single site pain (24.2%) N = 300 polyarticular pain (40.1%) OA at any site: No pain 11.6% Single site 35.9% Polyarticular 60.5% (p <0.01) RA: No pain 2.6% Single site pain 3.9% Polyarticular pain 8.0% p =0.03 Polyarticular group also more likely to have depression (p <0.01) and peripheral arterial disease (p =0.008).	13 item joint pain questionnaire to establish chronic pain in hands, wrist, shoulders, back, chest, hips, knees and feet. Chronic pain ≥3 months.	(R) 12 months & (P) up to 18 months	Retrospective 12 months falls history questionnaire. Prospective monthly falls calendars for up to 18 months and follow up telephone calls	Gibson et al 46	(R) Single site pain 38.3% (R) Polyarticular pain 44.2% vs. no pain 28.3%

Study	Design	Setting	Participant information	Pain ascertainment location severity	Falls reference period	Mode of falls assessment	Definition of falls	Prevalence of Falls (1≥ falls)
Levinger et al 2011	Case- controlled	Community (AU)	N = 62 OA group: N = 35, 67 ± 7 years 45% female. All had OA and knee pain.	WOMAC. Current pain/ severity unknown	(R) 12 months	12 months falls history	Not given	(R) Current knee pain 48% vs. no pain 30%
			Control group: N = 27 65 ± 11 years (ns) 53% female (ns) Neither OA nor pain in knees.					
Menz et al 2006	Cohort	Community (AU)	N = 176 80.1 \pm 6.4 years 68.1% female 21.6% had 'disabling' foot pain. Remainder had no foot pain, but other conditions such as osteoarthritis were present in some. Fallers 81.4 \pm 6.4 years vs. non fallers 79.1 \pm 6.3 years (<i>p</i> =0.022)	Manchester Foot Pain and Disability Index (MFPDI), which required participants to have current pain, to have pain lasting for at least 1 month	(P) 12 months	Monthly falls calendars for 12 months with follow up telephone calls for non- returners	Tinnetti et al 1988 ⁴⁷	(P) Foot pain 60.5% vs. no pain 27.7%

Supplemental Table S1 Summary of included studies

Study	Design	Setting	Participant information	Pain ascertainment location severity	Falls reference period	Mode of falls assessment	Definition of falls	Prevalence of Falls (1≥ falls)
Mickle et al 2010	Cohort	Community (AU)	N = 312 49.3% female 50% had foot pain 50% no foot pain, comorbid problems not mentioned. Fallers 71.6 years (CI = 70.4– 72.9) Non fallers 71.2 years (CI = 70.3–72.2) (ns) 54% Fallers female 46.4% non-fallers female (ns)	Manchester Foot Pain and Disability Index. Duration & severity unknown	(P) 12 months	Monthly falls calendars for 12 months	Tinnetti et al 1998 ⁴⁷	(P) Foot pain 57.9% vs. no pain 42.1%
Morris et al 2004	Cross- sectional (baseline data)	Community (AU)	N = 1000 73.4 (65-94 range) 53.3% female Unclear number of participants who had chronic pain (12> months) Excluded for cognitive impairment or serious illness.	Pain frequency measured 5 point Likert scale (never to everyday) over past 12 months	(R) 12 months	Face to face interviews falls history over past 12 months	Not given	Not given

Study	Design	Setting	Participant information	Pain ascertainment location severity	Falls reference period	Mode of falls assessment	Definition of falls	Prevalence of Falls (1≥ falls)
Muraki et al 2011	Cross- sectional	Community (JP)	N = 1675 Male ages in years Non fallers 66.4 ± 11.7 Single fallers 67.6 ± 11.9 Multiple fallers 64.6 ± 11.3 (ns) Female ages in years: Non fallers 64.4 ± 12.1 Single fallers 64.3 ± 12.2 Multiple fallers 69.1 ± 10.4 (p = 0.004) 64.9% of total sample female 24.4% had chronic knee pain (over past 12 months) 20.1% chronic LBP OA knee higher in females (p <0.05) Female multiple fallers more likely to have OA knee (p = 0.0002), males (ns). No comorbidities measured.	Assessment by orthopaedic doctor. Asked if had pain on most days in past year in hip and lower back.	(R) 12 months	Interview by doctor obtaining 12 months falls history.	Tinnetti et al ⁴⁷	Not given

Study	Design	Setting	Participant information	Pain ascertainment location severity	Falls reference period	Mode of falls assessment	Definition of falls	Prevalence of Falls (1> falls)
Nahit et al 1998	Case- controlled study	Community (UK)	N = 361 N = 111 with new episode of musculoskeletal hip pain median age = 66, IQR 56–72 years 68% female N = 251 age and gender matched controls with no hip pain in previous 12 months.	Attendees at GP for musculoskeletal hip pain. No prior hip pain in past 12 months	(R) 12 months	Questionnaire falls history past 12 months	Not given	(R) Hip pain 30.2% vs. nc pain 20.2%
Nevitt et al 1989	Cohort study	Community (USA)	N = 325 83.1% female 60> years, mean ages not available. All had reported at least one fall in past 12 months. N = 32 had hip or knee pain No difference in gender between falls vs. no falls group.	Underwent doctor examination and had hip and/ knee pain on passive movement.	(P) 12 months	Weekly postcards for 12 months & telephone calls for non- returners	"Falling all the way down to the floor or ground, or falling and hitting an object like a chair or stair." No reference	Not given

Study	Design	Setting	Participant information	Pain ascertainment location severity	Falls reference period	Mode of falls assessment	Definition of falls	Prevalence of Falls (1≥ falls)
Sturniek s et al 2004	Cross- sectional	Community (AU)	N = 679 participants N = 283 arthritis (41.3%): 80.2 \pm 4.3 years 74.6% female N = 401 no arthritis: 80.0 \pm 4.6 years (ns) 58.6% female (p <0.05) N = 231 had pain N = 416 no pain N = 32 not available	Asked SF 12 question in last 4 weeks have you had pain interfering with activity. N = 106 a little pain N = 71moderate N = 51 quite a lot N = 3 unclear if those with pain had arthritis or not.	(R) 12 month	Falls history	Gibson et al 1987 ⁴⁶	(R)Pain intensity falls rate: A bit 45.7% Moderate 47.8% Quite a lot 62.7% A lot 100% No pain 39.4%
Tromp et al 1998	Cross- sectional	Community (NL)	N = 1469 72.6 ± 5.2 years 52.0% female Unclear how many participants had pain. Presence of chronic diseases assessed and analysed, including COPD, cardiovascular disease, stroke, urinary incontinence, diabetes mellitus, joint disorders, and malignant	Nottingham health profile used for pain. Unknown location or duration for pain	(R) 12 months	12 months falls history	Gibson et al 1987 ⁴⁶	Not given

			neoplasms. Assessment of distance vision and hearing.			<u>_</u>		
Study	Design	Setting	Participant information	Pain ascertainment location severity	Falls reference period	Mode of falls assessment	Definition of falls	Prevalence of Falls (1> falls)
Woo et al 2009	Cohort	Community (HK)	N = 4,000 72.49 ± 5.18 years 50.0% female Average age male groups 72.4 ± 4.9 years. Non-significant difference between any of the pain groups (including no pain). Average age female groups 72.7 ± 4.8 years. Non-significant difference between any of the pain groups (including no pain). Chronic diseases added as covariate.	Participants were asked about the presence of hip, knee and back pain over the past 12 months. Respondents could indicate: 0 Never 1. Rarely 2. Some of the time 3. Most of the time 4. All of the time (3&4 classified as chronic pain).	(P) 4 years (R) 12 months	 (P) Participants were asked to record falls as they happened and they were contacted by telephone every 4 months for results over 4 years. Retrospective: 12 months recall of falls at five year follow up. 	"A fall was defined as any unexpected loss of balance resulting in coming to rest on the ground.' No reference.	(P) 44% with chronic pain (mixed body sites) fell. 31.9% with no pain fell.

Supplemental Table S1 Summary of included studies

Study	Design	Setting	Participant information	Pain ascertainment location severity	Falls reference period	Mode of falls assessment	Definition of falls	Prevalence of Falls (1≥ falls)
Yagci et	Cross-	Community	N = 240	Asked if had	(R) 12	Falls history in	'An incident	Not given
al 2007	sectional	(TR)	61.52 ± 8.2 years	musculoskeletal	months	past 12 months	that resulted	
			45.0% female	pain in lower			in the person	
			N = 163 with pain	body in past 6			unexpectedl	
				months.			y coming to	
			Excluded for musculoskeletal	Average pain			the ground'.	
			injury or psychiatric disorder.	intensity over			No reference	
				past 6 months			given	
				scored VAS 0-10			-	

Кеу

NS = non-significant, (R) = retrospective falls ascertainment, (P) = prospective falls ascertainment, VAS = visual analogue scale, OA = osteoarthritis, RA = rheumatoid arthritis, SF 12 = short form 12, SF 36 = long form 36, COPD = chronic obstructive pulmonary disease, IQR = interquartile range, WOMAC = Western Ontario and McMaster Universities Arthritis Index, GP = general practitioner, MFPDI = Manchester Foot Pain and Disability Index, LBP = low back pain, OR = odds ratio, CI = confidence Interval, NRS = numerical rating scale, AU = Australia, CN = China, HK = Hong Kong, IT = Italy, JP = Japan, NGA = Nigeria, NL = Netherlands, TH = Thailand, TR = Turkey, TW = Taiwan, UK = United Kingdom, USA = United Stated of America.

Methodological Quality of Included Studies – Newcastle Ottowa Scale (NOS)

Case Controlled Studies

Study		Selection	l		Compar	ability	Ex	posure		Score
	Patient definition	Representativ eness of patients	Selection of controls	Definition of controls	Age	Gender or co- morbidity	Ascertain ment of falls ¥	Same method for case controls	Non response rate	Total
Chaiwanichsi ri et al 2009	MET	MET	MET	MET	MET	MET	UNCLEAR	MET	UNMENT	7
Dai et al 2012	MET	MET	MET	MET	MET	UNMET	UNCLEAR	MET	UNCLEAR	6
Levinger et al 2011	MET	UNCLEAR	MET	MET	MET	MET	UNCLEAR	MET	UNMET	6
Muraki et al 2011	MET	MET	MET	MET	MET	UNCLEAR	MET	MET	UNCLEAR	7
Nahit et al 1998	MET	MET	MET	MET	MET	UNCLEAR	UNCLEAR	MET	UNMET	6
Sturneiks et al 2004	MET	UNCLEAR	MET	MET	MET	UNCLEAR	MET	MET	UNMET	6
Yagci et al 2007	MET	UNMET	MET	MET	MET	UNCLEAR	MET	MET	UNMET	6

Key:

¥ Met was only given when studies provided a definition of falls and ascertained falls through a valid measure.

Methodological Quality of Included Studies – Newcastle Ottowa Scale (NOS)

Cohort Studies

Study		Sele	ction		Compai	rability		Outcome		Score
	Represent ativeness of patients	Selection of controls	Ascertainme nt of exposure	Demonstrati on outcome of interest was not present at start of study	Age	Gender or co- morbidity	Ascertain ment of falls ¥	Was follow up long enough	Adequacy of follow up	Total
Arden et al 1999	MET	MET	MET	UNMET	MET	UNCLEAR	UNCLEAR	MET	UNCLEAR	5
Arden et al 2006	MET	MET	MET	UNCLEAR	MET	МЕТ	UNCLEAR	MET	MET	7
Bekibele & Gureje 2010	MET	MET	UNCLEAR	UNMET	MET	MET	UNMET	MET	MET	6
Blyth et al 2007	MET	MET	MET	UNMET	МЕТ	MET	UNCLEAR	MET	MET	7
Cecchi et al 2009	MET	MET	MET	UNCLEAR	MET	UNCLEAR	MET	MET	UNMET	6
Kwan et al 2013	MET	MET	МЕТ	UNMET	UNCLEAR	UNCLEAR	MET	MET	MET	6
Leveille et al 2002	MET	MET	MET	UNMET	MET	MET	MET	MET	MET	8
eveille et al 2009	MET	MET	MET	UNMET	MET	MET	MET	MET	MET	8

Menz et al 2006	MET	MET	MET	UNMET	MET	UNMET	MET	MET	UNMET	6
Mickle et al 2010	MET	MET	MET	UNMET	MET	UNCLEAR	MET	MET	MET	7
Morris et al 2004	MET	MET	MET	UNMET	MET	МЕТ	UNCLEAR	MET	MET	7
Nevitt et al 1989	MET	UNMET	MET	UNMET	MET	MET	UNCLEAR	MET	MET	6
Tromp et al 1998	MET	MET	MET	UNMET	MET	MET	MET	MET	MET	8
Woo et al 2009	MET	MET	MET	UNMET	MET	MET	UNCLEAR	MET	MET	7

Methodological Quality of Included Studies – Newcastle Ottowa Scale (NOS)

Key:

¥ Met was only given when studies provided a definition of falls and ascertained falls through a valid measure.