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ABSTRACT 

Coronary heart disease (CHD) is a major burden for public health worldwide. Several 

factors are known to be associated with the disease risk, including high levels of low-

density lipoprotein (LDL) cholesterol and blood pressure. The established risk factors do 

not, however, fully predict an individual’s risk for the disease. In recent years, new 

candidate risk factors, including genetic markers, have been extensively studied. Genome-

wide association studies (GWASs) have mapped over 40 genetic regions for CHD risk 

and hundreds of loci for CHD risk factors. The impact of these findings on public health 

remains obscure.  

In this study, we utilized the findings from large-scale GWASs and constructed genetic 

risk scores (GRSs) based on panels of single-nucleotide polymorphisms (SNPs). The aim 

was to estimate the joint effects of common genetic markers on CHD and its risk factors, 

and to evaluate the incremental value of genetic information in CHD risk assessment.  

In Projects I and II, we studied longitudinal effects of genetic loci associated with lipids 

and blood pressure, and evaluated the prediction of dyslipidemia and hypertension in 

young adults by using the genetic information in addition to clinical measurements. Our 

results show that the GRSs were significantly associated with longitudinal measurements 

of lipid traits and blood pressure throughout childhood, adolescence and adulthood. For 

some traits, the genetic effect was not consistent across age groups. For example, the GRS 

effect for high-density lipoprotein (HDL) cholesterol was considerably larger in children 

than in adults, and the proportion of variance explained by the SNPs in children was twice 

as much as in adults. The GRS for triglycerides improved the prediction of dyslipidemia 

in young adults when added to childhood lipid measurement. The blood pressure GRS 

increased the risk of hypertension, but did not improve risk discrimination over other risk 

factors.  

In Projects III and IV, we found that the GRSs based on CHD SNPs predicted CHD 

events. The estimated relative risk for the GRS was similar in magnitude to the relative 

risk of other risk factors such as systolic blood pressure. The genetic effect was 

independent of family history of the disease, which has been used as a surrogate for 

genetic risk in many prediction algorithms. The GRS based on 28 SNPs improved the 

prediction of CHD events beyond traditional risk factors and family history when 

evaluated with reclassification or discrimination metrics. Genetic screening could be 

especially useful for individuals in the intermediate-risk group (10-year risk 10-20%), as 

current preventive strategies are focused mainly on the high-risk group (>20%).  

In conclusion, these findings suggest that the genetic information obtained from GWASs 

could be used in early identification of individuals at increased risk for lipid disorders, 

hypertension and CHD.  

Keywords: cardiovascular disease, genetic association, genetic epidemiology, risk factor 



 

  

TIIVISTELMÄ 

Sydänsairaudet muodostavat yhden suurimmista kansanterveydellisistä ongelmista 

maailmanlaajuisesti. Niiden syntyyn vaikuttavat monet riskitekijät, kuten korkea 

kolesteroli ja verenpaine, mutta huomattavaa osaa sairastumisriskistä ei voida selittää 

tunnetuilla riskitekijöillä. Tämä on motivoinut tutkijoita etsimään uusia, mukaan lukien 

geneettisiä, riskitekijöitä. Genominlaajuisissa assosiaatioanalyyseissa on löydetty yli 40 

sepelvaltimotautiin yhteydessä olevaa geenialuetta. Useita geenialueita on myös 

yhdistetty sydän- ja verisuonitautien riskitekijöihin. Näiden löydösten merkitystä 

kansanterveydelle ei ole kuitenkaan vielä ymmärretty.   

Tässä väitöstutkimuksessa selvitettiin tunnettujen geenimerkkien yhteisvaikutusta 

sepelvaltimotautiin ja sen riskitekijöihin geneettisten riskiprofiilien avulla. Tavoitteena oli 

myös arvioida, voiko genomitiedon avulla parantaa sepelvaltimotaudin ennustamista.  

Tutkimuksen ensimmäisessä ja toisessa osatyössä selvitettiin geneettisten riskiprofiilien 

pitkittäisvaikutuksia veren kolesterolipitoisuuksiin, triglyserideihin ja verenpaineeseen, 

sekä ennustettiin rasva-aineenvaihdunnan häiriöitä ja hypertensiota nuorilla aikuisilla 

genomitiedon avulla. Tutkimus osoittaa, että geneettiset riskiprofiilit ovat yhteydessä 

näihin riskitekijöihin varhais-lapsuudesta keski-ikään. Joidenkin ominaisuuksien suhteen 

geeniprofiilien vaikutus ei ollut yhtenäinen läpi elämänkaaren, esimerkiksi estimoitu 

efekti HDL-kolesteroliin oli suurempi lapsilla kuin aikuisilla. Geneettiset profiilit nostivat 

riskiä sairastua hypertriglyseridemiaan ja hypertensioon. Genomitiedon lisääminen 

malleihin paransi erottelukykyä dyslipidemian, mutta ei hypertension ennustamisessa. 

Tutkimuksen kolmannen ja neljännen osatyön mukaan tunnetut geenimerkit ennustavat 

sepelvaltimotautitapahtumia. Geneettisen riskiprofiilin suhteellisen riskin suuruus oli 

verrattavissa muiden riskitekijöiden, kuten korkean verenpaineen, aiheuttamaan riskiin. 

Tutkimus osoitti myös, että geeniprofiilin vaikutus oli riippumaton riskitekijä verrattuna 

potilaan perhehistoriaan sydän- ja verisuonitaudeista, jota on yleisesti käytetty geneettisen 

riskin indikaattorina. Tutkimuksemme mukaan genomitiedon lisääminen 

sepelvaltimotaudin ennustemalleihin perinteisten riskitekijöiden lisäksi paransi mallin 

erottelukykyä ja tarkensi riskiluokittelua. Geneettisestä testauksesta olisi erityisesti hyötyä 

niille henkilöille, jotka sijoittuvat sepelvaltimotaudin riskiluokittelussa keskivaiheille (10-

vuoden riski 10-20%), sillä ennaltaehkäisevät toimenpiteet on kohdistettu vain korkean 

riskin ryhmään (yli 20%). 

Tulokset viittaavat siihen, että genominlaajuisista assosiaatioanalyyseista saatu 

genomitieto voisi antaa aikaisessa vaiheessa elämää hyödyllistä lisätietoa henkilön 

riskistä sairastua rasva-aineenvaihdunnan häiriöihin, hypertensioon ja sepelvaltimotautiin.  

Avainsanat: sydän- ja verisuonitaudit, geneettinen assosiaatio, geneettinen epidemiologia, 

riskitekijä 
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1 INTRODUCTION 

Diseases of the heart and vascular system are leading causes of mortality and morbidity 

worldwide. Coronary heart disease (CHD) is caused by an accumulation of lipids in the 

inner wall of the heart-supplying artery and often manifests as chest pain or discomfort. 

CHD is a complex disease, with both environmental and genetic risk factors modifying 

disease susceptibility. 

The Framingham Heart Study, initiated in 1948, was established to identify risk factors 

for CHD, which were largely unknown at that time. During 1960–1970 the study 

uncovered several factors that modify the risk for CHD, nowadays referred to as 

traditional or conventional risk factors. These include high levels of low-density 

lipoprotein (LDL) cholesterol, low levels of high-density lipoprotein (HDL) cholesterol, 

high blood pressure, smoking, and diabetes. Based on these risk factors, the group has 

developed a prediction algorithm that allows clinicians to estimate the CHD risk for 

subjects without established cardiovascular disease (Wilson et al. 1998; Framingham 

Heart Study 2013). Several other similar risk estimation tools exist (Assmann et al. 2002; 

Conroy et al. 2003; Hippisley-Cox et al. 2007; Ridker et al. 2007; D'Agostino et al. 2008; 

Ridker et al. 2008). 

However, a high number of events occur in individuals who do not score high based on 

the predictions with current risk estimation algorithms. Even though genetic factors are 

known to contribute to the risk of disease, information on genetic factors is neglected in 

most risk estimation tools. Some algorithms (Assmann et al. 2002; Ridker et al. 2007; 

Ridker et al. 2008) use information on family history as a surrogate for genetic effects. 

Although relatively easy to measure, family history might not accurately capture the 

genetic effects since families usually share environmental conditions as well. Instead, 

measured genetic variants provide more precise information on an individual’s genetic 

susceptibility to CHD. 

Genome-wide association studies (GWASs) have identified several common genetic 

susceptibility loci for CHD and its risk factors (Levy et al. 2009; Newton-Cheh et al. 

2009; Teslovich et al. 2010; Coronary Artery Disease Genetics Consortium 2011; Ehret et 

al. 2011; Schunkert et al. 2011; Deloukas et al. 2012). Individually, these variants 

typically have modest effect sizes (OR 1.06–1.30 for CHD) and are not useful in risk 

estimation studies, but jointly they might have sufficient predictive power. A simple way 

to evaluate the joint effects of multiple independent genetic variants is to generate genetic 

risk scores (GRSs) by summing the number of risk alleles at each individual locus. These 

scores provide a tool for studying the effects of common genetic variation on trait 

variability and disease risk.  

Although the GRS based on the current GWAS findings only capture approximately 10% 

of the CHD heritability (Deloukas et al. 2012), there could be clear advantages of using 
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genetic variants in estimation of CHD risk. Unlike traditional risk factors, the genetic 

information is determined at conception and could be available from the first health 

examination. Since CHD evolves over a long period and atherosclerotic processes are 

initiated already in childhood (Enos et al. 1953; Holman et al. 1958; McNamara et al. 

1971), detecting high-risk individuals early in life is important. Nevertheless, since the 

GWAS findings are based on cross-sectional adult samples, it is not clear whether these 

genetic effects are consistent throughout the lifespan. 

In this study, we utilized the results from large-scale GWASs for CHD, lipids, and blood 

pressure, and generated GRSs for each trait based on the reported single-nucleotide 

polymorphisms. We estimated longitudinal genetic effects for lipids and blood pressure 

and evaluated the genetic risk for dyslipidemia, hypertension, CHD, and other end-points 

in over 50,000 Finnish and Swedish study subjects.  
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2 REVIEW OF THE LITERATURE 

2.1 Coronary heart disease 

2.1.1 Diagnosis and symptoms 

Cardiovascular disease (CVD) encompasses a range of diseases of the heart and blood 

vessels, including CHD, cerebrovascular disease, and other diseases of the cardiovascular 

system. CHD covers several acute and chronic medical conditions (Table 1), and acute 

coronary syndrome (ACS) includes only acute events such as myocardial infarction (MI), 

unstable angina or sudden cardiac death. 

 

Table 1. Selected ICD-10 codes for coronary heart disease. 
I20 Angina pectoris 

Unstable angina; angina pectoris with documented spasm; other forms of angina 

pectoris (e.g. angina of effort); unspecified angina pectoris 

I21 Acute myocardial infraction 
Acute transmural myocardial infarction of anterior wall / inferior wall / other sites / 

unspecified site; acute subendocardial myocardial infarction; unspecified myocardial 

infarction 

I22 Subsequent myocardial infraction 
Subsequent myocardial infarction of anterior wall / inferior wall / other sites / 

unspecified site 

I23 Certain current complications following acute myocardial infarction 
Hemopericardium; atrial septal defect; ventricular septal defect; rupture of cardiac wall 

without hemopericardium; rupture of chordae tendineae; rupture of papillary muscle; 

thrombosis of atrium, auricular appendage, and ventricle; other current complications 

following acute myocardial infarction 

I24 Other acute ischemic heart diseases 
Coronary thrombosis not resulting in myocardial infarction; Dressler syndrome; other 

forms of acute ischemic heart disease; unspecified acute ischemic heart disease 

I25 Chronic ischemic heart disease 
Atherosclerotic heart disease; old myocardial infarction; aneurysm of heart; coronary 

artery aneurysm; ischemic cardiomyopathy; silent myocardial ischemia; other forms of 

chronic ischemic heart disease; unspecified chronic ischemic heart disease 

I46 Cardiac arrest 
Cardiac arrest with successful resuscitation; sudden cardiac death; unspecified cardiac 

arrest 
Abbreviations: ICD-10, International Classification of Diseases (version 10). Data adapted from World 

Health Organization (2012b). 
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A typical symptom in CHD is chest pain or discomfort radiating to the arm, neck, jaw, or 

epigastrium. Other symptoms include dizziness, fatigue, nausea and diaphoresis. Sudden 

cardiac death might also be the first manifestation of the disease. Diagnosis of CHD is 

based on the patient's cardiac symptoms, changes in electrocardiogram, biomarker 

measurements, and in fatal cases, autopsy findings (Luepker et al. 2003).  

2.1.2 Burden of the disease 

CVD, especially CHD, is the most common cause of death worldwide. In Europe, 22% of 

women and 20% of men die from CHD. Overall, CVD accounts for 52% of deaths in 

women and 42% of deaths in men (Nichols et al. 2012). In Finland, the prevalence for 

CHD (ICD-10 codes I20-I25) in 2010 was 800 per 100,000 in males and 254 per 100,000 

in females (age-standardized for 25–74-year-olds to standard European population) 

(Laatikainen et al. 2009). 

Regional variation in age-standardized CHD mortality rates exists between and within 

countries in Europe. The highest mortality rates are in Central and Eastern Europe, with 

rates decreasing gradually when moving towards southwestern Europe. A clear within-

country variation exists in Germany, the UK, Poland, and Finland. For example, people 

living in the northeastern part of Finland have a higher mortality from MI than individuals 

in the southwestern part of the country (annual incidence rate during 1991–2003 per 

100,000: 855.6 vs. 334.7 in men and 351.4 vs. 210.6 in women in northeast and southwest 

Finland, respectively). The regional differences in mortality rates can partly be explained 

by prevalence of the classic risk factors (e.g. smoking and hypertension) (Havulinna et al. 

2008; Muller-Nordhorn et al. 2008). 

Mortality rates for CHD have declined in many countries during the past decades. The 

decreasing trend has been especially strong in Finland, which had the highest CHD 

mortality in the world in the 1970s. Today, the mortality rate is closer to that of other 

Nordic countries, but remains high (World Health Organization 2012a). Reductions in 

risk factors (mainly LDL cholesterol levels) and improved treatment are the main causes 

for reduced CHD mortality rates in Finland (Vartiainen et al. 1994; Laatikainen et al. 

2005).  

Despite progress in many developed countries, the global burden of the disease persists. 

CHD rates have increased and are higher than ever in many former Soviet Union states 

(Mirzaei et al. 2009). The CHD epidemic is dynamic, reflecting changes in CHD risk 

factor levels within a population. Poor dietary habits, heavy smoking and a sedentary 

lifestyle due to urbanization have triggered the epidemic in developing countries, where 

the majority of all cardiovascular events occur (Okrainec et al. 2004; Perk et al. 2012). 

The emerging epidemic of obesity and diabetes poses a new threat to cardiovascular 

health worldwide. Since 2000, the prevalence of diabetes has increased in most European 

countries (Nichols et al. 2012).  
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The economic burden of CHD consists of direct costs in health care (33% of total cost), 

productivity loss (29%), and informal care (38%). The annual total cost of CHD is 

estimated to be over 60 billion Euros in the European Union (Nichols et al. 2012).   

2.1.3 Disease pathology 

Atherosclerosis is an underlying cause of CHD, but the etiology of the disease is 

complex. Both environmental and genetic factors act at several stages of atherosclerosis. 

The development of atherosclerosis (Figure 1) begins early in life as an accumulation of 

lipids beneath the endothelial layer in the artery. These fatty streaks are common in youth 

and do not necessarily cause atherosclerosis. The critical stage in the progression of the 

disease is when fatty streaks evolve into atherosclerotic plaque (atheroma). Several CHD 

risk factors play a role in this process and may trigger the disease pathogenesis. Large 

atheromas congest arteries and diminish blood flow to the heart. MI occurs as a result of 

thrombus caused by rupture or erosion of the fibrous plaque (Lusis 2000; Moore and 

Tabas 2011). 

 

 

Figure 1. Development of atherosclerosis and plaque rupture in the artery. Reprinted from Moore and Tabas 

(2011) with permission from Elsevier. 

 

The risk for a thrombus depends on the vulnerability of the plaque. Atheromas with thin 

fibrous caps are more likely to develop thrombus than plaques with a thick endothelial 

layer. Thus, the development of thrombus with severe clinical complications depends 

more on plaque vulnerability than severity of stenosis. Plaque vulnerability is largely 

affected by inflammation process, which is initiated by the accumulation of lipids and 

hemodynamic strain in the artery (Lusis 2000; Hansson 2005). 
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2.1.4 Risk factors 

Advanced age and male gender are two major risk factors for CHD. The prevalence of 

CHD increases with age, affecting less than 1% of the population aged under 40 years, 

6% of 40- to 59-year-olds, and over 10% of 60+ females and over 20% of 60+ males 

(Roger et al. 2012). The lifetime risk at the age of 40 for developing CHD is one in two 

for men and one in three for women (Lloyd-Jones et al. 1999). However, the difference in 

risk between genders decreases with age; in fact, heart disease is a more common cause of 

death in elderly women than in men (Nichols et al. 2012). 

Other established risk factors for CHD, identified originally mainly by the Framingham 

Heart Study (Kannel et al. 1961; Kannel et al. 1967; Abbott et al. 1988), include high 

levels of LDL and low levels of HDL cholesterol, high blood pressure, obesity, diabetes 

mellitus, smoking and family history of the disease. In recent years, the role of 

inflammation has been under intensive research and novel biomarkers reflecting 

inflammatory status have been tested for their predictive properties. Other factors that 

have been found to increase or decrease the risk for CHD include physical fitness and 

activity (Williams 2001) and psychosocial factors such as stress and anxiety (Roest et al. 

2010; Kivimäki et al. 2012), diet (Dauchet et al. 2006), and alcohol consumption (Corrao 

et al. 2004), among others. 

In Finland, the prevalence of standard risk factors has substantially changed over the last 

40 years. Especially men living in the North Karelia had exceptionally high risk factor 

values in the 1970s: 54% were smokers and their mean levels of total cholesterol and 

blood pressure were 6.96 mmol/l and 147/90 mmHg, respectively. The North Karelia 

project was established in 1972 to reduce the risk factor burden in Eastern Finland, and 

after 1977 the interventions were applied to the rest the of the country (Puska et al. 1976; 

Puska et al. 1998). Interventions have resulted in changes in health behavior, especially 

reduced dietary salt and saturated fat intake, and consequently have decreased the risk 

factor levels. For example, the pooled mean total cholesterol level in 2007 in males was 

5.39 mmol/l (5.45 mmol/l in the North Karelia region). Since 1972, CHD mortality has 

declined by 80% in the middle-aged population and changes in standard risk factor levels 

predict 60% of the reduced mortality (Vartiainen et al. 2010). 

2.1.4.1 Blood lipids 

Some blood lipids have a central role in the pathogenesis of atherosclerosis due to their 

subendothelial accumulation. High levels of LDL cholesterol in the blood increase the 

accumulation of LDL in the arteries and accelerate the development of atherosclerotic 

lesions. Therefore, current strategies for preventing CHD focus on lowering blood LDL 

cholesterol levels. Treatment with hydroxymethol glutryl coenzyme (statins) has been 

successful in both primary and secondary prevention of CHD (Scandinavian Simvastatin 

Survival Study Group 1994; Shepherd et al. 1995; Sacks et al. 1996; Heart Protection 
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Study Collaborative Group 2002; Baigent et al. 2005). Randomized trials have reported 

20-30% reductions of cardiovascular events in subjects treated with statins compared with 

placebo group subjects (Shepherd et al. 1995; Baigent et al. 2005). Furthermore, studies 

conducted in both CHD patients and healthy subjects with elevated lipid levels have 

reported similar 5-year number needed to treat (NNT) estimates; approximately 40 to 60 

subjects need to be treated with pravastatin or lovastatin to prevent one coronary event 

(Superko and King 2008; Ridker et al. 2009). However, a considerable residual risk for 

CHD remains in individuals treated with statins. Despite achieving ideal LDL levels with 

treatment, plaque progression continues in approximately 20% of patients with 

established CHD (Bayturan et al. 2010). 

HDL cholesterol has an inverse association with CHD. It removes excess cholesterol from 

arterial walls (a process called reverse cholesterol transport) and has anti-inflammatory 

and antioxidant properties (Barter et al. 2004). Because of these anti-atherogenic 

mechanisms, high levels of blood HDL may decrease the risk for CHD. Despite efforts, 

pharmacological agents that raise HDL levels have not been demonstrated to be an 

effective treatment for CHD (Libby et al. 2011). One clinical trial was even terminated 

prematurely due to an increased risk for cardiovascular events and death in those treated 

with torcetrapib, a drug that inhibits cholesterol ester transfer protein (CETP) and raises 

HDL (Barter et al. 2007). Recently, the causal role of HDL in development of CHD has 

been questioned since the genetic variants that lower HDL levels have not been shown to 

increase CHD risk (Voight et al. 2012). The results indicate that even though HDL 

cholesterol is a marker of the risk it might not be causally related to the disease. As HDL 

cholesterol is highly correlated with other metabolic traits, such as triglycerides, obesity, 

and insulin resistance, it is possible that some other trait is the causal factor underlying 

the association between HDL and CHD. However, more studies are needed to unravel this 

mystery.    

Increased triglyceride concentrations are associated with higher CHD risk in univariate 

analysis, but when adjusted for other risk factors, the effect is attenuated (Sarwar et al. 

2007; Di Angelantonio et al. 2009). This is because blood triglyceride levels are highly 

correlated with other CHD risk factors and are therefore not considered to be an 

independent risk factor. In metabolic syndrome, elevated triglycerides usually coexist 

with low HDL cholesterol levels, abdominal obesity, high blood pressure, and elevated 

fasting plasma glucose levels (Alberti et al. 2005).  

European guidelines for lipid levels in subjects at low or moderate cardiovascular risk 

(Perk et al. 2012) recommend that HDL cholesterol should be at least 1.2 mmol/l or more 

in females and 1.0 mmol/l or more in males. Other conventional blood lipids have the 

same guidelines for both genders: LDL cholesterol less than 3.0 mmol/l and triglycerides 

(fasting) less than 1.7 mmol/l. Total cholesterol level is calculated as a function of other 

lipid measurements and should not exceed 5.0 mmol/l. 
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2.1.4.2 Blood pressure 

High blood pressure is one of the major risk factors for CHD, sudden death, heart failure 

and stroke. High blood pressure raises the mechanical stress of blood vessels and 

increases the workload of the heart. Increased hemodynamic burden decreases the 

elasticity of blood vessels and promotes the development of atheromas. High blood 

pressure might also induce structural changes in the heart. In response to mechanical 

stress, the left ventricular wall of the heart is thickened (i.e. left ventricular hypertrophy). 

This condition often precedes systolic or diastolic dysfunction and heart failure (Lorell 

and Carabello 2000; Gradman and Alfayoumi 2006). 

Hypertension is measured as systolic (maximum) and diastolic (minimum) blood 

pressure. Systolic indicates the pressure in the arteries when the heart muscle contracts, 

and diastolic is the pressure between heartbeats, when the heart is filled with blood. Blood 

pressure 120/80 mmHg is considered ideal. Classification of blood pressure levels and the 

definition of hypertension are given in Table 2.  

Environmental risk factors such as diet, physical exercise, and alcohol and salt intake, 

have an influence on blood pressure levels (Frisoli et al. 2011). Thus, managing these risk 

factors is an important preventive strategy for CHD. In addition, antihypertensive drugs 

(such as beta blockers and calcium channel blockers) are prescribed especially for 

subjects with severe hypertension (systolic blood pressure ≥ 180 and/or diastolic blood 

pressure ≥ 110 mmHg) or with a high total risk for cardiovascular events (Perk et al. 

2012).   

 

Table 2. Definitions and classification of blood pressure levels.* 
Category SBP (mmHg)  DBP (mmHg) 

Optimal < 120 and < 80 

Normal 120–129 and/or 80–84 

High normal 130–139 and/or 85–89 

Hypertension ≥ 140 and/or ≥ 90 
* Blood pressure levels in untreated individuals. Abbreviations: SBP, systolic blood pressure; DBP, 

diastolic blood pressure. Data adapted from Perk et al. (2012). 

 

2.1.4.3 Obesity 

The prevalence of worldwide obesity has almost doubled since 1980. In 2008, 10% of 

men and 14% of women had a body mass index (BMI) of 30 kg/m
2
 or more (World 

Health Organization 2012a). In adults, BMI of 25 kg/m
2
 or more is defined as overweight 

and BMI of 30 kg/m
2
 or more as obesity. In the general population, overweight and 

obesity are associated with increased overall mortality, which is mainly attributable to 
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cardiovascular and diabetic deaths (Whitlock et al. 2009). However, for patients with 

established CHD, the relationship between obesity and cardiovascular mortality is more 

controversial. Overweight and mild obesity appear to be protective and improve survival 

of CHD patients (Romero-Corral et al. 2006). This “obesity paradox” could be partly due 

to the inaccuracy of BMI as an indicator of harmful obesity. Although useful as a 

standard measure, BMI is a rough estimate of overall obesity, as it provides no 

information on fat distribution. Two individuals with the same BMI could have very 

different body composition of fat and lean mass.   

Abdominal obesity, measured by waist circumference or waist-to-hip ratio, has been 

found to increase the risk of diabetes and CHD over and above BMI. Abdominal 

measurements may also be useful in more accurate risk classification of BMI-defined 

obese and overweight people (Canoy et al. 2007; The InterAct Consortium 2012).  

2.1.4.4 Diabetes mellitus 

Diabetes mellitus includes a range of medical conditions. Two main subtypes are type 1 

diabetes (juvenile-onset diabetes) and type 2 diabetes (adult-onset diabetes), but other 

subtypes also exist. Of the two main subtypes, type 2 is the most prevalent form of 

diabetes and thus, a more relevant risk factor, but both subtypes have been shown to 

increase CHD risk (Grundy et al. 1999; Orchard et al. 2006). Diabetes is manifested by 

high levels of glucose in the blood caused by insulin resistance. Insulin is a hormone 

produced by the pancreas that lowers blood glucose levels. In type 1 diabetes, beta cells 

that produce insulin have been destroyed by autoimmune reactions, and the patients are 

dependent on insulin injections to maintain normal glucose levels. The onset of type 2 

diabetes is usually later in life (> 40 years of age) and is often preceded by metabolic 

syndrome (Wilson et al. 2005). Weight control is an essential part of the treatment of 

patients with type 2 diabetes.  

Diagnostic criteria for diabetes are fulfilled if the measured fasting plasma glucose is 7 

mmol/l or more or 11.1 mmol/l or more two hours after the oral dose in the glucose 

tolerance test. As dyslipidemia and hypertension are especially harmful in diabetics, more 

stringent thresholds are applied for blood lipid levels and blood pressure. For example, 

the target value for blood pressure is below 130/80 mmHg. Statins might be considered 

for patients with unfavorable lipid values, as they have been shown to decrease the risk 

for vascular events in people with diabetes (Kearney et al. 2008; Working group set up by 

the Finnish Medical Society Duodecim and the Finnish Respiratory Society 2011). 

2.1.4.5 Smoking 

Smoking increases the risk of several chronic diseases. Smokers have a two-fold risk for 

developing heart disease compared with nonsmokers, and the relative risk is 25% higher 

in women than men (Huxley and Woodward 2011). Furthermore, people who have never 
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smoked but who live with a smoker have a 30% excess risk for heart disease, which is 

comparable to the risk of subjects who smoke one cigarette per day (Law et al. 1997).  

Exposure to cigarette smoke has many adverse effects on health. It promotes 

inflammation, increases oxidative stress and has unfavorable effects on lipid profile 

(Ambrose and Barua 2004). Smoking thus acts in concert with other risk factors, and its 

coexistence with such risk factors as high blood pressure or high cholesterol multiplies 

the risk for cardiovascular events. For example, smoking reduces the amount of oxygen in 

the blood, which increases the workload of the heart and raises blood pressure. 

Consequently, when smoking and hypertension are combined they increase the risk for 

arterial stiffness more than either factor alone (Scallan et al. 2010). 

2.1.4.6 Family history of cardiovascular disease 

Positive parental family history of heart disease refers to a situation where at least one 

parent of an individual has suffered from the disease. This simple measure, usually 

evaluated with a questionnaire, has been thought to represent a combination of both 

environmental (shared risk factors in the family) and genetic effects. Many studies have 

shown that family history is a risk factor for CHD, and the effect is independent of 

traditional risk factors (Jousilahti et al. 1996; Hawe et al. 2003; Lloyd-Jones et al. 2004). 

Also, adjusting for behavioral risk factors (tobacco use, alcohol use, physical activity, and 

fruit and vegetable intake), psychosocial risk factors (depression, permanent stress, 

financial stress, stressful events, and perceived locus of control) and a panel of common 

genetic variants explains only modestly the association between MI and family history 

(Chow et al. 2011). Thus, the composition of family history measurement remains largely 

unknown.  

2.1.4.7 Inflammatory biomarkers 

The development of atherosclerosis is a complex interplay between metabolic and 

inflammatory processes. Focal endothelial activation triggers an immune response, which 

attracts immune cells to the site. The cells infiltrate the lesion and produce inflammatory 

cytokines (interferon-γ, interleukin-1, and tumor necrosis factor), inducing the production 

of interleukin-6 (IL-6) (Hansson 2005). IL-6 stimulates the production of C-reactive 

protein (CRP), a commonly used indicator of acute infections, but the levels are also 

elevated in chronic diseases. Fibrinogen is another protein involved in the inflammation 

process, playing a role in blood clotting and platelet aggregation. These inflammatory 

biomarkers have also been associated with CVD and CHD in the general population and 

their use in cardiovascular risk evaluation has been studied (Ridker et al. 2000; Danesh et 

al. 2004; Melander et al. 2009; Kaptoge et al. 2012).  

Nevertheless, there are some drawbacks to using these inflammatory biomarkers in risk 

assessment. First, they are associated with other classic risk factors, and thus, they might 
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not provide much additional information beyond these risk factors. For example, 

inflammatory processes have been shown to have a role in a low HDL cholesterol state 

(Laurila et al. 2013). Second, inflammation markers are not specific to CVD, as they are 

elevated in other nonvascular diseases as well. Third, the causality or dose-effect 

relationship of these markers and the risk of CVD has not been established. Fourth, 

evidence on therapeutic agents that target circulating levels of these markers and affect 

CVD incidence is lacking. Fifth, the assays have a higher cost than classic risk factors 

such as blood lipids (Perk et al. 2012).   

2.1.5 Early atherosclerotic changes and risk factor fluctuation in young 

people 

CHD usually manifests in adulthood, but atherosclerotic changes begin early in life. Early 

atherosclerotic changes in children were documented for the first time in autopsy studies 

in the 1950s (Holman et al. 1958). Fatty streaks were found in aortas of children as young 

as 9 months, and every child over 7 years of age had at least some fatty streaks. Advanced 

atherosclerotic lesions in young persons were found in autopsies of young male casualties 

from the Korean and Vietnam wars, where atherosclerotic lesions were observed in 50‒

75% of soldiers (Enos et al. 1953; McNamara et al. 1971). In the Bogalusa Heart Study, 

the extent of atherosclerosis was evaluated in autopsies of young people (aged 2- to 39 

years) and correlated with several cardiovascular risk factors (BMI, systolic and diastolic 

blood pressure, blood lipids, and smoking). The study not only found strong associations 

between the individual risk factors and the extent of preclinical atherosclerosis, but it also 

showed that the amount of lesions in the aorta and coronary arteries increased as the 

number of risk factors rose (Berenson et al. 1998).  

Cardiovascular risk factors in children, adolescents, and young adults have been 

investigated in many longitudinal studies, where the subjects have been followed from 

childhood to early adulthood and clinical measurements of risk factors taken several times 

during their lifespan. The studies include the Bogalusa Heart Study (initiated in 1973), the 

Muscatine Study (1971), and the Cardiovascular Risk in Young Finns Study (1980), 

among others (Lauer et al. 1975; Srinivasan et al. 1976; Raitakari et al. 2008). One 

important finding from these studies is that the risk factors have a tendency to track from 

childhood to adulthood, and thus, measurements on childhood risk factors are predictive 

of risk factor levels in adulthood (Webber et al. 1991; Porkka et al. 1994). Therefore, risk 

factor measurements taken at a young age might provide an important tool for the early 

assessment of cardiovascular risk. However, due to insufficient follow-up time, linking 

childhood risk factors to adulthood CVD in these cohorts has not yet been possible. 

The development of noninvasive imaging methods for preclinical atherosclerosis has 

provided a useful collection of intermediate cardiovascular end-points that measure 

atherosclerotic changes in a healthy population, long before the clinical manifestation of 

the disease. These methods include measures of coronary calcium, carotid intima-media 
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thickness, and increased left ventricular mass, among others. Many of the longitudinal 

studies have incorporated measurements of preclinical atherosclerosis into their follow-up 

investigations and found that these measures in young adulthood are associated with 

abnormalities in childhood risk factors (Mahoney et al. 1996; Davis et al. 2001; Li et al. 

2003; Raitakari et al. 2003).  

2.1.6 Cardiovascular risk assessment 

Cardiovascular risk refers to the likelihood of having a cardiovascular event over a 

defined time period. It can be estimated by using the information on traditional risk 

factors with existing prediction tools (Wilson et al. 1998; Assmann et al. 2002; Conroy et 

al. 2003; Hippisley-Cox et al. 2007; Ridker et al. 2007; D'Agostino et al. 2008; Ridker et 

al. 2008). For example, the most widely used Framingham risk score (Wilson et al. 1998) 

estimates the absolute 10-year risk for all CHD events, whereas SCORE (Conroy et al. 

2003) is primarily aimed at predicting fatal CVD events. The risk estimation is highly 

dependent on the choice of prediction tool, with different risk calculators providing 

different risk estimates and categorization for the same individuals (Allan et al. 2013). 

Risk assessment is an important tool in primary prevention of cardiovascular events. 

Based on the risk estimates, subjects can be classified into predefined risk categories (e.g. 

10-year risk 0–5%, 5–10%, 10–20%, >20%). These risk categories can then be used by 

clinicians to guide treatment decisions. For example, current guidelines from ATP-III 

(2001) and the National Institute for Health and Care Excellence (2008) recommend that 

statin treatment be allocated to subjects with a 10-year risk 20% or more. As subjects with 

established CVD have a high risk regardless of their risk score, these prediction 

algorithms are applicable only for disease-free subjects. In terms of effectiveness, 

directing preventive strategies to high-risk individuals only is not ideal, as most of the 

cardiovascular events occur within a population with a risk lower than 20%. In the era of 

low-cost statins, it has been proposed that the target group for preventative actions be 

widened (Lloyd-Jones 2010; Holmes et al. 2011). This could be done by lowering the risk 

threshold that defines those eligible for statins or by improving the risk categorization 

with a more accurate risk factor panel.  

The high-risk strategy might have clear benefits for an individual, but it has only a small 

impact on the disease burden at a population level. Another approach for disease 

prevention is a population strategy that aims to shift the whole risk factor distribution via 

health campaigns or other safe interventions. The population strategy has a strong effect 

on disease incidence, but it yields little benefit at an individual level. Fortunately, the two 

approaches are not mutually exclusive (Rose 1981; Rose 2001).       
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2.1.6.1 Risk evaluation based on traditional risk factors 

The Framingham risk score (Wilson et al. 1998) estimates the 10-year risk for CHD by 

using information on sex, age, total or LDL cholesterol, HDL cholesterol, blood pressure, 

diabetes, and smoking (Figures 2 and 3). Each risk factor is first scored separately, and 

then the total risk is calculated as the sum of the risk points. Total sum of the risk points is 

then converted to absolute risk, which can be compared with the risk of an average person 

of the same age.  

The relative risk might be more informative especially for young people. Since advanced 

age is the most important risk factor for CHD, the estimated 10-year risk for young 

people remains low, even if they have several risk factors. For example, a 36-year-old 

male who smokes and, has total cholesterol of 6 mmol/l and a blood pressure of 140/90 

mmHg has a 10-year risk of 8%. By contrast, the risk for a 56-year-old male with similar 

values is 20%, which means that he is at high risk for developing CHD over a period of 

10 years and should be considered for statin treatment. However, the average 10-year risk 

for 35- to 39-year-old males is 5%. Thus, the relative risk shows that 8% is a clearly 

elevated risk for a 36-year-old male. The protective effect of young age is even stronger 

in females. Even though CHD is the most common cause of death for women, the onset 

of the disease is later in life than for men. With the same risk factor values as above, the 

10-year CHD risk for a 36-year-old female is only 2% and for a 56-year-old 15%. 

Nevertheless, the risks are still higher than for an average person of the same age.  

Several similar prediction algorithms exist, but only PROCAM (Assmann et al. 2002) and 

the Reynolds Risk Score (Ridker et al. 2007) uses information on family history, which is 

considered to reflect genetic risk. Current prediction algorithms are not perfect; their 

accuracy for discriminating cases from noncases is around 80% (Wilson et al. 1998; 

Assmann et al. 2002; Conroy et al. 2003). This has motivated the search for new potential 

risk factors that could improve the risk estimation over and above traditional risk factors. 
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Figure 2. Coronary heart disease (CHD) risk score sheet for men. Estimates risk for CHD over a period of 

10 years based on the Framingham experience in men 30-74 years old at baseline. Abbreviations: Pts, 

points. Reprinted from Wilson et al. (1998) with permission from Wolters Kluwer Health. 
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Figure 3. Coronary heart disease (CHD) risk score sheet for women. Estimates risk for CHD over a period 

of 10 years based on the Framingham experience in women 30-74 years old at baseline. Abbreviations: Pts, 

points. Reprinted from Wilson et al. (1998) with permission from Wolters Kluwer Health. 

 

 

 

 



 

29 

 

2.1.6.2 Statistical methods for testing new potential risk factors 

Epidemiological studies have evaluated several novel risk factors for CHD. These include 

additional lipid-related markers and inflammatory biomarkers such as CRP and 

fibrinogen. These have been found to be associated with CHD in prospective studies 

(Ridker et al. 2000; Danesh et al. 2005; Melander et al. 2009; Di Angelantonio et al. 

2012; Kaptoge et al. 2012). However, statistical significance does not necessarily indicate 

clinical usefulness. While a statistical association is a precondition, novel potential risk 

factors should also fulfill other criteria: First, the biomarker should be accurately 

measurable at a reasonable cost; second, it should provide incremental information 

beyond existing risk factors; and third, it should have an influence on clinical decision-

making (Morrow and de Lemos 2007). Therefore, additional methods have been 

developed to address practical and clinical utility of novel risk factors. These methods 

include discrimination, reclassification, and calibration. 

Discrimination is assessed with a Receiver Operating Characteristic (ROC) curve and C-

index (area under the ROC). These are functions based on commonly used performance 

rates for medical tests. The rates can be defined as follows: 1) true positive rate is the 

probability of a positive test result for a case; 2) false positive rate is the probability of a 

positive test result for a noncase; 3) true negative rate is the probability of a negative test 

result for a noncase; and 4) false negative rate is the probability of a negative test result 

for a case. As a good medical test should be able to discriminate cases from noncases as 

accurate as possible, the test should maximize the true positive and negative rates and 

minimize the false positive and negative rates. ROC curve plots the true positive rate 

(sensitivity) against the false positive rate (1-specificity). In cardiovascular risk 

assessment, the evaluation is based on the predicted risk rather than a binary test result. 

Thus, the C-index gives the probability that the predicted risk is higher for a case than for 

a noncase. C-indices vary from 0.5 (poor discrimination) to 1.0 (perfect discrimination). 

To evaluate whether a new risk factor improves prediction of future CHD, one can 

compare C-indices of two models (with and without the new risk factor). A limitation of 

C-index is that as a rank-based measure it does not quantify the absolute difference in 

risk. According to Cook (2007), “differences between 2 individuals who are at very low 

risk (e.g. 1.0% versus 1.1%) have the same impact on the c-statistic as 2 individuals who 

are at moderate versus high risk (e.g. 5% versus 20%) if their differences in rank are the 

same”. However, the risk difference between the latter two individuals is more relevant 

clinically. 

To overcome the limitations for C-index, Pencina et al. (2008) proposed two additional 

measures to evaluate the predictive performance of the model. Net Reclassification 

Improvement (NRI) compares the movements in the scale of predicted probabilities when 

the new risk factor is added to the model. Usually, the predicted risk is categorized into 

clinically meaningful risk categories (e.g. 0–5%, 5–10%, 10–20%, >20%), and the 

movements between the categories are recorded (Table 3). For cases, upward movements 
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imply improved prediction and downward movements worse prediction. The 

interpretation is the opposite for noncases. Thus, NRI indicates how much more correct 

versus incorrect reclassification occurs. Reclassification of the subjects in the 

intermediate-risk category (e.g. 10–20%), denoted as “clinical NRI”, is particularly 

interesting, as in this group the treatment decisions are less clear than in high-risk 

individuals (Cook 2008; Pencina et al. 2008; Pencina et al. 2011).  

 

Table 3. Risk reclassification with a biomarker score. 
Predicted 10-year risk 

(without biomarker score) 
Predicted 10-year risk (with biomarker score) 

CVD cases 0–5% 5–10% 10–20% >20% 

0–5% 0 0 0 0 

5–10% 2 66 20 2 

10–20% 0 20 99 21 

>20% 0 0 4 37 

     

Noncases 0–5% 5–10% 10–20% >20% 

0–5% 152 33 1 0 

5–10% 80 869 101 6 

10–20% 0 197 702 49 

>20% 0 0 24 66 
The basic model included area, age, sex, high-density lipoprotein (HDL) cholesterol, nonHDL cholesterol, 

systolic blood pressure, body mass index, smoking, diabetes, and cardiovascular drugs. Biomarker score 

included troponin I, N-terminal pro-brain natriuretic peptide, and C-reactive protein. Abbreviations: CVD, 

cardiovascular disease. Data adapted from Blankenberg et al. (2010) with permission from Wolters Kluwer 

Health. 

 

Another discrimination measure, Integrated Discrimination Index (IDI), compares the 

mean differences in predicted risk between cases and noncases for the models with and 

without the new risk factor (Pencina et al. 2008). It indicates how far, on average, 

individuals move along the risk scale with the addition of new risk marker. If IDI is small 

and NRI is high, then most of the reclassification occurs adjacent to the risk thresholds 

(Lloyd-Jones 2010). Under some assumptions, IDI has also been shown to be equivalent 

with the change in mean absolute residuals and with the change in proportion of the 

explained variation (a generalization of R2 from linear to binary regression) when the 

new risk marker is added to the model (Pepe et al. 2008).  

In addition to the methods described above, the model calibration needs to be on an 

acceptable level. Calibration is a measure of overall goodness-of-fit of the model, and it is 

usually evaluated visually by dividing data into deciles and tested with Hosmer-

Lemeshow test, P<0.05 generally indicating poor calibration (Hosmer and Lemeshow 
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1999). It is a measure of how well predicted risk approximates with the actual observed 

risk. 

As an example, some studies have evaluated whether substituting traditional risk factors, 

LDL and HDL cholesterol, with apoliprotein B (apoB) and apolipoprotein A1 (apoA1) 

would provide more accurate predictions of cardiovascular risk. These lipid markers have 

some benefits over LDL and HDL cholesterol. For example, they are less prone to 

measurement errors in the laboratory. Also, the apo(B)/apo(A1) ratio has been shown to 

be a strong risk marker for MI (Yusuf et al. 2004). However, these markers are not 

measured in all laboratories, possibly because they are more costly to measure than 

conventional lipid markers. In a large study of Emerging Risk Factors Collaboration (Di 

Angelantonio et al. 2012), the model containing conventional risk factors had a C-index 

of 0.7244. Substituting conventional lipid markers (total cholesterol and HDL) with apoB 

and apoA1 worsened CVD prediction, and addition of apoB and apoAI, lipoprotein(a), or 

lipoprotein-associated phospholipase A2 mass to conventional lipid markers led to 

modest improvements in risk discrimination (change in C-index 0.0006−0.002) or 

reclassification (NRI<1% for all lipid biomarkers). The modest improvements in 

prediction are most likely explained by the high correlation between tested biomarkers 

and traditional biomarkers. Table 4 shows discrimination and reclassification metrics for 

some other candidate risk markers. 

 

Table 4. Discrimination and reclassification of novel biomarkers. 

Biomarker 
End-

point 
C-index* 

C-index 

change** 
NRI Reference 

C-reactive 

protein 
CVD 0.714 0.004 1.5% 

Kaptoge et al. 

(2012) 

Fibrinogen CVD 0.717 0.003 0.8% 
Kaptoge et al. 

(2012) 

N-BNP CHD 0.760 0.006 1.2% 
Melander et al. 

(2009) 

MR-proADM CHD 0.760 0.004 2.4% 
Melander et al. 

(2009) 

Cystatin C CHD 0.760 0.004 0.9% 
Melander et al. 

(2009) 

Carotid intima-

media thickness 
CVD 0.757 NR 0.8% 

Den Ruijter et 

al. (2012) 

Coronary artery 

calcium score 
CHD NR 0.05 19.3% 

Kavousi et al. 

(2012) 
* Basic model included age, sex, total and high-density lipoprotein cholesterol, systolic blood pressure, 

treatment of hypertension, smoking, and diabetes. ** Novel marker was added to the basic model. 

Abbreviations: NRI, net reclassification improvement; CVD, cardiovascular disease; CHD, coronary heart 

disease; N-BNP, N-terminal pro-B-type natriuretic peptide; MR-proADM, midregional proadrenomedullin; 

NR, not reported. 
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2.2 Complex disease genetics 

CHD, Parkinson's disease, multiple sclerosis, and asthma are examples of complex 

diseases. A common feature for these diseases is that they are heritable in a multifactorial 

manner, which means that several genes together with lifestyle and environmental factors 

contribute to disease onset. For most diseases, many of the risk factors are unknown and 

under intensive research. 

According to the common disease – common variant hypothesis, the genetic risk for 

complex diseases is composed of several common genetic variants, each of them having a 

small additive effect on the total risk. Accumulation of genetic risk variants increases the 

genetic susceptibility, but does not directly cause the disease. Thus, there is an important 

distinction between complex diseases and monogenic diseases that can be caused by a 

mutation in a single gene. While genetic risk is determined at conception, maintaining a 

healthy lifestyle can substantially decrease an individual’s risk for a complex disease. The 

degree to which genetic variation contributes to disease onset depends on heritability of 

the disease.  

2.2.1 Heritability 

Phenotypic variation of complex traits is composed of both environmental and genetic 

sources. In a population, the total variance (  ) of a trait is the sum of genetic (  ) and 

environmental (  ) variance. The broad-sense heritability (  ) is defined as the fraction 

of phenotypic variability that is due to genetic variation:  

   
  

  
 

Broad-sense heritability takes into account all potential sources of genetic variation 

(additive, dominant, epistatic), whereas narrow-sense heritability (    is the proportion of 

total variance that is due to the additive genetic variance (  ): 

   
  
  

 

For binary disease traits, heritability can be defined similarly on an underlying, normally 

distributed liability scale (Visscher et al. 2008).  

A common method for estimating heritability is to compare phenotypic differences of 

dizygotic and monozygotic twin pairs. The narrow-sense heritability can also be 

estimated from genome-wide SNP data in unrelated individuals, which has some 

advantages over traditional family-based methods (Speed et al. 2012). For example, 

heritability estimates from twin studies might be biased upwards due to shared 

environment (Zaitlen et al. 2013).  
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Variations in environmental factors, allele frequencies, and genetic effects have an impact 

on heritability estimates. Thus, heritability estimates in one population might not be 

generalizable to another population. Moreover, heritability of a trait is not constant over 

time and might fluctuate due to changes in genetic and environmental effects (Wray and 

Visscher 2008). 

2.2.2 Structure of the human genome 

Deoxyribonucleic acid (DNA) is a double-helical molecule packed into 22 autosomal 

chromosome pairs and sex chromosomes X and Y in the cell nucleus. Half of the 

chromosomes are inherited from the mother and the other half from the father. Females 

carry two X chromosomes and males carry one X and one Y chromosome. In addition to 

nuclear DNA, a small amount of DNA is located in the cell mitochondria. Mitochondrial 

DNA is inherited solely from the mother.  

DNA consists of two strands of base pairs (bp), which are formed so that adenine (A) 

bonds with thymine (T) and cytosine (C) bonds with guanine (G) (Figure 4). Together 

these chemical bases (A,T,C,G) form a sequence of approximately 3 billion characters. 

Genes comprise on average a 21,000-bp-long stretch of DNA and are distributed 

unevenly along the genome (Roberts and McNally 2011). They are composed of 

segments that encode functional products (RNA transcripts and proteins), noncoding 

introns and promoter regions, which control the expression of the gene. The minority of 

the genome (~1.5%) encodes protein sequences, and according to the latest estimates, 

there are only approximately 21,000 protein-coding genes in the human genome (Clamp 

et al. 2007). The genetic code in the protein-coding genes determines how DNA is 

translated into proteins. The sequences of three consecutive nucleotides, three-letter terms 

known as codons, correspond to certain amino acids, building blocks for proteins. 

However, genes can produce multiple functionally distinct proteins due to a process 

called alternative splicing. 
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Figure 4. The DNA molecule consists of two strands held together by bonds between the bases. Adenine 

(A) pairs with thymine (T), and cytosine (C) with guanine (G). Reprinted from the National Institutes of 

Health. National Human Genome Research Institute (2012).  

 

2.2.3 Genetic variation 

The first draft sequence of the human genome was published in 2001 by the Human 

Genome Project and Celera Genomics (Lander et al. 2001; Venter et al. 2001). The 

genetic sequence is 99.9% similar for all humans. Genetic variation between individuals 

comes in many different forms and different sizes, from a single base to large segments of 

DNA. The types of variation include deletions, insertions, substitutions, repeated 

sequences, inversions, and other rearrangements. The most common type of variation is a 

single-nucleotide polymorphism (SNP), which is a variation in a single base. For 

example, the SNP might have two alleles, A and G, in a population with frequencies 40% 

and 60%, respectively. In this case, A is the minor allele of the locus, with a minor allele 

frequency (MAF) of 40%. On average, SNPs that have MAF of at least 1% occur in every 

300 bases of the human genome. SNPs are widely utilized in gene mapping studies for 

common and complex traits. Depending on their location, SNPs may have different 
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effects on the phenotype. Most of the SNPs have small or neutral effects, but especially 

SNPs located in the coding regions that change the amino acid sequence might change the 

protein encoded by the gene.  

SNPs are selected for gene mapping studies on the basis of a phenomenon called linkage 

disequilibrium (LD), the nonrandom association of alleles at different loci. When two 

chromosomes separate during meiosis, they cross over at various points. If two 

consecutive markers derive from different chromosomes, the event is called a 

recombination. Regions with a low number of recombinations, ‘recombination coldspots’, 

have large LD patterns, whereas regions with abundant recombinations, ‘recombination 

hotspots’, have smaller LD. Regions with high LD are usually described as haplotype 

blocks. Haplotype blocks can be used for SNP selection and are useful in regions where 

the LD structure is relatively discrete. Since LD between the markers within a haplotype 

block is high, sometimes only one SNP is sufficient to capture the genetic variation in that 

region. In some regions, however, the LD patterns are more complicated and it is not 

possible to accurately define the haplotype blocks (Wall and Pritchard 2003). 

The international HapMap project was launched in 2002 to determine the common 

variation in the human DNA sequence. Using samples from different ethnic populations, 

the HapMap project created a haplotype map of the human genome (International 

HapMap Consortium 2003). Haplotype structures vary according to the population and 

reflect the immigration history of humans. The genetic variation is greatest in Africa, and 

haplotype diversity decreases with distance from Africa (Conrad et al. 2006). The genetic 

diversity between the populations needs to be taken into account when designing gene 

mapping studies. Tag SNPs used in one population might not be representative of another 

population. For example, two SNPs at chromosome 9 (rs4977574 and rs1333049), which 

were among the first association signals for CHD (Wellcome Trust Case Control 

Consortium 2007; Kathiresan et al. 2009b), tag the functional SNP rs1333047 in the 

HapMap2 CEU population. Due to the absence of LD, however, the association between 

rs1333049 or rs4977574 and CHD has not been replicated in the HapMap2 YRI 

population (Figure 5) (Schaub et al. 2012). The LD structure also affects genotype 

imputation (see Section 2.2.4.1). 
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Figure 5. Patterns of linkage disquilibrium (LD) at chromosome 9p21 in the HapMap2 CEU (upper) and 

YRI (lower) populations. Abbreviations: CEU, Utah residents of Northern and Western European ancestry; 

YRI, Yoruba in Ibadan, Nigeria. 
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2.2.4 Genome-wide association studies    

GWASs have uncovered common genetic variants for complex traits. The international 

HapMap project (2003) together with advances in large-scale genotyping technology and 

computational methods triggered the wave of GWASs in 2005, and since then, the 

number of GWAS publications has grown each year (Hindorff et al. 2013). The aim in 

GWAS is to identify genetic loci for common and complex traits by testing single 

variants one-by-one through the genome. The first GWASs utilized the SNP arrays of 

100,000–250,000 variants (Klein et al. 2005; Maraganore et al. 2005), but the number of 

tested SNPs is growing as denser arrays are becoming available. Today, GWAS chips 

from Illumina Inc. include up to 5 million SNPs. 

In GWAS, genetic effects are studied based on allele frequencies. The method can be 

applied for many different study settings. The simplest way is to compare allele 

frequencies between disease cases and controls. If the allele is more common in cases, it 

is said to be a risk allele for the disease. The magnitude of the effect can be estimated 

using a simple Chi-square test or logistic regression, which allows adjustment for several 

confounding factors. The other common type of association analysis is to study genetic 

effects for quantitative traits (e.g. BMI, LDL cholesterol), which are of interest because 

they are usually intermediates between the genetic factors and the disease. In this 

approach, the phenotypic distributions for each genotype are compared and modeled with 

linear regression analysis.    

Testing genetic associations in thousands of loci creates the problem of multiple testing, 

which can lead to false-positive findings. Thus, a stringent threshold for statistical 

significance needs to be applied when interpreting the results. Bonferroni correction 

(significance level/number of tests) is a commonly used, albeit conservative, method. The 

significance level of 5×10
-8

 has been considered a standard in most GWASs.  

2.2.4.1 Meta-analysis and imputation 

Meta-analysis can be used to increase the power to detect SNP associations, as it pools 

the results from several studies. Effect sizes from different data sets can be combined with 

fixed or random effects meta-analysis. A fixed effects model assumes that there is a 

common genetic effect in all data sets and that observed differences are due to chance 

alone. A random effects model assumes that the effects are different in all data sets 

(Ioannidis et al. 2009).  

Meta-analysis requires careful harmonization of data analysis, phenotype definitions, and 

SNP data. Since SNP arrays are usually not comparable in different studies, genotype 

imputation is applied to harmonize the coverage. This means that the missing genotypes 

are predicted based on the observed genotypes and the haplotype structure of the 

reference data, such as the HapMap2 or HapMap3 reference panel (Marchini and Howie 

2010). The most extensive reference data today, produced by the 1000 Genomes Project, 
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comprise of sequences of 1092 individuals from 14 populations by combining low-

coverage whole-genome and exome sequencing. It captures up to 98% of SNPs at a 

frequency of 1% (Abecasis et al. 2012). Using the 1000 Genomes reference population to 

impute an array of ~550,000 SNPs extends the data to up to ~14,000,000 polymorphic 

variants. Thus, the coverage of genetic data can be substantially increased by imputation. 

To perform analysis with this kind of data requires bioinformatics tools and high 

computational efficiency. 

2.2.4.2 Success and limitations 

Since 2005, GWASs have yielded over 10,000 SNPs associated with common, complex 

traits (Figure 6) (Hindorff et al. 2013). The majority of these SNPs are located within 

noncoding functional elements of the genome (Dunham et al. 2012). 

 

  

Figure 6. Published genome-wide associations (P≤5×10
-8

) through 12/2012 for 17 trait categories. Reprinted 

from Hindorff et al. (2013). 

 

GWASs have shown that the genetic effect sizes for complex traits are modest. 

Exceptions include the first GWAS signal found for CHD at 9p21 (see Section 2.3.3), the 

variant in FTO gene associated with BMI (Frayling et al. 2007), and the SNP associated 
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with age-related macular degeneration that was identified by using only 96 cases and 50 

controls (Klein et al. 2005). However, to detect variants with smaller effect sizes 

considerably larger study samples than those used in the initial GWASs are needed. 

Usually, it is not possible to gain sufficient power in a single data set, and thus, meta-

analyses soon became the method of choice. As mentioned earlier, data harmonization is 

a challenge in meta-analysis. As a consequence, GWASs have been more successful for 

traits (e.g. blood lipids) that have similar, established measurement assays worldwide. 

Data harmonization might be expected to be more challenging for traits measured with a 

questionnaire (e.g. alcohol consumption). 

The modest-effect common variants identified to date explain only a small proportion of 

the total genetic variability of complex traits. The unexplained part of the variability is 

probably accounted for by a large number of common SNPs with even smaller effects, but 

also by other types of genetic variation, like rare variants with large effects (Manolio et al. 

2009). However, since GWASs rely on allele frequencies, rare variants are poorly 

detected in GWASs.  
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2.3 Genetics of coronary heart disease and its risk factors 

2.3.1 Heritability of coronary heart disease and its risk factors 

The contribution of genetic factors to the risk for CHD is about equal to the contribution 

of environmental risk factors. In the studies of Swedish and Danish twins, the heritability 

for CHD death varied from 52% to 57% in males and from 38% to 58% in females 

(Wienke et al. 2001; Zdravkovic et al. 2002). The heritability estimate based on the 

genome-wide SNP data of approximately 2000 cases and 3000 controls was 41% (Speed 

et al. 2012). A substantial part of the phenotypic variability of cardiovascular risk factors 

is due to genetic variation. Heritability varies from 61% to 71% for blood lipids (Kettunen 

et al. 2012). Long-term measurements of systolic and diastolic blood pressure have 

heritability estimates of 57% and 56%, respectively, whereas the corresponding estimates 

for temporal blood pressure measurements are 42% and 39% (Levy et al. 2000).  

2.3.2 Mendelian forms of coronary heart disease  

Monogenic forms of CHD that may result from a mutation in a single gene are called 

Mendelian lipid disorders. One example is familial hypercholesterolemia (FH), which is 

characterized by high LDL cholesterol levels already at an early age. Studies have 

revealed several genetic mutations that cause severe FH. The identification of Mendelian 

CHD genes has led to better understanding of the pathology of these diseases and 

supported the development of novel diagnostics and treatment. FH is usually caused by a 

mutation in the LDL receptor (LDLR) gene (Brown and Goldstein 1986). LDLR is 

responsible for removing LDL cholesterol from the blood stream, and the mutation in the 

gene leads to accumulation of LDL in the blood. As a consequence, FH, in particular the 

homozygous form of the disease, is characterized by extremely high LDL cholesterol and 

early-life CHD. Brown and Goldstein were awarded the Nobel Prize in 1985 for their 

identification of LDLR in FH. Indeed, the discovery of LDLR has been a success story in 

the field of cardiovascular genetics, as the knowledge gained from this finding regarding 

LDLR function, structure, and regulation eventually explained the LDL cholesterol-

lowering effects of statins (Lagor and Millar 2010), originally recognized as inhibitors of 

cholesterol biosynthesis (Endo et al. 1976).  

Mutations in PCSK9, APOB, ABCG5, ABCG8 and ARH have also been found to cause 

FH (Soria et al. 1989; Garcia et al. 2001; Abifadel et al. 2003; Kathiresan and Srivastava 

2012). Later, common variants in these regions were observed to be associated with 

general CHD or blood lipids in GWASs (Kathiresan et al. 2008; Willer et al. 2008; 

Aulchenko et al. 2009; Kathiresan et al. 2009a; Kathiresan et al. 2009b; Deloukas et al. 

2012). This genetic overlap suggests that at least partially similar biological mechanisms 

could underlie Mendelian monogenic and common forms of CHD. 
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2.3.3 Genome-wide association studies of coronary heart disease 

First GWAS finding for CHD was locus 9p21, identified simultaneously in three studies 

(Helgadottir et al. 2007; McPherson et al. 2007; Wellcome Trust Case Control 

Consortium 2007). The risk allele is common (frequency ~50% in European populations) 

and confers ~1.2-fold risk for CHD (Deloukas et al. 2012), which is a substantially higher 

risk than for other identified common variants (Figure 7). However, the genetic variants 

in this region are located in the gene desert, and the functional basis for the observed 

associations was long unknown. Recent functional studies have, however, reported that 

the SNPs in the locus play a role in inflammatory signaling response (Harismendy et al. 

2011; Schaub et al. 2012), supporting the role of inflammation in CHD. Interestingly, 

there is also an association signal for type 2 diabetes in 9p21 (Saxena et al. 2007; Scott et 

al. 2007; Zeggini et al. 2007), but the lead SNP is completely uncorrelated with the lead 

SNP in the CHD locus.  

 

 

Figure 7. Odds ratios (ORs) and 95 % confidence intervals (CIs) for SNPs associated with coronary heart 

disease. Data adapted from Deloukas et al. (2012). 
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The largest CHD GWAS to date (Deloukas et al. 2012), including 63,746 CHD cases and 

130,681 controls, identified 15 novel loci for CHD. Combined with the previously known 

loci, the number of independent genome-wide significant SNPs for CHD is currently over 

40. Of these loci, 12 SNPs are associated also with lipids (mainly LDL cholesterol) and 5 

with blood pressure. The authors also report 104 independent genetic variants (r
2
 < 0.2) 

that were associated with CHD at a 5% false discovery rate. Together, these variants 

explain approximately 10.6% of CHD heritability. For most loci, the functional 

mechanism is unknown, but the authors report that the main pathways for the CHD loci 

are lipid metabolism and inflammation. 

Most of the CHD GWASs have been performed in European populations, but recently, 

the GWAS in Han Chinese identified four loci (TTC32-WDR35, GUCY1A3, C6orf10-

BTNL2 and ATP2B1) not previously linked with CHD in European populations (Lu et al. 

2012). Nevertheless, the SNPs in GUCY1A3 and ATP2B1 have been mapped to blood 

pressure levels also in European populations (Levy et al. 2009; Ehret et al. 2011; Wain et 

al. 2011). Another example of population-specific association signals is found in the 

study of Takeuchi et al. (2012), where two novel susceptibility loci (ALDH2 and 

HLA/DRB-DQB) were identified in a Japanese study sample.  

2.3.4 Genome-wide association studies of lipids and blood pressure 

Triglycerides, LDL, HDL, and total cholesterol have been studied extensively in GWASs. 

A large study comprising > 100,000 individuals of European ancestry reported 95 

independent loci associated with blood lipids, 59 of which were reported for the first time 

(Teslovich et al. 2010). Only a handful of these variants were also associated with CHD 

in the same study. These included the following variants in or near previously reported 

CHD genes: SORT1, LPA, HNF1A, and LDLR (Erdmann et al. 2009; Kathiresan et al. 

2009b; Tregouet et al. 2009). Some loci were later identified in CHD GWASs: LPL, 

TRIB1, ABO, and APOA1 (Schunkert et al. 2011; Deloukas et al. 2012). All of these 

variants had pleiotropic effects, that is, they were associated with more than one lipid 

phenotype. For most loci, however, the lead trait was LDL or total cholesterol, supporting 

the causal role of LDL cholesterol in CHD. Contradictory, four loci (IRS1, KLF14, 

C6orf106, and NAT2) had specific associations only with HDL cholesterol and 

triglycerides, whose pathological roles in CHD are less clear. Nevertheless, these genes 

have also been linked with type 2 diabetes (Voight et al. 2010) and other metabolic traits 

(Kilpeläinen et al. 2011). Due to pleiotropic effects with other cardiovascular risk factors, 

it remains unclear which of these risk factors are responsible for the detected CHD 

association. 

Many of the lipid GWAS hits overlap with of loci causing Mendelian dyslipidemic 

syndromes (Figure 8). This indicates that the genetic architecture of lipid traits is a 

mixture of rare variants with large effects and common variants with small effects 

(Kathiresan and Srivastava 2012). Rare large-effect variants might especially affect the 
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higher end of the phenotypic distribution. For example, in addition to common risk 

variants, cases with hypertriglyceridemia have been reported to carry a significantly 

higher burden of rare risk variants (MAF < 1% in controls) in four lipid genes (APOA5, 

GCKR, LPL, APOB) (Johansen et al. 2010).  

 

 

Figure 8. Overlap of genetic loci causing Mendelian lipid syndromes, those targeted by lipid-lowering 

therapies, and those identified in GWASs. Reprinted from Kathiresan and Srivastava (2012) with 

permission from Elsevier. 

The first GWASs for blood pressure identified SNPs in or near 13 genes: ZNF652, 

CACNB2, FGF5, c10orf107, SH2B3, CYP1A2, ULK4, TBX3/TBX5, ATP2B1, CYP17A1, 

MTHFR, PLCD3, and PLEKHA7 (Levy et al. 2009; Newton-Cheh et al. 2009). Of these, 

the same variant in or near SH2B3 (rs3184504) has also been associated with CHD 

(Schunkert et al. 2011) and platelet counts (Gieger et al. 2011). The other variant near 

CYP17A1 (rs12413409), which is in perfect LD with the blood pressure SNP 

(rs11191548), is also associated with CHD (Schunkert et al. 2011). In addition, CYP17A1 

is one of the 12 genes identified to cause monogenic hypertension. All 12 genes are 

involved in two groups of pathways: renal sodium handling and steroid hormone 

metabolism. The loss-of-function mutation in CYP17A1 causes rare congenital adrenal 

hyperplasia, which is characterized by hypokalemia, gonadal deficiency, and 

hypertension (Ehret and Caulfield 2013).  

In 2011, a large GWAS consortium (N=200,000) identified 16 novel blood pressure loci 

(Ehret et al. 2011). The majority of the SNPs identified so far are located in regions that 

do not contain previously found candidate genes for blood pressure. Altogether, 29 

variants explain only 1-2% of blood pressure variance.  
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3 AIMS OF THE STUDY 

In this study, we used the genetic information obtained from several large-scale genome-

wide association studies of coronary heart disease and two of its important risk factors, 

lipids and blood pressure. The aim was to estimate the genetic effects in independent data 

sets and to evaluate the clinical and practical utility of these findings for public health. 

The study has four specific aims: 

1) To test whether previously identified genetic markers are associated with lipids and 

blood pressure in a longitudinal study design. 

2) To estimate longitudinal and age-specific effects of genetic markers for lipids and 

blood pressure and to evaluate the ability of genetic risk scores to predict dyslipidemia 

and hypertension in young adults.  

3) To estimate the genetic risk for coronary heart disease in independent prospective and 

case-control data sets. 

4) To evaluate predictive ability of genetic risk scores in cardiovascular risk assessment.  
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4 MATERIALS AND METHODS 

4.1 Study populations 

4.1.1 FINRISK 1992, 1997, and 2002  

FINRISK studies have been conducted every 5 years to monitor trends in CVD risk factor 

levels in Finland. The survey was initiated in 1972 in eastern Finland and North Karelia. 

The FINRISK 1992−2002 surveys have been sampled from up to five geographical areas. 

Each FINRISK survey is an independent, stratified random sample drawn from the 

national population register. Health information has been collected by mailed 

questionnaire, physical measurements, and clinical examination (Vartiainen et al. 2010).  

Study protocols have been approved by the Institutional Review Board of Helsinki 

University Hospital, Helsinki, Finland. All participants provided written informed 

consent. FINRISK cohorts were used in Projects III and IV. 

4.1.2 Health 2000 

The Health 2000 survey was conducted in 2000 and 2001 with a stratified two-stage 

cluster sampling design. In the first stage, 80 health centers of 249 in total were selected 

to represent clusters. Then, individual persons were randomly sampled from these 

clusters. The data were collected with interviews, questionnaires, measurements, and 

clinical examinations (National Public Health Institute 2008).  

The study protocol was approved by the Ethics Committees of the National Public Health 

Institute and Research in Epidemiology and Public Health at the Hospital District of 

Helsinki and Uusimaa. All participants provided written informed consent. The cohort 

was included in Projects III and IV. 

4.1.3 Young Finns Cohort  

The Cardiovascular Risk in Young Finns Study started in 1980, when 3596 children and 

adolescents aged 3, 6, 9, 12, 15, and 18 years participated in the first cross-sectional 

survey. Participants were randomly selected from five cities (Helsinki, Kuopio, Oulu, 

Tampere, and Turku) and their rural surroundings. The follow-up surveys were conducted 

in 1983, 1986, 2001, and 2007, when the participants were aged between 30 and 45. 

Various measurements (questionnaires, physical measurements, blood tests) of 

cardiovascular risk factors were taken in each of the follow-ups. DNA was extracted in 

2001.  
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The study protocol was approved by the local ethics committees (University Hospitals of 

Helsinki, Kuopio, Oulu, Tampere, and Turku) and all subjects gave written informed 

consent (Raitakari et al. 2008). The cohort was included in Projects I and II. 

4.1.4 Corogene 

The Corogene cohort was collected from Finnish patients assigned to undergo coronary 

angiogram in the Helsinki University Central Hospital between June 2006 and March 

2008. Patients were assigned to four groups: 1) patients without CHD, 2) patients with 

stable CHD, 3) patients with ACS, and 4) patients with other ischemic events. Data 

collection included a questionnaire, hospital records, physical examinations, and 

laboratory sampling (Vaara et al. 2012).  

Altogether 2500 patients with ACS or previous MI were selected for genome-wide 

genotyping. Controls for these samples were obtained from FINRISK participants living 

in the Helsinki-Vantaa region. For each case, two ACS-free controls were matched by sex 

and birth year. In total, 2101 cases and 3914 controls (1453 unique) were included in this 

study.  

The study protocol was approved by the Ethics Committee of Helsinki University 

Hospital, Internal Medicine. All participants provided written informed consent. The 

Corogene study cohort was included in Project III. 

4.1.5 Malmö Diet and Cancer Study – Cardiovascular Cohort 

The baseline examination of the Malmö Diet and Cancer Study (MDCS) was conducted 

between 1991 and 1996 for 53,000 middle-aged subjects. The Cardiovascular Cohort 

(MDC-CC) consists of 6103 randomly selected participants from MDCS. The data were 

collected with a questionnaire, medical history assessment, physical examination, and 

laboratory measurements.  

The MDCS was approved by the Ethics Committee of Lund University, Sweden. All 

participants provided written informed consent (Berglund et al. 1993; Persson et al. 

2007). The cohort was included in Project III. 

4.1.6 Malmö Preventive Project 

The Malmö Preventive Project (MPP) was set up in 1974. A total of 33,346 individuals 

participated in health screening during 1974–1992. Baseline data were collected with a 

questionnaire, physical examination, and biochemical analyses. Altogether 17,284 

individuals were re-screened during 2002–2006. Of these individuals, 2400 were 

excluded from the present study because of a lack of DNA or crucial clinical information 
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or if they were already included in the MDC-CC cohort. Thus, 14,884 individuals 

comprise this study population.  

The study protocol was approved by the Ethics Committee of Lund University, Sweden. 

All participants provided written informed consent. The cohort was included in Project 

III. 

4.2 Genetic markers 

4.2.1 SNP selection 

SNP selection was based on GWASs of CHD or MI (Erdmann et al. 2009; Kathiresan et 

al. 2009b; Coronary Artery Disease Genetics Consortium 2011; Schunkert et al. 2011), 

lipids (Teslovich et al. 2010), and blood pressure (Levy et al. 2009; Newton-Cheh et al. 

2009). In total, 28 CHD/MI SNPs, 131 lipid SNPs (from 95 independent loci), and 13 

blood pressure SNPs were selected for Projects I–IV (Table 5). 

 

 

 

 



 

 

 
 

Table 5. Selected single-nucleotide polymorphisms (SNPs) for coronary heart disease, blood pressure, and lipids. 
SNP LOCUS TRAIT(S) SNP LOCUS TRAIT(S) SNP LOCUS TRAIT(S) 

rs646776 CELSR2, PSRC1, SORT1 CHD rs4759375 SBNO1 HDL rs11065987 BRAP LDL, TC 

rs11206510 PCSK9 CHD rs4660293 PABPC4 HDL rs2479409 PCSK9 LDL, TC 

rs17465637 MIA3 CHD rs605066 CITED2 HDL rs2332328 NYNRIN LDL 

rs6725887 WDR12 CHD rs6450176 ARL15 HDL rs1129555 GPAM LDL 

rs2306374 MRAS CHD rs1800961 HNF4A HDL, TC rs2807834 MOSC1 LDL, TC 

rs12526453 PHACTR1 CHD rs4148008 ABCA8 HDL rs11220462 ST3GAL4 LDL 

rs3798220 LPA CHD rs2925979 CMIP HDL rs1030431 CYP7A1 LDL, TC 

rs4977574 CDKN2A/B, ANRIL CHD rs643531 TTC39B HDL rs651007 LDLR TC 

rs1746048 CXCL12 CHD rs3741414 LRP1 HDL rs2072183 NPC1L1 TC 

rs3184504 SH2B3 CHD, DBP rs7134594 MVK HDL rs2902940 MAFB TC 

rs1122608 LDLR CHD rs1515100 IRS1 HDL rs6759321 RAB3GAP1 TC 

rs9982601 MRPS6 CHD rs174601 FADS1/2/3 HDL rs7515577 EVI5 TC 

rs2259816 HNFA1 CHD rs4731702 KLF14 HDL rs4297946 TOP1 TC 

rs17114036 PPAP2B CHD rs2652834 LACTB HDL rs7239867 LIPG TC 

rs17609940 ANKS1A CHD rs1084651 LPA HDL rs1961456 NAT2 TC 

rs11556924 ZC3HC1 CHD rs4420638 APOE/C1/C2 HDL, LDL, TC rs9488822 FRK TC 

rs579459 ABO CHD rs181362 UBE2L3 HDL rs2737229 TRPS1 TC 

rs12413409 CYP17A1, CNNM2, NT5C2 CHD rs2293889 TRPS1 HDL rs1260326 GCKR TC, TG 

rs964184 ZNF259, APOA5/A4/C3/A1 
CHD, HDL, 

LDL, TC, TG 
rs2814944 C6orf106 HDL rs7206971 OSBPL7 TC 

rs4773144 COL4A1, COL4A2 CHD rs881844 STARD3 HDL rs10832963 SPTY2D1 TC 

rs2895811 HHIPL1 CHD rs838880 SCARB1 HDL rs174550 FADS1/2/3 TC 

rs3825807 ADAMTS7 CHD rs7134375 PDE3A HDL rs2814982 C6orf106 TC 

rs12936587 RASD1, SMCR3, PEMT CHD rs10808546 TRIB1 HDL rs7941030 UBASH3B TC 

rs216172 SMG6, SRR CHD rs13107325 SLC39A8 HDL rs492602 FLJ36070 TC 

rs46522 
UBE2Z, GIP, ATP5G1, 

SNF8 
CHD rs4765127 ZNF664 HDL rs2255141 GPAM TC 

rs1412444 LIPA CHD rs737337 LOC55908 HDL rs2285942 DNAH11 TC 

rs4380028 ADAMTS7-MORF4L1 CHD rs12328675 COBLL1 HDL rs2290159 RAF1 TC 



 

 

 

rs10953541 NR CHD rs12967135 MC4R HDL rs11220463 ST3GAL4 TC 

rs16948048 ZNF652 DBP rs4082919 PGS1 HDL rs581080 TTC39B TC 

rs11014166 CACNB2 DBP rs6511720 LDLR LDL, TC rs2277862 ERGIC3 TC 

rs16998073 FGF5 DBP rs649129 ABO LDL rs439401 APOE/C1/C2 TG 

rs1530440 c10orf107 DBP rs10401969 CILP2 LDL, TC, TG rs261342 LIPC TG 

rs1378942 CSK-CYP1A2 DBP rs12916 HMGCR LDL, TC rs1495743 NAT2 TG 

rs9815354 ULK4 DBP rs4299376 ABCG5/8 LDL, TC rs7811265 MLXIPL TG 

rs2384550 TBX3/X5 DBP rs1367117 APOB LDL, TC rs11613352 LRP1 TG 

rs2681492 ATP2B1 SBP rs629301 SORT1 LDL, TC rs4810479 PLTP TG 

rs11191548 CYP17A1  SBP rs2000999 HPR LDL, TC rs442177 KLHL8 TG 

rs17367504 MTHFR-NPPB SBP rs2902941 MAFB LDL rs1321257 GALNT2 TG 

rs12946454 PLCD3 SBP rs217386 NPC1L1 LDL rs2131925 ANGPTL3 TG 

rs381815 PLEKHA7 SBP rs11153594 FRK LDL rs11776767 PINX1 TG 

rs3764261 CETP HDL, TC rs909802 TOP1 LDL rs174546 FADS1/2/3 TG 

rs1532085 LIPC HDL, TC rs247616 CETP LDL rs5756931 PLA2G6 TG 

rs386000 LILRA3 HDL rs3850634 ANGPTL3 LDL, TC rs12310367 ZNF664 TG 

rs7241918 LIPG HDL rs12027135 LDLRAP1 LDL, TC rs2247056 HLA TG 

rs1689800 ZNF648 HDL rs3757354 MYLIP LDL, TC rs7205804 CETP TG 

rs6065906 PLTP HDL rs6882076 TIMD4 LDL, TC rs2412710 CAPN3 TG 

rs3136441 LRP4 HDL rs1800562 HFE LDL, TC rs10761731 JMJD1C TG 

rs1883025 ABCA1 HDL, TC rs1169288 HNF1A LDL, TC rs2068888 CYP26A1 TG 

rs9987289 PPP1R3B HDL rs3177928 HLA LDL, TC rs10195252 COBLL1 TG 

rs12678919 LPL HDL, TG rs7225700 OSBPL7 LDL rs2943645 IRS1 TG 

rs17145738 MLXIPL HDL rs514230 IRF2BP2 LDL, TC rs645040 MSL2L1 TG 

rs16942887 LCAT HDL rs11136341 PLEC1 LDL, TC rs11649653 CTF1 TG 

rs2923084 AMPD3 HDL rs12670798 DNAH11 LDL rs13238203 TYW1B TG 

rs1042034 APOB HDL, TG rs2954022 TRIB1 LDL, TC rs2954029 TRIB1 TG 

rs4846914 GALNT2 HDL rs1564348 LPA LDL, TC rs2929282 FRMD5 TG 

rs7115089 UBASH3B HDL rs2126259 PPP1R3B LDL, TC rs9686661 MAP3K1 TG 

rs7255436 ANGPTL4 HDL rs174583 FADS1/2/3 LDL rs1553318 TIMD4 TG 
Abbreviations: CHD, coronary heart disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; LDL, low-density lipoprotein cholesterol; HDL, high-

density lipoprotein cholesterol; TG, triglycerides. 
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4.2.2 Genotyping and quality control 

Genotyping of selected CHD SNPs was done at the Institute for Molecular Medicine 

Finland FIMM, Wellcome Trust Sanger Institute (UK), Broad Institute (USA) and Lund 

University (Sweden) with the Sequenom platform (iPLEX MassARRAY, San Diego, CA, 

USA) or Tagman (Applied Biosystems, Foster City, CA, USA). SNPs were in Hardy-

Weinberg equilibrium (HWE) and uncorrelated (r
2
 < 0.4), and had a genotype call rate > 

98% and a sample call rate > 95%. 

Genome-wide SNP data for Corogene and Young Finns cohorts were obtained using 

Illumina genotyping arrays (Illumina HumanHap 610-Quad SNP array, Illumina 

Human670K BeadChip). Genotyped SNPs went through the quality control with the 

following inclusion thresholds; call rate ≥ 95%, MAF ≥ 1%, and a HWE P-value ≥ 10
-6

. 

Genome-wide SNP data were imputed with IMPUTE 1.0 using two different reference 

sets: 1) HapMap3 CEU and TSI populations extended with the Finnish reference data 

consisting of 81 individuals, and 2) HapMap2 CEU population. We extracted 131 

genotyped or imputed lipid SNPs and 13 blood pressure SNPs from the Young Finns data. 

Directly genotyped SNPs were coded as 0/1/2 and imputed SNPs as predicted allele 

dosage ranging from 0.0 to 2.0. We primarily chose SNPs imputed with an extended 

HapMap3 reference panel, as it yields better imputation quality (Surakka et al. 2010). If 

the SNP was not found in the data imputed with the Hapmap3 reference, we used 

HapMap2 imputed data. For Project III, 13 directly genotyped CHD SNPs were extracted 

from the genome-wide Corogene data.  

4.2.3 Genetic risk scores 

Common genetic variants that have been identified in GWASs typically have modest 

effects on the phenotype of interest. Thus, it has become a common practice to generate 

GRSs that reflect the joint genetic effect of individual SNPs. Based on the assumption of 

additional genetic effects, GRSs can be constructed simply as the sum of the risk alleles. 

In a weighted approach, individual SNPs are weighted with the effect sizes, obtained 

usually from the original GWASs. In this approach, rather than giving equal weight for 

each SNP, SNPs with large effects contribute to the score most.  

We selected the effect sizes (Projects I and II: beta coefficients or Projects III and IV: 

odds ratios) for weights for each SNP from discovery GWASs or later GWASs with a 

larger study sample (Clarke et al. 2009; Erdmann et al. 2009; Gudbjartsson et al. 2009; 

Kathiresan et al. 2009b; Levy et al. 2009; Newton-Cheh et al. 2009; Teslovich et al. 2010; 

Coronary Artery Disease Genetics Consortium 2011; Schunkert et al. 2011). GRSs were 

calculated for each trait as the weighted sum of the risk alleles. The average number of 

the risk alleles was used to impute missing genotypes.  
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We calculated two scores for CHD; one based on 13 SNPs (Project III) and the other 

based on 28 SNPs (Project IV). Four GRSs were generated for blood lipids (Project I); 

total cholesterol (comprising 52 SNPs), LDL (37 SNPs), HDL (47 SNPs), and 

triglycerides (32 SNPs). Blood pressure score (Project II) was constructed by using 13 

SNPs, but we also calculated GRSs separately for diastolic (8 SNPs) and systolic (5 

SNPs) blood pressure. For each GRS, SNPs were independent, thus representing 

independent genetic loci. However, GRSs for CHD, lipids, and blood pressure are partly 

overlapping (Figure 9).  

 

Figure 9. Reported genes for lipids, blood pressure and coronary heart disease (CHD) in genome-wide 

association studies. 
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4.3 Phenotypes 

4.3.1 Cardiovascular events 

In prospective Finnish data sets (FINRISK 1992–2002, Health 2000) follow-up morbidity 

and mortality data were obtained from the Finnish National Hospital Discharge Register 

and the Finnish National Cause-of-Death Register (Laatikainen et al. 2009). Diagnoses of 

cardiovascular events were recorded using ICD-9 during 1987–1995 and ICD-10 from 

1996 onwards. The validity of diagnoses in the Finnish Hospital Discharge Register 

varies from satisfactory to very good, with a positive predictive value between 73 and 97 

for vascular diagnoses (Sund 2012). For Project III, the follow-up ended on Dec 31, 2007. 

For Project IV, the follow-up was extended to Dec 31, 2010 for the FINRISK studies and 

to Dec 31, 2008 for Health 2000. 

In Projects III and IV, the main end-point of interest was CHD, which was defined as MI, 

unstable angina pectoris, coronary revascularization (coronary artery bypass graft or 

percutaneous transluminal coronary angioplasty), or death due to CHD. CVD included 

CHD and ischemic stroke events. ACS was defined as MI, unstable angina, or death due 

to CHD. In the Corogene study, CHD was defined as coronary artery obstruction > 50% 

in at least one coronary artery. 

Cardiovascular diagnoses for MDC-CC and MPP were obtained from the Swedish 

Hospital Discharge Register, the Swedish Cause-of-Death Register, and the Stroke 

Register of Malmö (Jerntorp and Berglund 1992). Diagnoses were recorded using ICD-9 

and ICD-10 codes. Cardiovascular events included MI, ischemic stroke, and death due to 

CHD. Ischemic stroke events in the Swedish Hospital Discharge Register have been 

validated by using the Stroke Register of Malmö. In this study, the follow-up ended on 

Dec 31, 2006. ICD-9 and ICD-10 codes for event diagnoses in Finnish and Swedish 

cohorts are reported in Table 6.  
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Table 6. Cardiovascular event definitions in Finnish (FIN) and Swedish 

(SWE) cohorts. 
 ICD-9 codes ICD-10 codes 

 FIN* SWE** FIN* SWE** 

Myocardial infarction  410 410 I21–I22 I21 

Acute coronary syndrome 
410, 798, 

except 7980A 
NA 

I20–I22, 

I46, R96, 

R98 

NA 

Coronary heart disease† 

410–414, 

798, except 

7980A 

NA 

I20–I25, 

I46, R96, 

R98 

NA 

Stroke 430–438 434, 436 
I60–I69, 

G45 
I63–I64 

Cardiovascular disease  
MI, CHD or 

stroke 
412, 414 

MI, CHD or 

stroke 

I22–

I23, I25 

ICD-9 
410: Acute myocardial infarction 

411: Other acute and subacute forms of ischemic heart disease 

412: Old myocardial infarction 

413: Angina pectoris 

414: Other forms of chronic ischemic heart disease 

430: Subarachnoid hemorrhage 

431–432: Hemorrhagic strokes 

433–438: Ischemic strokes or other cerebrovascular diseases 

798: Sudden death, cause unknown; 7980A: Sudden infant death syndrome 

ICD-10 
I20: Unstable angina 

I21: Acute myocardial infarction 

I22: Subsequent myocardial infarction 

I23: Certain current complications following acute myocardial infarction 

I24: Other acute ischemic heart diseases 

I25: Chronic ischemic heart disease 

I60–I62: Hemorrhagic strokes 

I63–I64, G45: Ischemic strokes 

I65–I69: Other cerebrovascular diseases 

I46: Cardiac arrest 

R96: Other sudden death, cause unknown 

R98: Unattended death 
* FINRISK 1992, 1997, 2002, and Health 2000; ** MDC-CC; † The definition of CHD includes all 

myocardial infarction and acute coronary syndrome cases. Abbreviations: ICD, International Classification 

of Disease. Data adapted from Laatikainen et al. (2009) and the World Health Organization (2012b). 

 

4.3.2 Lipids and blood pressure 

In the Young Finns cohort, clinical measurements were taken at baseline in 1980 

(participants aged 3-18 years) and during four follow-up examinations between 1983 and 

2007. Serum lipid concentrations (LDL, HDL, total cholesterol, and triglycerides) were 
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assayed using standard enzymatic laboratory methods in the Research and Development 

Unit of the Social Insurance Institution, Turku. Variation in lipid levels in different study 

years due to change in measurement device was corrected by using correction factor 

equations (Juonala et al. 2004; Raiko et al. 2010). 

Systolic and diastolic blood pressure was measured with a standard mercury gravity 

sphygmomanometer in 1980 and 1983, and with a random-zero sphygmomanometer in 

1986, 2001, and 2007. For 3-year-olds, only systolic blood pressure was measured using 

an ultrasound device. Final blood pressure value was determined as an average value of 

three measurements taken between 8 and 10 a.m. from the right arm. The first 

measurement was taken from fasting subjects after 5 min of rest in the sitting position, 

and subsequent measurements after 2-3 min of rest. 

4.3.2.1 Definition of dyslipidemia and hypertension 

Dyslipidemia status was determined for 1204 subjects who had lipid measurements taken 

at the ages of 9 and 30–33 years. We defined lipid-specific dyslipidemias by using 

thresholds for cases as HDL < 1 mmol/l, LDL > 3 mmol/l, and triglycerides > 2 mmol/l at 

30 or 33 years old. Additionally, we determined combined dyslipidemia status, in which 

an individual was defined as a case if any of the thresholds were exceeded.   

Hypertension status was assigned for individuals over 18 years of age in 2007. It was 

defined based on the following criteria: 1) systolic blood pressure ≥ 140 mmHg, 2) 

diastolic blood pressure ≥ 90 mmHg, or 3) use of antihypertensive medication. 

4.4 Statistical methods 

4.4.1 Quality checks and exclusions 

In Project I, we excluded nonfasted individuals (1.3%) and subjects with lipid medication 

(2.1%). Normality of the phenotype distributions was visually inspected and outliers 

removed. Triglyceride measurements were transformed using natural logarithm. In 

Project II, we used a substitution method for those subjects with antihypertensive 

medication in 2001 (N=58) and 2007 (N=143); 15 mmHg was added to the systolic and 

10 mmHg to the diastolic blood pressure value. This method has been shown to be more 

effective than adjustment for a binary treatment covariate or excluding individuals with 

antihypertensive therapy (Tobin et al. 2005). In Projects III and IV, we excluded 

individuals with prevalent CVD and those ≥ 75 years of age at baseline. During the 

follow-up individuals turning 80 were censored on their 80
th

 birthday. 
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4.4.2 Longitudinal and age-specific genetic effects for lipids and blood 

pressure 

In the Young Finns study, each subject has been measured repeatedly at several time-

points during their life course. The study design enables estimation of longitudinal 

effects, although it requires analysis methods that take into account the correlation 

between the repeated measurements for the same individual. We estimated longitudinal 

genetic effects on lipids and blood pressure with linear mixed effects models. Mixed 

effects model consists of two parts: fixed effects (   and subject-specific random effects 

(  : 

          

Here   is the response vector,   is the vector of random errors,   is the model matrix for 

fixed effects, and   is the model matrix for random effects. The random effects define the 

within-individual covariance structure of the observations. The choice of the covariance 

structure depends on the time intervals between measurements; the correlation is assumed 

to be higher for measurements taken closer together in time than those taken far apart in 

time (Littell et al. 2000). 

In Project I, we performed the analyses separately for males and females. We tested each 

SNP individually and as in weighted multi-locus GRSs, which were standardized 

(mean=0, SD=1). We estimated genetic effects on lipid levels in seven age groups: 3–6, 9, 

12, 15, 18, 21–30, and 33–45 years. Due to low number of 3-year-old participants, we 

combined them with 6-year-olds. Since the main focus of this project was to study the 

genetic effects in children and adolescents, we combined adult age groups so that they 

would provide a reasonable reference with which to compare the results of the younger 

age groups. For each lipid trait, the change in the GRS effects over age was tested with 

age × GRS interaction analysis with the restricted maximum likelihood (REML) method 

with fixed covariates of age group and birth year and a random normally distributed 

intercept.  

The proportions of variance explained by genetic variants were calculated by linear 

models for each lipid trait as the difference in R
2
 of the models with and without the 

genetic data. Models were constructed for each age and sex group separately. 

In Project II, the longitudinal effects of SNPs and standardized GRSs for systolic and 

diastolic blood pressure were estimated with mixed models adjusted for age, sex, BMI, 

and study year. The models for systolic blood pressure were also adjusted for age 

squared. The analyses were replicated in the Bogalusa Heart Study (N=1194), which has 

been described elsewhere (Smith et al. 2010). As a secondary analysis, we performed a 

cross-sectional analysis for the baseline and 2007 data. Finally, we studied the modifying 

effects of sex and dietary salt intake on genetic effects. Salt intake was measured with a 

13-item food questionnaire. 
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In Projects I and II, the models were optimized (e.g. the choice of the covariance 

structure) based on the Akaike information criterion (Akaike 1974). The model 

assumptions were checked by graphical inspection of residuals. 

4.4.3 Prediction of dyslipidemia and hypertension 

In Projects I and II, we studied how well the GRSs predict dyslipidemia and hypertension 

in early adulthood (see definition of dyslipidemia and hypertension in Section 4.3.2.1). In 

Project I, we restricted the data to birth cohorts of 1971, 1974, and 1977 that had lipid 

measurements performed at the ages of 9 and 30–33 years. Two models were fitted with 

logistic regression: 1) age, birth year, sex, and a lipid measurement at 9 years old as 

predictors; and 2) in addition, the lipid related GRS as a predictor. In Project 2, we also 

compared two models with and without the 13-SNP GRS in the cross-sectional 2007 

cohort. Models were adjusted for age, sex, BMI, and family history of hypertension. To 

further quantify the genetic effects, the blood pressure GRS was divided into quintiles and 

the effect estimates for the highest and lowest groups were compared. In both projects, we 

estimated model discrimination with the ROC curves and calculated the change in the 

area under the ROC curve (C-index) between the models with and without the GRS. 

4.4.4 Associations between genetic variants and cardiovascular events  

In Projects III and IV, we studied associations between the selected CHD SNPs and 

incident cardiovascular events with Cox proportional hazards models: 

 (         (     ( 
    

The hazard at time   depends on the covariates   and the baseline hazard   (  , which is 

an unknown and unspecified nonnegative function. The effects of covariates (   are 

assumed to be constant over time. Models were adjusted for traditional risk factors, and 

age was used as the time scale. We studied each SNP individually in separate models and 

jointly as a GRS in one model.  

In Project III, we categorized the GRS into five equal-sized groups based on quintiles. We 

estimated the effect sizes with 95% confidence intervals for each group by using the 

lowest group as a reference, and tested the null hypothesis of no linear effect over the 

quintiles. In Project IV, we estimated the effect for standardized (mean=0, SD=1) 

continuous GRS. To further quantify genetic effects for the subjects with high GRS, we 

divided the GRS into ten groups according to deciles of the GRS distribution. The effect 

estimates for the highest group were compared with the middle 20% of the GRS. 

Model diagnostics were inspected in each cohort separately with scaled Schoenfeld 

residuals, deviance residuals, and martingale residuals. Residuals were plotted against 

time and examined visually. In addition, a statistical test was performed for the 
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proportional hazards assumption. Scaled Schoenfeld residuals are used to test the 

assumption of proportional hazards, which is that the effect of a covariate should not 

change with time. Deviance residuals are used to check the case influence, which means 

that the data for some subjects may contradict the model prediction. Martingale residuals 

can be plotted against covariates to detect nonlinearity.  

Associations between the genetic variants and prevalent cardiovascular events were 

studied with logistic regression analysis adjusted for age and sex. The Corogene data 

were analyzed with conditional logistic regression.  

Information on family history was available in FINRISK studies (N=19,001). We studied 

the relationship between the GRS and family history of CVD by further adjusting the 

models for binary family history indicator (0 = no family history of CVD; 1 = family 

history of CVD). We also studied the effects of family history with and without the 

adjustment for the GRS.  

Each cohort was analyzed separately and fixed effect meta-analysis was used to combine 

the results from incident and prevalent data analyses.  

4.4.5 Improvement in prediction 

We evaluated improvement in prediction when genetic data were added to the model with 

the other risk factors. Discrimination, reclassification, and calibration indices were 

calculated by comparing the predicted probabilities (   from the models with and without 

the GRS. Risk discrimination was estimated with C-index and the statistical significance 

of the change in C-index was tested with the correlated C-index approach (Antolini et al. 

2004). We estimated IDI, which is the difference in mean predicted probabilities ( ̅  

between cases and noncases of two models (Pencina et al. 2008): 

    ( ̅       ̅                   ( ̅       ̅                   

Standard errors for IDI were calculated as paired differences in predicted probabilities 

across all cases and noncases. Risk reclassification was evaluated with NRI (Pencina et al. 

2008), which is defined as 

    (                     )  (                           ) 

We tested risk reclassification with NRI and Clinical NRI using FINRISK 1992 and 1997 

cohorts. We modeled risk reclassification jointly in these two datasets with restricted 

follow-up of FINRISK 1992 and adjusted the analysis with the cohort indicator. We 

calculated NRI, which takes censored observations into account, by using the Kaplan-

Meier approach with bootstrap-based confidence interval estimation (Steyerberg and 

Pencina 2010; Pencina et al. 2011). NRI was estimated using four risk categories (0–5%, 
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5–10%, 10–20%, and > 20%). Clinical NRI was calculated for the subjects classified to 

the intermediate-risk group (10–20%) by the model without genetic data.  

In Project IV, we performed external validation for discrimination and reclassification 

results. The effects were estimated in an independent training data set (FINRISK 2002) 

and applied as weights in the test data set (joint FINRISK 1992 and 1997 data). 

To evaluate the effect of improved risk reclassification at a population level, we 

generalized our NRI results for 100,000 subjects with age and gender structure similar to 

the standard European population. The data was divided into eight groups based on 

gender and age (age was categorized into four groups: 40–50, 50–60, 60–70, ≥ 70), and 

reclassification tables were calculated for each of these groups separately. Then, 

reclassification tables were weighted with the estimated incidence rates multiplied by the 

group-specific counts based on the standard European population. Assuming that age- and 

sex-specific incidences of CHD in the European standard population are comparable with 

the current study, we estimated incidence rates from the FINRISK 1992 and 1997. 

In a two-stage screening strategy, we assumed that all participants were first classified 

into cardiovascular risk categories based on traditional risk factors, and then additional 

GRS screening was targeted to those in the intermediate-risk category (10–20%). Subjects 

at intermediate risk were considered a clinically relevant subgroup based on the following 

assumptions: 1) statin medication is allocated to subjects in the high-risk category (≥ 

20%) and subjects with diabetes, and 2) statins reduce cardiovascular risk by 20% in 

subjects without prevalent CVD (Baigent et al. 2005). 

Calibration of the models was tested with the Hosmer-Lemeshow goodness-of-fit test 

(Hosmer and Lemeshow 1999). 
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5 RESULTS  

5.1 Background characteristics 

Background characteristics of the study cohorts are presented in Table 7. From the 

Young Finns Study, 2443 subjects were included in Project I and 2357 subjects in Project 

II. The mean age of Young Finns Study participants at the latest follow-up examination in 

2007 was 37.6 (SD=5.0) years. In total, 55,123 subjects from seven cohorts (FINRISK 

1992–2002, Health 2000, Corogene, MDC-CC, and MPP) had information on prevalent 

events and risk factors. After exclusions, 3829 CHD cases (7%) and 48,897 controls were 

included in cross-sectional analysis in Project III. Incident data were available in the 

FINRISK 1992–2002, Health 2000, and MDC-CC cohorts (total N=34,224). Altogether 

30,725 participants were included in prospective cohort analysis in Project III. During the 

median follow-up of 10.7 years (IQR 6.7–13.6), 1264 incident CHD cases (4%) occurred. 

Only Finnish prospective cohorts (N=29,120) were included in Project IV. After 

exclusions, 24,124 subjects were included to the study. The median follow-up time was 

12 years (IQR 8.8–15.3 years), and 1093 incident CHD events (5%) were observed. 
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Table 7. Background characteristics of study cohorts.  
 

FR-92 FR-97 FR-02 
Health 

2000 

Coro-

gene 
YFS* 

MDC-

CC 
MPP 

N 6024 8388 8616 6092 6015 2443 5104 14884 

N Males 

N Females 
2844 

3180 

4225 

4163 

3996 

4620 

2738 

3354 

4192 

1823 

1123 

1320 

2141 

2963 

9773 

5111 

 

Age 

 

44.8 

(11.4) 

48.6 

(13.5) 

47.9 

(13.2) 

54.5 

(15.4) 

66.5  

(10.9) 

37.6 

(5.0) 

57.4 

(5.9) 

45.3  

(7.0) 

TC 

mmol/l 
5.6  

(1.1) 

5.5  

(1.1) 

5.6  

(1.1) 

5.9  

(1.1) 
NA 

5.0 

(0.9) 

6.2  

(1.1) 

5.6  

(1.0) 

LDL 

mmol/l 
3.6 

(1.0) 

3.5 

(0.9) 

3.4 

(0.9) 

3.8 

(1.2) 
NA 

3.1 

(0.8) 

4.2  

(1.0) 
NA 

HDL 

mmol/l 
1.4  

(0.3) 

1.4 

(0.4) 

1.5 

(0.4) 

1.3 

(0.4) 
NA 

1.3 

(0.3) 

1.4  

(0.4) 
NA 

Log(TG) 
0.3 

(0.6) 

0.3 

(0.5) 

0.2 

(0.5) 

0.3 

(0.5) 
NA 

0.2 

(0.5) 
NA NA 

SBP  

mmHg 
135.9 

(19.5) 

136.2 

(20.1) 

134.9 

(20.0) 

135.5 

(21.5) 
NA 

125.2 

(14.2) 

141.1 

(18.9) 

127.7 

(14.4) 

DBP      

mmHg 
81.5 

(11.9) 

82.4 

(11.3) 

78.9 

(11.4) 

81.7 

(11.4) 
NA 

79.1 

(11.6) 

86.9 

(9.5) 

84.2  

(8.8) 

Current 

smoker 

N (%) 

1664 

(27.6%) 

1936 

(23.1%) 

2230 

(25.9%) 

1688 

(27.7%) 
NA 

455 

(10.0%) 

1307 

(26%) 

5639 

(38%) 

Prevalent 

CVD 

N (%) 

138 

(2.3%) 

315 

(3.8%) 

301 

(3.5%) 

327 

(5.4%) 

2101 

(35%) 
NA 

107 

(2%) 

1749 

(12%) 

Incident 

CVD 

N (%) 

642 

(10.7%) 

822 

(9.8%) 

343 

(4.0%) 

458 

(7.5%) 
NA NA 

468 

(9%) 
NA 

Incident 

CHD 

N (%) 

472 

(7.8%) 

592 

(7.1%) 

252 

(2.9%) 

352 

(5.8%) 
NA NA NA NA 

Incident 

ACS 

N (%) 

365 

(6.1%) 

481 

(5.7%) 

203 

(2.4%) 

289 

(4.7%) 
NA NA NA NA 

Incident 

MI 

N (%) 

259 

(4.3%) 

327 

(3.9%) 

146 

(1.7%) 

208 

(3.4%) 
NA NA 

266 

(2%) 
NA 

* Values are from the 2007 follow-up of YFS. Data are mean (SD) or number (%). Abbreviations: FR, 

FINRISK; YFS, Young Finns Study; MDC-CC, Malmö Diet and Cancer Study - Cardiovascular Cohort; 

MPP, Malmö Preventive Project; N, number; TC, total cholesterol; LDL, low-density lipoprotein 

cholesterol; HDL, high-density lipoprotein cholesterol; TG, triglycerides; SBP, systolic blood pressure; 

DBP, diastolic blood pressure; CVD, cardiovascular disease; CHD, coronary heart disease; ACS, acute 

coronary syndrome; MI, myocardial infarction; NA, information not available  
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5.2 Longitudinal trends in lipid and blood pressure levels 

Longitudinal mean levels for lipids and blood pressure are shown in Figure 10. We 

observed an increasing trend with age in total cholesterol, LDL, triglycerides, and blood 

pressure. The increase in risk factor levels starts at the age of 10‒15 years and is stronger 

in males than in females. Especially triglyceride levels show a constant increase in males, 

but remain relatively stable in females after 30 years of age. The decreasing trend in total 

cholesterol and LDL levels in the early 1980s has been previously reported (Viikari et al. 

2006) and might reflect the change in mean cholesterol levels in the Finnish population. 

Cholesterol levels have decreased substantially in Finland since the 1970s, when Finnish 

children had mean cholesterol levels ≥ 6 mmol/l (Räsänen et al. 1978). HDL levels 

decreased in males after 10 years of age, but in females HDL was less variable with age. 

Overall, males have more unfavorable trends in lipid profiles and blood pressure after 

puberty onset than females, which could partly explain the difference in adulthood CHD 

incidence between genders. The sex difference is at least partly attributable to changes in 

sex hormone levels after puberty (Garces et al. 2010). 

 

Figure 10. Mean levels and 95 % confidence intervals for lipids and blood pressure by age and gender. 
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5.3 Genetic effects on lipids and blood pressure 

5.3.1 Associations of individual SNPs with lipids and blood pressure 

Longitudinal associations for the ten strongest SNPs reported by Teslovich et al. (2010) 

are shown for each lipid trait in Figure 11. The top SNPs were longitudinally associated 

with lipids in our data. Overall, 30 of 47 HDL, 30 of 37 LDL , 33 of 52 total cholesterol 

and 21 of 32 triglycerides loci were associated with the corresponding lipid trait between 

the ages of 3 and 15 years at a significance level of P<0.05. Thus, the results from 

GWASs performed using adult samples seem to generalize to younger age groups.  

Of 13 blood pressure SNPs, three were longitudinally associated with systolic and/or 

diastolic blood pressure (P<0.05). Of these, SNPs rs16948048 (in or near ZNF652) and 

rs11191548 (in or near CYP17A1) were associated only with diastolic blood pressure, 

whereas rs11014166 (in or near CACNB2) was associated with both blood pressure traits. 

We also found a sex-specific effect for rs11191548; the sex × SNP interaction for systolic 

blood pressure was significant (P=0.005), and in sex-stratified analyses, the SNP effect 

was significant in females (P=0.003), but not in males (P=0.13). A similar result has been 

reported in Chinese children (Wu et al. 2012). We did not observe significant interactions 

between the SNPs and dietary salt intake. 
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Figure 11. Longitudinal effects for the top 10 SNPs in the reference study (Teslovich et al. 2010). Effect 

sizes have been flipped to illustrate the increasing effect in the reference study. Colors correspond to the 

effect sizes in mmol/l or natural log-transformed mmol/l (TG). The gene name is a plausible biological 

candidate gene in the locus or the nearest annotated gene to the SNP. Abbreviations: TC, total cholesterol; 

LDL, low-density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol TG, triglycerides; Ref, 

reference study.  
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5.3.2 Association of GRSs with lipids and blood pressure 

The GRSs were statistically associated with lipids in all age and sex groups (P<8.4×10
-5

). 

Overall, the genetic effects for LDL and total cholesterol were higher than for HDL and 

triglycerides, and they were stable across all age groups. The childhood effect size (3- to 

6-year-olds) for LDL (β=0.22, SE=0.03 in both genders) was comparable with the effect 

size in adulthood (β=0.25, SE=0.03 for males; β=0.22, SE=0.02 for females). The results 

for total cholesterol were similar.  

Genetic effects for HDL cholesterol and triglycerides vary by age group (Figure 12). In 

males, the genetic effects for HDL were larger in 3- to 6-year-old children than in adults 

(β=0.11, SE=0.01 vs. β=0.08, SE=0.01), and the interaction between HDL-GRS and age 

group was significant (P=0.02). Females had a similar decreasing trend, but the GRS × 

age interaction was not statistically significant. By contrast, there was an increasing trend 

with age in GRS effects on triglycerides (P=0.0001 in males, P=0.009 in females). The 

effect of triglycerides-GRS was more than twofold in adult males compared with 3- 6-

year-olds (β=0.05, SE=0.01 vs. β=0.14, SE=0.02). In females, the genetic effect was 

highest in the age group 21–30 years (β=0.12, SE=0.01) and lowest in 3- to 6-year-olds 

(β=0.06, SE=0.01). 

 

 

Figure 12. Different patterns of association by age for HDL cholesterol and triglycerides (TG). The genetic 

effect sizes decrease for HDL and increase for TG with age. Colors in different age groups correspond to 

the effect sizes proportional to adulthood effect size. P-values in each cell < 8.4×10
-5

. 
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Jointly, the lipid loci explained 11.8–26.7% of the total variance in lipids among 3- to 6-

year-olds. The proportion diminished with age for HDL, LDL, and total cholesterol. 

Proportion of variance explained by the SNPs in 21- to 45-year-olds was around 10%, 

which corresponds to the estimates reported for adults earlier (Teslovich et al. 2010). 

Estimates for triglycerides fluctuated between 7.4% and 14.8% and did not show a similar 

decreasing trend.  

Blood pressure GRS was associated with longitudinal systolic (β=0.47, SE=0.18, 

P=0.008) and diastolic (β=0.53, SE=0.14, P=0.0003) blood pressure. These results were 

replicated in the African-American population of the Bogalusa Heart Study (both 

P≤0.005), but not in the European population of the Bogalusa Heart Study. The effects 

were smaller in cross-sectional analysis at baseline in 1980 (systolic blood pressure: 

β=0.11, SE=0.21, P=0.61; diastolic blood pressure: β=0.35, SE=0.21, P=0.10) but weaker 

than in 2007 (systolic blood pressure: β=1.0, SE=0.31, P=0.0006; diastolic blood 

pressure: β=0.76, SE=0.25, P=0.002) (Table 8). Sex or dietary salt intake did not modify 

the effect of the GRS (P-values for sex × GRS and salt intake × GRS nonsignificant).   

 

Table 8. Effects of the 13-SNP GRS on blood pressure traits. 

Longitudinal effect* 

from 1980 to 2007 

Cross-sectional 

effect* at baseline 

in 1980 

Cross-sectional 

effect* at 2007 

Odds ratio** 

for 

hypertension 

in adulthood SBP DBP SBP DBP SBP DBP 

β=0.47, 

SE=0.18, 

P=0.008 

β=0.53, 

SE=0.14, 

P=0.0003 

β=0.11, 

SE=0.21 

P=0.61 

β=0.35, 

SE=0.21, 

P=0.10 

β=1.0, 

SE=0.31, 

P=0.0006 

β=0.76, 

SE=0.25, 

P= 0.002 

OR=1.82, 

CI=1.53–2.17, 

P<0.0001 
* per SD of GRS. ** Between the extreme quintiles of the GRS. Longitudinal models adjusted for 

measurement year, age (and age squared for systolic blood pressure), sex, and BMI; cross-sectional and 

logistic models adjusted for age, sex, BMI, and family history. Abbreviations: GRS, genetic risk score; 

SNP, single nucleotide polymorphism; SBP, systolic blood pressure; DBP, diastolic blood pressure; OR, 

odds ratio; SE, standard error; CI, confidence interval 

 

5.3.3 Prediction of adulthood dyslipidemia and hypertension 

More than half (54.9%) of the 30- to 33-year-old subjects fulfilled the criteria for 

dyslipidemia. For lipid-specific dyslipidemias, most of the cases were due to high LDL 

cholesterol (45.4%). HDL dyslipidemia was defined for 17.3% and hypertriglyceridemia 

for 12.7% of participants. The basic model including age, birth year, sex, and a lipid 

measurement at 9 years of age had a C-index of 0.81, 0.77, and 0.67 for HDL, LDL and 

triglycerides, respectively. GRS comprising SNPs associated with triglycerides improved 

risk discrimination of hypertriglyceridemia in young adults when added to childhood 

measurement of triglycerides (change in C-index: 0.04, P=0.01). The change in estimates 
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was nonsignificant for HDL (change in C-index: 0.01, P=0.14) and LDL (change in C-

index: 0.005, P=0.54) dyslipidemias. IDI was significant for all comparisons (HDL: 

IDI=0.018, 95% CI 0.006‒0.030, P=0.003; LDL: IDI=0.008, 95% CI 0.002‒0.014, 

P=0.01; triglycerides: 0.041, 95% CI 0.024‒0.059, P=2.6×10
-6

). Only LDL-GRS was 

associated with combined dyslipidemia status (P=0.02), but did not improve C-index over 

clinical lipid measurements. The calibration was good for models with (0.26<P<0.58) and 

without (0.13<P<0.80) GRSs. 

The proportion of hypertensive subjects in childhood did not differ according to highest 

and lowest 20% of the 13-SNP blood pressure GRS. In adulthood (age 45 years), 20% of 

individuals in the lowest and 25% of individuals in the highest GRS were hypertensive. 

Blood pressure GRS increased the risk for hypertension in adulthood, when adjusted for 

age, sex, BMI, and family history of premature hypertension. Individuals in the highest 

20% of GRS had a 1.8-fold (95% CI 1.53–2.17; P<0.0001) risk for hypertension, 

compared with individuals in the lowest 20%. However, addition of the GRS to the model 

did not improve risk discrimination (C-index: 0.72 vs. 0.71). In comparison, a recent 

study (Lieb et al. 2013) reported 59‒70% higher relative risks for CHD in individuals in 

the top 20% of blood pressure GRS.  

5.4 Traditional risk factors for cardiovascular events 

The effects of traditional risk factors on incident CHD are shown in Table 9. The 

strongest predictors were gender, smoking and total cholesterol. Family history of 

premature CVD was significantly associated with CHD (HR=1.46, 95% CI 1.27–1.67), 

CVD (HR=1.37, 95% CI 1.22–1.53), ACS (HR=1.45, 95% CI 1.24–1.71), and MI 

(HR=1.31, 95% CI 1.09–1.58). 
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Table 9. Effects of traditional risk factors on incident CHD in the 

FINRISK 1992, 1997, and 2002 studies.* 

 
HR (95% CI) 

Sex (1=male, 2=female) 0.42 (0.36,0.49) 

Systolic blood pressure  1.18 (1.11,1.26) 

Blood pressure treatment 1.40 (1.19,1.63) 

Total cholesterol  1.29 (1.22,1.37) 

HDL cholesterol  0.72 (0.66,0.79) 

Type 2 diabetes 2.05 (1.69,2.50) 

Current smoking 2.08 (1.80,2.40) 

Body mass index 1.11 (1.03,1.19) 

Family history of CVD 1.46 (1.27,1.67) 

* Estimated with Cox proportional hazards model by using age as the time scale. Continuous variables were 

standardized (mean=0, SD=1). Abbreviations: HR, hazard ratio; CI, confidence interval; CHD, coronary 

heart disease; CVD, cardiovascular disease; HDL, high-density lipoprotein. 

 

5.5 Genetic effects on cardiovascular events  

5.5.1 Association of individual SNPs with cardiovascular events 

In total, 13 of 28 CHD SNPs in or near WDR12, PHACTR1, LPA, CDKN2A/B, CXCL12, 

MRPS6, ABO, COL4A1/2, HHIPL1, ADAMTS7, RASD1/SMCR3/PEMT, SMG6/SRR, and 

ADAMTS7/MORF4L1 were associated with at least one of the cardiovascular end-points. 

SNPs rs6725887 (WDR12), rs12526453 (PHACTR1), rs4977574 (CDKN2A/B, ANRIL), 

rs1746048 (CXCL12), and rs3825807 (ADAMTS7) were associated with all three end-

points. The strongest effect size was detected for rare variant (MAF 1% in the study 

population) rs3798220 in the LPA locus (CHD: HR 1.43, 95% CI 1.02–2.00, P=0.04). 

The SNP rs579459 (ABO) was significantly associated only with ACS (HR 1.13, 95% CI 

1.00–1.27, P=0.05), suggesting that its functional role may be specific to acute events. 

The variant has previously been shown to be associated with adverse cardiac outcome 

after ACS (Wauters et al. 2012). 

5.5.2 Association of GRSs with cardiovascular events 

GRS comprising 13 CHD SNPs increased the risk of incident CHD linearly over and 

above traditional risk factors (Project III). Subjects in the highest 20% of the GRS 

distribution were estimated to have a 1.66-fold increased risk of CHD compared with 

those in the lowest 20% (95% CI 1.35–2.04, P-value for linear trend across 



Results 

68 

 

quintiles=7.3×10
-10

, Figure 13, left). The magnitude of the estimated effect for the 13-

SNP GRS was comparable with other established risk factors such as systolic blood 

pressure (HR=1.66, 95% CI 1.19–2.30, for top vs. bottom quintile of systolic blood 

pressure in FINRISK studies). The 13-SNP GRS also increased the risk for other end-

points, although the effect sizes for the highest versus lowest groups were slightly lower; 

the hazard ratio for CVD was 1.50 (95% CI 1.29–1.75, P=1.9×10
-10

) and for MI 1.46 

(95% CI 1.15–1.86, P=2.8×10
-5

).  

The genetic effects were comparable in the case-control analysis; the odds ratio for the 

highest versus lowest group was 1.63 (95% CI 1.24–2.15, P-value for linear trend across 

quintiles=4.8×10
-5

, Figure 13, right) for prevalent CHD, 1.30 (95% CI 1.15–1.47, 

P=2.6×10
-8

) for CVD, and 1.56 (95% CI 1.38–1.76, P=1.2×10
-15

) for MI.   

 

 

Figure 13. Pooled effects in GRS groups. The Cox proportional hazards models (incident CHD) and logistic 

regression models (prevalent CHD) were fitted in each cohort separately and the estimates were pooled with 

fixed effects meta-analysis. Abbreviations: CHD, coronary heart disease; GRS, genetic risk score; CI, 

confidence interval, Ref, reference group 

 

The GRS effects were not dominated by the strongest, common CHD/MI locus reported 

to date, rs4977574 at 9p21 near CDKN2B-CDKN2A. After adjusting for rs4977574, the 

hazard ratio for the highest versus lowest GRS quintile was 1.51 (95% CI 1.19–1.91) for 

CHD, 1.40 (95% CI 1.18–1.67) for CVD, and 1.30 (95% CI 1.00–1.71) for MI. Thus, 

other variants in the GRS were associated with cardiovascular end-points beyond the 

9p21 locus. 
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In Project IV, we extended the 13-SNP GRS with 15 novel CHD SNPs. We observed that 

the effect estimates for 28-SNP GRS were consistently higher than for 13-SNP GRS 

(Table 10). With the aim of better identifying individuals with large genetic risk load, we 

estimated genetic effects for the extended GRS (including 28 SNPs) divided into deciles 

instead of quintiles, and compared the effects between the highest 10% and average 20% 

of GRS. Individuals in the top 10% of 28-SNP GRS had a 2.1-fold risk (95% CI 1.68–

2.56) for CHD relative to the middle 20%. In this data, the corresponding effect estimate 

for 13-SNP GRS was 1.6 (95% CI 1.26–1.91).  

 

Table 10. Hazard ratios for cardiovascular events by GRSs. 

Trait HR (95% CI)* 
Top 10% versus middle 20% of 

GRS (95% CI) 

 
13-SNP GRS 28-SNP GRS 13-SNP GRS 28-SNP GRS 

CHD 1.23 (1.16–1.30) 1.27 (1.20–1.35) 1.55 (1.26–1.91) 2.07 (1.68–2.56) 

ACS 1.24 (1.15–1.34) 1.27 (1.18–1.37) 1.49 (1.14–1.95) 1.84 (1.42–2.40) 

CVD 1.17 (1.11–1.23) 1.18 (1.12–1.24) 1.47 (1.22–1.76) 1.87 (1.56–2.24) 
* per SD of GRS. Cox regression models were adjusted for sex, total cholesterol, high-density lipoprotein 

(HDL) cholesterol, body mass index, systolic blood pressure, antihypertensive treatment, smoking, and type 

2 diabetes; age was used as the timescale. Abbreviations: CHD, coronary heart disease; ACS, acute 

coronary syndrome; CVD, cardiovascular disease; SNP, single-nucleotide polymorphism; GRS, genetic risk 

score; HR, hazard ratio; CI, confidence interval  

 

We used three FINRISK studies (N=19,001) to examine the relationship between the 

family history of CVD and the GRS. We evaluated three models for CHD, CVD, and 

ACS with traditional risk factors and 1) binary family history indicator, 2) the 28-SNP 

GRS, and 3) both family history and the GRS. Even though family history was an 

independent risk factor for cardiovascular events by raising the risk by 37–46%, the effect 

of the GRS changed only marginally after adjusting for family history (Figure 14, left). 

Likewise, the effects of family history slightly diminished when the GRS was included to 

the model (Figure 14, right). These results indicate that family history and genetic data 

have independent effects on CHD and support the proposal (Do et al. 2012) to use both 

types of information in prediction models to optimize prediction accuracy. 

Based on scaled Schoenfeld residuals, deviance residuals, and martingale residuals, we 

found no systematic evidence of nonproportionality, case influence, or nonlinearity of the 

data. 
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Figure 14. Hazard ratios for cardiovascular events by family history (FH) and genetic risk score (GRS) in 

FINRISK studies (N=19,001). FH effect: 0 = no family history of CVD, 1 = family history of CVD. GRS 

effect: per SD of GRS. Traditional risk factors include sex, total cholesterol, high-density lipoprotein (HDL) 

cholesterol, body mass index, systolic blood pressure, antihypertensive treatment, smoking and type 2 

diabetes; age was used as the timescale. Abbreviations: CHD, coronary heart disease; CVD, cardiovascular 

disease; ACS, acute coronary syndrome; CI, confidence interval 

 

5.5.3 Predictive performance of genetic risk scores 

In Project III, the C-indices for CHD, CVD, and MI models with traditional risk factors 

and the 13-SNP GRS were 0.872, 0.853, and 0.881, respectively, and they were only 

slightly and nonsignificantly higher than the estimates from the models with only 

traditional risk factors (0.871, 0.853, and 0.880). Thus, the 13-SNP GRS did not improve 

the discrimination of cardiovascular end-points. Adding the GRS to the prediction model 

resulted in overall NRI=0.02 (95% CI -0.01–0.06, P=0.182) and clinical NRI=0.10 (95% 

CI 0.06–0.14, P=3×10
-6

). 

When comparing C-indices for different risk factors (Table 11), gender had the highest 

discriminatory power for CHD (C-index 0.824, age was used as the time scale in the Cox 

model). The GRS comprising 28 SNPs had a C-index of 0.803. Thus, the GRS 

discriminated cases and noncases slightly better than conventional risk factors such as 

systolic blood pressure (C-index 0.801), baseline diabetes mellitus (C-index 0.801), and 

total cholesterol (C-index 0.800). Further, the 28-SNP GRS had a better discriminatory 

power than family history of CVD (0.803 vs. 0.795, P for change=0.01). Discrimination 

indices were lower in CVD models and higher in ACS models for all individual risk 
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factors. Gender, HDL, and smoking had the highest, and BMI and family history the 

lowest discrimination for both CVD and ACS. 

 

Table 11. Risk discrimination of cardiovascular disease by individual 

risk factors. 
Risk factor C-index 

 CHD CVD ACS 

Gender 0.824 0.808 0.833 

HDL cholesterol 0.821 0.808 0.829 

Current smoking 0.809 0.800 0.827 

28-SNP GRS 0.803 0.792 0.813 

Systolic blood pressure 0.801 0.798 0.812 

Diabetes mellitus 0.801 0.795 0.813 

13-SNP GRS 0.801 0.792 0.813 

Total cholesterol 0.800 0.792 0.811 

Body mass index 0.798 0.793 0.810 

Family history of CVD 0.795 0.789 0.807 
Age was used as the time scale in Cox proportional hazards models. Abbreviations: CHD, coronary heart 

disease; CVD, cardiovascular disease; ACS, acute coronary syndrome; HDL, high-density lipoprotein; 

SNP, single-nucleotide polymorphism; GRS, genetic risk score. Unpublished data. 

 

The multivariable models with the traditional risk factors had a C-index of 0.849 for 

CHD, 0.835 for CVD, and 0.853 for ACS. The GRS slightly improved risk discrimination 

of CHD, CVD, and ACS over the traditional risk factors and family history. Adding 

family history to the model with traditional risk factors improved C-index by 0.2% (95% 

CI 0.1–0.3) for CHD. The addition of the GRS further improved the discrimination by 

0.5% (95% CI 0.4–0.6). Corresponding values for CVD were 0.2% (95% CI 0.1–0.3) and 

0.3% (95% CI 0.2–0.4), and for ACS 0.2% (95% CI 0.1–0.3) and 0.4% (95% CI 0.3–0.5).  

Adding the 28-SNP GRS to the model with traditional risk factors and family history 

resulted in overall NRI=5% (95% CI 1–9, P=0.01). The GRS also improved 

reclassification of individuals in the intermediate-risk category (clinical NRI=27%, 95% 

CI 18–36, P=1.1×10
-8

). Of this group, 52 CHD cases (27%) were reclassified into the 

high-risk group and 206 noncases (20%) were correctly reclassified into the lower risk 

group, when the GRS was added to the model. The change in IDI was significant 

(Value=0.007, SE=0.002, P=4.2×10
-5

). The small value of IDI indicates that most of the 

reclassification occurs adjacent to risk thresholds.  

The potential over-fitting of the models was evaluated by external validation. We 

estimated the effects for two models (with and without the GRS) in FINRISK 2002 and 

used the estimates to predict the 14-year absolute risk in the test data set (FINRISK 1992 



Results 

72 

 

and 1997). Health 2000 lacked the information on family history, thus it was not used as a 

training dataset. The results from this approach were compared with the method where 

the effects were estimated directly from the test data. No substantial differences were seen 

in discrimination or reclassification measures. For example, the C-index for the model 

with the traditional risk factors was 0.859, when estimated directly from the test data set, 

and 0.855 in external validation. The overall NRI was 5% in the test dataset and 4% in 

validation.  

In a standard European population of 100,000 individuals, traditional risk factor screening 

would classify 64,373 subjects into <10%, 18,223 into 10–20% and 17,404 into ≥20% 

risk category (Figure 15). Subjects who had lipid medication or diabetes at baseline were 

automatically classified into the high-risk group. Additional genetic screening of subjects 

at intermediate risk for CHD would reclassify 3475 subjects (19%) into the low and 2144 

(12%) into the high-risk category. Of those subjects classified into the high-risk category, 

676 were expected CHD cases. Assuming that statins reduce the risk by 20% (Baigent et 

al. 2005), additional GRS screening for individuals in the intermediate-risk category 

could prevent 135 CHD cases (676×0.2) over 14 years. By contrast, random statin 

allocation for a comparable number of subjects at intermediate risk (N=2144) is expected 

to prevent only 54 cases (0.2×272, the expected number of cases).  
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Figure 15. Two-stage risk screening of coronary heart disease in a standard population of 100,000 subjects. 

Treatment assumptions are based on the guidelines (National Institute for Health and Care Excellence 

2008), which recommend that statins are allocated for subjects in the ≥20% risk group. In addition, subjects 

with baseline lipid treatment and/or diabetes were assumed to be treated. 

 

 

Stage 1:                  
100,000 people 
screened for the 

traditional risk factors 

>20% Risk 

N=17,404 

- 3892 cases 

- 13,512 noncases 

Assume 
treated 

10-20% Risk 

N=18,223 

- 2315 cases 

- 15,908 noncases 

Assume no 
treatment  

Stage 2: 
Additional 

genetic 
screening 

>20% Risk 

N=2144 

- 676 cases 

- 1468 noncases 

10-20% Risk  

N=12,604 

- 1366 cases 

- 11,238 noncases 

<10% Risk 

N=3475 

- 273 cases 

- 3202 noncases 

<10% Risk  

N=64,373 

- 2422 cases 

- 61,951 noncases 

Assume no 
treatment or 

further testing 
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6 DISCUSSION 

6.1 Genetic risk profiles for lipids and blood pressure 

In Projects I and II, we studied longitudinal genetic effects of SNPs that have been 

associated with lipid levels and blood pressure in GWASs. These studies have been 

conducted in cross-sectional samples of adult populations, and it is not known if the 

genetic effects are invariant over age, and if the results could be generalized to children 

and adolescents. By using repeated measurements of lipid and blood pressure levels 

between the ages of 3 and 45 years and genetic marker data, we observed that the GRSs 

for HDL, LDL, total cholesterol, triglycerides, and blood pressure were associated with 

longitudinal measurements of corresponding risk factor traits from childhood to young 

adulthood. Thus, the results from large-scale GWASs using adult samples seem to 

generalize to younger age groups.  

In Project I, we examined a large number of genetic variants for blood lipid levels. Our 

data allowed us to study genetic effects for different age groups in more detail. Thus, we 

tested for interaction between the lipid-specific GRSs and the age groups of 3–6, 9, 12, 

15, 18, 21–30, and 33–45 years. We found that the genetic effects for LDL and total 

cholesterol were stable across age and larger than for HDL and triglycerides in all age 

groups. Thus, genes have a substantial influence on LDL and total cholesterol levels over 

age, and this genetic effect is invariant over time. In contrast, we observed different 

patterns of genetic effects for HDL and triglycerides when different age groups were 

compared. The estimated GRS effects for triglycerides increased over age and decreased 

for HDL, especially in males. Moreover, the HDL loci explained two times more HDL 

variation among children than among adults. This is in line with at least one study that has 

reported higher heritability estimates for blood lipids in children than adults (Boomsma et 

al. 1996), and indicates that as environmental variables gain a greater impact with age, 

they also cause a larger amount of phenotypic variability in adults than in children.  

The GRS comprising 32 SNPs associated with triglycerides improved the prediction of 

hypertriglyceridemia in young adults over and above the childhood lipid measurement. 

Thus, genetic information might provide useful additional information in initial 

assessment of the adulthood risk for dyslipidemia and heart disease. However, as we were 

unable to investigate the prediction of adulthood CHD in our young cohort, more studies 

are needed to evaluate the relationship between the genetic markers for triglycerides and 

CHD. Even though fasting triglyceride levels are associated with CHD (Sarwar et al. 

2007), to date there is no clear evidence of an association between the genetic variants 

affecting triglyceride levels and CHD. Two studies that have evaluated the association 

between a comparable triglyceride GRS to our study and subclinical atherosclerosis have 

given somewhat contradicting results (Tsao et al. 2012; Isaacs et al. 2013).  
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In Project II, the blood pressure GRS was shown to be significantly associated with 

longitudinal measurements of systolic and diastolic blood pressure. However, we 

observed somewhat stronger associations between the GRS and adult blood pressure 

measurements taken in 2007. Contrary to lipids, we did not observe significant 

associations between the childhood blood pressure levels and the GRS. These results 

indicate that for these 13 SNPs genetic effects for blood pressure become stronger with 

age. One explanation for this could be that environmental or hormonal effects modify the 

association between blood pressure and genetic variants. Since dietary salt intake is one 

of the main environmental modifiers of blood pressure levels, we applied an interaction 

analysis for genetic variants and dietary salt intake, assessed with a questionnaire. We did 

not, however, observe significant interactions between salt intake and individual SNPs or 

the GRS, which might also be due to the high measurement error rate in salt intake 

variables. Further studies are needed to evaluate the modifying effects of other 

environmental variables, such as alcohol intake and physical activity. 

We found a sex-specific effect for rs11191548 on systolic blood pressure, which is 

located near CYP17A1, a gene known to be involved in steroid hormone metabolism and 

to cause the rare Mendelian hypertensive disorder. The interaction has also been 

replicated in an independent population (Wu et al. 2012). As the SNP has been associated 

with CHD in adult populations (Schunkert et al. 2011), the region is of interest for future 

research regarding the relationships between hormonal changes, blood pressure and CHD.  

We also found that the 13-SNP blood pressure GRS increased the risk for hypertension in 

adulthood, but did not improve the risk discrimination. An extended GRS with 30 blood 

pressure SNPs has been shown to increase the risk for CHD, stroke and left ventricular 

mass (Ehret et al. 2011; Lieb et al. 2013). Further, a 32-SNP blood pressure GRS was 

associated with incident CVD in a large prospective Finnish study, but it did not improve 

the risk discrimination or reclassification over and above traditional risk factors 

(Havulinna et al. 2013). These findings support the pathological role of blood pressure in 

CVD, but also suggest that the blood pressure GRS might not be useful in predicting 

CVD events. 

6.2 Genetic risk profiles for coronary heart disease 

In Projects III and IV, we evaluated the association between a panel of genetic variants 

and cardiovascular events in case-control and prospective Finnish and Swedish cohorts. 

We constructed weighted GRSs based on 13 (Project III) and 28 (Project IV) CHD SNPs 

and estimated the genetic effects on the risk of the first cardiovascular end-point. We 

found that the magnitude of the effect of the GRS was comparable with that of other 

existing risk factors such as blood pressure. Also, the genetic effect was independent of 

traditional risk factors as well as of a family history of CVD. The GRS based on 13 

genetic variants did not improve overall risk reclassification or discrimination of CHD. 
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However, the extended GRS with 28 SNPs improved risk discrimination and 

reclassification over and above traditional risk factors and family history.  

To address the clinical benefit of the 28-SNP GRS in population risk screening, we 

evaluated the effect of risk reclassification in a standard European population of 100,000 

subjects. This concept has been applied in two recent prediction studies evaluating the 

predictive properties of inflammatory and lipid biomarkers (Di Angelantonio et al. 2012; 

Kaptoge et al. 2012). Our results suggest that additional GRS screening of individuals 

classified initially into the intermediate-risk group (14-year risk 10–20%) would 

reclassify 2144 (12%) of them into the high-risk category (≥20%). We estimate that statin 

allocation of these subjects could prevent 135 CHD cases over 14 years. In other words, 

targeted genetic screening could prevent one additional CHD event over a period of 14 

years for every 135 people (18,223/135) screened. In comparison, lipoprotein(a) 

screening resulted in reclassification of 555 subjects from the intermediate- to the high-

risk category, and potential prevention of 17 CVD events over 10 years (Di Angelantonio 

et al. 2012). However, it must be noted that these theoretical estimates of disease 

prevention should be interpreted with caution as they are based on several assumptions. 

For example, it is assumed that compliance in statin treatment is complete, which might 

overestimate the potential benefits. On the other hand, the estimates correspond to the 

number of cases that could be prevented with additional statin treatment, whereas other 

preventive strategies have not been taken into account. Modeling scenarios in which statin 

treatment is combined with lifestyle modification would be more realistic and lead to 

more accurate estimates for disease prevention.   

Many studies have evaluated the predictive properties of comparable CHD SNP scores. 

Paynter et al. (2010) investigated 19,313 white women with a median follow-up 12.3 

years (interquartile range 11.6–12.8 years), and constructed a GRS based on 12 genetic 

variants that had been found in GWASs between 2005 and 2009. Their GRS showed a 

modest effect for incident CVD after adjustment for traditional risk factors (HR=1.14, 

95% CI 0.94–1.38 for top vs. bottom tertile, P=0.19). At least three other studies (Hughes 

et al. 2012; Thanassoulis et al. 2012; Vaarhorst et al. 2012) have reported results 

consistent with ours; although the findings have been slightly weaker. The results of these 

studies need, however, to be interpreted in light of their possible shortcomings. First, the 

studies might have been limited in power. For example, Thanassoulis et al. examined only 

182 ‘hard CHD’ events (defined as coronary death or MI) and Paynter et al. 199 MI 

events. Second, event definitions in these cohorts might be more heterogeneous than ours. 

The main end-point of interest in the study of Paynter et al. included 203 stroke events. 

These genetic variants have not, however, been associated with strokes, and in our data, 

we also observed weaker associations for CVD than for CHD events. Finally, the study 

samples of Paynter et al. and Hughes et al. were limited to health professional females or 

middle-aged men, respectively, and thus are not representative of the general population.  
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In Projects III and IV, we applied two novel methods, NRI and IDI (Pencina et al. 2008), 

for assessing the incremental value of genetic marker information in CHD prediction. The 

use of these metrics has been motivated by the fact that traditionally used discrimination 

measure, C-index, is too insensitive a measure for evaluating predictive performance of 

new risk factors. For example, conventional cardiovascular risk factors, like LDL 

cholesterol, have modest impacts on C-index individually; in the Women’s Health Study, 

adding LDL cholesterol to the model with age, systolic blood pressure, and smoking only 

increased the C-index from 0.76 to 0.77 (Cook 2007). However, since first introduced by 

Pencina et al. (2008), the use and interpretation of IDI and NRI have been under intensive 

discussion. Particularly, Cook (2008) has argued that the differences in mean predicted 

probabilities in cases and noncases tend to be small, and thus, the clinical relevance of IDI 

is modest. On the other hand, Pepe (2008) showed that there is a relationship between IDI 

and R2 in the model, which gives IDI an interesting alternative interpretation. Thus, IDI 

might be a useful measure of overall predictive performance, but as a category-free 

method, it has no impact on treatment decisions. By contrast, NRI is highly dependent on 

categories (Pencina et al. 2011), and thus, it is important that applied categories are based 

on valid decision-making thresholds. However, one limitation of NRI is that all 

reclassification is weighted equally, but actually, some movements between the categories 

are more relevant than others. For example, movement from intermediate risk to high risk 

for CHD cases is clinically more important than movement from low risk to intermediate 

risk (Pepe et al. 2008). 

In conclusion, the GRS improved CHD prediction in our study, but more well-powered 

studies in different populations are needed to evaluate the joint genetic effects of these 

SNPs on CHD risk. It should be noted that as the methodology for predictive performance 

is under constant revision this might create fluctuation in results of different studies. It is 

also important to keep in mind that the identified variants to date explain only a modest 

part of the CHD heritability. As more genetic variants are identified, the risk estimates are 

likely to become more accurate.  

6.3 Strengths and limitations of the study 

In Projects I–IV, we examined genetic effects for CHD and its risk factors in large 

prospective datasets with longitudinal risk factor data and accurately defined 

cardiovascular phenotypes. We had the opportunity to evaluate the genetic effects not 

only on CVD, but also on more precisely defined cardiovascular phenotypes, such as 

CHD, ACS and MI. The diagnoses of these events are based on ICD-9 and ICD-10 codes 

from the validated national registries, which cover every death and hospitalization in the 

country (Pajunen et al. 2005; Tolonen et al. 2007; Sund 2012). We believe that the 

accuracy in event definitions and comprehensive coverage are the major contributors to 

the good statistical power of our study. 
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Our results should also be interpreted in light of the potential limitations of the study. In 

each project, we constructed GRSs based on the lead SNPs identified in GWASs. The 

SNPs have been selected on the basis of a stringent significance filter, and thus, the GRSs 

might lack many causal variants that have not yet achieved a genome-wide significance 

level. Further, the selected SNPs might not be biologically meaningful, and fine-mapping 

studies are needed to refine these association signals and locate the functional variants. 

The SNP panels used in this study are incomplete in the sense that they capture only a 

fraction of the phenotypic variability. For more precise genetic effect estimation, the gap 

between the heritability estimates and the explained genetic variation needs to be 

narrowed.  

Beta coefficients (Projects I and II) and odds ratios (Projects III and IV) from the 

reference GWASs were used as weights when constructing the GRSs. The choice of 

weights might, however, affect the results. In Project IV, we observed comparable results 

for the GRSs computed by using odds ratios and log odds ratios as weights. One option is 

to construct GRSs simply by summing the number of risk alleles for each person and not 

to use weights at all. The difference between the weighted approach and allele counting 

has been evaluated in some studies. While some did not observe substantial differences 

between the two methods (Thanassoulis et al. 2012), others have shown that the 

weighting outperforms allele counting in discriminatory power (Davies et al. 2010).  

We did not include gene-gene and gene-environment interaction effects to the GRSs, as 

current large-scale GWASs provide limited evidence of such interactions. Detection of 

interaction effects requires high statistical power, and many true effects might not reach 

the significance levels of GWASs. Thus, incorporating interaction effects into the genetic 

profiles would require a different approach for genetic marker selection. More advanced 

methods for filtering genetic markers for prediction studies include machine-learning 

techniques and network-based analysis (Okser et al. 2013). 

In Projects I and II, we evaluated the genetic risk for dyslipidemia and hypertension and 

found that the GRSs were associated with the risk of these conditions. We did not, 

however, have an opportunity (due to young age of study participants) to evaluate the 

prediction of cardiovascular end-points in the same data, which would be of considerable 

interest. Even though dyslipidemia and hypertension are risk factors for cardiovascular 

events, the observed associations between the genetic variants and these risk factors do 

not necessarily imply a link between the same variants and CVD. Further studies are 

therefore needed to evaluate the predictive power of lipid and blood pressure GRSs on 

cardiovascular events.  

We assessed the improvement in prediction of dyslipidemia and hypertension by using 

risk discrimination (e.g. ROC curves), but not reclassification methods (NRI). However, 

NRI is highly influenced by the choice of categories (Pencina et al. 2011), and because 

there are no established risk thresholds for dyslipidemia and hypertension that influence 
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treatment decisions, the category-based NRI is less meaningful. However, it has been 

suggested that if no established risk categories exist, one could use a single cut-off at 

0.20, or calculate category-free NRI and visualize the results with reclassification plots 

(Pencina et al. 2011). 

In Projects III and IV, we applied reclassification analysis in joint FINRISK 1992 and 

FINRISK 1997 data with 12- and 14-year follow-ups. However, the established CVD risk 

categories (0–5%, 5–10%, 10–20%, >20%) are usually applied for 10-year risk 

estimation. To address this, we applied a sensitivity analysis in Project IV with 2% higher 

risk thresholds. The choice of using four risk categories instead of three (e.g. 0–6%, 6–

20%, and >20%) might also affect the reclassification results.  

In Project IV, we estimated that 135 CHD events could be prevented with additional 

statin treatment for subject with a high GRS. It is not known, however, whether 

individuals with a high genetic risk would benefit from statins. Further studies are needed 

to examine the relationship between the genetic risk and lipid medication, which is 

becoming more frequent. For example, in FINRISK 1997 only 3% of study subject had 

baseline lipid medication, whereas in FINRISK 2002 the proportion was 7%. 

Finally, these studies have been conducted in individuals of Finnish and Swedish decent, 

and the results might not be generalizable to other, especially nonEuropean, populations.  
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7 CONCLUSIONS AND FUTURE PROSPECTS 

GWASs have been undeniably successful in identifying common genetic variants for 

common, complex diseases. Since 2005, over 10,000 genetic loci have been mapped to 

over 700 diseases and traits (Hindorff et al. 2013). These efforts have required huge 

investments, but for most traits, the loci identified to date explain only a fraction of the 

heritability. For example, even if not limited to genetic variants that have achieved a 

stringent genome-wide significance level, the identified variants for CHD explain 

approximately 10.6% of the disease heritability (Deloukas et al. 2012). Thus, the 

relevance of these findings for public health can be questioned. 

GWASs serve as a starting point for several types of additional analyses. First, refining 

the identified GWAS loci is required to pinpoint the causal variants. Functional studies on 

causal variants are needed to unravel the novel molecular mechanisms underlying CHD. 

These analyses can be expected to highly increase our biological understanding of the 

disease, as most of the GWAS signals are not located near previous candidate genes. 

Second, the genetic variants can be used to assess the causal role of biomarkers in 

Mendelian randomization studies. With the exception of LDL cholesterol, it is not clear 

which of the traditional or novel CHD risk factors cause the disease and which are simply 

markers of some other causal processes. For example, the causal role of HDL cholesterol 

has recently been questioned due to lack of an association between HDL SNPs and CHD 

(Voight et al. 2012). Although noncausal risk factors might be useful in prediction, only 

causal risk factors are appropriate drug targets (Kathiresan and Srivastava 2012). Third, 

with the exception of 9p21, the genetic loci identified for CHD and (ischemic) stroke are 

completely nonoverlapping (Wahlstrand et al. 2009; Deloukas et al. 2012; Traylor et al. 

2012), suggesting different molecular backgrounds for these subtypes of CVD. Moreover, 

while some genetic variants that have been mapped for CHD play a role in lipid 

metabolism, others seem to be specific for acute infarctions by affecting plaque instability 

(Reilly et al. 2011). Thus, GWAS findings could have an essential role in refining disease 

classifications and consequently, better targeting of treatment. Finally, the utility of 

genetic testing in CHD prediction is under debate and certainly requires further research.  

Little progress has been made in preventive cardiovascular medicine since identification 

of traditional risk factors. Thus, there is room for improvement in CHD prediction, and 

genetic markers that have emerged during the last decade serve as an attractive tool for 

refining prediction algorithms. In this study, we have shown that the genetic variants 

identified in GWASs could be useful in early identification of individuals with increased 

CHD risk. Since atherosclerotic changes initiate already in childhood and the disease 

might be symptom-free for years, there is a need for better risk evaluation methods for 

young people, for whom 10-year predictions are not useful. It has been suggested that the 

lifetime risk estimation would overcome the limitations of 10-year prediction models for 

young adults with a substantial risk factor burden (Lloyd-Jones 2010). When evaluating 
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the risk burden for young people, genetic data have an advantage over other risk factors, 

as while the genetic risk is determined at conception, the high levels of traditional risk 

factors are typically not prevalent in children and adolescents.  

Due to the wealth of genetic findings made in a short time frame, there is a large gap in 

our understanding of how these findings are involved in CHD pathophysiology. With the 

arrival of large-scale omics-data – genomics, transcriptomics, proteomics and 

metabolomics – new pathways, drug targets and predictive biomarkers are likely to be 

found in the future. So far, the CHD prediction studies (including Projects III and IV in 

this thesis) have been limited for studying individual biomarkers or restricted SNP panels, 

but with the availability of omics-data, a more holistic approach could be adopted also for 

prediction models. However, prospective study cohorts with comprehensive omics-data 

are still largely lacking, and the integration of different large-scale data levels requires 

methods development of efficient computational and modeling strategies. 
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