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Abstract

Scattering of electromagnetic (EM) waves by one and many small
(ka � 1) impedance particles Dm of an arbitrary shape, embedded
in a homogeneous medium, is studied. Analytic formula for the field,
scattered by one particle, is derived. The scattered field is of the order
O(a2−κ), where κ ∈ [0, 1) is a number. This field is much larger than in
the Rayleigh-type scattering. An equation is derived for the effective
EM field scattered by many small impedance particles distributed in a
bounded domain. Novel physical effects in this domain are described
and discussed.
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Key words: electromagnetic waves; wave scattering by small body; bound-
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1 Introduction

In this paper we develop a theory of electromagnetic (EM) wave scattering by
one and many small impedance particles (bodies) Dm, 1 ≤ m ≤M = M(a),
embedded in a homogeneous medium which is described by the constant
permittivity ε0 > 0 and permeability µ0 > 0. The smallness of a particle
means that ka � 1, where a = 0.5diamDm is the characteristic dimension
of a particle, and k = ω(ε0µ0)1/2 is the wave number in the medium exterior
to the particles. Although scattering of EM waves by small bodies has
a long history, going back to Rayleigh (1871), see [1], [14], the results of
this paper are new and useful in applications because light scattering by
colloidal particles in a solution, and light scattering by small dust particles
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in the air are examples of the problems to which our theory is applicable.
The Mie theory deals with the scattering by a sphere, not necessarily small,
and gives the solution to the scattering problem in terms of the series in
the spherical harmonics. If the sphere is small, ka � 1, then the first
term in the Mie series yields the main part of the solution. Our theory
is applicable only to small particles. They can be of arbitrary shapes and
orientations. The solution to the scattering problem for one small particle
of an arbitrary shape is given analytically. For many such particles the
solution is reduced to solving a linear algebraic system. This system is not
obtained by a discretization of some boundary integral equation, and it has
a clear physical meaning. Its limiting form as a → 0 yields an integro-
differential equation for the limiting effective field in the medium where the
small particles are distributed. One-body wave scattering problems can be
studied theoretically only in the limiting cases of a small body, ka� 1, or a
large body, ka � 1. In the latter case the geometrical optics is applicable.
This paper deals with the case ka � 1. Rayleigh (1871) understood that
the scattering by a small body is given mainly by the dipole radiation. For
a small body of an arbitrary shape this dipole radiation is determined by
the polarization moment, which is defined by the polarizability tensor. Lord
Rayleigh and other researchers, from 1871 for about a century, did not give
analytical formulas for calculating this tensor for bodies of arbitrary shapes.
This was done by the author in 1970, see [16] and [14]. For homogeneous
bodies of arbitrary shapes analytical formulas, which allow one to calculate
this tensor with any desired accuracy, were derived in [14], Chapter 5. These
bodies were assumed dielectric or conducting in [14]. Under the Rayleigh
assumption the scattered field is proportional to a3, that is, to the volume
of a small body. The physically novel feature of our theory is a conclusion
that for small impedance particle with impedance ζ = h(x)a−κ, where h(x)
is a given function, Reh(x) ≥ 0 and κ ∈ [0, 1) is a given number, the
scattered field is proportional to a2−κ, that is, it is much larger than in the
Rayleigh case, since a3 << a2−κ if a << 1 and κ ≥ 0. We do not claim
that the boundary impedance ζ, as a → 0, has to behave like O(a−(2−κ)),
κ ∈ [0, 1). What is done in this paper (among other things) is deriving the
formulas for the scattered field in the cases of one-body and many-body EM
wave scattering problems when the boundary impedances are O(a−(2−κ)) as
a→ 0. These formulas show that new physical phenomena occur:

a) the scattered field by a single scatterer is much larger than in the
Rayleigh scattering,

and
b) the scattered field in a medium, in which many small impedance
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particles are embedded, satisfies an equation which shows that new physical
phenomena occur, see Section 3.

In this paper wave scattering by small impedance particles is studied.
Besides high intrinsic interest in this problem, the theory we develop al-
lows one to get some physically interesting conclusions about the changes
of the material properties of the medium in which many small particles are
embedded. The results of this paper can be used to develop a method for
creating materials with a desired refraction coefficient by embedding many
small impedance particles into a given material. Such a theory has been
developed by the author for scalar wave scattering, for example, acoustic
wave scattering, in a series of publications [4]-[15].

The novel physical idea in this paper is to reduce solving the scattering
problem to finding some constant pseudovector Q (see formula (18)), rather
than a pseudovector function J (see formula (10)) on the surface of the
scatterer. The quantity Q is a pseudovector which somewhat analogous to
the total charge on the surface of the perfect conductor with the shape ofDm,
while the quantity J is somewhat analogous to the surface charge density.
We assume for simplicity that the impedance ζ (see formula (5)) for a single
scatterer is a constant given in (16). A similar assumption appeared in paper
[5], where the scalar wave scattering theory was developed. The result of
the theory in [5] was a recipe for creating materials with a desired refraction
coefficient in acoustics (see [11], [12], [13]). The boundary impedance (16)
grows to infinity as a → 0. One can pass to the limit in the equation for
the effective (self-consistent) field in the medium, obtained by embedding
many small impedance particles into a given medium. Such a theory is
briefly summarized in paper [12], where the equation for the limiting (self-
consisting) field in the medium is derived for the scalar wave scattering by
small bodies of arbitrary shapes.

The aim of this paper is to develop a similar theory for EM wave scatter-
ing by many small impedance particles embedded in a given material. This
paper is essentially self-contained. The author’s earlier papers [3]-[14] deal
mostly with scalar wave scattering. The novel points of the author’s papers
consist in treating scalar wave scattering by one and many small bodies of
arbitrary shapes under the physical assumptions which imply that the mul-
tiple scattering effects are essential. The same novel points can be found in
this paper.

For EM wave scattering by one small body D of an arbitrary shape with
an impedance boundary condition an analytic formula for the electromag-
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netic field in the region |x| � a, y = x1 ∈ D, is derived:

E(x) = E0(x) + [∇e
ikr

4πr
,Q], r � a, g(x, y) :=

eikr

4πr
, r = |x− y|,

(1)
where E0 is the incident field, which satisfies Maxwell’s equations in the
absence of the scatterer D. Formula (1) is obtained from formula (10) in the
far zone if one neglects the terms of higher order of smallness as a→ 0 and
denote Q =

∫
S J(t)dt. In this case [∇x, g(x, x1)Q] = [∇g(x, x1), Q], which

leads to formula (1). In the case of a single small scatterer we calculate Q
analytically, see formula (2) below. For a small body the far zone starts
fairly close to this body.

In equation (1) (and in similar equations below in which only the main
terms of the equations are kept but the equality sign is used and not the
approximation sign or the order terms indicating the error), the order term
is always of the higher order of smallness, as a → 0, than the kept one.
It would be too cumbersome and not very helpful to the reader to specify
the order of the error terms in each formula of the type (1) because this
order depends in some cases on more than one parameter. For example, in
formula (1) the order of the error term depends on the ratio a/r and also,
through the quantity Q, on a.

We use the standard notations: [A,B] = A × B is the cross product of
two vectors, (Q, ej) = Q · ej is the dot product, {ej}3j=1 is an orthonormal

basis in R3. The quantity Q plays an important role: it defines the main
term in the scattered field. One has

Qj := (Q, ej) = − ζ|S|
iωµ0

Ξjp(∇× E0(O))p, Ξ := (I + α)τ, (2)

over the repeated index p summation is understood from 1 to 3, ζ is the
boundary impedance, |S| is the surface area of the particle, the matrix Ξjp
is defined by the formula

Ξjp := (I + α)
(
δjp − |S|−1

∫
S
Nj(s)Np(s)ds

)
:= (I + α)τ, (3)

where Nj(s) is the j−th component of the unit normal N(s) to the surface
S at a point s ∈ S, pointing out of D, τ := I − b, b is a matrix,

bjp := |S|−1

∫
S
Nj(s)Np(s)ds, τjp = δjp − bjp,
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k = ω(ε0µ0)1/2 is the wave number, O ∈ D is the origin, I is the identity
matrix, and α is a matrix, defined by the formula:

I + α := (I + β)−1,

where the matrix β is defined in (29) (see below).
By S2 the unit sphere in R3 will be denoted. The boundary S of the

small body D is assumed smooth: it is sufficient to assume that in local
coordinates the equation of S is given as x3 = φ(x1, x2), where the function
φ has first derivative satisfying a Hölder condition.

Briefly speaking, there are three basic novel results in this paper.
The first result are formulas (1)-(3) and equations (31) and (32). Equa-

tion (31) gives an analytical expression for the quantity Q in formula (1).
The matrices α and τ in this formula are calculated analytically, ζ is the
boundary impedance, |S| is the surface area of S, and E0 is the incident
electric field at the point O at which the small particle is located. Equation
(32) yields a formula for calculating the EM field scattered by a single small
impedance particle (body) of an arbitrary shape.

The second result is the reduction of the solution to many-body scattering
problem to solving a linear algebraic system (LAS), see equations (41) and
(44). The LAS (41) has M vector unknowns, while LAS (44) has P � M
vector unknowns. By this reason LAS (44) is recommended for solving in
practice. The LAS (44) is derived from the LAS (41).

The third result is a derivation of the equation for the limiting effec-
tive (self-consistent) field in the medium in which many small impedance
particles are embedded, see equation (45).

The scattering problem by one small body is formulated and studied in
Section 2, the reduction of the solution to the many-body EM wave scatter-
ing problem to the solution of a LAS is given in Section 3. Also in Section 3
a derivation of the equation for the limiting effective field is given as a→ 0
and M = M(a)→∞. In Section 4 the conclusions are formulated.

In this paper we do not solve the boundary integral equation to which the
scattering problem can be reduced in a standard approach, but find asymp-
totically exact analytical expression for the pseudovector Q which defines the
behavior of the scattered field at distances d >> a.

In fact, these distances d can be very small if a is sufficiently small, and
d can be much less than the wavelength λ = 2π

k .
Therefore our theory is valid in the physical situations in which multiple

scattering effects are dominant.
Let us point out, especially for experimentalists, some physical conse-

quences of the presented theory:
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a) For the first time an analytical formula is given for the EM waves
scattered by a small impedance particle of an arbitrary shape (see Theorem
1 below).

b) For the first time the equation for the effective field in the medium
in which many small particles are distributed is derived and the physical
effects of the distributed particles are analysed (see Theorem 2 below).

c) A numerical method for computing the field scattered by many small
impedance particles is given (see equation (42) below and the Conclusions).

2 EM wave scattering by one small impedance
particle

Let us use in this Section the following notations: D is a small body, D′ :=
R3 \ D is the exterior domain to D, k > 0 is a wave number, ka � 1,
a = 0.5diamD, k = 2π

λ , λ is the wavelength of the incident EM wave,
k2 = ω2ε0µ0, where ω is the frequency and ε0, µ0 are constant permittivity
and permeability of the medium. Our arguments remain valid if one assumes
that the medium has a constant conductivity σ0 ≥ 0. In this case ε0 is
replaced by ε0 + iσ0ω . Denote by S the boundary of D, by |S| its surface
area, by V the volume of D, by [E,H] = E × H the cross product of two
vectors, and by (E,H) = E ·H the dot product of two vectors, N is the unit
normal to S pointing out of D, ζ is the boundary impedance of the particle.

Let D be embedded in a homogeneous medium with constant parameters
ε0, µ0. Electromagnetic (EM) wave scattering problem consists of finding
vectors E and H satisfying Maxwell’s equations:

∇× E = iωµ0H, ∇×H = −iωε0E in D′ := R3 \D, (4)

the impedance boundary condition:

[N, [E,N ]] = ζ[N,H] on S (5)

and the radiation condition:

E = E0 + vE , H = H0 + vH , (6)

where E0, H0 are the incident fields satisfying equations (4) in all of R3,
vE = v and vH are the scattered fields. In the literature, for example in [1],
the impedance boundary condition is written sometimes as Et = ζ[Ht, N ],
where N is the unit normal on S pointed into D. Since our N is pointed
out of D, our impedance boundary condition (5) is the same as in [1].
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One often assumes that the incident wave is a plane wave, i.e., E0 =
Eeikα·x, E is a constant vector, α ∈ S2 is a unit vector, S2 is the unit sphere
in R3, α · E = 0. This condition guarantees that ∇·E0 = 0. We assume that
vE and vH satisfy the Sommerfeld radiation condition: r(∂v∂r − ikv) = o(1)
as r := |x| → ∞, and, consequently, [r0, E] = H + o(r−1) and [r0, H] =
−E + o(r−1) as r := |x| → ∞, where r0 := x/r.

It is assumed in this paper that the impedance ζ is a constant, Re ζ ≥ 0.
This assumption guarantees the uniqueness of the solution to Maxwell’s

equation satisfying the radiation condition. For completeness a proof of the
uniqueness result is given in Lemma 1. The tangential component of E on
S, Et, is defined as:

Et = E −N(E,N) = [N, [E,N ]]. (7)

This definition differs from the one used often in the literature, namely, from
the definition Et = [N,E]. Our definition (7) corresponds to the geomet-
rical meaning of the tangential component of E and, therefore, should be
used. The impedance boundary condition is written in [1] as Et = ζ[Ht, Ni],
where ζ is the boundary impedance and Ni is the unit normal to S pointing
into D. In our paper N is the unit normal pointing out of D. Therefore,
the impedance boundary condition in our paper is written as in equation
(5). If one uses definition (7), then this condition reduces to (5), because
[[N, [H,N ]], N ] = [H,N ]. The assumption Reζ ≥ 0 is physically justified by
the fact that this assumption guarantees the uniqueness of the solution to
the boundary problem (4)-(6).

Lemma 1. Problem (4)-(6) has at most one solution.

Proof of Lemma 1. In Lemma 1 it is not assumed that D is small.
The proof is valid for an arbitrary finite domain D. To prove the lemma
one assumes that E0 = H0 = 0 and has to prove that then E = H = 0.
Let the overbar stand for the complex conjugate. The radiation condition
implies [H,x0] = E + o(|x|−1), where x0 := x/r is the unit normal on
the sphere SR centered at the origin and of large radius R, and one has
I ′ :=

∫
SR

[E,H] · x0ds =
∫
SR
|E|2ds+ o(1) as R→∞.

From equations (4) one derives:∫
DR

(H · ∇ × E − E · ∇ ×H)dx =

∫
DR

(iωµ0|H|2 − iωε0|E|2)dx,

where DR := D′∩BR, and R > 0 is so large that D ⊂ BR := {x : |x| ≤ R}.
Recall that ∇ · [E,H] = H · ∇ × E − E · ∇ ×H. Applying the divergence
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theorem, using the radiation condition on the sphere SR = ∂BR, and taking
real part, one gets

0 = −Re

∫
S

[E,H] ·Nds+ Re

∫
SR

[E,H] · x0ds := I + I ′.

The radiation condition implies I ′ ≥ 0 as R →∞. The minus sign in front
of the integral I comes from the assumption that N on S is directed out of
D. The impedance boundary condition and the assumption Reζ ≥ 0 implies
I ≥ 0. One has I + I ′ = 0. One has

−
∫
S

[E,H] ·Nds =

∫
S
E · [N,H]ds =

∫
S
E · [N, [E,N ]]/ζ,

and
E · [N, [E,N ]]/ζ = |Et|2ζ|ζ|−2.

Therefore,

I = Reζ|ζ|−2

∫
S
|Et|2ds ≥ 0.

Consequently, I ′ ≥ 0, and the relation I + I ′ = 0 implies I = 0. Therefore,
if Reζ > 0, then Et = 0 on S. Consequently, E = H = 0 in D. If Reζ ≥ 0,
then limR→∞

∫
SR
|E|2ds = 0, and since E satisfies the Sommerfeld radiation

condition it follows that E = H = 0 in D′.
Lemma 1 is proved. 2

Let us note that problem (4)-(6) is equivalent to the problem

∇×∇× E = k2E in D′, H =
∇× E
iωµ0

, (8)

[N, [E,N ]] =
ζ

iωµ0
[N,∇× E] on S, (9)

together with the radiation condition (6). Thus, we have reduced the scat-
tering problem to finding one vector E(x). If E(x) is found, then H = ∇×E

iωµ0
,

and the pair E and H solves Maxwell’s equations, satisfies the impedance
boundary condition and the radiation condition (6).

Let us look for E of the form

E = E0 +∇×
∫
S
g(x, t)J(t)dt, g(x, y) =

eik|x−y|

4π|x− y|
, (10)

where E0 is the incident field, which satisfies Maxwell’s equations in the
absence of the scatterer D, t is a point on the surface S, t ∈ S, dt is an
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element of the area of S, and J(t) is an unknown pseudovector-function on
S, which is tangential to S, i.e., N(t) · J(t) = 0, where N(t) is the unit
normal to S at the point t ∈ S. The claim that J = J(t) is a pseudovector
follows from the fact that E is a vector and ∇× (gJ) is a vector only if J is
a pseudovector, because g is a scalar. One can look for the solution in any
form in which the solution can be found. One can prove that the solution
E can be found in the form (10).

It is assumed that J is a smooth function on S, for example, J ∈ C2(S).
The right-hand side of (10) solves equation (8) in D for any continuous

J(t), because E0 solves (8) and

∇×∇×∇×
∫
S
g(x, t)J(t)dt = graddiv∇×

∫
S
g(x, t)J(t)dt

−∇2∇×
∫
S
g(x, t)J(t)dt = k2∇×

∫
S
g(x, t)J(t)dt, x ∈ D′.

(11)

Here we have used the known identity divcurlE = 0, valid for any smooth
vector field E, and the known formula

−∇2g(x, y) = k2g(x, y) + δ(x− y). (12)

The integral
∫
S g(x, t)J(t)dt satisfies the radiation condition. Thus, formula

(10) solves problem (8), (9), (6), if J(t) is chosen so that boundary condition
(9) is satisfied.

Let O ∈ D be a point inside D. The following known formula (see, for
example, [2]) is useful:

[N,∇×
∫
S
g(x, t)J(t)dt]∓ =

∫
S

[Ns, [∇xg(x, t)|x=s, J(t)]]dt± J(s)

2
, (13)

where the ± signs denote the limiting values of the left-hand side of (13)
as x → s from D, respectively, from D′. To derive an integral equation for
J = J(t), substitute E(x) from (10) into impedance boundary condition (9),
and get

0 = f+[N, [∇×
∫
S
g(s, t)J(t)dt,N ]]− ζ

iωµ0
[N,∇×∇×

∫
S
g(s, t)J(t)dt], (14)

where

f := [N, [E0(s), N ]]− ζ

iωµ0
[N,∇× E0]. (15)

We assume that

ζ =
h

aκ
, (16)
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where Re h ≥ 0 and κ ∈ [0, 1) is a constant. This assumption is physically
valid because the only restriction on the boundary impedance is the require-
ment Re ζ ≥ 0, the absolute value of the boundary impedance can be arbi-
trary large. Note that (16) is our requirement on the boundary impedance,
and not a statement that any concrete physical material has this boundary
impedance. Our aim is to solve a synthesis problem: we wish to create ma-
terial with a desired refraction coefficient. To do this, as it was shown in
paper [12] for scalar wave scattering, one may use embedding of many small
particles of an arbitrary shape with boundary impedances given in (16). We
want to estblish a result of this type in the case of EM wave scattering. Note
that our a, although theoretically tends to zero, does not practically reach
the size below, say, 30nm, and our theory is based on the classical Maxwell’s
equations, it does not consider quantum electrodynamics. One point that
is currently not clear, is the dependence of the bulk properties of the mate-
rial when the size of a particle tends to zero. Experiments show that these
properties differ drastically from the properties of the macroscopic portions
of the same material. This problem is not discussed in our paper.

Let us write (10) as

E(x) = E0(x) + [∇xg(x,O), Q] +∇×
∫
S

(g(x, t)− g(x,O))J(t)dt, (17)

where

Q :=

∫
S
J(t)dt. (18)

The central physical idea of the theory, developed in this paper, can now be
stated:

The third term in the right-hand side of (17) is negligible compared with
the second term if ka� 1. Consequently, the scattering problem is solved if
Q is found.

A traditional approach requires finding an unknown function J(t), which
is usually found numerically by the boundary integral equations (BIE) method.
The reason for the third term in the right-hand side of (17) to be negligible
compared with the second one, is explained by the estimates given below.
In these estimates the smallness of the body is used essentially: even if one
is in the far zone, i.e., a

d � 1, one cannot conclude that estimate (21) (see
below) holds unless one assumes that ka� 1. Thus, the third term in (17)
cannot be neglected in the far zone if the condition ka� 1 does not hold.

We prove below that Q = O(a2−κ).
To prove that the third term in the right-hand side of (17) is negligible

compared with the second one, let us establish several estimates valid if
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a→ 0 and d := |x−O| � a. Under these assumptions one has

j1 := |[∇xg(x,O), Q]| ≤ O
(

max

{
1

d2
,
k

d

})
O(a2−κ), (19)

j2 := |∇ ×
∫
S

(g(x, t)− g(x,O))σ(t)dt| ≤ aO
(

max

{
1

d3
,
k2

d

})
O(a2−κ),

(20)
and ∣∣∣∣j2j1

∣∣∣∣ = O
(

max
{a
d
, ka
})
→ 0,

a

d
= o(1), a→ 0. (21)

These estimates show that one may neglect the third term in (17), and write

E(x) = E0(x) + [∇xg(x,O), Q], a→ 0. (22)

The error of this formula tends to zero as a→ 0 under our assumptions.
Note that the inequality |x| � ka2 is satisfied for |x| ≥ O(a) if ka� 1.

Thus, formula (22) is applicable in a wide region.
Let us estimate Q asymptotically, as a→ 0.
Take cross product of (14) with N and integrate the resulting equation

over S to get
I0 + I1 + I2 = 0,

where I0 is defined in (23) (see below), I1 is defined in (26), and

I2 := −
∫
S

ζ

iωµ0
[N, [N,∇×∇×

∫
S
g(s, t)J(t)dt]]ds.

Let us estimate the order of I0 as a→ 0. One has

I0 =

∫
S

(
[N,E0]− ζ

iωµ0
[N, [N,∇× E0]]

)
ds. (23)

In what follows we keep only the main terms as a → 0, and denote by the
sign ' the terms equivalent up to the terms of higher order of smallness as
a→ 0. One has

I00 :=

∫
S

[N,E0]ds =

∫
D
∇× E0dx ' ∇× E0(O)V,

where dx is the element of the volume, O ∈ D is a point chosen as the origin,
and V is the volume of D. Thus, I00 = O(a3). Denoting by |S| the surface
area of S, one obtains

I01 := −
∫
S

ζ

iωµ0
[N, [N,∇× E0]]ds =

ζ|S|
iωµ0

τ∇× E0, (24)
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where

τ := I − b, bmj :=
1

|S|

∫
S
Nm(t)Nj(t)dt, (25)

b = (bmj) is a matrix which depends on the shape of S, and I := δmj is
the unit matrix. Since ζ = O(a−κ) one concludes that I01 = O(a2−κ), so
|I00| � |I01|, because I00 = O(a3) as a→ 0. Thus,

I0 ' I01 = O(a2−κ), a→ 0.

Let us consider I1:

I1 =

∫
S

(∫
S

[N(s), [∇g(s, t), J(t)]]dt+
J(s)

2

)
ds := I11 +

Q

2
. (26)

One has

I11 =

∫
S
ds

∫
S
dt
(
∇g(s, t)N(s) · J(t)− J(t)

∂g(s, t)

∂N(s)

)
.

It is well known (see [14], p.14) that
∫
S
∂g0(s,t)
∂N(s) ds = −1

2 , where g0 := 1
4π|s−t| .

Since

g(s, t)− g0(s, t) =
ik

4π
+O(|s− t|), |s− t| → 0,

and |s− t| = O(a), one concludes that if a→ 0 then∫
S

∂g(s, t)

∂N(s)
ds ' −1

2
, (27)

and ∫
S
dt

∫
S
ds∇sg(s, t)N(s) · J(t) := βQ, (28)

where the matrix β is defined by the formula:

β := (βmj) :=

∫
S

∂g(s, t)

∂sm
Nj(s)ds. (29)

Therefore,
I1 ' (I + β)Q. (30)

Matrices β and b for spheres are calculated at the end of Section 1.
Let us show that I2 = O(a3−κ) and therefore I2 is negligible compared

with I0 as a→ 0. If this is done, then equation for Q is

Q = − ζ|S|
iωµ0

(I + α)τ∇× E0, (31)
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where E0 = E0(O), the point O is located inside the small particle,

I + α := (I + β)−1,

the matrix I + β is invertible, and the matrix τ is defined in formula (25).
From (31) it follows that

E(x) = E0(x)− ζ|S|
iωµ0

[∇xg(x,O), (I + α)τ∇× E0(O)]. (32)

This equation is our first main result which gives an analytic formula for the
solution of the EM wave scattering problem by a small body of an arbitrary
shape, on the boundary of which an impedance boundary condition holds.

In the far zone r := |x| → ∞ one has ∇xg(x,O) = ikg(x,O)x0 +O(r−2),
where x0 := x/r is a unit vector in the direction of x. Consequently, for
r →∞ one can rewrite formula (32) as

E(x) = E0(x)− ζ|S|
( ε0
µ0

)1/2 eikr

4πr
[x0, (I + α)τ∇× E0(O)]. (33)

This field is orthogonal to the radius-vector x in the far zone as it should
be.

Let us show that the term I2 is negligible as a → 0. Remember that
curlcurl = graddiv −∇2 and

−∇2

∫
S
g(x, t)J(t)dt = k2

∫
S
g(x, t)J(t)dt.

Consequently,

−iωµ0I2 ' ζ
∫
S
ds[N, [N, graddiv

∫
S
g(x, t)J(t)dt]]|x→s := I21.

Since the function J(t) is assumed smooth, one has

div

∫
S
g(x, t)J(t)dt =

∫
S
g(x, t)divJ(t)dt, divJ =

∂Jm
∂tm

,

summation is understood here and below over the repeated indices, and
divJ , where J is a tangential to S field, is the surface divergence. Further-
more,

grad

∫
S
g(x, t)

∂Jm
∂tm

dt = ep

∫
S
g(x, t)

∂2Jm
∂tp∂tm

dt,
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where the relation ∂g(x,t)
∂xp

= −∂g(x,t)
∂tp

was used, and an integration by parts
with respect to tp has been done over the closed surface S. Therefore

I2 ≤ c|ζ|
∫
S
ds

∫
S
|g(s, t)|dt = O(a3−κ)� I0.

The constant c > 0 here is a bound on the second derivatives of J on S.
Example of calculation of matrices β and b.
Let us calculate β and b for a sphere of radius a centered at the origin.

It is quite easy to calculate b:

bjm =
1

|S|

∫
S
NjNmdt =

1

3
δjm.

Note that |S| = 4πa2, dt = a2 sin θdθdφ, and Nm is proportional to the
spherical function Y1,m, so the above formula for j 6= m follows from the or-
thogonality properties of the spherical functions, and for m = j this formula
is a consequence of the normalization |N | = 1.

For small a one may set β ' 0.
Let us formulate the result of this Section as a theorem.
Theorem 1. If ka � 1, then the solution to the scattering problem

(4)-(6) is given by formula (32).
In the next Section the EM wave scattering problem is studied in the

case of many small bodies (particles) whose physical properties are described
by the boundary impedance conditions.

3 Many-body EM wave scattering problem

Consider now EM wave scattering by many small bodies (particles) Dm, 1 ≤
m ≤ M = M(a), distributed in an arbitrary bounded domain Ω. Here a is
the characteristic dimension of a particle, M(a) is specified below, and xm ∈
Dm is a point. Assume for simplicity of formulation of the problem that the
particles are of the same shape and orientation, and their physical properties
are described by the boundary impedance (16), where h = h(xm), and h(x),
Reh(x) ≥ 0, is a continuous function in an arbitrary large but finite domain
Ω where the particles are distributed. These simplifying assumptions one can
easily remove: it is possible to assume a distribution in sizes and orientations
of the small particles. This, however, complicates the formulation of the
results considerably, and does not contribute new ideas and techniques for a
study of many-body scattering problem. By this reason we will not formulate
the results which hold without the above assumptions.
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For simplicity also let us assume that the particles are distributed in a
homogeneous medium with parameters ε0, µ0.

The distribution of small particles is given by the following law:

N (∆) = a−(2−κ)

∫
∆
N(x)dx

(
1 + o(1)

)
, a→ 0, (34)

where ∆ is an arbitrary open subset of Ω, N(x) ≥ 0 is a given function
which one can choose as one wishes, N (∆) is the number of particles in
∆, and κ ∈ [0, 1) is a parameter from formula (16). The physical mean-
ing of the quantity = a−(2−κ)N(x) is the number of particles per unit
volume at a point x. Thus, the dimensionality of N(x) depends on the
choice of the parameter κ. For example, if κ = 0 then the dimension-
ality of N(x) is L−1, where L is the dimensionality (dim) of the length.
Indeed, dim{N(x)a−2dx} = dim{N(x)L} is a dimensionless quantity, so
dim{N(x)} = L−1. The distance d = d(a) � a between the neighboring
particles is assumed to satisfy the relation lima→0 ad

−1(a) = 0. The order
of magnitude of d as a → 0 can be found by a simple argument: if one
assumes that the particles are packed so that between each neighboring pair
of particles the distance is d, then in a unit cube ∆1 the number of parti-
cles is O(d−3), and this amount should be equal to N (∆1) = O(a−(2−κ)).
Therefore

d = O(a(2−κ)/3).

Denote D :=
⋃M
m=1Dm, D′ := R3 \D.

The scattering problem consists of finding the solution to

∇×∇× E = k2E in D′, (35)

[N, [E,N ]]− ζm[N,∇× E] on Sm, 1 ≤ m ≤M, (36)

E = E0 + vE , (37)

where E0 is the incident field, which satisfies equation (35) in R3, and vE
satisfies the radiation condition. Existence and uniqueness of the solution
to the scattering problem (35)-(37) is known. Let us look for the solution of
the form

E(x) = E0(x) +
M∑
m=1

∇×
∫
Sm

g(x, t)Jm(t)dt. (38)

Define the effective (self-consistent) field, acting on the j−th particle, by the
formula

Ee(x) = E0(x) +
M∑

m=1,m 6=j
∇×

∫
Sm

g(x, t)Jm(t)dt. (39)
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Because of our assumption d� a, any single particle Dj can be considered
as being placed in the incident field Ee(x). Therefore

Ee(x) = E0(x)−
M∑

m=1,m 6=j

ζm|S|
iωµ0

[∇xg(x, xm), (I + α)τ∇× Ee(xm)]. (40)

Note that ζ|S| = h(xm)cSa
2−κ, where the constant cS depends on the shape

of S and not on its diameter. This constant is defined by the formula

|S| = cSa
2.

For example, if S is a sphere of radius a then cS = 4π. If S is an ellipsoid
with the semiaxes a, b, c, and b = s1a, c = s2a, where s1 and s2 are some
constants, then the volume of this ellipsoid is 4πs1s2a

3/3, but the formula
for its surface area is complicated, see [3].

Thus, formula (40) implies

Ee(x) = E0(x)− cS
iωµ0

a2−κ
M∑

m=1,m 6=j
h(xm)[∇xg(x, xm), (I+α)τ∇×Ee(xm)].

(41)
Denote Am := ∇×Ee(xm). Applying operator ∇× to (41) and then setting
x = xj , one obtains a linear algebraic system (LAS) for the unknown Am:

Aj = A0j −
cS
iωµ0

a2−κ
M∑

m=1,m6=j
h(xm)∇x × [∇xg(x, xm), (I + α)τAm]|x=xj ,

(42)
where 1 ≤ j ≤M . If Am are found, then formula (40) yields the solution to
many-body EM wave scattering problem. The magnetic field is calculated
by the formula H(x) = ∇×E(x)

iωµ0
, if E(x) is found.

Let us now pass to the limit in equation (41) as a→ 0.
Consider a partition of Ω into a union of cubes ∆p, 1 ≤ p ≤ P . These

cubes have no common interior points, and their side ` � d, ` = `(a) → 0
as a→ 0. Choose a point xp ∈ ∆p, for example, let xp be the center of ∆p.
Rewrite (41) as

Ee(xq) = E0(xq)−
cS
iωµ0

P∑
p=1,p 6=q

h(xp)[∇xg(x, xp)|x=xq , (I + α)τ∇× Ee(xp)]

· a2−κ
∑

xm∈∆p

1.

(43)
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It follows from equation (34) that

a2−κ
∑

xm∈∆p

1 ' N(xp)|∆p|, a→ 0,

where |∆p| denotes the volume of the cube ∆p. Thus, (43) can be written
as:

Ee(xq) = E0(xq)−

cS
iωµ0

P∑
p=1,p 6=q

h(xp)N(xp)[∇xg(x, xp)|x=xq , (I + α)τ∇× Ee(xp)]|∆p|.
(44)

This equation is a discretized version of the integral equation:

E(x) = E0(x)− cS
iωµ0

∇×
∫

Ω
g(x, y)(I + α)τ∇× E(y)N(y)h(y)dy. (45)

Equation (45) is the equation for the limiting, as a→ 0, effective field in the
medium in which M(a) small impedance particles are embedded according
to the distribution law (34).

Let us summarize our result under the simplifying assumptions stated
in the beginning of Section 3.

Theorem 2. If small particles are distributed according to (34) and
their boundary impedances are defined in (16), then the solution to a many-
body EM wave scattering problem (35)-(37) is given by formula (40), where
the quantities ∇×E(xm) := Am are found from the linear algebraic system
(42), and the limiting, as a → 0, electric field E(x) in Ω solves integral
equation (45).

Let us discuss the novel physical consequences of our theory. Apply-
ing the operator curlcurl to equation (45) and taking into account that
curlcurl = graddiv −∆, divcurl ≡ 0, and −∆g(x, y) = k2g(x, y) + δ(x− y)
one obtains

∇×∇× E = k2E −∇×
( cS
iωµ0

(I + α)τ∇× E(x)N(x)h(x)
)
. (46)

The novel term, which is due to the limiting distribution of the small parti-
cles, is

T := −∇×
( cS
iωµ0

(I + α)τ∇× E(x)N(x)h(x)
)
.

Let us make a simple assumption that N(x)h(x) = const. Physically this
means that the distribution of the small particles is uniform in the space
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and the boundary impedances of the particles do not vary in the space.
Denote cS

iωµ0
Nh := c1. Assume also that α and τ are proportional to the

identity matrix. This, for example, happens if all Sm are spheres. Then
T = −c2∇×∇× E(x), where c2 = const.

In this case the novel term T can be interpreted physically in a simple
way: it results to a change in the refraction coefficient of the medium in Ω.

Indeed, by taking the term T to the left side of (46) and dividing both
sides of this equation by 1+c2, one sees that the coefficient k2 is replaced by
k2

1 := k2

1+c2
. Since c2 is a complex number, the new medium is absorptive.

The assumption Reh ≥ 0 implies that Imk2
1 ≥ 0. Since h(x) and N(x) can

be chosen by the experimentalist as he wishes, their dependence on x can be
chosen as he wishes. Therefore, distributing many small particles in Ω one
can change the refraction coefficient of the medium in a desirable direction.

Formula (46) allows one to derive a formula for the magnetic permeability
µ(x) of the limiting medium. This formula can be used for creating material
with a desired magnetic permeability µ(x). Let us derive this formula.

From Maxwell’s equations (4) with µ0 replaced by a µ(x), one gets

∇×∇×E = iωµ(x)∇×H + iω[∇µ(x), H] = ω2ε0µ(x)E+ [
∇µ(x)

µ(x)
,∇×E].

(47)
Suppose that the tensors α and τ are proportional to the identity. This is
the case, for example, when the small bodies are all balls of radius a. In this
case equation (46) yields

∇×∇× E = k2E − c1[∇(N(x)h(x)),∇× E]− c1N(x)h(x)∇×∇× E,

where c1 = const and k2 = ω2ε0µ0. This equation can be rewritten as

∇×∇× E =
k2

1 + c1N(x)h(x)
E − c1

1 + c1N(x)h(x)
[∇(N(x)h(x)),∇× E].

(48)
Comparing equations (47) and (48), one concludes that the new µ(x) in the
limiting medium is given by the formula

µ(x) =
µ0

1 + c1N(x)h(x)
, (49)

and ∇µ(x)
µ(x) = − c1∇(N(x)h(x)

1+c1N(x)h(x) .

4 Conclusions

The main results of this paper are:
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1. Equations (32) and (31) for the solution of the EM wave scattering
problem (4)-(6) by one small body of an arbitrary shape.

2. A numerical method, based on linear algebraic system (LAS) (42), see
formulas (41) and (44), for solving many-body EM wave scattering problem
in the case of small bodies of an arbitrary shape.

3. Equation (45) for the electric field in the limiting medium obtained
by embedding M(a) small impedance particles of an arbitrary shape, dis-
tributed according to (34), as a→ 0.

4. Formula (49) for the magnetic permeability of the limiting medium is
derived.

References

[1] L. Landau, L. Lifshitz, Electrodynamics of continuous media, Pergamon
Press, London, 1982.

[2] C. Müller, Foundations of the mathematical theory of electromagnetic
waves, Springer-Verlag, Berlin, 1969.

[3] NIST (National Institute of Standards and Technology) Handbook
of Mathematical Functions, Cambridge University Press, Cambridge,
2010. (available at http://www.nist.gov)

[4] A. G. Ramm, Many-body wave scattering by small bodies and applica-
tions, J. Math. Phys., 48, N10, (2007), 103511.

[5] A. G. Ramm, Wave scattering by many small particles embedded in a
medium, Phys. Lett. A, 372/17, (2008), 3064-3070.

[6] A. G. Ramm, Distribution of particles which produces a ”smart” ma-
terial, Jour. Stat. Phys., 127, N5, (2007), 915-934.

[7] A. G. Ramm, Scattering by many small bodies and applications to
condensed matter physics, Europ. Phys. Lett., 80, (2007), 44001.

[8] A. G. Ramm, Distribution of particles which produces a desired radia-
tion pattern, Physica B, 394, N2, (2007), 253-255.

[9] A. G. Ramm, A recipe for making materials with negative refraction in
acoustics, Phys. Lett. A, 372/13, (2008), 2319-2321.

20



[10] A. G. Ramm, Preparing materials with a desired refraction coefficient
and applications, (Plenary talk), In the book ”Topics in Chaotic Sys-
tems: Selected Papers from Chaos 2008 International Conference”, Ed-
itors C.Skiadas, I. Dimotikalis, Char. Skiadas, World Sci.Publishing,
2009, pp.265-273.

[11] A. G. Ramm, Materials with a desired refraction coefficient can be cre-
ated by embedding small particles into the given material, International
Journal of Structural Changes in Solids (IJSCS), 2, N2, (2010), 17-23.

[12] A. G . Ramm, Wave scattering by many small bodies and creating
materials with a desired refraction coefficient, Afrika Matematika, 22,
N1, (2011), 33-55.

[13] A. G. Ramm, Scattering by many small inhomogeneities and appli-
cations, In the book ”Topics in Chaotic Systems: Selected Papers
from Chaos 2010 International Conference”, Editors C.Skiadas, I. Di-
motikalis, Char. Skiadas, World Sci.Publishing, 2011. pp.41-52.

[14] A. G. Ramm, Wave scattering by small bodies of arbitrary shapes, World
Sci. Publishers, Singapore, 2005.

[15] A. G. Ramm, Scattering by obstacles, D.Reidel, Dordrecht, 1986.

[16] A. G. Ramm, Approximate formulas for polarizability tensors and ca-
pacitances of bodies of arbitrary shapes and applications, Doklady
Acad. Sci. USSR, 195, (1970), 1303-1306.

21


	RammCoverPage2013
	Electromagnetic wave (628) - author's MS

