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Abstract 

 

The behaviour of cardiovascular parameters during exercise 

remains unsettled. Arterial stiffness is one of the most promising 

and innovative vascular biomarkers; this vessel property is usually 

evaluated at rest, but, since it aims to describe a stress-strain 

vessel behaviour, it is not a static parameter. Hence, our aim was to 

develop a method able to evaluate carotid elasticity dynamically in 

order to investigate if this analysis can provide information regarding 

differences between populations (i.e. patients and healthy subjects). 

We developed an approach based on a contour tracking algorithm 

applied to ultrasound B-mode image sequences and used it in 

conjunction with a local pressure estimation to assess carotid 

distensibility. The method's reproducibility was evaluated by 

analyzing a group of healthy volunteers during two sessions 3 days 

apart. Repeatability was expressed as coefficient of variation and 

satisfactory results were obtained in exercise.  

After testing the robustness of the technique, the approach 

was applied during graded bicycle semi-supine exercise session in 

patients with known or suspected coronary artery disease (CAD) 

and results were compared with a control group. 36 consecutive 



 

 ii 

patients (20 men, 61±8years), and 18 healthy volunteers (9 men, 

34±3 years) were recruited. Right carotid diameter (D) and 

distension (ΔD) were estimated by the developed ultrasound B-

mode image processing method, and central pulse pressure (PPa) 

by radial tonometry; then, carotid elasticity was expressed as cross-

sectional distensibility coefficient (DC). Besides the vascular 

evaluation we introduced the estimation of left-ventricular elastance 

(ElvI) by echocardiography, in order to obtain a more integrated 

dynamic picture including arterial-ventricular coupling. All 

measurements were performed at rest, peak of age-dependent 

maximal heart rate and during recovery.  

At rest, D and PPa were higher in patients than in controls, 

whereas no significant differences were observed in ΔD and mean 

blood pressure; DC and ElvI were lower in patients than in healthy 

volunteers. At peak mean blood pressure increased both in patients 

and controls; DC significantly decreased and D increased in healthy 

subjects but not in patients. Finally ElvI highly increased in controls 

but not in patients. Behaviours of the two populations during 

recovery were similar.  

Hence, we can conclude that the developed approach provides 

a suitable reproducibility for clinical studies and was able to 

dynamically discriminate between different kind of subjects. In 

particular, in patients with known or suspected CAD, carotid 

distensibility, which at rest is lower than in healthy controls, remains 

unchanged during maximal exercise, despite a similar increase in 

mean blood pressure in the two populations. This difference is 

underlined also by the absence of strong cardiac response and 

carotid vasodilation in the pathologic population. 
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From our preliminary results, the importance of a dynamic 

assessment of carotid elasticity was confirmed, and there is 

evidence of a clinical need including a simple and robust device to 

more easily perform this kind of analysis than by ultrasound.  In our 

lab a first prototype based on vibration approach was designed and 

might be the suitable solution for implementing low-cost and easy 

carotid elasticity dynamic evaluation.  

In the future, the cardiologist ambulatory might provide, 

besides cardiac and pressure monitoring, additive relevant clinical 

information from an arterial elasticity 24-hours device. 
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Introduction and Aim 

 

 

Cardiovascular disease is one of the major causes of 

mortality in the developed countries even though several 

cardiovascular risk factors, such as aging, smoking, 

hypercholesterolemia, diabetes mellitus and 

hypertension are well known today. This kind of disease 

may result in substantial disability and then largely 

contributes to the cost of the health care system. 

Efficient primary prevention, which includes the 

assessment, management, and follow-up of patients 

who risk cardiovascular diseases, is the best approach 

to the problem. However, the assessment of classical 

risk factors cannot offer an accurate estimate of the 
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probability that a subject will suffer a cardiovascular 

event. 

For this reason, the number of studies that propose 

methods for the evaluation of markers of subclinical 

cardiovascular disease have been increased 

significantly in the last years and these measurements 

proved to be independent predictors of cardiovascular 

events [1, 2, 3].  

Among these great emphasis has been placed on the 

role of vascular parameters assessed by ultrasound 

data due to the non-invasiveness and low-cost of this 

technique. By processing ecographic data estimation of 

endothelial function by Flow-Mediated Dilation (FMD)  

[4], and analysis at the level of the carotid artery by 

Intima-Media Thickness (IMT) [5] and arterial stiffness 

[6], can be obtained. In particular, FMD ad IMT can be 

evaluated by ultrasonography, whereas indices of local 

arterial stiffness of superficial arteries can be estimated 

by measuring the diameter change during the heart 

cycle from ultrasound data in conjunction with the local 

pulse pressure. 

The latter analysis, which is considered one of the most 

promising from a clinical point-of-view, is usually 

estimated from resting values; however, arterial stiffness 

is not a static characteristic but a function of pressure 



 

Introduction 

 3 

and therefore, parameters of local elasticity quantified 

in-vivo over a range of pressures could enhance the 

characterization of the elastic properties of the vessel. 

Recently, some authors [7] have estimated the arterial 

elastance index during exercise in patients with 

hypertension suggesting a gender related difference in 

dynamic arterial stiffness. Others [8] have characterized 

carotid distensibility via the isometric exercise pressor 

and they hypothesized that differences in vascular 

function with gender and age may only be recognized if 

arterial elasticity is quantified over a range of pressures.  

Besides the attention in dynamically evaluating the 

arterial elasticity, another recent hypothesis, based on 

the translation of flow-mediated dilation [9] assessment 

from the brachial artery to a less peripheral, larger and 

predisposed to atherosclerosis vessel, sounds 

interesting: some authors studied the carotid artery 

reactivity to hand grip (isometric exercise) by measuring 

the change in the vessel diameter following the stress 

with respect to the baseline, and concluded that this 

might be associated with coronary risk status [10]. 

Dynamic exercise, as well as hand grip increases 

sympathetic tone and is by far the most used stress test.  
The aim of the present project was to investigate the 

carotid artery’s response to dynamic exercise during 
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exercise stress echocardiography, both in terms of 

diameter and local elasticity parameters.  

During the first phase of the project the methodology 

was developed and then tested in a small group of 

healthy volunteers in terms of reproducibility.  

Subsequently, a clinical experimentation was performed; 

patients with known or suspected coronary artery 

disease (CAD), and healthy volunteers were analyzed in 

order to investigate if the assessment of dynamic 

parameters might allow a better characterization of the 

subjects and stronger discrimination between different 

populations, than a static evaluation.  

 

Progress beyond state of the art 
 

Indeed, although several studies reported an 

independent predictive value on cardiovascular events 

for arterial stiffness evaluated at rest, only a few studies, 

where parameters of vascular elasticity and reactivity 

were assessed dynamically, are available in literature. 

Hence, the originality of this project is due to the fact 

that it could provide analysis of the carotid site before, 

during and after exercise in order to obtain, at one time, 

a non-invasive and integrated picture of static and 

dynamic characteristics of this central district. 
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CHAPTER 1 
Ultrasound Vascular Biomarkers 

 

 

Part of this chapter is obtained from the paper 

"Functional and structural alterations of large arteries: 

methodological issues." Bianchini E, Giannarelli C, 

Bruno RM, Armenia S, Landini L, Faita F, Gemignani V, 

Taddei S, Ghiadoni L.Curr Pharm Des. 2012 Nov 19. 

The paper is reported in Appendix A. 

 

Cardiovascular disease is one of the major cause of 

mortality and morbidity worldwide. The prevention of this 

disease, which kills more people in the United States 

than do cancer, AIDS and car accidents together (data 

source: www.shapesociety.org) is a priority in public 

health. It is widely accepted by the scientific community 

that the description of the cardiovascular status of a 

person based only on classic risk factors such as 

smoking, obesity, hypercolesteromia and hypertension, 

is not enough in terms of clinical effectiveness nor in 

terms of cost to the NHS. 

The ability to identify a "vulnerable" patient can be 

increased by the introduction of innovative biomarkers, 
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such as those based on laboratory analysis and omics 

techniques, or the ones objectively measurable on 

biomedical signals and images. This approach, beside 

diagnostics and pharmacology, is particularly important 

when applied to implement a model for effective 

prevention able to detect the presence of vascular 

damage at the sub-clinical, asymptomatic stage 

preceding the onset of decades of disease. In this way 

effective screening and prevention can be obtained, that 

reduce the transition of the disease to deadly (for the 

patient) and expensive (for the National Health Service - 

NHS) clinical stages. 

Of the various cardiovascular biomarkers introduced 

and studied in the scientific literature in recent years 

great emphasis has been placed on parameters that can 

be assessed by ultrasound data, since this approach is 

widespread, non-invasive, feasible and non-ionizating.  

Thus, great emphasis has been placed on the role of 

markers such as brachial Flow-Mediated Dilation (FMD), 

carotid Intima-Media Thickness (IMT) and arterial 

stiffness [1,2,3,4]. An accurate, robust and reliable 

methodology for the evaluation of these markers could 

improve their predictive value and allow them to be used 

for analysis in a large population. 
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1.1 Carotid intima-media thickness 

1.1.1 Clinical aspects and prognostic values 

Carotid intima-media thickness (C-IMT), as measured 

by high resolution B-mode ultrasound of extra-cranial 

carotid arteries, is the most widely accepted non-

invasive marker of subclinical atherosclerosis. C-IMT is 

considered an intermediate phenotype of 

atherosclerosis suitable for use in large-scale population 

studies [11].  Increased C-IMT has been associated with 

augmented cardiovascular risk [12, 13] as well as with 

presence of advanced atherosclerosis at different 

vascular sites including peripheral, cerebral and 

coronary areas [14,15]. Most importantly, 

epidemiological studies, including the Atherosclerosis 

and Risk in Communities Study (ARIC), the Rotterdam 

Study and the Cardiovascular Health Study, have 

consistently reported the predictive value of C-IMT for 

myocardial infarction or stroke independent of traditional 

cardiovascular risk factors [16-21]. 

1.1.2  Methodological and technical issues 

C-IMT is included in the American College of Cardiology 

and American Heart Association guidelines as a class 

IIA recommendation for intermediate risk patients [22]. 

However, several methodological aspects should be 
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taken into consideration for its correct evaluation  as 

recently suggested by an expert’s review [23] since C-

IMT value can be influenced by location of the measure, 

type of ultrasound data and features of the reading 

system.  

A careful examination of previous studies on C-IMT 

reveals methodological discrepancies that  must be 

taken into account for a proper interpretation of results.  

Inaba et al. [24] observed that 77% of the studies 

included in their meta-analysis did not indicate whether 

plaques were actually included in C-IMT analysis. In 

addition, 63% of the studies used maximal C-IMT, more 

likely reflecting focal thickening or plaque, instead of 

mean C-IMT.  Furthermore, study design of C-IMT trials 

was heterogeneous since the definition of the landmarks 

of carotid segments (Common Carotid Artery, CCA, 

Carotid Bulb, CB or Internal Carotid Artery, ICA) 

selected to measure C-IMT differ significantly [25]. The 

far wall of CCA is the easiest of the three anatomical 

segments to  examine, being the most commonly used 

measurement in clinical studies. Unfortunately plaques 

are rare at this site and studies of the relationship of C-

IMT at this site are conflicting [26].  The carotid artery is 

a complex vessel, with differing associations for each 

segment regarding risk factors and outcome. Common 
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carotid C-IMT is a better predictor of stroke than 

myocardial infarction [27, 28] and shows a better 

correlation with left ventricular mass than with coronary 

artery disease [26].  

These data suggest that different pathological 

processes occur at distinct vascular sites of the carotid 

artery in different stages of disease.  Indeed, the 

hemodynamics of the carotid artery in its different 

segments explains why atherosclerotic plaques are 

located in the carotid bulb and internal carotid artery 

than in the common carotid segment, which is affected 

in more advanced stages of the disease [29].  

Several studies suggest the CCA far wall as the best 

location in terms of feasibility and reproducibility of the 

measure [30, 31] and this has been considered as the 

standard segment for the evaluation.  

However, it might also be interesting to investigate 

whether  information provided at CB or ICA, more 

challenging from a technical point of view, may show 

stronger correlation with classic risk factors [31]. 

Another point to take into consideration specifically 

referring to CCA is  the variability in morphology and in 

vessel appearance under pathology. In particular, a 

horizontal image of the carotid artery cannot always be 

obtained depending on the anatomy of the subject, and 
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this may  be a problem for some automated 

segmentation techniques [32].  

A post-hoc analysis to determine the best algorithm for 

determining CIMT using data from the METEOR study 

showed that ultrasound protocols that include CIMT 

measurements at multiple angles of both the near and 

far walls provide the best balance between 

reproducibility, rate of CIMT progression, treatment 

effect and their associated precision in this low-risk 

population with subclinical atherosclerosis [33]. 

Regarding the ultrasound data that can be used to 

obtain C-IMT evaluation, two main types are 

commercially available: B-mode image processing-

based device and Radio-frequency (RF)-based echo-

tracking system [32]. In the past, estimation was 

obtained manually, but currently the assessment of C-

IMT is generally obtained by automatic processing of 

these ultrasound signals [32]. RF data devices are 

considered very accurate since they are based on 

signals with higher spatial resolution than B-mode data 

[34, 35]. However, when comparing the performance in 

terms of reproducibility of this kind of technique with that 

of robust image-based systems, similar results are 

obtained [32, 36]. The repeatability of the two  

approaches was recently tested in the same population, 
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obtaining similar coefficients of variation (5% for RF-

based device and 6% for image processing systems, 

respectively) [36]. A good agreement between the two 

techniques in terms of Bland-Altman statistics was also 

reported. However, it must be pointed out that the 

quality of the final result of B-mode based systems is 

related to several issues which have to be carefully 

considered, such as quality of the scans and the 

system's setting. In particular, Potter et al. [37] studied 

the effects of changing dynamic range (DR), gain set 

and probe distance in C-IMT assessment by an image 

analysis software applied to an agar phantom. An 

increase in DR or gain causes a reduction in the 

measured wall thickness, whereas the distance of the 

probe did not influence the final result. Hence, DR and 

gain sets, but also other parameters such as depth gain 

compensation (DGC) or filtering should be standardized 

as suggested by international guidelines [38] or at least 

documented in follow-up analysis. Furthermore, Rossi et 

al. [39] analyzed the influence on carotid diameter 

evaluation of non-linear processing generally used in 

standard ultrasound equipment for  better image 

visualization. In particular, these authors show that 

logarithmic compression and saturation can cause 

alteration when using approaches based on the gray 
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level gradient, and the consequent small deviation might 

affect also the assessment of C-IMT.  Another point to 

consider when working with standard US equipment is 

whether values obtained with newer apparatus are 

comparable to those obtained with older ones. A recent 

paper [40] reported the effects of transducer frequency 

on the final result by semi-automated analysis in a small 

group of patients. In particular C-IMT measurements 

obtained with standard (8 MHz) and high (14 MHz) 

frequencies were comparable.  

Other features of the reading systems should be also 

considered for the assessment of C-IMT. Low-cost and 

user-friendly devices can make the diffusion of this 

vascular biomarker easier and faster. Hence, reliable 

and robust software based on B-mode image 

processing, which can be adopted with any standard 

ultrasound equipment, could provide an effective 

solution. Nevertheless they should be used according to 

international guideline suggestions, with particular 

attention to machine settings. Finally, it is worth noting 

that despite guideline suggestions introducing 

standardization in the measure, different approaches 

are available for C-IMT estimation in terms of analyzed 

data, (i.e., B-mode images or RF signal processing) or 

for anatomical sites. Thus, future analysis providing the 
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agreement between different kinds of measurements 

and reference values for risk classification are needed in 

order to improve the clinical implications of C-IMT 

assessment. 
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1.2 Carotid distensibility and stiffness 

1.2.1 Clinical aspects and prognostic value 

 

Arterial distensibility is a measure of the artery’s ability 

to expand and contract with cardiac pulsation and 

relaxation. Hypertension and other risk factors such as 

diabetes, dyslipidemia and smoking can alter the 

structural and functional properties of the arterial wall, 

leading to a decrease in  arterial distensibility. This  

seems to be a common pathologic mechanism for many 

factors that lead to the occurrence and progression of 

the vascular changes associated with cardiovascular 

disease [35]. The aorta is a major vessel of interest 

when determining regional arterial stiffness, for at least 

two reasons: the thoracic and abdominal aorta makes 

the largest contribution to the arterial buffering function, 

[35] and aortic stiffness is an independent predictor of 

outcome in a variety of populations [8]. The 

measurement of aortic stiffness as carotid-to-femoral 

pulse wave velocity (PWV) by arterial tonometry is 

generally accepted as the most simple, non-invasive, 

robust, and reproducible method to determine arterial 
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stiffness. However, it should be recognized that carotid-

femoral PWV is not a direct measurement, since it is 

based on the acceptance of a propagative model of the 

arterial system. Thus, other arterial sites have potentially 

more interest: the measurement of local carotid stiffness 

may also provide important prognostic information, since 

the carotid artery, which is a superficial vessell that can 

be easily analyzed, is a frequent site of plaque 

formation. 

 

1.2.2 Methodological and technical issues 
Arterial stiffness can be estimated at the systemic, 

regional and local levels [35]. The local measure is 

generally obtained at the common carotid site, a large 

superficial artery that is easily accessible; this evaluation 

is considered particularly accurate, since unlike the 

systemic and regional evaluation, in this case arterial 

stiffness is determined locally and is estimated directly 

by pressure changes, which in turn determine the 

changes of volume of the vessel. The local assessment 

can be obtained by measuring the diameter of the 

vessel and its variations during the cardiac cycle (stroke 

change in diameter or distension) by ultrasound signal in 

conjunction with local pulse pressure estimation by 

tonometry [35].  
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With ever-increasing attention focused on the clinical 

implications of arterial stiffening analysis, it is extremely 

important to take into consideration methodological 

aspects, regarding arterial diameter assessment by 

ultrasound influencing clinical study outcomes. Several 

factors should be considered when performing this kind 

of measurement, especially  accuracy, precision and 

feasibility. 

Two main approaches are available for arterial diameter 

assessment by ultrasound data: B-mode image 

processing based device [36, 41] and radio-frequency 

(RF)-based echo-tracking system [34]. Devices 

processing RF data are considered very accurate since 

they are based on signals with higher spatial resolution 

than B-mode data [35]. Furthermore, when adopting B-

mode based systems some issues should be 

considered since the accuracy of this kind of device 

depends on many aspects such as the quality of the 

scans, and can be influenced by the system's setting. In 

particular, Potter et al [37] showed that dynamic range 

(DR), gain set and probe distance alter lumen diameter 

values obtained by an image analysis software applied 

to an agar phantom; an increase in DR, gain or distance 

causes a reduction in the measured diameter value. 

Hence, DR and gain sets, but also other parameters 



 

Chapter 1 - Ultrasound vascular biomarkers 

 17 

such as depth gain compensation or filtering should be 

documented and replicated when performing follow-up 

analysis on the same subject, and consensus guidelines 

adopted. As regards the distance's influence on the final 

measurement, the authors suggest  keeping in mind this 

aspect when interpreting the reported effects of weight 

changes on arterial diameter. Furthermore, Rossi et al. 

[39] showed that non-linear processing used to improve 

the B-mode image visualization on standard ultrasound 

equipment could affect the diameter measure obtained 

by edge-detection algorithms. In particular, the authors 

show that logarithmic compression and saturation can 

cause alteration when using approaches based on the 

grey-level gradient. Another aspect should be taken into 

consideration when using methods based on edge-

detection for diameter assessment on ultrasound 

images: the location of a grey-level discontinuity 

corresponding to an artery interface depends on the 

mathematical operator adopted and on its particular 

configuration. Consequently, it is possible that an edge 

detector converges to a point slightly different from the 

real localization of the interface [36]. This issue is 

relevant when tracking the two walls of a longitudinal 

section of the vessel in order to compute the diameter; 

in fact, in this case the grey-level discontinuities of the 
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near and far border respectively are in opposite 

directions, and different convergence points result in 

different measures. On the other hand, when evaluating 

distance where the grey-level discontinuities 

corresponding to the two edges are in the same 

direction, like the C-IMT evaluation, the possible 

different point of convergence does not influence the 

resulting measurement. A similar consideration can be 

drawn regarding  distension, since it is computed as the 

subtraction of two diameter values and hence is not 

influenced by the edge location [36]. 

RF-based devices are generally also considered more 

precise than video-image systems, which are limited by 

the spatial resolution of pixel analysis. For this reason, 

precision for video-image analyzers is usually estimated 

to be about 150 µm (i.e., the size of the pixel) [35] and 

this would be insufficient for determining arterial stroke 

change in diameter. However, it is important to point out 

that methods are available based on algorithms with 

sub-pixel precision, able to evaluate change in a 

diameter less than 15 µm [36, 41] and therefore suitable 

for local arterial stiffness assessment. In addition, 

studies investigating  precision in terms of repeatability 

of instantaneous arterial diameter evaluation by 

ultrasound data processing are available in literature 
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[42]: coefficients of variation (CV) of the parameters 

involved in arterial elasticity evaluation which are 

considered appropriate for studying their physiological 

and pathophysiological variations, are shown in [43-45]. 

As an example Selzer et al. [45] reported  a CV of 

1.28% for arterial diameters and from 11.05 to 14.54% 

for carotid stiffness indices. Kool et al [44]  found a CV 

of 4.5% for carotid diameters, 7.9% for distension and 

8.3 to 9.1% for arterial stiffness parameters. 

Furthermore, in a recent work [36] reproducibility of RF- 

and image-based techniques were assessed in the 

same population showing comparable reproducibility 

and good agreement. Hence, it might be concluded that 

high spatial resolution of RF-based methods is not 

mandatory for standard clinical examination. This point 

might be even more interesting when considering how 

important it is to document the independent predictive 

value of carotid stiffness on cardiovascular events; so 

far only a few studies where parameters of carotid 

elasticity were used are found in the literature and the 

development of user-friendly and relatively inexpensive 

systems for assessing carotid diameter and distension 

would be important.  In addition, besides the RF-

systems,  B-mode based devices that can also provide 

the automatic measure of carotid C-IMT are available 
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and are able to furnish both functional and structural 

parameters of the analyzed vessel, as suggested by the 

international expert consensus [35]. 

RF-based echo-tracking devices are considered the 

reference technique providing optimal conditions in the 

simultaneous measurement of local arterial stiffness and 

C-IMT for their high precision; however, since this kind 

of data output is not easily available in standard 

ultrasound equipment, reproducible and robust B-mode 

based technique (that can be applied to any ultrasound 

equipment) in conjunction with international guidelines, 

can be considered an effective alternative. 
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1.3 Non-invasive assessment of endothelial 
function: brachial artery flow mediated 
dilation  

1.3.1 Clinical aspects and prognostic values 
Endothelium plays a primary role in the control of 

vascular function [46] by the production of nitric oxide 

(NO), which derives from the transformation of L-

arginine into citrulline by the constitutive endothelial 

enzyme NO synthase (eNOS), under the stimulus of 

agonists (acetylcholine, bradykinin, and others) acting 

on specific endothelial receptors and of mechanical 

forces, namely shear stress [47]. In pathological 

conditions, the same stimuli determine  the production of 

endothelium-derived contracting factors (EDCFs, e.g., 

thromboxane A2 and prostaglandin H2), which 

counteract the relaxing activity of NO, and reactive 

oxygen species (ROS) which impair endothelial function 

by causing NO breakdown. In such conditions, reduced 

NO availability and EDCF not only exert an opposite 

effect on vascular tone, but also facilitate the 

pathogenesis of thrombosis and atherosclerotic plaque 

by promoting platelet aggregation, vascular smooth 
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muscle cell proliferation and migration, and   monocyte 

adhesion [48]. 

This pivotal role of the endothelium in the atherosclerotic 

process led to the development of  different  methods to 

assess endothelial function, which could provide novel 

insights into patho-physiology and a clinical opportunity 

to detect early disease, quantify risk, judge response to 

interventions designed to prevent progression of early 

disease, and reduce later adverse events in patients 

[49, 50].  

Endothelial function in clinical research is mainly tested 

by vascular reactivity studies [49]. The most widely used 

technique is the so-called “flow-mediated dilation” (FMD) 

of the brachial artery. This is a non-invasive, Ultrasound-

based method, introduced in 1992 [51]. FMD occurs as 

a result of local endothelial release of NO and it is 

measured as brachial artery diameter changes in 

response to increased shear stress, induced by reactive 

hyperemia and measured [52, 53]. To this aim the 

sphygmomanometer cuff placed on the forearm distal to 

the brachial artery is inflated to 200 mmHg and 

subsequently released 5 min later. Endothelium-

independent dilator response can be tested by low-dose 

sublingual nitroglycerin [54]. FMD has been studied 

widely in clinical research as it enables serial evaluation 
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of young subjects, including children [51]. It also permits 

testing of lifestyle and pharmacological interventions on 

endothelial biology at an early preclinical stage, when 

the disease process is most likely to be reversible [50].  

Impaired FMD has been shown in hypertensive patients 

and in the presence of the other cardiovascular risk 

factors [54-58].  

1.3.2 Methodological and technical issues 

Assessment of brachial FMD in clinical investigation has 

increased because it is non-invasive and apparently 

easy to perform. However, several challenges must be 

overcome that are major limitations to a widespread 

application of this method in clinical studies. These 

challenges include the need for highly trained operators, 

the expense of the equipment, and also the care 

required to minimize the effect of environmental or 

physiological influences [59]. Furthermore, other 

caveats should be considered in designing a study 

where FMD is investigated for the biological and 

technical variability of its measurement, including 

appropriate study design and sample size and efforts to 

achieve a uniform technique and minimize operator-

dependency, including the adoption of probe-holding 

devices and automated systems to measure brachial 

artery diameter changes [60-63]. 
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It is important to note that variations in technique, such 

as the position of the occluding cuff and duration of 

inflation, may produce results that are less 

representative of local NO activity, since FMD is also 

partly determined by the magnitude of post-ischemic 

forearm vasodilatation, which is a measure of 

microcirculatory function [50]. Interestingly, the use of 

upper cuff occlusion was associated with one of the few 

negative reports on the prognostic role of FMD [64], 

although a recent meta-analysis showed that studies 

applying the upper cuff occlusion technique showed 

similar prognostic predictive values compared with those 

using the lower cuff technique [65]. 

Training and certification of sonographers in FMD 

procedure has been well-described in guidelines [61] 

and proven by results in recent multicenter trials by the 

small number of rejected examinations, due to poor 

quality and/or instability of the images [66, 67]. 

The use of a clamp to hold and adjust probe position, as 

well as a computerized system to automatically measure 

brachial artery diameter are currently required to obtain 

the best reproducibility of this non-invasive technique [9, 

49, 68] as recently also shown in multicenter settings 

[66, 67]. 
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As of today, only a few experienced research centers 

apply a rigorous methodology to achieve a high 

standard of accuracy and reduce FMD variability [69]. 

The lack of uniform methodology, including all the 

above-mentioned procedures, is a major limitation, 

although not the only one, for the application of FMD 

assessment in large multicenter studies. We recently 

evaluated the time-dependent variability of FMD 

measurements obtained in more than 130 healthy 

volunteers by trained operators according to a uniform 

technique [67]. This included centralized analysis by an 

automated edge detection system, composed of a 

special-purpose hardware/software device for 

measuring changes in brachial artery diameter [70, 71]. 

The study showed for the first time that   adherence to a 

rigorous protocol, with certified operator training as well 

as defined experimental settings (adjustable stereotactic 

probe-holding device, automated computer-assisted 

brachial artery measurements), is feasible in different 

research centers, ensures high quality examinations 

and, most of all, provides an optimal time-dependent 

reproducibility of FMD.  In particular, a similar coefficient 

of variation (close to 10%) for intra-session (1 h apart) 

and inter-session (1 month apart) FMD assessment was 

shown and the overall FMD variability was comparable 
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with that observed by the authors who originally 

described the non-invasive method for FMD using a 

similar methodology [69]. Thus, this approach should be 

implemented in all studies investigating FMD as a 

surrogate marker of cardiovascular disease. 

As already stated, automated, computer-based analysis 

of brachial artery diameter changes [70, 71] is 

fundamental for the assessment and reproducibility of 

FMD testing. At the present time, automatic systems for 

FMD assessment are based on both post-processing 

and real-time analysis, thus working offline and online, 

respectively. In particular, real-time systems offer 

several advantages enhancing reliability and precision 

of FMD measurement [72]. Mainly, a real-time feedback 

signal generated during the scan acquisition and strictly 

related to the algorithm performance could continuously 

inform the operator about the quality of the ultrasound 

images. This aspect is of particular importance in FMD 

studies because in these examinations, the quality of 

the image is a critical component that can compromise 

the success of the measurement. Indeed, a proper 

image must be maintained for several minutes to best 

quantify the transitory response induced by the 

endothelium. For this reason, adjustments of the 

position of the probe may be required during the 
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examination, especially to compensate for small 

movements of the patient. The sonographer is largely 

helped in this task by immediate feedback from the 

measurement system. As a final result, the number of 

examinations rejected due to low-quality post-

processing analysis could be reduced [66, 67, 72].  

Another advantage of online analysis is the reduction in 

time spent analyzing the images after acquisition and 

the absence of those drawbacks associated with video 

storing. Recording the video means a reduction of 

image quality, while an acquisition on a personal 

computer requires a large amount of memory. 

Moreover, the real-time characteristic improves the 

operator's learning curve, significantly reduced by this 

approach [72] another major challenge for FMD 

assessment [61].  

Finally, another important characteristic of the FMD 

technique is the timing of the procedure, with respect to 

the cardiac cycle. In fact, vasodilatations induced by 

reactive hyperemia are not much larger than the 

diameter variations between systole and diastole [70, 

71]. Guidelines suggest using electrocardiogram (ECG) 

gating during image acquisition [61], where the onset of 

the R-wave is used to identify the end diastole, and this 

is currently the method most commonly used both for 
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manual and automatic analyses. However, this 

requirement influences the complexity of the ultrasound 

equipment adopted for the examination. Nowadays, high 

frequency linear array transducers are also available in 

less expensive hand-carried ultrasound devices, which 

are being used more and more in research and clinical 

practice. Although such devices produce high quality B-

mode images, they may lack ECG trigger capabilities, 

which are at times provided as an option with a 

significant increase in the overall cost of the system. On 

the other hand, modern automatic measurement 

methods used in FMD examinations have become faster 

and more precise, thus allowing a continuous 

measurement of the diameter curve with a sample rate 

of 25 to 30 samples/s. By using these systems, 

information on the timing with respect to the cardiac 

cycle can be obtained by directly analyzing the diameter 

curve, without the need for an ECG trigger. Also, 

working at 25/30 frames per second ensures greater 

reliability against noise, analyzing a greater number of 

frames for diameter measurements, so FMD technique 

is more suitable for centralized readings. 

Some issues remain unresolved in FMD measurement. 

In particular, agreement was not reached on the 

normalization of the percentage variation brachial 
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diameter by the amount of the reactive stimulus (e.g. 

shear rate) that induced vasodilation. As a 

consequence, several papers present FMD values as 

not normalized, especially in the past. Recently, this 

problem has been recognized and a debate on how to 

normalize FMD values was started. At the present, the 

maximum shear rate, the full shear rate area under the 

curve and the shear rate area under the curve up to the 

peak of the FMD have been proposed as potential 

normalization factors with the last one as the most 

promising in terms of efficacy [60-63]. 

Lastly, some interesting new topics are still waiting 

answers in the FMD area. Among these, the need for 

reference values that could be used in clinical studies is 

the most interesting and imperative point. By this 

means, clinicians would be able to stratify populations 

and share results more easily. 
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CHAPTER 2 
Materials and Methods 

 

 
The elasticity of a vessell can be estimated by 

ultrasound data processing for arterial diameter 

assessment in conjunction with a local pressure 

measure. These direct measurements allow calculating 

arterial distensibility as the ratio between the stroke 

change in the lumen area (i.e. the variation of the area 

during the cardiac cycle) and the local pulse pressure, 

normalized by the diastolic lumen area.   

During the first phase of this project we compared two 

different edge detectors applied to ultrasound images for 

the evaluation of the arterial diameter, in order to adopt 

the more suitable.  Then we implemented the method 

for carotid diameter estimation and we used it in 

conjunction with tonometry for pressure evaluation, in 

order to measure carotid distensibility in a group of 

healthy controls during graded bicycle semi-supine 

exercise test. During this second part of the project we 

tested the robustness of the algorithm in terms of 

reproducibility: the control group was analyzed in two 
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different sessions and coefficients of variation suitable 

for clinical applications were obtained. Finally, we 

applied the approach to a group of subjects with known 

or suspected coronary artery disease (CAD) in order to 

investigate differences in dynamic behaviour between 

healthy controls and patients. 

2.1 Development of a contour tracking algorithm for 
arterial diameter estimation 

Arterial elasticity is an innovative non-invasive 

cardiovascular biomarker. In fact, vessel elasticity 

decreases in presence of cardiovascular disease and its 

accurate assessment permits early and efficient 

prevention. This parameter can be evaluated in 

superficial arteries by measuring instantaneous vessel 

diameter in conjunction with local pressure. The 

temporal changes of the diameter are highlighted on 

ultrasound images by movements of the vascular walls, 

which are usually not greater than few pixels. Therefore, 

to obtain a useful plot of arterial diameter variation, an 

algorithm which is able to locate edges on the image 

plane with a subpixel resolution is required. Moreover, in 

clinical analysis (that might require real-time 
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performances) the computational cost of the algorithm is 

also critical. With this work two subpixel edge operators 

were implemented in Matlab and compared in order to 

choose the most suitable for vascular analysis: the 

normalized gradient of Gaussian (NGoG) and the mass 

center of the gray level variability. First, from a 

significant set of B-mode images of a human artery we 

derived a simple model of the gray level discontinuity 

provided by the vessel borders. The model, which is 

given by the sum of a smoothstep discontinuity and a 

Gaussian function, was subsequently used to analyse 

the performances of the two operators. In this way, the 

best configurations of the two edge operators were 

defined by varying the work conditions. Subsequently, 

we generated a set of ultrasound synthetic images using 

the simulation software Field II [73] to verify the 

resolution of the two edge detectors in ultrasound 

applications. A sequence of 100 realistic images of an 

artery, with a resolution of 13 pixels/mm and with a 

diameter ranging from 3.9mm to 4mm, was obtained 

with steps of 0.01mm. In this way, a real ultrasound 

vascular exam was simulated, with temporal changes of 

the diameter generating movements of the arterial walls 

which were less than 2 pixels. Finally, the two 
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algorithms were used for analysis of arterial diameter in 

in-vivo studies.  

2.1.1 The mass center of the gray level variability  

The first absolute central moment is a statistical filter 

which measures the variability of the gray levels of the 

image with respect to the local mean. Let f(x,y) be the 

gray level map of an image, and let  g(x,y,σi) be 

normalized Gaussian weight functions. The following 

relationship is used to compute the first absolute central 

moment at a point p of coordinates x,y. 

 

     (1)  

 

Moreover, the mass center b of the gray level variability 

associated to the first absolute central moment can be 

computed at p: 

 

 

    

                                                                                 (2) 
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In [74] it is shown that if configurations of eq. (2) with 

σ1=σ3/π are used then vector b always locates a point 

p' which is closer to the nearest discontinuity than p, 

independently of the distance between p and the 

discontinuity. Therefore, given the points pi of an 

approximate starting contour, a discontinuity can be 

located by iteratively computing vector b at pi where the 

starting points for any new iteration are the points p'i 

which are located with the previous iteration. 

2.1.2 The Normalized GoG  

Another mathematical operator which can be used to 

process gray level discontinuities is known as the 

normalized gradient of Gaussian (NGoG). On real 

discontinuities when given an approximate starting 

contour, the points of the final contour can be located by 

computing iteratively NGoG from the points of the 

starting contour [74, 75]. Let f(x,y) be the image gray 

level map and g(x,y,σ) be a Gaussian function with 

σ2>a.  A vector u, which locates a set of points p'i  that 

are closer to the discontinuity than pi is obtained when 

computing NGoG at the points pi of a starting contour.   

In this case also, given an approximate starting contour, 

the relative discontinuity can be located by iteratively 

computing vector u. 
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(3) 

 

2.2 Assessment of carotid elasticity: 

reproducibility evaluation 

 
Part of this paragraph is obtained from the paper 

"Assessment of carotid elasticity during exercise: a 

reproducibility study". Bianchini E, Bruno RM, Corciu 

AI, Faita F, Gemignani V, Ghiadoni L, Picano E, Sicari 

R. Ultrasound Med Biol. 2012 Feb;38(2):223-30.  

The paper is reported in Appendix A. 

 
After choosing the most suitable edge-detector operator, 

we implemented in Matlab a contour tracking algorithm 

for the carotid analysis in exercise. This technique, in 

conjunction with a local pulse pressure evaluation, can 

provide estimation of arterial elasticity. In order to 

evaluate the robustness of the developed approach, a 

pilot study in a group of healthy volunteers was 

performed.  Variability of the technique was estimated 

by coefficient of variation as reported in the subsequent 

paragraphs. 

Study population 
A group of 18 healthy untrained volunteers were 

recruited for the study (9 males, age 34 ± 3 years, BMI = 
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22 ± 6 kg/m^2, 3 smokers). Subjects with overt 

cardiovascular disease, diabetes, hypertension, major 

non-cardiovascular diseases or who  engaged in  

competitive sports were excluded. None of the subjects 

were taking any medication at the time of the study  or 

during the previous week. The study protocol was 

approved by the local ethics committee and informed 

consent was obtained from all subjects. 

Experimental procedure 
The subjects were analyzed in two different sessions 3 

days apart, in order to evaluate the intersession 

repeatability of carotid elasticity parameters in exercise. 

The examinations were all performed in the afternoon 

after a light lunch in a temperature-controlled room 

according to current guidelines [6]. The subjects avoided 

taking caffeine-containing beverages and smoking in the 

3 h preceding the experimental sessions. In each 

session a maximal exercise test was performed on a 

graded bicycle semi-supine ergometer (Fig. 1) [76]. 

Workload was increased by 25W every 2 min.  

Theoretical maximal heart rate (HRmax) was computed 

for both male and female subjects, as:  

HRmax = 220 - age  [in years] 

In order to estimate arterial elasticity, acquisitions of 

carotid ultrasound images, brachial blood pressure and 
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radial pressure waveform were obtained. All 

measurements were performed during the exercise test 

while the subject was riding on the cycle ergometer, with 

head and neck and right wrist lying on a dedicated 

support.  The following different temporal steps were 

considered: at 60%, 70%, 80% and 85% (peak) of 

maximal heart rate and during the recovery. at 1, 2, 4, 

and 6 minutes after peak  exercise.  

The acquisitions were made by the same skilled 

operator in two sessions 3 days 

apart.

 
Figure 1. Experimental setup 

Techniques 

Diameter assessment 
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After the first part of the work described in the previous 

paragraphs, we developed the algorithm for the 

automatic evaluation of the instantaneous carotid 

diameter based on the most suitable mathematical 

operator and implemented it in Matlab (The MathWorks, 

Natick, MA, USA). The method is based on a contour 

tracking technique that allows the automatic evaluation 

of diameter stroke changes (i.e. difference between 

maximum and minimum values) during the heart cycle. 

The method assesses the instantaneous diameter of the 

artery by processing B-mode ultrasound sequences of 

the longitudinal section of the vessel. An example of B-

mode image of the carotid artery and its interfaces is 

reported in Figure 2.  

 
Figure 2. Ultrasound carotid longitudinal image 
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For each image, lumen-intima interfaces are 

automatically detected  using the algorithm based on the 

edge operator   "First Order Absolute Moment" and 

diameter is estimated as the distance between far and 

near lumen-intima interfaces. 

 The procedure must be initialized by providing 

two approximated starting borders, an operation that 

also defines the region of interest where the diameter 

will be computed. After this simple initialization 

procedure, the elaboration proceeds automatically: in 

each image of the video sequence the two borders of 

the vessel are located, then the diameter is calculated 

as the distance between such borders.  

           We have to point out that the two borders of the 

vessel are not of the same quality. The near wall (NW), 

that is the border which is closer to the probe, is 

generally less defined than the far wall (FW). The 

closeness of a multiple tissue layer, mainly the wall of 

the vessel, in the space between the transducer and the 

border is the reason for this. Such a structure, when 

crossed by the ultrasound beam, provokes a 

reverberation of the ultrasound energy which degrades 

the quality of the final image. The border which is further 

from the probe, by contrast, is better defined since this 

is the first interface which the ultrasound beam crosses. 



 

Chapter 2 - Materials and Methods 

 40 

Due to this characteristic of the images, the FW can be 

located more easily and more accurately than the NW. 

For this reason, in each image it was first located the 

FW, then it was used as a reference point for the 

computation of the NW. 

           The other feature we exploited is that the area 

internal to the vessel is less noisy than the external 

area. This difference is due to the presence of the blood, 

which generates weak echoes. The presence of a 

region with less noise is advantageously exploited by 

the edge detection algorithm. This is obtained simply by 

forcing the algorithm to locate the two borders by 

starting from the internal part of the vessel. 

           These two peculiarities were used to affect the 

way the approximated contours are obtained. As for the 

FW, it was assumed that for, each image, the contour 

computed on the previous image FW(n-1) is a good 

estimation of the current contour FW(n). This statement 

is generally true because there is a very little movement 

of the walls between two adjacent images. However, as 

it was previously mentioned, it was preferable to start 

from an approximated contour aFW(n) in the inner 

region of the vessel, where the noise is smaller. For this 

reason aFW(n) was computed as the segment parallel 



 

Chapter 2 - Materials and Methods 

 41 

to FW(n-1)  at a distance ε1 towards the inner part of the 

vessel. 

           Concerning the NW, the same strategy was used 

to obtain an approximated contour aNW(n). However, 

since in most of the images the quality of the NW is 

worse than the quality of the FW, it was computed 

aNW(n) by starting from the FW(n) already computed on 

the current image instead that from the contour NW(n-1) 

computed on the previous image. Let d be an estimation 

of the diameter of the vessel computed as the mean 

value of the diameters calculated on the previous Nd 

images, then aNW(n) is obtained as the parallel to 

FW(n) at a distance (d-ε2). ε2 is a constant greater than 

zero, which was added to start from the inner region of 

the vessel, as well as it was done for FW. 

           Once the two borders of the vessel have been 

obtained, the diameter is computed. In theory, the two 

borders should be parallel but, in practice, this 

hypothesis is not exactly true and an approximation 

must be introduced in the computation of the diameter. 

Since it was assumed the FW is better estimated than 

the NW, the FW is taken as the reference line and the 

diameter is computed as the distance between the 

central point of the segment NW and the line FW. 

 Finally, the mean value of diameter is computed  
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on 10 beats of examination, in order to reduce the effect 

of cycle-to-cycle variability on the final result. 

As regard data processing for the assessment of  

variations in diameter during the cardiac cycle (stroke 

change in diameter or distension [6]), several  other 

computational stages are included: 

• After a band-pass filtering, the maximum 

(systolic) and minimum (diastolic) diameter values are 

identified for each cardiac cycle. 

• The stroke change in diameter is calculated for 

each cardiac cycle as the difference between the 

systolic and diastolic diameter values. 

• The mean distension value is computed as the 

average of the results obtained during the last 10 beats.  

The algorithm in this study was customized for high 

frame rate (i.e.,  > 25 frame/s) application. High frame 

rate, which ensures high temporal resolution, is needed 

in order to track the rapid wall movements of the vessel 

due to the high cardiac frequency in exercise. A 

graphical-user-interface (GUI) was developed in Matlab 

(Figure 3) in order to analyse the sequences: the user 

has just to trace an initial region-of-interest, then the 

algorithm is able to automatically track the vessel 

borders. 
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Figure 3. GUI for ultrasound image sequences analysis 

 

Carotid image sequences in DICOM format (frame rate 

~ 100 f/sec), were acquired and then analyzed off-line. 

Data were excluded when image quality  was 

considered insufficient (i.e., the algorithm was not able 

to correctly track vessel borders). 

Blood pressure measurement 

Radial tonometry was performed in order to evaluate 

central pressure by radial to aortic transfer function 

(commercial device: Sphygmocor, Atcor Medical, Figure 

4 and Figure 5). Central aortic pressures provide 

important information about cardiovascular status, but 
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direct measurements are invasive. Peripheral pressures 

can be measured noninvasively, and although they differ 

from central pressures, they can be mathematically 

transformed to approximate the latter. Hence transfer 

functions between aortic and radial pressures was 

calculated by parametric model and introduced in the 

scientific community more the 15 years ago [77].  

For each step of exercise and recovery we applied this 

technique. In particular, the radial waveform was 

acquired and then calibrated by using the arm blood 

pressure automatically recorded at the right brachial 

artery (by a Dinamap XL device). In fact, diastolic and 

mean blood pressures can be assumed to be constant 

along the arterial tree and this allows to calibrate the 

radial waveform from the brachial values. 

 
Figure 4. Tonometry for pressure evaluation 
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Figure 5. Acquistion of radial pressure waveform by 

tonometry 

Quality index (QI) for central pressure waveform was 

automatically provided by Sphygmocor software: 

measurements were considered acceptable with QI  > 

75 at rest and QI  >  50 during exercise. 

Since carotid and aortic pressure estimations by 

tonometry (at least at rest)  showed good agreement, 

with differences around 1-2 mmHg [78], final data 

obtained by the Sphygmocor system were used, 

together with diameter values, to assess carotid 

elasticity parameters.  

Evaluation of carotid distensibility  
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Ultrasound B-mode image sequences (image resolution 

= 100 pixels/cm, DICOM format, 100 frame/s, 10 beats) 

of the right common carotid arteries were acquired and 

analyzed by the customized algorithm for  evaluation of 

arterial diameter (D) and distension (ΔD). The common 

carotid arteries were scanned in longitudinal section 

using an iE33 Philips machine and a 10-MHz linear-

array probe. Arterial diameter borders were tracked in 

the near and far wall lumen-intima interfaces 1 cm 

proximal to the carotid bulb in a region 1 cm wide and 

free of plaques. The bulb was considered an anatomic 

fiducial point and a picture of the adopted ultrasound 

image was printed in order to ensure similar location of 

the measurements between the first session and the 

second one performed 3 days later. During vascular 

scanning, time-gain-compensation and depth settings 

were fixed. In addition, systolic and diastolic brachial 

pressures were measured and central pulse pressure 

obtained by radial tonometry as described  above. Local 

elasticity was then obtained for each step of the 

examination and expressed as:  

cross sectional distensibility coefficient,  

DC = ΔA /( PPa*Ad) 

where ΔA represents the stroke change in lumen area, 

PPa the central pulse pressure and Ad the diastolic 
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lumen area, respectively. ΔA and Ad were evaluated 

from the diameter values, assuming the cross-section of 

the artery to be circular. 

Reproducibility data 

The volunteers were analyzed in two sessions 3 days 

apart, in order to evaluate the intersession repeatability 

of  the arterial elasticity measurements (CC and DC). 

For each step of the examination, in  each  volunteer, 

variability was expressed as the coefficient of variation 

(CV), which is defined as the ratio of the standard 

deviation to the mean of the two measurements; the 

mean of CVs from all the subjects was then computed. 

CVs of pressure and diameter’s evaluation were also 

obtained. 

Furthermore, the reproducibility of each parameter for 

the whole examination was estimated by using the 

intraclass correlation coefficient.  The two-way random 

effects model was adopted [79]. 

All calculations were made using SPSS software (SPSS 

version 13.0 for Windows, 2004). 

2.3  Assessment of carotid elasticity: patients and 
controls comparison 

After testing the robustness of the developed approach, 

carotid elasticity dynamic behaviour was assessed both 

in controls and patients. Besides this vascular analysis, 
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also a cardiac evaluation was performed during the 

exercise in order to investigate differences in arterial-

ventricular coupling too. 

Study population 

In addition to the 18 healthy volunteers (9 men, 34±3 

years), 36 consecutive patients with known or suspected 

coronary artery disease, CAD, (20 men, 61±8years) 

were analysed.  
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Table1: characteristics of the analyzed population 

 

Vascular evaluation 

Carotid elasticity was obtained as described in the 

previous paragraph. The subjects underwent a maximal 

exercise test on a graded bicycle semi-supine 

ergometer. Workload was increased by 25W every 2 

min.  

Also in this protocol theoretical maximal heart rate 

(HRmax) was computed for both male and female 

subjects, as:  

HRmax = 220 - age  [years] 
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As previously described in order to estimate arterial 

elasticity, acquisitions of carotid ultrasound images, 

brachial blood pressure and radial pressure waveform 

were obtained. All measurements were performed at 

baseline and during the exercise test at peak of the age-

dependent maximal heart rate while the subject was 

riding on the cycle ergometer, with head and neck and 

right wrist lying on a dedicated support. Recovery 

analysis was also obtained at 1, 2, 4 ad 6 minutes after 

peak. 

Cardiac evaluation 

Besides the carotid distensibility, also an important 

cardiac parameter, the left-ventricular elastance (ElvI), 

was evaluated in the analysed subjects during the 

exercise (Figure 6). 

Cardiac volumes were estimated by 2D transthoracic 

echocardiography, and blood pressure by applanation 

tonometry. From these direct measurements ElvI was 

then calculated as the ratio between  ESP  and ESV, 

normalized by the body surface area, where ESP 

represents the end-systolic pressure, ESV the end-

systolic volume. ElvI reflects left ventricular contractility, 

but it is also influenced by biochemical and 

morphological features of the cardiac tissues. In 

particular, changes during stress conditions (i.e. 
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exercise) can give us information about cardiac 

performance, and its behaviour in conjunction with the 

carotid analysis might give a more integrated and 

accurate picture of the cardiovascular status of  a 

subject. 

Also the cardiac measurements were performed at rest 

and peak of the age-dependent maximal heart rate, and 

during recovery. 

Controls and patients data were analyzed by two-ways 

ANOVA, considering time intervals and population as 

factors, p < 0.05  was  considered significant. 

 

 
Figure 6. Experimental set-up for analysis in controls 

and patients 
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CHAPTER 3 
Results 

 
 

As described in the previous chapter, during the first 

phase of this project we compared two different edge 

detectors applied to ultrasound images for tracking 

vessell borders, in order to choose the best to 

implement a new approach for arterial diameter 

estimation in exercise.  After developing the method for 

carotid diameter estimation, we adopted it in conjunction 

with pressure evaluation by tonometry, for dynamic 

carotid distensibility estimation in a group of healthy 

controls. During this second part of the project we tested 

the reproducibility of the algorithm in order to evaluate if 

it is suitable for clinical applications: the control group 

was analyzed twice and coefficients of variation were 

obtained.  Finally, we applied the technique, in 

conjunction with a cardiac analysis, to a group of 

subjects with known or suspected coronary artery 

disease (CAD) to evaluate possible differences in 

dynamic behaviour between healthy controls and 

patients.  
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In this chapter we will summarize the obtained results. 

3.1 Development of a contour tracking algorithm for 
arterial diameter estimation 

 3.1.1 Gray-level discontinuities modeling 

We acquired and observed a set of real B-mode images 

of the carotid artery, in order to obtain a realistic model 

of the gray level discontinuity associated with the artery 

borders. In the figure below the gray level discontinuity 

associated to the artery border is shown.    

 
Figure 1. Carotid longitudinal B-mode image and profiles 

of the gray level discontinuities at the far artery border 
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After this analysis, we derived a synthetic discontinuity 

similar to this real profile from the sum of a smoothstep 

discontinuity and a Gaussian function. An image 

(1280x1280 pixels) with two gray levels 120/100 i.u. 

(intensity unit) was used as a base. The step was then 

smoothed with a 2D Gaussian kernel with σ2=30 pixels 

and a 1D Gaussian with σ=30 pixels was added. The 

maximum value of the obtained discontinuity model was 

equal to 180 i.u.. This mathematical model of the arterial 

gray level discontinuities is shown in the picture below. 

 
  

Figure 2. One-dimensional mathematical model of the 

gray level discontinuity associated to the artery borders 
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3.1.2 The mass center of the gray level variability and 

the normalized gradient in the presence of the synthetic 

vessell border discontinuity 

 

The two operators were implemented in Matlab and then 

applied to the obtained model of discontinuity. The 

component bx of vector b was computed for different 

configurations of the operator which were obtained by 

varying the distance ε between the starting point p and 

the point which represents the discontinuity (the top of 

the Gaussian function). This first test underlined that, 

the point of convergence (the zero-crossing of the 

function bx(ε)), of the iterative procedure based on the 

computation of vector b, changes when varying the 

configuration of the mathematical operator. 

Then, we applied also the algorithm based on the 

normalized gradient to the discontinuity model with 

different apertures of the Gaussian function and here 

again we observed that the point of convergence of the 

iterative procedure based on the computation of NGoG 

depends on the configuration of the operator. 

Finally, we compared the mass center of the gray level 

variability and the normalized gradient in terms of 

behaviour when varying the distance of the starting point 
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from the discontinuity; the trends of the two edge 

detectors were found to be very similar. However, it is 

worth noting that the discontinuity is localized in two 

different points. The results of this part make clear that, 

when analyzing discontinuities such as those similar to a 

vessel border, the point of convergence depends both 

on the mathematical operator and on its configuration. 

 

3.1.3 The mass center of the gray level variability and 

the normalized gradient applied to vascular ultrasound 

image sequences  

Synthetic sequences 

In this part of the project we applied the two edge 

detectors to more realistic synthetic images of the 

carotid artery obtained by using the software Field II. A 

3D phantom was used to generate the images and the 

carotid artery was modelled as a cylinder positioned 

parallel to the probe. 100,000 scatterers were randomly 

distributed within the volume of the phantom and strong 

scatterers were placed to simulate boundaries, thus 

obtaining images which are very similar to the images 

obtained with standard echographic equipment. A 13 

MHz linear array vascular probe with 192 elements 

spaced of 0.245mm was hypothesized. The obtained B-
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mode images consisted of 256 gray levels with a 

resolution of 13 pixels/mm (Fig.3). 

 

  

 
Figure  3.   Image obtained with Field II. 

 

From these data we synthesized set of 100 images that 

simulates five cardiac cycles where the diameter d of 

the artery varies between 3.9mm and 4.0mm (with a 

resolution of 13 pixels/mm, the diameter variation in the 

image sequence was 1.3 pixels, ranging from 50.7 to 
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52.0 pixels). Then we analysed this sequence with both 

the mathematical operators obtaining a fine 

measurement of the diameter. The two edge detectors 

were able to analyse this kind of images by detecting 

diameter variations in the order of 0.1 pixels (8µm in our 

test conditions). 

The configuration σ1/σ3=2/π with σ3=4 pixels was 

chosen for the mass center of the gray level variability 

and a value a=0.72σ2 with σ=4 pixels was chosen for 

NGoG. 

Let di be the diameter of the cylinder which is used to 

model the artery in the phantom and   be the diameter 

measured in the ith image, the error is  .                                                     

The  statistics of the error were calculated for the two 

edge detectors. The mean and the standard deviation of 

the error are -5.2 pixels (0.4 mm) and 0.04 pixels (0.003 

mm), respectively, for NGoG and -2.3 pixels (-0.18mm) 

and 0.03 pixels (0.002 mm), respectively, for the mass 

center of the gray level variability. Results show that 

both the measurements have a significant bias, 

confirming that the location of these points depends on 

the algorithm and on the configuration of the 

mathematical operator. In addition, the mean values of 

the errors obtained with the mass center of the gray 
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level variability and with the  NGoG are different and this 

is in line with the previous results.  

Results confirm that the two algorithms converge to two 

different points giving rise to two different bias levels. 

Moreover, the low standard deviation of the error shows 

that both the two algorithms are accurate in measuring 

the absolute diameter changes. 

 

Real sequences 

Finally, the two algorithms were applied to B-mode 

images of  longitudinal sections of carotid arteries in 

order to compute the diameter of the vessel. Fig.4 

shows the plot of the diameter of an artery which was 

obtained in an in-vivo examination when using the mass 

center of the gray level variability. The conditions were 

similar to those set with Field II (13 MHz linear array 

probe and an image resolution of 15.7 pixel/mm). The 

curve of the diameter change during the cardiac cycle is 

correctly traced even when the difference between the 

maximum and minimum value is in the order of one pixel 

and this gave evidence of a sub-pixel precision. The two 

edge detectors were able to analyse this kind of images 

by detecting diameter variations in the order of 0.1 

pixels (8µm in our test conditions). The implementation 

on real images highlighted that NGoG is computationally 
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twice more onerous than the mass center of the gray 

level variability and this was considered as a critical 

point. Moreover the mass center of the gray level 

variability has been proven to be particularly robust to 

speckle noise typical of ultrasound imaging. For these 

reasons, we decided to adopt it as edge detector to 

implement the algorithm to be used for carotid diameter 

evaluation in humans. 

 

 

 

 

 

 

 

 

Figure 4. Real time in vivo analysis using the mass 

center of the gray level variability 

 

3.2 Assessment of carotid elasticity: 

reproducibility evaluation 
Part of this paragraph is obtained from the paper 

"Assessment of carotid elasticity during exercise: a 

reproducibility study". Bianchini E, Bruno RM, Corciu 
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AI, Faita F, Gemignani V, Ghiadoni L, Picano E, Sicari 

R. Ultrasound Med Biol. 2012 Feb;38(2):223-30.  

The paper is reported in Appendix A. 

 
The pilot study performed in the group of healthy 

volunteers allowed to estimate the precision of the 

approach in terms of reproducibility.  

In particular, during the two sessions, 4.3% of the 

acquired B-mode images were considered of poor 

quality and hence rejected.  

As regards tonometry acquisition, 2.7% of data 

presented an unacceptable quality index  (QI) and were 

discarded. These resulted in a rejected percentage of 

the derived carotid elasticity measurements equal to 

5.8%. 

Reproducibility data 

Mean coefficients of variation for each step of the 

exercise are summarized in Table 1.  
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Table 1. Mean ± standard deviation of coefficients of 

variation (percentage values) for each step of the 

exercise for repeated examinations that were performed 

in two different sessions, 3 days apart. 

SPb is the systolic brachial blood pressure, DPb 

diastolic brachial blood pressure, PPb brachial pulse 

pressure, SPa systolic central blood pressure obtained 

by tonometry, DPa diastolic central blood pressure 

obtained by tonometry, PPa central pulse pressure 

obtained by tonometry, D the carotid diameter, ∆D the 

carotid distension, DC the carotid cross-sectional 

distensibility coefficient. 

 rest 60% 70% 80% peak 1m 2m 4m 6m 

SPb 3.1±3.4 3.2±2.5 3.1±1.8 3.2±3.3 4.1±3.4 3.4±3.5 4.1±3.2 4.6±2.8 3.2±2.7 

DPb 4.2±5.3 4.9±6.1 5.1±6.3 5.4±6.3 6.2±6.5 5.2±4.9 6.1±4.6 5.6±6.1 5.8±5.2 

PPb 7.3±6.1 9.6±5.9 9.5±5.9 9.9±3.2 10.1±6.8 9.3±8.4 11.2±6.7 11.9±7.9 11.3±9.1 

SPa 4.2±4.4 4.3±3.1 4.4±2.5 5.2±4.3 3.5±3.6 4.9±4.3 4.2±3.9 4.9±4.4 3.3±2.9 

DPa 4.4±4.7 6.2±5.9 7.2±5.1 7.9±4.4 8.2±7.8 8.1±7.2 5.4±4.1 7.8±8.7 6.2±4.9 

PPa 8.3±6.1 11.3±8.2 11.2±6.9 10.3±7.4 10.5±7.2 12.3±104. 13.9±8.4 13.8±11.6 12.1±8.7 

D 3.1±3.1 2.2±1.7 4.7±4.4 5.1±6.9 6.8±5.4 3.3±3.1 3.1±2.4 5.4±4.3 3.9±4.1 

∆D 8.1±5.9 9.8±5.7 9.9±10.6 10.2±11.6 11.8±7.9 7.2±7.3 10.2±6.5 10.9±8.8 9.2±6.4 

DC 8.3±7.8 15.9±10.6 13.5±10.4 16.4±17.2 24.2±14.9 12.5±11.1 14.9±12.2 14.2±15.1 18.1±14.8 
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In addition, agreement of elasticity evaluation for the 

whole examination between the two sessions resulted in 

an intraclass correlation coefficient of 0.694 (95% 

Confidence Interval: 0.574-0.780) for DC. Intraclass 

correlation coefficients of pressure and diameter 

measurements were: 0.934 (95% CI: 0.906-0.954) for 

SPa, 0.776 (95% CI: 0.660-0.848) for DPa, 0.962 (95% 

CI: 0.947-0.971) for SPb, 0.807 (95% CI: 0.712-0.867) 

DPb and 0.830 (95% CI: 0.759-0.879) for D. Finally,  

regarding differential measurements, intraclass 

correlation coefficient was: 0.876 (95% CI: 0.829-0.909) 

for PPa, 0.936 (95% CI: 0.911-0.953) for PPb and 0.897 

(95% CI: 0.858-0.925) for ∆D. 

For both physiological and reproducibility data, the 

analysis was repeated considering only non-smokers (n 

= 15), in order to evaluate whether  he  smokers’ sub-

group affected the final findings of our study, and we 

obtained super imposable results (data not shown). 

 

3.3  Assessment of carotid elasticity: patients and 

controls comparison 
After testing the robustness of the developed approach, 

carotid elasticity dynamic behaviour was evaluated both 

in controls and patients. In addition, a cardiac evaluation 

in terms of left-ventricular elastance was performed 
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during the exercise in order to provide information 

regarding arterial-ventricular coupling and hence a more 

integrated analysis of the subjects. Results regarding 

mean blood pressure, carotid diameter, carotid 

distensibility, left-ventricular elastance are summarized 

in the figures below as mean ± standard deviation. 

Finally, also the relationship linking carotid 

distensibility/left-ventricular elastance and cardiac 

frequency during the exercise is reported in order to give 

evidence of different behaviour between patients and 

controls. 
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Figure 5. Mean ± standard deviation of mean blood 

pressure for each step of the exercise: controls in green, 

patients in red. 
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Figure 6. Mean ± standard deviation of carotid diameter 

for each step of the exercise: controls in green, patients 

in red. 
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Figure 7. Mean ± standard deviation of carotid 

distensibility for each step of the exercise: controls in 

green, patients in red. 
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Figure 8. Mean ± standard deviation of left-ventricular 

elastance for each step of the exercise: controls in 

green, patients in red. 
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Figure 9. Relationship between carotid distensibility/left-

ventricular elastance and cardiac frequency during the 

exercise: controls in green, patients in red. 
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CHAPTER 4 
Discussion and Conclusions 

 
 
Part of this chapter is obtained from the paper 

"Assessment of carotid elasticity during exercise: a 

reproducibility study". Bianchini E, Bruno RM, Corciu 

AI, Faita F, Gemignani V, Ghiadoni L, Picano E, Sicari 

R. Ultrasound Med Biol. 2012 Feb;38(2):223-30.  

The paper is reported in Appendix A. 

 

4.1 Discussion 

Great emphasis has been placed on the role of vascular 

biomarker in evaluating the cardiovascular status of 

humans. In particular, arterial elasticity has been 

assessed in resting conditions for a more accurate 

stratification of cardiovascular risk that might allow a 

better clinical approach. However, the elastic behaviour 

of the arteries is not a static parameter and its analysis 

during exercise would be even more attractive, since it 

could provide information about dynamic conditions, 

mimicking a patient's real life.  
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The aim of this PhD project was the evaluation of 

vascular biomarkers in exercise and in particular of 

carotid elasticity by ultrasound images processing.  

During the first part of the work we focused on the 

choice of the edge-detector operator to be adopted for 

the arterial diameter evaluation from B-mode imaging. 

In particular, subpixel edge detection properties of 

NGoG and of the mass center of the gray level 

variability were analysed. These two operators were 

applied to a model of the gray level discontinuity similar 

to those generates by ultrasound imaging at vascular 

borders and it was highlighted that, for each operator, 

the point of convergence changes with the operator 

configuration. Moreover, it was clearly shown that when 

both algorithms are applied to the same discontinuity 

they converge to two different points. Therefore, from 

this first part of the project we concluded that the 

location of this kind of discontinuity depends on the 

edge detector and on its particular configuration. 

Then both algorithms were applied to a set of synthetic 

images of the carotid artery obtained with Field II by 

simulating working conditions similar to the reality. This 

sequence reproduces five cardiac cycles where the 

difference between the maximum and minimum value of 

the diameter is in the order of one pixel. The results are 
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affected by a bias since the location of the discontinuity 

depends on the edge operator and on its configuration. 

However, small variations of the diameter were detected 

and a very low standard deviation of the error was 

obtained for both operators. 

Thus the operators were applied to real ultrasound 

images of the carotid artery and they both traced the 

curve of the diameter with high precision on real 

ultrasound images of the vessel. However, the 

computational cost of the two edge detectors was 

compared and NGoG resulted to be about two times 

more onerous. Therefore, we decided to use the mass 

center of the gray level variability to measure the 

variation of carotid diameter during the heart cycle with 

subpixel precision in real analysis. Moreover, this 

mathematical operator has been proven to be 

particularly robust to speckle noise typical of ultrasound 

imaging [74]. 

 

After developing the algorithm to track the vessel 

borders during the exercise we tested its precision in 

terms of reproducibility. A group of healthy subjects 

were analyzed in two different sessions 3 days apart. At 

the moment, to our knowledge, repeatability studies for 

carotid elasticity during exercise are not available in the 
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scientific literature. On the other hand, coefficients of 

variation (CVs) at rest of the analyzed parameters, 

which are considered appropriate for studying their 

physiological and pathophysiological variations, are 

described in several studies using well-known and 

validated gold-standard techniques [80-83]. As an 

example Selzer reported CVs  = 6.17 – 9.66% for blood 

pressure measurements, CV = 1.28% for arterial 

diameters and CVs from 11.05 to 14.54% for carotid 

stiffness indices; similarly Kool found CV = 4.5% for 

carotid diameters, CV = 7.9% for distension and CVs 

from 8.3 to 9.1% for arterial stiffness parameters. Our 

results regarding reproducibility of baseline data 

provided similar values and hence the reliability of the 

proposed approach is as good as the state-of-the-art 

technology. 

Regarding results in exercise and recovery, CVs of 

carotid diameter (D and ΔD) and pressures (SPb, DPb, 

PPb, SPa, DPa and PPa) are slightly higher but 

comparable to the resting values reported in the 

abovementioned previous works [80-83]. Finally, 

coefficients of variability of carotid elasticity 

measurements in dynamic conditions are also slightly 

higher but comparable to values acquired at rest for all 

steps, except for exercise peak, where mean CV is 24 ± 
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15% for distensibility (DC). However, it is worth noting 

that repeatability of DC again improves (i.e., comparable 

to baseline) already starting from the first minute of 

recovery; at this time, the phenomenon of significant 

decrease in elasticity with respect to baseline detected 

at peak is still observable. We might speculate that if 

confirmed in future work, including both controls and 

patients, these results could imply the possibility of 

observing arterial elasticity variations by performing the 

measurement  after  peak  exercise, when the subject is 

not riding the bike, artefacts are reduced, and as a 

consequence variability is smaller and data more 

reliable. Moreover, in this case the design of future 

clinical studies might be improved even more, since 

when analyzing a subject who is not moving, direct and 

more accurate carotid tonometry [6] (which  we had to 

exclude and replace with the radial approach  due to 

feasibility issues) can also be performed. 

Regarding the reliability of the whole examination, the 

obtained intra-class correlation coefficients (ICC) result 

slightly worse than the resting values of validated 

techniques in previous works. As an example, Selzer 

[82] reported intraclass correlations around 0.98 for 

diameter measurements, around 0.89 for arterial 

distensibility and compliance, and between 0.77 and 
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0.83 for pressure estimation. Furthermore, in this case 

ICC values for arterial pressure resulting in a reliable 

dynamic evaluation were available in literature [84] and  

were similar to ours (ICC = 0.89). 

Our results regarding parameters that were derived 

directly from the B-mode image analysis (i.e., D and ΔD 

) prove the robustness of the algorithm used  in more 

critical conditions as well. Furthermore, these data show 

the feasibility of  dynamic vascular diameter assessment 

from ultrasound imaging by using a robust contour 

tracking method together with an appropriate frame rate  

that ensures the temporal resolution needed to correctly 

observe rapid movements of the walls due to high 

cardiac frequency. Most modern ultrasound machines 

allow the acquisition of high frame rate image 

sequences and thus, in conjunction with a precise 

automatic method for arterial wall tracking, could be 

used in future clinical studies for evaluating 

instantaneous diameter at high heart rate. 

As regards the pressure measurement needed in 

conjunction with diameter assessment for elasticity 

estimation, we opted for radial tonometry that allowed us 

to compute central pressure by radial to aortic transfer 

function. This choice, although less accurate than direct 

carotid tonometry for local pressure estimation, was 
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preferred since it is considered much more feasible in 

exercise. Since aortic and carotid  pressure estimations 

by tonometry, at least at rest, are in good agreement 

[78], the data obtained were then used in conjunction 

with the diameter values  to assess carotid elasticity 

parameters. However, although we tested the 

reproducibility of the radial tonometry-based technique, 

we did not show that it is the most appropriate method 

for carotid pressure estimation during exercise, from a 

physiological point of view.  First, at this time we do not 

know whether differences between aortic and carotid 

pressure can be considered small in dynamic conditions 

as well. Second, there is no consensus [85, 86] on the 

capability of generalized transfer functions to accurately 

estimate central hemodynamic variables from radial 

pressure waveform in dynamic conditions. Some 

authors [85] compared the radial tonometry-derived 

measure with a catheter-based one in 30 patients during 

supine exercise, concluding that the two approaches 

show good agreement. However, others  [86] observing 

eight healthy volunteers during the incremental hand-

grip test concluded that changes in vascular tone due to 

dynamic conditions could compromise the assumptions 

for aortic evaluation derived by radial applanation 

tonometry. Indeed, further studies analyzing different 
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approaches for carotid or aortic pressure dynamic 

evaluation are warranted. It is worth noting that although 

some studies assessed vascular parameters 

dynamically [7,8] there are very few studies reporting 

the reliability of this evaluation  in literature [87]. 

After testing the robustness of the developed approach 

we compared the physiological behaviour during 

exercise in controls and patients. In few previous works 

some results regarding healthy volunteers have been 

reported. Myers et al. [7] reported stiffness increase with 

isometric handgrip that varies with differences in gender 

and age and can be manifest even in young, healthy 

adults; other studies [88, 89] found elasticity to be 

reduced during exercise in healthy volunteers.  Elasticity 

analysis during exercise is intriguing. In fact, accuracy of 

the estimation of cardiac afterload during exercise on 

the basis of brachial BP is debatable, since PP 

amplification from the center to the periphery of the 

arterial tree increases greatly during exercise [88]. 

Moreover, men with hypercholesterolemia have higher 

augmentation index and blunted pulse pressure 

amplification compared with age-matched healthy 

controls during light exercise, in spite of similar brachial 

SBP at baseline and during exercise [90]. Hence, an 

abnormal exercise central BP can underlie an abnormal 
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behaviour of arterial stiffness, which until now has been 

evaluated mainly by indirect measurement, such as the 

timing of the reflected wave. BP response to exercise is 

a negative prognostic factor for cardiovascular mortality, 

and a more in-depth study of the behaviour of arterial 

stiffness during exercise could provide not only better 

knowledge of physiological mechanisms, but possibly 

also a better prediction of cardiovascular risk.  

In this study, carotid distensibility was assessed in 

healthy volunteers during exercise and then compared 

with a group of patients.  

In controls, aside from the expected increase in mean 

central pressure, at peak as compared to baseline, a 

decrease in DC during exercise was documented; the 

phenomenon was observable at peak and remained 

evident until 1 min after peak exercise. These data 

indicate increased carotid stiffness during exercise, a 

phenomenon that might be partly due to the recruitment 

of a greater number of collagen fibers and consequently  

a different mechanical behaviour of the arterial wall at 

higher pressures [91]. These results are consistent with 

the non-linear relation between stress and strain that is 

thought to characterize the arterial borders: at higher 

stress (i.e., pulse pressure), the slope of the curve 

stress-strain (i.e., pressure-distension) increases and 
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thus also the corresponding stiffness. Besides arterial 

elasticity reduction, in controls also a vasodilation 

phenomenon was observed. In addition, the cardiac 

evaluation underlined an increase in left-ventricular 

elastance. As regards the comparison with patients with 

known or suspected coronary artery disease, those 

have an increased carotid diameter, reduced carotid 

distensibility, and reduced ventricular elastance at rest 

with respect to the group of young healthy volunteers. 

As already mentioned in controls, exercise induced 

carotid dilatation, reduced carotid distensibility and 

increased left-ventricular elastance, but this does not 

occur in patients, despite a similar increase in mean 

blood pressure. Hence, in the presence of 

cardiovascular pathology an altered adaptation of 

carotid to exercise and an altered carotid-ventricular 

coupling was observed. 

In healthy subjects the physiological reduction in arterial 

distensibility and the carotid vasodilation seems to be 

related to exercise intensity, and it is supported by an 

increase in cardiac work efficiency.  

This relationship is altered in patients with 

cardiovascular disease. The non-physiological 

adaptation of carotid to exercise could be a result of 
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changes in carotid geometry and the inability to increase 

cardiac contractility. 

 

4.2 Conclusions 

In conclusion, this work shows that the reproducibility of 

carotid elasticity measurements obtained by the 

developed algorithm in healthy subjects during various 

exercise steps is comparable to resting variability 

reported in literature for well-known and validated gold-

standard techniques. Moreover, we compared the 

results obtained in controls and patients with known or 

suspected coronary artery disease. Besides the 

vascular evaluation also cardiac analysis was provided 

by left-ventricular elastance assessment. The two 

populations showed different behaviour with an altered 

adaptation of carotid artery to exercise and an abnormal 

carotid-ventricular coupling in patients.  

Thus, the proposed approach can be considered 

reliable and might be used in future population studies 

for investigating the dynamic behaviour of arterial 

elasticity and its role in arterial-ventricular coupling 

variation in stress conditions. Moreover, from these 

preliminary results, the importance of a dynamic 

assessment of carotid elasticity was confirmed, and 

there is evidence of a clinical need including a simple 
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and robust device to more easily perform this kind of 

analysis than by ultrasound.   
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CHAPTER 5 
Future Perspective 

 
 
Our work gave evidence of different carotid dynamic 

behaviour in controls and patients and of the huge 

clinical impact that this vascular analysis might have. 

The opportunities regarding our work can be divided in 

two main fields: i) the dynamic evaluation of other 

vascular biomarkers, ii) the development of a simple and 

low-cost device for dynamic carotid analysis. 

 

Dynamic evaluation of other vascular biomarker 

As mentioned in the first chapter, besides the evaluation 

of carotid elasticity, some other innovative biomarkers 

are available and their dynamic analysis might provide 

relevant and additional clinical information. The scientific 

attention includes the assessment of these parameters 

in different populations, such as healthy controls, 

subjects with risk factors, patients with cardiovascular 

diseases and extreme conditions (i.e. athletes, high 

altitude etc).  
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Among the known vascular biomarkers we put our 

attention on the analysis of carotid Intima-Media 

Thickness and in particular on its changes in athletes 

after competition. The evaluation of cardiovascular 

properties in extreme conditions of exercise could 

enhance the characterization of vessel elastic 

properties, elucidating dynamic behaviours and 

modifications due to training. In a group of thirteen ultra-

marathon elite athletes (40.9±3.7 years, 8 males, BSA = 

1.72±0.17 mq) we evaluated the acute effects of 

participation in a ultra-marathon on carotid Intima-Media 

Thickness, diameter and elasticity. 

The subjects underwent ultrasound examinations at rest 

and at the end of a 100km race. Ten age- and sex-

matched sedentary healthy controls were also studied in 

resting conditions. Ultrasound B-mode image 

sequences of right common carotid arteries were 

acquired before (rest) and immediately after (post) 

participation, and analyzed by our automatic system for 

the measurement of arterial diameter (D). The method 

was integrated with a new algorithm able to 

automatically assess also Intima-Media Thickness 

(IMT). In addition, carotid blood pressure (BP) values 

were estimated by applanation tonometry and cross-

sectional distesibility coefficient (DC) was then obtained.  
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At rest athletes showed similar D and IMT, but lower 

mean BP and higher DC in comparison to sedentary 

controls. 

With exercise athletes showed a significantly decreased 

BP, in the presence of unchanged total body water. D 

increased, DC tended to increase, and IMT decreased. 

Elite ultramarathon competitors at rest did not show 

structural carotid remodeling but presented higher 

distensibility than sedentary controls. In these athletes, 

prolonged exercise induced blood pressure reduction 

and carotid dilation, in conjunction with a further 

increased of carotid elasticity and a reduction in IMT. 

From  these preliminary data, we can speculate that 

athletes undergo a vascular adaptation consisting in IMT 

remodelling, higher carotid elasticity and enhanced 

vasodilator reserve. Further studies in this field are 

needed to completely understand the dynamic IMT 

behaviour and in general the vascular dynamic 

differences in controls, patients and athletes. 

 

Development of a simple and low-cost device for 

dynamic carotid analysis 

In order to make the dynamic analysis of carotid artery 

widespread, an easier and less expensive technique 

able to provide the information we obtained by 
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ultrasound image processing in conjunction with 

tonometry, should be available. 

In our lab a first prototype based on vibration approach 

was designed and might be a suitable solution for 

implementing low-cost and simple carotid elasticity 

dynamic evaluation. The system diagram is summarised 

in the figure below. 

 
 

Figure 1. New simple and low-cost system for carotid 

elasticity evaluation 

 

With this system the temporal distances (i.e. Pulse 

Transit Time, PTT) between two signals from two sites 

of the carotid artery can be obtained. The ratio between 

the geometrical distance of the two points and the PTT 

allows the estimation of the Pulse Wave Velocity (PWV); 
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PWV increases when arteries become stiffer and hence 

can give information regarding vessel elasticity [6]. 

The device includes two sensors based on MEMS 

accelerometers (Figure 2), an ECG (elettrocardiogram) 

signal acquisition, a wireless (Bluetooth®) portable unit 

and a laptop for signal processing. 

 

 
Figure 2. MEMS accelerometer 

 

Data can be acquired at 500 Hz, ensuring the required 

temporale resolution also in dynamic conditions when 

human cardiac frequency becomes higher. 
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Figure 3. Application of the sensors: carotid assessment 

and contractility evaluation. 

 

Moreover, the same idea might be applied also to obtain 

information regarding the cardiac contractility, whose 

behaviour is altered in exercise as shown by our data, 

and might allow a better stratification of cardiovascular 

status. Left-ventricular contractility might be measured 

by a third sensor applied to the chest [92] as shown in 

figure 3. 

Studies regarding this new technology are in progress, 

in order to assess both the feasibility and the robustness 

of the system.  



 

Chapter 5 - Future Perspectives 

 88 

This simple device might allow the diffusion of a 

dynamic cardiovascular analysis able to improve the 

stratification of patients and their treatment.  

Hence, in the future, the cardiologist ambulatory might 

provide, besides cardiac and pressure monitoring, 

additive relevant clinical information from a simple 

arterial elasticity 24-hours device. 
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Functional and Structural Alterations of Large Arteries: Methodological Issues  
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Abstract: Ultrasound assessment of vascular biomarkers has been implemented for screening, prevention and improvement of cardiovas-
cular risk stratification beyond classical risk factors including smoking, diabetes, hypercholesterolemia and hypertension. Thus, the pres-
ence of vascular damage at the sub-clinical, asymptomatic stages can identify a "vulnerable" patient, and aid in implementing cardiovas-
cular prevention strategies.  

Increased intima-media thickness of the common carotid artery is a well-known marker of early atherosclerosis, which significantly cor-
relates with the development of coronary or cerebro-vascular disease. More recently, guidelines for cardiovascular prevention in hyper-
tension also introduced other vascular parameters evaluating both mechanical and functional arterial proprieties of peripheral arteries. In-
creased arterial stiffness, which can be detected by ultrasound at the common carotid, has been shown to predict future cardiovascular 
events and it is already considered a subclinical target organ of hypertensive patients.  

Even earlier vascular abnormalities such as endothelial dysfunction in the peripheral arteries, detected as reduced flow-mediated dilation 
of the brachial artery by ultrasound, have also been mentioned for their possible clinical use in the future.  

This manuscript reviews clinical evidence supporting the use of these different vascular markers for cardiovascular risk stratification, fo-
cusing on the need for an accurate, robust and reliable methodology for the assessment of vascular markers, which could improve their 
predictive value and increase their use in routine clinical practice. 

Keywords: Ultrasound, carotid artery, intima-media thickness, stiffness, endothelium, automated edge detection 

1. INTRODUCTION 
 Cardiovascular disease is one of the major causes of mortality 
and morbidity worldwide [1]. The prevention of this disease, which 
based on 2008 mortality rate data kills more than 2200 Americans 
each day (an average of 1 death every 39 seconds), is a priority in 
public health [2]. Cardiovascular risk estimated from classic risk 
factors such as smoking, obesity, hypercholesterolemia and hyper-
tension may be not enough for effective prevention.  
 The possibility of identifying a "vulnerable" patient can be in-
creased by the introduction of biomarkers such as those objectively 
measurable by ultrasound [3], thus implementing the model for 
effective prevention with the presence of vascular damage at the 
sub-clinical, asymptomatic stage preceding the onset of decades of 
disease (Fig. 1).  
 Integrative vascular markers of risk that can be effective for the 
screening, prevention and improvement of cardiovascular risk 
stratification are well underlined by the European Hypertension 
Guidelines [4, 5]. In particular, increased intima-media thickness of 
the common carotid artery is a marker of early atherosclerosis, 
which significantly correlates with coronary or cerebrovascular 
disease [6, 7], and it has been considered an intermediate stage in 
the continuum of vascular disease and a determinant of total car-
diovascular risk. These guidelines also introduced other vascular 
parameters evaluating mechanical and functional arterial proprieties 
of peripheral arteries [5]. Increased arterial stiffness has been 
shown to predict future cardiovascular events [8] and it is already 
considered a subclinical target organ of hypertensive patients [4].  
 Earlier vascular abnormalities, such as endothelial dysfunction 
in the peripheral arteries [9], have also been mentioned for their 
possible future use.  
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 This manuscript will review clinical evidence supporting the 
use of these different vascular markers for cardiovascular risk strati-
fication. We will also focus on the need for an accurate, robust and 
reliable methodology, particularly for the evaluation of the newly 
proposed vascular markers, improving their predictive value for 
possible future use in clinical practice. 

2. CAROTID INTIMA-MEDIA THICKNESS 
2.1. Clinical Aspects and Prognostic Values 
 Carotid intima-media thickness (C-IMT), as measured by high 
resolution B-mode ultrasound of extra-cranial carotid arteries, is the 
most widely accepted non-invasive marker of subclinical athero-
sclerosis [10]. C-IMT is considered an intermediate phenotype of 
atherosclerosis suitable for use in large-scale population studies 
[11]. Increased C-IMT has been associated with augmented cardio-
vascular risk [12, 13] as well as with presence of advanced athero-
sclerosis at different vascular sites including peripheral, cerebral 
and coronary areas [14, 15]. Most importantly, epidemiological 
studies, including the Atherosclerosis and Risk in Communities 
Study (ARIC), the Rotterdam Study and the Cardiovascular Health 
Study, have consistently reported the predictive value of C-IMT for 
myocardial infarction or stroke independent of traditional cardio-
vascular risk factors [7, 16-21].  
 A recent meta-analysis of eight relevant general population-
based studies involving a total of 37,197 subjects followed for a 
mean of 5.5 years confirmed the strong independent predictive 
value of cross-sectional C-IMT for future cardiovascular events 
[22]. The predictive value of C-IMT for cardiovascular events has 
also been confirmed in asymptomatic Type 2 diabetic patients. In 
particular, the combination of Framingham Risk Score (FRS) and 
C-IMT showed a greater predictive value than FRS alone in this 
population [23].  
 Given the predictive value of increased C-IMT for cardiovascu-
lar disease, its progression has been related to increase relative risk 
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of cardiovascular disease. Consequently, it has been proposed that 
reduced progression of C-IMT is congruent with a reduction in 
cardiovascular events [24]. This hypothesis has been documented in 
clinical trials designed to study the efficacy of statins where C-IMT 
was used as surrogate end-point. The effect of statins on C-IMT 
progression appears to be correlated to potency and intensity of 
treatment in reducing LDL levels. Several clinical trials have shown 
a regression of C-IMT in subjects aggressively treated with atorvas-
tatin 80 mg, whereas a reduced progression of C-IMT was observed 
in subjects less intensively treated with simvastatin or pravastatin 
40 mg [25-27].  
 The results of the "Measuring Effects on Intima-Media Thick-
ness: an Evaluation of Rosuvastatin" (METEOR) Study show a 
reduced progression of C-IMT in the rosuvastatin 40 mg arm [28]. 
In contrast with previous findings, no regression was observed de-
spite a 48.8% reduction of LDL-C by rosuvastatin. A similar effect 
of rosuvastatin on progression of C-IMT was confirmed by the 
results of a smaller study [29]. A possible explanation for the dis-
crepancy of results of studies could regard the different cardiovas-
cular risk of the recruited populations. In the METEOR trial only 
asymptomatic subjects with no advanced atherosclerosis, no current 
requirement for statin use and low FRS (< 10%) were recruited, 
while most of the previous lipid-lowering studies showing C-IMT 
regression were performed in secondary prevention or in high-risk 
patients with elevated LDL-C, in whom a greater effect on C-IMT 
is conceivable.  
 The European Lacidipine Study on Atherosclerosis (ELSA), a 
randomized trial in which 2334 hypertensive patients received ef-
fective antihypertensive treatment for 3.75 years, showed that al-
though baseline CIMT strongly predicted cardiovascular events 
during the follow-up period, differences in CIMT measured yearly 
compared with baseline did not [30]. Furthermore, a meta-analysis 
including 41 trials with 18,307 participants showed that despite a 
significant reduction in cardiovascular events and all-cause death 
induced by active treatments, there was no significant relationship 
between C-IMT regression and events, suggesting that regression or 
slowed progression of C-IMT, induced by cardiovascular drug 
therapies, may not reflect a reduction in cardiovascular events [31].  
 Conflicting results on the independent predictive value of C-
IMT for cardiovascular events have also been recently reported. 
The Three-City Study is a large prospective study in which 5,895 
adults aged 65-85 years with no history of coronary heart disease 
were scanned to measure C-IMT at a plaque-free site of the com-
mon carotid artery and followed-up for 6 years [32]. Mean C-IMT 
measured in areas without focal plaques in the common carotid was 
not an independent predictor for cardiovascular disease. In this 
study, carotid plaques were strictly quantified at different sites (near 
and far walls of common carotid artery, bifurcation, origin of the 
internal carotid arteries) and defined as localized echo structures 
encroaching into the vessel lumen for which the wall thickening 
was at least 50% greater than that of the surrounding vessel wall. 

The investigators of the Tromso study, a prospective population-
based study, have previously reported similar observations [33]. In 
this study both total plaque area and C-IMT were measured in over 
6000 healthy participants. After 6 years of follow-up, the results 
showed that carotid plaque area was a stronger predictor of myo-
cardial infarction than was C-IMT.  
 A recent meta-analysis of 11 population-based studies (54.336 
subjects) provided further evidence of a stronger predictive value 
for future cardiovascular events of carotid plaque than C-IMT [34]. 
 Taken together, the results of these studies question the accu-
racy of C-IMT as a marker of atherosclerosis. C-IMT detected by 
high-resolution ultrasound represents the combined width of the 
carotid artery intima and media with the technical limitation of not 
being able to distinguish between intima and media. The carotid 
artery is an elastic artery and C-IMT in healthy subjects consists 
almost entirely of media. While the carotid artery is unaffected by 
age or gender until 18 years of age, thereafter there is a progressive 
intimal thickening or medial hypertrophy determined by age, gen-
der and hypertension that do not necessarily reflect the atheroscle-
rotic process [35]. The observation that the classic risks factors for 
atherosclerotic disease poorly correlate with C-IMT further sup-
ports this hypothesis [36-38]. Pathological studies indicate that C-
IMT mainly represent hypertensive medial hypertrophy or thicken-
ing of smooth muscle media, whereas atherosclerosis is largely an 
intimal process [39]. In line with the hypothesis that C-IMT is bio-
logically distinct from plaque, age-related thickening of intima-
media layers of the common carotid artery has been observed in the 
absence of overt atherosclerosis [35]. Thus, it is not surprising that 
atherosclerotic plaque offers a better prognostic value than C-IMT 
for cardiovascular events.  
 No firm conclusion can be drawn either way on the prognostic 
value of C-IMT, until large epidemiological studies include meas-
urement of C-IMT at different sites following standardized proto-
cols that would provide useful information for clarifying the value 
of C-IMT as surrogate marker of atherosclerosis and/or more gen-
erically of cardiovascular disease. In particular, C-IMT evaluation 
at Carotid Bulb (CB) or Internal Carotid Artery (ICA), the two 
vascular sites most frequently affected by atherosclerosis, should be 
routinely included in future clinical trials. Since total plaque area 
might provide a better prognostic value for future cardiovascular 
events than C-IMT, this evaluation should be part of the same stud-
ies. Nevertheless, plaque burden (area or volume) evaluation should 
be performed following precise protocols established in a future 
consensus of experts on ultrasound carotid examination.  

2.2. Methodological and Technical Issues 
 C-IMT is included in the American College of Cardiology and 
American Heart Association guidelines as a class IIA recommenda-
tion for intermediate risk patients [40]. However, several methodo-
logical aspects should be taken into consideration for its correct 
evaluation as recently suggested by an expert’s review [41] since C-

 

 

 

 

 

 

Fig. (1). Schematic representation of progression of atherosclerosis and its possible detection by vascular tests. 
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IMT value can be influenced by location of the measure, type of 
ultrasound data and features of the reading system.  
 A careful examination of previous studies on C-IMT reveals 
methodological discrepancies that must be taken into account for a 
proper interpretation of results. Inaba et al. [34] observed that 77% 
of the studies included in their meta-analysis did not indicate 
whether plaques were actually included in C-IMT analysis. In addi-
tion, 63% of the studies used maximal C-IMT, more likely reflect-
ing focal thickening or plaque, instead of mean C-IMT. Further-
more, study design of C-IMT trials was heterogeneous since the 
definition of the landmarks of carotid segments (Common Carotid 
Artery, CCA, Carotid Bulb, CB or Internal Carotid Artery, ICA) 
selected to measure C-IMT differ significantly [22]. The far wall of 
CCA is the easiest of the three anatomical segments to examine, 
being the most commonly used measurement in clinical studies. 
Unfortunately plaques are rare at this site and studies of the rela-
tionship of C-IMT at this site are conflicting [41]. The carotid ar-
tery is a complex vessel, with differing associations for each seg-
ment regarding risk factors and outcome [41]. Common carotid C-
IMT is a better predictor of stroke than myocardial infarction [42, 
43] and shows a better correlation with left ventricular mass than 
with coronary artery disease [41].  
 These data suggest that different pathological processes occur at 
distinct vascular sites of the carotid artery in different stages of 
disease. Indeed, the hemodynamics of the carotid artery in its dif-
ferent segments explains why atherosclerotic plaques are located in 
the carotid bulb and internal carotid artery than in the common 
carotid segment, which is affected in more advanced stages of the 
disease [35].  
 Several studies suggest the CCA far wall as the best location in 
terms of feasibility and reproducibility of the measure [44, 45] and 
this has been considered as the standard segment for the evaluation.  
 However, it might also be interesting to investigate whether 
information provided at CB or ICA, more challenging from a tech-
nical point of view, may show stronger correlation with classic risk 
factors [45]. Another point to take into consideration specifically 
referring to CCA is the variability in morphology and in vessel 
appearance under pathology. In particular, a horizontal image of the 
carotid artery cannot always be obtained depending on the anatomy 
of the subject, and this may be a problem for some automated seg-
mentation techniques [46].  
 A post-hoc analysis to determine the best algorithm for deter-
mining CIMT using data from the METEOR study showed that 
ultrasound protocols that include CIMT measurements at multiple 
angles of both the near and far walls provide the best balance be-
tween reproducibility, rate of CIMT progression, treatment effect 
and their associated precision in this low-risk population with sub-
clinical atherosclerosis [47]. 
 Regarding the ultrasound data that can be used to obtain C-IMT 
evaluation, two main types are commercially available: B-mode 
image processing-based device and Radio-frequency (RF)-based 
echo-tracking system [46]. In the past, estimation was obtained 
manually, but currently the assessment of C-IMT is generally ob-
tained by automatic processing of these ultrasound signals [46]. RF 
data devices are considered very accurate since they are based on 
signals with higher spatial resolution than B-mode data [48, 49]. 
However, when comparing the performance in terms of reproduci-
bility of this kind of technique with that of robust image-based sys-
tems, similar results are obtained [46, 50]. The repeatability of the 
two approaches was recently tested in the same population, obtain-
ing similar coefficients of variation (5% for RF-based device and 
6% for image processing systems, respectively) [50]. A good 
agreement between the two techniques in terms of Bland-Altman 
statistics was also reported. However, it must be pointed out that the 
quality of the final result of B-mode based systems is related to 
several issues which have to be carefully considered, such as qual-

ity of the scans and the system's setting. In particular, Potter et al. 
[51] studied the effects of changing dynamic range (DR), gain set 
and probe distance in C-IMT assessment by an image analysis 
software applied to an agar phantom. An increase in DR or gain 
causes a reduction in the measured wall thickness, whereas the 
distance of the probe did not influence the final result. Hence, DR 
and gain sets, but also other parameters such as depth gain compen-
sation (DGC) or filtering should be standardized as suggested by 
international guidelines [52] or at least documented in follow-up 
analysis. Furthermore, Rossi et al. [53] analyzed the influence on 
carotid diameter evaluation of non-linear processing generally used 
in standard ultrasound equipment for better image visualization. In 
particular, these authors show that logarithmic compression and 
saturation can cause alteration when using approaches based on the 
gray level gradient, and the consequent small deviation might affect 
also the assessment of C-IMT. Another point to consider when 
working with standard US equipment is whether values obtained 
with newer apparatus are comparable to those obtained with older 
ones. A recent paper [54] reported the effects of transducer fre-
quency on the final result by semi-automated analysis in a small 
group of patients. In particular C-IMT measurements obtained with 
standard (8 MHz) and high (14 MHz) frequencies were comparable.  
 Other features of the reading systems should be also considered 
for the assessment of C-IMT. Low-cost and user-friendly devices 
can make the diffusion of this vascular biomarker easier and faster. 
Hence, reliable and robust software based on B-mode image proc-
essing, which can be adopted with any standard ultrasound equip-
ment, could provide an effective solution. Nevertheless they should 
be used according to international guideline suggestions, with par-
ticular attention to machine settings. Finally, it is worth noting that 
despite guideline suggestions introducing standardization in the 
measure, different approaches are available for C-IMT estimation in 
terms of analyzed data, (i.e., B-mode images or RF signal process-
ing) or for anatomical sites. Thus, future analysis providing the 
agreement between different kinds of measurements and reference 
values for risk classification are needed in order to improve the 
clinical implications of C-IMT assessment. 

3. CAROTID DISTENSIBILITY AND STIFFNESS 
3.1. Clinical Aspects and Prognostic Value 
 Arterial distensibility is a measure of the artery’s ability to ex-
pand and contract with cardiac pulsation and relaxation. Hyperten-
sion and other risk factors such as diabetes, dyslipidemia and smok-
ing can alter the structural and functional properties of the arterial 
wall, leading to a decrease in arterial distensibility. This seems to be 
a common pathologic mechanism for many factors that lead to the 
occurrence and progression of the vascular changes associated with 
cardiovascular disease [49]. The aorta is a major vessel of interest 
when determining regional arterial stiffness, for at least two rea-
sons: the thoracic and abdominal aorta makes the largest contribu-
tion to the arterial buffering function, [49] and aortic stiffness is an 
independent predictor of outcome in a variety of populations [8]. 
The measurement of aortic stiffness as carotid-to-femoral pulse 
wave velocity (PWV) by arterial tonometry is generally accepted as 
the most simple, non-invasive, robust, and reproducible method to 
determine arterial stiffness [49]. However, it should be recognized 
that carotid-femoral PWV is not a direct measurement, since it is 
based on the acceptance of a propagative model of the arterial sys-
tem. Thus, other arterial sites have potential interest: the measure-
ment of local carotid stiffness may also provide important prognos-
tic information, since the carotid artery is a frequent site of plaque 
formation [49]. 
 Aging is physiologically accompanied by arterial dilatation, 
increase in wall thickness and reduction of the elasticity and com-
pliance, all features characterizing atherosclerosis [55]. The main 
structural change occurring with aging is the degeneration of the 
tunica media, which causes a gradual stiffening of large elastic 
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arteries [56]. This correspond on one hand to a reduced synthesis 
and an increased degradation of elastin, and on the other hand to an 
increased synthesis and reduced degradation of type 1 and type 3 
collagen [57]. Aging, along with blood pressure, is the main deter-
minant of stiffness in both carotid and aortic stiffness [58]. How-
ever, histological differences exist between large artery areas, re-
sponsible for different behaviors in the presence of cardiovascular 
risk factors. In particular, even if the carotid artery and the aorta are 
both classified as elastic vessels, the ultra-structure of the carotid 
artery is intermediate between muscular and elastic arteries, being 
more similar to the abdominal than to the ascending aorta. The 
radial, brachial and femoral arteries, which have a muscular struc-
ture, are resistant to age-induced stiffening when compared to the 
carotid artery [59]. This implies that carotid and arterial stiffness 
are strictly correlated in the healthy population, while the correla-
tion becomes weaker as soon as the number of cardiovascular risk 
factors increases [58]. Therefore, although carotid-femoral PWV 
and carotid stiffness provide similar information on the impact of 
aging on the stiffness of large arteries in healthy subjects, this is not 
the same for the hypertension and/or diabetes. In these cases, the 
aorta stiffens more than the carotid artery due to age and other car-
diovascular risk factors [58]. 
 Several studies have investigated the physiopathology of ca-
rotid stiffness in essential hypertension. The increased arterial stiff-
ness observed in patients with essential hypertension was generally 
attributed to arterial wall hypertrophy [60]. However, further stud-
ies have shown that the increased carotid stiffness observed in hy-
pertensive patients was due to an increase in distending pressure 
and not to hypertension-associated changes in structural properties, 
suggesting a functional adaptation of the wall material [61]. 
Young's incremental elastic modulus of the common carotid artery 
has been shown to exist in young never-treated hypertensive pa-
tients in comparison to age- and gender-matched normotensive 
subjects, at a given circumferential wall stress, whereas it did not 
differ between the two groups in middle-aged and older individuals 
[62]. Thus, the mechanisms involved in arterial stiffening in 
younger hypertensive patients probably differ from those advanced 
to explain the stiffening of large arteries with aging [55]. 
 The Atherosclerosis Risk in Communities (ARIC) Study, a 
population study recruiting a biracial sample of 4701 men and 
women 45-64 years of age, investigated the relationship between 
carotid stiffness and different cardiovascular risk factors. Carotid 
stiffness was associated with hypertension, diabetes, trait anger, 
physical activity, and ethnicity [63-67]. In particular, metabolic 
factors, such as elevated glucose, insulin, and triglycerides had a 
synergistic effect on Young’s elastic modulus, which estimates 
arterial stiffness controlling for intima-media thickness [63]. Meta-
bolic factors such as body mass index and triglycerides were inde-
pendent correlates of Young’s elastic modulus also in the Bogalusa 
study, enrolling a younger multiracial population sample (516 as-
ymptomatic subjects aged 25-38 years), beyond blood pressure 
values, sex and age [68].  
 In the Baltimore Longitudinal Study on Aging, an independent 
association between suppressed anger and carotid stiffness was 
reported, as well as an increase in stiffness with the clustering of 
components of metabolic syndrome and decreasing levels of testos-
terone [69]. In an aged population with high prevalence of CV risk 
factors and disease, such as that of the Hoorn study, low-grade in-
flammation appeared to have an important role in determining in-
creased carotid stiffness, mainly through arterial enlargement [70]. 
In the same population, metabolic syndrome has been associated 
with stiffness of muscular arteries (brachial and femoral), but not of 
muscular-elastic arteries (carotid and aorta) [71], again confirming 
that impact of different risk factors varies depending on the area 
considered. In the Second Manifestations of ARTerial disease 
(SMART) Study, decreased carotid distensibility was a marker of 
increased cardiovascular risk but in patients who already had vascu-

lar disease [72]. Carotid stiffness was also able to predict incident 
hypertension in the ARIC cohort [64]. 
 Arterial stiffness has been shown to be an independent predictor 
of cardiovascular morbidity and mortality [8] and is thought to play 
a crucial role in the development of cardiovascular disease. The 
predictive value of arterial stiffness has been shown mainly for 
aortic PWV [8], but also from local carotid artery stiffness [73]. 
Currently these techniques are widely used in interventional clinical 
studies to assess the effect of either non-pharmacological or phar-
macological treatments on cardiovascular risk [74, 75]. 
 Some studies were specifically directed towards the association 
between carotid stiffness parameters and the risk of cardiovascular 
events. Blacher et al. were the first to analyze a cohort of 79 pa-
tients with chronic renal failure undergoing hemodialysis, followed-
up for 25 months, during which there were 10 fatal cardiovascular 
and 8 non-cardiovascular events. The study shows that in patients 
with chronic renal failure, increased carotid stiffness is a powerful 
independent predictor of all-cause and cardiovascular mortality 
[73]. Also after renal transplantation carotid artery distensibility 
proved to be an independent predictor of cardiovascular disease, 
confirming the importance of chronic kidney disease in influencing 
carotid wall mechanics [76]. In the SMART study, a group of pa-
tients with manifest cerebrovascular, aortic, coronary or peripheral 
disease was prospectively examined, to assess whether the carotid 
arterial stiffness was related to the occurrence of cardiovascular 
events and mortality [77], showing that increased carotid stiffness 
was associated with an increased risk of cardiovascular events and 
mortality in not-corrected analysis, whereas the relationship disap-
peared after controlling for age. However, an important limitation 
of this study is the fact that brachial instead of the local blood pres-
sure was used for calculation of the carotid stiffness parameters, 
possibly leading to underestimation of the relationship between 
arterial stiffness and cardiovascular events. 
 In the Three-City study the mechanical properties of the carotid 
artery wall were studied in 3,337 elderly subjects (mean age 73 
years), followed for a median of 44 months [78]. In this study, pa-
tients who had a higher distension at baseline showed an increased 
risk of coronary events compared to the patients with lower disten-
sion. This relationship was independent of age, sex, brachial and 
carotid pulse pressure (PP), heart rate, anti-hypertensive treatment, 
C-IMT, carotid plaques and other major cardiovascular risk factors. 
In the study, in agreement with the previous results [79], carotid PP 
was closely related to coronary events. However, the association 
observed between carotid artery distension and coronary events was 
independent of carotid PP, suggesting that arterial wall distension 
was not completely determined by wall stress. However, no asso-
ciation between coronary events and distensibility was found, while 
the association between carotid distension, carotid compliance, 
Young's elastic modulus and coronary events, was independent 
from the presence of atherosclerosis [78]. 
 Finally, an independent association between increased carotid 
stiffness and a first-ever acute ischemic stroke has already been 
reported [80, 81], although other studies did not find the same rela-
tionship [82]. Although the large variance in technical measure-
ments of carotid stiffness and blood pressure were most likely re-
sponsible for conflicting data, a tighter cause-effect relationship 
with cerebral rather than coronary cardiovascular events is not sur-
prising, as confirmed by a recent analysis conducted in 10,407 sub-
jects of the ARIC study followed-up for 13.8 years. The study 
showed that after adjusting for cardiovascular risk factors, ultra-
sound measures of carotid arterial stiffness are associated with inci-
dent ischemic stroke but not incident coronary events, although the 
two outcomes shared similar risk factors [83]! 

3.2. Methodological and Technical Issues 
 Arterial stiffness can be estimated at the systemic, regional and 
local levels [49]. The local measure is generally obtained at the 
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common carotid site, a large superficial artery that is easily accessi-
ble; this evaluation is considered particularly accurate, since unlike 
the systemic and regional evaluation, in this case arterial stiffness is 
determined locally and is estimated directly by pressure changes, 
which in turn determine the changes of volume of the vessel. The 
local assessment can be obtained by measuring the diameter of the 
vessel and its variations during the cardiac cycle (stroke change in 
diameter or distension) by ultrasound signal in conjunction with 
local pulse pressure estimation by tonometry [49].  
 With ever-increasing attention focused on the clinical implica-
tions of arterial stiffening analysis, it is extremely important to take 
into consideration methodological aspects, regarding arterial diame-
ter assessment by ultrasound influencing clinical study outcomes. 
Several factors should be considered when performing this kind of 
measurement, especially accuracy, precision and feasibility. 
 Two main approaches are available for arterial diameter as-
sessment by ultrasound data: B-mode image processing based de-
vice [50, 84] and radio-frequency (RF)-based echo-tracking system 
[48]. Devices processing RF data are considered very accurate since 
they are based on signals with higher spatial resolution than B-
mode data [49]. Furthermore, when adopting B-mode based sys-
tems some issues should be considered since the accuracy of this 
kind of device depends on many aspects such as the quality of the 
scans, and can be influenced by the system's setting. In particular, 
Potter et al. [51] showed that dynamic range (DR), gain set and 
probe distance alter lumen diameter values obtained by an image 
analysis software applied to an agar phantom; an increase in DR, 
gain or distance causes a reduction in the measured diameter value. 
Hence, DR and gain sets, but also other parameters such as depth 
gain compensation or filtering should be documented and replicated 
when performing follow-up analysis on the same subject, and con-
sensus guidelines adopted. As regards the distance's influence on 
the final measurement, the authors suggest keeping in mind this 
aspect when interpreting the reported effects of weight changes on 
arterial diameter. Furthermore, Rossi et al. [53] showed that non-
linear processing used to improve the B-mode image visualization 
on standard ultrasound equipment could affect the diameter meas-
ure obtained by edge-detection algorithms. In particular, the authors 
show that logarithmic compression and saturation can cause altera-
tion when using approaches based on the grey-level gradient. An-
other aspect should be taken into consideration when using methods 
based on edge-detection for diameter assessment on ultrasound 
images: the location of a grey-level discontinuity corresponding to 
an artery interface depends on the mathematical operator adopted 
and on its particular configuration. Consequently, it is possible that 
an edge detector converges to a point slightly different from the real 
localization of the interface [50]. This issue is relevant when track-
ing the two walls of a longitudinal section of the vessel in order to 
compute the diameter; in fact, in this case the grey-level disconti-
nuities of the near and far border respectively are in opposite direc-
tions, and different convergence points result in different measures. 
On the other hand, when evaluating distance where the grey-level 
discontinuities corresponding to the two edges are in the same di-
rection, like the C-IMT evaluation, the possible different point of 
convergence does not influence the resulting measurement. A simi-
lar consideration can be drawn regarding distension, since it is com-
puted as the subtraction of two diameter values and hence is not 
influenced by the edge location [50]. 
 RF-based devices are generally also considered more precise 
than video-image systems, which are limited by the spatial resolu-
tion of pixel analysis. For this reason, precision for video-image 
analyzers is usually estimated to be about 150 m (i.e., the size of 
the pixel) [49] and this would be insufficient for determining arte-
rial stroke change in diameter. However, it is important to point out 
that methods are available based on algorithms with sub-pixel pre-
cision, able to evaluate change in a diameter less than 15 m [50, 
84], and therefore suitable for local arterial stiffness assessment. In 

addition, studies investigating precision in terms of repeatability of 
instantaneous arterial diameter evaluation by ultrasound data proc-
essing are available in literature [85]: coefficients of variation (CV) 
of the parameters involved in arterial elasticity evaluation which are 
considered appropriate for studying their physiological and patho-
physiological variations, are shown in [86-88]. As an example Sel-
zer et al. [88] reported a CV of 1.28% for arterial diameters and 
from 11.05 to 14.54% for carotid stiffness indices. Kool et al. [87] 
found a CV of 4.5% for carotid diameters, 7.9% for distension and 
8.3 to 9.1% for arterial stiffness parameters. 
 Furthermore, in a recent work [50] reproducibility of RF- and 
image-based techniques were assessed in the same population 
showing comparable reproducibility and good agreement. Hence, it 
might be concluded that high spatial resolution of RF-based meth-
ods is not mandatory for standard clinical examination. This point 
might be even more interesting when considering how important it 
is to document the independent predictive value of carotid stiffness 
on cardiovascular events; so far only a few studies where parame-
ters of carotid elasticity were used are found in the literature and the 
development of user-friendly and relatively inexpensive systems for 
assessing carotid diameter and distension would be important. In 
addition, besides the RF-systems, B-mode based devices that can 
also provide the automatic measure of carotid C-IMT (Fig. 2) are 
available and are able to furnish both functional and structural pa-
rameters of the analyzed vessel, as suggested by the international 
expert consensus [49]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (2). Example of automatic edge detection of intima-media thickness 
(IMT) and diameter on B-mode scan of a common carotid artery (Top). 
Detected changes in carotid diameter (distension) over 8 cardiac cycles 
(bottom). 
 
 RF-based echo-tracking devices are considered the reference 
technique providing optimal conditions in the simultaneous meas-
urement of local arterial stiffness and C-IMT for their high preci-
sion; however, since this kind of data output is not easily available 
in standard ultrasound equipment, reproducible and robust B-mode 
based technique (that can be applied to any ultrasound equipment) 
in conjunction with international guidelines, can be considered an 
effective alternative. 



6    Current Pharmaceutical Design, 2013, Vol. 19, No. 00 Bianchini et al. 

4. NON-INVASIVE ASSESSMENT OF ENDOTHELIAL 
FUNCTION: BRACHIAL ARTERY FLOW MEDIATED DI-
LATION  
4.1. Clinical Evidence and Prognostic Value 
 Endothelium plays a primary role in the control of vascular 
function [89] by the production of nitric oxide (NO), which derives 
from the transformation of L-arginine into citrulline by the constitu-
tive endothelial enzyme NO synthase (eNOS), under the stimulus of 
agonists (acetylcholine, bradykinin, and others) acting on specific 
endothelial receptors and of mechanical forces, namely shear stress 
[90]. In pathological conditions, the same stimuli determine the 
production of endothelium-derived contracting factors (EDCFs, 
e.g., thromboxane A2 and prostaglandin H2), which counteract the 
relaxing activity of NO, and reactive oxygen species (ROS) which 
impair endothelial function by causing NO breakdown [90]. In such 
conditions, reduced NO availability and EDCF not only exert an 
opposite effect on vascular tone, but also facilitate the pathogenesis 
of thrombosis and atherosclerotic plaque by promoting platelet 
aggregation, vascular smooth muscle cell proliferation and migra-
tion, and monocyte adhesion [91]. 
 This pivotal role of the endothelium in the atherosclerotic proc-
ess (Fig. 1) led to the development of different methods to assess 
endothelial function, which could provide novel insights into patho-
physiology and a clinical opportunity to detect early disease, quan-
tify risk, judge response to interventions designed to prevent pro-
gression of early disease, and reduce later adverse events in patients 
[92, 93].  
 Endothelial function in clinical research is mainly tested by 
vascular reactivity studies [92]. The most widely used technique is 
the so-called “flow-mediated dilation” (FMD) of the brachial artery. 
This is a non-invasive, ultrasound-based method, introduced in 
1992 [94]. FMD occurs as a result of local endothelial release of 
NO and it is measured as brachial artery diameter changes in re-
sponse to increased shear stress, induced by reactive hyperemia and 
measured [95, 96]. To this aim the sphygmomanometer cuff placed 
on the forearm distal to the brachial artery is inflated to 200 mmHg 
and subsequently released 5 min later (Fig. 3). Endothelium-
independent dilator response can be tested by low-dose sublingual 
nitroglycerin [97]. FMD has been studied widely in clinical re-
search as it enables serial evaluation of young subjects, including 
children [94]. It also permits testing of lifestyle and pharmacologi-

cal interventions on endothelial biology at an early preclinical 
stage, when the disease process is most likely to be reversible [93].  
 Impaired FMD has been shown in hypertensive patients and in 
the presence of the other cardiovascular risk factors [97-101]. A 
report from the Framingham study showed a progressive inverse 
relation between FMD and the increased Framingham risk score 
[102]. A meta-analysis performed in over 200 available studies 
observed that the relationship between FMD and risk factors was 
more evident in patients with a lower cardiovascular risk [6]. 
 Several studies have shown that endothelial dysfunction is an 
early indicator of atherosclerotic damage associated with target 
organ damage, including increased C-IMT [103-105] and left ven-
tricular hypertrophy [106]. Importantly, impaired FMD has been 
associated with major cardiovascular events [107-110]. A meta-
analysis, evaluating longitudinal studies on the prognostic impact of 
endothelial dysfunction and including around 2500 patients with 
atherosclerotic coronary disease or characterized by high cardiovas-
cular risk, showed that endothelial dysfunction, also evaluated as 
FMD, significantly predicted cardiovascular events, independently 
of traditional cardiovascular risk factors [111]. These studies sug-
gested the prognostic relevance of endothelial dysfunction in high-
risk patients. This concept could be extended to lower risk popula-
tions according to the results of a more recent meta-analysis of four 
population-based cohort studies, and ten cohort studies, involving 
5,547 participants, showed a pooled relative risk of cardiovascular 
events per 1% increase in brachial FMD, adjusted for confounding 
risk factors of 0.87 (95% CI, 0.83-0.91), consistent among all sub-
groups evaluated. However, the authors highlighted that the pres-
ence of heterogeneity in the study quality, the remaining confound-
ing factors, and publication bias in the available literature prevent a 
definitive evaluation of the additional predictive value of brachial 
FMD beyond traditional cardiovascular risk factors [112]. 
 Thus, correction of endothelial dysfunction might lead to im-
proved cardiovascular prognosis. So far, only few studies have 
tested this hypothesis [107, 113]. In a group of 400 postmenopausal 
hypertensive women with impaired FMD, it was retested after 6 
months of anti-hypertensive treatment [107]. At 5-year follow-up, 
the incidence of cardiovascular events was significantly lower in 
the subgroup of women whose FMD was improved as compared to 
the subgroup without improvement, despite a similar reduction in 
blood pressure. In a similarly designed study, 251 patients with 

 

 

 

 

 

 

 

 

 

Fig. (3). Assessment of brachial artery flow mediated dilation (FMD). Right panel shows the stereotactic clamp to hold the probe and to adjust the images by 
means of micrometric screws. Graphs on the left panel show changes in diameter (d, bottom) and shear stress (SS, top) obtained by real-time analysis of B-
mode and doppler signal during FMD assessment. Timing of cuff inflating and deflating for inducing and stopping forearm ischemia are also shown in the 
cartoon.  
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newly diagnosed coronary artery disease and an impaired FMD, 
measurement of FMD was repeated after 6 months for individual-
ized and optimized therapy to reduce risk factors, and patients were 
followed-up for 36 months or until one cardiovascular event [113]. 
Multivariate Cox hazards analysis showed that persistent impair-
ment of FMD was an independent predictor of events, while base-
line FMD before the optimized therapy to reduce risk factors had no 
significant prognostic information in this high-risk population. 
 Several studies have shown that FMD can be improved with 
specific modifications of cardiovascular risk factors and with the 
use of drugs known to reduce cardiovascular risk [98, 114, 115]. 
Since the change in FMD occurring as a result of treatment can be 
obtained in a much shorter time (a few months) than required for 
other vascular endpoints such as carotid intima-media thickness 
[105] or arterial stiffness [49, 75], FMD testing has a potential role 
for inclusion in clinical trials as a surrogate end-point [116]. De-
spite this considerable evidence, further large-scale clinical trials 
are needed to demonstrate conclusively whether reversal of im-
paired FMD independently offers a better prognosis to patients with 
essential hypertension.  

4.2. Methodological and Technical Issues 
 Assessment of brachial FMD in clinical investigation has in-
creased because it is noninvasive and apparently easy to perform. 
However, several challenges must be overcome that are major limi-
tations to a widespread application of this method in clinical studies 
[92, 116-119]. These challenges include the need for highly trained 
operators, the expense of the equipment, and also the care required 
to minimize the effect of environmental or physiological influences 
[120]. Furthermore, other caveats should be considered in designing 
a study where FMD is investigated for the biological and technical 
variability of its measurement, including appropriate study design 
and sample size and efforts to achieve a uniform technique and 
minimize operator-dependency, including the adoption of probe-
holding devices and automated systems to measure brachial artery 
diameter changes [116-119]. 
 It is important to note that variations in technique, such as the 
position of the occluding cuff and duration of inflation, may pro-
duce results that are less representative of local NO activity, since 
FMD is also partly determined by the magnitude of post-ischemic 
forearm vasodilatation, which is a measure of microcirculatory 
function [93]. Interestingly, the use of upper cuff occlusion was 
associated with one of the few negative reports on the prognostic 
role of FMD [121], although a recent meta-analysis showed that 
studies applying the upper cuff occlusion technique showed similar 
prognostic predictive values compared with those using the lower 
cuff technique [122]. 
 Training and certification of sonographers in FMD procedure 
has been well-described in guidelines [117], and proven by results 
in recent multicenter trials by the small number of rejected exami-
nations, due to poor quality and/or instability of the images [123, 
124]. 
 The use of clamps to hold and adjust probe position, as well as 
a computerized system to automatically measure brachial artery 
diameter (Fig. 3) are currently required to obtain the best repro-
ducibility of this non-invasive technique [9, 92, 125], as recently 
also shown in multicenter settings [123, 124]. 
 As of today, only a few experienced research centers apply a 
rigorous methodology to achieve a high standard of accuracy and 
reduce FMD variability [126]. The lack of uniform methodology, 
including all the above-mentioned procedures, is a major limitation, 
although not the only one, for the application of FMD assessment in 
large multicenter studies. We recently evaluated the time-dependent 
variability of FMD measurements obtained in more than 130 
healthy volunteers by trained operators according to a uniform 
technique [124]. This included centralized analysis by an automated 

edge detection system, composed of a special-purpose hard-
ware/software device for measuring changes in brachial artery di-
ameter [127, 128]. The study showed for the first time that adher-
ence to a rigorous protocol, with certified operator training as well 
as defined experimental settings (adjustable stereotactic probe-
holding device, automated computer-assisted brachial artery meas-
urements), is feasible in different research centers, ensures high 
quality examinations and, most of all, provides an optimal time-
dependent reproducibility of FMD. In particular, a similar coeffi-
cient of variation (close to 10%) for intra-session (1 h apart) and 
inter-session (1 month apart) FMD assessment was shown and the 
overall FMD variability was comparable with that observed by the 
authors who originally described the non-invasive method for FMD 
using a similar methodology [126]. Thus, this approach should be 
implemented in all studies investigating FMD as a surrogate marker 
of cardiovascular disease. 
 As already stated, automated, computer-based analysis of bra-
chial artery diameter changes [127, 128] is fundamental for the 
assessment and reproducibility of FMD testing. At the present time, 
automatic systems for FMD assessment are based on both post-
processing and real-time analysis, thus working offline and online, 
respectively. In particular, real-time systems offer several advan-
tages enhancing reliability and precision of FMD measurement 
[129]. Mainly, a real-time feedback signal generated during the 
scan acquisition and strictly related to the algorithm performance 
could continuously inform the operator about the quality of the 
ultrasound images. This aspect is of particular importance in FMD 
studies because in these examinations, the quality of the image is a 
critical component that can compromise the success of the meas-
urement. Indeed, a proper image must be maintained for several 
minutes to best quantify the transitory response induced by the 
endothelium. For this reason, adjustments of the position of the 
probe may be required during the examination, especially to com-
pensate for small movements of the patient. The sonographer is 
largely helped in this task by immediate feedback from the meas-
urement system. As a final result, the number of examinations re-
jected due to low-quality post-processing analysis could be reduced 
[123, 124, 129].  
 Another advantage of online analysis is the reduction in time 
spent analyzing the images after acquisition and the absence of 
those drawbacks associated with video storing. Recording the video 
means a reduction of image quality, while an acquisition on a per-
sonal computer requires a large amount of memory. Moreover, the 
real-time characteristic improves the operator's learning curve, sig-
nificantly reduced by this approach [129], another major challenge 
for FMD assessment [117].  
 Finally, another important characteristic of the FMD technique 
is the timing of the procedure, with respect to the cardiac cycle. In 
fact, vasodilatations induced by reactive hyperemia are not much 
larger than the diameter variations between systole and diastole 
[127, 128]. Guidelines suggest using electrocardiogram (ECG) 
gating during image acquisition [117], where the onset of the R-
wave is used to identify the end diastole, and this is currently the 
method most commonly used both for manual and automatic analy-
ses. However, this requirement influences the complexity of the 
ultrasound equipment adopted for the examination [130]. Nowa-
days, high frequency linear array transducers are also available in 
less expensive hand-carried ultrasound devices, which are being 
used more and more in research and clinical practice. Although 
such devices produce high quality B-mode images, they may lack 
ECG trigger capabilities, which are at times provided as an option 
with a significant increase in the overall cost of the system. On the 
other hand, modern automatic measurement methods used in FMD 
examinations have become faster and more precise, thus allowing a 
continuous measurement of the diameter curve with a sample rate 
of 25 to 30 samples/s. By using these systems, information on the 
timing with respect to the cardiac cycle can be obtained by directly 
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analyzing the diameter curve, without the need for an ECG trigger. 
Also, working at 25/30 frames per second ensures greater reliability 
against noise, analyzing a greater number of frames for diameter 
measurements, so FMD technique is more suitable for centralized 
readings. 
 Some issues remain unresolved in FMD measurement. In par-
ticular, agreement was not reached on the normalization of the per-
centage variation brachial diameter by the amount of the reactive 
stimulus (e.g. shear rate) that induced vasodilation (Fig. 3). As a 
consequence, several papers present FMD values as not normalized, 
especially in the past. Recently, this problem has been recognized 
and a debate on how to normalize FMD values was started. At the 
present, the maximum shear rate, the full shear rate area under the 
curve and the shear rate area under the curve up to the peak of the 
FMD have been proposed as potential normalization factors with 
the last one as the most promising in terms of efficacy [116-119]. 
 Lastly, some interesting new topics are still waiting answers in 
the FMD area. Among these, the need for reference values that 
could be used in clinical studies is the most interesting and impera-
tive point. By this means, clinicians would be able to stratify popu-
lations and share results more easily. 

5. CONCLUSIONS  
 Cardiovascular disease, although many of the major risk fac-
tors, such as age, smoking, hypercholesterolemia and diabetes are 
well-known today, remains a major cause of disability and mortal-
ity worldwide. Prevention remains the best approach to this health 
problem, but classic risk stratification is unable to provide an accu-
rate estimate of probability that a subject will suffer from a cardio-
vascular event. Vascular biomarkers, which are parameters of sub-
clinical cardiovascular disease, could increase the estimation of the 
individual cardiovascular risk and improve strategies for effective 
prevention. 
 Several vascular markers obtained by ultrasound have been 
shown to be independent predictors of cardiovascular events. 
Greater evidence is available for increased C-IMT, which is cur-
rently used as subclinical target organ damage. However, recent 
analyses of clinical studies criticized that the predictive role of C-
IMT changes with therapies. This limitation could be overcome by 
automated measurements with greater precision and more reliable 
reference values for risk classification. An automated system would 
also allow simultaneously measuring stiffness of the carotid artery 
and providing adjunctive analysis of functional and mechanical 
properties of the carotid artery, which are related to cardiovascular 
prognosis [131].  
 Finally, since endothelium plays a central role in the mainte-
nance of vascular homeostasis, the implementation of the method-
ology of non-invasive ultrasound-based tests such as brachial artery 
FMD will allow assessment of changes in endothelial function after 
therapy in relation to subclinical target organ damage and cardio-
vascular prognosis. However, this intriguing hypothesis requires 
more testing in specific ongoing and future clinical trials. 
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Abstract—The study aimed to evaluate the reproducibility of carotid elasticity during exercise. Eighteen healthy
volunteers (nine males, age 34 ± 3 years, BMI 22 ± 6 kg/m2) underwent maximal exercise testing on a graded semi-
supine cycle ergometer in two different sessions 3 days apart. Ultrasound B-mode image sequences of the right
common carotid were acquired at different steps and analyzed by an automatic system; pressures were estimated
by tonometry. Compliance (CC) and distensibility (DC) were significantly decreased at exercise peak and in the
first recovery minute (CC from 1.6 ± 0.8 to 1 ± 0.6 mm^2/KPa, DC from 56.2 ± 25.3 to 34.5 ± 20 10^23/KPa,
p , 0.05). For the whole examination, intraclass coefficient was 0.780 for CC and 0.694 for DC. Mean coefficient
of variation was maximum at peak exercise (CC5 19 ± 6%, DC5 24 ± 15%), but at first minute of recovery it was
comparable to resting values (CC5 12 ± 9%, DC5 12 ± 11%).When designing future studies, acquisitions during
first recovery minute might be preferred to peak measures. (E-mail: betta@ifc.cnr.it) ! 2012 World Federation
for Ultrasound in Medicine & Biology.

Key Words: Carotid stiffness, Carotid elasticity, Ultrasound, Exercise, Reproducibility.

INTRODUCTION AND LITERATURE

An increasing number of studies propose methods for
evaluating subclinical cardiovascular disease biomarkers,
showing that some of these measurements are indepen-
dent predictors of cardiovascular events (Mancia et al.
2007; Lorenz et al. 2007; Mattace-Raso et al. 2006).
Among these, there has been great interest in the role of
vascular parameters assessed at the level of the carotid
artery, such as intima-media thickness (Touboul et al.
2007) and arterial stiffness (Laurent et al. 2007). In
particular, important indices of local arterial stiffness of
superficial arteries can be estimated by measuring the
diameter and its change during the heart cycle (stroke
change in diameter or distension) from ultrasound data
in conjunction with the local pulse pressure.

This analysis is usually performed in resting condi-
tions; however, arterial stiffness is not a static character-
istic (Nichols and O’Rourke 1998). Therefore,
quantification of parameters of local elasticity in dynamic
conditions, when several physiologic changes occur (i.e.,

in heart rate, blood pressure, sympathetic activity), could
enhance characterization of the elastic properties of the
vessel.

For this reason, carotid distensibility was recently
assessed during isometric exercise (Myers et al. 2002),
indicating a decrease in elasticity parallel to blood pres-
sure increase, with different behavior according to gender
and age. This phenomenon can manifest even in young,
healthy adults, when static analysis might fail to find rele-
vant differences. Other studies (Studinger et al. 2003)
found carotid distensibility to be decreased in healthy
volunteers during strenuous exercise, accompanied by
an increase in mean baroreceptor activity level during
exercise, thus, implying a role for mechanical factors in
arterial baroreflex control.

Although analysis of local stiffness during exercise
is intriguing, the dynamic conditions make this evalua-
tion technically challenging. Also, reproducibility of
this analysis during exercise remains to be evaluated.
The aim of this work was to evaluate the reliability of
the assessment of carotid artery elasticity parameters
(i.e., distensibility and compliance) during exercise in
a group of healthy volunteers, in terms of reproducibility
of the measurement.
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MATERIALS AND METHODS

Study population
A group of 18 healthy untrained volunteers were

recruited for the study (nine males, age 34 6 3 years,
BMI 5 22 6 6 kg/m^2, three smokers). Subjects with
overt cardiovascular disease, diabetes, hypertension,
major noncardiovascular diseases or who engaged in
competitive sports were excluded. None of the subjects
were taking any medication at the time of the study or
during the previous week. The study protocol was
approved by the local ethics committee and informed
consent was obtained from all subjects.

Experimental procedure
The subjects were analyzed in two different sessions

3 days apart, to evaluate the intersession repeatability of
carotid elasticity parameters in exercise. The examina-
tionswere all performed in the afternoon after a light lunch
in a temperature-controlled room according to current
guidelines (Laurent et al. 2006). The subjects avoided
taking caffeine-containing beverages and smoking in the
3 h preceding the experimental sessions. In each session,
amaximal exercise testwas performed on a graded bicycle
semi-supine ergometer (Fig. 1) (Armstrong et al. 1998).
Workload was increased by 25 W every 2 min.

Theoretical maximal heart rate (HRmax) was
computed for both male and female subjects, as:

HRmax 5 2202age ðin yearsÞ

To estimate arterial elasticity, acquisitions of carotid
ultrasound images, brachial blood pressure and radial
pressure waveform were obtained. All measurements
were performed during the exercise test while the subject
was riding on the cycle ergometer, with head and neck and
right wrist lying on a dedicated support. The following 11
different temporal steps were considered: at 60%, 70%,
80% and 85% of maximal heart rate and during the
recovery at 1, 2, 4, 6, 8 and 10 min after peak exercise.

The acquisitions were made by the same skilled
operator in two sessions 3 days apart: R.B. for applana-
tion tonometry, V.G. for brachial blood pressure and
A.C. for carotid ultrasound images.

Techniques

Diameter assessment.An algorithm (Carotid Studio,
Institute of Clinical Physiology-CNR, Italy) for the
automatic evaluation of the instantaneous carotid diam-
eter in exercise was implemented in Matlab (The Math-
Works, Natick, MA, USA). The method is based on
a well-validated contour tracking technique (Bianchini
et al. 2010; Faita et al. 2008) that allows automatic
evaluation of diameter stroke changes during the heart
cycle. The method assesses the diameter of the artery
by processing B-mode ultrasound sequences of the
longitudinal section of the vessel. For each image,
lumen-intima interfaces are automatically detected using
an algorithm based on the edge operator ‘‘first order
absolute moment’’ and on a pattern recognition approach.
Diameter is estimated as the distance between far and
near lumen-intima interfaces and its mean value is
computed on 15 beats of examination, to reduce the effect
of cycle-to-cycle variability on the final result.

Moreover, data processing for the assessment of
variations in diameter during the cardiac cycle (stroke
change in diameter or distension, (Laurent et al. 2006)
includes several other computational stages:

# The maximum (systolic) and minimum (diastolic)
diameter values are identified for each cardiac cycle.

# The stroke change in diameter is calculated for each
cardiac cycle as the difference between the systolic
and diastolic diameter values.

# The mean distension value is computed as the average
of the results obtained during the last 15 beats.

The algorithm in this study was customized for high
frame rate (i.e., .25 frame/s) application. High frame

Fig. 1. Experimental set-up. Maximal exercise test was performed on a graded bicycle semi-supine ergometer. Measure-
ments were performed during the examination, at 11 different temporal steps: 60%, 70%, 80% and 85% of maximal heart

rate and during recovery at 1, 2, 4, 6, 8 and10 min after peak exercise.
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rate, which ensures high temporal resolution, is needed to
track the rapid wall movements of the vessel due to the
high cardiac frequency in exercise.

Carotid image sequences in DICOM format
were acquired and then analyzed off-line. Data were
excluded when image quality was considered insufficient
(i.e., the algorithm was not able to correctly track vessel
borders).

Blood pressure measurement. Radial tonometry was
performed to evaluate central pressure by radial to aortic
transfer function (Sphygmocor, Atcor Medical, West
Ryde, New South Wales, Australia). For each step of
exercise and recovery, the radial waveform was acquired
and then calibrated by using the arm blood pressure auto-
matically recorded at the right brachial artery (by a Dina-
map XL device, Critikon Co., TX, USA).

Quality index (QI) for central pressure waveform
was automatically provided by Sphygmocor software:
measurements were considered acceptable with QI .
75 at rest and QI . 50 during exercise.

Since carotid and aortic pressure estimations by
tonometry (at least at rest) showed good agreement,
with differences around 1–2 mm Hg (Segers et al.
2005), final data obtained by the Sphygmocor system
were used, together with diameter values, to assess
carotid elasticity parameters.

Evaluation of carotid distensibility and
compliance. Ultrasound B-mode image sequences
(image resolution 5 100 pixels/cm, DICOM format,
100 frame/s, 15 beats) of the right common carotid arteries
were acquired and analyzed by the customized algorithm
for evaluation of arterial diameter (D) and distension
(DD). The common carotid arteries were scanned in longi-
tudinal section using an iE33 Philips machine (Philips,
Amsterdam, The Netherlands) and a 10-MHz linear-
array probe. Arterial diameter borders were tracked in
the near and far wall lumen-intima interfaces 1 cm prox-
imal to the carotid bulb in a region 1 cm wide and free
of plaques. The bulb was considered an anatomic fiducial
point and a picture of the adopted ultrasound image was
printed to ensure similar location of the measurements
between the first session and the second one performed
3 days later. During vascular scanning, time-gain-
compensation and depth settings were fixed. In addition,
systolic and diastolic brachial pressures were measured
and central pulse pressure obtained by radial tonometry
as described above. Local elasticity parameters were
then obtained for each step of the examination as: cross
sectional compliance coefficient / CC 5 DA/PPa
cross-sectional distensibility coefficient/ DC5 CC/Ad.

where DA represents the stroke change in lumen
area, PPa the central pulse pressure and Ad the diastolic
lumen area, respectively. DA and Ad were evaluated

from the diameter values, assuming the cross-section of
the artery to be circular.

Data analysis

Physiologic data. The mean values 1/2 standard
deviation of the measured parameters were evaluated
for each step of the examination. In addition, one-way
analysis of variance (ANOVA) for repeated measures
was used to evaluate differences between values at rest
and during exercise, with Bonferroni or Kruskal-Wallis
post hoc tests, for variables normally distributed or not,
respectively; p , 0.05 was considered significant.

Reproducibility data. The volunteers were analyzed
in two sessions 3 days apart, to evaluate the intersession
repeatability of the arterial elasticity measurements
(CC and DC).

For each step of the examination, in each volunteer,
variability was expressed as the coefficient of variation
(CV), which is defined as the ratio of the standard
deviation to the mean of the two measurements; the mean
of CVs from all the subjects was then computed. CVs of
pressure and diameter’s evaluation were also obtained.

Furthermore, the reproducibility of each parameter
for the whole examination was estimated by using the
intraclass correlation coefficient. The two-way random
effects model was adopted (Fleiss 1986).

All calculations were made using SPSS software
(version 20.0, 2011 by IBM Corporation, New York,
NY, USA).

RESULTS

In the two sessions, 4.3% of the acquired B-mode
images were considered of poor quality and hence
rejected. An example of B-mode ultrasound images
acquired for a subject at rest and peak and considered
of acceptable quality is shown in Figure 2.

Regarding the tonometry acquisition, 2.7% of data
presented an unacceptable quality index (QI) and were
discarded. These resulted in a rejected percentage of the
derived carotid elasticity measurements equal to 5.8%.

Physiologic data
For each step themeanvalues1/- standard deviation

and the one-way ANOVA analysis of the measured
parameters during the first day are summarized in
Table 1a (exercise) and Table 1b (recovery).

Compared with the baseline, HR, SPb, DPb, PPb,
SPa, DPa, PPa and MPa increased significantly (p ,
0.05) at each exercise intensity. DD was significantly
greater at 70%, 80% and 85% HRmax steps, whereas
D did not vary. Finally, CC and DC significantly
decreased at 80% and 85% HRmax with respect to
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baseline. The significant variations persisted in the first
recovery minute, then were superimposable to baseline
values in the rest of the recovery period.

Reproducibility data
Mean coefficients of variation for each step of the

exercise are summarized in Table 2.
In addition, agreement of elasticity evaluation for

the whole examination between the two sessions resulted
in an intraclass correlation coefficient of 0.780
(95% confidence interval [CI]: 0.686–0.844) for CC,
and 0.694 (95% CI: 0.574–0.780) for DC. Intraclass
correlation coefficients of pressure and diameter
measurements were: 0.934 (95% CI: 0.906–0.954) for
SPa, 0.776 (95% CI: 0.660–0.848) for DPa, 0.962
(95% CI: 0.947–0.971) for SPb, 0.807 (95% CI:
0.712–0.867) DPb and 0.830 (95% CI: 0.759–0.879) for
D. Finally, regarding differential measurements, intra-
class correlation coefficient was: 0.876 (95% CI:
0.829–0.909) for PPa, 0.936 (95% CI: 0.911–0.953) for
PPb and 0.897 (95% CI: 0.858–0.925) for DD.

For both physiologic and reproducibility data, the
analysis was repeated considering only non-smokers

(n 5 15), to evaluate whether the smokers’ sub-group
affected the final findings of our study, and we obtained
superimposable results (data not shown).

DISCUSSION

Recently, there has been great interest in evaluating
arterial elasticity in resting conditions for stratification of
cardiovascular risk. Analysis of elastic properties during
exercise would be even more attractive, since it could
provide information about dynamic conditions,
mimicking a patient’s real life. Although some studies
assessed vascular parameters dynamically (Myers et al.
2002; Studinger et al. 2003; Sharman et al. 2005; Bia
et al. 2009), there are very few studies reporting the
reliability of this evaluation in literature (Harris et al.
2007). Similar effects of dynamic conditions on arterial
elasticity were observed in these studies: Myers et al.
2002 reported stiffness increase with isometric handgrip
that varies with differences in gender and age and can
be manifest even in young, healthy adults; other studies
(Studinger et al. 2003; Sharman et al. 2005; Bia et al.
2009) found elasticity to be reduced during exercise in

Table 1a. Mean values 6 standard deviation of the measured parameters at rest and in exercise

Units of
measure Rest 60% 70% 80% 85%

HR [beat/min] 64 6 26 (0.6/0.7/0.8/P) 104 6 30
(R/0.7/0.8/P)

122 6 33
(R/0.6/0.8/P)

140 6 37
(R/0.6/0.7/P)

147 6 41
(R/0.6/0.7/0.8)

SPb [mm Hg] 118 6 33 (0.6/0.7/0.8/P) 146 6 44 (R/0.8/P) 155 644 (R/P) 169 6 50 (R/0.6) 176 6 54 (R/0.6/0.7)
DPb [mm Hg] 78 6 21 (0.6/0.7/0.8/P) 85 6 25 (R/P) 88 6 24 (R/P) 90 6 25 (R) 93 6 27 (R/0.6/0.7)
PPb [mm Hg] 40 6 13 (0.6/0.7/0.8/P) 61623 (R/0.8/P) 67 6 25 (R) 79 6 30 (R/0.6) 83 6 30 (R/0.6)
SPa [mm Hg] 103 6 28 (0.6/0.7/0.8/P) 122 6 36 (R/0.8/P) 128 6 37 (R/0.8/P) 139 6 44 (R/0.6/0.7) 140 6 45 (R/0.6/0.7)
DPa [mm Hg] 79 6 22 (0.6/0.7/0.8/P) 88 6 26 (R/0.8/P) 91 6 26 (R/P) 95 6 30 (R/0.6) 99 6 31 (R/0.6/0.7)
MPa [mm Hg] 86 6 30 (0.6/0.7/0.8/P) 103 6 31 (R/0.8/P) 108 6 32 (R/P) 115 6 37 (R/0.6) 117 6 39 (R/0.6/0.7)
PPa [mm Hg] 24 6 7 (0.6/0.7/0.8/P) 34 6 13 (R/0.8) 37 6 14 (R) 40 6 20 (R/0.6) 38 6 20 (R)
D [mm] 5.6 6 1.5 5.6 6 1.7 5.5 6 1.6 5.6 6 1.8 5.7 6 1.7
∆D [mm] 0.5 60.2 (0.7/0.8/P) 0.6 60.3 0.7 60.3 (R) 0.8 60.4 (R) 0.7 60.3 (R)
CC [mm^2/kPa] 1.6 6 0.77 (0.8/P) 1.2 6 0.5 1.2 6 0.5 1.2 6 0.6 (R) 0.9 6 0.6 (R)
DC [10^23/kPa] 56.2 6 25.3 (0.8/P) 43.5 6 19.2 43.2 6 21.8 41.6 6 20.9 (R) 34.5 6 20.0 (R)

HR5 heart rate; SPb5 systolic brachial pressure; DPb5 diastolic brachial pressure; PPb5 pulse brachial pressure; SPa5 systolic aortic pressure;
DPa5 diastolic aortic pressure; PPa5 pulse aortic pressure; D5 carotid diameter;DD5 carotid distension; CC5 carotid cross-sectional compliance;
DC 5 distensibility coefficient.
Data were analyzed by one-wayANOVA. Significant differences (p, 0.05) compared with baseline (R), 60% (0.6), 70% (0.7), 80% (0.8) and peak (P)

are indicated. Sample n 5 18.

Fig. 2. Example of ultrasound B-mode images with accepted quality at rest (left) and peak exercise, respectively.

226 Ultrasound in Medicine and Biology Volume 38, Number 2, 2012



Author's personal copy

T
ab
le
2.

M
ea
n
6

st
an
da
rd

de
vi
at
io
n
of

co
ef
fi
ci
en
ts
of

va
ri
at
io
n
(p
er
ce
nt
ag
e
va
lu
es
)
fo
r
ea
ch

st
ep

of
th
e
ex
er
ci
se

fo
r
re
pe
at
ed

ex
am

in
at
io
ns

th
at
w
er
e
pe
rf
or
m
ed

in
tw

o
di
ff
er
en
t

se
ss
io
ns
,
3
da
ys

ap
ar
t

R
es
t

60
%

70
%

80
%

85
%

1
m

2
m

4
m

6
m

8
m

10
m

S
P
b

3.
1
6

3.
4

3.
2
6

2.
5

3.
1
6
1.
8

3.
2
6

3.
3

4.
1
6
3.
4

3.
4
6

3.
5

4.
1
6

3.
2

4.
6
6

2.
8

3.
2
6

2.
7

2.
8
6

3.
6

2.
1
6

2.
3

D
P
b

4.
2
6

5.
3

4.
9
6

6.
1

5.
1
6

6.
3

5.
4
6

6.
3

6.
2
6

6.
5

5.
2
6

4.
9

6.
1
6

4.
6

5.
6
6

6.
1

5.
8
6

5.
2

4.
1
6

5.
3

3.
6
6

3.
4

P
P
b

7.
3
6

6.
1

9.
6
6

5.
9

9.
5
6

5.
9

9.
9
6

3.
2

10
.1

6
6.
8

9.
3
6

8.
4

11
.2

6
6.
7

11
.9

6
7.
9

11
.3

6
9.
1

12
.1

6
8.
7

9.
9
6

6.
4

S
P
a

4.
2
6

4.
4

4.
3
6

3.
1

4.
4
6

2.
5

5.
2
6

4.
3

3.
5
6

3.
6

4.
9
6

4.
3

4.
2
6

3.
9

4.
9
6

4.
4

3.
3
6

2.
9

3.
5
6

2.
1

3.
1
6

2.
9

D
P
a

4.
4
6

4.
7

6.
2
6

5.
9

7.
2
6

5.
1

7.
9
6

4.
4

8.
2
6

7.
8

8.
1
6

7.
2

5.
4
6

4.
1

7.
8
6

8.
7

6.
2
6

4.
9

4.
1
6

3.
6

3.
1
6

2.
8

P
P
a

8.
3
6

6.
1

11
.3

6
8.
2

11
.2

6
6.
9

10
.3

6
7.
4

10
.5

6
7.
2

12
.3

6
10
.4

13
.9

6
8.
4

13
.8

6
11
.6

12
.1

6
8.
7

13
.9

6
8.
9

13
.9

6
9.
1

D
3.
1
6

3.
1

2.
2
6

1.
7

4.
7
6

4.
4

5.
1
6

6.
9

6.
8
6

5.
4

3.
3
6

3.
1

3.
1
6

2.
4

5.
4
6

4.
3

3.
9
6

4.
1

3.
1
6

3.
5

4.
9
6

4.
6

∆D
8.
1
6

5.
9

9.
8
6

5.
7

9.
9
6

10
.6

10
.2

6
11
.6

11
.8

6
7.
9

7.
2
6

7.
3

10
.2

6
6.
5

10
.9

6
8.
8

9.
2
6

6.
4

9.
9
6

5.
2

8.
1
6

4.
8

C
C

8.
2
6

9.
8

15
.1

6
12
.4

14
.7

6
10
.3

14
.5

6
18
.1

19
.2

6
6.
4

12
.7

6
9.
1

15
.2

6
11
.4

13
.4

6
11
.9

15
.1

6
9.
8

15
.9

6
10
.6

14
.8

6
13
.6

D
C

8.
3
6

7.
8

15
.9

6
10
.6

13
.5

6
10
.4

16
.4

6
17
.2

24
.2

6
14
.9

12
.5

6
11
.1

14
.9

6
12
.2

14
.2

6
15
.1

18
.1

6
14
.8

17
.7

6
9.
7

16
.2

6
12
.8

S
P
b
5

sy
st
ol
ic

br
ac
hi
al

pr
es
su
re
;
D
P
b
5

di
as
to
li
c
br
ac
hi
al

pr
es
su
re
;
P
P
b
5

pu
ls
e
br
ac
hi
al

pr
es
su
re
;
S
P
a
5

sy
st
ol
ic

ao
rt
ic

pr
es
su
re
;
D
P
a
5

di
as
to
li
c
ao
rt
ic

pr
es
su
re
;
P
P
a
5

pu
ls
e
ao
rt
ic

pr
es
su
re
;

D
5

ca
ro
ti
d
di
am

et
er
;
D
D

5
ca
ro
ti
d
di
st
en
si
on
;
C
C
5

ca
ro
ti
d
cr
os
s-
se
ct
io
na
l
co
m
pl
ia
nc
e;

D
C
5

di
st
en
si
bi
li
ty

co
ef
fi
ci
en
t.

T
ab
le

1b
.
M
ea
n
va
lu
es

6
st
an
da
rd

de
vi
at
io
n
of

th
e
m
ea
su
re
d
pa
ra
m
et
er
s
at

re
st
an
d
du
ri
ng

re
co
ve
ry

U
ni
ts
of

m
ea
su
re

R
es
t

1
m

2
m

4
m

6
m

8
m

10
m

H
R

[b
ea
t/
m
in
]

64
6

26
(1
/2
/4
/6
/8
/1
0)

12
0
6

35
(R
/2
/4
/6
/8
/1
0)

10
3
6

33
(R
/1
/1
0)

96
6

31
(R
/1
)

94
6

30
(R
/1
)

93
6

29
(R
/1
)

91
6

29
(R
/1
/2
)

S
P
b

[m
m

H
g]

11
8
6

33
(1
/2
)

14
2
6

42
(R
/2
/4
/6
/8
/1
0)

13
8
6

40
(R
/1
/4
/6
/8
/1
0)

15
0
6

36
(1
)

13
7
6

34
(1
/2
)

12
8
6

34
(1
/2
)

12
0
6

33
(1
/2
)

D
P
b

[m
m

H
g]

78
6

21
80

6
21

69
6

20
74

6
21

73
6

21
74

6
21

76
6

21
P
P
b

[m
m

H
g]

40
6

13
(1
/2
)

60
6

26
(R
/2
/4
/6
/8
/1
0)

69
6

25
(R
/1
/2
/6
/8
/1
0)

76
6

20
(1
/1
0)

64
6

17
(1
/2
)

53
6

17
(1
/2
)

45
6

14
(1
/2
/4
)

S
P
a

[m
m

H
g]

10
3
6

28
(1
)

11
8
6

33
(R
/4
/6
/8
/1
0)

11
0
6

31
(8
/1
0)

12
0
6

30
(1
)

11
0
6

28
(1
)

10
7
6

28
(1
/2
)

10
3
6

28
(1
/2
)

D
P
a

[m
m

H
g]

79
6

22
84

6
23

74
6

21
80

6
23

76
6

21
75

6
22

78
6

22
M
P
a

[m
m

H
g]

86
6

30
(1
)

98
6

28
(R
)

90
6

26
90

6
26

89
6

25
89

6
25

90
6

25
P
P
a

[m
m

H
g]

24
6

7
(1
)

33
6

14
(R
/6
/8
/1
0)

36
6

14
(8
/1
0)

40
6

16
34

6
9
(1
)

32
6

9
(1
/2
)

24
6

7
(1
/2
/4
)

D
[m

m
]

5.
6
6

1.
5

5.
5
6

1.
5

5.
5
6

1.
5

5.
5
6

1.
5

5.
4
6

1.
5

5.
4
6

1.
5

5.
4
6

1.
5

∆D
[m

m
]

0.
5
6

0.
2
(1
/2
)

0.
7
6

0.
3
(R
/6
/8
/1
0)

0.
7
6

0.
3
(R
/8
/1
0)

0.
6
6

0.
3

0.
5
6

0.
2
(1
)

0.
5
6

0.
2
(1
/2
)

0.
5
6

0.
2
(1
/2
)

C
C

[m
m
^2
/k
P
a]

1.
6
6

0.
7
(1
/2
)

1.
2
6

0.
5
(R
/6
/8
/1
0)

1.
4
6

0.
6
(R
)

1.
4
6

0.
6

1.
6
6

0.
7
(1
)

1.
6
6

0.
8
(1
)

1.
7
6

0.
7
(1
)

D
C

[1
0^

2
3
/k
P
a]

56
.2

6
25
.3

(1
)

46
.1

6
16
.5

(R
/6
/8
/1
0)

52
.2

6
23
.0

53
.7

6
21
.4

61
.4

6
25
.8

(1
)

64
.3

6
29
.3

(1
)

65
.6

6
26
.4

(1
)

H
R
5

he
ar
tr
at
e;
S
P
b
5

sy
st
ol
ic
br
ac
hi
al
pr
es
su
re
;D

P
b
5

di
as
to
li
c
br
ac
hi
al
pr
es
su
re
;P

P
b
5

pu
ls
e
br
ac
hi
al
pr
es
su
re
;S

P
a
5

sy
st
ol
ic
ao
rt
ic
pr
es
su
re
;D

P
a
5

di
as
to
li
c
ao
rt
ic
pr
es
su
re
;P

P
a
5

pu
ls
e
ao
rt
ic

pr
es
su
re
;
D
5

ca
ro
ti
d
di
am

et
er
;
D
D
5

ca
ro
ti
d
di
st
en
si
on
;
C
C
5

ca
ro
ti
d
cr
os
s-
se
ct
io
na
l
co
m
pl
ia
nc
e;

D
C
5

di
st
en
si
bi
li
ty

co
ef
fi
ci
en
t.

D
at
a
w
er
e
an
al
yz
ed

by
on
e-
w
ay

A
N
O
V
A
.S

ig
ni
fi
ca
nt
di
ff
er
en
ce
s
(p

,
0.
05
)
co
m
pa
re
d
w
it
h
ba
se
li
ne

(R
),
1
m
in
(1
),
2
m
in
(2
),
4
m
in
(4
),
6
m
in
(6
),
8
m
in
(8
)
an
d1
0
m
in
(1
0)

ar
e
in
di
ca
te
d.
S
am

pl
e
n
5

18
.

Assessment of carotid elasticity during exercise d E. BIANCHINI et al. 227



Author's personal copy

healthy volunteers. Elasticity analysis during exercise is
intriguing. In fact, accuracy of the estimation of cardiac
afterload during exercise on the basis of brachial BP is
debatable, since PP amplification from the center to the
periphery of the arterial tree increases greatly during
exercise (Sharman et al. 2005). Moreover, men with
hypercholesterolemia have higher augmentation index
and blunted pulse pressure amplification compared with
age-matched healthy controls during light exercise, in
spite of similar brachial SBP at baseline and during exer-
cise (Sharman et al. 2007). Hence, an abnormal exercise
central BP can underlie an abnormal behavior of arterial
stiffness, which until now has been evaluated mainly by
indirect measurement, such as the timing of the reflected
wave (Sharman et al. 2005). BP response to exercise is
a negative prognostic factor for cardiovascular mortality
(Mundal et al. 1996) and a more in-depth study of the
behavior of arterial stiffness during exercise could
provide not only better knowledge of physiologic mech-
anisms but possibly also a better prediction of cardiovas-
cular risk. In this study, carotid distensibility and
compliance were assessed in a group of healthy volun-
teers during exercise. In this article, aside from the
expected increase in mean central pressure and pulse
pressure, at peak compared with baseline, a decrease in
CC and DC during exercise was documented; the
phenomenon was observable starting from 80% of
maximal HR and remained evident until 1 min after
peak exercise. These data indicate increased carotid stiff-
ness during exercise, a phenomenon that might be partly
due to the recruitment of a greater number of collagen
fibers and, consequently, a different mechanical behavior
of the arterial wall at higher pressures (Nichols and
O’Rourke, 1998). These results are consistent with the
non-linear relation between stress and strain that is
thought to characterize the arterial borders: at higher
stress (i.e., pulse pressure), the slope of the curve stress-
strain (i.e., pressure-distension) increases and, thus, also
the corresponding stiffness. Furthermore, the observed
reduction in carotid elasticity due to exercise is in
accordance with results from the abovementioned
previous works.

The subjects were analyzed in two different sessions
3 days apart, to evaluate the intersession repeatability. At
the moment, to our knowledge, repeatability studies for
carotid elasticity during exercise are not available in the
scientific literature. On the other hand, coefficients of
variation (CVs) at rest of the analyzed parameters, which
are considered appropriate for studying their physiologic
and pathophysiologic variations, are described in several
studies using well-known and validated gold-standard
techniques (Kool et al. 1994; Benetos et al. 1993;
Selzer et al. 2001; Bianchini et al. 2008, 2010). As an
example Selzer reported CVs 5 6.17%–9.66% for

blood pressure measurements, CV 5 1.28% for arterial
diameters and CVs from 11.05% to 14.54% for carotid
stiffness indices; similarly Kool found CV 5 4.5% for
carotid diameters, CV 5 7.9% for distension and CVs
from 8.3% to 9.1% for arterial stiffness parameters. Our
results regarding reproducibility of baseline data
provided similar values and hence the reliability of the
proposed approach is as good as the state-of-the-art
technology.

Regarding results in exercise and recovery, CVs of
carotid diameter (D and DD) and pressures (SPb, DPb,
PPb, SPa, DPa and PPa) are slightly higher but compa-
rable to the resting values reported in the abovementioned
previous works (Kool et al. 1994, Benetos et al. 1993;
Selzer et al. 2001, Bianchini et al. 2008, 2010). Finally,
coefficients of variability of carotid elasticity
measurements in dynamic conditions are also slightly
higher but comparable to values acquired at rest for all
steps, except for exercise peak, where mean CVs are
higher and equal to 19% 6 6% and 24% 6 15% for
compliance (CC) and distensibility (DC), respectively.
However, it is worth noting that repeatability of CC and
DC again improves (i.e., comparable to baseline)
already starting from the first minute of recovery; at
this time, as shown in Table 1b by the one-way ANOVA
analysis of the measured parameters, the phenomenon of
significant decrease in elasticity with respect to baseline
detected at peak is still observable. We might speculate
that if confirmed in future work, including both controls
and patients, these results could imply the possibility of
observing arterial elasticity variations by performing
the measurement after peak exercise, when the subject
is not riding the bike, artifacts are reduced, and as a conse-
quence, variability is smaller and data more reliable.
Moreover, in this case the design of future clinical studies
might be improved even more, since when analyzing
a subject who is not moving, direct and more accurate
carotid tonometry (Laurent et al. 2006) (which we had
to exclude and replace with the radial approach due to
feasibility issues) can also be performed.

Regarding the reliability of the whole examination,
the obtained intraclass correlation coefficients (ICC)
results are slightly worse than the resting values of vali-
dated techniques in previous works. As an example,
Selzer (Selzer et al. 2001) reported intraclass correlations
around 0.98 for diameter measurements, around 0.89 for
arterial distensibility and compliance and between 0.77
and 0.83 for pressure estimation. Furthermore, in this
case ICC values for arterial pressure resulting in a reliable
dynamic evaluation were available in literature (Holland
et al. 2008) and were similar to ours (ICC 5 0.89).

Our results regarding parameters that were derived
directly from the B-mode image analysis (i.e., D and
DD) prove the robustness of the algorithm used in more
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critical conditions as well. Furthermore, these data show
the feasibility of dynamic vascular diameter assessment
from ultrasound imaging by using a robust contour
tracking method together with an appropriate frame rate
that ensures the temporal resolution needed to correctly
observe rapid movements of the walls due to high cardiac
frequency. Most modern ultrasound machines allow the
acquisition of high frame rate image sequences and,
thus, in conjunction with a precise automatic method
for arterial wall tracking, could be used in future clinical
studies for evaluating instantaneous diameter at high
heart rate.

Regarding the pressure measurement needed in
conjunction with diameter assessment for elasticity
estimation, we opted for radial tonometry that allowed
us to compute central pressure by radial to aortic transfer
function. This choice, although less accurate than direct
carotid tonometry for local pressure estimation, was
preferred since it is considered much more feasible in
exercise. Since aortic and carotid pressure estimations
by tonometry, at least at rest, are in good agreement
(Segers et al. 2005; Vermeersch et al. 2008), the data
obtained were then used in conjunction with the
diameter values to assess carotid elasticity parameters.
However, although we tested the reproducibility of the
radial tonometry-based technique, we did not show that
it is the most appropriate method for carotid pressure
estimation during exercise, from a physiologic point of
view. First, at this time we do not know whether
differences between aortic and carotid pressure can be
considered small in dynamic conditions as well. Second,
there is no consensus (Sharman et al. 2006; Dawson et al.
2009) on the capability of generalized transfer functions
to accurately estimate central hemodynamic variables
from radial pressure waveform in dynamic conditions.
Some authors (Sharman et al. 2006) compared the radial
tonometry-derived measure with a catheter-based one in
30 patients during supine exercise, concluding that the
two approaches show good agreement. However, others
(Dawson et al. 2009) observing eight healthy volunteers
during the incremental hand-grip test concluded that
changes in vascular tone due to dynamic conditions could
compromise the assumptions for aortic evaluation
derived by radial applanation tonometry. Indeed, further
studies analyzing different approaches for carotid or
aortic pressure dynamic evaluation are warranted.

Limitations of the study
Some limitations of our study should be acknowl-

edged. First, the sample size is relatively small and
a subsequent verification on a larger sample should be
conducted. Moreover, since only healthy volunteers
were analyzed, the reproducibility of the present
approach should be investigated in patients with various

cardiovascular risk factors to provide findings for
additional scenarios. We must also point out that during
the tests we were not able to process all the acquired
data: 4.3% of the total of B-mode image sequences and
2.7% of the total pressure waveforms were discarded
because of bad quality issues due to movement artifacts.
Finally, as discussed above for carotid pressure estima-
tion, we adopted the radial tonometry-based technique,
without showing it to be the most appropriate method-
ology to use during exercise.

CONCLUSIONS

In conclusion, this study shows that the reproduc-
ibility of carotid elasticity measurements in healthy
subjects during various exercise steps is comparable to
resting variability reported in literature for well-known
and validated gold-standard techniques, with the excep-
tion of peak data where it is higher. On the other hand,
according to our results, the observed decrease in arterial
elasticity is still evident during the first minute of
recovery and, hence, might be observed after the test
peak, when the subject is not moving on the cycle ergom-
eter andmeasurement is more precise. Thus, the proposed
approach can be considered reliable and might be used in
future population studies for investigating the dynamic
behavior of arterial elasticity and its role in arterial-
ventricular coupling variation in stress conditions.
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