
Cliquewidth and Knowledge Compilation

Igor Razgon ?1 and Justyna Petke2

1 Department of Computer Science and Information Systems,
Birkbeck, University of London igor@dcs.bbk.ac.uk

2 Department of Computer Science,
University College London J.Petke@cs.ucl.ac.uk

Abstract. In this paper we study the role of cliquewidth in succinct
representation of Boolean functions. Our main statement is the following:
Let Z be a Boolean circuit having cliquewidth k. Then there is another
circuit Z∗ computing the same function as Z having treewidth at most
18k+2 and which has at most 4|Z| gates where |Z| is the number of gates
of Z. In this sense, cliquewidth is not more ‘powerful’ than treewidth for
the purpose of representation of Boolean functions. We believe this is
quite a surprising fact because it contrasts the situation with graphs
where an upper bound on the treewidth implies an upper bound on the
cliquewidth but not vice versa.
We demonstrate the usefulness of the new theorem for knowledge com-
pilation. In particular, we show that a circuit Z of cliquewidth k can
be compiled into a Decomposable Negation Normal Form (dnnf) of size
O(918kk2|Z|) and the same runtime. To the best of our knowledge, this
is the first result on efficient knowledge compilation parameterized by
cliquewidth of a Boolean circuit.

1 Introduction

Statement of the results. Cliquewidth is a graph parameter, probably best
known for its role in the design of fixed-parameter algorithms for graph-theoretic
problems [2]. In this context the most interesting property of cliquewidth is
that it is ‘stronger’ than treewidth in the following sense: if all graphs in some
(infinite) class have treewidth bounded by some constant c, then the cliquewidth
of the graphs of this class is also bounded by a constant O(2c). However, the
opposite is not true. Consider, for example, the class of all complete graphs. The
treewidth of this class is unbounded while the cliquewidth of any complete graph
is 2. Thus, classes of bounded cliquewidth contain dense graphs, unlike the case
of bounded treewidth.

In this paper we essentially show that, roughly speaking, cliquewidth of a
Boolean function is not a stronger parameter than its treewidth. In particular,
given a Boolean circuit Z, we define its cliquewidth as the cliquewidth of the
DAG of this circuit and the treewidth as the treewidth of the undirected graph

? I would like to thank Fedor Fomin for his help in shaping of my understanding of
the structural graph parameters.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/17332992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

underlying this DAG. The main theorem of this paper states that for any circuit
Z of cliquewidth k there is another circuit Z∗ computing the same function
whose treewidth is at most 18k + 2 and the number of gates is at most 4 times
the number of gates of Z. Moreover, if Z is accompanied with the respective
clique decomposition then such a circuit Z∗ (and the tree decomposition of width
18k + 2) can be obtained in time O(k2n). The definition of circuit treewidth is
taken from [14] and the definition of circuit cliquewidth naturally follows from
the treewidth definition. In fact, the relationship between circuit treewidth and
cliquewidth is put in [14] as an open question.

We demonstrate that the main theorem is useful for knowledge compilation.
In particular, we show that any circuit Z of cliquewidth k can be compiled into
decomposable negation normal form (dnnf) [3] of size O(918kk2|Z|) (where |Z|
is the number of gates) by an algorithm taking the same runtime. To the best of
our knowledge, this is the first result on space-efficient knowledge compilation
parameterized by cliquewidth. We believe this result is interesting because the
parameterization by cliquewidth, compared to treewidth, allows to capture a
wider class of inputs including those circuits whose underlying graphs are dense.

This bound is obtained as an immediate corollary of the main theorem and
the O(9tt2|Z|) bound on the dnnf size for the given circuit Z, where t is the
treewidth of Z. The intermediate step for the latter result is an O(3p(|C| +
n)) bound of the dnnf size of the given cnf where C and n are, respectively
the number of clauses and variables of this cnf and p is the treewidth of its
incidence graph. All these 3 bounds significantly extend the currently existing
bound O(2rn) of [3] where r is the treewidth of the primal graph of the given
cnf. For example, if the given cnf has large clauses (and hence a large treewidth
of the primal graph) then the O(2rn) bound becomes practically infeasible while
the O(3p(C + n)) bound may be still feasible provided a small treewidth of the
incidence graph and a number of clauses polynomially dependent on n.

Related Work The algorithmic power of cliquewidth stems from the meta-
theorem of [2] stating that any problem definable in Monadic Second Order Logic
(mso1) can be solved in linear time for a class of graphs of fixed cliquewidth
k. The cliquewidth of the given graph is NP-hard to compute [8] and it is not
known to be fpt. On the other hand, cliquewidth is fpt approximable by an fpt
computable parameter called rankwidth [13, 11]. As said above, there are classes
of graphs with unrestricted treewidth and bounded cliquewidth. However, it has
been shown in [10] that the only reason for treewidth to be much larger than
cliquewidth is the presence of a large complete bipartite graph (biclique) in the
considered graph. In fact, we prove the main theorem of this paper by applying
a transformation that eliminates all bicliques from the dag of the given circuit.

dnnfs have been introduced as a knowledge compilation formalism in [3],
where it has been shown that any cnf on n variables of treewidth t of the pri-
mal graph can be compiled into a dnnf of size O(2ttn) with the same runtime.
A detailed analysis of special cases of dnnf has been provided in [6]. In partic-
ular, it has been shown that Free Binary Decision Diagrams (fbdd) and hence
Ordered Binary Decision Diagrams (obdd) can be seen as special cases of dnnf.

In fact, there is a separation between dnnf and fbdd [4]. This additional ex-
pression power of dnnf has its disadvantages: a number of queries that can be
answered in polynomial time (polytime) for fbdd and obdd are NP-complete
for dnnf [6]. This trade-off led to investigation of subclasses of dnnf that, on
the one hand, retain the succinctness of dnnf for cnfs of small treewidth and,
on the other hand, have an increased set of queries that can be answered in
polytime. Probably the most notable result obtained in this direction are Sen-
tential Decision Diagrams (sdd) [5] that, on one hand, can answer in polytime
the equivalence query (possibility to answer this query in polytime for obdds
is probably the main reason why this formalism is very popular in the area of
verification) and, on the other hand, retain the same upper bound dependence
on treewidth as dnnf.

In fact the size of obdd can also be efficiently parameterized by the treewidth
of the initial representation of the considered function. Indeed, there is an obdd
of size O(n2p) where p is the pathwidth of the primal graph of the given cnf
and of size (nO(t)) where t is the treewidth of the graph, see e.g. [9]. It is shown
in [14] that similar pattern retains if we consider the pathwidth and treewidth
of a circuit but in the former case p is replaced by an exponential function of p
and in the latter case, t is replaced by a double exponential function of t.

Important remark. Due to space constraints, proofs of some papers are ei-
ther omitted or replaced by sketches. A complete version of this work is available
at http://arxiv.org/abs/1303.4081

2 Preliminaries

A labeled graph G = (V,E,S) is defined by the usual set V (G) of vertices and
a set E(G) of edges and also by S(G), a partition of V (G). Each element of
S(G) is called a label. A simplified clique decomposition (scd) is a pair (T,G)
where T is a rooted tree and G is a family of labeled graphs. Each node t of
T is associated with a graph G(t), which is defined as follows. If t is a leaf
node, then G(t) = ({v}, ∅, {{v}}). Assume that t has two children t1 and t2
and let G1 = G(t1) and G2 = G(t2). Then V (G1) ∩ V (G2) = ∅ and G(t) =
(V (G1) ∪ V (G2), E(G1) ∪ E(G2),S(G1) ∪ S(G2)). Finally, assume that t has
only one child t1 and let G1 = G(t1). Graph G(t) can be obtained from G1 by
one of the following three operations:

– Adding a new vertex. There is v /∈ V (G1) such that G(t) = (V (G1) ∪
{v}, E(G1),S(G1) ∪ {{v}}).

– Union of labels. There are S1, S2 ∈ S(G1) such that G(t) = (V (G1), E(G1),
(S(G1) \ {S1, S2}) ∪ {S}). We say that S1 and S2 are the children of S.

– New adjacency. There are S1, S2 ∈ S(G1) such that G(t) = (V (G1), E(G1)∪
{{u, v}|u ∈ S1, v ∈ S2},S(G1)). We say that S1 and S2 are adjacent.

The width of a node t of T is |S(G(t))|. The width of (T,G) is the largest
width of a node t of T . Let r be the root of T . Then we say that (T,G) is an scd
of G(r) and of (V (G(r)), E(G(r))) (the unlabeled version of G(r)). The simplified

cliquewidth (scw) of a graph G is the smallest width among all scds of G. The
definition of scd is closely related to the standard notion of clique decomposition.
In fact scw of a graph G is at most twice larger than the cliquewidth of G. The
details are provided in the complete version.

Clique decomposition and scd are easily extended to the directed case. In
fact the notion of cliquewidth has been initially proposed for the directed case,
as noted in [7]. The only change is that the new adjacency operation adds to
G(t) all possible directed arcs from label S1 to label S2 instead of undirected
edges. In this case we say that there is an arc from S1 to S2.

We denote
⋃

t∈V (T) S(G(t)) by S = S(T,G) and call it the set of labels of

(T,G). The set S is very important for our reasoning. In fact, we use scd because
we believe it allows a more intuitive definition of set S than the stadard clique
deocmposition.

A tree decomposition of a graph G is a pair (T,B) where T is a tree and the
elements of B are subsets of vertices called bags. There is a mapping between the
nodes of T and elements of B. Let us say a vertex v of G is contained in a node
t of T if v belongs to the bag B(t) of t. Two properties of a tree decomposition
are connectedness (all the nodes containing the given vertex v form a subtree of
T), adjacency (each edge {u, v} is a subset of some bag), and union (the union
of all bags is V (G)). In this paper we consider the treewidth of a directed graph
as the treewidth of the underlying undirected graph.

Boolean circuits considered in this paper are over the basis {∨,∧,¬} with the
unbounded fan-in. In such a circuit there are input gates (having only output
wires) corresponding to variables and constants true and false. The output of
each gate of a circuit Z computes a function on the set of input variables. We
denote by functions(Z) the set of all functions computed by the gates of Z. The
number of gates of Z is denoted by |Z|.

A clique or tree decomposition of a circuit Z is the respective decomposition
of the DAG of Z. In our discussion, we often associate the vertices of the DAG
with the respective gates. De Morgan circuits are a subclass of circuits where the
inputs of all the not gates are variables (i.e. the outputs of not gates serve as
negative literals). For a gate g of Z, denote by V ar(g) the set of variables having
a path to g in the DAG of Z. A circuit Z has the decomposability property if
for any two in-neighbours g1 and g2 of an and gate g, V ar(g1) ∩ V ar(g2) = ∅.
dnnf is a decomposable De Morgan circuit. When we consider a general circuit
Z, we assume that it does not have constant input gates, since these gates can
be propagated by removal of some gates of Z, which in turn does not increase
the cliquewidth nor the treewidth of the circuit. However, for convenience of
reasoning, we may use constant input gates when we describe construction of a
dnnf. If the given circuit Z is a cnf then its variables-clauses relation can be
represented by the incidence graph, a bipartite graph with parts corresponding
to variables and clauses and a variable-clause edge representing occurrence of a
variable in a clause.

3 From small cliquewidth to small treewidth

The central result of this section is the following theorem:

Theorem 1. Let F be a circuit of cliquewidth k over n variables Then there is a
circuit F ∗ of treewidth at most 18k+2 and |F ∗| ≤ 4|F | such that functions(F) ⊆
functions(F ∗). Moreover, given F and a clique decomposition of F of width k
there is an O(k2n) algorithm constructing F ∗ and a tree decomposition of F ∗ of
width at most 18k + 2 having at most 2|F | bags.

The rest of this section is the proof of Theorem 1. The main idea of the
proof is to replace ‘parts’ of the given circuit forming large bicliques by circuits
computing equivalent functions where such bicliques do not occur. As an example
consider a cnf of 3 clauses C1 = (a1 ∨ a2 ∨ a3 ∨ b1), C2 = (a1 ∨ a2 ∨ a3 ∨ b2)
and C3 = (a1 ∨ a2 ∨ a3 ∨ b3). The circuit of this graph contains a biclique of
order 3 created by C1, C2, C3 on one side and a1, a2, a3 on the other one. This
biclique can be eliminated by the introduction of an additional or gate C4 having
input a1, a2, a3 and output c4 so that the clauses C1, C2, C3 are transformed into
(b1∨c4), (b2∨c4), (b3∨c4), respectively. It is not hard to see that the new circuit
computes the same function as the original one. This is the main idea behind the
construction of circuit F ∗. The formal description of the construction is given
below.

For the purpose of construction of F ∗ we consider a type respecting scd
(T,G) of F where each non-singleton label is one of the following:

– A unary label containing input gates and negation gates.
– An and label containing and gates.
– An or label containing or gates.

The following lemma essentially follows from splitting each label of the given
clique decomposition into three type respecting labels.

Lemma 1. Let k be the cliquewidth of F and let k∗ be the smallest width of an
scd of F that respects types. Then k∗ ≤ 6k.

Given a type respecting scd (T,G), let us construct the circuit F ∗. In the
first stage, we associate each label S ∈ S with a set of gates as follows:

– If S is non-singleton then it is associated with an and gate denoted by
oand(S) and an or gate denoted by oor(S).

– If S is non-singleton and does not contain input gates then it is associated
with an additional gate called in(S) whose type is determined as follows:
If S is an and or or label then in(S) is an and or or gate, respectively.
If S is a unary label then in(S) is a circuit (perceived as a single atomic
gate) consisting of two not gates, the output of one of them is the input
of the other. So, the input of the former and the output of the latter are,
respectively, the input and output of in(S).

– Each singleton label {g} is associated with the gate g of F . We call the gates
associated with singleton labels original gates because they are the gates
of F ∗ appearing in F . For the sake of uniformity, for each original gate g
associated with a singleton label S, we put g = oand(S) = oor(S) = in(S).

The wires of F ∗ are described below. When we say that there is a wire from
gate g1 to gate g2, we mean that the wire is from the output of g1 to the input
of g2.

– Child-parent wires. Let S1 and S2 be labels of (T,G) such that S1 is a
child of S2. Then there is a wire from oand(S1) to oand(S2) and a wire from
oor(S1) to oor(S2).

– Parent-child wires. Let S1 and S2 be as above and assume that S2 does
not contain input gates. Then there is a wire from in(S2) to in(S1). That is,
the direction of child-parent wires is opposite to the direction of parent-child
wires. 3

– Adjacency wires. Assume that in (T,G) there is an arc from S1 to S2

(established by the new adjacency node). Then the following cases apply:
• If S2 is an and label then put a wire from oand(S1) to in(S2).
• If S2 is an or label then put a wire from oor(S1) to in(S2).
• If S2 is a unary label consisting of negation gates only then put a wire

from an arbitrary one of oand(S1) or oor(S1) to in(S2).

Finally, we remove in(S) gates that have no inputs. This removal may be
iterative as removal of one gate may leave without input another one.

It is not hard to see by construction that F and F ∗ have the same input gates.
This gives us possibility to state the following theorem with proof in Section 3.1.

Theorem 2. F ∗ is a well formed circuit (that is, F ∗ satisfies the definition of
a Boolean circuit). The output of each original gate g of F ∗ computes exactly
the same function (in terms of input gates) as in F .

In Section 3.2, we prove that the treewidth of F ∗ is not much larger than the
width of (T,G).

Theorem 3. There is a tree decomposition of F ∗ with at most 2|F | bags having
width at most 3k + 2, where k is the width of (T,G).

Proof of Theorem 1. Due to Theorem 2, functions(F) ⊆ functions(F ∗).
If we take (T,G) to be of the smallest possible type respecting width then the
treewidth of F ∗ is at most 18k + 2 by combination of Theorem 3 and Lemma 1.

To compute the number of gates of F ∗, let n be the number of gates of F ,
which is also the number of singleton labels of (T,G). Since each non-singleton
label has two children (i.e. in the respective tree of labels each non-leaf node is
binary), the number of non-singleton labels is at most n − 1. By construction,
F ∗ has one gate per singleton label plus at most 3 gates per non-singleton label,
which adds up to at most 4n. The technical details of the runtime derivation are
omitted due to space constraints.

3 We would like to thank the anonymous referee, for helping us to identify a typo in
this definition that occurred in the first version of the manuscript.

3.1 Proof of Theorem 2

We start with establishing simple combinatorial properties of F ∗ (Lemmas 2,3,
4,5). A path in a circuit is a sequence of gates so that the output of every gate
(except the last one) is connected by a wire to the input of its successor. Let us
call a path a connecting path if it contains exactly one adjacency wire.

Lemma 2. – Any path P of F ∗ starting at an original gate and not containing
adjacency wires contains child-parent wires only.

– Any path P of F ∗ ending at an original gate and not containing adjacency
wires contains parent-child wires only.

Proof. The only possible wire to leave the original gate is a child-parent
wire. Any path starting from an original gate and containing child-parent wires
only ends up in an oand or oor gate. This means that the next wire (if not an
adjacency one) can be only another child-parent wire. Thus the correctness of
the lemma for all the paths of length i implies its correctness for all such paths
of length i + 1, confirming the first statement.

For the second statement, we start from an original gate and go back against
the direction of wires. The reasoning similar to the previous paragraph applies
with the in gates of non-singleton labels replacing the oor and oand ones. �

Lemma 3. Let g1 and g2 be gates of F such that g2 is an and or an or gate.
Then there is a wire from g1 to g2 in F if and only if F ∗ has a connecting path
from g1 to g2 such that all the gates of this path except possibly g1 are of the
same type as g2.

Proof. We prove only the case where g2 is an and gate, the other case is
symmetric. Let P be a connecting path of F ∗ from g1 to g2 of the specified kind.
Let g′1 and g′2 be, respectively, the tail and the head gates of the adjacency wire.
Then either g1 = g′1 or the suffix of P ending at g′1 consists of child-parent wires
only according to Lemma 2. It follows that g′1 corresponds to a label containing
g1. Analogously, we conclude that either g2 = g′2 or the suffix of P starting
at g′2 contains only parent-child labels and hence the label corresponding to g′2
contains g2. Existence of the adjacency wire from the label of g′1 to the label of
g′2 means that the scd introduces all wires from the gates in the label of g′1 to
the gates in the label of g′2. In particular, there is a wire from g1 to g2 in F .

Conversely, assume that there is a wire from g1 to g2 in F . Then there are
labels S1 and S2 containing g1 and g2, respectively, such that (T,G) introduces
an adjacency arc from S1 to S2. By construction of F ∗ there is a gate g′1 corre-
sponding to S1 and a gate g′2 corresponding to S2 such that F ∗ has an adjacency
wire from g′1 to g′2. Moreover, by the definition of a type respecting scd, S2 is
an and label, hence g′2 = in(S2) is an and gate. Furthermore, by construction
of F ∗ either g2 = g′2 or there is a path from g′2 to g2 consisting of parent-child
arcs only and and gates only. Indeed, if S2 is not a singleton then there is a
wire from in(S2) to in(S3) containing g2 since S2 is partitioned by its children.
Iterative application of this argument produces a path from g′2 to g2. Since g2

is an and gate, all gates in this path are and gates by construction. Thus the
suffix exists. What about the prefix? By construction, g′1 = oand(S1). Since S1

contains g1, either g′1 = g1 or there is a path from g1 to g′1 involving child-parent
wires and and gates only: just start at g1 and go every time to the oand-gate of
the parent until S1 has been reached. Thus we have established existence of the
desired prefix.

It remains to be shown that the prefix and suffix do not intersect. However,
this is impossible due to the disjointness of S1 and S2. �

Lemma 4. Let g1 and g2 be the gates of F such that g2 is a not gate. Then F
has a wire from g1 to g2 if and only if there is a connecting path P in F ∗ from g1
to g2 with the adjacency wire (g′1, g

′
2) such that g1 = g′1 and all the intermediate

vertices in the suffix of P starting from g′1 are in-gates of unary labels containing
negation gates only.

Proof. Let P be a connecting path of F ∗ of the specified form. Then either
g′2 = g2 or g′2 corresponds to a label containing g2. In both cases this means that
F has a wire from g1 to g2.

Conversely, assume that F has a wire from g1 to g2. Then there are labels S1

and S2 containing g1 and g2 such that (T,G) sets an adjacency wire from S1 to
S2. Observe that S1 cannot contain more than one element because in this case
g2, a not gate, will have two inputs. Furthermore, either S2 contains g2 only or
S2 is a unary label containing negation gates only (because the input gates do
not have input wires). In the latter case, the desired suffix from the head of the
adjacency arc to g2 follows by construction. �

Lemma 5. Any path of F ∗ between two original gates that does not involve
other original gates is a connecting path.

Proof. First of all, let us show that any path of F ∗ between original gates
involves at least one adjacency wire. Indeed, by Lemma 2, any path leaving an
original gate and not having adjacency wires has only child-parent wires. Such
wires lead only to bigger and bigger labels and cannot end up at a singleton one.
It follows that at least one adjacency wire is needed.

Let us show that additional adjacency wires cannot occur without original
gates as intermediate vertices. Indeed, the head of the first adjacency wire is
an in gate of some label S. Unless S is a singleton, the only wires leaving
in(S) are parent-child wires to the in gates of the children of S. Applying this
argumentation iteratively, we observe that no other wires except parent-child
wires are possible until the path meets the in gate of a singleton label. However,
this is an original gate that cannot be an intermediate node in our path. It follows
that any path between two original gates without other original gates cannot
involve 2 adjacency wires. Combining with the previous paragraph, it follows
that any such path involves exactly one adjacency wire, i.e. it is a connecting
path. �

Using the lemmas above, it can be shown that any cycle in F ∗ involves at
least one original gate and that this implies that F contains a cycle as well, a

contradiction showing that F ∗ is acyclic. The technical details of this derivation
are omitted due to space constraints. By construction, each wire connects output
to input and there are no gates (except the input gates of course) having no input.
It follows that F ∗ is a well formed circuit.

For each gate g of F ∗ denote by f(g, F ∗) the function computed by a subcir-
cuit of F ∗ rooted by g. We establish properties of these functions from which The-
orem 2 will follow by induction. In the following we sometimes refer to f(g, F ∗)
as the function of g.

Lemma 6. For each not gate g of F ∗, f(g, F ∗) is the negation of f(g′, F ∗),
where g′ is the input of g in F .

Proof. According to Lemma 4, F ∗ has a path from g′ to g where all vertices
except the first one are not gates. Since all of them but the last one are doubled,
there is an odd number of such not gates. Each not gate has a single input,
hence the function of each gate of the path (except the first one) is the negation
of the function of its predecessor. Hence these functions are, alternatively, the
negation of the function of g′ and the function of g′. Since the number of not
gates in the path is odd, the function of g is the negation of the function of g′,
as required. �

In order to establish a similar statement regarding and and or gates we need
two auxiliary lemmas.

Lemma 7. For each label S, f(oand(S), F ∗) is the conjunction of f(g, F ∗) of
all original gates g contained in S. Similarly, f(oor(S), F ∗) is the disjunction of
the functions of such gates.

Proof. We prove the lemma only for the oand gates as for the oor gates
the proof is symmetric. The proof easily goes by induction. For an original
gate this is just a conjunction of a single element, namely itself, and this is
clear by construction. For a larger label S, it follows by construction that
f(oand(S), F ∗) = f(oand(S1), F ∗) ∧ f(oand(S2, F

∗)), where S1 and S2 are the
children of S. For S1 and S2 the rule holds by the induction assumption. Hence,
f(oand(S), F ∗) is the conjunction of all the functions of all the original gates
in the union of S1 and S2, that is, the conjunction of the functions of all the
original gates contained in S, as required. �

Let us call a path of F ∗ semi-connecting if it starts with an adjacency wire
and the rest of the wires are parent-child ones.

Lemma 8. Let S be an and label. Then f(in(S), F ∗) is the conjunction of the
functions of all gates from which there is a semi-connecting path to in(S). For the
or label the statement is analogous with the conjunction replaced by disjunction.

Proof. We provide the proof only for the and label, for the or label the proof
is analogous with the corresponding replacements of and by or and conjunctions
by disjunctions.

The proof is by induction on the decreasing size of labels. For the largest
and label S, all the input wires are the adjacency wires. Clearly the considered

function is the conjunction of the functions of the gates at the tails of these
adjacency wires. It remains to see if there are no more gates to arrive at in(S)
by semi-connected paths. But any such gate, after passing through the adjacency
wire must meet an ancestor of S and, by the maximality assumption, S has no
ancestors.

The same reasoning as above is valid for any label S without ancestors. If S
has ancestors, then f(in(S), F ∗) is the conjunction of the functions of the gates
at the tails of the adjacency wires incident to in(S) and the function of the in
gate of the parent of S . By the induction assumption, this function is in fact a
conjunction of the gates at the tails of the adjacency wires incident to in(S) plus
those connected to in(S) by semi-connected paths through the parent. Since any
semi-connected path either directly hits in(S) at the head of an adjacency wire
or approaches it through the parent, the statement is proven. �

Lemma 9. The function of any original and gate g of F ∗ is the conjunction of
the functions of the singleton gates whose outputs are the inputs of g in F . The
same happens for the or gate and the disjunction.

Proof. As before, we prove the statement for the and gate, for the or gate
it is analogous with the respective substitutions. By construction and Lemma 8,
f(g, F ∗) is the conjunction of functions of all oand gates (since there are no other
ones) connected to g by semi-connected paths. Let us call the labels of these oand
gates the critical labels. Combining this with Lemma 7, we see that f(g, F ∗) is in
fact a conjunction of the functions of all original gates contained in the critical
labels. It remains to show that these gates are exactly the in-neighbours of g in
F . Let us take a particular in-neighbour g′. By Lemma 3, there is a connecting
path from g′ to g and by Lemma 7, the tail of the adjacency wire of this path is
the oand gate of a critical label, so g′ is in the required set. Conversely, assume
that g′ is a gate in the required set. Specify a critical label S g′ belongs to.
Clearly, there is a child-parent path from g′ to oand(S) which, together with a
semi-connected path from oand(S) to g, makes a connecting path. The latter
means that in F there is a wire from g′ to g according to Lemma 3, as required.
�

Proof of Theorem 2. Let us order the gates of F topologically and do in-
duction on the topological order. The first gate is an input gate and the function
of the input is just the corresponding variable both in F and in F ∗. Otherwise,
the gate is and or or or not gate. In the former two cases, according to Lemma
9 the function of g in F ∗ is the conjunction (or disjunction, in case of or) of
the functions of its inputs in F , the same relation as in F . The theorem holds
regarding the inputs by the induction assumption, hence the function of g in F ∗

is the same as in F . Regarding the not gate, the argumentation is analogous,
employing Lemma 6. �

3.2 Proof of Theorem 3

Let us define the undirected graph H = H(T,G) called the representation graph
of (T,G) as follows. The vertices of this graph are the labels of (T,G) and two

vertices S1 and S2 are adjacent if and only if either S1 is a child of S2 (or vice
versa of course) or S1 and S2 are adjacent in (T,G) (meaning that the new
adjacency operation is applied on S1 and S2). We call the first type of edges
child-parent edges and the second type adjacency edges.

Lemma 10. Let t be the treewidth of H. Then the treewidth of F ∗ is at most
3t + 2.

Proof (Sketch). Observe that if we contract the gates in F ∗ of each label
into a single vertex, eliminate directions and remove multiple occurrences of
edges, we obtain a graph isomorphic to H. The desired tree decompositom is
obtained from the tree decomposition of H by replacing the occurrence of each
vertex of H in a bag by the gates corresponding to this vertex. Thus, there is a
tree decomposition of F ∗ with at most 3(t+ 1) elements in each bag, that is the
treewidth of F ∗ is at most 3t + 2. �

Lemma 11. The treewidth of H is at most k, where k is the width of (T,G).

Proof. For each node t of T , let S(t) be the set of labels of G(t) and let B(t)
be the set of vertices of H corresponding to S(t). Denote the set of all B(t) by B.
We are going to show that (T,B) is a tree decomposition of graph H ′ obtained
from H by removal of all child-parent edges.

First of all, observe that for each v ∈ V (H), the subgraph Tv of T consisting
of all nodes containing v is a subtree of T . Indeed, let us consider T as a rooted
tree with the root t being the same as in (T,G). Let t1 and t2 be two nodes
containing v. Then one of them is an ancestor of the other. Indeed, otherwise t1
and t2 are nodes of two disjoint subtrees T1 and T2 whose roots t′1 and t′2 are
children of some node t∗. By the definition of scd, G(t′1) is disjoint with G(t′2)
and it is not hard to conclude from the definition that V (G(t1)) ⊆ V (G(t′1))
and V (G(t2)) ⊆ V (G(t′2)) are disjoint. Since any label is a subset of the set
of vertices of the graph it belongs to, S(t1) and S(t2) cannot have a common
label and hence B(t1) and B(t2) cannot have a joint node. Furthermore, it is
not hard to observe, if t1 is ancestor of t2 and S ∈ S(t1) ∩ S(t2) then S belongs
to S(t′) of all nodes t′ in the path between t1 and t2. It follows that the node of
H corresponding to S belongs to B(t′) of all these nodes t′. Thus we have shown
that if t1 and t2 contain v they cannot belong to different connected components
of Tv, confirming the connectedness of Tv.

Next, we observe that if v1 and v2 are incident to an adjacency edge then
there is a node t containing both v1 and v2. Indeed, let S1 and S2 be the labels
corresponding to v1 and v2, respectively. Let t be the node where the adjacency
operation regarding S1 and S2 is applied. Then both S1 and S2 belong to S(t)
and, consequently, t contains both v1 and v2. Finally, by construction, each
vertex of H is contained in some node.

To obtain the desired tree decomposition of H, we are going to modify (T,B)
to acquire two properties: that the number of nodes of the resulting tree is at
most 2|F | and that each parent-child pair u, v is contained in some node t. For
the former just iteratively remove all nodes whose operations are new adjacency.

If the node t being removed is not the root then make the parent of t to be the
parent of the only child of t (since t has only one child the tree remains binary).
The latter property can be established by adding at most one vertex to each
bag of the resulting structure (T ′,B′). Indeed, for each non-singleton label S,
let t(S) be the node where this label is created by the union operation. Then
both children of S belong to the only child of t(S). Let (T ′,B∗) be obtained from
(T ′,B′) as follows. For each non-singleton label S, add the vertex corresponding
to S to the bag of the child of t(S). Since at most one new label is created per
node of T ′, at most one vertex is added to each bag. It is not hard to see both
of the modifications preserve properties stated in the previous paragraphs and
achieve the desired properties regarding the child-parent edges. Since each bag
of (T,B′) contains at most k + 1 elements, we conclude that the treewidth of H
is at most k. Since the number of bags is at most as the number of labels, we
conclude that the number of bags is at most 2|F | �

Proof of Theorem 3. Immediately follows from the combination of Lemma
10 and Lemma 11. �

4 Application to knowledge compilation

In this section we demonstrate an application of Theorem 1 to knowledge com-
pilation by showing the existence of an algorithm compiling the given circuit
Z into dnnf. Both the time complexity of the algorithm and the space com-
plexity of the resulting dnnf are fixed-parameter linear parameterized by the
cliquewidth of Z. More precisely, the statement is the following:

Theorem 4. Given a single-output circuit Z of cliquewidth k, there is a dnnf
of Z having size O(918kk2|Z|). Moreover, given a clique decomposition of Z of
width k, there is a O(918kk2|Z|) algorithm constructing such a dnnf.

Theorem 4 is an immediate corollary of Theorem 1 and the following one:

Theorem 5. Given a circuit Z of treewidth p, there is a dnnf of Z having size
O(9pp2|Z|). Moreover, such a dnnf can be constructed by an algorithm of the
same runtime that gets as input the circuit Z and a tree decomposition of Z of
width p having O(Z) bags.

The rest of this section is a proof of Theorem 5. Our first step is Tseitin
transformation from circuit Z into a cnf F ′. For this purpose we assume that
Z does not have paths of 2 or more not gates. Depending on whether this path
is of odd or even length, it can be replaced by a single not gate or by a wire,
without treewidth increase. In this case the variables y1, . . . , ym of F ′ are the
variables of Z and the outputs of and and or gates of Z. Under this assumption,
it is not hard to see that the inputs of each gate are literals of y1, . . . , ym. Then
the output x of Z is either yi or ¬yi for some i. Let us call x the output literal.

The cnf F ′ is a conjunction of the singleton clause containing the output
literal and the cnfs associated with each and and or gate. Let C be an and
gate with inputs t1, . . . , tr and output z. Then the resulting cnf is (t1 ∨ ¬z) ∧

. . . ∧ (tr ∨ ¬z) ∧ (¬t1 ∨ . . . ∨ ¬tr ∨ z). If C is an or gate then the resulting cnf
is (¬t1 ∨ z) ∧ . . . ∧ (¬tr ∨ z) ∧ (t1 ∨ . . . ∨ tr ∨ ¬z). We call the last clause of the
cnf of C the carrying clause w.r.t. C and the rest are auxiliary ones w.r.t. C
and the corresponding input.

To formulate the property of Tseitin transformation that we need for our
transformation, let us extend the notation. We consider sets of literals that do
not contain a variable and its negation. For a set S of literals, V ar(S) is the
set of variables of S. Let V ′ ⊆ V ar(S). The projection Pr(S, V ′) of S to V ′ is
the subset S′ of S such that V ar(S′) = V ′. Let S be a family of sets of literals
over a set V of variables. Then the projection Proj(S, V ′) of S to V ′ ⊆ V is
{Proj(S, V ′)|S ∈ S}. Denote by V ar(Z) and V ar(F ′) the sets of variables of Z
and F ′, respectively. Let us say that a set S of literals with V ar(S) = V ar(Z)
is a satisfying assignment of Z if Z is true on the truth assignment on V ar(Z)
that assigns all the literals of S to true. For a cnf, the definition is analogous.
The well known property of Tseitin transformation is the following:

Lemma 12. Let S1 and S2 be the sets of satisfying assignments of F ′ and Z,
respectively. Then Proj(S1, V ar(Z)) = S2.

Lemma 12 is useful because of the following nice property of dnnf.

Lemma 13. (Theorem 9 of [3]). Let Z be a DNNF let V ′ ⊆ V ar(Z) and let
Z ′ be the dnnf obtained from Z by replacing the variables of V ar(Z) \ V ′ with
the true constant. Let S and S′ be sets of satisfying assignments of Z and Z ′,
respectively. Then S′ = Proj(S, V ′).

Thus it follows from Lemmas 12 and 13 that having compiled F ′ into a dnnf
D′, a dnnfD of Z can be obtained by replacing the variables of V ar(F ′)\V ar(Z)
with the true constant. Clearly, this does not incur any additional gates. In order
to obtain a dnnf of F ′, we observe that the treewidth of the incidence graph of
F ′ is not much larger than the treewidth of Z.

Lemma 14. Let (T,B) be a tree decompositoion of Z of width p. There is a
O(p2|T |) time algorithm (|T | is the number of nodes of T) transforming (T,B)
into a tree decomposition (T ∗,B∗) of the incidence graph G′ of F ′ having width
at most 2p + 1 and with |T ∗| = O(p2|T |).

Proof (Sketch). Let F ′′ be the cnf obtained from F ′ by removal of all
the clauses but the carrying ones and let G′′ be the respective incidence graph.
Transform (T,B) into (T,B′′) as follows:

– Replace each occurrence of an and or or gate X with the respective carrying
clause and the variable corresponding to the output of X.

– Replace each occurrence of a not gate with the variable corresponding to
the input of the gate (it may either be an input variable of Z or the output
variable of some and or or gate).

It can be observed by a straightforward inspection that (T,B′′) is indeed a tree
decomposition of G′′ of width 2p + 1.

Next, we observe that for each and or or gate X of Z and for each variable
u of F ′ corresponding to an input of X and for variable y of F ′ corresponding to
the output of X, there is a node t of (T,B′′) containing both y and u. Indeed,
let C be the carrying clause corresponding to X. By construction, whenever t
contains C, t also contains y. By the adjacency property, there is at least one
t containing C and u. Since this last t contains also y, this is a desired clause.
Pick one node with the specified property and denote it by t(y, u). Add to T a
new node t′ with t(y, u) being its only neighbour. The bag of t′ will contain y, u,
and C(y, u) the auxiliary clause of X corresponding to the input u. Do so for
all the auxiliary clauses. Finally, properly add a node whose bag contains the
variable y of the output literal and the singleton clause containing this literal
(the neighbour of this new node should be an existing node containing y). Let
(T ∗,B∗) be the resulting structure. It is not hard to observe by construction
that (T ∗,B∗) satisfies the statement of the lemma. �

It remains to show that a space-efficient dnnf can be created parameterized
by the treewidth of the incidence graph.

Theorem 6. Let F be a cnf and let (T ′,B′) be a tree decomposition of the
incidence graph of F . Then F has a dnnf of size O(3t|T ′|) where t is the width
of (T ′,B′). Moreover, given F and (T ′,B′) such a dnnf can be constructed by
an algorithm having the same runtime.

We omit the proof of Theorem 6 due to space constraints. It is similar to
the proof of Theorem 16 of [3], essentially based on dynamic programming. The
difference is that in addition to branching on assignments of variables of the
given bag, the algorithm also needs to branch on the clauses of that bag that are
not satisfied by the currently considered assignment of variables. Three choices
need to be considered for each clause: to not satisfy the clause at all (this choice
is needed for ‘coordination’ with the ‘parent bag’), to satisfy the clause by the
variables of the left child and to satisfy the clause by the variables of the right
child. These 3 choices increase the base of the exponent from 2 to 3.

Remark. It is not hard to see that any tree decomposition can be trans-
formed (without the increase of width) into another one whose number of nodes
is at most as big as the number of vertices. Having this in mind, Theorem 6
canbe reformulated with O(3t(CL + n)) istead O(3t|T ′|), where CL and n are,
respectively the number of clauses and the number of variables of F . With this
reformulation, Theorem 6 becomes of an independent interest because it extends
the result of Darwiche [3] from the primal to the incidence graph of the given
CNF without increasing much the base of the exponent.

Proof of Theorem 5. The construction of a dnnf for Z consists of 4
stages: transform Z into F ′ by the Tseitin transformation; transform the tree
decomposition of Z into a tree decomposition of the incidence graph of F ′;
obtain a dnnf of F ′ as specified by Theorem 6 and obtain a dnnf of Z as
specified in Lemma 13. The correctness of this procedure follows from the above
discussion. The time and space complexities easily follow from the combination
of the complexities of intermediate stages. �

5 Discussion

In this paper we presented a theorem that shows that a circuit of cliquewidth
k can be transformed into, roughly speaking, an equivalent circuit of treewidth
18k + 2 with at most 4 times more gates. A consequence of this statement is
that any space-efficient knowledge compilation parameterized by the treewidth
of the input circuit can be transformed into a space efficient knowledge compi-
lation parameterized by the cliquewidth of the input circuit. We elaborated this
consequence on the example of dnnf. As a result we obtained a theoretically
efficient but formidably looking space complexity of (918kk2n). Therefore, the
first natural question is how to reduce the base of the exponent.

The next question for further investigation is to check if the proposed upper
bound can be applied to sdd [5] which is more practical than dnnf in the sense
that it allows a larger set of queries to be efficiently handled. To answer this
question positively, it will be sufficient to extend Theorem 6 to the case of sdd,
the ‘upper’ levels of the reasoning will be applied analogously to the case of
dnnf.

It is important to note that rankwidth is a better parameter for capturing
dense graphs than cliquewidth in the sense that rankwidth of a graph does not
exceed its treewidth plus one [12] as well as cliquewidth [13], while cliquewidth
can be exponentially larger than treewidth (and hence rankwidth) [1]. Also,
computing of rankwidth, unlike cliquewidth, is known to be FPT [11]. There-
fore, it is interesting to investigate the relationship between the rankwidth and
the treewidth of a Boolean function. For this purpose rankwidth has to be ex-
tended to directed graphs [15]. It is worth saying that if the question is answered
negatively, i.e. that the treewidth of a circuit can be exponentially larger than
its rankwidth, it would be an interesting circuit complexity result.

Finally, recall that all the upper bounds on the dnnf size obtained in this
paper are polynomial in the size of the circuit which can be much larger than
the number of variables. On the other hand, the upper bound on the dnnf
size parameterized by the treewidth of the primal graph of the given cnf is
polynomial in the number of variables [3]. Can we do the same in the circuit
case?

References

1. Derek G. Corneil and Udi Rotics. On the relationship between clique-width and
treewidth. SIAM J. Comput., 34(4):825–847, 2005.

2. Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable
optimization problems on graphs of bounded clique-width. Theory Comput. Syst.,
33(2):125–150, 2000.

3. Adnan Darwiche. Decomposable negation normal form. J. ACM, 48(4):608–647,
2001.

4. Adnan Darwiche. On the tractable counting of theory models and its application
to truth maintenance and belief revision. Journal of Applied Non-Classical Logics,
11(1-2):11–34, 2001.

5. Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge
bases. In IJCAI, pages 819–826, 2011.

6. Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif.
Intell. Res. (JAIR), 17:229–264, 2002.

7. Wolfgang Dvorák, Stefan Szeider, and Stefan Woltran. Reasoning in argumentation
frameworks of bounded clique-width. In COMMA, pages 219–230, 2010.

8. Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. Clique-
width is np-complete. SIAM J. Discrete Math., 23(2):909–939, 2009.

9. Andrea Ferrara, Guoqiang Pan, and Moshe Y. Vardi. Treewidth in verification:
Local vs. global. In LPAR, pages 489–503, 2005.

10. Frank Gurski and Egon Wanke. The tree-width of clique-width bounded graphs
without kn, n. In WG, pages 196–205, 2000.

11. Petr Hlinený and Sang il Oum. Finding branch-decompositions and rank-
decompositions. SIAM J. Comput., 38(3):1012–1032, 2008.

12. Sang il Oum. Rank-width is less than or equal to branch-width. Journal of Graph
Theory, 57(3):239–244, 2008.

13. Sang il Oum and Paul D. Seymour. Approximating clique-width and branch-width.
J. Comb. Theory, Ser. B, 96(4):514–528, 2006.

14. Abhay Kumar Jha and Dan Suciu. On the tractability of query compilation and
bounded treewidth. In ICDT, pages 249–261, 2012.

15. Mamadou Moustapha Kanté and Michaël Rao. F-rank-width of (edge-colored)
graphs. In CAI, pages 158–173, 2011.

