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I can’t go back to yesterday because I

was a different person then.

Lewis Carroll, Alice in Wonderland
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Introduction

AI, Law and Logic

Art and music are used within medical protocols, while giant closeups of colourful viruses

and bacteria hang on the walls of art galleries all over the world. Brand new ethical

issues arise from any new technological achievement. It has become quite hard to find

two distinct, not interacting disciplines. Being interdisciplinary is the new imperative.

Sometimes the contamination of fields creates a juxtaposition of distinct flavours. Other

times, however, genuinely new disciplines come up. This happened after the fortunate

encounter of Artificial Intelligence (AI) and Law.

The use of technology is pervasive, allowing Artificial Intelligence and Computer

Science to play a central role. Whether used as a mere tool, or as the focus of research,

computers and the likes, along with the whole new world they generated in the past

decades, are an essential part of almost any current scenario.

AI and Law look so distant, and they actually are very far away from each other

under many aspects. For instance, Law was born long ago and it has always concerned

moral antinomies as good and bad, right and wrong. Law is related to the social aspects

of mankind, the need and wish of people to interact within organised societies. Artificial

Intelligence and Computer Science, on the other hand, look contemporary, young, scien-

tific, and technology related, far away from humanities, arts, and culture. However, after

a closer look, their origins date as far back as Law’s. AI and CS were born within the

dream of controlling and mastering large quantities of information in a mechanical way.

1
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It is possible to see a common path emerging. Both Law and AI share something, as

they both aim at engaging themselves in “flexible problem-solving activities in complex

domains” (Sartor and Rotolo, 2013, 199).

As pointed out by Sartor and Rotolo (2013), AI & Law research covers many different

topics, such as

- formal theories of norms and normative systems,

- computational legal logic,

- argumentation and argumentation systems,

- ontologies for the law,

- game theory as applied to the law,

- formal models of institutions and MAS,

- simulations in legal and social norms,

- rule-interchange languages for the legal domain,

- legal e-discovery and information retrieval,

- NLP in the legal domain,

- machine learning in the law.

AI and Computer Science should not be seen as mere tools to be applied within

the legal field. Actually, the discipline now called AI & Law is genuinely interactive

and interdisciplinary, involving different fields as deontic logics, normative multi-agent

systems, game theory, norms and trust, and norms and argumentation.

The interaction of Law and Logic has great relevance in this framework. Since the

dawn of the research on modal logics, the deontic interpretation of the modal opera-

tors has been present, helping to refine the logical analysis of legal concepts such as

the semantic difference between obligation and norms, the interaction among different

normative systems, the arising of conflicts within legal systems. We find this latter issue

of great interest and relevance. Handling and accommodating conflicts between different

norms is essential for any system aiming at modeling legal concepts. It is a goal that
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can be achieved with different tools and strategies. That of choosing non-normal deontic

logics is one of those and definitely one of the most promising.

This dissertation is devoted to the study of non-normal systems of deontic logics, both

on the propositional level, and on the first order one. We shall present new completeness

results concerning the semantic setting of several systems which are able to handle

normative dilemmas and conflicts. Although primarily driven by issues related to the

legal and moral field, these results are also relevant for the more theoretical field of Modal

Logic itself, as we propose a syntactical, and semantic study of intermediate systems

between the classical propositional calculus CPC and the minimal normal modal logic K.

Thesis Summary

Chapter 1 introduces the main philosophical topics related to the deontic interpretation

of modal logics. Standard tools are known to generate several paradoxes. Some

of these originate within the syntax of given systems, such as deontic explosion.

There are different ways to deduce problematic schemata, and several solutions

have been proposed. We chose to adopt the multi-relational semantics approach,

providing a conceptual interpretation suitable to interpret deontic operators.

– in Section 1.1 we touch upon the Standard Paradigm SDL. After presenting

normal Kripke Semantics, we analyse the standard deontic interpretation and

some of the problems it raises. In particular, in Section 1.1.1 we introduce

some first preliminary modal schemata as well as their deontic interpretation.

– In Section 1.2 we analyse one of the most problematic schemata related to

the deontic interpretation of modal logics, namely, the formula called Deontic

Explosion. Section 1.2.1 is a preliminary syntactic analysis of the systems

generating such schema, underlying the reasons behind the choice of working

with non normal systems. There are several syntactic solutions to prevent the

derivation of deontic explosion formulae, as we see in Section 1.2.2, although
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we chose to analyse in detail the ones that are more conservative with respect

to normal modal logics, i.e., those systems that are weak enough to prevent

deontic explosions, yet powerful enough to express juridical sentences. These

systems are the so called non normal Modal logics.

– Non normal systems can be treated semantically using relational structures.

In Section 1.3 we introduce a semantic interpretation of the modal deontic

operators based on Kripke Semantics, or Possible Worlds Framework, as de-

fined in Section 1.3.1. Kripke-frames are very intuitive and useful and provide

an excellent tool to treat normal systems. However, they are known to be

sound and complete with respect to normal systems. In order to keep the

intuitive appeal of the possible worlds framework, and still using non normal

systems, we decided to study further the so called multi-relational frames. In

Section 1.3.2 and 1.3.3 we introduce this type of semantics, which is nothing

else than a direct generalisation of standard Kripke Frames and models.

Chapter 2 is mainly technical and it presents some new results concerning non normal

modal systems.

– In Section 2.1 we present some well known non normal calculi, namely the

systems E,M,NM,R as well as a syntactical analysis of the relations between

well known schemata (see Chellas, 1980). In particular we shall see which

systems count DEX among their theorems and which premisses entail schema

DEX.

– Section 2.2 is the core of the Chapter and it is devoted to the semantic

analysis of well known modal schemata within different scenarios. After a

brief technical introduction to both strong, and weak multi-relational seman-

tics in Section 2.2.1, we proceed to show how some well known Kripke-valid

schemata, are no longer valid within the broader semantics described. Then,
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in Section 2.2.3 we carry on a comparative analysis of modal schemata and

semantic properties, i.e., we prove characterisation theorems for some well

known schemata, namely, M,C,N,B,T. Section 2.2.4 presents a semantic

analysis of some formulae that are are particular relevant within deontic log-

ics, namely, CON and D. It is well known that both schemata characterise

precisely the same property in Kripke semantics, namely, seriality. However,

this ceases to be true in multi-relational semantics and, as we shall see, these

schemata define different readings of seriality within weak semantics.

– Section 2.3 is focused on proving semantic completeness for several systems

using both strong, and weak semantic tools. We propose direct completeness

proofs via canonical models for both classical systems (Section 2.3.1), and

N-Monotonic systems (Section 2.3.2). Finally, in Section 2.3.3 we prove com-

pleteness theorems with respect to specific classes of frames for a few systems

extending MN with well known schemata, namely, MN ⊕ T, MN ⊕ D, and

MN⊕CON.

Chapter 3 presents free first order extensions of some N-monotonic systems and above

as well as completeness results with respect to multi-relational first order frames.

– Section 3.1 is an introduction to Barcan Formulae and their role within ju-

dicial syllogisms. There are several philosophical as well as related technical

issues.

– Section 3.2 presents some well known results concerning quantified non normal

modal logics and Neighborhood frames, as well as a first technical introduction

to Barcan formulae and the related problems. We shall see the attempts made

to accommodate Barcan schemata within both constant domain, and varying

domain neighborhood frames.

– Section 3.3 is rather technical and presents multi-relational first order frames.
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We chose to analyse frames with varying domains, in order to perform a finer

distinction between actual individuals and possibilia.

– Section 3.4 The traditional distinction between de dicto and de re sentences

is here seen under a new light, in terms of contextual obligation and the role

of quantification within deontic contexts.

– Section 3.5 is the core of this Chapter. We shall present alternative semantic

characterisations for the schema CBF. We compare our results with the

standard ones in Kripke Semantics and we shall see different ways to generalise

the concept of increasing inner domains.

– Section 3.6 is the technical core of the Chapter. Here we provide Henkin-style

completeness theorems for several systems, namely, the smallest free quan-

tified non normal N-monotonic logic Q○
=.NM and some extensions, including

Q○
=.NM⊕CBF.

– In Section 3.7 we provide characterisation results for BF and we compare it

the case of neighborhood models.

– Finally, in Section 3.8 we discuss the role of identity and we present a com-

pleteness theorem for a system without the identity relation and some exten-

sions.

Chapter 4 presents both a summary of all the results achieved, and some possible ap-

plications within new fields:

– Section 4.1 presents a summary of the technical results, both for the propo-

sitional case (4.1.1), and for the predicative one (4.1.2).

– Section 4.2 is focused on some of the main open problems related to non

normal modal logics, both for the propositional, and the predicative case.
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– In Section 4.3, finally, we present a possible application within epistemic log-

ics. In fact non normal modal systems have been proposed as a possible

solution to deal with the problem of logical omniscience. Here we define the

concept of omniscience from the perspective of propositional modal logic. We

start from the classical propositional calculus, adding and analysing epistem-

ically many of the schemata seen throughout the dissertation.
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Chapter 1

Deontic Logics and Dilemmas

At the beginning of the article soon to become a milestone on the path of deontic logic,

von Wright (1951a) states that “the deontic modes [have] hardly at all been treated

by logicians.” More than sixty years have passed and this statement has seen its truth

value changing radically (see, e.g., Åqvist, 2001; Carmo and Jones, 2002). Actually

there has been a large amount of research on formal models of normative concepts.

Being essentially an interdisciplinary domain, both logicians (like the already cited von

Wright, 1951a), and legal theorists (such as Alchourrón, 1969), and computer scientists

(like McCarty, 1986) have merged their efforts. In this Chapter we shall attempt to

provide a brief introduction to some basic aspects of modal deontic logic. In particular,

we shall present the so-called Standard Deontic Logic (SDL hereafter). Although it

is nowadays heavily criticised, SDL has long been considered a reference for deontic

logicians. We shall discuss both standard syntax, and semantics for SDL as this system,

known as it is to generate several deontic paradoxes and problems (Åqvist, 2001; Carmo

and Jones, 2002), looks like a good touchstone to compare new systems and ideas.

1.1 Once Upon a Time: The Standard Paradigm

Most logical investigations of the main normative legal concepts require a formal account

of deontic notions, such as obligation (duty) and permission. These ideas have been

characterized by using different logical tools, most frequently related to the possible-

9



10 CHAPTER 1. DEONTIC LOGICS AND DILEMMAS

worlds semantics of modal logic (for an overview of , see Åqvist, 2001). Thus, expressions

such as ◻A and ◻¬A mean intuitively that A is obligatory and prohibited, respectively.

Here, however, we shall not investigate specific and subtle aspects of deontic logic such as

the distinction between obligation and permission. Rather, we assume that the operator

◇, representing permission, is simply the dual of ◻, i.e., it is defined logically as ¬ ◻ ¬,

whose meaning is not obligatory not. Any deeper philosophical investigation of the

meaning of permission is outside the scope of this work and can be found, for example,

in (Makinson and van der Torre, 2003; Brown, 2000; Stolpe, 2010; Governatori et al.,

2013).

1.1.1 Some Deontic Schemata

A (modal) deontic language can be easily obtained by extending that of classical propo-

sitional calculus (CPC hereafter) with one unary deontic operator ◻. The system SDL,

built on this language, is a first, naive, axiomatic attempt at modeling deontic concepts.

Although it is known to be quite a weak candidate, it is worth a closer look, as our effort

towards this dissertation shall be that of providing an alternative to normal systems.

Let us consider the following schemata:

K ∶= ◻(A→ B)→ (◻A→ ◻B) (1.1)

D ∶= ◻A→ ¬ ◻ ¬A (1.2)

Axiom schema (1.1) looks intuitively acceptable: If it is obligatory that buying a car

implies paying for it, then if one is obliged to buy a car, he must also pay for it.

Axiom schema (1.2) seems to be reasonable: Indeed, if it is obligatory to compensate

damages, then it is permitted to do so.

Other axiom schemata which are usually adopted in other modal logics, though not

acceptable in deontic contexts, are, for instance:
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T ∶= ◻A→ A (1.3)

The schema (1.3), in fact, sounds problematic: Can we say that the mere fact that

it is obligatory to compensate damages implies that we actually do so? Assuming the

validity of such schema would force us to admit that all obligations are indeed fulfilled.

Hence, afteer a first superficial analysis, schemata (1.1) and (1.2) sound reasonable

and might be adopted as axioms of a system, whereas schemata such as (1.3) should

be definitely dropped. Actually, the system SDL is obtained by adding both K, and D

(and a necessitation rule, as we shall see later) to the classical propositional calculus.

1.2 Deontic Dilemmas: A Logical Point of View

The modal system SDL is simple, elegant and enjoys several desirable semantic proper-

ties. However, it raises more problems than it solves. Among the many issues related to

it, one of the most problematic is that SDL is strong enough to generate deontic explo-

sion whenever we can derive conflicting obligations (Goble, 2005). Roughly speaking,

this means that it cannot accommodate deontic dilemmas, although, as we shall see, this

is precisely one of the features a system willing to model deontic concepts should have.

Let us see what this all means.

The traditional alethic intepretation of the modal operators is meant to model philo-

sophical concepts like “necessity” and “possibility.” According to a naif and intuitive

reading of “necessity,” one would deny that both a fact, and its contrary can be neces-

sary at the same time and under a univocal reading of necessity. This can be formally

expressed by the schema

DEX ∶= ◻A ∧ ◻¬A→ ◻B

This says that if such a situation arises, then anything is modally derivable, even
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a contradiction. Intuitively, in deontic logic this means that, whenever we derive, e.g.,

that it is obligatory to pay taxes and it is forbidden to do so, then we obtain any other

obligation, such the obligation to drink water, to fly, . . . . Alethically, the antecedent

of DEX is never fulfilled in a non trivial way and hence it is a perfectly acceptable

schema. Traditionally, necessity implies possiblity. This latter concept is expressed by

the schema

D ∶= ◻A→ ¬ ◻ ¬A

which is logically equivalent to the negation of the antecedent of DEX, since ◻A→ ¬◻¬A

is logically equivalent to ¬(◻A∧◻¬A). Any system counting D among its theorems has

DEX as a theorem too and hence DEX itself collapses into the schema

EFQ ∶= �→ B

the classic “ex falso quodlibet sequitur,” also known as the “principle of logical explo-

sion.”

However, the power of modal languages is that the operators can be read in different

ways, in order to deal with several scenarios. For instance, if read epistemically, the

situation is analogous to the alethic one. In fact, let us interpret the ◻ operator as

meaning “it is known that . . . ” It is highly against our common intuition to assume

that someone may know both a fact, and its negation. . . If I know that today, in Bologna,

it is sunny and hot, I cannot know that today, in Bologna, it is snowy and cold. Moreover,

it is usually argued that one should keep the principle that “knowledge implies truth”:

T ∶= ◻A→ A

If T is in the system, DEX is again a theorem and it collapses on EFQ.
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Things change, though, when dealing with deontic situations. It happens quite often

to experience conflicts between norms. There might be situations in which the same

state of affairs A both ought to be and ought not to be at the same time. Logically this

means that the antecedent of the entailment DEX may actually be true in a non trivial

way. This is precisely when deontic dilemmas occur. As Goble (2004b) points out1

by a deontic dilemma I mean a situation in which, in a univocal sense of

ought, some state of affairs, A, both ought to be and ought not to be, in

which, that is, both OA and O¬A are true. More broadly, a deontic dilemma

would be a situation in which there are inconsistent states of affairs, A and

B, both of which ought to be, that is, a case where ⊢ A → ¬B and yet OA

and OB are true. More broadly still, a deontic dilemma would be a situation

in which it is impossible for both A and B to be realized even though both

ought to be, where the sense of impossibility could be anything appropriate

to the context of discourse, from some metaphysical impossibility to the most

mundane practical incompatibility. (Goble, 2004b, 75)

Therefore any logic aiming at modeling deontic concepts and norms should be able to

accommodate, rather then preventing, deontic dilemmas.

1.2.1 The Logic behind Explosions

On the logical side, it is crucial for any system aiming at modeling deontic concepts to

be able to avoid the problem of deontic explosion. In any simple modal propositional

system this means that the logic itself should not be powerful enough to generate schema

DEX, nor D (and, obviously T, although it is very counterintuitive and nobody would

argue in favour of a schema stating that anything that ought to be is also the case). The

reason is clear. Let us interpret the operator ◻ in terms of obligation to do something.

1OA reads “it is obligatory that A”, which is standard notation in deontic logic. In this work, we
prefer sticking to the general notation of modal logic, thus using ◻ instead.
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Since in the real world conflicts among different norms may (and actually do) arise

often, any system intended to model deontic behavior in a realistic way should not be

able to generate the schema DEX, otherwise the logic itself could not accommodate

such conflicts.

Schema DEX may be syntactically inferred in a variety of ways. In this preliminary

analysis of the problem, we shall try to keep technicalities to a minimum, in order to

focus on the main philosophical problems related to deontic logics. A proper syntactical

study will be carried out in Chapter 2. Here, however, it is necessary to introduce at

least a couple of inference rules which shall play a central role trhoughout this whole

dissertation:

RE:= ⊢ A↔ B ⇒ ⊢ ◻A↔ ◻B

RM:= ⊢ A→ B ⇒ ⊢ ◻A→ ◻B

and a few well known modal schemata:

EFQ:= A ∧ ¬A→ B (Ex Falso Quodlibet)

M:= ◻(A ∧B)→ (◻A ∧ ◻B) (Distribution)

C:= (◻A ∧ ◻B)→ ◻(A ∧B) (Aggregation)

DEX:= ◻A ∧ ◻¬A→ ◻B (Deontic Explosion)

A few simple deductions can show how to infer DEX within a system containing

either RM, M, C, EFQ and closed under Modus Ponens. Actually it may be easily

inferred the following:

(RM⊕EFQ⊕C) = (M⊕C⊕EFQ⊕RE)⇒DEX

1.2.2 Possible Solutions: An Overview

One thing is now quite clear: Any (modal) deontic logic must not allow schema DEX.

There are several strategies to prevent DEX from being derivable within a system. For

instance, one can (see Goble, 2005):



1.2. DEONTIC DILEMMAS: A LOGICAL POINT OF VIEW 15

• Drop the classical ex falso quodlibet EFQ, modeling deontic concepts on paracon-

sistent propositional logics (see, for instance Da Costa and Carnielli, 1986);

• Handle deontic concepts in a defeasible reasoning setting (see, e.g., Nute, 1997);

• Restrict schema M, or C (or both) (cf. Goble, 2005; Meheus et al., 2010);

• Drop either M, or C.

The last approach leads to the study of the so called non normal modal logics (see

Goble, 2004b,a, 2001, 2005; Chellas, 1980; Schotch and Jennings, 1981). In our opinion

this is the simplest and (logically) most elegant solution and it is, therefore, the approach

we decided to follow. Roughly speaking, non normal modal logics are nothing but modal

theories strictly smaller than the normal logic K. They are obtained by weakening normal

systems by dropping one or more of those axioms which enable the inferential machine to

generate deontic explosions. This may be done by dropping M, C or both while keeping

the classical propositional calculus untouched. As Goble (2004b, 75ff.) points out, there

are several other ways to solve the problem, for instance by applying hybrid approaches

(cf. Van der Torre and Tan, 2000). A complete analysis of such ways, however, is outside

the scope of our current research. We have rather focused our attention on the analysis

of non normal logics.

Non normal modal logics are, we said, systems weaker than normal ones, i.e., systems

weaker than K, the minimal normal modal logic. System K classically amounts to having

schema K plus necessitation, which is equivalent, for example, to adding C to a system

consisting of the closure of ◻ under logical equivalence, and the schemata M and N (i.e.,

◻⊺) (Chellas, 1980)2. Since K is complete with respect to Kripke frames, the first obvious

observation is that Kripke semantics cannot be applied to these logics. This would be

a strong deterrent, as Kripke semantics is very intuitive and easy to deal with. This is

probably the main reason that lead modal logics to be so successful. However, this turns

2Details are also given in Chapter 2.
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out to be only partially true and our dissertation aims at showing how a generalised

version of Kripke semantics is actually suitable for a small class of non normal modal

systems. Here, we shall introduce both Kripke semantics, and generalised relational

semantics.

1.3 A Semantic Reading of Deontic Operators

What do we mean when we say that ◻A is true under a deontic interpretation of the

modal operator? Several philosophers argued that this question is meaningless because

norms and obligations are not susceptible of any truth evaluation (see, e.g., von Wright,

1963; Makinson, 1999; Broersen and van der Torre, 2012). However, let us ignore here

this objection (which is outside the scope of this research, as well as debatable) and try

to check when sentences like ◻A are true. For instance, suppose that it is obligatory

to pay taxes. If this is true, this means that in all (e.g., legally) ideal situations we do

actually pay taxes.

How can we formally express this intuition? It is standard to use in deontic logic

the concept of possible worlds (Åqvist, 2001): Any possible world is a sort of description

of how things are in the current situation (the actual world) or how they could be

(alternatives). Worlds can thus be analysed in terms of possible truth assignments to all

the atomic propositional letters describing how things are in a given situation: In our

world logicians are smart, while we can conceive an alternative situation where they are

not smart at all.

Notice that not all worlds are legally or morally ideal: We can imagine situations

where all individuals massively commit atrocities. However, we can isolate a subset

of possible worlds that are inherently good, where we always pay taxes, compensate

damages, and do not commit any atrocity. At this point, it should clear what we mean

by saying that ◻A is true: it means that A is true in all (legally, morally, etc...) ideal

worlds.
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1.3.1 Kripke Frames and Models

To provide a formal method for checking the truth value of obligations, we mush find a

way to identify, given a world w, a class of worlds that are ideal with respect to w itself.

This can be done using the following formal structures (called Kripke frames and Kripke

models):

Definition 1.3.1 (Kripke frames and models) A Kripke frame F is a structure

⟨W,R⟩

where

• W is the set of all possible worlds;

• R is a binary relation over W that determines the ideal worlds in W for each world

in W .

A Kripke model M based on the frame F is a structure

⟨W,R,V ⟩

where

• F = ⟨W,R⟩;

• V assigns the truth values true or false to any atomic sentence in any given world

(i.e., it states what atomic sentences are true or false in each world). Hence for

any proposition p, V (p) is a set of possible worlds, i.e., all the possible situations

in which p holds true.

First, it should be noticed that logical sentences are evaluated locally: A formula A

(e.g., “we pay taxes”) can be true at world w and false at world v. Second the relation
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R selects for each world w those states of affairs that are ideal with respect to w, and it

plays a central role when evaluating the local truth value of modal formulae.

Formulae of classical propositional logic are evaluated as usual: Each possible world

can be seen as a line within a truth table. Given any Kripke model M and any world

w in it, we write ⊧Vw A to say that A is true at w in M. Hence, if we consider for

instance the propositional connectives ¬ and →, the procedure to check the truth value

of formulae is as follows: gien any Kripke model M and any world w in it

• if A is an atomic formula, ⊧Vw A if and only if w ∈ V (A);

• if A = ¬B then ⊧Vw A if and only if M /⊧Vw B

• if A = B → C then ⊧Vw A if and only if, M /⊧Vw B or ⊧Vw C.

What we have informally said before on the semantic meaning of ◻ should make now

clear how to evaluate any sentence of the form ◻A: given any Kripke modelM and any

world w in it

• ⊧Vw ◻A if and only if, for each world w′, if w′ is ideal with respect to w according

to R, then ⊧w′ A.

As usual in any modal logic, notice that this semantics requires to define different

perspectives where a formula can be evaluated:

Definition 1.3.2 A formula A is true in a world w of a model M iff ⊧Vw A. A formula

A is true in a model M, ⊧V A, iff for all w in M, ⊧Vw A. A formula A is valid on a

frame F = ⟨W,R⟩ iff for any model M = ⟨W,R,V ⟩ based on F we have ⊧V A. Given a

class of frames X, a formula A is X-valid, X ⊧ A, iff for any frame F ∈X, F ⊧ A.

In Chapter 2 we shall see semantics features in detail. Here, however, it is enough

to notice that within Kripke Semantics, schema K is valid, unlike T and D. Schema

T, however, is known to be valid in all the reflexive frames, i.e., where the property
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∀w ∈ W, (wRw) holds, whereas D is valid in the class of serial ones, i.e., ∀w ∈ W,∃v ∈

W (wRv).

Kripke Semantics (see Kripke, 1959, 1963, 1980), we said, has a very intuitive in-

terpretation which confers great appeal. The idea behind it is very simple. It takes its

origins in the work of Leibniz, who stated that there is a plurality of possible worlds, and

the actual one is nothing but one of the many possibilities. According to Leibniz, never-

theless, the actual world is definitely the best one among all the possibilities, chosen by

God who has the capability of searching and choosing the perfect solution. Nowadays,

however, researchers in modal logic tend to bypass these theoretical and metaphysical

aspects while keeping the main idea of Leibniz’s approach. For instance, let us suppose

that we want to describe any situation which sees several agents interacting one with

each other. Let us suppose that such agents are, for instance, playing dice. Then when-

ever the pair of dice is cast, there are several possible outputs. We can consider each of

the possible outputs as a different world. This may be of use for instance if we want to

make considerations on probability and so on. Moreover, we may turn our attention to

the analysis of agents’ knowledge. Any fact p is then known by an agent whenever he

cannot consider as possible a state of affairs in which p does not hold. Thus, in epistemic

contexts,

the intuitive idea behind the possible-worlds model is that besides the true

state of affairs, there are a number of other possible states of affairs or worlds.

Given his current information, an agent may not be able to tell which of a

number of possible worlds describes the actual state of affairs. An agent is

then said to know a fact φ if φ is true at all the worlds he considers possible

(given his current information). For example, agent 1 may be walking on

the streets of San Francisco. Thus, in all the worlds that the agent considers

possible, it is sunny in San Francisco. (We are implicitly assuming here that

the agent does not consider it possible that he is hallucinating and in fact it
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is raining heavily in San Francisco.) On the other hand, since the agent has

no information about the weather in London, there are worlds he considers

possible in which it is sunny in London, and others in which it is raining in

London. Thus, this agent knows that it is sunny in San Francisco but he

does not know whether it is sunny in London. Intuitively, the fewer worlds

an agent considers possible, the less his uncertainty, and the more he knows.

If the agent acquires additional information – such as hearing from a reliable

source that it is currently sunny in London – then he would no longer consider

possible any of the worlds in which it is raining in London.(Fagin et al., 1995,

16)

The standard result is that the class of Kripke frames generates all and only the

theorems of K, the smallest normal modal system (Chellas, 1980; Blackburn et al., 2001).

Hence it is straightforward that Kripke frames are not a tool to be used if we aim at

modeling non normal systems, as they generate sets of formulae that are strictly smaller

than K. On the other hand, Kripke frames and models offer a highly intuitive tool to

interpret modal operators using the possible worlds metaphor, whereas other tools like

neighborhood semantics appeal less to intuition and look rather technical. However,

there are ways to overcome this issue. The semantics we shall present in the following

sections is precisely a generalization of Kripke semantics suitable to model non normal

systems.

1.3.2 Semantics for Non Normal Systems

A number of significant contributions in the last four decades show that non-normal

modal logics can be fruitfully employed in several applied fields. One well-known domain

is epistemic logic, where non-normal systems are a solution to alleviate the so-called

omniscience problem that affects stronger (normal) modal systems (Fagin et al., 1995)

(see Chapter 4). Deontic logic is, as we said, another field where non-normal systems
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have been traditionally proposed to avoid many drawbacks of standard deontic logic,

which does not tolerate deontic conflicts and gives rise to a number of paradoxes (Goble,

2005; Jones and Carmo, 2002). Other important applications are those systems that

aim at capturing different aspects of the concepts of action and agency: the modal logic

of agency (Segerberg, 1992; Elgesem, 1997; Governatori and Rotolo, 2005), concurrent

propositional dynamic logic (Goldblatt, 1992), game logic (Parikh, 1985), and coalition

logic (Pauly, 2002), among others, are all examples where some modal operators are

axiomatized in logics weaker than K.

Semantics for non-normal systems have a long and distinguished tradition (Scott,

1970; Montague, 1970; Segerberg, 1971). This tradition goes beyond standard Kripke

semantics and thus interprets modal systems in the so called neighborhood semantics,

also known as Scott-Montague semantics, or minimal-models3. If compared to standard

Kripke frames, neighborhood semantics considers a set of collections of worlds related

to w instead of connecting worlds via an accessibility relation. These collections are the

neighborhoods of w. Formally, a frame is a pair ⟨W,N⟩ where W is a set of possible

worlds and N is a function assigning to each w in W a set of subsets of W (the neigh-

borhoods of w). A model is thus a triple ⟨W,N,V ⟩ where ⟨W,N⟩ is a frame and V is

a valuation function defined as for Kripke models, except for ◻φ, which is true at w

iff the set of elements of W where φ is true is one of the sets in N(w); i.e., iff it is a

neighborhood of w.

Model-theoretic investigations on non-normal modal logics and neighborhood seman-

tics have reached significant results (Hansen, 2003, for an overview) with respect, for for

instance, to completeness (Segerberg, 1971; Chellas and McKinney, 1975; Chellas, 1980),

and incompleteness (starting from Gerson, 1975), decidability (Chellas, 1980), bisimu-

lation (Pauly, 2002; Hansen, 2003), and simulation in multi-modal normal modal logics

(Gasquet and Herzig, 1996; Kracht and Wolter, 1999).

3Technical details are given in Chapter 3.
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However, other two model-theoretic semantic settings can be used for non-normal

modal logics: selection-function and multi-relational semantics. A selection-function

model is a structure ⟨W,f,V ⟩, where W is a set of possible worlds, f is a selection

function with signature P(W )×W Ð→ P(W ), and V assigns to each propositional letter

a subset of W . A formula ◻φ is true at any world w iff w belongs to the set of worlds

that f assigns to w and the truth set of φ. As is well-known, this semantics, if applied

to standard non-normal modal logics, turns out to be a reformulation of neighborhood

semantics (Hansson and Gärdenfors, 1973; Governatori and Rotolo, 2005).

The other alternative is multi-relational semantics.

1.3.3 Multi-relational Frames: Intuition and Technique

Among the alternatives proposed, that of using multi-relational frames can be seen as

the most conservative with respect to Kripke Semantics. Indeed it can be seen as a

direct generalization of Kripke frames. The only technical difference is that frames are

allowed to have more than one relation. Hence multi-relational frames are nothing but

Kripke frames with a set at most countable of binary relations over the base set:

Definition 1.3.3 A multi-relational n-frame is a n+1-tuple Fn ∶= ⟨W,R1, . . . ,Rn⟩ where

W is a non empty set and any Ri (1 ≤ i ≤ n) is a binary relation on W .

Notice that the set of relations can be infinite. Within this broader scenario, Kripke

frames are, therefore, a limit case of multi-relational semantics. The key questions here

are two:

a. how can these frames be interpreted from a deontic perspective?

b. can they fix some of the problems related to the deontic reading of the modal opera-

tors?

Goble (2001) provides a partial answer to the first question:
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[. . . ] in the multi-relational semantics, we may regard each relation in the

set R [i.e., any relation Ri] as representing a partucular standard of value

and picking out those worlds, b, that are best with respect to a from the

perspective of that standard, while recognizing that there could be other

standards according to which b is not ideal. [. . . ] when both ◻A and ◻¬A

are true it is because A is prescribed by one set of norms or regulations

while ¬A is prescribed by another, distinct set. [. . . ] Each set of norms or

regulations is presumed to be internally consistent, and conflicts only emerge

as a result of rivalry between sets of norms. (Goble, 2001)

Thus, Kripke frames interpret a univocal notion of obligation, one that cannot be

contradictory. On the other hand, multi-relational frames provide a model closer to real

legal systems: There are different norms, each norm carries obligations, such obliga-

tions may be in conflict with each other although internally consistent. Any agent has

some obligations due to the application of certain norms. However, dilemmas may arise

without generating logical paradoxes.

This view is mirrored by the semantic conditions we impose to interpret modalised

propositions, thus defining a model (being nothing but an interpreted frame):

Definition 1.3.4 A multi-relational n-model is a n + 2-tuple Mn ∶= ⟨W,R1, . . . ,Rn, V ⟩

where ⟨W,R1, . . . ,Rn⟩ is a multi-relational n-frame and V is a function (assignment)

V ∶ PropÐ→ P(W ).

A valuation is hence a function which assigns to each proposition p a set of worlds,

intuitively those worlds in which p itself is true. It is now possible to define truth values

of modal formulae. Truth is, as usual, a local concept, meaning that it depends on the

place we chose to evaluate a formula. A formula ◻A can be true in a world w and false

in another. Multi relational frames aim to capture the notion that a fact A is obligatory

in a world w if there is a norm imposing A. This happens when there is at least one
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relation Ri connecting to w only worlds in which A itself is true. Thus, if all the worlds

that are ideal with respect to w under an Ri norm, then A itself ought to be the case at

w. Formally this is expressed by:

Truth conditions The truth conditions for all boolean operations are standard. Let

us turn our attention on the ones intended to evaluate boxed formulae.

For any w ∈W :

A. ⊧w ◻A iff ∃Ri∀v(wRiv⇒⊧v A)

Given these conditions, it is straightforward to see that several theorems belonging

to K are no longer valid schemta in this broader scenario. We wondered, however, which

axiomatic system, if any, is sound and complete with respect to multi-relational frames

(with the truth conditions provided above). It turned out that the set of formulae which

are valid on this class of frames is precisely that of N-monotonic logics. In Chapter 2

we shall indeed prove a completeness theorem for this system and some extensions. The

interesting result is that the lowest non normal level one can achieve without dropping

relational semantics as we know it is that of N-monotonic logics, i.e., one must keep

certain schemata, like N and M. If such schemata are to be dropped, multi relational

tools (at least given the truth conditions provided) must be either abandoned, or deeply

modified.

If we evaluate box formulae with the conditions provided, it can be argued that our

logic would be equivalent to a multi-modal system based on a language containing as

many operators as the arity of the relations. Thus, if we have an n-relational frame, it

would be enough to have a normal n-modal system without interaction among operators.

In this case a formula ◻A in our language would be translated as ◻1A∨. . .∨◻nA. However,

two problems arise. First of all our frames might contain a countable number of relations

and thus it would be necessary to use an infinite number of box operators. However,
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for technical reasons, infinitary logical languages are very hard to handle, while it is

much easier to work with a language with a finite set of operators. But there are also

philosophical reasons for our choice. By adding distinct modalities, one should accept

different senses of obligation: how to conceptually distinguish between a potentially

infinite set of obligation types? On the contrary, we think that the concept of obligation

should be rather independent by the norm or set of norms generating it. Norms may be

in conflict, there may arise different senses of ought, although the meaning of obligation

is steady. As Goble (2001) points out

The multiple relations of the multiplex [multi-relational, ndr] models may be

thought to represent different normative standards; each defines a specific

sense of ought. The language of our deontic logic could contain distinct

deontic operators to express each of these senses, but that is not necessary,

and we shall not pursue such a multi-modal logic here. Nonetheless, one

might naturally think of the ought defined through the multiplex rules as

ambiguous between these many specific senses determined by each normative

standard. OA says that it ought to be the case that A, but it does not specify

under which sense of ought. It says only that it ought to be the case that A

under some system of norms. Appeals to ambiguity are often plausible ways

to account for apparent inconsistencies, even deontic conflicts. The multiplex

semantics is made for that kind of account. (Goble, 2001, 119)

In other words, in this dissertation we work on logics designed for just one type of

obligation, one type of obligation that can however be generated by using many norms

or standards distinguished at the semantic level4.

4Notice that a similar view has been defended by Alchourrón and Bulygin (1984) in regard to the
concept of permission: there is for these authors just one type of permission, while we may have different
permissive norms. We are also in line with some general arguments proposed by (Boella et al., 2009;
Governatori and Rotolo, 2010) in regard to the problem of norm change, which assumed to distinguish
norms from obligations and permissions.
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Indeed a multi-modal language would force us to refer to specific norms and sets

of norms even when one does not want or does not know what to refer to. Keeping

the distinction of one modal operator and many semantic relations mirrors a natural

situation: something ought to be even if we do not explicitly indicate which norm or set

of norms generate such obligation.



Chapter 2

Non Normal Propositional Systems for Deontic

Logics

Within applied logics, non-normal modal systems are one of the most effective alterna-

tives implemented in order to avoid interpretational and theoretical problems generated

by certain logical schemata and rules, as we saw in Chapter 1. For instance, such prob-

lems are related to that of logical omniscience within the field of epistemic logics, or

deontic explosion within that of deontic logics.

The focus of this Chapter is on the technical issues related to multi-relational frames.

Such structures are nothing but Kripke frames with any countable number of binary

relations. While the classical evaluation of boolean formulae is standard and steady, that

of boxed formulae is rather more problematic. Indeed there are two ways of interpreting

◻-formulae: We can either chose a strong interpretation, or a weak one. How they differ

on the technical level will be clear later in the chapter. Here, it is enough to say that

strong semantics is a rephrasing of neighborhood semantics, whereas weak semantics

are a direct generalisation of Kripke frames. Thus, those concerning strong semantics

are mainly a rephrasing of other results (see Chellas, 1980) and are thus only partially

original. On the other hand, those concerning weak semantics are indeed original and,

as fare as we are concerned, have not been presented elsewhere so far. The choice

of including a relational account of neighborhood semantics was driven by the will to

27
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compare and analyse relational structures and special subclasses. For instance, when

we analysed the different meanings of the property of seriality within multi-relational

frames, it was very interesting to compare the results within three different, though

related scenarios. This is patent only if we translate neighborhood semantics within

a multi-relational setting. Moreover, here we provide a direct completeness proof for

multi-relational strong semantics.

Our main goal was, however, to carry on a semantic analysis of generalised Kripke-

frames, or multi-relational weak frames. Our research started from the observation that

although there are so many works within the field of normal logics, Kripke semantics, and

neighborhood semantics, not much has been said about multi-relational weak semantics,

or multiplex semantics as these structures are sometimes called. There are works that

use this kind of semantics (see, for instance, Goble, 2001, 2004b; Schotch and Jennings,

1981; Jennings and Schotch, 1981; Meheus et al., 2010), and there is also a sketch of a

completeness theorem for a specific system.1 However, many prominent questions lay

without an answer. For instance:

(a) which theory is valid in the class of multi-relational weak structures?

(b) how do they differ from multi-relational strong frames (Neighborhood semantics)?

And from Kripke semantics?

(c) the set of formulae which are valid in the class of all multi-relational frames can be

generated by a finite axiomatic system? If so, which one?

(d) how well known modal schemata (among those relevant to deontic logic, like M,C,T,D,

B,CON,DEX, . . . behave within multi-relational weak frames? Do they charac-

terise classes of frames with specific properties?

(e) how can well known first order properties be characterised by propositional schemata,

if we assume a plurality of relations?

1Namely, the logic P in Goble (2001).
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Our work provides an answer, or sometimes a partial one, to all these questions.

Overview. In Section 2.1 we present some well known non normal calculi, namely the

systems E,M,NM,R as well as a syntactical analysis of the relations between well known

schemata (see Chellas (1980)). In particular we shall see which systems count DEX

among their theorems and which premisses entail schema DEX.

Section 2.2 is the core of the Chapter and it is devoted to the semantic analysis of

well known modal schemata within different scenarios. After a brief technical introduc-

tion to both strong, and weak multi-relational semantics in Section 2.2.1, we proceed

to show how some well known Kripke-valid schemata, are no longer valid within the

broader semantics described. Then, in Section 2.2.3 we carry on a comparative analysis

of modal schemata and semantic properties, i.e. we prove characterisation theorems

for some well known schemata, namely, M,C,N,B,T,4. Of course, not all of these

schemata are meaningful in deontic logic—some of them should be in fact avoided—but

their investigation in multi-relational semantics is anyway instructive to illustrate the

formal machinery. Section 2.2.4 presents a semantic analysis of some schemata that

are particular relevant within deontic logics, namely, CON and D. Both enforce in

normal modal logics deontic consistency, hence they deny deontic dilemmas. It is well

known that both schemata characterise precisely the same property in Kripke semantics,

namely, seriality. However, this ceases to be true in multi-relational semantics and, as

we shall see, these schemata define different readings of seriality within weak semantics.

Section 2.3 is focused on proving semantic completeness for several systems using

both strong, and weak semantic tools. We propose direct completeness proofs via canon-

ical models for both classical systems (Section 2.3.1), and N-Monotonic systems (Section

2.3.2). Finally, in Section 2.3.3 we prove completeness theorems with respect to specific

classes of frames for a few systems extending MN with well known schemata, namely,

MN⊕D and MN⊕CON. With the purpose of better illustrating the machinery, we will

also present a completeness result for MN ⊕T, being obvious, however, that schema T
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is usually rejected in deontic contexts.

2.1 Syntax: Modal Schemata and Rules

Below we shall recall some technical definition we have already introduced in Chapter 1

in order to make the material presented self contained.

As usual, a propositional logical language has two components: an alphabet, or

signature, which includes all the symbols one is allowed to use and a series of formation

rules, which gives precise instructions to build grammatical sentences.

The alphabet of the language L includes a countable set of propositional letters

Prop ∶= {p1, . . . , pn, . . .}, round brackets (, ) and the boolean operations {→,�} as well a

modal operator ◻. Well formed formulae (wff’s henceforth) are defined as follows: each

propositional letter p ∈ P is a wff and if A is a wff, then so are ◻A. We assume ◇i to be

abbreviations for ¬ ◻ ¬. The boolean operations ¬,∧,∨ are defined in the usual way by

means of → and �. In particular ⊺ ∶= �→ � (see Rybakov, 1997; Blackburn et al., 2001).

Inference Rules:

RE:= ⊢ A↔ B ⇒ ⊢ ◻A↔ ◻B

RM:= ⊢ A→ B ⇒ ⊢ ◻A→ ◻B

RN:= ⊢ A ⇒ ⊢ ◻A

RR:= ⊢ A ∧B →C ⇒ ⊢ ◻A ∧ ◻B → ◻C

RK:= ⊢ A1 ∧ . . . ∧An → B ⇒ ⊢ ◻A1 ∧ . . . ∧ ◻An → ◻B n ≥ 0

Schemata:

EFQ:= A ∧ ¬A→ B

M:= ◻(A ∧B)→ (◻A ∧ ◻B)

C:= (◻A ∧ ◻B)→ ◻(A ∧B)

K:= ◻(A→ B)→ (◻A→ ◻B)

N:= ◻⊺

CON:= ¬ ◻ �
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D:= ◻A→ ¬ ◻ ¬A

T:= ◻A→ A

4:= ◻A→ ◻ ◻A

B:= A→ ◻◇A

DEX:= ◻A ∧ ◻¬A→ ◻B

The major issues to be avoided is the possibility for a system to derive and validate the

schema DEX, the deontic explosion. This schema is derivable in any system above K, the

minimal normal modal logic obtained by adding K and N to the classical propositional

calculus CPC. The way this schema can be inferred is actually quite straightforward.

Nevertheless, we shall prove a few simple lemmas that highlight some logical relations.

In what follows, we shall always assume ⊢ to be CPC usual deduction relation, namely:

Definition 2.1.1 (Derivation, Deduction, Theoremhood) A derivation of a for-

mula A from the premisses A1, . . . ,Aj, in symbols A1, . . . ,Aj ⊢AS A in an axiomatic

system AS is a finite sequence of formulae A1, . . . ,Aj ,A s.t. each Ai is either a premiss,

or an instance of an axiom schema from AS or it has been obtained from a sequence of

formulae Ak1 , . . . ,Akm occurring before Ai via application of an inference rule from AS.

A deduction in AS is a derivation with the empty set of premisses.

A formula A is a theorem in AS, denoted by ⊢AS A, if there is a deduction of A in

AS.

Most of the syntactic results presented below concerning non normal modal systems

and their characterisation can be found in Chellas (1980).

Lemma 2.1.2 RM ⊕ EFQ ⊕ C ⇒ DEX

Proof. ⊢ A ∧ ¬A→ B EFQ

⊢ ◻(A ∧ ¬A)→ ◻B RM

⊢ ◻A ∧ ◻¬A→ ◻B C⊕M
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Lemma 2.1.3 If RE is in the system, then RM and M are equivalent.

Proof. 1. ⊢ A ∧B → B

⊢ ◻(A ∧B)→ ◻B RM

⊢ A ∧B → A

⊢ ◻(A ∧B)→ ◻A

⊢ ◻(A ∧B)→ ◻A ∧ ◻B

2. ⊢ A→ B assumption.

⊢ (A→ B)→ (A→ A ∧B) classical tautology

⊢ A→ A ∧B MP

⊢ A ∧B → A classical tautology

⊢ A↔ A ∧B

⊢ ◻A↔ ◻(A ∧B) RE

⊢ ◻(A ∧B)→ ◻A ∧ ◻B M

⊢ ◻A→ ◻A ∧ ◻B substitution

⊢ ◻A→ ◻B

Corollary 2.1.4 (RM ⊕ EFQ ⊕ C) = (M ⊕ C ⊕ EFQ ⊕ RE) ⇒ DEX

There are different systems of propositional modal logics built to model various sit-

uations. In the following table we list some simple systems which may be considered as

a base for more complex systems (for further details, see Chellas, 1980).
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Rules Axioms

E classical RE

M monotonic RM E ⊕M

MN N-monotonic RM⊕RN E ⊕M⊕N

R regular RR E ⊕M⊕C

K normal RK E ⊕K⊕N

E⊕M⊕C⊕N

The lattice depicted in Figure 2.1 illustrates the inclusion relations in non normal

systems.

According to what we have observed above, any logic above R (and hence K) does

not look like a good candidate to accommodate deontic dilemmas. This holds true for

SDL (Standard Deontic Logic as well, as it is a normal logic, i.e., it is a proper superset

of K.

2.2 Semantic tools for Non Normal Systems

2.2.1 Multi-relational Frames

We start by defining Multi-relational frames for modal logics. Below, we shall see how

these frames fail to validate some deontically relevant schemata, that are well known to

be valid in Standard Kripke Semantics.

Definition 2.2.1 A multi-relational n-frame is a n+1-tuple F ∶= ⟨W,R1, . . . ,Rn⟩ where

W is a non empty set, n is at most countable, and any Ri (1 ≤ i ≤ n) is a binary relation

on W .

Notice that this definition allows multi-relational frames to have a (countable) infinite

number of binary relations over the base set.

Definition 2.2.2 A multi-relational n-model is a n + 2-tuple Mn ∶= ⟨W,R1, . . . ,Rn, V ⟩
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Figure 2.1: The lattice of non normal propositional systems (cf. Chellas, 1980, 237).
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where ⟨W,R1, . . . ,Rn⟩ is a multi-relational n-frame and V is a function (assignment)

V ∶ PropÐ→ P(W ).

Truth conditions. The truth conditions for all boolean operations are standard.

Given a multi-relational frame F ∶= ⟨W,R1, . . . ,Rn⟩, a model M ∶= ⟨F , V ⟩ and a world

w from W :

⊧Vw p if and only if w ∈ ∥p∥V for any propositional letter p

/⊧Vw �

⊧Vw A→ B if and only if either /⊧Vw A, or ⊧Vw B

The clauses to evaluate modal formulae are a direct generalisation of the standard

Kripke approach. Here there are two ways to evaluate ◻-formualae, namely by applying

either weak or emphstrong conditions.

Weak modal conditions (A): ⊧Vw ◻A if and only if ∃Ri∀v (wRiv ⇒ ⊧Vv A)

and of course:

(A.2) /⊧Vw ◻A iff ∀Ri∃v(wRiv & /⊧Vv A)

(A.3) ⊧Vw ◇A iff ∀Ri∃v(wRiv & ⊧Vv A)

(A.4) /⊧Vw ◇A iff ∃Ri∀v(wRiv⇒/⊧Vv A)

Strong modal conditions (B): ⊧Vw ◻A iff ∃Ri∀v(wRiv ⇔ ⊧Vv A)

and:

(B.2) /⊧Vw ◻A iff ∀Ri∃v((wRiv & /⊧Vv A) Or (¬(wRiv) & ⊧Vv A))

(B.3) ⊧Vw ◇A iff ∀Ri∃v((wRiv & ⊧Vv A) Or (¬(wRiv) & /⊧Vv A))

(B.4) /⊧Vw ◇A iff ∃Ri∀v(wRiv⇔/⊧Vv A)

A closer look reveals that multi-relational semantics with strong truth conditions is

nothing but a rephrasing of neighborhood frames, though the translation is not always
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obvious Governatori and Rotolo (2005). Moreover, Standard Kripke Semantics is nothing

but a particular case of multi-relational semantics, namely it is the subset of multi-

relational frames with truth conditions A and only one accessibility relation.

Concepts as truth and validity are defined as usual:

Truth in a world A formula A is true in w if and only if ⊧Vw A.

Truth in a model A formula A is true in a model M, in symbols F ⊧V A (orM ⊧ A,

or just ⊧V A if the contest is clear), if and only if ⊧Vw A for any world w ∈W .

Validity A formula A is valid on a frame F , in symbols F ⊧ A, if and only if F ⊧V A

for any valuation V for F .

F-Validity A formula A is valid on a class of frames F, in symbols F ⊧ A, if and only

if F ⊧ A for any Frame F from F.

Notation and abbreviations. Given a relation Ri and a world w, by the symbol

Ri(w) we refer to the set of all the worlds Ri-accessible from w, i.e.: Ri(w) ∶= {x ∶ wRix}.

Given a model M ∶= ⟨W,R1, . . . ,Rj , V ⟩ and a formula A, we define the truth set of A,

in symbols ∥A∥V , as the set of all the worlds of the model in which A is true, i.e.:

∥A∥V ∶= {w ∶ ⊧Vw A}.

The choice of either strong, or weak clauses depends on the philosophical account one

may want to give to ought. As we said, the intuition behind multi-relational semantics

is that any relation can be seen as a set of norms, a standard. Thus, given a possible

situation w, any standard of norms assigns to w a set of possible situations in which

such norms are applied, i.e., those worlds which are ideal with respect to w from the

standpoint of a given set of norms. If smoking is prohibited in public places, ◻¬A,

by some norms, the standard Ri, then in the current state of affair w, the relation Ri

associates to w a set of worlds Ri(w) that are ideal, namely, a set of worlds in which
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nobody actually smokes within public premises. The question, here, is how to chose such

set of worlds. Technically, this means that Ri(w) is a proper or improper subset of the

truth set of the formula ¬A. According to weak evaluation clauses, it is enough to have

a set containing only ideal worlds, i.e., Ri(w) ⊆ ∥¬A∥V . On the other hand, B-clauses

are said strong because they require a world to have access to all and only those possible

situations in which people do not smoke within public places, i.e., Ri(w) = ∥¬A∥V .

Another remark should be made concerning Nighborhood Semantics. While it is quite

straightforward to see the link between strong frames and neighborhood semantics, weak

frames look less similar. However, one may formulate truth evaluation clauses within

Neighborhood Semantics in order to emulate multi-relational weak frames as follows:

⊧Vw ◻A if and only if ∃X ∈ Nw, X ⊆ ∥A∥V

Thus, as one would expect, a formula as ◻⊺ is valid in the class of these models, and

it is indeed a MN-valid formula, as we shall see below.

2.2.2 Schemata and Validity: a Few Examples

It is well known that both neighborhood structures, and multi-relational weak frames fail

to validate some very well known modal formulae that are theorems of normal systems.

Here we shall see how it happens and, more important, we shall carry on a compared

analysis between Kripke, weak, and strong multi-relational frames.

Let us start with the schema named after Kripke himself, namely K ∶= ◻(A→ B)→

(◻A→ ◻B). As we said, it is no longer valid.

Lemma 2.2.3 The schema K ∶= ◻(A → B) → (◻A → ◻B) is not valid in the class of

all multi-relational frames (given either truth condition A or B), although it is valid in

any normal modal system (henceforth, K-valid).

Proof. Consider the model M2 ∶= ⟨{w, v, z},R1,R2, V ⟩ where R1 ∶= {⟨w, v⟩}, R2 ∶=
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{⟨w,w⟩, ⟨w, z⟩}, ∥p∥V ∶= {w, z} and V (q) ∶= ∅ as depicted in Figure 2.2. It is easy to see

that there is a relation, namely R1, such that for any x in the base set of the model, wR1x

if and only if ⊧Vx p → q and hence ⊧Vw ◻(p → q). Moreover ⊧Vw ◻p, as for any x we have

that wR2x iff ⊧Vx p. On the other hand, /⊧Vw ◻q, as for both R1 and R2 it holds that there

is some x such that w is linked to it and /⊧Vx q. Therefore /⊧Vw ◻(p→ q)→ (◻p→ ◻q) and

hence there is a multi-relational frame F that does not validate an instance of schema

K.

w
p ¬q

v
¬p ¬q

z
p ¬q

1 2

2

Figure 2.2: Countermodel for K.

Another controversial schema within the deontic intepretation is, as we saw in Chap-

ter 1, the aggregation of conjunction within the scope of the modal operator, i.e., schema

C ∶= (◻A∧◻B)→ ◻(A∧B). It is widely known as a K-valid schema and it plays a cen-

tral role in the syntactic deduction of DEX. For this and other reasons, several authors

argued to reject it, or at least to restrict it (for a discussion, see (Goble, 2005). See also

(Hansen, 2005).). We will not commit here to any philosophical view on this schema.

We show anyway that C is not a valid formula under both weak, and strong semantic

conditions.

Lemma 2.2.4 The schema C ∶= (◻A ∧ ◻B) → ◻(A ∧B) is not valid in the class of all

multi-relational frames (given either truth condition A or B).

Proof. Consider the model M2 ∶= ⟨{w, v, z},R1,R2, V ⟩ where R1 ∶= {⟨w, v⟩}, R2 ∶=

{⟨w, z⟩}, ∥p∥V ∶= {v} and V (q) ∶= {z} a depicted in Figure 2.3. It is easy to see that

there are two relations, namely R1 and R2, such that for any x in the base set of the



2.2. SEMANTIC TOOLS FOR NON NORMAL SYSTEMS 39

model, wR1x if and only if ⊧Vx p and wR2x if and only if ⊧Vx q respectively, hence w ⊧V ◻p

and ⊧Vw ◻q. On the other hand, w /⊧V ◻(p∧q), as for both R1 and R2 it holds that there

is some x such that w is linked to it and /⊧Vx p ∧ q. Therefore /⊧Vw ◻p ∧◻q → ◻(p ∧ q) and

hence there is a multi-relational frame F that does not validate an instance of schema

C.

w
¬p ¬q

v
p ¬q

z
¬p q

1 2

Figure 2.3: The model M2 does not validate schema C.

The main difference between semantic conditions A and B reveals itself when we look

closely at schema M ∶= ◻(A ∧B) → (◻A ∧ ◻B). Indeed, here we see the first and most

important difference: M is in fact a valid formula, if we assume semantic conditions A,

whereas it is not if we assume conditions B.

Lemma 2.2.5 The schema M is valid in the class of all multi-relational frames (given

condition A).

Proof. Assume by reductio that there is a model on a frame F and a world in its base

set such that (i) ⊧w ◻(p∧q) and either (ii) /⊧w ◻p or (iii) /⊧w ◻q. By (i) there is a relation

Ri such that for any x, if wRix then ⊧x p ∧ q. If (ii) holds, then, assuming condition A,

for any relation Rk there is a world x such that wRkx and /⊧x p. Since this must also

hold for Ri, there is a contradiction. Hence condition (iii) must be fulfilled: according

to condition A, for any relation Rk there is a world x such that wRkx and /⊧x q. Again,

this must hold for Ri too and hence there is a contradiction. Therefore for any frame

F , F ⊧M, given condition A.
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Lemma 2.2.6 The schema M is not valid in the class of all multi-relational frames

(given condition B).

Proof. Consider the model M2 ∶= ⟨{w, v, z},R1, V ⟩ where R1 ∶= {⟨w, v⟩}, ∥p∥V ∶= {v}

and V (q) ∶= {v,w, z} as depicted in Figure 2.4. Consider the relation R1: it holds that

for any x, wR1x if and only if ⊧x p ∧ q, hence ⊧w ◻(p ∧ q). However, according to

condition B, /⊧w ◻q. Indeed, ∥q∥V ∶= {w, v, z} and for all i, Ri ≠ {w, v, z}. Therefore,

given condition B, schema M is not valid in the class of all multi-relational frames.

w

¬p q

v

p q

z

¬p q

R1

Figure 2.4: The model M2 does not validate schema M assuming condition B.

In the light of what we have formerly pointed out, it is very easy to observe that

DEX is no longer valid. Actually neither semantic conditions A, nor B allow the validity

of the schema:

Lemma 2.2.7 The schema DEX ∶= ◻A ∧ ◻¬A → ◻B is not valid in the class of all

multi-relational frames (given boh conditions A, and B).

Proof. Let M ∶= ⟨{w, z},R1,R2, V ⟩, where ∥p∥V ∶= {w} and V (q) = ∅; R1 ∶= {⟨w,w⟩},

R2 ∶= {⟨w, z⟩}, as shown in Figure 2.5. Then ⊧Vw ◻p by R1, ⊧Vw ◻¬p by R2 and, since for

all relations there is a world x such that wRix and /⊧Vx q, it holds that /⊧Vw ◻q.
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w

p ¬q
z

¬p ¬q

2
1

Figure 2.5: Falsification of the DEX schema

Let us consider schema N, i.e., ◻⊺, which is not necessarily dangerous in deontic logic,

although sometimes rejected for conceptual reasons: An obligation having as content the

truth can never be violated (Sergot, 2001).

Lemma 2.2.8 (Schema N, Conditions A) The schema N ∶= ◻⊺ is valid in the class

of all multi-relational frames given semantic conditions A.

Proof. Assume by reductio ad absurdum that N is not valid, given A conditions. Then

for some modelM ∶= ⟨W,R1, . . .Rn, V ⟩ and some world w, it holds that /⊧Vw ◻⊺. It follows

that ⊧Vw ◇�, i.e., for any i, there is a world v such that wRiv and ⊧Vv �. This leads a

contradiction as, by definition, ∥⊺∥V ∶=W .

Lemma 2.2.9 (Schema N– Conditions B) The schema N ∶= ◻⊺ is not valid in the

class of all multi-relational frames, given semantic conditions B.

Proof. Consider the simple model ⟨{w},R1, V ⟩ where R1 ∶= ∅. Since ⊺ is true in any

world, under any valuation, clearly ∥⊺∥V =W . Hence ⊧Vw ◇� and thus /⊧Vw ◻⊺.

2.2.3 Frames and Properties: Comparing Results

According to what happens in Standard Kripke-semantics, different schemata define

different characteristics a multi-relational frame should meet. In the following section

we shall analyse a few well known schemata in order to clarify the differences between

Kripke and Multi-relational semantics. Moreover these characteristics vary according to

the truth conditions we decide to adopt.
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Lemma 2.2.10 (Frame characterisation of M – Conditions B) For any multi-

relational frame F , assuming condition B, the following holds:

F ⊧ ◻(A ∧ B) → ◻A ∧ ◻B iff F is supplemented, i.e., for any valuation V , for any

world w ∈ W , for any Ri such that Ri(w) = J ∩K, there are two relations Rj and Rk

such that Rj(w) = J and Rk(w) =K.

Proof. (⇒) Given a multi-relational frame F assume there is a relation such that

Ri(w) = J ∩K and for any Rk, Rj either Rk(w) ≠K or Rj ≠ J . Define a valuation such

that ∥p∥V = J and ∥q∥V = K. Hence J ∩K = ∥p∥V ∩ ∥q∥V = ∥p ∧ q∥V and w ⊢V ◻(p ∧ q).

Since for any relation either Rj(w) ≠ J or Rk(w) ≠K it follows that /⊧Vw ◻p ∧ ◻q.

(⇐) Assume there are a multi-relational frame F , a valuation V and a world w such

that ⊧Vw ◻(p∧q) and /⊧Vw ◻p∧◻q. Then there is a relation Ri such that Ri(w) = ∥p∧q∥V =

∥p∥V ∩ ∥q∥V . Since /⊧Vw ◻p ∧ ◻q, it follows that either for any relation Rk, Rk(w) ≠ ∥p∥V

or for any relation Rk, Rk(w) ≠ ∥q∥V .

On the technical side, notice that in any model at any world w, if we assume as

valid schema M and we have at least one boxed formula holding true at w, then we

have N = ◻⊺ too. Indeed for any relation Ri and any world w, it holds trivially that

Ri(w) = R(w)∩W and hence, in such a frame, for any world w, there must always be a

relation such that Rj(w) =W . By definition, for any frame and any valuation W = ∥⊺∥V .

Lemma 2.2.11 (Frame characterisation of C – Conditions B) For any multi-

relational frame F , assuming condition B, the following holds:

F ⊧ ◻A ∧◻B → ◻(A ∧B) iff F is closed under intersections, i.e., for any valuation

V , for any world w ∈ W , for any couple of relations Rj and Rk, there exists a relation

Ri such that Ri(w) = Rj(w) ∩Rk(w).

Proof. (⇒) Given a multi-relational frame F assume there are two relations Rj and

Rk such that, given a world w, for any relation Ri, Ri(w) ≠ Rj(w) ∩ Rk(w). Let
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∥p∥V = Rj(w) and ∥q∥V = Rk(w). Clearly ⊧Vw ◻p ∧ ◻q. Since Ri(w) ≠ Rj(w) ∩Rk(w),

i.e., Ri(w) ≠ ∥p∥V ∩ ∥q∥V and hence Ri(w) ≠ ∥p ∧ q∥V , it follows that F , /⊧Vw ◻(p ∧ q).

(⇐) Assume there are a multi-relational frame F , a valuation V and a world w such

that ⊧Vw ◻A ∧ ◻B and /⊧Vw ◻(A ∧B). Then there are two relations Rj and Rk such that

Rj(w) = ∥A∥V and Rk(w) = ∥B∥V . Moreover, for any Ri it holds that Ri(w) ≠ ∥A∧B∥V ,

i.e., Ri(w) ≠ ∥A∥V ∩ ∥B∥V .

The frame characterisation for C with conditions A is very similar to the previous

one, as one would expect:

Lemma 2.2.12 (Frame characterisation of C – Conditions A) For any multi-

relational frame F the following holds: F ⊧ ◻A ∧ ◻B → ◻(A ∧ B) iff for any world

w, for any relation Ri, Rk there exists a relation Rj such that Rj(w) ⊆ Rk(w) ∩Ri(w).

Proof. (⇒) Assume there is a frame F ∶= ⟨W,R1, . . . ,Rn⟩ and suppose that there are

two relations Ri,Rk such that for all j, Rj(w) /⊆ Rk(w) ∩ Ri(w). Define the follow-

ing valuation V for F : ∥p∥V ∶= Ri(w) and ∥q∥V ∶= Rk(w). Clearly ⊧Vw ◻p and ⊧Vw ◻q,

hence ⊧Vw ◻p ∧ ◻q. On the other hand ∥p ∧ q∥V = ∥p∥V ∩ ∥q∥v = Ri(w) ∩Rk(w). By as-

sumption there is no relation Rj such that Rj(w) ⊆ Ri(w)∩Rk(w) and hence /⊧Vw ◻(p∧q).

(⇐) If C is not valid, then there are a frame e F ∶= ⟨W,R1, . . . ,Rn⟩, a valuation V

and a world w such that ⊧Vw ◻A, ⊧Vw ◻B, and /⊧ ◻(A∧B). From this, trivially, it follows

that there are two relations, namely Ri,Rj such that Ri(w) ⊆ ∥A∥V and Rj(w) ⊆ ∥B∥V ,

whereas for any k, Rk(w) /⊆ Ri(w) ∩Rj(w).

Let us consider now schemata T,B,4: they are not usually adopted in deontic

logic—sometimes, like with T—they are avoided. However, their study is instructive

to illustrate multi-relational semantics.
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Lemma 2.2.13 (T: general reflexivity – cond. A and B) For any multi-relational

frame F , assuming either condition A or B, the following holds: F ⊧ ◻A→ A iff for any

world w, for any relation Ri, wRiw, assuming either condition A, or B.

Proof. (⇒) Assume that for some multi-relational frame there are a world w and a

relation Ri such that ¬(wRiw). Let ∥p∥V ) = Ri(w) as shown in Figure 2.6, then clearly

⊧w ◻p and, since w /∈ Ri(w), /⊧w p.

w

¬p

Figure 2.6: A simple non reflexive frame.

(⇐) Assume that for all w of a given frame, for any i, wRiw. Suppose that for some

valuation V , ⊧Vw ◻A. Hence for some j, Rj(w) ⊆ ∥A∥V . By assumption w ∈ Rj(w), thus

w ∈ ∥A∥V and ⊧Vw A.

Lemma 2.2.14 (B: general symmetry – Conditions A) For any multi-relational

frame F , assuming condition A, the following holds:

F ⊧ A→ ◻◇A iff ∀w∃Ri∀v(wRiv⇒ ∀Rk(vRkw)).

Proof. (⇒) Assume that in a frame F , there is the following situation:

∃w∀Ri∃vi(wRivi & ∃Rk¬(viRkw)). Let V be a valuation such that ∥p∥V = {w}. Clearly

⊧Vw p. By assumption for any relation Ri there is some vi such that wRivi and for some

Rj , ¬(viRjw). Hence for any vi it holds that /⊧Vvi ◇p (recall semantic condition A4).

Therefore /⊧Vw ◻◇ p.

(⇐) Assume (by reductio) that there is a frame F with the following characteristics:

(a) ∀w∃Ri∀v(wRiv⇒ ∀Rk(vRkw))

(b) F /⊧ A→ ◻◇A. Then there is a valuation V on F and a world such that:
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(b.1) ⊧Vw A and (b.2) /⊧Vw ◻◇A, i.e., ⊧Vw ◇◻¬A.

By (b.2) for any relation Ri there is a world v such that (b.3) wRiv and ⊧Vv ◻¬A and

hence (b.4) there is a relation Rk such that for all worlds z, vRkz ⇒ ⊧Vz ¬A. Since by

(a) vRiw for any Ri and ⊧Vw A, such Rk cannot exist.

The condition just described may indeed be called general symmetry. In fact, first

of all, notice that this condition implies the following: Given a frame F ∶= ⟨W,R1, . . . ,Rn⟩,

for any world w there exists one relation Ri such that if Ri(w) ≠ ∅, then all worlds

v ∈ Ri(w) are such that for all j, w ∈ Rj(v), but v ∈ Rj(w) (as the property holds for

all worlds of the frame), so this generates a set of worlds mutually accessible under any

relation. Notice that this is not a cluster, as general reflexivity is not granted here.

Whithin the framework of strong truth conditions, however, the class of frames char-

acterised by Schema B is rather less intuitive.

Lemma 2.2.15 (Frame characterisation of B – Conditions B) For any multi-

relational frame F , assuming condition B, the following holds:

F ⊧ A → ◻◇A iff for any valuation V , for any world w ∈ W , w ∈ ∥A∥V , then there is

some relation Rj, such that Rj(w) = {v ∶ ∀Ri (Ri(v) ≠ ∥¬A∥V }.

Proof. (⇒) Assume that there are a valuation V and a world w ∈W such that w ∈ ∥A∥V

and {v ∶ ∀Ri (Ri(v) ≠ ∥¬A∥V )} ≠ Rj(w) for all Rj . The set {v ∶ ∀Ri (Ri(v) ≠ ∥¬A∥V )}

is exactly the truth set of the formula ◇A. Indeed condition B3 says that ⊧w ◇A

iff ∀Ri∃x((wRix & ⊧x A) Or (¬(wRix) & /⊧x A)); given a world z ∈ W , z ∈ {v ∶

∀Ri (Ri(v) ≠ ∥¬p∥V )} if and only if for any relation Ri, either there is some u ∈ ∥A∥V

such that zRiu, or there is some world u ∈ ∥¬A∥V such that ¬(zRiu). By assumption

for any Rj it holds that Rj(w) ≠ ∥◇A∥V and hence /⊧Vw ◻◇A and ⊧Vw A.

(⇐) This is very straightforward. Suppose that there are a frame F ∶= ⟨W,R1, . . . ,Rn⟩,

a valuation V on F and a world w where an instance of B is false, i.e., for some formula
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A, ⊧Vw A and /⊧Vw ◻ ◇A. This, by definition, implies both that w ∈ ∥A∥V , and that for

all Rj , Rj(w) ≠ ∥◇A∥V , i.e., Rj(w) ≠ {v ∶ ∀Ri (Ri(v) ≠ ∥¬A∥V )}.

Lemma 2.2.16 (Frame characterisation of 4 – Condition A) For any multi-

relational frame F , assuming condition A, the following holds: F ⊧ ◻A → ◻ ◻ A

iff

∀x∀Ri

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀y(xR1y⇒ (∀z(yR1z ⇒ (xRiz)) or . . .

or ∀z(yRnz ⇒ (xRiz))))

or

⋮

or

∀y(xRny⇒ (∀z(yR1z ⇒ (xRiz)) or . . .

or ∀z(yRnz ⇒ (xRiz))))

Proof. (⇒) (contrapositive proposition) Given some multi relational frame F , assume

∃x∃Ri

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃y1(xR1y1 & (∃z11(y1R1z
1
1 & ¬(xRiz)) & . . .

& ∃z1n(y1Rnz1n & ¬(xRiz1n))))

&

⋮

&

∃yn(xRnyn & (∃zn1 (ynR1z
n
1 & ¬(xRizn1 )) & . . .

& ∃znn(ynRnznn & ¬(xRiznn))))

Let V (p) = Ri(x). Since for any world zlm, ¬(xRizlm), it holds that x ⊧V ◻p by Ri.

Moreover it holds that for any world yj and for any relation Rk, there is a world zjk such

that yjRkz
j
k and zjk /⊧V p and hence yj /⊧V ◻p. Since for any Rj there is such yj and

xRjyj , it holds that x /⊧V ◻ ◻ p.



2.2. SEMANTIC TOOLS FOR NON NORMAL SYSTEMS 47

(⇐) Assume by reductio that for some frame, valuation and world w /⊧V ◻p→ ◻ ◻ p

for some proposition p. Then w ⊧V ◻p and w /⊧V ◻◻p. For some relation Ri, Ri(w) ⊆ ∥p∥

and for any relation Rj there is a world yj such that wRjyj and yj /⊧V ◻p. Again, for

any such yj and any relation Rk there is some world zjk such that yjRkz
j
k and zjk /⊧ p.

By hypothesis, there is some world zlm such that for any relation Rk, xRkz
l
m. Since this

holds also for Ri there is a contradiction.

Lemma 2.2.17 (Frame characterisation of 4 – Condition B) For any multi-

relational frame F , assuming condition B, the following holds:

F ⊧ ◻A → ◻ ◻A iff for any w ∈ W , Ri and X ⊆ W the following holds: if X = Ri(w),

then {y ∶ ∃Rj(Rj(y) =X)} = Rk(w) for some k.

Proof. (⇒) (contrapositive proposition) Given some multi relational frame F , assume

there are w ∈W , Ri and X ⊆W such that X = Ri(w) and {y ∶ ∃Rj(Rj(y) =X)} ≠ Rk(w)

for all k. Let V (p) = X, then w ⊧V ◻p. Notice that {y ∶ ∃Rj(Rj(y) = X)} = ∥ ◻ p∥ and

∥ ◻ p∥ is not empty as it contains at least w. Hence for any relation Rk there is a world

x such that ¬(wRkx) and x ⊧V ◻p and therefore w /⊧V ◻ ◻ p.

(⇐) Assume by reductio that for some frame, valuation and world w /⊧V ◻p→ ◻◻p for

some proposition p. Then w ⊧V ◻p and w /⊧V ◻ ◻ p. For some relation Ri, Ri(w) = ∥p∥.

By assumption {y ∶ ∃Rj(Rj(y) = ∥p∥)} = Rk(w) for some k. Since {y ∶ ∃Rj(Rj(y) =

∥p∥)} = ∥ ◻ p∥ it follows that w ⊧V ◻ ◻ p which is contradictory.

2.2.4 A Special Case: Schema CON and D

The semantic property of seriality can be decisive in deontic logic, as it usually imposes

consistency of obligations. Of course, one may argue that, when deontic systems are

weakened into non-normal ones in order to tolerate normative dilemmas, we no longer

need to enforce consistency. However, the question is subtler than expected, since dif-
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ferent ideas of seriality can be adopted. Again, we will not commit to any philosophical

view, but simply offer technical alternatives.

Within the framework of Standard Kripke Semantics, it is well known that two

famous schemata, namely D ∶= ◻A → ◇A and CON ∶= ◇⊺, characterise the same class

of Kripke-frames, i.e., the class of serial ones. A Kripke frame is said to be serial when

any world is related to at least one other world:

Definition 2.2.18 (K-seriality) A Kripke frame F ∶= ⟨W,R⟩ is serial if and only if

∀w ∃v (wRv) (2.1)

w v z
R R

R

Figure 2.7: A case of K-seriality

Since there is only one relation, the notion expressed by 2.1 does not look problematic.

But how can seriality be translated when the frame is broader and the number of relations

is bigger than just one? There are several possible alternative answers to this question,

for instance:

∀w ∃i∀v (wRiv) (2.2)

w v
1

1
2

1,2

Figure 2.8: A case of Total seriality

This means that any world is connected to all the others by one relation and it can

be named Total Seriality, in fact a formal alternative formulation of 2.2 is ∀w ∃i such
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that Ri(w) =W .

Alternatively, one may want seriality be expressed by the fact that:

∀w (∃v1(wR1v1) & . . .& ∃vn(wRnvn)) (2.3)

w v

z

1

2

1,2

2

1

Figure 2.9: A case of General Seriality

The property expressed by 2.3 looks closer to the intuition behind seriality in Kripke

Frames and it shall therefore be referred to as General Seriality. However, there are

more ways to capture the idea of seriality, for instance:

∀w∀i∀j (Ri(w) ∩Rj(w)) ≠ ∅ (2.4)

w v

z

1,2

1

2 1,2

2

1,2

Figure 2.10: Seriality as described in 2.4

These are all different ways to model the intuitive concept of seriality within multi-

relational frames. Kripke structures are not expressive enough to capture the difference.

Syntactically this corresponds to the fact that some different schemata collapse on each

other, namely D and CON. Since they characterise the same class of frames, not much

attention is devoted to their deeply different syntactical structure. However this ceases
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to be true if we adopt the broader approach of multi-relational frames.

A first important observation is that CON and D are semantically distinct:

Lemma 2.2.19 Given condition B, both the entailment CON ⇒ D and D ⇒ CON

are not valid.

Proof. (a) Consider the model M2 ∶= ⟨{w, z},R1,R2, V ⟩ where R1 ∶= {⟨w,w⟩},

R2 ∶= {⟨w, z⟩} and ∥p∥V ∶= {w} as depicted in Figure 2.11. In this frame, schema CON

is valid. Indeed, for any world x in the base set of the model (and by definition, for any

valuation), /⊧x �. Since for any Ri there is a world x such that wRix and /⊧x �, it follows

that /⊧Vw ◻�, i.e., ⊧Vw ¬ ◻ �. Moreover, the models disproves an instance of D. In fact

for any x, wR1x if and only if ⊧x p and wR2x if and only if ⊧x ¬p, hence ⊧Vw ◻p and

⊧Vw ◻¬p, i.e., /⊧Vw ¬ ◻ ¬p. Therefore /⊧Vw ◻p→ ¬ ◻ ¬p.

w

p ⊺
z

¬p ⊺

R2
R1

Figure 2.11: In M2 an instance of CON holds true, although an instance of D is not
under semantic condition B. This is a countermodel for the entailment CON→D

(b) Consider a simple dead end frame, i.e., F ∶= ⟨{w},R⟩, where R = ∅. Here, for

any valuation V , schema CON is always false, as R(w) = ∅ = ∥�∥, which implies ⊧w ◻�,

i.e., /⊧◇⊺. On the other hand, in this frame schema D is valid. Indeed suppose that for

some formula A and for some valuation V , ⊧Vw ◻A. Hence R(w) = ∥A∥V = ∅ = ∥�∥V , so

⊧Vw ◻� (in such frames, any true boxed formula is equivalent to ◻�). Since there is no

Ri, such that Ri(w) = {w}, /⊧w ◻⊺, i.e., ⊧w ◇�, and D is a valid schema.

Lemma 2.2.20 Given condition A, for any multi-relational frame F , (a) D ⇒ CON

holds, whereas (b) CON⇒D does not.
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Proof. (a) It is enough to prove that any counter model for CON is based on a

frame in which D is not valid. Indeed, if in a model M ∶= ⟨W,R1, . . . ,Rn, V ⟩, there is

a world in which CON is false, we have that ⊧Vw ◻�. If we assume D to be valid on

the frame on which the model is based, we would get that ⊧Vw ◇◻ holds and hence for

any relation of the frame, there must exists at list one connected world in which � holds

true, which is, of course, a contradiction. Hence any counter model for CON cannot be

based on a D-frame.

(b) It follows from Lemma 2.2.19, item (i).

Corollary 2.2.21 The schema ◻A → ¬ ◻ ¬A ↔ ¬ ◻ � is not valid in the class of all

multi-relational frames (assuming either condition A or B).

A first analysis of the difference between schema D and CON is proposed by (Jen-

nings and Schotch, 1981, 309) and Schotch and Jennings (1981) although, as far as we

are concerned, no results of characterisation (as those we propose below) have yet been

provided.

Returning to our analysis of the concept of seriality, the formulation expressed by 2.3

is captured by CON, a schema that characterises precisely the class of multi-relational

frames with this condition (assuming either condition A or B).

Lemma 2.2.22 (CON: General Seriality – cond. A and B) For any multi-relational

frame F , assuming either condition A or B, the following holds:

F ⊧CON if and only if ∀x (∃y1(xR1y1) & . . .& ∃yn(xRnyn))

Proof. (⇒) If a frame has a relation Ri that is a dead end in a world w, i.e., Ri(w) = ∅,

then, since given any valuation V , ∥�∥V = ∅, we have that ⊧Vw ◻�, i.e., the frame falsifies

CON.
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(⇐) This is also quite straightforward. Any frame falsifying CON must contain an

Ri-dead-end world w for some Ri, i.e., a world w such that for some i, Ri(w) = ∅.

A natural question is what (if any) class of frames is characterised by the validity of

schema D. The Lemmas below provide an answer.

Lemma 2.2.23 (Axiom D - Conditions A) For any multi-relational frame F , as-

suming condition A, the following holds:

F ⊧D iff for any w ∈W and any pair of relations Ri and Rj, Ri(w) ∩Rj(w) ≠ ∅.

Proof. (⇒) Assume that in a frame F ∶= ⟨W,R1, . . . ,Rn⟩ there are two relations Ri and

Rj such that for some w ∈W , Rj(w) ∩Ri(w) = ∅. There are two possible cases: either

(a) Ri(w) = ∅ or (b) Ri(w) ≠ ∅ and Rj(w) ≠ ∅. If (a) holds, then trivially ⊧Vw ◻� and

/⊧Vw ◇� for any valuation V , falsifying D. If (b) holds, then let ∥p∥V = Ri(w) for some

propositional letter p. Hence ⊧Vw ◻p. Since Rj(w) ⊆ ∥¬p∥V , ⊧Vw ◻¬p, a countermodel for

D.

(⇐) Assume that F ∶= ⟨W,R1, . . . ,Rn⟩ is a frame in which D is not valid. Then for

some valuation V and some world w, ⊧Vw ◻A and ⊧Vw ◻¬A for some A. Hence for some

i, j, Ri(w) ⊆ ∥A∥V , whereas Rj(w) ⊆ −∥A∥V , and their intersection is, of course, empty.

Notice that this is yet another possible reading of the concept of seriality, namely

what we labeled as 2.4.

It is interesting to notice that if we assume truth conditions B, axiom D does no

longer capture any reading related to seriality, but it characterises those frames whose

relations cannot be complementary (although they can actually be both empty):

Lemma 2.2.24 (Axiom D – Conditions B) For any multi-relational frame F , as-

suming condition B, the following holds:

F ⊧ D if and only if for any couple of relations Ri, Rj, Rj(w) ≠ −Ri(w) i.e., relations

cannot be complementary.
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Proof. (⇒) Assume there are two relations Ri and Rj such that for some w ∈ W ,

Rj(w) = −Ri(w). Let ∥p∥V = Ri(w) for some propositional letter p. Then ⊧Vw ◻p. Since

Ri(w) ∪Rj(w) =W and Ri(w) ∩Rj(w) = ∅, the truth set of ¬p is −Ri(w), i.e., Rj(w)

and hence ⊧Vw ◻¬p, meaning that /⊧Vw ◻p→ ¬ ◻ ¬p.

(⇐) Assume that F ∶= ⟨W,R1, . . . ,Rn⟩ is a frame in which D is not valid. Then for

some valuation V and some world w, ⊧Vw ◻A and ⊧Vw ◻¬A for some A. Hence for some

i, j, Ri(w) = ∥A∥V , whereas Rj(w) = −∥A∥V .

One last observation should be made about schema N, which is valid on any frame

if we assume conditions A, although it is not if we deal with conditions B. In this latter

case, N captures those frames which are serial according the reading we gave in 2.2:

Lemma 2.2.25 (Axiom N– Conditions B) For any multi-relational frame F , as-

suming conditions B, the following holds: F ⊧ ◻⊺ iff ∀x∃Ri∀y(y ∈ Ri(x)).

Proof. (⇒) Assume that for some multi-relational frame there is a world w such that

for any relation Ri there is at least a world y, y /∈ Ri(w). Since ∥⊺∥V = W for any

valuation, it follows that for any Ri there is a world y such that ¬(wRiy) and y /⊧V �

and hence ⊧Vw ◇� and /⊧Vw ◻⊺.

(⇐) Assume that F ∶= ⟨W,R1, . . . ,Rn⟩ is a frame in which N is not valid. Then for

some valuation V and some world w, /⊧Vw ◻⊺ and hence ⊧Vw ◇�. This implies that any

relation Ri is such that Ri(w) ≠ −∥�∥V and clearly −∥�∥V = ∥⊺∥V =W by definition.

Tables below and Table 2.1 offer a comparative synoptical view of this extensive

analysis of seriality and schemata.
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Kripke Semantics

Kripke frames CON⇒D D⇒CON

Multi-relational frames Conditions A CON /⇒D D⇒CON

Multi-relational frames Conditions B CON /⇒D D /⇒CON

Truth Conditions A – Weak Semantics

Schema Class of Frames First Order Property

N all

CON General Seriality ∀x (∃y1(xR1y1) & . . .& ∃yn(xRnyn)) 2.3

D Closed under Intersection ∀w∀i∀j Ri(w) ∩Rj(w) ≠ ∅ 2.4

Truth Conditions B – Strong Semantics

Schema Class of Frames First Order Property

N Total Seriality (contains the unit) ∀w ∃i∀v (wRiv) 2.2

CON General Seriality ∀x (∃y1(xR1y1) & . . .& ∃yn(xRnyn)) 2.3

D Relations are not Complementary ∀w, i, j, Rj(w) ≠ −Ri(w)
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2.3 Completeness Results

The task of this final part is to provide several non normal modal propositional systems

with completeness results with respect to certain class of frames. Although it is quite

straightforward to check the validity of the schemata we presented (and hence to check

the soundness of specific systems containing such axioms), when we focus on proving

completeness of such systems, it is soon clear that standard techniques cannot be applied

without twisting and adjusting them to the new task.

2.3.1 Soundness and Completeness of Classical Systems and above

The first thing to verify before proceeding to show completeness results is to check

whether some specific axiomatic systems produce formulae which are actually valid

within certain specific classes of multi-relational frames, assuming strong semantic con-

ditions, namely what we labeled as B-conditions. Any axiomatic system enjoying such

property with respect to a class of frames is said to be sound with respect to the speci-

fied class of structures. Thus we start by proving that the system E, the minimal modal

system, is a sound system with respect to the class of all multi-relational frames, giving

strong semantics. The theory E is defined as the smallest set of formulae containing all

classical tautologies and closed under the rules MP and RE:

Theorem 2.3.1 (Classical logics - Soundness) Let E⊢ ∶= {A ∣ CPC ⊕RE ⊢ A} and

E⊧ ∶= {A ∣ ⊧ A}, given semantic conditions B. Then E⊢ ⊆ E⊧j, i.e., all theorems are

valid formulae in all multi-relational frames.

Proof. The proof is standard and quite easy. It is carried out by induction on lg(D),

where D ∶= D1, . . . ,Dn is a deduction in the axiomatic system E with A = Dn, i.e., A ∈ E⊢)

If lg(D) = 1, then A is a classical tautology and the proof is trivial. Let us consider the

case lg(D) = k + 1. Then A has been obtained either via MP or via RM. Let us focus

on the latter case. The formula A has the form ◻B ↔ ◻C and it has been obtained via
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the application of RE to a formula Di = B ↔ C, i ≤ k. By induction hypothesis (IH),

it holds that B ↔ C ∈ E⊧. Suppose by reductio that ◻B ↔ ◻C /∈ E⊧, hence there are

a multi-relational frame F , a valuation V and a world w such that either ⊧w ◻B and

/⊧w ◻C, or /⊧w ◻B and ⊧w ◻C, given conditions B. Suppose ⊧w ◻B and /⊧w ◻C. By

semantic condition B, ⊧w ◻B implies that there is a relation Ri such that for any world

x, wRix ⇔ ⊧x B. By IH, ⊧ B ↔ C, hence ∥C∥ = ∥B∥. Thus wRix ⇔ ⊧x C and

hence ⊧w ◻C, reaching a contradiction.

Any formula generated by E is valid in the class of all multi relational frames with

B semantic conditions. The goal is thus to show that if a formula A is valid in such

class, then it ought to be generated by the axiomatic system as well. An achievement of

this kind would tell us that the axiomatic system we have described generates all and

only the theorems of E: In other words, the system is sound and complete. Although

all the completeness results for neighborhood semantics can be found in (Chellas, 1980,

248ff.), we restate a few of them using multi-relational semantics (notice that, given

strong conditions, multi-relational frames are equivalent to neighborhood models).

Definition 2.3.2 Given an axiomatic system AS on a language L, a set ∆ ⊂ Fma(L)

is:

(a) AS-consistent iff ∆ ⊬AS �;

(b) L-complete iff ∀A ∈ Fma(L) A ∈ ∆ or ¬A ∈ ∆;

(c) AS-maximal iff ∆ is AS-consistent and L-complete.

Definition 2.3.3 Let M ∶= ⟨W,R1, . . . ,Rn, V ⟩ be a multi-relational model assuming se-

mantic conditions B. M is an E-canonical model for E if and only if:

(a) W ∶= {w ∣ w is E-maximal}

(b) For any formula A ∈ Fma(L), for any w ∈ W , ◻A ∈ w if and only if there is a

relation Ri such that Ri(w) = ∣A∣E, where ∣A∣E ∶= {v ∈W ∣ A ∈ v}

(c) for any propositional letter p ∈ Prop, ∥p∥V ∶= ∣p∣E, where ∣p∣E ∶= {w ∈W ∣ p ∈ w}
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Lemma 2.3.4 Given an E-canonical model M ∶= ⟨W,R1, . . . ,Rn, V ⟩, for any formula

A,B ∈ Fma(L), if ∣A∣E = ∣B∣E, then for any world w ∈ W , Ri(w) = ∣A∣E for some Ri if

and only if Rk(w) = ∣B∣E for some Rk.

Proof. Suppose ∣A∣E = ∣B∣E, then ⊢E A↔ B and ⊢ ◻A↔ ◻B by the RE rule. Hence

for any world w in the E-canonical base set ◻A ↔ ◻B ∈ w. Suppose that, given any

world w, there is some Ri such that Ri(w) = ∣A∣E. Then, by Definition 2.3.3 it holds

that ◻A ∈ w and, since ◻A ↔ ◻B ∈ w, it follows that ◻B ∈ w and thus, by Definition

2.3.3, there is some relation Rk such that Rk(w) = ∣B∣E.

Lemma 2.3.5 (Truth Lemma) Given an E-canonical model M ∶= ⟨W,R1,R2, . . . , V ⟩

for the classical modal logic E, for any formula A ∈ Fma(L), for any world w ∈W , the

following holds: ⊧Vw A ⇔ A ∈ w, i.e., ∣A∣E = ∥A∥V .

Proof. The proof is given by induction on the length of a formula A. The basis of

induction is trivial. Suppose lg(A) = n + 1. The only interesting case is when A has the

form ◻B.

⇒) Suppose ⊧Vw ◻B, then there is a relation Ri such that for any v ∈ W , Ri(w) =

∥B∥V . By the inductive hypothesis Ri(w) = ∣B∣E, hence ◻B ∈ w by Definition 2.3.3.

⇐) Suppose /⊧Vw ◻B, then for all relations Ri, Ri(w) ≠ ∥B∥V and by the inductive

hypothesis Ri(w) ≠ ∣B∣E. Therefore ◻B /∈ w by Definition 2.3.3.

Let MC ∶= ⟨W,RA1 ,RA2 , . . . , V ⟩ be a multi-relational model such that:

(a) A1,A2, . . . is an enumaration of all the formulae on L

(b) W ∶= {w ∣ w is E-maximal}

(c) For any w ∈W and any formula A ∈ Fma(L) let:

- RA(w) = ∣A∣E if ◻A ∈ w

- RA(w) =X where X is such that X ⊆W and for any B ∈ Fma(L), X ≠ ∣B∣E otherwise

(d) for any propositional letter p ∈ Prop, ∥p∥V ∶= ∣p∣E, where ∣p∣E ∶= {w ∈W ∣ p ∈ w}
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Since condition (b) of Definition 2.3.3 is fulfilled, the model MC is E-canonical.

Indeed suppose ◻A ∈ w for some w. Then RA(w) = ∣A∣E. On the other hand assume

by reductio that ◻A /∈ w and there is some B such that RB(w) = ∣A∣E. By definition of

MC it follows that RB(w) = ∣B∣E, ∣A∣E = ∣B∣E, ⊢E A ↔ B, A ↔ B ∈ w for any w and

hence ◻A↔ ◻B ∈ w (since any w si closed under RE) and by MP ◻A ∈ w, leading to a

contradiction.

Lemma 2.3.6 (Completeness of E – Conditions B) The logic E is complete with

respect to the class of all multi-relational frames (semantic condition B).

Proof. The proof follows from Lemma 2.3.5 and the existence of canonical models.

Lemma 2.3.7 (Completeness of M – Conditions B) The logic M is complete with

respect to the class of multi-relational frames (semantic condition B) having the following

property: for any valuation V , for any world w ∈ W , if there exists a relation Ri such

that Ri(w) = J ∩K, then there are two relations Rj and Rk such that Rj(w) = J and

Rk(w) =K.

Proof. Consider a canonical model for M where worlds are pairwise different with

respect to the propositional letters they contain, i.e., a canonical model where there are

no duplicates within the base set. Thus the formula ⋀p∈w p is characterising for w. Take

any w ∈ W and suppose that for some Ri, Ri(w) = J ∩K. Let A ∶= ⋁v∈J ⋀p∈v p and

B ∶= ⋁v∈K ⋀p∈v p; clearly ⊧Vv A iff v ∈ J and ⊧Vv B iff v ∈ K and hence ∥A∥V = J and

∥B∥V = K. Then Ri(w) = ∥A∥V ∩ ∥B∥V = ∥A ∧ B∥V . This implies that ⊧Vw ◻(A ∧ B),

◻(A ∧ B) ∈ w and hence ◻A ∧ ◻B ∈ w (schema M is in w). Thus ⊧Vw ◻A and there is

a relation Rj such that Rj(w) = ∥A∥V and ⊧Vw ◻B and there is a relation Rk such that

Rk(w) = ∥B∥V .

Lemma 2.3.8 (Completeness of R – Conditions B) The logic R is complete with

respect to the class of supplemented and closed under intersections multi-relational frames

(semantic condition B), i.e., frames having the following properties:
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(a) for any valuation V , for any world w ∈ W , if there exists a relation Ri such

that Ri(w) = J ∩K, then there are two relations Rj and Rk such that Rj(w) = J and

Rk(w) =K.

(b) for any valuation V , for any world w ∈ W , for any couple of relations Rj and

Rk, there exists a relation Ri such that Ri(w) = Rj(w) ∩Rk(w)

Proof. (i) See proof of Lemma 2.3.7.

(ii) Assume that for some w ∈ W there are two relations Rj and Rk such that

Rj(w) = J and Rk(w) = K. Let A ∶= ⋁v∈J ⋀p∈v p and B ∶= ⋁v∈K ⋀p∈v p; clearly ⊧Vv A iff

v ∈ J and ⊧Vv B iff v ∈ K and hence ∥A∥V = J and ∥B∥V = K. Then Ri(w) = ∥A∥V and

Rk(w) = ∥B∥V . This implies that ⊧Vw ◻A ∧ ◻B, ◻A ∧ ◻B ∈ w and hence ◻(A ∧B) ∈ w

(schema C is in w). Thus ⊧Vw ◻(A∧B) and therefore there is some relation Ri such that

Ri(w) = ∥A ∧B∥V = ∥A∥V ∩ ∥B∥V .

2.3.2 Weak Semantics and N-Monotonic Logics

We saw that multi-relational semantics with strong conditions is a good tool to treat a

wide range of non normal systems, namely E,M,C,R and more. However, if assuming

strong semantics, we find that a great part of the intuition behind Kripke semantics is

somehow lost. On the other hand, weak conditions allow for a a simpler picture which

is certainly more appealing form the standpoint of intuition. Thus, a natural question

arises: Which axiomatic system, if any, can be captured by these frames? In other

words, which is the minimal system to be captured by multi-relational frames and weak

semantics? This Section provides an answer to such questions. As far as multi-relational

semantics is concerned, the literature provides only a completeness proof sketch for a

specific deontic system, namely, P (Goble, 2001). A detailed completeness theorem for

non normal systems and multi-relational semantics is presented here for the first time.

Again, a first step is showing that a system is indeed sound with respect to a given class
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of frames:

Theorem 2.3.9 (N-Monotonic logics - Soundness) Let MN⊢ ∶= {A ∣ CPC ⊕RE ⊕

M⊕N ⊢ A} and MN⊧ ∶= {A ∣ ⊧ A}, given semantic conditions A. Then MN⊢ ⊆MN⊧.

Proof. (By induction on lg(D), where D ∶= D1, . . . ,Dn is a deduction in the axiomatic

system M with A = Dn, i.e., A ∈ E⊢) If lg(D) = 1, then A is either a classical tautology

and the proof is trivial, or an instance of the axiom schema M, and it is valid by Lemma

2.2.5, or else an instance of the schema N, and thus it holds by Lemma 2.2.8. Let us

consider the case lg(D) = k + 1. Then A has been obtained either via MP or via RE

(please refer to Theorem 2.3.1).

Completeness will be achieved by turning and changing some very well known stan-

dard technique, as the Lindenbaum’s Lemma and Canonical Models.

Lemma 2.3.10 (Lindenbaum’s Lemma) Given a logic L, if ∆ is a L-consistent set

of formulae, then there is a L-maximal set ∆+ such that ∆ ⊆ ∆+.

Definition 2.3.11 (MN-Canonical Models) LetM ∶= ⟨W,R, V ⟩ be a multi-relational

model. M is a canonical model for MN if and only if:

a. W ∶= {w ∣ w is MN-maximal}

b. For any formula A ∈ Fma(L) let RA be a binary relation over W . For all w, v ∈W ,

wRAv iff ◻A ∈ w⇒ A ∈ v.

c. for any propositional letter p ∈ Prop, ∥p∥V ∶= ∣p∣MN, where ∣p∣MN ∶= {w ∈W ∣ p ∈ w}

Notice that the this definition implies that whenever a formula ◻A does not belong

to a state w, the relation associated to A for w would be RA(w) = W , i.e., the whole

universe. Otherwise if ◻A ∈ w, RA(w) would be exactly ∣A∣MN, where ∣A∣MN ∶= {v ∈W ∣

A ∈ v}. Moreover, it is important to notice that the frame of a MN-canonical model

is not always generally serial. Indeed it allows the presence of empty relations for any

world, and hence the schema CON:=◇⊺ is not valid on the canonical frame.
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Lemma 2.3.12 Given a canonical model M for MN, for any w ∈W , if ◇⊺ ∈ w, then w

is locally serial, i.e., for any formula B ∈ Fma(L) there is a state z such that wRBz.

Proof. Assume ◇⊺ ∈ w, then clearly ◻� /∈ w. Consider any RC . The formula C can

be either (i) a theorem or (ii) a contradiction, or (iii) neither. Suppose that (i) C is a

theorem. Then ⊢MN C implies ⊢MN ◻C by RM, N and MP, for any z ∈W , ◻C,C ∈ z

and hence ◻C ∈ w and RC(w) = W , i.e., RC(w) is not empty. Suppose that (ii) C is

a contradiction, then ⊢MN ¬C and hence ⊢MN ◻� ↔ ◻C. Since by assumption ◻� /∈ w,

◻C /∈ w and hence RC(w) = W (by definition of Canonical model) and it is not empty.

Finally suppose that (iii) C is neither a theorem, nor a contradiction. Then ∣C ∣MN

and ∣¬C ∣MN are complementary and none of them is empty. Again, if ◻C /∈ w, then

RC(w) =W and if ◻C ∈ w then RC(w) = ∣C ∣MN and none of these sets is empty.

Lemma 2.3.13 (Existence lemma) Given a canonical modelM for MN, for any w ∈

W , if ◇A ∈ w, then for any formula B ∈ Fma(L) there is a state z such that wRBz and

A ∈ z.

Proof. Assume that ◇A ∈ w. Since the schema ◇A → ◇⊺ is a theorem2 of MN, it

follows that ◇⊺ ∈ w and by Lemma 2.3.12, w is locally serial. It remains to show that

for any formula B ∈ Fma(L), RB(w) ∩ ∣A∣MN ≠ ∅, i.e., for any B there is some z such

that zinRB(w) and A ∈ z. (i) If A is a theorem, then ∣A∣NM = W (A belongs to any

maximal consistent set in W ). (ii) A cannot be a contradiction, otherwise ⊢MN ¬A efq,

⊢MN ◻¬A, ◻¬A ∈ w, ¬ ◻ ¬A /∈ w, i.e., ◇A /∈ w which leads to a contradiction. (iii) If

A is neither a theorem nor a contradiction, both {A} and {¬A} are MN-consistent and

both ∣A∣MN and ∣¬A∣MN are not empty. Assume by reductio that for some C ∈ Fma(L)

RC(w) ⊆ ∣¬A∣MN. This implies that ◻C ∈ w (otherwise we would have RC(w) =W which

is inconsistent with our assumption). Hence we have that in all MN-maximal sets z,

2Indeed ⊢MN �→ ¬A ex falso quodlibet, ⊢MN ◻�→ ◻¬A by RM, ⊢MN ◇A→◇⊺ by contraposition
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C → ¬A ∈ z and therefore it is a theorem of MN. Thus ⊢MN C → ¬A, ⊢MN ◻C → ◻¬A,

◻¬A ∈ w and hence ◇A /∈ w which is a contradiction.

Lemma 2.3.14 (Truth Lemma) Given a canonical model M ∶= ⟨W,R, V ⟩ for the N-

Monotonic modal logic MN, for any formula A ∈ Fma(L), for any world w ∈ W , the

following holds: w ⊧V A ⇔ A ∈ w.

Proof. The proof is given by induction on the length of a formula A. The basis of

induction is trivial. Suppose lg(A) = n + 1. The only interesting case is when A has

the form ◻B. i. Suppose w ⊧V ◻B, then there is a relation RC ∈ R such that for any

v ∈W , wRCv ⇒ v ⊧V B. By the inductive hypothesis (IH henceforth) B ∈ v. Suppose

/⊢MN C → B. Then the set {C,¬B} is consistent and it is contained in a maximal

consistent set y such that y ∈ W . Hence y /⊧V B by IH. This implies ¬(wRCy) and,

by definition of RC , ◻C ∈ w and C /∈ y contradicting the hypothesis C ∈ y. Hence

⊢MN C → B and, by the RM rule, ⊢MN ◻C → ◻B. Being w maximal, either (a) ◻C ∈ w

or (b) ◻C /∈ w. If (a) holds, then ◻B ∈ w by modus ponens. If ◻C /∈ w, assume /⊢MN B,

then the set {¬B} is the subset of a maximal consistent set z ∈ W and z /⊧V B. Since

◻C /∈ w, it follows that wRCz and hence z ⊧V B and B ∈ z by IH, a contradiction.

Therefore ⊢MN B and ⊢MN ◻B, i.e. ◻B ∈ w.3 ii. Suppose ◻B ∈ w. By Definition 2.3.11

it holds that wRBv iff ◻B ∈ w ⇒ B ∈ v, i.e., v ⊧V B by IH. Hence w ⊧V ◻B.

Consider any formula B such that /⊢MN B. Then ¬B is consistent and there is some

MN-maximal set w such that ¬B ∈ w. By Definition 2.3.11 the world w belongs to the

base set of an MN-canonical model M and, by Lemma 2.3.14 w /⊧V B.

Corollary 2.3.15 (Completeness of MN) The logic MN is complete with respect to

the class of multi-relational frames.

3Indeed assume ⊢MN B, then ⊢MN ⊺↔ B, ⊢MN ◻⊺↔ ◻B by RE, ⊢MN ◻⊺ is an instance of the schema
N and hence ⊢MN ◻B by MP.
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2.3.3 N-Monotonic Logics and Above

As usual, in order to show completeness results of specific systems L with respect to a

restrict class of frames F enjoying a certain property, it is enough to show that if F ⊧ A

for some formula A, then A is also a theorem of L, i.e., ⊢L A. The canonical model

techniques guarantees that if a formula is not a theorem of L, then there exists a model

falsifying A itself. Hence, it is enough to show that such canonical model is based on

a frame of the required kind. Keeping this in mind, we are going to show that the

canonical frame of some specific systems does indeed enjoy certain properties.

Theorem 2.3.16 The logic MN ⊕ T is complete with respect to the class of generally

reflexive multi-relational frames, i.e., for any world w, for any relation Ri, wRiw.

Proof. It is enough to show that if A /∈ MN ⊕ T, then F /⊧ A, where F is the class

of reflexive multi-relational frames. Take any formula A such that A /∈ MN ⊕ T. By

Theorem 2.3.14 there is a canonical model M ∶= ⟨W,R1, . . . ,Rn, V ⟩ for MN ⊕ T such

that for some world w, /⊧Vw A. To show that M is based on a generally reflexive frame.

Consider any formula ◻B; since T is a theorem, for any world v if ◻B ∈ v, then B ∈ v

by T. Hence, by Definition 2.3.11, it holds that any v, for any relation RB, vRBv, i.e.,

the frame is reflexive.

Theorem 2.3.17 The logic MN⊕CON is complete with respect to the class of generally

serial multi-relational frames.

Proof. Let L be the logic generated by MN ⊕ CON. Let Γ be a L-consistent set of

formulae. It is sufficient to find a model M ∶= ⟨W,R, V ⟩ such that (a) w ⊧V Γ for

some world w ∈ W and (b) M is based on a generally serial frame (see Blackburn

et al. (2001)). Let ML ∶= ⟨W L,RL, V L⟩ be a canonical model for L and let Γ+ be a L-

maximal consistent set extending Γ. Then Γ+ ⊧V + Γ by Lemma 2.3.14 and condition (a)

is met. We have to show that the canonical frame is generally transitive and it is really
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quite straightforward. Indeed since any point z in W L is L-maximal and consistent, it

contains ◇⊺ and hence by Lemma 2.3.14 v ⊧V L ◇⊺. By definition of ◇ this means that

∀v ∈W L∀RL
i ∈RL∃z(vRL

i z).

Theorem 2.3.18 The logic MN ⊕ D is complete with respect to the class of generally

serial multi-relational frames.

Proof. Again, it is enough to show that if A /∈ MN ⊕ T, then F /⊧ A, where F is the

class of generally serial frames. Take any formula A such that A /∈MN⊕D. By Theorem

2.3.14 there is a canonical modelM ∶= ⟨W,R1, . . . ,Rn, V ⟩ for MN⊕D such that for some

world w, /⊧Vw A. To show thatM is based on a generally serial frame. Take any relation

RB: it cannot be empty. Indeed, suppose RB(w) = ∅, then ◻� ∈ w and, by D, ◇� ∈ w,

a contradiction.

When schema D is concerned, another stronger result can be proved:

Theorem 2.3.19 The logic MN ⊕ D is complete with respect to the class of generally

serial multi-relational frames fulfilling the following condition:

for any w ∈ W and any pair of relations Ri and Rj, Ri(w) ∩ Rj(w) ≠ ∅ (see Lemma

2.2.23).

Proof. Take any formula A such that A /∈ MN ⊕ D. By Theorem 2.3.14 there is a

canonical modelM ∶= ⟨W,R1, . . . ,Rn, V ⟩ for MN⊕D such that for some world w, /⊧Vw A.

As it follows from Theorem 2.3.18, the frame of the canonical model is generally serial.

Moreover, consider two relations RA and RB. Since no relation is empty, RA(w) = ∥A∥V

and RB(w) = ∥B∥V 4 and hence ◻A ∈ w and ◻B ∈ w. By D, ◇A ∈ w and ◇B ∈ B and,

by M5 ◇(A ∧B) ∈ w and hence ∥A∥V ∩ ∥B∥V ≠ ∅.

4Confer to the remarks after Definition 2.3.11.
5Clearly in its contrapositive version: M⋆ ∶=◇A ∧◇B →◇(A ∧B).
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2.4 Summary, Conclusions, Further Work

In the introduction of this Chapter we have listed a series of questions, namely, those

who drove us to start this research. As we saw, we provided an answer to all of them:

(a) which theories are valid in the class of multi-relational weak structures? Any classi-

cal theory smaller or equal than N-monotonic logics;

(b) how do they differ from multi-relational strong frames (Neighborhood semantics)?

Multi-relational strong frames validate a narrower set of formulae, namely, those

theories smaller or equal than E;

(c) how well known modal schemata (among those relevant to deontic logic, like M,

C, T, D, B,CON,DEX, . . ., behave within multi-relational weak frames? Do

they characterise classes of frames with specific properties? Yes, most of them

characterise some specific classes of frames (please refer to Table 2.1);

(d) how can well known first order properties be characterised by propositional

schemata, if we assume a plurality of relations? We have provided an answer to

reflexivity, seriality, and symmetry;

(e) the set of formulae which are valid in the class of all multi-relational frames can be

generated by a finite axiomatic system? If so, which one? Yes, by the system MN,

which is then sound and complete with respect to the class of all multi-relational

weak frames. Moreover, we saw that the systems MN ⊕T, MN ⊕D, MN ⊕CON

are sound and complete with respect to specific classes of frames.
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In our opinion, the most interesting result we achieved is that generalised Kripke

frames, i.e., the class of all weak multi-relational frames (with A semantics), can generate

precisely MN, namely propositional N-Monotonic logic. Thus, this system enjoys two

interesting characteristics: First of all, it is strictly smaller than the normal system K,

and, most important, it does not generate Deontic Explosion. Although one may argue

that non normal systems can be treated more efficiently with neighborhood semantics

(see Chellas (1980)), we find quite interesting that the simple operation of generalising

Kripke structures (while keeping the whole intuition behind them) is enough to generate

systems which are actually finitely axiomatisable as well as non normal. In short, in order

to avoid deontic dilemmas, one is not forced to drop relational semantics altogether. It

is actually possible to keep relational semantics in a more general definition.

There are, however, some interesting problems yet to be addressed. One may wonder

what class of structures, if any, is characterised by other modal schemata, for instance

by those closer to other fields of applied logics, rather than deontic. One may wonder

what class, if any, is captured by positive introspection, i.e., by schema 4 ∶= ◻A→ ◻◻A,

negative introspection, i.e. 5 ∶= ¬ ◻A→ ◻¬ ◻A, or by other modal axioms.

On the technical side, there are other important issues to be addressed regarding the

system MN:

- the finite model property;

- decidability and complexity;

- extending MN to the first order case.

A first preliminary answer to the latter question is provided in the next chapter. The

others remain to be solved.
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Chapter 3

Beyond Propositional Deontic Logics

Although the field of deontic logic is flourishing and getting increasing attention, the ef-

forts devoted to the analysis of quantifiers within deontic modal logics are still rather lim-

ited. This may be due to the fact that influential authors as Von Wright and Castañeda

have expressed sceptical views about extending deontic languages to include predicate

logic. Moreover, those who have argued in favour of such extension have probably

thought that quantified deontic logics (QDL henceforth) follow the same pattern as

alethic modal logic. Although this sounds reasonable if we think about QDL as a mere

extension of SDL (i.e., of the standard normal deontic system, see Chapter 1) the situ-

ation changes radically is the focus is on non normal systems. For instance, the role of

Barcan schemata become significantly different and new patterns and problems of both

philosophical, and technical relevance emerge.

Quantified modal logic has a long and distinguished tradition (Garson, 2001; Fitting

and Mendelsohn, 1998), which is still lively and technically productive (see, among oth-

ers, Corsi, 2002; Brauner and Ghilardi, 2007; Gabbay et al., 2009; Goldblatt, 2011).

Nevertheless, almost all efforts have so far been devoted to the analysis of the normal

case: Besides a few significant exceptions (Arló-Costa and Pacuit, 2006; Arló-Costa,

2002; Waagbø, 1992; Stolpe, 2003), which are based on neighbourhood semantics, the

study of quantification in non-normal modal logics is still neglected. Despite that, quan-

69
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tified non-normal modal logics (QNML henceforth) exhibit a different behaviour with

respect to normal modal logics. In particular, in contrast with quantified normal modal

logics results in the literature show, e.g., that the Barcan and the Converse Barcan

schemata (i) are not characterised by decreasing and increasing domains (ii) are tightly

connected to the validity of propositional modal axiom schemata.

This Chapter provides a semantic analysis of quantification in a class of non-normal

modal logics called N-Monotonic (as defined in Chapter 2). Again, instead of following

the neighborhood semantics approach, we shall focus on multi-relational semantics.

As explained in Chapter 2, there are two ways to evaluate ◻-formulae in this frame-

work. A first version (Goble, 2001, 2004b; Schotch and Jennings, 1981) simply extends

the one for Kripke semantics, since it requires that the Kripke-style evaluation clause for

◻-formulae is satisfied for at at least one relation in the set of relations of the model. This

is precisely the approach we called weak semantics in Chapter 2, Section 2.2. The other

non-standard evaluation clause has been proposed by Governatori and Rotolo (2005) in

order to cover more non-normal modal systems, including the classical ones. In fact, the

weak semantic approach captures only stronger logics, like MN and above. The scope

of this Chapter is to study quantification using weak semantics as well as considering

frames with varying domains. The choice of weak semantics keeps the intuition behind

Kripke semantics, while working with logics that are stronger than classical systems (E

and above), yet strictly weaker than K. On the other hand, working with varying do-

mains (i.e., with sets of individual existing in possible worlds that can vary from world

to world) technically amounts to studying the most general case of quantified modal

(and so, deontic) logics and, last but not least, means considering a case which is mostly

neglected in the literature on logics weaker than K which are extended to the predicate

case.

From the propositional modal standpoint, as we said in Chapter 1 and Chapter 2, as

far as multi-relational semantics is concerned, the literature provides only a completeness
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proof sketch for a specific deontic system, namely the logic P introduced by Goble

(2001, 2004b) and an indirect completeness result for Elgesem’s modal logic of agency

(Governatori and Rotolo, 2005) that exploits the equivalence between neighborhood and

multi-relational models for classical modal logics. We have presented here, for the first

time, a study about how several well known schemata behave within the framework of

multi-relational weak semantics.

As far as we are concerned, from the predicative standpoint, this is the first study

on quantification in multi-relational semantics, the second one investigating the case

of varying domains in non-normal modal logics, and the first that provides a frame

characterization of the Barcan schemata with varying domains.

Chapter Summary

Section 3.1 is an introduction to Barcan Formulae and their role within normative rea-

soning. There are several philosophical as well as technical issues related to such

schemata.

Section 3.2 presents some well known results concerning quantified non normal modal

logics and Neighborhood frames, as well as a first technical introduction to Barcan

formulae and the problems related to such schemata. We shall see the attempts

made to accommodate Barcan schemata within both constant domain, and varying

domain neighborhood frames.

Section 3.3 is rather technical and presents multi-relational first order frames. We chose

to analyse frames with varying domains, in order to perform a finer distinction

between actual individuals and possibilia, namely, between the individuals that

exist in each ideal world and those that are only possible from that viewpoint but

that do not exist there (Garson, 2001; Fitting and Mendelsohn, 1998). Also, this

choice technically amounts to studying the most general case of quantified modal

logics.
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Section 3.4 The traditional distinction between de dicto and de re sentences is here seen

under a new light, in terms of contextual obligation and the role of quantification

within deontic contexts.

Section 3.5 is the core of the Chapter. We shall present alternative semantic characteri-

sations for the Converse Barcan schema (CBF). We compare our results with the

standard ones in Kripke Semantics and we shall see different ways to generalise

the concept of increasing inner domains.

Section 3.6 is the technical core of the Chapter. Here we provide Henkin-style complete-

ness theorems for several systems, namely, the smallest free quantified non normal

N-monotonic logic Q○
=.NM and some extensions, including Q○

=.NM⊕CBF.

3.1 Quantification, Barcan Formulae, and Deontic Logics1

If a legal theorist were asked to formalise the basic structure of a judicial syllogism, he

would very likely answer by providing the following inference schema (Alexy, 1989):

∀x(T (x)→ ◻R(x))

T (s)

◻R(s)

(3.1)

Indeed, suppose the major premise states that, for each individual x, if x commits theft,

then it is obligatory that x gets punished. Hence, the fact that Schulze committed theft,

entails that Schulze ought to be punished. Likewise, however, some legal theorists–being

not so familiar with the complications arising in quantified modal logics2—would not

probably appreciate why a judicial syllogism is correctly captured by (3.1) rather than

1This Section is partially based on an umpulished manuscript written by Antonino Rotolo, Guido
Governatori, and myself.

2But notice that deontic logicians, too, sometimes recognise that the major premise of (3.1) is a good
rendering of practical statements: cf., among others, Schurz (1994).
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by inferences such as, for instance,

◻∀x(T (x)→ R(x))

T (s)

◻R(s)

(3.2)

Technical reasons lead, of course, to reject schema (3.2) as incorrect. But, on the philo-

sophical side, positive arguments—also based on the nature of judicial dynamics—may

explain the preference of those who adopt (3.1). This holds in particular if we adopt the

actualist interpretation of quantification, according to which quantifiers are interpreted

existentially, as they range over individual domains depending on possible worlds, while

parameters of a formula are evaluated as arbitrary individuals (see Fitting and Mendel-

sohn, 1998). Actually, the judicial application of law implies that one or more legal

provisions are applied to a concrete case presented before the judge: For instance, from

the fact that Schulze committed theft, it follows that Schulze ought to be punished. For

it is often said that judges formulate a “decision rule” that makes the law applicable to

the concrete case. Of course, (3.1), too, can be problematic. But, as far as the interplay

between quantifiers and modalities is concerned, only the major premise of (3.1) allows

to refer to concrete and existing individuals.

But there is more to say about such issues. And the core topic is precisely how and

when the interplay between quantifiers over individuals and quantifiers over possible

worlds should be allowed. This role is played by Barcan Schemata. However, a few

technical details are needed before any precise analysis of such topics.

3.2 Neighbourhood Semantics for QNML

Neighborhood Semantics has always played a central role within quantified deontic non

normal logics. As we have already observed, this is the best tool to deal with classical

systems and above. Below we shall summarise the most influential results within this
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area. This approach will be useful to carry out a comparison between Neighborhood

structures and multi-relational ones.

3.2.1 Syntax of Quantified Modal Logics

Let us extend the language L already presented with the universal quantifier ∀, a count-

able set of individual constants Const:={a, b, c, . . .}, a set of individual variables, VAR:=

{x, y, z, . . .}, the identity predicate =, and a set of n-ary predicate symbols (where

ω > n ≥ 1). A term is either a variable, or an individual constant and t1, t2, . . . are

meta-variables for terms.

Well formed formuale (wff) are defined as usual:

(a) � is wff;

(b) If Pn is an n-ary predicate symbol and t2, . . . , tn are terms, then Pn(t1, . . . , tn) is a

wff;

(c) If A and B are wff, then A→ B, ◻A, and ∀xA are wff;

(d) Nothing else is a wff.

Both boolean operators, and the existential quantifier ∃ is defined as usual: ∃xA↔

¬∀x¬A. As usual, A(t/s) is the formula obtained by replacing in A(s) all the free

occurrences of s with t (cf. Corsi, 2002, 1484).

3.2.2 Neighborhood Models

Neighbourhood semantics for quantified modal logics has been introduced a long time ago

(see Gabbay, 1976). Nevertheless, it received very little attention until the beginning of

1990s (cf. Waagbø, 1992). The study of QNML was afterwards the subject of a few works

(cf., for instance, Arló-Costa, 2002; Arló-Costa and Pacuit, 2006; Stolpe, 2003). While

Waagbø (1992), Arló-Costa (2002), and Arló-Costa and Pacuit (2006) study the case of
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structures with constant domains, Stolpe (2003) developed a preliminary investigation

of varying domains. In this section we summarise their main results.

Let us consider the case of constant domains.

Definition 3.2.1 (Constant domain neighbourhood frames and models) A con-

stant domain neighbourhood frame F is a structure ⟨W,N ,D⟩ where

- W is a non-empty set of possible worlds;

- N is a function from w to 22
W

;

- D is a non-empty set of individuals (the domain of the frame).

For any w ∈W , a w-assignment σ is a function σ ∶ V ar(L)↦ Uw.

An x-variant τ of a w-assignment σ is a w-assignment which may differ from σ for

the value assigned to x. A constant domain neighbourhood model M is a structure

⟨W,N ,D, I⟩ where ⟨W,N ,D⟩ is a constant domain neighbourhood frame and I is an

interpretation function such that, for any assignment σ and world w:

- Iσw(x) ∈D (global interpretation of variables/terms);

- ∀w, v ∈W,Iσw(x) = Iσv (x) (rigidity of variables/terms);

- Iσw(P (x1, . . . , xn)) ⊆Dn.

Notice that the notion of truth set has to take into account that the truth or falsity

of open formulae depends on particular interpretations.

Definition 3.2.2 Let M be a model with interpretation I, σ an assignment, w any

world, and A any formula. The truth set of A wrt to M and Iσ, ∥A∥σI is thus defined:3

∥A∥σI ∶= {w ∈W ∶M ⊧σw A} .
3When clear form the context, we also omit the reference to the model. The truth set of a closed

formula does not depend on any interpretation and assignment.
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The valuation conditions are as follows:

- M ⊧σw P (x1, . . . , xn) iff ⟨Iσw(x1), . . . , Iσw(xn)⟩ ∈ Iw(P );

- Standard valuation conditions for negation and boolean connectives;

- M ⊧σw ◻A iff ∥A∥σI ∈ Nw;

- M ⊧σw ∀xA(x) iff for every assignment τ that is like σ except for mapping x (i.e., τ is

an x-variant of σ), M ⊧τw A(x).

Let us consider Barcan and Converse Barcan schemata

BF:= ∀x ◻A→ ◻∀xA CBF:= ◻∀xA→ ∀x ◻A.

The choice of constant domains (i.e., that the resulting modal logics are extensions

of standard First Order Logic, FOL henceforth), does not correspond to the validity of

BF and CBF:

Theorem 3.2.3 (Arló-Costa and Pacuit, 2006) The class of all constant domain neigh-

bourhood frames is sound and complete for FOL⊕ E.

BF and CBF were characterised in (Waagbø, 1992), but such results have been later

made more precise in (Arló-Costa, 2002; Arló-Costa and Pacuit, 2006).

Let us consider the following frame properties (Arló-Costa, 2002; Arló-Costa and

Pacuit, 2006):

Definition 3.2.4 (Frame properties) A frame is consistent iff ∀w ∈W ∶ Nw /= ∅ and

{∅} /∈ Nw.

A frame is closed under ≤ κ intersections (where κ is a cardinal) iff

∀w ∈W, ∀X = {Xi∣i ∈ I} where ∣I ∣ ≤ κ, ⋂
i∈I

Xi ∈ Nw.

A frame is trivial iff ∣D∣ = 1, otherwise it is non-trivial.
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A frame is supplemented iff ∀w ∈W,X ∩ Y ∈ Nw ⇒X ∈ Nw and Y ∈ Nw.

Theorem 3.2.5 ((Arló-Costa, 2002)) BF is valid in the class of frames that are

either (i) trivial, or (ii) closed under finite intersection, if D is finite, or (iii) closed

under ≤ k intersections, if D is infinite and ∣D∣ = κ.

Theorem 3.2.6 ((Waagbø, 1992; Arló-Costa and Pacuit, 2006)) CBF is valid in

the class of frames that are either supplemented or trivial.

Theorem 3.2.6 establishes a strong relationship between M and CBF, since sup-

plementation characterises M. Hence, for constant non-trivial domain neighbourhood

frames CBF is valid whenever M is. Also, since the closure under ≤ k intersections

implies the closure under intersection, it is not possible to falsify C when BF is valid

(provided that the frame is non-trivial). However, from the above theorem we can build

a countermodel for BF given C (Waagbø, 1992), although this is possible only for infinite

frames (Arló-Costa, 2002).

An open problem of this semantics is that the system FOL ⊕ E ⊕ CBF is strongly

complete with respect to the class of frames that are either trivial or supplemented:

Arló-Costa (2011) conjectured that M is thus derivable by adding in the logic a schema

expressing non-triviality but no result is available.

Let us now move to the case of varying domains, which was explored only in Stolpe

(2003). The peculiarity of Stolpe (2003)’s analysis is that it woks only with models and

not with frames. Models are standardly defined as follows:

Definition 3.2.7 (Varying domain neighbourhood models) A varying domain neigh-

bourhood frame M is a structure ⟨W,N ,D,Σ, I⟩ where

- W , N , D, and I are like in Definition 3.2.1 and

- Σ is a function assigning to each world w ∈W a set Dw of elements of D.
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The valuation condition for ∀-formulae is now as follows:

M ⊧σw ∀xA(x) iffM ⊧τw A(x) for every x-variant τ of σ such that τ(x) ∈Dw.

Stolpe (2003) defines two classes of varying neighbourhood models that characterize

BF and CBF:

Theorem 3.2.8 (BF and CUPI models) A varying neighbourhood model M =

⟨W,N ,D, I,Σ⟩ is a CUPI model iff for any world w ∈ W , if ∥P (x)∥σI ∈ Nw for ev-

ery σ such that σ(x) ∈Dw, then ∥∀xP (x)∥I ∈ Nw.

BF is valid in the class of CUPI models.

Theorem 3.2.9 (CBF and CUPO models) A varying neighbourhood model M =

⟨W,N ,D, I,Σ⟩ is a CUPO model iff for any world w ∈ W , if ∥∀xP (x)∥I ∈ Nw, then

∥P (x)∥σI ∈ Nw for every σ such that σ(x) ∈Dw.

CBF is valid in the class of CUPO models.

CUPI and CUPO models impose properties that trivially reflect the evaluation of BF and

CBF. The main limit of this approach is that it does not appeal to frames. Thus, Arló-

Costa (2011) rightly argues that Stolpe (2003) leaves open many questions, including

the general characterization of BF and CBF. In this Chapter, we attempt to solve this

problem for quantified N-Monotonic logics with varying domains.

3.3 Quantification in N-Monotonic Modal Logics

Several works carry on a semantic analysis of quantified deontic systems using neigh-

borhood semantics. However, as far as we are concerned, very few lines are devoted to

multi-relational semantics in a first order modal framework.

Let us define multi-relational structures for any quantified modal logic.

Definition 3.3.1 (Multi-relational frames) A multi-relational frame is a tuple F ∶=

⟨W,R,D,U⟩ where:
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- W is a non empty set of worlds

- R is a (possibly infinite) set of binary relations over W

- D is a function associating to each world w ∈W a set Dw of individuals (the inner

domain of w)

- U is a function associating to each world w ∈W a set Uw of individuals (the outer

domain of w) such that for any w ∈ W , Uw ≠ ∅ and Dw ⊆ Uw and if wRv for some R,

then Uw ⊆ Uv.

The original definition given by Kripke (1963) states that for all worlds w, Uw =

⋃v∈W Dv, setting a unique outer domain for the whole frame. However, we decided to

follow the broader approach proposed by Corsi (2002):

The fact that Uw ⊆ Uv, if wRv, does not prevent Dw from being disjoint

from Dv. Kripke (1963) stipulates that for all v ∈ W , Uv = ⋃w∈W Dw. We

generalise Kripke’s original semantics by allowing Uw ⊆ Uv, if wRv, and

⋃w∈W Uw ⊇ ⋃w∈W Dw. ⋃w∈W Uw may contain individuals that never happen

to come into existence. (Corsi, 2002, 1485)

Models, assignments and the concepts of satisfaction, truth, validity are defined in

the standard way.

Definition 3.3.2 (Multi-relational models) A multi-relational model is a tupleM ∶=

⟨W,R,D,U, I⟩ where ⟨W,R,D,U⟩ is a multi-relational frame and I is a function I ∶ L↦

Uw for any w ∈W such that:

- Iw(Pn) ⊆ (Uw)n

- Iw(c) ∈ Uw

- Iw(=) = {⟨d, d⟩ ∶ d ∈ Uw}

Definition 3.3.3 (Assignments) For any w ∈ W , a w-assignment σ is a function

σ ∶ V ar(L)↦ Uw.
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An x-variant τ of a w-assignment σ is a w-assignment which may differ from σ for the

value assigned to x.

Notice that within the semantics framework proposed by Kripke (1963), since the

outer domains are constant, any w-assignment σ is also a v-assignment for any couple

of worlds. However, it should be noticed here that here the fact that Uw ⊆ Uv, if wRv

for some R, still guarantees the fact that if two worlds w, v are related by some R, then

any w-assignment is also a v-assignment, as all the variables of the language are still

mapped on individuals without gaps.

Definition 3.3.4 (σ-interpretation) Given a w-assignment σ

(a) Iσw(c) = Iw(c), and

(b) Iσw(x) = σ(x).

Definition 3.3.5 (Truth conditions) Truth evaluation clauses are as follows:

- M ⊧σw Pn(t1, . . . , tn) iff ⟨Iσw(t1), . . . , Iσw(tn)⟩ ∈ Iw(Pn)

- M /⊧σw �

- M ⊧σw ∃xA iff for some x-variant τ of σ such that τ(x) ∈Dw, M ⊧τw A(x)

- M ⊧σw ∀xA iff for every x-variant τ of σ such that τ(x) ∈Dw, M ⊧τw A(x)

- M ⊧σw ◻A iff ∃Ri∀v(wRiv⇒M ⊧σv A)

- M ⊧σw ◇A iff ∀Ri∃v(wRiv&M ⊧σv A)

Satisfaction, Truth, Validity. A modelM satisfies a set of formulae ∆ iff for some

world w and some w-assignment σ, M ⊧σw D for all D ∈ ∆. A formula A is true in a

world w of a model M, M ⊧w A, iff for any w-assignment σ, M ⊧σw A. A formula A is

true in a model M, M ⊧ A, iff for all w, M ⊧w A. A formula A is valid on a frame F ,

F ⊧ A, iff for any model M on F , M ⊧ A. Given a class of frames F, a formula A is

F-valid, F ⊧ A, iff for any frame F ∈ F, F ⊧ A. M is a model for a logic L iffM ⊧ A for

all A ∈ L.
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Abbreviations. Given a frame F and a model M on F , for any formula A,

Satisfaction: ∥A∥σI ∶= {w ∣M ⊧σw A}

Truth: ∥A∥I ∶= {w ∣M ⊧σw A, for any assignment σ}

Validity: ∥A∥ ∶= {w ∣ F ⊧σw A for any assignment σ and any interpretation I}

Definition 3.3.6 Given a multi-relational model M = ⟨W,R,D,U, I⟩, an individual

constant c is said to be a rigid designator iff ∀w∀v(∃Ri(wRiv)⇒ Iw(c) = Iv(c)).

Lemma 3.3.7 Given a multi-relational model M = ⟨W,R,D,U, I⟩ and a w-assignment

σ, if an individual constant c is a rigid designator, then ⊧σw A(c/x) iff ⊧τw A(x) for any

w-assignment τ which is an x-variant of σ such that τ(x) = Iw(c). (Cf. (Corsi, 2002,

Lemma 1.1).)

Proof. The proof is given by induction on the length of a formula A. Suppose A has

the form ◻B(x). If ⊧σw ◻B(c/x) then there is a relation Ri such that for any world

v, if wRiv, then ⊧σv B(c/x) and by induction hypothesis we have ⊧τv B(x) where τ is

an x-variant of σ such that τ(x) = Iv(c). Since c is a rigid designator by hypothesis,

Iv(c) = Iw(c), τ is a w-assignment and hence ⊧τw ◻B(x).

If ⊧τw ◻B(x) then there is a relation Ri such that for any world v, if wRiv, then ⊧τv B(x)

and by induction hypothesis we have ⊧σv B(c/x) where τ is an x-variant of σ such that

τ(x) = Iv(c). Since c is a rigid designator by hypothesis, Iv(c) = Iw(c), σ is a w-

assignment and hence ⊧σw ◻B(c/x).

We assume all individual constants to be rigid designators.

Lemma 3.3.8 Given a multi-relational frame F , a model M ∶= ⟨W,R,D,U, I⟩ on it

and a world w, if σ and τ are two w-assignments which coincide on any free variable

occurring in a formula A, then it holds that M ⊧σw A iff M ⊧τw A.

Proof. The proof is given by induction on the length of a formula A. Suppose A has the

form Pn(t1, . . . , tn), then ⊧σw Pn(t1, . . . , tn) if and only if ⟨Iσw(t1), . . . , Iσw(tn)⟩ ∈ Iw(Pn).
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If ti is an individual constant c, then Iσw(c) = Iw(c) = Iτw(c). Otherwise, if ti is a

variable x, Iσw(x) = σ(x) = τ(x) by hypothesis, hence Iσw(x) = Iτw(x). The other steps

are straightforward.

3.4 The Deontic Role of Barcan Schemata

The issues presented in the Introduction of this Chapter are somehow discussed within

deontic literature. Goble (1994, 1973, 1996), for example, provides interesting reasons to

say that deontic operators are referentially transparent with respect to singular terms,

since this assumption seems required to account for an intuitive analysis of the instan-

tiation of general obligations into concrete cases. Goble pays special attention to the

role of definite descriptions, an issue that is outside the scope of our work. However, a

piece of his story should be mentioned here. His argument runs starting from semantical

considerations. Suppose that Jones ought to give $20 to the first homeless person who

begs from him in 2006 and that Smith is such a homeless person. The question is: Is

Jones obligated to give $20 to Smith? The answer is, of course, yes, but the point is

that, if deontic contexts are taken fully intensional, we may argue that Smith is not the

individual corresponding to the first homeless begging from Jones in every ideal world.

Goble’s proposal is thus to change the standard truth-conditions of any formula ◻F (t),

where t is a singular term: Rather than checking whether, for every ideal world v related

to the actual world w, the denotation of t at v is in the extension of F in v, the formula

◻F (t) is true iff the denotation of t at w is in the extension of F at v.

Clearly, the foregoing is a roundabout way of considering in deontic logic the meaning

of the distinction between de dicto and de re modal formulae, namely, between formulae

with and without free occurrences of variables within the scope of the modal operator

◻.

The conceptual and technical distinction between de dicto and de re formulae has
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been widely investigated in alethic modal logic, i.e., the modal logic of necessity, possi-

bility, impossibility, and contingency (see, e.g., Garson, 2001; Fitting and Mendelsohn,

1998; Gabbay, 1976; Fine, 1978; Cocchiarella, 2001). De dicto sentences occur whenever

a modal property is associated to a dictum or sentence, as in the phrase it is neces-

sary that all men are mortal, where the modal operator is applied to the sentence all

men are mortal and thus necessity refers to the truth of that. On the other hand, we

call a sentence a de re modality if the modal property is given to an object, as in the

phrase all men are necessarily mortal, in which the property being necessarily mortal is

applied to all mankind. It is clear that such a distinction is lost whenever we lose the

expressive power of predicate logics in order to analyse the case of propositional calculus.

A classical example to explain the necessity of possible worlds is provided by Thomas

Aquinas.4 In his Summa contra Gentiles Thomas Aquinas considers the problem of

God’s pre-knowledge. God can, according to the philosopher, see the action which is

taking place. This is coherent with human freedom. In fact consider the truth value of

the following sentence:

(1) If I see someone sitting, he is necessarily sitting.

This is clearly true if read in the de dicto way:

(2) It is necessary that if I see someone sitting, that person is sitting.

which is to say:

(2∗) In every possible world if I see someone sitting, that person is sitting.

The sentence nevertheless ceases to hold true as soon as we apply the de re reading:

4Thomas Aquinas, Summa de veritate catholicae fidei contra Gentiles [1259-1264], Roma: edizione
Leonina, 1918-1930, voll. XIII-XV.
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(3) If I see someone sitting, such person has the necessary property of being sat

i.e., (3∗) If I see someone sitting, then in every possible world that person is sitting

which is clearly false.

It would not be possible, according to (Plantinga, 1974, chap. 1), to understand such

a distinction if we cease to use the possible worlds framework. Just another example

to understand such distinction is provided by (Fitting and Mendelsohn, 1998, 86) re-

calling one of Quine’s famous discussions. Consider the sentence The number of planets

is necessarily odd. A de re reading would suggest that the number of planets in the

solar system is odd in every possible world. Any person without radically deterministic

philosophical views would then disagree with it being true. On the other hand its de

re interpretation proves to be true: in every possible world it is true that in the actual

world the number of planets is odd.

Leaving planets and men sitting necessarily or not and moving to something more

useful in our everyday life, Thomason (1968) shows how such a distinction may help in

removing the ambiguity in some English expressions such as any and some. Consider

the following couple of sentences:

(a) Everyone can come along with us.

(b) Anyone can come along with us.

In fact the sentence (a) could be read as It is possible that all come with us, i.e.,

◇∀xCome(x,us), whereas (b) would be All can possibly come with us, i.e., ∀x ◇

Come(x,us). As soon as we formalise them, we realise how the syntactic difference

of the two is actually linked to a different scope of the universal quantifier and this can

help us understand the difference in the use of any and some in English (see Calardo,

2008).

But what about deontic contexts? According to Goble’s story, it seems that de re
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formulae play a specific deontic role, as only ∀x◻F (x) can be reasonably instantiated into

◻F (a) (where a is typically an individual constant symbol). However, one may argue

that, unlike alethic and other kinds of modalities, in deontic logics it does not make

any sense to distinguish between de dicto and de re modal formulae. In fact, despite

what we said about (3.1) and (3.2), von Wright (1951b, 40) clearly maintains that “the

operators ‘P’ and ‘O’ [. . . ] yield sentences” and so “deontic modalities cannot be taken

alternatively de dicto and de re.” Hector-Neri Castañeda (1981), too, is sceptical in this

regard, as he argues in favour of the complete extensionality of ordinary deontic concepts,

thus making deontic de re and de dicto formulae virtually equivalent. Actually, ∀x◻P (x)

and ◻∀xP (x) are intuitively different, as we have above recalled: the former is about

existing individuals with respect to which we may say that P an essential property,

whereas the latter modal statement is purely sentential. This does not hold with the

following two sentences “There is someone for whom it is obligatory that he do A” and

“It is obligatory for someone to do A”; according to semantical conventions in English,

“deontic operators do not in any way affect the range of quantifiers” and so deontic

logic is extensional (Castañeda, 1981, 67). Notice that Goble, too, defended the view

that deontic logic is extensional, but, as we mentioned, his conclusions are not radical

as those of von Wright and Castañeda.

There may be good reasons to subscribe to von Wright’s and Castañeda’s criticism,

but still we have in our hands a formalism—quantified deontic logic based on possible-

world semantics—which technically can embed the distinction bewteen de re and de dicto

sentences. In general, if we adopt the actualist interpretation of quantifiers, it seems to us

that de dicto and de re deontic sentences may correspond, respectively, to non-contextual

(or generic) and contextual (or concrete, actual) obligations. This alternative reading,

given Castañeda’s criticism that essential deontic predication does not make any sense,

seems roughly in line with our comments of schemata (3.1) and (3.2) and, also, with

Goble’s general intuitions. In fact, when we have formulae like ◻∀xF (x), obligations may
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leave the problem of reference (application) to existing individuals out of consideration,

as the question of their concrete application is somehow put into brackets. In other

words, we may state that something is obligatory for some individuals independently

of any concern about concrete applicability. This is not absurd as we may argue that

something is deontically correct, it ought to be case, for conceivable individuals that,

as far as we know, may not exist. In the second case—when we have formulae like

∀x ◻ F (x)—the focus is rather on the actual world with respect to which we want to

state whether something is or is not obligatory5.

On the other hand, the distinction between contextual and non-contextual (or de re

and de dicto) deontic sentences is still far from being conceptually clear, as a lot depends

on the philosophical role one wants to assign to deontically ideal worlds. This is evident

if we just consider a formula such as ∃x ◻ (x = a). Actually, given this formula, Goble

himself (Goble, 1973, 344) asks: “What would it be for a term to ‘deontically’ denote

something”? Indeed, the question can be more generally reframed as follows: What does

it mean that an individual exists in some deontically perfect worlds but does not in other

perfect worlds? We think this is still an open philosophical question, which is outside

the scope of this research. Despite the fact that we do not have general and conclusive

insights about the meaning of the de re/de dicto distinction in quantified deontic logic,

the role of the deontic versions of Barcan schemata may be anyway crucial. Consider

again these schemata:

∀x ◻ φ(x)→ ◻∀xφ(x) (BF)

◻ ∀xφ(x)→ ∀x ◻ φ(x) (CBF)

5 The thesis that the de dicto/de re distinction is significant in deontic logic is not new ((see, e.g.,
Hintikka, 1957, 1971; Kalinowski, 1973; Kutschera, 1982). Notably, Jakko Hintikka (1957), at least
in some passages, seems to read de re deontic formulae as contextual statements, though he does not
seem to be fully consistent in this regard. However, Hintikka’s analysis is peculiar as, in his approach,
quantifiers range over act-individuals and not over ordinary individuals. Makinson (1981) criticizes the
choice of quantifying over act-individuals, but he seems still to ackowledge the meaningfulness of the de
dicto/de re distinction.
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In standard Kripke semantics, BF corresponds to the condition that the domains of

quantification decrease across possible worlds, whereas CBF to the condition that they

increase; their joint validity leads then to constant domains, which makes inessential

the problem of the existence of individuals. A common philosophical interpretation of

this choice is that quantifiers range over all (conceivable, i.e., existing and non-existing)

individuals (see Cresswell, 1991). Thus, accepting BF and CBF entails weakening the

existential reading of quantifiers, leading to the possibilist interpretation of quantification

(see Fitting and Mendelsohn, 1998), which corresponds classically to the well known

standard Kripke semantics with constant domains. This position makes some sense in

deontic logic, as we have seen when we mentioned von Wright’s and Castañeda’s view.

It is not by accident, we feel, that Castañeda (1981) himself accepts as theorems of his

logic both BF and CBF6. Actually, besides different views such as the peculiar one

proposed by Goble, subscribing to both BF and CBF is one of the most direct options

to weaken the conceptual distinction between de re and de dicto sentences7. And this

seems a good achievement, given the unclear nature of this distinction in deontic logic.

In addition, the joint validity of CBF and BF also allows to keep standard first-order

logic (FOL) untouched as it does not require any constraint on it.

What’s the intuitive reading of BF and CBF in deontic logic? On the semanti-

cal side, once again, much depends on the philosophical interpretation one adopts in

clarifying the notion of individuals’ existence across deontically ideal worlds. At least

provisionally, if we recall the ideas of contextual and non-contextual deontic sentences,

BF states that a (universally quantified) contextual obligation implies a (universally

quantified) non-contextual obligation. Semantically, this is guaranteed by the fact that

BF determines decreasing domains. In other words, the price to pay, for moving from

6Notice that these principles are also adopted in Schurz (1994). Hintikka rejects BF, but, again, his
scepticism mainly depends on the fact that quantifiers range over act-individuals.

7Barcan schemata alone are not, however, sufficient in general to eliminate de re modalities, namely,
to prove that, given any modal logic S, for each formula φ, there exists a de dicto formula φ′ such that
S ⊢ φ↔ φ′. This can be done only adding some extra-conditions and within strong modal systems such
as S5; see, e.g. Fine (1978); Kaminski (1997).
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contextual obligations (for which, in the perspective of their instantiation, actual ex-

istence matters) to non-contextual obligations (for which actual instantation does not

count anymore), is to assume that all individuals, existing in the ideal worlds, exist

as well in the actual world. This intuitive, though partial reading of BF seems to be

confirmed if we introduce the common and weak notion of permission ◇ corresponding

to the dual of ◻. This permits to reframe BF as follows:

◇∃xφ(x)→ ∃x◇ φ(x) (BF′)

(BF′) permits to move from a non-contextual (existential) deontic statement to a con-

textual (existential) one. But this should not confuse the reader as we have to take

into account the peculiar nature of the weak permission, which is nothing but the dual

of an obligation, namely the negation of a prohibition. Analogous considerations may

be reiterated for CBF, which is a principle stating that any non-contextual (generic)

obligation implies that this obligation is applicable to all concrete cases.

It is clear that, under this intuitive but still partial reading, we do not have conclusive

reasons to adopt in general BF and CBF. BF, in particular, can be highly problematic,

both for its intuitive consequences and for the semantic conditions required to validate

it in Kripke models. CBF seems less controversial: if a generic obligation holds, such

an obligation must be applicable in the actual case, at least unless there is no contrary

reason against this. (Also the corresponding condition that domains never decrease looks

more reasonable, from the deontic point of view, as the range of a generic obligation may

exceed the range of an obligation applying to a concrete case.)

On the other hand, as we have seen the joint validity of BF and CBF seems a

first stept towards milding Castañeda’s objections. In addition, independently of any

philosophical reflection on the meaning of BF and CBF, their logical role is significantly
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that of making apparent possible deontic dilemmas. Suppose to have

∀x ◻ φ(x) ◻∃x¬φ(x)

Are these formulae in conflict with each other? Syntactically, it is clear that the appeal to

BF is essential if we think that the formulae above are incompatible: ∀x◻φ(x) implies

◻∀xφ(x) by BF, while ◻∃x¬φ(x) is equivalent to ◻¬∀xφ(x). Analogously, CBF is

essential, for example, if we want to make apparent the conflict between the following

formulae:

◻∀xφ(x) ∃x◇¬φ(x)

In sum, BF and CBF can be accepted in deontic logic for at least the following two

reasons:

- the joint validity of BF and CBF permits to keep standard FOL untouched and to

weaken the logical distinction between de re and de dicto sentences, a distinction that

can be problematic in deontic contexts;

- the joint validity of BF and CBF allows us to make apparent conflicts between deontic

sentences expressible in quantified deontic logics.

So far, so good. But our question is to see what happens if we move from normal

to non-normal modal logics. This is not only an issue in deontic logic but it concerns

quantification in several intensional logics. But there are specific reasons to pose this

question in deontic logic, as we have recalled in Chapters 1 and 2. As we shall see—

unlike the case of normal deontic and modal logics—the joint validity of BF and CBF is

not guaranteed by imposing constant domains of quantification. Additional conditions

are required, but they pose indeed specific problems in deontic logic.
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3.5 The Converse Barcan and the Ghilardi schemata

As we saw in the previous sections, only a few works have been devoted to the study of

quantified non normal modal logics. Stolpe (2003) is certainly one of the most significant.

However, Stolpe’s aim is to find out “[. . . ] what semantical restrictions must be imposed

on a minimal model in order to validate the Barcan and the converse Barcan formulae”

(Stolpe, 2003, 559, emphasis added). As Arló Costa and Pacuit point out:

[. . . ] unfortunately Stolpe does not appeal to frames in his semantics (he

only uses models). So, it is obvious that there are many open questions

not considered in Stolpe’s paper. For example it would be nice to get frame

conditions characterizing the Barcan and the Converse Barcan in this setting.

(Arló-Costa and Pacuit, 2006, 21)

Our aim is rather broader. In this section we shall propose frame conditions for CBF

in multi-relational weak semantics.

Standard results in Kripke Semantics (1-relational frames) state that both BF, and

CBF are valid in constant domain frames (i.e., when Dw and Uw coincide for each w).

Within first order Kripke frames with varying domains, however, these schemata cease

to be valid. Let us recall below the proof of this well known result.

Lemma 3.5.1 CBF is not valid in the class of multi-relational frames with varying

inner domains.

Proof. The proof is trivial. Let M = ⟨W,R,D,U, I⟩ be a 1-relational model such

that: W ∶= {w, v}, R ∶= {R}, R ∶= {⟨w, v⟩}, Dw ∶= {a, b}, Dv ∶= {a}, Uw = Uv = {a, b},

Iσw(P 1) = ∅ for all σ and Iσv (P 1) =Dv, for σ(x) = a (see Figure 3.1). Then ∥∀x(P )∥σI =Dv

and there is a relation, i.e., R, such that for any world t, wRt (if and) only if ⊧σt ∀xP .

Hence ⊧σw ◻∀xP . Moreover ⊧σw ∃x◇¬P , as ⊧τv ¬P (x) for τ(x) = b.

Recall a definition we gave in Chapter 2:
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a b
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Figure 3.1: A frame to build a countermodel for CBF. Indeed set Iσw(P 1) = ∅ for all σ
and Iσv (P 1) =Dv, for σ(x) = a. Hence v ⊧σv ∀xA.

Definition 3.5.2 (Local Seriality) Given a multi-relational frame F , a world w is

locally serial iff for any relation Ri there is a world v such that wRiv.

Below is the characterising condition on frames (and the resulting lemma) for CBF.

Lemma 3.5.3 (CBF Characterisation result) For any multi-relational frame F ∶=

⟨W,R,D,U⟩, F ⊧ ◻∀xA→ ∀x◻A iff ∀w ∈W , If w is locally serial, then for any x such

that x ∈Dw, for any relation Rj, there is some relation Ri such that Ri(w) ⊆ Rj(w) and

for all t, (wRit⇒ x ∈Dt).

Proof. According to the statement of the Lemma above, any counter model for CBF

must be based on a frame F with the following three conditions:

there is a world w ∈W , and a w-assignment σ such that:

(a) BOTH w is locally serial, i.e., for all k, Rk(w) ≠ ∅

(b) AND there exists a w-assignment τ , which is an x-variant of σ such that τ(x) ∈

Dw, there is a relation Rj

b.1 BOTH ∃t(wRjt & τ(x) /∈Dt), i.e., the inner domains are not increasing

b.2 AND for all the other relations Ri, IF Ri(w) ⊆ Rj(w), THEN there exists some

world ti such that (wRiti & τ(x) /∈Dti).

Hence, these conditions are necessary and sufficient to build a countermodel for CBF.

The idea is to provide an interpretation which makes the class Rj(w) to be exactly the

truth set of ∀xA for some formula A. Then, we need an individual which actually exists

in w and satisfies ¬A(x) in some Rk-accessible state for all k. Indeed, let P be some
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unary predicate and let I be an interpretation defined in the following way: For any

world z, z ∈ ∥P (x)∥Iϑ if and only if wRjz and ϑ is an x-variant of τ such that ϑ(x) ∈Dz.

Thus, Rj(w) = ∥∀xP (x)∥Iτ and hence ⊧τw ◻∀xP . Consider now any world z such that

z /∈ Rj(w); We defined I in such a way that for any z-assignment ϑ, /⊧ϑz P (x) and thus

this holds also for τ , /⊧τz P (x). Moreover our frame conditions guarantee that for any

relation Ri, if Ri(w) ⊆ Rj(w), then there is some z ∈ Ri(w) such that τ(x) /∈ Dz and,

following our construction of I, /⊧τz P (x). Since τ(x) ∈ Dw by definition, it holds that

⊧τw ∃x◇¬P (x).

It is easy to see that if CBF does not hold on a model, its frame fulfills the

conditions stated above. Assume that for some frame F , F /⊧ CBF. Then there

are an assignment σ, a valuation I and a world w such that (a) ⊧σw ◻∀xA and (b)

⊧σw ∃x ◇ ¬A for some formula A. From (b) it follows that ⊧τw ◇¬A(x) for some

τ(x) ∈ Dw, thus there exists some n-tuple ⟨z1, . . . , zn⟩ such that wRkzk for any Rk ∈ R

and /⊧τzk A. From (a) it follows that for some relation Ri, Ri(w) ⊆ ∥∀xA∥σI , where

∥∀xA∥σI ∶= {t ∣ ⊧τt A(x) for any τ such that τ(x) ∈Dt}. Now, consider any relation Rk;

if Rk(w) ⊆ Ri(w), then by (b), Rk ⊆ ∥∀xA∥σI and by (a) there is some z ∈ Rk(w) such

that z /∈ ∥A(x)∥τI for some τ(x) ∈Dw, thus we must conclude that τ(x) /∈Dz.

This Lemma leads to a result that is very close to that for Kripke semantics, as we

shall see in what follows.

Some remarks on CBF. An immediate, yet interesting result is that the schemata

M and CBF are independent, in contrast with Theorem 3.2.6, which establishes that,

for constant non-trivial domain neighbourhood frames CBF is valid whenever M is.

Indeed by Lemma 2.2.5 it holds that M is a valid schema, whereas it is possible to build

a countermodel for CBF (see Lemma 3.5.1).

Corollary 3.5.4 The validity of M does not imply the validity of CBF.
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Lemma 3.5.3 states some interesting facts about the class of CBF-frames. First of

all it states an important property about individuals and their behaviour in alternative

standards. It is well known that CBF imposes increasing inner domains on Kripke

frames:

Definition 3.5.5 (Increasing inner domains - Kripke semantics) A relational

frame F has increasing inner domains iff for all worlds w, v, if wRv then Dw ⊆Dv.

Theorem 3.5.6 (CBF characterisation in Kripke frames) CBF characterises

the class of Kripke frames with increasing inner domains.

Consider any Kripke-frame F ∶= ⟨W,R,D,U⟩ (which is nothing but an 1-relational

frame with varying domains). From the condition stated above in Lemma 3.5.3 we have

that F ⊧ ◻∀xA→ ∀x◻A iff ∀w ∈W , for any world z, if wRz then for any w-assignment

σ such that σ(x) ∈ Dw, σ(x) ∈ Dz, i.e., Dw ⊆ Dz. Thus the conditions imposed by the

schema CBF are the usual ones: CBF is valid in those frames whose connected worlds

have increasing inner domains.

The situation within N-monotonic logics is rather different, yet connected. The first

question that comes to mind is how to generalise the concept of increasing inner domains.

There are a couple of alternatives at hand, which look very close to the definition given

in Kripke-semantics. We might either define increasing domains in a very strong sense,

by asking that all relation enjoy such property:

Definition 3.5.7 (General increasing inner domains) A multi-relational frame F

has increasing inner domains iff for any couple of worlds w, v for any relation Ri, if

wRiv then Dw ⊆Dv.

or we might keep such property lighter, asking for only one relation to fulfill it:
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Definition 3.5.8 (Restricted increasing inner domains) A multi-relational frame

F has increasing inner domains iff for any couple of worlds w, v there is at least one

relation Ri, such that if wRiv then Dw ⊆Dv.

Generally, in the multi-relational weak semantics scenario, CBF does not capture

any of these properties. Indeed Lemma 3.5.3 states that if a world w is locally serial,

i.e., if there is access to other worlds under any standard, then, each actual individual

(i.e., any individual belonging to the inner domain of w) keeps being actual in a subset

of every standard. So it says, somehow, that individuals are bound to ‘survive’ under

alternative relations, although not necessarily altogether. If Mary and Alex are both

alive now (actual) the presence of CBF guarantees that for any standard, there is a

subset of alternative ideal worlds in which Mary keeps being actual, and another one in

which Alex is still actual.

Logically, if we consider the big union of all the inner domains connected to w by

some relation i, the inner domain of w is a subset of it, i.e.:

Lemma 3.5.9 If the schema CBF is valid on a given frame, then on any world w, if

w is locally serial, i.e., for any i, Ri(w) ≠ ∅, then for any relation Ri

Dw ⊆⋃{Dv ∣ v ∈ Ri(w)}

Proof. Assume that the property stated in this Lemma does not hold. Then there are

a locally serial world w and a relation Ri such that for some individual d ∈ Dw, for all

v ∈ Ri(w), d /∈Dv, i.e., Dw /⊆ ⋃{Dv ∣ v ∈ Ri(w)}. Consider an assignment σ on any world

belonging to Ri(w) such that σ(x) = d, then for all v ∈ Ri(w), ⊧σv ¬∃x(x = d) and then

⊧σw ◻∀x(x ≠ d). By CBF we get ⊧σw ∀x◻ (x ≠ d), i.e., for any w-assignment τ such that

τ(x) ∈ Dw, ⊧τw ◻(x ≠ d). Since d ∈ Dw, this holds true for σ as well, where σ(x) = d.

Hence we get that the formula ◻(d ≠ d) holds true at w. This would impose that for

some j, Rj(w) = ∅ which is contradictory with the assumptions.
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Hence, within the same set of alternative possible worlds, there is one world in which

Mary lives and another in which Alex lives, although, again, they are not bound to

necessarily coincide. Moreover, this property stated below turns out to be canonical for

a free system with identity which includes the CBF schema (see Lemma 3.6.13).

A natural question is then how to force individuals to survive altogether under some

standard. Well, intuitively, at first sight, it would be enough to add partial closure

under intersection, i.e., the semantic property stated in Lemma 2.2.12 and characterised

by Schema C ∶= ◻A ∧ ◻B → ◻(A ∧B). However, this would generate a normal system

(please refer to the lattice in Figure 2.1). Thus, in the presence of Axiom C, the situation

becomes closer to the Kripkean case. This said, Definition 3.5.8 seems to capture the

concept of ‘increasing domains’ better than the stronger alternative proposed. However,

it turns out that the presence of C is not required to achieve the formerly stated property,

which is actually (partially) granted by the presence of CBF alone:

Theorem 3.5.10 (CBF and Restricted Increasing Domains) For any multi-

relational frame F ∶= ⟨W,R,D,U⟩, F ⊧ ◻∀xA → ∀x ◻ A iff ∀w ∈ W , if w is locally

serial, then for all Rj, there is some relation Ri such that Ri(w) ⊆ Rj(w) and for all

worlds v in Ri(w), Dw ⊆Dv.

Proof. This is very straightforward. In fact, consider the formulation of Lemma 3.5.3,

which states that if w is locally serial, then for any x such that x ∈Dw, for any relation

Rj , there is some relation Ri such that Ri(w) ⊆ Rj(w) and for all t, (wRit ⇒ x ∈ Dt).

Suppose the inner domain of w is the set {a, b}. Then, for any Rj there must be an Ri

such that Ri(w) ⊆ Rj(w) and a belongs to the inner domain of all the worlds from Ri(w).

However, since the statement of Lemma 3.5.3 refers to all relations and all individuals,

we must consider also Ri and b. Hence there is an Rm such that Rm(w) ⊆ Ri(w)

and b belongs to the inner domain of any world from Rm(w). Thus, all the worlds from
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Rm(w) have an inner domain containg both a, and b and their inner domain is, therefore,

a superset of Dw.

By all means, these results are much more specific than those proposed by Stolpe

(2003), as nothing is known about inner domains of related worlds. In fact, by translating

in terms of multi-relational semantics Stolpe (2003)’s CUPO condition (see Theorem

3.2.9) it is quite straightforward to prove a weaker correspondence result for CBF in

multi-relational models.

Lemma 3.5.11 (CUPO models) For any multi-relational modelM ∶= ⟨W,R,D,U, I⟩,

M ⊧ ◻∀xA → ∀x ◻ A if and only if for any world w the following holds: given a w-

assignment σ, if there is a relation Ri such that Ri(w) ⊆ ∥∀xA∥σI , then for all x-variant

τ of σ such that τ(x) ∈Dw there is some j such that Rj(w) ⊆ ∥A(x)∥τI .

Proof. This proof is very simple and straightforward. For the left arrow, suppose

there are a model M ∶= ⟨W,R1, . . . ,Rn, V ⟩ and a σ such that ⊧σw ∀xA. Hence, for some

i, Ri(w) ⊆ ∥∀xA∥σw. By hypothesis for all x-variant τ of σ such that τ(x) ∈ Dw there is

some j such that Rj(w) ⊆ ∥A(x)∥τI , thus ensuring ⊧τw ◻A(x) and hence ⊧σw ∀x◻A(x).The

other version can be proved accordingly by contraposition.

Mirroring Kripke semantics, CBF and the Ghilardi schema ∃x ◻ A → ◻∃xA (GF)

are semantically equivalent:

Lemma 3.5.12 CBF and GF are semantically equivalent

Proof. To show this result it is enough to check that GF characterises the class of

CBF-frames.

(⇒) According to the statement of Lemma 3.5.3, any counter-model for CBF must be

based on a frame F with the following three conditions:

there is a world w ∈W , and a w-assignment σ such that:
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(a) BOTH w is locally serial, i.e., for all k, Rk(w) ≠ ∅

(b) AND there exists an individual a, a ∈Dw, and there is a relation Rj

(b.1) BOTH ∃t(wRjt & a /∈Dt), i.e., the inner domains are not increasing

(b.2) AND for all the other relations Ri, IF Ri(w) ⊆ Rj(w), THEN there exists some

world ti such that (wRiti & a /∈Dti).

Let us sketch a valuation to build a counter-model for GF. Let A be a unary predicate,

take any w-assignment τ and set I as follows:

(a) IF τ(x) ≠ a, then ∥A(x)∥τI =W ;

(b) OTHERWISE if τ(x) = a, then ∥A(x)∥τI =W −Ri(w).

From (b) it follows that Ri(w) ⊆ ∥¬A(a)∥I , hence ⊧σw ∃x ◻ ¬A(x).

Let us turn our attention to (a). Any world v which is not Ri-seen by w is such

that for any assignment τ , ⊧τv A(x) and hence ⊧Iσ ∀xA(x) for all σ. Concerning Ri the

situation is the following: the fact that ∃t(wRjt & a /∈ Dt) guarantees that ⊧σt ∀xA(x),

whereas the fact that for all the other relations Ri, IF Ri(w) ⊆ Rj(w), THEN there exists

some world ti such that (wRiti & a /∈ Dti), guarantees the fact that there is always a

world z in Rj(w) such that ⊧σz ∀xA(x). This observation, together with the fact that

w is locally serial by assumption, makes sure that ⊧σw ◇∀xA(x), thus disproving an

instance of GF.

3.6 Completeness Results8

3.6.1 The system Q○
=.MN

Here we present an axiomatic system extending MN with predicate logic, which is based

on free quantified modal logic (see Corsi, 2002, 1498). The system Q○
=.MN (Free Quan-

tified N-monotonic modal logic) contains the following axioms and inference rules:

8I wish to thank Gabriele Tassi for the fruitful discussions and the useful insights he provided while
I was working on this part of my dissertation.
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- Propositional tautologies;

- UI○ ∶= ∀y(∀xA(x)→ A(y/x))

- ∀x∀yA↔ ∀y∀xA

- A→ ∀xA, x not free in A

- ∀x(A→ B)→ (∀xA→ ∀xB)

- I:= t = t

- (s = t)→ (A(s//x)→ A(t//x))

- ND:= ◻A ∧ s ≠ t→ ◻(A ∧ s ≠ t)

- NI:= ◻A ∧ s = t→ ◻(A ∧ s = t)

- M ∶= ◻(A ∧B)→ (◻A ∧ ◻B)

- N ∶= ◻⊺ to Q○
=.E

- MP ∶= A→ B,A/B

- RE ∶= A↔ B/ ◻A↔ ◻B

- UG ∶= A/∀xA

Some remarks on Q○
=.MN. Besides the propositional part,9 axiom schemata for

the basic predicate part (not considering identity) are those originally proposed by

Kripke (1963) (see Corsi, 2002) plus ∀x∀yA ↔ ∀y∀xA, which is conceptually harm-

less but needed to ensure completeness results (see Goldblatt, 2011). The lan-

guage includes the identity symbol =, which makes the logic very expressive and

able, for example, to handle definite descriptions, such as ‘the first homeless per-

son who begs from Jones in 2006’ (Goble, 1996), which is usually represented

with an expression like λxHomeless Begging 2006 (x) (using lambda notation) and

which is typically taken to be equivalent to ∃x(Homeless Begging Jones 2006 (x) ∧

∀y(Homeless Begging Jones 2006 (y) → y = x)). As argued by Goble (1996), expres-

sions such as ‘It is obligatory to help the first homeless person who begs from you in

2006’ are quite significant in normative contexts, even though an analysis of the role of

definite descriptions in deontic logic is outside the scope of this work: anyway, Q○
=.MN

can handle those expressions. In quantified alethic modal logic with the identity sym-

bols logicians usually consider whether the following schemata are to be valid (for a

philosophical discussion, see Kripke, 1980):

t = s→ ◻(t = s) t /= s→ ◻(t /= s)

9For alternative axiomatisations of the propositional part, please refer to Section 2.1.
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Here, we consider a version of them that can also capture some quite restricted

versions of C: indeed, ND and NI state that it is possible modally aggregate two

formulae when one is any A (and thus A can also be a ◻ formula) and the other

is either t = s or t /= s; this does not in general entail C. Notice that the schema

NI∗ ∶= t = s → ◻(t = s) is derivable within this system. Finally, it is worth noting that

we will make an essential use of the identity symbol and schemata NI and NI∗ to

ensure completeness of the system Q○
=.MN⊕CBF, namely, when we add CBF. We will

show later in the Chapter why this is technically needed.

Given a language L, we shall henceforth refer to the set of its individual constants

with the notation C(L).

Theorem 3.6.1 (Soundness) The system Q○
=.MN is sound with respect to the class of

all multi-relational frames with varying inner domains.

Proof. The proof is standard and it is carried out by induction on lg(D), where

D ∶= D1, . . . ,Dn is a deduction in the axiomatic system Q○
=.MN with A = Dn, i.e.,

A ∈ Q○
=.MN⊢).

(a) if k = 1, A is an axiom. Let us consider just a few cases. For the

propositional schemata, please refer to Theorem 2.3.9. If A has the form

∀y(∀xB(x)→ B(y/x)), then assume by reductio that there are a multi-relational frame

F , a model M = ⟨W,R,D,U, I⟩ on F , a world w and a w-assignment σ such that

M /⊧σw ∀y(∀xB(x) → B(y/x)). Then there is a w-assignment τ which is an y-variant

of σ such that M /⊧τw ∀xB(x) → B(y/x) and τ(y) ∈ Dw. Hence M ⊧τw ∀xB(x) and

M /⊧τw B(y/x) and τ(y) ∈ Dw. It follows that for any w-assignment ϑ, where ϑ is an

x-variant of τ such that ϑ(x) ∈ Dw, M ⊧ϑw B(x) and M /⊧τw B(y/x) for τ(y) ∈ Dw.

Since one must consider all the x-variants of τ which map x to an element of the inner

domain of w and since τ(y) ∈Dw, there is an assignment ϑ⋆ such that it is an x-variant
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of τ , ϑ⋆(x) = τ(y), M ⊧ϑ⋆w B(x) and M /⊧τw B(y/x).

If A has the form B → ∀xB for x not free in B, then suppose by reductio that there

are a multi-relational frame F , a model M = ⟨W,R,D,U, I⟩ on F , a world w and

a w-assignment σ such that M /⊧σw B → ∀xB, thus M ⊧σw B and M /⊧σw ∀xB, i.e.,

M ⊧σw ∃x¬B. From this it follows that M /⊧τw B for some x-variant τ of σ such that

τ(x) ∈ Dw. Since x is not free in B, σ and τ coincide on any free variable occurring in

B, hence, by Lemma 3.3.8 it holds that M ⊧σw B and M /⊧σw B.

If A has the form ∀x(B → C) → (∀xB → ∀xC), then suppose by reductio that

there are a multi-relational frame F , a model M = ⟨W,R,D,U, I⟩ on F , a world w

and a w-assignment σ such that ⊧σw ∀x(B → C), ⊧σw ∀xB and ⊧σw ∃x¬C. Thus (i)

M ⊧τw B → C for any x-variant τ of σ such that τ(x) ∈ Dw; (ii) M ⊧ϑw B for any

x-variant ϑ of σ such that ϑ(x) ∈ Dw; (iii) M /⊧υw C for some x-variant υ of σ such that

υ(x) ∈Dw. From (i) it follows that for any x-variant τ of σ such that τ(x) ∈Dw, either

M /⊧τw B, contradicting (ii), or M ⊧τw C, contradicting (iii).

If A has the form ◻B ∧s = t→ ◻(B ∧s = t), then assume that there are a model, a world

and an assignment such that ⊧σw ◻B ∧ s = t. This entails the existence of a relation

Ri such that Ri(w) ⊆ ∥B∥σI . Take any v ∈ Ri(w). If t (or s) is an individual constant,

then Iσw(t) = Iσv (t), since constants are rigid designators; on the other hand if t (or s) is

a variable, than, since Uw ⊆ Uv, it holds that Iσw(t) = σ(t) = Iσv (t). Thus ⊧σw ◻(B∧(t = s)).

(b) If k = n+1, then A is an axiom (see previous cases) or it has been obtained either

via MP, or via RM, or else via UG. For the first two cases, please refer to Theorem

2.3.9. Let us focus on the latter case. If A has been obtained via the rule UG, it has

the form ∀xB and it has been derived applying UG to a formula B. By IH, ⊧σw B for
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any valuation I, any world w and any assignment σ. In particular this holds true for

any assignment τ which is an x-variant of σ such that τ(x) ∈Dw and hence ⊧σw ∀xB.

3.6.2 Some Auxiliary Results

Following Corsi (2002), let us establish some auxiliary results.

Definition 3.6.2 Let L be a logic on the language L, ∆ ⊆ L and Q ⊆ C(L).

- ∆ is L-consistent iff ∆ /⊢L �.

- ∆ is L-deductively closed iff for any sentence A of L, ∆ ⊢L A iff A ∈ ∆.

- ∆ is L-complete iff for any sentence A of L, either A ∈ ∆ or ¬A ∈ ∆.

- ∆ is L-maximal iff ∆ is L-consistent and L-complete.

- ∆ is Q-universal iff if ∀xA(x) ∈ ∆, then A(c/x) ∈ ∆, for all individual constants

c ∈ Q.

- ∆ is Q-existential iff if A(c/x) ∈ ∆ for some individual constant c ∈ Q, then

∃xA(x) ∈ ∆.

- ∆ is Q-inductive iff if A(c/x) ∈ ∆ for all individual constants c ∈ Q, then ∀xA(x) ∈

∆.

- ∆ is Q-rich iff if ∃xA(x) ∈ ∆ for some individual constant c ∈ Q, then A(c/x) ∈ ∆.

- ∆ is L-saturated iff if ∆ is L-maximal and for some Q ⊆ Const(L), ∆ is Q-universal

and Q-rich.

Lemma 3.6.3 Let L ⊆ Q○
=.MN be a logic on L. Let C be a denumerable set of individual

constants not occurring in L, let LC be the language obtained adding C to C(L) and LC

be the logic on LC .

i. If ⊢LC A(c1, . . . , cn), then ⊢LC A(x1/c1, . . . , xn/cn) where x1, . . . , xn are variables

not occurring in A(c1, . . . , cn).

ii. If ⊢LC A and no constants of C occur in A, then ⊢L A.
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iii. If ∆ is an L-consistent set of sentences and no constant from C occurs in ∆,

then ∆ is LC-consistent. (Cf. (Corsi, 2002, Lemma 1.6))

Lemma 3.6.4 Given an L-maximal set ∆ of sentences in L and Q ⊆ C(L), if ∆ is

Q-universal then ∆ is Q-existential.(Cf. (Corsi, 2002, Lemma 1.11))

Proof. Assume A(c/x) ∈ ∆ for some individual constant c ∈ C(L) and ∃xA /∈ ∆. Since

∆ is L-maximal, ¬∃xA(x) ∈ ∆ and hence ∀x¬A(x) ∈ ∆. Thus, since ∆ is Q-universal by

definition, ¬A(c/x) ∈ ∆ and hence � ∈ ∆, contradicting the consistency of ∆.

Lemma 3.6.5 (Lindenbaum’s Lemma) Given a logic L, if ∆ is a L-consistent set of

formulae, then there is a L-maximal set ∆+ such that ∆ ⊆ ∆+.

Lemma 3.6.6 Let ∆ be an L-consistent set of sentences of L. Then for some not-empty

denumerable set C of new constants, there is a set Π of sentences of LC such that ∆ ⊆ Π,

Π is LC-maximal, Π is Q-universal and Q-rich for some set Q ⊆ C(LC). (cf. (Corsi,

2002, Lemma 1.16))

3.6.3 Canonical models

In order to define canonical models for a language with identity, we need to introduce a

binary equivalence relation on individual constants:

a ∼ b if and only if (a = b) ∈ w

Any individual constant c may be interpreted on its equivalence class [c], where [c] ∶=

{a ∣ c ∼ a}.

Definition 3.6.7 (Non normal canonical model for Q○
=.MN) Let L ⊇ Q○

=.MN be a

logic based on L. Let V be a set of constants with cardinality ℵ0 such that V ⊃

Const(L) e ∣ V − Const(L) ∣= ℵ0. A non normal canonical model for L is a tuple

M = ⟨W,R1, . . . ,Rn,D, I⟩ such that:
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- W is the class of all Lw-saturated sets of sentences w, where Lw = LS for some set

S of constants such that C(LS) ≠ ∅, S ⊂ Q and ∥Q −C(LS)∥ = ℵ0.

- For any formula A ∈ Fma(L) let RA be a binary relation over W . For all w, v ∈W ,

wRAv iff ◻A ∈ w ⇒ A ∈ v and for any constant c ∈ Const(Lw), [c]w = [c]v, where

[c]v = {b ∈ Const(Lv) ∶ (b = c) ∈ v}. The set of relations R is the collections of all such

relations.

- Dw = {[c]w ∶ ∃x(x = c) ∈ w}.

- Uw = {[c]w ∶ c ∈ const(Lw)}

- Iw(c) = [c]w.

- Iw(Pn) = {⟨[c1]w , ..., [cn]w⟩ ∶ Pn(c1, ..., cn) ∈ w}.

Lemma 3.6.8 (Existence lemma) Given a canonical model M for Q○
=.MN, for any

w ∈W , if ◇A ∈ w, then for any formula B ∈ Fma(L) there is a set v such that:

1. v belongs to the base set of M

2. A ∈ v

3. If ◻B ∈ w then B ∈ v

4. Const(Lw) ⊆ Const(Lv)

5. for any individual constant c ∈ Const(Lw), [c]w = [c]v.

Proof. Below we shall define a procedure to construct any such v for any formula B.

Let C be a denumerable set of constants which do not belong to Lw and let LCw =

Lw ∪C. Let H1,H2,H3, ... be an enumeration of all the existential formulae of LCw with

infinite repetitions.

Let Γ be a chain of sets as defined below:

1. Γ0:

(a) If ◻B ∈ w, then Γ0 ∶= {B} ∪ {A}

(b) otherwise, Γ0 ∶= {A}.
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2. Γ1 ∶= Γ0 ∪ {(a = b) ∣ (a = b) ∈ w}

3. Let Γn be already defined for 1 ≤ n and let Hn+1 = ∃xF (x). The set Γn+1 is defined

as:

(a) If ∃xF (x) contains at least one constant c such that c ∉ Const(Γn), then

Γn+1 ∶= Γn.

(b) otherwise, if any constant occurring within ∃xF (x) is already in Γn, then

there are a few cases:

(b.1) If Γn ∪ {∃xF (x)} is LCw-consistent, then

(b.1.1) Γn+1 ∶= Γn ∪ {∃xF (x)} ∪ {F (b/x)}, where b ∈ Const(Γn) and Γn ∪

{F (b/x)} is LCw-consistent;

(b.1.2) Γn+1 ∶= Γn ∪ {∃xF (x)} ∪ {F (c/x)} ∪ {(c ≠ b) ∣ b ∈ Const(Γn)}, if

Γn ∪ {F (b/x)} is not LCw-consistent for any b ∈ Const(Γn), and c ∈ C is a

constant not occurring in Γn.

(b.2) Otherwise if Γn ∪ {∃xF (x)} is not LCw-consistent, then Γn+1 = Γn.

4. Γ = ⋃n∈N (Γn).

In order to show that Γis LCw-consistent, we have to check that for any n, Γn is

LCw-consistent.

1. Γ0 is consistent. Indeed:

(a) If Γ0 ∶= {A,B} and ◻B ∈ w, then suppose ⊢MN A ∧ B → �, then ⊢MN B →

(A → �), ⊢MN B → ¬A and ⊢MN ◻B → ◻¬A by the RM rule. By definition,

it follows that w ⊢MN ◻¬A, ¬ ◇ A ∈ w, leading to a contradiction as w is

consistent by assumption.
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(b) If Γ0 ∶= {A}, then assume it is not consistent and hence ⊢MN A→ �, i.e., ⊢MN

¬A. Thus by the necessitation rule we have ⊢MN ◻¬A and this implies that

¬◇A ∈ w and hence ◇A /∈ w, which is in contradiction with our hypothesis.

2. Γ1 is consistent. Indeed assume it is not. There are two cases:

(a) Γ0 ∶= {A,B} and ◻B ∈ w, then ⊢MN B → (a = b→ (A→ �)) for some a = b ∈ w.

Then ⊢MN B → (a = b → ¬A), and ⊢MN ◻B → ◻((a = b) → ¬A) by the RM

rule. By definition of w and MP, it follows that w ⊢MN ◻((a = b) → ¬A).

Thus by the RM rule ⊢MN ◻(a = b) → ◻¬A. But ◻(a = b) ∈ w by the NI∗

schema, hence ¬◇A ∈ w, ◇A /∈ w, which contradicts the hypothesis.

(b) If Γ0 ∶= {A}, then ⊢MN (a = b) → A → �, i.e., ⊢MN (a = b) → ¬A for some

(a = b) ∈ w. Thus by the RM rule ⊢MN ◻(a = b)→ ◻¬A. But ◻(a = b) ∈ w by

the NI schema, hence ¬◇A ∈ w, ◇A /∈ w, which contradicts the hypothesis.

3. Γn+1 is also consistent, in fact:

(a) Γn+1 is LCw-consistent by Inductive Hypothesis (IH henceforth).

(b.1.1) Γn+1 is LCw-consistent by construction.

(b.1.2) Γn ∪ {∃xF (x)} is consistent by hypothesis. First of all, let us show

that Γn ∪ {F (c/x)} is LCw-consistent. Assume by reductio that Γn ∪ {F (c/x)}

is not LCw-consistent. Then there are sentences {D1, ...,Dk} ∈ Γn such that

⊢LCw D1 ∧ ... ∧Dk ∧ F (c/x)→ �

Γn ⊢LCw ¬(F (c/x)

Γn ⊢LCw ¬F (y/c)

Γn ⊢LCw ∀y¬F (y/c)

Γn ⊢LCw ¬∃yF (y)

contrary to the fact that Γn ∪ {∃xF (x)} is LCw-consistent by hypothesis, thus

Γn ∪ {F (c/x)} is LCw-consistent.
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Assume by reductio that Γn+1 is not LCw-consistent. Hence for some finite set

of individual constants {b1, ..., bh} ⊆ Const(Γn),

Γn ⊢LCw F (c/x) ∧ (c ≠ b1 ∧ ... ∧ c ≠ bh)→ �

Γn ⊢LCw F (c/x)→ ¬(c ≠ b1 ∧ ... ∧ c ≠ bh)

Γn ⊢LCw F (c/x)→ (c = b1 ∨ ... ∨ c = bh)

Γn ∪ {F (c/x)} ⊢LCw c = b1 ∨ ... ∨ c = bh

hence for some i, 1 ≤ i ≤ h, Γn ∪ {F (bi/x)} is LCw-consistent, in contradiction

with the assumption that there is no constant b ∈ Const(Γn) such that Γn ∪

{F (b/x)} is LCw-consistent. Therefore Γn+1 is LCw-consistent.

(b) ( b.2) Γn+1 is LCw-consistent by IH.

4. Γ è LCw-consistent by the Chain Lemma.

Let Q = Const(Γ). We start by showing that

(∗) For any existential formula ∃xF (x) of LQw there is some Γk such that either ∃xF (x) ∈

Γk+1 or Γk ∪ {∃xF (x)} is LCw-inconsistent.

Let c1, . . . , cj be all the constants occurring in ∃xF (x). Since ∃xF (x) ∈ LQw , {c1, . . . , cj} ⊆

Q, hence for some j, {c1, . . . , cj} ⊆ Const(Γj). Since ∃xF (x) occurs infinitely many times

within H1,H2,H3, ..., then ∃xF (x) = Hk for some k > j. Therefore the (b) step of our

construction is applied to ∃xF (x) and hence (∗) is proved. It follows that Γ è LQw-rich.

The set Γ can be extended to some v which is LQw-consistent and LQw- maximal.

Let Lv = LQw . The extension v does not compromise richness. Indeed, if an existential

formula of LQw belongs to v, by (∗) it is also in Γ, and hence some exemplification of it is

also in Γ and sinde Γ ⊆ v, it is also in v. Therefore v is L=v-saturated and it hence belong

to the canonical base set. Therefore:

1. v ∈W .

2. Since A ∈ Γ0 and v ⊇ ⋃n∈N (Γn), it follows that A ∈ v.
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3. Moreover it holds true that if ◻B ∈ w, then B ∈ v

4. Since Const(Lw) ⊆ Const(LQw) it holds that Const(Lw) ⊆ Const(Lv).

5. The set v is LQw-maximal: the only constants occurring in v are those already

present in Γ. Since by construction {(a = b) ∣ (a = b) ∈ w} ⊆ Γ, it follows that

for any b, [b]w ⊆ [b]v. On the other hand, suppose that there is some c from

Const(Lv) which does not occur in Const(Lw). Then c has been added at some

point in the construction of the Γj sets. The step (iii.b.1.2) is the only possible way

to add the new constant c to Γj+1 and it guarantees that for any d ∈ Const(L(Γj)),

c ≠ d ∈ Γj+1, so c /∈ [b]v for any b ∈ Const(Lw).

Lemma 3.6.9 (Truth Lemma) Given a canonical model ML = ⟨W,R,D,U, I⟩ for a

quantified N-Monotonic modal logic L extending Q○
=.MN, for any formula A ∈ Fma(L),

for any world w ∈W , the following holds: ⊧σw A(xi) ⇔ A(σ(xi)/xi) ∈ w

Proof. By induction on the length of a formula A. We omit details of the induction

base.

Suppose lg(A) = n + 1 and A has the form ∃xB(x, y1, . . . , ym).

(i) ⊧σw ∃xB(x, y1, . . . , ym) iff for some x-variant τ of σ such that τ(x) ∈ Dw,

⊧τw B(x, y1, . . . , ym). Suppose τ(x) = c. Since by assumption all constants are

rigid designators, by Lemma 3.3.7 it holds that ⊧σw B(c/x, y1, . . . , ym). Hence

B(c/x,σ(y1), . . . , σ(ym)) ∈ w by IH. Since w is Dw-universal, w is also Dw-

existential by Lemma 3.6.4 and hence ∃xB(x,σ(y1), . . . , σ(ym)) ∈ w. (ii) Assume

∃xB(x,σ(y1), . . . , σ(ym)) ∈ w. Since w is Dw-rich, B(c/x,σ(y1), . . . , σ(ym)) ∈ w for

some c ∈ Dw. Thus, by IH, ⊧σw B(c/x, y1, . . . , ym) and, by Lemma 3.3.7 it holds that

⊧τw B(x, y1, . . . , ym) for some w-assignment τ which is an x-variant of σ such that
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τ(x) = Iw(c) = c. Therefore ⊧σw ∃xB(x, y1, . . . , ym). If lg(A) = n + 1 and A has the

form ◻B, please refer to Lemma 2.3.14.

Lemma 3.6.10 Let ML ∶= ⟨W,R,D,U, I⟩ be a canonical model for a logic L ⊇ Q○
=.MN.

If ∆ is an L-consistent set of formulae, then for some w ∈ W and some w-assignment

σ, ML ⊧σw D for any D ∈ ∆. (cf. (Corsi, 2002, Lemma 1.19))

Let L be any logic L ⊇ Q○
=.MN. Consider any formula A such that /⊢L A. Then {¬A}

is L-consistent. By Lemma 3.8.6 there is a world w of a canonical model ML for L and

a w-assignment σ such that ML /⊧σw A and hence ML /⊧ A.

Corollary 3.6.11 (Completeness of Q○
=.MN) The logic Q○

=.MN is strongly complete

with respect to the class of all multi-relational frames.

Recalling the results given in Chapter 2, we can state the following:

Corollary 3.6.12 The logic Q○
=.MN⊕

- T is complete with respect to the class of generally reflexive multi-relational frames,

i.e., for any world w, for any relation Ri, wRiw;

- CON is complete with respect to the class of generally serial multi-relational frames;

- D is complete with respect to the class of generally serial multi-relational frames;

- D is complete with respect to the class of generally serial multi-relational frames ful-

filling the following condition:

for any w ∈W and any pair of relations Ri and Rj, Ri(w) ∩Rj(w) ≠ ∅.

3.6.4 Completeness of Q○
=.MN⊕CBF

Turning our attention to the CBF schema, we can show that the logic Q○
=.MN ⊕CBF

is sound and complete with respect to an interesting class of frames. Again, this is
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but a generalisation of the Kripkean case. Recall that in Kripke semantics the logic

Q○
=.K ⊕ CBF is sound and complete with respect to the frames with increasing inner

domains, i.e., for any worlds w, v, if wRv, then Dw ⊆ Dv. In the multi-relational case,

the result is, again, more general. Adding CBF to class of axioms gives the following

result. If we take any world which is connected to at least one point for any relation

(i.e., is locally serial) and we consider any actual individual (i.e., belonging to the inner

domain of the world), we can show that thank to the schema CBF, such individual

survives somewhere, namely each each relation Ri contains at least one point in which

such individual belongs to the inner domain. This is stated formally in the following

theorem:

Theorem 3.6.13 (Completeness of Q○
=.MN⊕CBF) The logic Q○

=.MN ⊕ CBF is

complete with respect to the class of multi-relational frames with the following prop-

erty. For any world w, if w is locally serial, i.e., for any i, Ri(w) ≠ ∅, then for any

relation Ri

Dw ⊆⋃{Dv ∣ v ∈ Ri(w)}

Proof. LetM be a canonical model for Q○
=.MN⊕CBF. Take any world w and assume

it is locally serial. Then the schema ◇⊺ belongs to w. By lemma 3.6.8, it follows that

for any formula Bi ∈ Fma(L) there is a world vi such that wRBivi and Const(Lw) ⊆

Const(Lvi) and for any individual constant c ∈ Const(Lw), [c]w = [c]vi . This implies

that Uw ⊆ Uvi . Take any [c] ∈ Dw; by definition it holds that ∃x(x = c) ∈ w. From

these facts it follows that ⊧σw x = c for some σ such that σ(x) ∈ Dw and, moreover,

for each i, ⊧σvi x = c. Hence ⊧σw ◇(x = c) and since σ(x) ∈ Dw, ∃x◇ (x = c) ∈ w. By

CBF ◇∃x(x = c) ∈ w. This means that for every existing individual b from Dw, for any

relation RB, there is a world t ∈ RB(w) such that b ∈ Dt and therefore for any relation

Ri, Dw ⊆ ⋃{Dv ∣ v ∈ Ri(w)}.
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3.7 The Barcan Formula: A Work in Progress

3.7.1 BF and CGF: Semantic Considerations

We have previously argued that, if we read de re and de dicto deontic statements as con-

textual and non-contextual obligations, respectively, then CBF seems less controversial

than BF. Additional technical difficulties make BF harder to handle. The remainder

of this Section provides some first preliminary results.

As for the case of CBF, the non validity of the BF schema follows immediately from

its analogous result in Kripke semantics.

Lemma 3.7.1 BF is not valid in the class of multi-relational frames.

Proof. Consider the following model: M ∶= ⟨W,R1,D,U, I⟩ where W ∶= {w, z}, R1 ∶=

{⟨w, z⟩}, Dw = {a}, Dz = {b}, Uw = Uz = {a, b}, P (a) ∈ Iz(P ) and P (b) /∈ Iz(P ). Then

it holds that for any x − variant of a σ-assignment τ such that τ(x) ∈ Dw, ⊧τw ◻P (x)

and hence ⊧σw ∀x◻P (x). Moreover there is an x-variant θ of σ such that θ(x) ∈Dz and

P (x) ∈ Iθz (P ), i.e. θ(x) = b and since wR1z it holds that ⊧σw ◇∃x¬P (x). (See Figure

3.2)

a b

w

Dw

a b

v

DvR

Figure 3.2: A Kripke frame to build a countermodel for BF .

Lemma 3.7.2 (BF Characterisation Result) For any multi-relational frame F ∶=

⟨W,R,D,U⟩, F ⊧ ∀x ◻ A → ◻∀xA iff ∀w ∈ W , either there is an Ri ∈ R such that

Ri(w) = ∅ or for any n-tuple ⟨z1, . . . , zn⟩ such that n is the cardinality of R and wRkzk

for any Rk ∈R, for any m-tuple ⟨Rj1 , . . . ,Rjm⟩ where ∥Dw∥ =m, i.e. m is the number of
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individuals belonging to the inner domain of w, there is a world t ∈ {z1, z2, . . .}∩Rj1(w)∩

. . . ∩Rjm(w) such that Dw ⊇Dt.

Proof. (⇒) Assume that ∃w ∈ W such that for all Ri ∈ R, Ri(w) ≠ ∅ and for some

⟨z1, . . . , zn⟩ such that wRkzk for any Rk ∈R, for some m-tuple of relations ⟨Rj1 , . . . ,Rjm⟩

the following holds: for all t ∈W , if t ∈ {z1, z2, . . .}∩Rj1(w)∩ . . .∩Rjm(w) then Dw ⊂Dt.

We shall now define an interpretation I in order to build a countermodel for BF in

this frame. Let Dw ∶= {d1, . . . , dm} and consider the w-assignments σ1, . . . , σm such

that for any i, 1 ≤ i ≤ m, σi(x) = di. For some unary predicate P , for any i, let

∥P (x)∥σiI ∶= Rji(w). Then clearly ⊧σiw ◻P (x) for each i and hence, since σ1, . . . , σm are

all the x-variant of a w-assignment σ such that σi ∈Dw for each i, ⊧σw ∀x◻P (x). Consider

now any zi from ⟨z1, . . . , zn⟩ and define a zi-assignment ϑi such that ϑi(x) /∈ Iϑizi (P (x))

and ϑi(x) ∈ Dzi . Notice that it is always possible to define such an assignment. In

fact even if zi ∈ Rj1(w) ∩ . . . ∩ Rjm(w), by assumption we have that Dzi ⊃ Dw. Hence

⊧ϑizi ¬P (x) and hence ⊧σzi ¬∃xP (x) which implies that /⊧σw ◻∀xP (x).

(⇐) Assume that for some frame F , F /⊧ ∀x◻A→ ◻∀xA for some formula A. Then

there are a world w, an interpretation I and an assignment σ such that (a) ⊧σw ∀x◻A(x)

and (b) ⊧σw ◇∃x¬A(x). Given that Dw ∶= {d1, . . . , dm}, from (a) it follows that there

are σ1, . . . , σm w-assignments which are all the x-variants of σ such that σi(x) ∈Dw and

⊧σiw ◻A(x). Thus there is a set of relations R1, . . . ,Rm such that for any Ri, Ri(w) ⊆

∥A(x)∥σiI .

From (b) it follows that there is an n-tuple ⟨z1, . . . , zn⟩ of worlds such that for each

Ri, wRizi (hence for each Ri, Ri(w) ≠ ∅) and for each i, ⊧σzi ∃x¬A(x). Thus for each zi

there is some zi-assignment ϑi such that ϑi(x) ∈Dzi and ⊧ϑizi ∃x¬A(x).

Clearly all the worlds t belonging to the intersection Rj1(w)∩ . . .∩Rjm(w) are such

that ⊧σit A(x) for all the x-variants of σ such that σi(x) ∈ Dw and hence if a world zi

belongs to such intersection, the zi-assignment ϑi must be such that ϑi(x) ∈ Dzi but

ϑi(x) /∈Dw and therefore for any such world Dw ⊂Dzi .



112 CHAPTER 3. BEYOND PROPOSITIONAL DEONTIC LOGICS

Again, mirroring Kripke semantics, the schemata BF and CGF ∶= ◻∃xA → ∃x ◻A

are equivalent.

Lemma 3.7.3 The schemata BF and CGF characterise the same class of multi-

relational frames.

Proof. (⇒) Assume that ∃w ∈ W such that for all Ri ∈ R, Ri(w) ≠ ∅ and for some

⟨z1, . . . , zn⟩ such that wRkzk for any Rk ∈R, for some m-tuple of relations ⟨Rj1 , . . . ,Rjm⟩,

where m is the number of individuals belonging to Dw, the following holds: for all t ∈W ,

if t ∈ {z1, z2, . . .} ∩Rj1(w) ∩ . . . ∩Rjm(w) then Dw ⊂Dt.

We shall now define an interpretation I in order to build a countermodel for CGF

in this frame. Let Dw ∶= {d1, . . . , dm} and consider the w-assignments σ1, . . . , σm such

that for any i, 1 ≤ i ≤ m, σi(x) = di. For some unary predicate P , for any i, let

∥P (x)∥σiI ∶= Rji(w). Then clearly ⊧σiw ◻P (x) for each i and hence, since σ1, . . . , σm are

all the x-variant of a w-assignment σ such that σi ∈Dw for each i, ⊧σw ∀x ◻ P (x).

Consider now any zi from ⟨z1, . . . , zn⟩ and define a zi-assignment ϑi such that ϑi(x) /∈

Iϑizi (P (x)) and ϑi(x) ∈Dzi . Notice that it is always possible to define such an assignment.

In fact even if zi ∈ Rj1(w)∩ . . .∩Rjm(w), by assumption we have that Dzi ⊃Dw. Hence

⊧ϑizi ¬P (x) and hence ⊧σzi ¬∃xP (x) which implies that /⊧σw ◻∀xP (x).

(⇐) Assume that for some frame F , F /⊧ ∀x◻A→ ◻∀xA for some formula A. Then

there are a world w, an interpretation I and an assignment σ such that (a) ⊧σw ∀x◻A(x)

and (b) ⊧σw ◇∃x¬A(x). Given that Dw ∶= {d1, . . . , dm}, from (a) it follows that there

are σ1, . . . , σm w-assignments which are all the x-variants of σ such that σi(x) ∈Dw and

⊧σiw ◻A(x). Thus there is a set of relations R1, . . . ,Rm such that for any Ri, Ri(w) ⊆

∥A(x)∥σiI .

From (b) it follows that there is an n-tuple ⟨z1, . . . , zn⟩ of worlds such that for each

Ri, wRizi (hence for each Ri, Ri(w) ≠ ∅) and for each i, ⊧σzi ∃x¬A(x). Thus for each zi

there is some zi-assignment ϑi such that ϑi(x) ∈Dzi and ⊧ϑizi ∃x¬A(x).
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Clearly all the worlds t belonging to the intersection Rj1(w)∩ . . .∩Rjm(w) are such

that ⊧σit A(x) for all the x-variants of σ such that σi(x) ∈ Dw and hence if a world zi

belongs to such intersection, the zi-assignment ϑi must be such that ϑi(x) ∈ Dzi but

ϑi(x) /∈Dw and therefore for any such world Dw ⊂Dzi .

By translating in terms of multi-relational semantics also Stolpe (2003)’s CUPI con-

dition (see Theorem 3.2.8) it is quite straightforward to prove a weaker correspondence

result for BF in multi-relational models.

A weaker correspondence result for the schema BF can be obtained by rephrasing

the CUPI schema introduced by Stolpe Stolpe (2003). However this implies conditions

on models instead of frames.

Lemma 3.7.4 (CUPI models) For any multi-relational model M ∶= ⟨W,R,D,U, I⟩,

M ⊧ ∀x ◻ A → ◻∀xA if and only if for any world w the following holds: given a w-

assignment σ, if for any x-variant σi such that σi(x) ∈ Dw there exists a relation Ri

such that Ri(w) ⊆ ∥A(x)∥σiI , then there is a relation Rk such that Rk(w) ⊆ ∥∀xA∥σI .

Proof. The left to right arrow is trivial. For the other direction consider the con-

trapositive proposition. Assume that for some world w ∈ W it holds true that, for all

w-assignments σ, (a) for any x-variant σi of σ, σi(x) ∈ Dw, there exists a relation Ri

such that Ri(w) ⊆ ∥A(x)∥σiI and (b) for any relation Rk, Rk(w) /⊆ ∥∀xA∥σI . From (a) it

follows that for any σi, ⊧σiw ◻A(x) and hence ⊧σw ∀x ◻A(x) whereas from (b) it follows

that /⊧σw ◻∀xA, thus /⊧σw ∀x ◻A→ ◻∀xA.

3.7.2 The independence of the schemata C and BF

Recall that the schema C imposes on frames the following property: F ⊧ ◻A ∧ ◻B →

◻(A∧B) iff for any world w, for any relation Ri, Rk there exists a relation Rj such that

Rj(w) ⊆ Rk(w) ∩Ri(w). Hence for any C-frame, the characterisation result for BF is

the following:
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Lemma 3.7.5 (BF on C-frames) Let F be any C-frame. Then for any world w ∈W ,

given that ∥Dw∥ = k, if w is locally serial, then for all sets of relations with cardinality

up to k {Ri1, . . . ,Rik}, for all worlds v ∈ Ri1 ∩ . . . ∩Rik it holds that Dw ⊇Dv.

Proof. Indeed if we assume that the BF-condition does not hold on a C-frame, we

would get the following situation. For some world w such that w is locally serial and

∥Dw∥ = k, there is some set R1, . . . ,Rk of relations such that for some world v ∈ R1(w)∩

. . .∩Rk(w) it holds that Dw /⊇Dv. It is easy to build a counter-model in such situation.

In Kripke semantics this is equivalent to deny decreasing domains.

It is easy to find a frame validating C but not BF: It is enough to consider the frame

described in Lemma 3.7.1, which is Kripkean and hence validates C.

It is not hard to show that the schema BF does not imply C. Below we describe a

countermodel for C based on a frame for BF. Consider the model M ∶= ⟨W,R,D,U, I⟩

where W = {w, z1, z2}, R ∶= {R1,R2}, R1 ∶= {⟨w, z1⟩}, R2 ∶= {⟨w, z2⟩}, Dw = Dz1 = Dz2 =

{d}, σ is a w-assignment such that σ(x) = d. Let P and Q be two unary predicates such

that ∥P (x)∥σI = {z1} and ∥Q(x)∥σI = {z2}. Then ⊧σw ◻P (x) ∧ ◻Q(x) but /⊧σw ◻(P (x) ∧

Q(x)). Moreover M is built on a frame which fulfills the conditions imposed by BF.

Indeed w is locally serial but there is only one tuple ⟨z1, z2⟩ such that wR1z1 and wR2z2.

The number of individuals from Dw is 1, thus: z1 ∈ {z1, z2} ∩R1(w) and Dw ⊆ Dz1 and

z2 ∈ {z1, z2} ∩ R2(w) and Dw ⊆ Dz2 . Notice that any countermodel for C based on a

BF-frame must contain a locally serial world w whose inner domain contains at most

one individual and the frame of such model should have more than one relation.

Corollary 3.7.6 The schemata BF and C are semantically mutually independent.

The importance of this result is limited at the moment, as it lays only on semantic

grounds. In fact, without a completeness result, one cannot infer that adding BF to a

system does not generate normal systems, i.e., it is not clear wether BF does or does

not syntactically imply C.
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3.8 The Role of Identity

The choice of a language with the identity relation was driven by different reasons.

First of all, the expressive power increases greatly. Nevertheless, there is also a technical

reason behind it. Working with the identity symbol allowed us to build canonical models

for CBF-frames, a very difficult goal to be achieved without it. It is actually much easier

to prove completeness for systems without identity, at least for those systems which do

not include any form of Barcan schema.

3.8.1 Completeness without Identity

Below we present a completeness theorem for an analogous system built on a language

without identity. The axiomatic system Q○.MN is obtained by deleting all the schemata

concerning identity:

The system Q○.MN contains the following axioms and inference rules:

- Propositional tautologies;

- UI○ ∶= ∀y(∀xA(x)→ A(y/x))

- ∀x∀yA↔ ∀y∀xA

- A→ ∀xA, x not free in A

- ∀x(A→ B)→ (∀xA→ ∀xB)

- M ∶= ◻(A ∧B)→ (◻A ∧ ◻B)

- N ∶= ◻⊺ to Q○
=.E

- MP ∶= A→ B,A/B

- RE ∶= A↔ B/ ◻A↔ ◻B

- UG ∶= A/∀xA

Theorem 3.8.1 (Soundness) The system Q○.MN is sound with respect to the class of

all multi-relational frames with varying inner domains.

Proof. It follows from Theorem 3.6.1.

Lemma 3.8.2 Let ∆ be an L-consistent set of sentences of L. Then for some not-empty

denumerable set C of new constants, there is a set Π of sentences of LC such that ∆ ⊆ Π,

Π is LC-maximal, Π is Q-universal and Q-rich for some set Q ⊆ C(LC). (cf. (Corsi,

2002, Lemma 1.16))
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Definition 3.8.3 (Non normal Canonical Models) Let L be a non normal quanti-

fied modal logic on the language L such that L ⊇ Q○.MN. Let Q be a set of constants of

cardinality ℵ0 such that Q ⊃ C(L) and ∥Q−C(L)∥ = ℵ0. A non normal canonical model

ML = ⟨W,R,D,U, I⟩ for L is defined as follows:

- W is the class of all Lw-saturated sets of sentences w, where Lw = LS for some set

S of constants such that C(LS) ≠ ∅, S ⊂ Q and ∥Q −C(LS)∥ = ℵ0.

- For any formula A ∈ Fma(L) let RA be a binary relation over W . For all w, v ∈W ,

wRAv iff ◻A ∈ w⇒ A ∈ v. The set of relations R is the collections of all such relations.

- Dw = {c ∈ C(Lw) ∣ ∀xA→ A(c/x) ∈ w, for all sentences ∀xA of Lw}.

- Uw = C(Lw)

- Iw(c) = c

- Iw(Pn) = {⟨c1, . . . , cn⟩ ∣ Pn(c1, . . . , cn) ∈ w}

Lemma 3.8.4 (Existence lemma) Given a canonical model M for Q○.MN, for any

w ∈W , if ◇A ∈ w, then for any formula B ∈ Fma(L) there is a state z such that wRBz

and A ∈ z.

The proof follows directly from Lemma 2.3.13.

Lemma 3.8.5 (Truth Lemma) Given a canonical model ML = ⟨W,R,D,U, I⟩ for a

quantified N-Monotonic modal logic L extending Q○.MN, for any formula A ∈ Fma(L),

for any world w ∈W , the following holds: ⊧σw A(xi) ⇔ A(σ(xi)/xi) ∈ w

Proof. By induction on the length of a formula A. We omit details of the induction

base. Suppose lg(A) = n + 1 and A has the form ∃xB(x, y1, . . . , ym).

(i) ⊧σw ∃xB(x, y1, . . . , ym) iff for some x-variant τ of σ such that τ(x) ∈ Dw,

⊧τw B(x, y1, . . . , ym). Suppose τ(x) = c. Since by assumption all constants are

rigid designators, by Lemma 3.3.7 it holds that ⊧σw B(c/x, y1, . . . , ym). Hence

B(c/x,σ(y1), . . . , σ(ym)) ∈ w by IH. Since w is Dw-universal, w is also Dw-existential by

Lemma 3.6.4 and hence ∃xB(x,σ(y1), . . . , σ(ym)) ∈ w.
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(ii) Assume ∃xB(x,σ(y1), . . . , σ(ym)) ∈ w. Since w is Dw-rich,

B(c/x,σ(y1), . . . , σ(ym)) ∈ w for some c ∈ Dw. Thus, by IH, ⊧σw B(c/x, y1, . . . , ym)

and, by Lemma 3.3.7 it holds that ⊧τw B(x, y1, . . . , ym) for some w-assignment τ which

is an x-variant of σ such that τ(x) = Iw(c) = c. Therefore ⊧σw ∃xB(x, y1, . . . , ym). If

lg(A) = n + 1 and A has the form ◻B, please refer to Lemma 2.3.14.

Lemma 3.8.6 Let ML ∶= ⟨W,R,D,U, I⟩ be a canonical model for a logic L ⊇ Q○.MN.

If ∆ is an L-consistent set of formulae, then for some w ∈ W and some w-assignment

σ, ML ⊧σw D for any D ∈ ∆. (cf. (Corsi, 2002, Lemma 1.19))

Let L be any logic L ⊇ Q○.MN. Consider any formula A such that /⊢L A. Then {¬A}

is L-consistent. By Lemma 3.8.6 there is a world w of a canonical model ML for L and

a w-assignment σ such that ML /⊧σw A and hence ML /⊧ A.

Theorem 3.8.7 (Completeness of Q○.MN) The logic Q○.MN is strongly complete

with respect to the class of all multi-relational frames.

Corollary 3.8.8 The logic Q○.MN⊕

- T is complete with respect to the class of generally reflexive multi-relational frames,

i.e., for any world w, for any relation Ri, wRiw;

- CON is complete with respect to the class of generally serial multi-relational frames;

- D is complete with respect to the class of generally serial multi-relational frames;

- D is complete with respect to the class of generally serial multi-relational frames ful-

filling the following condition:

for any w ∈W and any pair of relations Ri and Rj, Ri(w) ∩Rj(w) ≠ ∅.
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3.8.2 Some Remarks on Identity

The completeness proof for a system without identity follows from the propositional

results given in Chapter 2, and from those stated by Corsi (2002). However, things

change radically when the identity symbol is included. As Corsi (2002) observes:

In a language with identity, the fact that constants are rigid designators can

be expressed by the schema:

(x = a)→ ◻(x = a)

Therefore (. . . ) all the systems of Q.M.L. with identity we are going to

discuss are bound to be systems with rigid terms. (Corsi, 2002, 1499)

However this ceases to be true in the broader framework of multi-relational semantics.

In fact if there is only one relation within a frame (the Kripke case), the problem of

rigidity can be easily solved by stating that if two names denote the same individual in

a world, then this is bound to be the case in all accessible worlds. On the other hand, if

interpreted in the multi-relational case, this would only state that under some standard

this couple of names denote the same individual. This is obviously not enough. Our

version of the necessity of identity schema

NI ∶= ◻A ∧ (a = b)→ ◻(A ∧ (a = b))

says something more. It states that for any formula, i.e., semantically, for any rela-

tion, this must hold. It is a restricted form of axiom C, which holds only for specific

formulae, namely identities. The same holds for the necessity of diversity, ND. The

resulting system is still a proper subset of K even though it includes a restricted type of

aggregation.
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This may explain what happened in Lemma 3.6.8, in the construction of the set Γ1.

In the proof of Lemma 3.6.8, the set Γ0 is built to ensure the truth of modal formulae:

Γ0 ∶=

1. If ◻B ∈ w, then Γ0 ∶= {B} ∪ {A}

2. otherwise, Γ0 ∶= {A}.

This is not sufficient to preserve rigidity of denotation. However, it can be amended

by adding a further step in the construction:

Γ1 ∶= Γ0 ∪ {(a = b) ∣ (a = b) ∈ w}

This further step is necessary to keep rigidity of designation as well as the validity of

axiom NI. Moreover, the consistency of Γ1 is guaranteed by the presence of NI in the

system.

This is even more obvious within the proof of Theorem 3.6.13, where we make an es-

sential use of identity formulae. In fact, when it comes to prove completeness results for

systems including CBF, if identity is not present, it is very difficult to denote the same

individual across different worlds. One may think about adding an existence predicate,

but, besides the definitive philosophical objection that existence is not a predicate, this

would be just a definite description in disguise. The standard way to introduce an exis-

tence predicate is to add to the language a unary predicate symbol E whose extension,

for any world, is equal to the inner domain:

⊧σw E(x) if and only if σ(x) ∈Dw

This is clearly equivalent to state that E(a) is satisfied in a world if and only if the

formula ∃x(x = a) holds. Hence, adding an existence predicate would make very little
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difference, if not at all, on the technical level and would not take us any closer to proof

completeness for systems including CBF, which is still an open problem.

3.9 Conclusions and Further Work

This Chapter provided a semantic study in multi-relational semantics of quantified N-

Monotonic modal logics with varying domains (Q○
=.MN):

- We defined multi-relational weak structures and proved soundness results for N-

Monotonic systems;

- We provided Completeness results for Q○
=.MN and extensions;

- We provided Completeness results for Q○.MN and extensions;

- We proved semantic equivalence for the couples CBF - GF, and BF - CGF;

- We provided frame characterisation results for both CBF, and BF;

- We provided Completeness results for Q○
=.MN⊕CBF and extensions;

- We showed that Schema M does not entail CBF;

- We proved that schema C and BF are semantically independent.

Problems related to the completeness of non normal systems, with and without

identity, which include BF are still open and require a deeper analysis. Concerning

systems without identity, this problem concerns both CBF, and BF. Moreover, we see

other important directions for future research.

A preliminary question—somehow broader than the scope of this dissertation—

regards the general relation between multi-relational and Neighborhood semantics. For

propositional non-normal modal logics the two semantics are equivalent Governatori and

Rotolo (2005). However, it is not obvious if they are still equivalent (in regard, e.g., to
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completeness and incompleteness results) above K: Normal systems do not necessar-

ily make Governatori and Rotolo (2005)’s semantics collapse on Kripke’s. Regarding

quantified modal logics, a full comparison of the two semantics is anyway needed.

An immediate extension of the present work is to consider constant domains (FOL⊕

MN). It is definitely less trivial to adopt Governatori and Rotolo (2005)’s semantics and

study the open problem that Arló-Costa (2011) mentioned for FOL⊕E⊕CBF, as well as

to investigate other quantified (classical, monotonic, and regular) systems with constant

and varying domains.

Finally, a question concerning Kracht and Wolter (1999)’s proof that non-normal

modal logics can be simulated by a normal modal logic with three modalities. This result,

which holds for MN, is of great interest in the context of multi-relational semantics,

whose structures can in fact recall Kripke frames for multi-modal logics. However, when

predicate calculi are added to the propositional modal base we can obtain unexpected

interactions between Barcan schemata and modal axioms. Hence, extending Kracht and

Wolter (1999)’s case to quantified non normal modal logics is an open question.
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Chapter 4

Conclusions, Applications, Future Work

4.1 Conclusions

The problems and paradoxes generating within the standard modal approach to deontic

logics are relevant and numerous. Nevertheless, there are several possible solutions

to amend them. We investigated further one of those, namely we studied a semantic

framework to deal with non normal systems. Far from being the definitive answer to most

problems related to deontic modal logics, we think, however, that the modal approach

is definitely worthy of further attention and investigation. We decided to follow the

multi-relational semantics paradigm, in order to limit deontic paradoxes while keeping

the intuition and techniques associated to Kripke Semantics for normal modal systems.

Even though the logical systems that can be treated with these tools are reacher and

more powerful (and hence more problematic) than classical ones (traditionally associated

to neighborhood semantics), they provide the possibility to use intuitive semantic tools.

As we saw in Chapter 1, the choice of studying non normal deontic systems was driven

by the consideration that several philosophical issues related to deontic paradoxes orig-

inate within the syntax of given systems, such as deontic explosion. There are different

ways to deduce problematic schemata, and several solutions have been proposed. In

Section 1.1 we touched upon the Standard Paradigm SDL and presented normal Kripke

Semantics, in order to focus on some of the problems it raises. In particular, in Section

123
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1.1.1 we introduced some first preliminary modal schemata as well as their deontic in-

terpretation. One of the most controversial dontic schemata, namely the formula called

Deontic Explosion has been introduced in Section 1.2.1, where we proposed a prelimi-

nary syntactic analysis of the systems generating such schema, underlying the reasons

behind the choice of working with non normal systems. There are several syntactic

solutions to prevent the derivation of deontic explosion formulae, as we saw in Section

1.2.2, although we chose to analyse in detail the ones that are more conservative with

respect to normal modal logics, i.e., those systems that are weak enough to prevent

deontic explosions, yet powerful enough to express juridical sentences. These systems

are the so called non normal modal logics. We also provided an informal introduction

to non normal systems, their schemata and rules. Several different systems can be built

on such syntactic foundations. Non normal systems can be treated semantically using

relational structures. Moreover, we introduced a semantic interpretation of the modal

deontic operators based on Kripke Semantics, or Possible Worlds Framework, as defined

in Section 1.3.1. Kripke-frames are very intuitive and useful and provide an excellent

tool to treat normal systems. However, they are known to be sound and complete with

respect to normal systems. In order to keep the intuitive appeal of the possible worlds

framework, while still using non normal systems, we decided to study further the so

called multi-relational frames. In Section 1.3.2 and 1.3.3 we introduced this type of

semantics, which is nothing but a direct generalisation of standard Kripke Frames and

models.

Given this scenario, we decided to carry out a semantic analysis of multi-relational

frames to provide tools to deal with non normal N-monotonic systems. Technical details

of systems as well as several original completeness theorems were proposed in Chapter

2 and 3. In particular the first proposes an analysis of the propositional case, whereas

the latter of the predicative one.
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4.1.1 Propositional Results

In Chapter 2, for the first time, we carried out a semantic and syntactic analysis of several

systems and modal schemata. In Section 2.1 we presented some well known non normal

calculi, namely the systems E,M,NM,R as well as a syntactical analysis of the relations

between well known schemata. The most interesting results, however, can be found in

Section 2.2, where we provided frame-characterisation of several modal formulae, namely,

M,C,N,B,T,4. Section 2.2.4 presented a semantic analysis of some schemata that are

relevant within deontic logics, namely, CON and D. It is well known that both schemata

characterise precisely the same property in Kripke semantics, namely, seriality. However,

this ceases to be true in multi-relational semantics and, as we shall see, these schemata

define different readings of seriality within weak semantics.

Section 2.3 is focused on proving semantic completeness for several systems using

both strong, and weak semantic tools. We proposed direct completeness proofs via

canonical models for both classical systems (Section 2.3.1), and N-Monotonic systems

(Section 2.3.2). Finally, in Section 2.3.3 we prove completeness theorems with respect

to specific classes of frames for a few systems extending MN with well known schemata,

namely, MN⊕T, MN⊕D, and MN⊕CON.

Summarising, we provided an answer to several technical questions, namely:

(a) which theories are valid in the class of multi-relational weak structures? Any classical

theory smaller or equal than N-monotonic logics;

(b) how do they differ from multi-relational strong frames (Neighborhood semantics)?

Multi-relational strong frames validate a narrower set of formulae, namely, those

theories smaller or equal than E;

(c) how well known modal schemata (among those relevant to deontic logic, like

M,C,T,D, B,CON,DEX, . . ., behave within multi-relational weak frames? Do
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they characterise classes of frames with specific properties? Yes, most of them char-

acterise some specific classes of frames (please refer to Table 2.1);

(d) how can well known first order properties be characterised by propositional schemata,

if we assume a plurality of relations? We have provided an answer to reflexivity,

seriality, and symmetry;

(e) the set of formulae which are valid in the class of all multi-relational frames can be

generated by a finite axiomatic system? If so, which one? Yes, by the system MN,

which is then sound and complete with respect to the class of all multi-relational

weak frames. Moreover, we saw that the systems MN ⊕T, MN ⊕D, MN ⊕CON

are sound and complete with respect to specific classes of frames.

4.1.2 Predicative Results

Although quantified modal logic has a long and distinguished tradition, almost all efforts

have so far been devoted to the analysis of the normal case: Besides a few significant

exceptions based on neighbourhood semantics, the study of quantification in non-normal

modal logics is still neglected. Despite that, quantified non-normal modal logics (QNML

henceforth) exhibit a different behaviour with respect to normal modal logics. In par-

ticular, results in the literature show, e.g., that the Barcan and the Converse Barcan

schemata (i) are not characterised by decreasing and increasing domains (ii) are tightly

connected with the validity of propositional modal axiom schemata. In Chapter 3 we

provided a semantic analysis of quantification in a class of non-normal modal logics called

N-Monotonic (as defined in Chapter 2). Again, instead of following the neighborhood

semantics approach, we shall focus on multi-relational semantics. presents free first or-

der extensions of some N-monotonic systems and above as well as completeness results

with respect to multi-relational first order frames. As far as we are concerned, from the

predicative standpoint, this is the first study on quantification in multi-relational se-

mantics, the second one investigating the case of varying domains in non-normal modal
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logics, and the first that provides a frame characterization of the Barcan schemata with

varying domains.

Section 3.1 is an introduction to Barcan Formulae and their role within judicial

syllogisms. There are several philosophical as well as technical issues related to such

schemata. Section 3.2 presents some well known results concerning quantified non nor-

mal modal logics and Neighborhood frames, as well as a first technical introduction to

Barcan formulae and the problems related to such schemata. We shall see the attempts

made to accommodate Barcan schemata within both constant domain, and varying do-

main neighborhood frames. Section 3.3 is rather technical and presents multi-relational

first order frames. We chose to analyse frames with varying domains, in order to perform

a finer distinction between actual individuals and possibilia. Section 3.4 The traditional

distinction between de dicto and de re sentences is here seen under a new light, in terms

of contextual obligation and the role of quantification within deontic contexts. Section

3.5 is the core of this Chapter. We shall present alternative semantic characterisations for

the schema CBF. We compare our results with the standard ones in Kripke Semantics

and we shall see different ways to generalise the concept of increasing inner domains.

Section 3.6 is the technical core of the Chapter. Here we provide Henkin-style com-

pleteness theorems for several systems, namely, the smallest free quantified non normal

N-monotonic logic Q○
=.NM and some extensions, including Q○

=.NM⊕CBF.

In this chapter, we provided an answer to several open questions, namely:

(a) We defined multi-relational weak structures and proved soundness results for N-

Monotonic systems;

(b) We provided Completeness results for Q○
=.MN and extensions;

(c) We proved semantic equivalence for the couples CBF - GF, and BF - CGF;

(d) We provided frame characterisation results for both CBF, and BF;
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(e) We provided Completeness results for Q○
=.MN⊕CBF and extensions;

(f) We showed that Schema M does not entail CBF;

(g) We proved that schema C and BF are semantically independent.

4.2 Open Problems and Future Work

The field of N-monotonic logics and multi-relational semantics is wide and, in our opin-

ion, worthy of further investigation. Moreover, the area of interest is broader than

deontic logics, since it is concerned with the whole field of modal logics. There are many

open problems to be addressed, especially within the first order non normal systems.

Concerning the propositional case, one may wonder what class of structures, if any,

is characterised by other modal schemata, for instance by those closer to other fields

of applied logics, rather than deontic. One may wonder what class, if any, is captured

by positive introspection, i.e., by schema 4 ∶= ◻A → ◻ ◻ A, negative introspection, i.e.

5 ∶= ¬ ◻A→ ◻¬ ◻A, or by other modal axioms.

On the technical side, there are other important open issues to be addressed in regard

to the system MN:

- the finite model property;

- decidability and complexity.

From the predicative standpoint, there are even more open questions, for instance

those related to the completeness of non normal systems which include BF are still open

and require a deeper analysis. Moreover, we see other important directions for future

research.

A preliminary question—somehow broader than the scope of this dissertation—

regards the general relation between multi-relational and Neighborhood semantics. For

propositional non-normal modal logics the two semantics are equivalent Governatori and
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Rotolo (2005). However, it is not obvious if they are still equivalent (in regard, e.g., to

completeness and incompleteness results) above K: Normal systems do not necessar-

ily make Governatori and Rotolo (2005)’s semantics collapse on Kripke’s. Regarding

quantified modal logics, a full comparison of the two semantics is anyway needed.

An immediate extension of the present work is to consider constant domains (FOL⊕

MN). It is definitely less trivial to adopt Governatori and Rotolo (2005)’s semantics and

study the open problem that Arló-Costa (2011) mentioned for FOL⊕E⊕CBF, as well as

to investigate other quantified (classical, monotonic, and regular) systems with constant

and varying domains.

Finally, a question concerning Kracht and Wolter (1999)’s proof that non-normal

modal logics can be simulated by a normal modal logic with three modalities. This result,

which holds for MN, is of great interest in the context of multi-relational semantics,

whose structures can in fact recall Kripke frames for multi-modal logics. However, when

predicate calculi are added to the propositional modal base we can obtain unexpected

interactions between Barcan schemata and modal axioms. Hence, extending Kracht and

Wolter (1999)’s case to QNML is an open question.

4.3 Applications: Beyond Deontic Logics

As we said, that of non normal modal systems is a rather broad field and it concerns

modal and applied logics besides deontic logics. There may be several applications

within epistemic logics, for instance, as these systems can prevent one or more forms

of omniscience. We have decided to conclude this dissertation by discussing a possible

application of non normal systems in epistemic contexts, although the perspective taken

is upside down. In fact, we decided to apply non normal concepts to define omniscience,

rather than to block it. This final section does not provide any new result, nor it goes

into great technical details. It can be seen as a technically light practical example of the

flexiblity of both modal languages, and non normal systems.
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Even though it can be argued that they do not represent a perfect solution for the

problems we touched upon in Chapter 1, Non Normal modal logics are, however, a far

better tool than normal systems to deal with deontic concepts. Their expressive power,

moreover, is not limited to applications within legal and moral field. Indeed, non normal

systems are a natural candidate within the field of epistemic logics when the goal is that

of avoiding logical omniscience (Fagin et al., 1995, 335). In fact non normal logics may

solve several problems related to epistemic concepts. Below we shall analyse the concept

of omniscience form the modal standpoint.1

4.3.1 Defining Omniscience: a Logical Perspective

One of the major problems the logician willing to model knowledge and belief has to face

is that of avoiding, or at least alleviating, the problem of omniscience. The efforts are

usually focused on creating models for agents (either human or artificial) with bounded

rationality and finite cognitive capabilities: such agents, thus, do not possess complete

information about how the world is. Logical omniscience is often seen, therefore, as a

problem to be solved and the solutions proposed so far are numerous (Fagin et al., 1995;

Meyer, 2001).

Nevertheless, if the issue to be addressed is that of understanding and studying

the concept of omniscience, such perspective should be reversed, in order to push the

concept of knowledge to its most extreme possibilities. This stated, one may think that

1In a recent work, namely (Rotolo and Calardo, 2013), we actually have argued that such systems
are a good tool even for the logical and philosophical analysis of traditional concepts like the problem
of defining God’s omniscience. Instead of trying to avoid, as it usually the case, agents’ omniscience,
in our paper we decided to build logically such concept starting from the epistemic reading of modal
schemata. The usual approach is that of starting from a system like K and to weaken it until one reaches
the desired level of ignorance. In our work, however, we have adopted the opposite perspective, namely
we started from a system with ignorant agents and we kept adding axioms in order to achieve a perfect
level of omniscience. We argued that one must start from the Classical Propositional Calculus CPC
adding to it one by one all those rules and axioms useful to define total omniscience. However, and it
is not surprising, we argued that in order to achieve the goal one must assume the modal system to be
normal. In this Section, we shall summarize our work up to the point when adding normal schemata is
necessary, in order to show with a practical example how any modal system weaker than K is actually
better than a normal one to treat ignorance. This analysis will also provide a deeper analysis of the
epistemic reading of several modal schemata.
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omniscience is quite an easy property to get and hence to formalise. However, this is

only partially true. If on the one hand it is quite easy to define logical omniscience in

terms of knowledge of the logical truths (Fagin et al., 1995), on the other it turns out to

be rather difficult to formally capture the insight of factual omniscience, which has to

do with propositions having a different status (Girle, 2000).

A first informal definition may be that omniscient is the agent that has complete or

maximal knowledge. What this informal definition means precisely is the research issue

we address in (Rotolo and Calardo, 2013).

Even though we are exploring a different scenario, we shall use the same modal

schemata we have already seen throughout this dissertation. We list them below just

to make this Section somehow self contained. Here we used Ki (used instead of ◻) is

an epistemic unary operator indexed with the label of an agent operating in the system

and a formula as KiA is to be read agent i knows A.

4.3.2 Principle of Co-extensionality: The Minimal Epistemic Logic E

Any system of epistemic logic, if based on the standard modal-logic paradigm (Meyer,

2001), should assume to enjoy some minimal formal properties. In particular, it is well-

known that any modal logic should at least be closed under logical equivalence (Chellas,

1980). This will be our starting point to formally analyse the notion of omniscience.

When dealing with CPC, one standard and well-known option is adopting a Fregean

approach to semantics. In a given state of affairs, propositions are taken to be different

names of the only two semantical objects populating the universe: Truth and Falsehood.

A tautology is a proposition which is true only in virtue of its logical form: the truth

values of its components do not influence the truth of the whole in the slightest. The set

of tautologies can hence be described as the class of all the true names of Truth: those

propositions whose truth is certain and unchangeable. A most famous result in formal

logic states that all theorems of CPC are tautologies and vice versa.
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Two propositions that share always the same extension, can be regarded as logically

equivalent and, in a logical sense, identical. This can be expressed symbolically as A ≡ B:

whichever truth value A is given, it would be identical to B’s and vice versa.

A basic requirement the knowledge base of any omniscient agent should meet is the

principle that for any known sentence A, all its equivalents are also known. What we are

stating is merely that if something is known, then all those facts which ‘look’ different but

are actually the same (logically, extensionally) must also be known. This is a well-known

modal principle and it can be compared to Leibniz’s Law, here applied to propositional

logic. What this principle states is that if two propositions are logically equivalent, they

are epistemically interchangeable and, as we saw in Chapter 1, it is captured formally

by the rule

RE ∶= A ≡ B / ◻A ≡ ◻B

As we explained in Chapter 2, it can be added to CPC to generate the minimal

system of Classical Propositional Modal Logic E.

When knowledge and belief are modeled in epistemic logics like E, which are much

weaker than K, then the epistemic logics can have a peculiar semantic reading, which

is suitable to provide a fine-grained interpretation of logical omniscience. Modal logics

weaker than K—which are called generically non-normal, in contrast with any normal

logic that is stated to be as strong as, or stronger than, K (Chellas, 1980)—can be

interpreted, as we have seen in Chapter 2 on multi relational models with strong truth

conditions. The introduction of a plurality of worlds connected via a given accessibility

relation R stems in epistemic logics from the need to represent agents’ relative ignorance

(i.e., partial knowledge) about the world. Given a state w, all the R-associated worlds t

are seen as epistemic alternatives to w itself (Fagin et al., 1995; Meyer, 2001): When we

have such a relation R which connects a world w with all alternatives where A is true,

then we can say that ◻A is true in a world w—and ◻A is meant to say that an agent
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knows/believes that A is true. The plurality of worlds captures the notion of partial

knowledge as follows. Suppose an agent i lives in Paris and does not know if today it

is raining in London (p:= ‘It is raining in London’). If i does not have access to any

reliable source of information, he simply ignores all about the weather in London; hence

he has at least two epistemic alternatives: for i in the perspective of Paris, (1) p is true,

(2) p is false. However, as soon as the agent gains access to new pieces of information

concerning the meteorological situation of London, the number of alternatives that he

considers possible drops. If, for instance, he reads that it is currently raining in London,

the epistemic alternatives he considers are only those which reflect the real situation,

i.e., only those in which the proposition p is true. Her knowledge base would then change

accordingly. However, the plurality of worlds expresses only one aspect of agents’ relative

ignorance. As we said, we also assume to work with a plurality of accessibility relations

as discussed in Chapter 2.

Originally, as we have already stated, multi-relational semantics was developed in the

field of deontic logic. In deontic logic the Kripke accessibility relation selects for each

world those states of affairs that are (morally, legally, etc.) ideal with respect to it: hence,

if ◻A is true in a world w, this simply means that A is the case in all ideal alternatives to

w. The interpretation of multi-relational models, as given for example in deontic logics,

is thus that each accessibility relation corresponds to a particular “standard of value”

or a norm that selects those ideal worlds; however, it is not guaranteed that such worlds

are still ideal according to different standards of value or norms, namely, according

to different accessibility relations. In this perspective, different relations correspond

to different deontic standards or that conflicting norms are obtained from otherwise

consistent different systems of norms.

If we import this intuition in the domain of epistemic logics, the multiplicity of re-

lations may express the idea that there exist many epistemic standards and that the

truth-conditions for knowledge assertions can vary across contexts as a result of shifting
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epistemic standards. The idea of plurality of epistemic standards (Pollock, 1986, 190–

3) was defended within different philosophical theories of knowledge (Malcolm, 1952;

Goldman, 1976; Rorty, 1979), none of which should be necessarily assumed to confer a

minimal philosophical meaning to epistemic multi-relational models. Let us just con-

sider how Hector-Neri Castañeda (Castañeda, 1980, 217) illustrates what a plurality

of epistemic standards means and how it may affect the truth conditions of knowledge

assertions:

Example 4.3.1 (Discovering America example adapted from (Castañeda, 1980))

“What counts as knowing” that Cristoforo Colombo discovered America on October 12,

1492 might change depending on whether we are considering (i) a television quiz show,

(ii) a high school student’s essay, or (iii) a defense of the traditional dates of America’s

culture from some famous Harvard historian. Hence, we have in this example three

epistemic standards. The fact that

Ki(Colombo discovered America on October 12, 1492) (4.1)

is true according, for example, to standard (i) does not entail that it is also true according

to standard (iii), which is somehow more demanding.

Hence, in general, we could tolerate epistemic expressions such as

KiA ∧Ki¬A (4.2)

because different standards can lead to know that Colombo discovered America or to

know that this was plainly false. This can said to be true even when the epistemic agent is

the same. For instance imagine a modern scientist, who believes in darwinian evolution,

who happens to be also a fervent Catholic. According to his scientific paradigm, he

believes A ∶= living beings evolved through the ages from very simple and different forms
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to take their actual shape and ¬A:= living beings were created by God precisely as they

are now and evolution is a lie. Well these statements, although contradictory, can be

known by the same agent, at the same time under different paradigms. Clearly one has to

add a further condition here, namely that knowledge does not entail truth. Indeed, if we

do not impose any special condition on multi-relational frames, then we have the modal

system E. In this setting, it is easy to check that formula (4.2) is not contradictory.

Hence, if we interpret relations as different epistemic standards, it is not required

that the truth of (4.2) corresponds to a genuine cognitive dissonance (Aronson, 1969),

because there is no real epistemic conflict between KiA and Ki¬A: Each formula refers

to a different standard. A true cognitive dissonance rather occurs when Ki(A ∧ ¬A) is

true, because this sentence means that there is a logical conflict within a same standard.

Assume now to formalize Example 4.3.1 following the above semantic intuitions.

Example 4.3.2 (Discovering America (cont’d)) Let us denote ‘Colombo discov-

ered America on October 12, 1492’ with A and represent standards as follows:

(i) a television quiz show = R1

(ii) a high school student’s essay = R2

(iii) a defense of the traditional dates of America’s

culture from some famous Harvard historian = R3

For formula

KiA (4.3)

it is sufficient that A is true in all worlds selected by one standard, as the model in

Figure 4.1 shows.

This analysis suggests that the agents’ ignorance is not only captured by having more

alternatives for a given world, but also by having more standards. In fact, the standards

(i), (ii), and (iii) of Example 4.3.1 and 4.3.2 represent different contexts as well as “per-
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Figure 4.1: A simple model illustrating Castaẽda’s example.

spectives” of knowledge, which overall express the fact of a structural bounded epistemic

capability with regard to the time when America was discovered: for an omniscient agent

g it would be odd to argue that in a certain perspective g knows that P is false while in

another perspective he knows that P is true, because an omniscient being is supposed

to know precisely what is objectively true: hence, a multiplicity of epistemic standards

reflects a certain degree of ignorance, at least insofar as the absence of ignorance is

taken to correspond to omniscience. Indeed, reducing the number of relations lessens

the structural degree of ignorance of agents and leads to a higher degree of agents’

omniscience.

4.3.3 An Easy Step after E

As already stated several times, the first step in the path that leads from E to full logical

omniscience, is adding schema M, i.e.,

M ∶= Ki(A ∧B)→ (KiA ∧KiB)

This schema seems relatively acceptable in epistemic logic. First of all, its validity is

assumed in most non-normal modal systems—it is actually discarded only by the system

E. Second, the schema looks conceptually harmless: if I know/believe both sentences

together, at the same time, then it must be also true that I know/believe that America

was discovered by Colombo on October 12, 1492 and that I know/believe that Betsy
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Ross reported in May of 1776 that she sewed the first American flag. Semantically, M

corresponds to the property stated by Lemma 2.2.6. In other words, if there is one

epistemic standard according to which A and B are jointly true, there are two standards

that validate respectively A and B.

Consider the following example:

Example 4.3.3 (Colombo and Betsy Ross) Let us denote ‘Colombo discovered

America on October 12, 1492’ with P and ‘Ross reported in May of 1776 that she sewed

the first American flag’ with Q. Again, suppose to work with the mentioned epistemic

standards:

(i) a television quiz show = R1

(ii) a high school student’s essay = R2

(iii) a defense of the traditional dates of America’s

culture from some famous Harvard historian = R3

For formula

Ki(P ∧Q)→ (KiP ∧KiQ) (4.4)

it is sufficient to have supplemented models (see Lemma2.2.10) such as in Figure 4.2.

wP ¬Q

v

¬P Q

s

P ¬Q

z

P Q
2

3

3
2

1

3

Figure 4.2: A simple model M illustrating Example 4.3.3.
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In the modelM represented in the figure, for any x ∈W , we have that x ⊧Ki(P ∧Q)

because there is a relation R1 such that R1(w) = {z} = ∣∣P ∣∣∩ ∣∣Q∣∣. All epistemic alterna-

tives that make both P and Q true are related to w via the perspective of the standard

“(i) a television quiz show”; hence, it is true in w that the given agent knows/believes

that P ∧Q is the case. Also, the other two standards, “(ii) a high school student’s essay”

and “(iii) a defense of the traditional dates of America’s. . . ” connect w respectively to

precisely those worlds that make true the sentences P (via R3) and Q (via R2), hence

- Ki(P ∧ Q) is true in w (via standard (i), i.e., relation R1), KiP is true in w (via

standard (iii), i.e., relation R3) and KiQ is true in w (via standard (ii), i.e., relation

R2);

- for any other world x ∈ {v, s, z}, we have that x /⊧Ki(P ∧Q); therefore

- formula (4.4) is true in M.

4.3.4 Conflicts, Coherence and Epistemic Paradigms

There is a further important schema that from the perspective of epistemic systems plays

a central role in our quest for a logical definition of the concept of omniscience, namely,

the schema C:

C ∶= (KiA ∧KiB)→Ki(A ∧B)

Adding C to the formerly defined system M generates the system R, the smallest regular

modal logic. This system shows very interesting properties. Let us focus on C. If there

are two standards guaranteeing respectively that KiP and KiQ are true, then there is

possibly a third standard that selects all the epistemic alternatives in which P ∧ Q is

true, namely, Ki(P ∧Q) holds. In general, the result for C is the following:

Example 4.3.4 (Colombo and Betsy Ross (cont’d)) For formula

(KiP ∧KiQ)→Ki(P ∧Q) (4.5)
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it is sufficient to have structures closed under intersections. Notice that the model in

Figure 4.2 also validates (4.5). However, consider a subtle variation, as depicted in

Figure 4.3.

wP ¬Q

v

¬P Q

s

P ¬Q

z

P Q
1,2

3

3
2

1,3

Figure 4.3: A variationM′ of the modelM of Figure 4 that validates (4.4) but falsifies
(4.5).

The model M′ in Figure 4.3 still validates (4.4). However,

- KiP is true in w (via standard (iii), i.e., relation R3) and KiQ is true in w (via

standard (ii), i.e., relation R2);

- Ki(P ∧Q) is false in w because ∣∣P ∣∣ ∩ ∣∣Q∣∣ = {z} but there is no accessibility relation

Rj such that Rj(w) = {z}.

- formula (4.5) is false in w and not valid in M′.

Here, we may have indeed two epistemic standards that individually support the agent’s

knowledge/belief that ‘Colombo discovered America on October 12, 1492’ and ‘Ross re-

ported in May of 1776 that she sewed the first American flag’ are true, but it is far

from obvious that there is a standard that support them jointly. On the other hand, the

difficulty in saying that there is such a standard for P ∧Q does not undermine the truth

of (4.4), since, if there is no such relation, then the formula is trivially true in w (its

antecedent is false).
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Notice that schema C plays a crucial role in enforcing cognitive dissonances and in

making explicit epistemic conflicts. Indeed, let us take Example 4.3.4 and replace Q

with ¬P . Hence, we can simply consider the following instance of C:

(KiP ∧Ki¬P )→Ki(P ∧ ¬P ) (4.6)

Since (4.6) is true for example in w, then there is at least an epistemic standard (rep-

resented in the example and in Figure 4.2 by R1) that connects w to all epistemic

alternatives that make P ∧ ¬P true. However, P ∧ ¬P ≡ �, hence the standard refers

to a contradiction, which makes void R1 and hence we should have that R1(w) = ∅. In

a different but related perspective, since the modal system R makes valid the inference

rule RR, i.e., ⊢ A ∧B → C ⇒ ⊢KiA ∧KiB →KiC (Chellas, 1980, chap. 2), then, if

we have KiP and Ki¬P , we obtain KiX for any sentence X: (P ∧¬P )→X is in fact a

tautology of CPC. Hence, suppose we know/believe that P and know/believe that ¬P .

We could obtain KiQ, Ki¬Q, Ki(Q ∧ ¬Q), Ki(Bologna is in the UK), and so forth.

4.3.5 A Different Path: Truth and Logical Omniscience

We have discussed some very weak epistemic logics. However, we highlighted that com-

bining schemata M and C results in the well-known modal system R, where a much

stronger version of logical omniscience emerges: Here, we can easily include any tautol-

ogy and logical truth in an omniscient agent’s knowledge base as well as making explicit

any cognitive dissonance.

A different (and not equivalent) path can be taken to capture full understanding by

assuming M and state that an agent knows the Truth. This last statement is expressed

by the axiom schema known in the alethic tradition as the Necessity of Truth:

N := ◻ ⊺
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As formerly observed, the propositional constant ⊺ is taken to mean the Truth and its

truth value is, accordingly, always true. Notice that the schema N is enough to include

any tautology and logical truth in an omniscient agent’s knowledge base. Knowing only

one theorem, only one logical Truth would be enough to know all the classical theorems.

Indeed for any theorem A it holds that A ≡ ⊺ and it is enough to apply RE and MP to

derive ◻A. Hence, it is sufficient to add the schema N to the system E to state that any

omniscient agent knows all the truths of logic, i.e., all the theorems generated within

the system. This intuition is usually captured by the rule RN:

RN := A / ◻A

As we saw in Chapter 2, NM-systems is that it enables the switch from multi-

relational strong semantics to weak frames.

Notice that N states something rather strong. It says, in fact, the any agent operating

within the system knows all the truths of logic, all the theorems. However this type

of omniscience still concerns the abstract truths of mathematics rather than contingent

facts. This difference turns rather more evident if looked at from a semantic perspective.

What the schema claims, in fact, is that an agent knows all valid propositions, i.e. those

formulae which are true everywhere, in all possible worlds of all possible frames and

under all possible valuations. On the other hand, if a fact happens to be true in a

specific state of a model, under a specific valuation (but it can still be false under other

conditions) there is no way—yet—to infer that an agent knows it.

So far we have presented a semantic scenario designed to accommodate different

epistemic perspectives and paradigms. In fact, given the laws of CPC, we are bound to

accept that any proposition has one and, even more important, only one truth value:

the law of excluded middle A∨¬A is a classical tautology. Semantically this is mirrored

by the fact that the intersection of two complementary sets of epistemic alternatives is
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always empty. Hence no genuine epistemic standard (i.e., a relation which is not empty)

can accommodate both A and ¬A. That known facts should be coherent is suggested, as

we already said, by the schema C; it states is that if an agent knows two distinct facts

and such facts are contradictory, then he must also use a further epistemic standard

which is trivial, i.e. a standard which makes him believe everything (semantically: an

empty binary relation). On the other hand, if the two facts are indeed consistent with

each other (semantically: the intersection of ∥A∥ and ∥B∥ is not empty), then, by C,

the agent must possess another epistemic standard to accommodate both propositions.

In general for any couple of genuine epistemic paradigms, there must exist a third one

which takes into account those facts that are common to both. This means that true

knowledge is consistent and cannot handle contradictions, i.e., all non trivial epistemic

paradigms are coherent with each other. Intuition would suggest that this is equivalent

to possessing only one epistemic standard and this is perfectly consistent with our idea

of perfect knowledge. Recall that, semantically, a multi-relational weak frame with only

one binary relation is called a Kripke-frame.

It is often argued that from the epistemic perspective normal systems are too strong

to model human agents and in this section we understood why: Despite the manageabil-

ity of such logics for AI applications and their low computational complexity, normal

epistemic logics raise a number of difficulties if employed to philosophically clarify the

nature of human knowledge and belief. One of the most well-known problems is that

normal epistemic logics are affected by various forms of logical omniscience, which looks

mostly unsuitable for modeling human epistemic capabilities (Fagin et al., 1995; Meyer,

2001).
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