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[ . . . ] mais il me semble que je ne
pourrai jamais saisir précisément cette
image, qu’elle est pour moi un au-delà
de l’écriture, un «pourquoi j’écris»
auquel je ne peux répondre qu’en
écrivant, différant sans cesse l’instant
même où, cessant d’écrire, cette image
deviendrait visible, comme un puzzle
inexorablement achevé.

Georges Perec, Penser/Classer
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SUMMARY

The central topic of this thesis is the study of algorithms for type checking, both
from the programming language and from the proof-theoretic point of view. A type
checking algorithm takes a program or a proof, represented as a syntactical object,
and checks its validity with respect to a specification or a statement. It is a central
piece of compilers and proof assistants. We postulate that since type checkers are
at the interface between proof theory and program theory, their study can let these
two fields mutually enrich each other. We argue by two main instances: first, starting
from the problem of proof reuse, we develop an incremental type checker; secondly,
starting from a type checking program, we evidence a novel correspondence between
natural deduction and the sequent calculus.

We begin in Chapter 1 by presenting what will be the main tool on which relies
our work: the LF metalanguage [Harper et al., 1993]. It is a generic and expressive
notation for proofs, based on the central notion of hypothetical judgment, that can
serve as a data structure to represent encoded proofs. We first introduce it informally,
and then formally define it and develop its metatheory. The contributions of this
introductory chapter are:

2 a self-contained presentation of SLF, a spine-form variant of LF, based on Martin-
Löf [1996]’s analysis of the notion of judgment;

2 the formal development of its metatheory with some novel aspects

In Chapter 2, we are interested in proof certificates. A proof certificate is the result
(or byproduct) of a computation which validity with respect to a specification can be
communicated and checked independently. It allows the trust we put on complex
computation’s results to depend only on a small verification program. In particular,
we study the generation and manipulation of proof certificates in LF. This study
leads to the design of a framework to easily develop certifying programs. Its main
contributions are:

2 the formal description of DLF, an extension of LF designed to write certifying
programs and check the produced proof certificates;
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2 within this context, a novel proposition to manipulate open terms: the “environment-
free” programming style, syntactically supported by function inverses;

2 the description of a lightweight framework for computing certificates, imple-
mented as an OCaml library, and tested on some documented, full-scale exam-
ples.

Relying on the grounds of Chapter 2, Chapter 3 shows how the idea of providing
certificates for a typing judgment (certifying type checking) can be extended to a
mechanism for producing these certificates incrementally. Practically, this makes
possible a form of incremental type checking by reuse of previously-computed sub-
derivations. Given the certifying implementation of a type checker for a chosen
language, the user can provide in turn program deltas representing modifications on
a large program: the well-typing of the whole program will be certified by verifying
only the modified parts. The contributions of this chapter are:

2 a conservative extension of Chapter 1’s SLF allowing to share and reuse pieces
of SLF objects, based on a subset of Contextual Modal Type Theory [Nanevski
et al., 2008] and giving a formal account of memoization in a higher-order setting
where data contains binders and substitution is built-in;

2 a conservative extension of Chapter 2’s DLF which allows turn any certifying type
checker into an incremental one;

2 the description of its implementation as an OCaml library.

Finally, we depart from proof certificates in Chapter 4 to present a proof-theoretic
result, byproduct of the work on type checking algorithms. Using and extending tools
developed by Danvy and Nielsen [2001], we bring to light a functional correspon-
dence between intuitionistic natural deduction NJ and (a variant of) the intuitionistic
sequent calculus LJ. Starting from the functional implementation of a type checker
for the extended λ-calculus and using off-the-shelf program transformations, we show
that it can be transformed into a type checker for a well-known sequent calculus-style
term assignment system (LJT, Herbelin [1994]). The contributions of this chapter
are:

2 a systematic transformation of natural deduction-style type checkers into sequent
calculus-style ones, bringing out the relative natures of eliminations and right
rules;

2 the development of a general notion of data structure reversal and the correspond-
ing semantics-preserving program transformations, which allows to derive, from
a recursive program, the composition of a reversal function and an accumulator-
passing style program;

2 a novel proof of completeness of LJT with respect to NJ through this transforma-
tion.
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INTRODUCTION

If Computing Science is the study of computation, it is just as much the study of
knowledge. Computation, understood as the external process of producing infor-
mation, was familiar to the human being long before the computer was invented:
from numeric calculations for trading and bookkeeping to mathematical models for
predicting physical phenomena, systematic methods to compute have been a tool to
humans alongside the hand axe and the plow. Computing efficiently, without appeal-
ing to too much external tools, developing simple methods for computing complex
results, describing them concisely and unambiguously. . . These are obviously the
sought goal of every computer scientist of former and current days.

The essence of an effective method of computation, or algorithm, is that it is
devised once, as a finite sequence of “steps”, but can be reused indefinitely in different
situations, or with different input: the procedure for adding two numbers m and n
by counting on your fingers—start with a closed fist, raise m fingers, then raise n
fingers, then count how many fingers you have raised—works as well for computing
2+2 than for computing 3+5. The procedure itself can then be conveyed to another
person which will be able in turn to add any two numbers. But now a second, more
efficient algorithm may be taught to compute addition, for instance by organizing
them in a positional numbering system, and adding them digit-by-digit with a carry:

+

1

1 2 3
3 9

1 6 2

Surely, it is faster, and requires less space (or fewer fingers) to compute the addition
of two large numbers. But is this new addition the same as the first one? Does it
always compute the same result, for any two input numbers? This is a legitimate
question for a skeptical pupil who just learned this method. She can try on some
examples (2, 10, 100) to compute additions with the first and second method and
compare the results, but nothing would prevent the 101th test to fail giving the same
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result. After having explained the algorithm, how can the teacher, who long ago
comprehended it, convey the idea that it really captures the notion of addition we
know? How can one experience the truth of such an assertion, and how can this
acquired knowledge be transmitted so as to convince another skeptical person? Is it
even conceivable to convey such a “belief” unerringly?

These epistemic questions, who interested the philosophers since Aristotle, are
put vastly at stress by the advent of the computer, and the use of it we make today.
The computer is, as its name implies, the “ultimate” external computing device: its
one and only purpose is to take any algorithm, provided that it is explicit enough
to be formulated in a fixed language (the program), any input data and execute the
program step-by-step on the data. The algorithm can be arbitrarily complex for a
human being to understand, the data arbitrarily large, no questions will be asked;
yet, how can the user of the computer be convinced that the result of a computation
is conform to its expectations?

Imagine a large spreadsheet of thousands lines of data, cell values depending
heavily on each other by complex formulae. Now imagine changing the value of
one cell on line one. The result we expect from that change is that all cells will take
the same values as if we had entered the new value in place of the old when we
constructed the spreadsheet in the first place. Instead, in that case, the algorithm
that is triggered by the spreadsheet program is to invalidate all cells which value
depend on the changed one, and recompute only these by propagating the changes;
this way, the computer is spared the costly recomputation of already computed
values. Of course, the corresponding program is expressed in much more detail,
probably thousands of lines of program code. Will this complex program always
behave as if we had reentered by hand the whole spreadsheet again? Is it conform to
its specification? Or does it have a bug? If this spreadsheet is used to compute our
yearly taxes, it better not! But if it is used to compute the trajectory of a space rocket
carrying people, then it must not. On a less dramatic yet equally critical note, each
time we view a web page, code is sent over from the site and executed on our very
computer. This piece of program has been written by someone we do not know and
cannot trust; she could have intentionally exploited a security hole in our browser to
retrieve our personal data, or a bug may have crept into that code that makes our
computer unusable for an annoying couple of seconds. How can we be convinced,
how can we know for sure, that a program fulfills its specification?

This thesis explores several aspects of the relationship between a program and
its specification, under the lens and resting upon the solid foundations of proof
theory. It is the discipline of mathematics and computer science that has for object
proofs. Proofs is intended here not only as mathematical proofs, but more generally
as evidences in the juridical sense, as any process able to convince (a judge, a user,
a skeptical pupil) of a certain statement. Like a legal evidence, it can be direct—
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immediate, or through a series of steps—mediate. In Per Martin-Löf’s words:

Thus, if proof theory is construed, not in Hilbert’s sense, as metamath-
ematics, but simply as the study of proofs in the original sense of the
word, then proof theory is the same as theory of knowledge, which, in
turn, is the same as logic in the original sense of the word, as the study
of reasoning, or proof, not as metamathematics.

[Martin-Löf, 1996]

We shall convince the reader that it is this very object, the proof, that bridges the
gap between specifications and programs, and moreover in a very powerful way: if
given a syntactical incarnation, it constitutes an indisputable evidence of the truth
of a statement that can be communicated to convey knowledge about programs and
computations.

One could object right away that our two instances of proofs—a proof about a
computation method that the pupil may have the curiosity to investigate, and a proof
that large and complex program respects its specification, and that the user want
to trust—are of a very different nature. In the first case, its purpose is to convey to
another human being the understanding of a certain object; with that understanding,
she might adapt the method and intuit how to add two binary numbers for instance.
The second instance is in a sense much more mundane: the user of a spreadsheet
program has no intention of understanding the inner workings of her program, nor
use that knowledge to build a new, enhanced one (at least, most users do not). Her
intentions are simply to be ensured of its result. Will she read the proof herself to
eventually be convinced that it computes well? If the proof is such an indisputable
evidence of this fact, could she not rather let her computer itself verify the proof? If
she trusts the program that verifies the proof, and if this program says that a proof
is correct, then she will know that the proof is indeed correct. Such a proof that is
written to convince with such a fine reasoning granularity that it is verifiable by a
computer is a formal proof, and such a verification program for formal proofs is called
a proof checker, or, in the community of type theory to which the author belongs, a
type checker.

But let us go back to the nature of a proof, and how it can be represented in
a computer. There are many different views on what constitutes an indisputable
evidence, and even many formal languages in which to express the statement itself:
first-order logic is the most well known, but intuitionistic, modal, temporal, linear
logics are of utmost importance when carrying formal proofs about software. How-
ever, all share a common core: reasoning is made by atomic steps, or inferences, each
step possibly involving already known facts; these facts are either built up themselves
from other inferences or posed as hypotheses. They vary however by the set of valid
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inferences they allow; fixing a set of inferences fixes the way we will be allowed to
reason.

If I want to communicate a proof from a computer to another, that is if I want
a proof to have a concrete existence in the computer’s memory, I will have first to
define a data structure for it, a format. Will I have to make a choice right away
on which particular logic the proofs will need to be written in? This thesis begins
by exposing such a syntactical notation for proofs in the first chapter. It has the
particularity of not committing to any idiosyncratic way of reasoning, but instead to
be logic agnostic: it is not a logic, it is a metalanguage for proofs, or logical framework
(hence its name, LF). It fixes only a convenient notation, close to the λ-calculus, for
the small reasoning core common to all logics; a proof written in this format, or proof
object will begin by stating its reasoning principle, its logic. How do I know that an
LF proof is correct? With this data structure comes a type checking algorithm that
describes how to validate (or not) a given proof object.

Contrarily to mathematical proofs, proofs about computer software are often very
large and shallow: they do not involve sophisticated mathematical objects, but the
number of cases to verify is usually huge. Will the programmer of the spreadsheet
have to write the proof entirely by hand before sending it to the user? In the second
chapter, we are interested in how to generate proof certificates. A proof certificate is
an object that is output by a program together with its result, certifying that its result
is correct with respect to a given specification. For instance, a programmer might
work in a high-level programming language that ensures a certain safety property on
the execution of its programs: they do not corrupt memory, they always output an
even integer. . . The compiler of this programming language could issue a certificate
stating that the code produced respects this property. How should we write such a
certifying program? It turns out that general-purpose programming languages are
not adapted to the task of writing programs that issue proofs: even if it is possible, it
is hard because of the hypothetical nature of proofs. In this chapter, we will design a
core programming language that has built-in facilities to deal with proof certificates.

A type checker is a piece of software taking a program or a proof, possibly very
large, and simply answering whether it is correct or not. Yet, in mathematics like
in computer science, the process of elaboration or discovery of a proof or program
is much less linear: one does not write, in a single action, a large proof and finally
submit it to the computer for approbation. Instead, the working mathematician
or computer scientist constructs his objects by successive approximations, trial and
error. . . This piece of software, the type checker, does however not allow this kind
of interaction: it only awaits a final, definitive object. The third chapter of this
document investigates the question of designing an incremental type checker able to
accept pieces of unfinished proofs, refining previous versions of the same document.
If the document is very large, it is important for this interaction to take place “in real
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time”: the user cannot wait for whole document to be re-validated at each change,
but would like the computer to be able to only validate (or invalidate) the small
increments building the whole edifice.

There are many different logics or reasoning styles that serve different, sometimes
orthogonal purposes, but two of them occupy a very special place in the landscape
of formal logics: natural deduction and sequent calculus. The inferences of natu-
ral deduction are known to reflect more faithfully the way mathematicians write
(non-formal) proofs; the inferences of sequent calculus are known to to be more
fine-grained, and better adapted to the automatic search of proofs by a computer.
Ironically enough, these two represent the same “abstract” notion of evidence, they
were devised in 1934 by the same logician, Gerhard Gentzen, and they were even
presented in the very same article. So, what is the precise relationship between
natural deduction and sequent calculus? Finally, in the last chapter of this thesis,
we will draw from our experience of writing type checking programs and propose a
partial answer to this question, seen from a computer scientist point of view. This
last incursion into proof theory will eventually close the loop of our investigation of
the nature of programs and their specification by turning upside down our very own
presupposition: we embarked on the quest to explain programs with formal proofs,
we will end up explaining a proof theoretic phenomenon by a program.
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NOTATIONS AND CONVENTIONS

A | LEVELS OF METALANGUAGE

In this document, we will pervasively switch between levels of metalanguage, or
universes, that one ought to differentiate clearly before beginning.

The topmost one, the level of discourse, is used to convey informally ideas to
the reader; it is written in English or in mathematical notations, in black. For
instance: “a set”, “1, 2 ∈ N×N”, or “——————” (an inference bar). Mathematical
notation include all classical notions from basic set theory: set membership “_ ∈ _”,
intersection “_∩ _”, union “_∪_”, comprehension “{_ | _}”, function domain “dom(_)”,
syntactic equality “_= _”, function application “_(_)” ordered pair “_; _” (note this
last, slight unusual notation).

Our main occupation will be, at the discourse level, to define inductive sets and
recursive functions; elements of these sets belong to the syntactic level, and is also
typeset in black, mathematical notations, for instance “∗” or “· ` · : ·”. The ambiguity
is intentional: sometimes, mixing the discourse and the syntactic levels will help the
understanding by avoiding excess of formalism. A notable exception are keywords,
i.e., (English) words that have a special, syntactical meaning, and which will be
typeset in upright bold blue to avoid confusion, for instance “let” or “match”.

We call discourse variables any name or placeholder, bound at the discourse level,
given for a syntactic object. They are named after the set they belong to. Discourse
variables are typeset in dark blue italics, for instance “M”, “Γ” or “σ”; they allow to
form the discourse-level statements like “for all M , there exists a V such that M ↓ V ”.
Alternate names for discourse variables belonging to set X include X ′, X ′′. . . and X0,
X1, . . . , Xn. All free discourse variables are implicitly bound at the beginning of the
statement.

Because this is a computer science thesis, there is another level of discourse that
manipulates syntactic objects: the computational level. Programs, which will here
be mostly written in the OCaml language, are typeset in brown, typewriter case, for
instance “rev_append”. There will thus be a clear distinction between the languages
that are the object (defined, syntactic objects) and the subject (the metalanguage) of
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the discourse.

B | SYNTAX

We will define inductive sets, or languages, by two different means. The first, and
weakest, is by a context-free grammar in BNF form [Backus, 1959], for instance:

T ::= ·
�

� T ; T
�

� πT (A)

When it can be disambiguated from context, we will use the name of the non-terminal
(here T) to refer both to the inductive set and a particular element of this set.

A notable degree of freedom we take from BNF grammars is the use of names.
A name is an element of a predefined set of infinite cardinality on which equality is
decidable. Typographic appearance and color determines the name set to which a
name belongs; for instance, a is different from a. Constants denote names that are
not bound in an expression; they are typeset in a sans-serif color font, for instance
“Cons” or “tp”. By convention, dark green constants denote type constants and dark
red constants denote term or object constants. Variables denote names that are bound
in the same expression. They are typeset in dark teal italics, for instance “x” or “acc”.
This allows to define the set of λ-terms M with constants:

M , N ::= x
�

� c
�

� M N
�

� λx. M

Variable bindings will always be followed by a period “.” or a comma “,”. Very often,
binders will be the last argument of an application spine, because we will use them
à la Church [1940]. For concision, we take a slightly unusual priority convention:
λ-abstraction body will not need parentheses when they are the last argument of
an application spine. For instance the term lam λx. M N will be thus implicitly
understood as lam (λx. M N). We adopt Barendregt [1992]’s convention: any two
terms differing only by the name of their bound variables will be considered equal
with respect to to the mathematical equality = (α-equivalence). We also suppose
defined the set FV(M) of all free variables of a term M .

Finally, functions defined syntactically will have their own name set, typeset in
bold red italics, for instance “infer”.

C | LISTS

We distinguish a particular family of inductive definitions, lists. A list is any inductive
set L that can be expressed by a context-free grammar with all right-hand sides of L
containing at most one occurrence of L. Rules containing one are called cons cells,
and rule containing zero are called nil cells. All other non-terminals are called its
elements. Often, lists will have one nil cell written “·” and one cons cell written “X , L”
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where X is the element. We suppose known a set of common decidable predicates
and operations on lists and their properties: length “|L|”, reverse “rev(L)”, access to
the n-th element “nth(n, L)” for n ∈ N. Besides, we will allow ourselves an implicit
coercion from lists to multisets, so that “X ∈ L” is a valid and decidable predicate if
L is a list and X is an element of Y . If clear from context, we allow the terminals of
the nil cells to be eluded.

D | INFERENCES AND FUNCTIONS

The second, most general kind of inductive definition are inferences. We call a
judgment form a family of sets indexed by one or more syntactic entities; for instance
` A is a judgment form on propositions. A judgment is an instantiated judgment
form, for instance ` p⊃ q. A judgment form is defined inductively by a finite set of
inference rules: they are syntactic constructs mapping a finite set of judgments, the
premises, to the judgment they define, the conclusion. Each rule has a name, typeset
in small capitals. For instance, the modus ponens inference rule is written:

ImpE
` A⊃ B ` A

` B

An element of a set defined by inference rules is called a derivation. We say that
a derivation judges the instance of a judgment if it is the instance of an inference
rule and if each premise itself judges the corresponding instantiated judgment. A
judgment is inhabited if there is a derivation judging it. A judgment will be implicitly
coerced to a mathematical proposition at the discourse level, meaning that it is
inhabited; we will say for instance “if ` A then ` A∧ A.

We give the syntactic shorthand to define recursively functions f : X1 → X2 →
. . . → Xn. Recursive definition is only a convenient notation for the inductive
definition of a judgment f (X1, . . . , Xn−1) = Xn that is decidable and deterministic.
For instance, given a syntactic definition of Peano naturals, the addition function
definition:

0+ n= n
S(m) + n= S(m+ n)

is shorthand for the two inference rules:

0+ n= n
m+ n= p

S(m) + n= S(p)

and the intuitionistic property that for each naturals m and n, either there exists a
unique p and a derivation judging m+n = p, or there is no such p. It is a total function
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if the first case always holds. We then simply write m+ n to refer to the natural p.
We say that we reason by functional induction on the computation of f (X1, . . . , Xn−1)
to mean that we reason by induction over the judgment of f (X1, . . . , Xn−1) = Xn.
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1 | THE LF NOTATION FOR PROOFS

¶ | ABSTRACT How can we represent proofs—any proof in any logic—in a computer? What
data structure should we use to represent and manipulate proofs in memory? In this chapter,
we commit to a particularly elegant representation, the logical framework LF, that will be
the basis our work in the next two chapters. This chapter consists in two parts. In the first,
we introduce informally this notation in our terms, not relying on any prerequisites: it should
constitute a gentle introduction to type theory, and how it corresponds to a hypothetical
notation for proofs. In the second part, we present, formally this time, a variant of LF called
SLF, and show its properties.

1.1 | PRESENTATION

In the tradition emerged from the seminal work of Frege, and Gentzen at the
beginning of the XXth century [Frege, 1879, Gentzen, 1935], a proof is considered to
be a tree, its leaves being hypotheses, and each of its internal nodes being a correct
deduction, from the n premises represented by the n subtrees children of that node,
to the conclusion—the node itself. The breakthrough of this idea is that the notion of
deduction depends here on the logic we choose to reason into (classical, intuitionistic,
modal. . . ) and is not fixed in advance: the representation of deductions as trees is
agnostic from the particular logic used.

Many years later, Per Martin-Löf sets the basis of a metalanguage, inspired by
the work of Church on the λ-calculus [Church, 1940] and a methodical analysis
of the concept of judgment inherited from analytical philosophy: Intuitionistic type
theory [Martin-Löf and Sambin, 1984]. In this metalanguage, one can encode many
common logics (then called object logics) by providing their deduction rules, encoded
as typed constants, and write proofs in these logics, encoded as typed terms. If the
encoding the logic is correct, then the validity or well-typing of a term encoding a
proof implies the validity of that proof.

Harper et al. [1993] propose a physical realization of intuitionistic type theory in
the form of logical framework LF. LF is a language for representing proof systems (set
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1.1. PRESENTATION

of inference rules) and derivations. It features a built-in notion of hypothetical reason-
ing which facilitates greatly the formalization of languages and logics supporting this
kind of reasoning. It is also the basis of Twelf [Pfenning and Schürmann, 1999], a
popular interactive theorem prover specialized in the formalization of programming
and proof languages.

We present this notation for proofs and discuss its advantages as a basis for
mechanically-checked proof certificates.

1.1.1 | FIRST-ORDER TERM REPRESENTATION

A | OBJECTS AND TYPES

Each node of a proof tree corresponds to the application of a rule, taken in the set of
inference rule of the logic. For instance, the particular proof tree D:

D1

` p∧ p′
D2

` q

` (p∧ p′)∧ q

ends with an instance of the rule:

ConjI
` A ` B
` A∧ B

of NJ, the logic of natural deductions [Gentzen, 1935], and is thus correct. To testify
that it is, we can provide the instantiation of the metavariables A and B appearing
in the rule ConjI: A/p ∧ p′, B/q. Then, the verification amounts to instantiate the
rule with the substitution, verify that the conclusion judgment is syntactically equal
to the instantiated form, and that recursively the subtrees verify their respective
instantiated judgments.1 A convenient notation ¹Dº of this tree as a first-order term
could thus be:

� D1

` p∧ p′
D2

` q

` (p∧ p′)∧ q

�

= ConjI[A/p∧ p′, B/q](¹D1º,¹D2º) (1.1)

or more simply, omitting the names of metavariables A and B:

= ConjI(p∧ p′, q,¹D1º,¹D2º) (1.2)

1Note that knowing only the rule we applied, the respective judgments proved by the subtrees D1
and D2 and the substitution to apply to the rule is enough to conclude that the first node of D is a
correct deduction of the judgment ` (p∧ p′)∧ q: there is no need to know neither the actual content
of D1 and D2, nor the exact judgment proved, which can be deduced by substitution. This will be of
crucial importance in Chapter 3

2



CHAPTER 1. THE LF NOTATION FOR PROOFS

Propositions are themselves first-order terms, so they are easily encoded by them-
selves.2 We introduce constant ConjI, which applied to its arguments expresses that if
¹D1º (resp. ¹D2º) is an evidence of the judgment ` p∧p′ (resp. ` q), then it is itself
an evidence of the judgment ` (p∧ p′)∧ q. We call object terms that are evidences of
judgments. To encode judgment forms, let us introduce another constant is which,
applied to an encoded formula, forms a valid judgment:

¹` Aº= is(¹Aº) (1.3)

We call types encodings of judgments (e.g., is((p∧p′)∧q)), and type families encodings
of judgment forms (e.g., is alone). The classification relation between objects and
types is pronounced “has type” and written:

ConjI(p∧ p′, q,¹D1º,¹D2º) : is((p∧ p′)∧ q)

B | OBJECT CONSTANTS

To be able to verify this relation, we need to declare its constants. The declaration of
constant ConjI should encode rule ConjI. For this we assign it a type family. It expects
four arguments, so it should be a function type. Notice that the value of its first
two arguments—the substitution part—determines the judgment of derivations (the
type of objects) expected in place of the last two arguments. This dependency from
object to type is expressed in the syntax of type families by a special function type
construct, dependent product Πx : A. B. An object classified by type family Πx : A. B
is an applicable object with a codomain B dependent on the value of its argument
of type A. If applied to an object M of type A, it will have type B[x/M]. Note that
in Πx : A. B, x binds in B; if x does not appear free in B, we write simply A→ B,
recovering the notation for the usual function type. The rule ConjI is encoded as a
constant ConjI with type:

ConjI : Πx : prop.Πy : prop. is(x)→ is(y)→ is(x ∧ y)

The first two (dependent) arguments of ConjI must be of type prop. Constant prop,
unlike is, forms a type by itself: it does not have to be applied. It corresponds to
the judgment for an object to be a proposition. The last two arguments of ConjI are
given the types is(x) and is(y), corresponding respectively to the judgments ` A and
` B in the premises of the rule.3 Similarly for the logical constants, we assign them a

2We write them in infix notation for clarity
3The metavariables A, B become variables x, y in the metalanguage.
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1.1. PRESENTATION

type family to declare them:4

(∧) : prop→ prop→ prop

C | TYPE CONSTANTS

As for object constants (i.e., encodings of rules), type constants (i.e., encodings of
judgment forms), must also be declared. We write:

prop : ∗

to declare type prop. What about is, a constant that will form a valid type, but only
applied to a prop? Let us use the same functional notations as before:

is : prop→ ∗

so that the application is(p∧q) forms a valid type. What is the nature of the expression
on the right of the colon? It is not a type, because it does not code for a logical
rule or syntactical construct: let us call it a kind K . Therefore these declarations are
very different from the one of ConjI: this time the relation, written A : K, reads “A
is a type family classified by kind K”. We can say that ∗ is the kind of types: only
when we know that a certain type family A is classified by ∗ is it correct to state the
classification M : A for a given term M .

D | SUMMARY

So far, we constructed an encoding of proof trees into first-order terms, and we
hinted at a simple way to verify them. Given a signature, i.e., a set of object and
type constant declarations, we can check if a given object is a valid derivation in this
signature. Let us sum up what we gathered until now:

2 A derivation or syntactic object is encoded by an object.
2 A syntactic or logical rule is encoded by a object constant declaration.
2 A judgment form is encoded by a type family.
2 A judgment or syntactic category is encoded by a type.
2 A type is a type family classified by the kind ∗.
2 An evident judgment, that is a judgment together with its justification, is encoded

by a typing relation, that is an object together with its type.

4This highlights the conceptual similarity between (i) declaring a judgment and the logical rules
justifying it on one side, and (ii) a syntactic category and its constructors on the other: the abstract
syntax of a language is the characterization of the property of being a term of that language. For a
term to be of type prop expresses the judgment that it is a proposition, the same as for a term to be of
type is(p) expresses the fact that it is the evidence that ` p.
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CHAPTER 1. THE LF NOTATION FOR PROOFS

1.1.2 | HIGHER-ORDER TERM REPRESENTATION
This encoding is sufficient to soundly code all languages and proof systems, but at
the cost of a heavy treatment of hypothetical judgments [Martin-Löf and Sambin,
1984] . For instance, the rule of natural deduction

[` A]...
` B ImpI` A⊃ B

expresses the fact that in the elided part of the proof (the “
... ”), a proof of A is

available and can be used (or discharged) any number of times. We say that the
judgment ` B is hypothetical in the judgment ` A.

A | CUMBERSOME FIRST-ORDER ENCODING

If we want to encode such a hypothetical proof—a higher-order structure—in the
previous first-order term syntax, we can syntactically adopt a local encoding: add
an explicit hypothesis environment to the encoding of our judgment, which becomes
Γ ` A, and thread it throughout the judgments until the leaves. An environment is a
type containing lists of formulae; to discharge a particular list element, we need a
new Var rule (sometimes called Init) and a look judgment to look up in this list. It
gives the following signature:

env : ∗ (1.4)

nil : env (1.5)

(::) : prop→ env→ env (1.6)

look : env→ prop→ ∗ (1.7)

LookO : Πγ : env. look(x :: γ, x) (1.8)

LookS : Πγ : env.Πx y : prop. look(x :: γ, y)→ look(γ, y) (1.9)

is : env→ prop→ ∗ (1.10)

ImpI : Πγ : env.Πx y : prop. is(x :: γ, y)→ is(γ, x ⊃ y) (1.11)

ImpE : Πγ : env.Πx y : prop. is(γ, x ⊃ y)→ is(γ, x)→ is(γ, y) (1.12)

Var : Πγ : env.Πx : prop. look(γ, x)→ is(γ, x) (1.13)

This is one among many choices of higher-order to first-order encoding that
chooses to represent a hypothesis discharge as its position in the current list of
hypotheses. This encoding is to the higher-order encoding presented below what De
Bruijn indices [de Bruijn, 1972] are to the usual λ-calculus. It poses several problems.

5



1.1. PRESENTATION

First, it departs from the proof notation used to represent the system, leaving more
space for errors or complicating the soundness proof; secondly and more importantly,
it is not adequate [Harper and Licata, 2007]: there is no isomorphism between a
proof and its encoding.

Example 1.1. The hypothetical proof

[` p] [` q]
ConjI` p∧ q

can be encoded as:

ConjI(p :: q :: nil, p, q,

Var(p :: q :: nil, p, LookO(p :: q :: nil, p)),
Var(p :: q :: nil, q, LookS(p :: q :: nil, p, q, LookO(q :: nil, q))))

or in the reversed environment as:

ConjI(q :: p :: nil, p, q,

Var(q :: p :: nil, p, LookS(p :: q :: nil, p, q, LookO(q :: nil, q))),
Var(p :: q :: nil, q, LookO(p :: q :: nil, p)))

In other words, the usual hypothetical notation for proofs makes a quotient on the
actual local representation of proofs, assimilating all proofs that are equal modulo
the so-called structural rules: the environment is implicit, and treated as a set and
not as a list as in the example above. To go from the first to the second explicit proof
is to observe this quotient as a metatheorem about the explicit system: weakening,
permutation, etc. To achieve an hypothetical encoding that is adequate to proofs in
hypothetical logics, we must extend the metalanguage beyond bare first-order terms.

B | λ-TREE NOTATION

To palliate the heaviness (or inadequacy) of local, first-order encodings, let us use a
technique known as higher-order abstract syntax (HOAS) since Pfenning and Elliott
[1988] or λ-tree notation [Miller and Palamidessi, 1999]. It actually dates back to
Church [1940], who used it to encode the binding structure of quantifiers in its simple
theory of types. Besides the application of constants, we introduce a λ construct into
the terms of our notation, serving as a way to introduce (or bind) hypotheses by a
“silent” variable name. To refer to these hypotheses, we extend the set of applicable
names to these variables. The set of terms, or (canonical) objects is then defined by
the following grammar:

M ::= λx. M
�

� H (S) Canonical object

H ::= x
�

� c Head

S ::= ·
�

� M , S Spine

6



CHAPTER 1. THE LF NOTATION FOR PROOFS

An object can be a λ-abstraction, or the application of a constant or variable to
a list of arguments being themselves objects; this list of arguments can be empty
(H (·)), in which case we write simply H. This syntax is isomorphic to the normal
λ-calculus (see Chapter 4); for this reason, we allow to omit the parentheses and
semicolons between arguments and write H M1 M2 M3 for H (M1, M2, M3). The idea
of λ-tree notation is to encode the charging of a hypothesis as a λ-abstraction, and
its discharge as a variable; in essence, it amounts to use the built-in binding facility
λx. M to represent the object logic’s notion of binding, instead of coding it by hand
as before. Let us study a couple of examples:

Example 1.2. The proofs

[` p] [` p]
ConjI` p∧ p

ImpI` p⊃ p∧ p

and
[` p]

ImpI` q⊃ p
ImpI` p⊃ q⊃ p

are encoded respectively as the ground objects

ImpI (p, conj (p, p),λx. ConjI (p, p, x, x)) : is (imp (p, conj (p, p)))
ImpI (p, imp (q, p),λx. ImpI (q, p,λy. x)) : is (imp (p, imp (q, p)))

By convention, we assimilate all objects that differ only by the choice of variable
names (they are quotiented by α-conversion, the so-called Barendregt convention).
Provided we prove adequacy of this encoding, it indeed can rule out the possibility
of several codes for the same proof. Quite naturally, the classifier of an object λx. M
is a dependent product Πx : A. B; which dictates the final syntax of type families and
kinds:

K ::= Πx : A. K
�

� ∗ Kind

A, B ::= Πx : A. B
�

� P Type family

P ::= a (S) Atomic type

and the new signature for our propositional natural deduction on Figure 1.1.
Remark that domains of functional types can themselves be functional (higher-

order types). This is used in rules introducing hypotheses (ImpI and DisjE). A way
to understand their types is to give them an informal game semantics; for instance
the type of ImpI as an instruction from the system to the user writing objects in this
signature reads:

“ImpI: Given two proposition x and y, I’ll give you a proof of x with which
you should build a proof of y. If you succeed, you will have in your hands
a proof of imp (x, y).”,
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1.1. PRESENTATION

prop : ∗
p : prop

q : prop

conj disj imp : prop→ prop→ prop

is : prop→ ∗
ConjI : Πx : prop.Πy : prop. is (x)→ is (y)→ is (conj (x, y))

ConjE1 : Πx : prop.Πy : prop. is (conj (x, y))→ is (x)
ConjE2 : Πx : prop.Πy : prop. is (conj (x, y))→ is (y)

ImpI : Πx : prop.Πy : prop. (is (x)→ is (y))→ is (imp (x, y))
ImpE : Πx : prop.Πy : prop. is (imp (x, y))→ is (x)→ is (y)
DisjI1 : Πx : prop.Πy : prop. is (x)→ is (disj (x, y))
DisjI2 : Πx : prop.Πy : prop. is (y)→ is (disj (x, y))
DisjE : Πx : prop.Πy : prop.Πz : prop. is (disj (x, y))→ (is (x)→ is (z))→

(is (y)→ is (z))→ is (z)

Figure 1.1: LF signature for propositional NJ

where the user builds objects, and the system gives variables. Secondly, note that
there is no Var rule as in the local encoding: the discharge of a hypothesis is handled
by the metalanguage as the application of a variable. Finally, the use of λ-abstraction
implies that checking the well-typing of an object will require to pass an environment
Γ of all variables in scope:

Γ ::= ·
�

� Γ, x : A

This presentation of encoding propositional NJ is now over. The LF methodology
suggests to prove that there is adequacy between the paper notation and its encoding.
We skip the detailed proof, which can be adapted from Harper and Licata [2007].

Theorem 1.1 (Adequacy for propositions). There is a compositional isomorphism
between propositions A of NJ and LF objects M of type prop.

Theorem 1.2 (Adequacy for proofs). There is a compositional isomorphism between
proofs of a proposition A of NJ and LF objects of type is (M) where M is the encoding of
proposition A.

Adequacy is a paper proof, showing that the particular encoding of your logic of
choice is fully and faithfully represented in LF. If a logic is adequately represented
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in LF, then any well-typed LF objects of the right type will correspond to a unique
pen-and-paper proof of your logic, and conversely.

C | SUBSTITUTIONS IN TYPES

We hinted at the beginning of this presentation that the verification of well-typing of
an encoded proof requires to (i) look up the expected type of the head constant (or
variable) (ii) check recursively if the type of its first argument equals its expected
type (iii) if it is a “substitution argument”, substitute its value in the rest of the
expected type (iv) continue with the second argument etc. This is precisely what
we will describe in the next section, but let us first see how this substitution is
defined. The problem is that the grammar given above for canonical objects is not
stable by substitution: textually replacing variable x by M in e.g., x (N) leads in
general to the ill-formed object M (N). In the running example of our signature
(Figure 1.1), variables always appear in argument position, i.e., as objects, so that
textual substitution results in a grammatically valid object (for instance, the expected
type of M in DisjI1 (conj (p, q), p, M) is (is (x))[x/conj (p, q)] = is (conj (p, q))). But it
is not always the case: consider the addition of a universal quantifier to the signature.
We need to add terms, and encode the rules of ∀:

term : ∗
f : term→ term→ term

a : term

p : term→ prop

forall : (term→ prop)→ prop

AllE : Πf : term→ prop.Πx : term. is (forall (λy. f (y)))→ is (f (x))
AllI : Πf : term→ prop. (Πx : term. is (f (x)))→ is (forall (λy. f (y)))

We add a syntactic class of terms, two symbols f and a, and a predicate p taking a term
to a proposition. The syntactic construct forall is of a higher-order type: it provides a
term—a variable x acting as a “hole”—to construct a proposition with holes. This
is an example of the binding structure in a term, handled by the metalanguage.5

For instance, the proposition ∀x. p(x) is encoded into forall (λx. p (x)) (as in Church’s
simple type theory). Observe the type of AllE: the variable f appears in function
position; thus its textual substitution by an actual “holey” proposition like λx. f (x)
would lead to the ill-formed object (λx. f (x)) (x). What is the expected value of this

5Notice the use of the higher-order type in rule AllI: its argument is a term variable x, ensuring
that it occurs only in this subproof. This side-condition, usually explicit in rule ∀I is here handled by
the metalanguage: it is called parametric reasoning
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substitution? The encoding of proof:

D
` ∀x. p(x)
` p(f(a, a))

is the following classification:

AllE (λx. p (x), f (a, a), M) : is (p (f (a, a))) ,

where M codes for D. The type of this object must be the this one (it is the encod-
ing of the judgment above), so substitution (is (f (x)))[f/λx. p (x), x/f (a, a)] must
be is (p (f (a, a))). Such a notion of substitution performing on-the-fly reduction of
β-redexes is called hereditary [Watkins et al., 2003]: its result is always a canon-
ical object, all intermediate redexes being reduced recursively, much like big-step
operational semantics [Kahn, 1987].

Does this operation always terminate? This is one of the main result of the
metatheory of LF, that we describe in the next section.

1.2 | SLF: SPINE-FORM LF

We now describe in detail the syntax and verification algorithm of spine-form LF, and
develop its metatheory.

The original presentation of LF [Harper et al., 1993] defined it as a simply
typed lambda-calculus, with richer types depending over terms, and an additional
conversion rule, whose role was to identify all types being β -equivalent.6 Proving the
decidability of type checking followed from strong normalization of well-typed terms
and the Church-Rosser property of β-reduction. Watkins et al. [2003, 2004] first
proposed a system—Canonical LF—in which only canonical forms have an existence,
i.e., where a well-typed term is necessarily β -normal and η-long. Substitution is then
hereditary, β-normal form is enforced syntactically and η-long form by typing. It
allows to directly reason by induction over these canonical forms, easing metatheory,
adequacy proofs and implementation. Its main metatheorical result consists in
the decidability of type checking, which reduces to the termination of hereditary
substitutions.

The system we present here is a variant of canonical LF, called spine-form LF (or
SLF for short) in Cervesato and Pfenning [2003], Pfenning and Simmons [2007]. In
this variant, application is not a binary construct R M but n-ary: a “function symbol”

6It also featured a type-level λ-abstraction, which was rapidly dropped due to the complication this
induces to the metatheory of the language (see Pfenning [2001] for a survey and history of logical
frameworks).
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applied to a list, called a spine S, of arguments. The functional part of the application
can neither be a λ-abstraction (it would form a redex), nor another application (both
spines could be concatenated into a single, longer spine), so it must be a head H,
i.e., a variable or a constant. Proof-theoretically, this calculus can be seen through
the Curry-Howard isomorphism as a notation for proofs of LJT [Herbelin, 1994]
with a universal quantifier, which is a focused sequent calculus (see Chapter 4). The
advantages of exposing the head H of an n-ary application, which was buried under
n binary applications in canonical LF are of practical nature (unification and proof
search are more efficient, as was suggested by an empirical study in Michaylov and
Pfenning [1992]) as well as theoretical: applications (atomic objects) are classified
by (atomic) types, and η-long normal form-preserving hereditary substitution is
easier to define and reason about.

The metatheory of SLF has been carried out by Sarnat [2010, section 5.1], that
of LF by Harper and Licata [2007]. In Section 1.2.2, we give a slight variation of it
that is novel by several aspects.

2 First, existing developments involve only single substitution; we extend it to
parallel substitutions, since it will come useful in Chapter 2.

2 Secondly, existing developments rely on a notion hereditary substitution that is
indexed by a decreasing simple type argument to make it terminate. We sketch
that by modifying slightly its definition, we can get rid of this type, and clearly
separate substitution from typing.

2 Finally, we give a novel proof of η-expansion that is more compact than those of
Sarnat [2010], Cervesato and Pfenning [2003] and showcases the relationship
between LF and SLF.

1.2.1 | DEFINITION

A | SYNTAX

Figure 1.2 presents the syntax of SLF. As sketched in previous section, a kind K is
either a dependent product or ∗, the classifier of types. A type family A is either a
dependent product (written A→ B in the degenerate case where it is not dependent)
or an atomic type, i.e., the classifier of objects. For future reference, we isolate the
syntactic category of atomic type P, a type constant a applied to a spine S, i.e., a list of
arguments which are canonical objects M . A canonical object M is classified by a type
family and is either an abstraction or an atomic object. An atomic object F is classified
by an atomic type and is the application of a head H (object constant c or variable
x) to a spine S. When unambiguous, we will write H M1 M2 for H (M1, M2) to help
relate it to canonical LF, which has binary, curryfied applications; however bear in
mind that on the contrary to them, spines “grow on the right” (they are cons-list):
the first argument is the topmost in the AST. Similarly, an atomic object H (·) that has
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K ::= Πx : A. K
�

� ∗ Kind

A, B ::= Πx : A. A
�

� P Type family

P ::= a (S) Atomic type

M , N ::= λx. M
�

� F Canonical object

F ::= H (S) Atomic object

H ::= x
�

� c Head

S ::= ·
�

� M , S Spine

σ ::= ·
�

� σ, x/M Parallel Substitution

Γ ::= ·
�

� Γ, x : A Environment

Σ ::= ·
�

� Σ, c : A
�

� Σ, a : K Signature

Figure 1.2: Syntax of SLF: spine-form LF

an empty spine will be written simply H. For all syntactic class X among K , A, P, M ,
F , H, S, we define the set FV(X ) of all free variables in X in the customary manner.

A signature Σ defines an object language: it is a list of declarations of object
or type constants. A local environment Γ is used while type checking a term; it is
a list of variable declarations with their types. Both signatures and environments
are represented, as is as customary, as snoc-list (they “grow on the left”) because
they bind “reversely” to λx. M : in binding Γ, x : A, type family A has in scope all
variables declared in Γ. To emphasize their relation with environments, parallel
substitutions are also presented as snoc-list, but unlike them, they do not bind: in
σ, x/M , variables in dom(σ) are free in M . As customary, for each X among σ, Σ
and Γ, we define dom(X ) to be the set of all the names bound by X , and assume
that all these names are different; the set FV(X ) is extended to X in the obvious way,
respecting its binding structure.

B | HEREDITARY SUBSTITUTION

Next we present the algorithm of hereditary, parallel substitution K[σ] used in
typing and defined on Figure 1.3. It is also defined on A, P, M , F and S. A parallel
substitution7 substitutes all its substituends in the term at once, i.e., each without
affecting the free variables of other substituends; for instance, x[x/y, y/z] = y. It

7Although we could have defined single substitution here, parallel one is a generalization that will
be needed in Section 2.2
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(λx. M)[σ] = λx. M[σ] if x /∈ FV(σ) and x /∈ dom(σ) (1.14)

(c (S))[σ] = c (S[σ]) (1.15)

(x (S))[σ] = x (S[σ]) if x /∈ FV(σ) and x /∈ dom(σ) (1.16)

(x (S))[σ] = M ? S[σ] if x/M ∈ σ (1.17)

·[σ] = · (1.18)

(M , S)[σ] = M[σ], S[σ] (1.19)

∗[σ] = ∗ (1.20)

(Πx : A. B)[σ] = Πx : A[σ]. B[σ] if x /∈ FV(σ) and x /∈ dom(σ) (1.21)

(a (S))[σ] = a (S[σ]) (1.22)

λx. M ? N , S = M[x/N] ? S (1.23)

F ? ·= F (1.24)

Figure 1.3: Hereditary substitution of SLF

takes a kind K and a substitution σ to either a kind K or an error: it is a partial
function. It distributes homomorphically on subterms of kinds, types, objects and
spines (avoiding capture). The interesting case happens when we encounter a
variable application x (S) when x/M ∈ σ (Equation (1.17)): then we trigger a chain
of |S| cuts computed by the auxiliary function M ? S (Equations (1.23) and (1.24)).
It recursively “consumes” the |S| argument if and only if they are in front of |S|
λ-abstractions in M , stopping when the S is empty or in front of an atomic term F .

Example 1.3. If σ is the substitution f/λx. p (x), x/f (a, a) then:

(is (f (x)))[σ] = is ((f (x))[σ])
= is ((λx. p (x)) ? x[σ])
= is ((λx. p (x)) ? (f (a, a) ? ·))
= is ((λx. p (x)) ? f (a, a))
= is ((p (f (a, a))) ? ·)
= is (p (f (a, a)))

This notion of substitution, analogous to the reduction of Cervesato and Pfenning
[1997]’s spine calculus, is identical to that implemented in Twelf [Pfenning and
Simmons, 2007]. It is not equivalent, however, to the more standard definition of
Watkins et al. [2003], Harper and Licata [2007] as it presupposes that all objects are
in η-long normal form [Huet, 1976]: once a cut starts, there must be exactly as many
formal and actual arguments (Equation (1.23)) for it to succeed (Equation (1.24),

13



1.2. SLF: SPINE-FORM LF

called Nil-reduction in Cervesato and Pfenning [1997]) . A non-empty spine cut
against another non-empty spine H (S)?S′ blocks the substitution (in practice, returns
an error), instead of reducing to H (S@S′) (an implicit η-expansion); conversely,
exhausting actual but not formal arguments as in λx. M ? · blocks the substitution
too, instead of returning λx. M .

The usual hereditary substitution for the untyped, canonical λ-calculus is easily
shown to diverge; Watkins et al. [2003] index this operation by some type infor-
mation to make it terminating, and prove that it is complete, i.e., that it computes
appropriately substitution on well-typed term. In the next section, we conjecture
that restricting it as we did to η-long forms is sufficient for it to terminate, as hinted
in this example:

Example 1.4. The term (λx. x (x)) (λy. y) is syntactically not an canonical object.
Instead we write it as the substitution operation (x (x))[x/λy. y], which is ill-defined
and blocks after a few steps: the second x in the left part should be substituted by a
function, yet it is not itself a function (it is not applied):

(x (x))[x/λy. y] = λy. y ? (x[x/λy. y])
= λy. y ? (λy. y ? ·)
6= (error)

A fortiori, the substitution standing for object (λx. x (x)) (λx. x (x)), i.e., the proto-
typical example of non terminating λ-term, terminates with an error. To simulate
its non-terminating behaviour, we would have to build the infinitely η-expanded
substitution:

x (M)[x/M] where M = λy. M ? y

C | TYPING ALGORITHM

Finally we can describe the typing algorithm of SLF. It is itself presented as a syntax-
directed inference system on Figures 1.4 and 1.5. This algorithm is bidirectional in
the sense of Pierce and Turner [2000]: since the syntax is stratified to contain only
canonical objects, we distinguish two kinds of judgment modes, those synthesizing the
type of an object, and those checking that it has a given type, and consequently allows
to omit type annotations on λ-abstractions. The type of canonical object is checked
(it must be provided), whereas the type of atomic objects is inferred (synthesized
by the algorithm). The judgments involved are thus by convention of the form
_ ` _⇐ _ if placeholders have a positive mode (they are input) or _ ` _⇒ _ when
the first two are positive and the last is negative (it is an output). All judgments
except ` Σ sig have an implicit parameter Σ, the current signature, and should be
read _ `Σ _ ⇒ _; all judgments assume that this signature is well-typed: ` Σ sig.

14
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Γ ` M ⇐ A Canonical object

MLam
Γ, x : A` M ⇐ B

Γ ` λx. M ⇐ Πx : A. B

MAtom
Γ ` F ⇒ A
Γ ` F ⇐ A

Γ ` F ⇒ P Atomic object

FVar
x : A∈ Γ Γ; A` S⇒ P

Γ ` x (S)⇒ P

FConst
c : A∈ Σ Γ; A` S⇒ P

Γ ` c (S)⇒ P

Γ; A` S⇒ P Object spine

SCons
Γ ` M ⇐ A Γ; B[x/M] ` S⇒ P

Γ;Πx : A. B ` M , S⇒ P

SNil

Γ; P ` · ⇒ P

Γ ` σ⇐ Γ′ Substitution

σCons

Γ ` M ⇐ A[σ] Γ ` σ⇐ Γ′

Γ ` σ, x/M ⇐ Γ′, x : A

σNil

Γ ` · ⇐ ·

Figure 1.4: Bidirectional typing algorithm for SLF (1/2)

To lighten the syntax of the rules, and since it is invariant throughout typing, this
signature is not mentioned.

The main judgment is Γ ` F ⇒ P which infers the classification of an atomic
object (or fails if it is ill-typed). Looking at the head symbol H, we look up its type,
either in the local environment Γ or in the signature Σ, and compares it against the
spine of argument, one argument at a time, until the end of the spine (judgment
Γ; A` S⇒ P). Notice the form of this judgment: it has a distinguished type A which
is the type awaited by the head symbol, and an inferred atomic type P, the return
type computed for the whole application. The type of every application must be an
atomic type, therefore it must be total, or in other words, objects are enforced to be
in η-long normal form [Huet, 1976]. For each argument, the remaining expected
type is substituted with the actual argument as discussed before (rule SCons); if the
argument is not dependent then x does not appear in B and this substitution has no
effect. At the end of the spine (rule SNil), the remaining atomic type is returned
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as the type of the application. Canonical objects are typed as follows: the type of a
λ-abstraction is a dependent product (MLam), an atomic object is canonical provided
its expected and inferred types match (MAtom); the notion of definitional equality
here being α-equivalence.

Although not part of an implementation of an SLF type checker, we provide a
typing judgment for substitutions. A substitution σ is classified by an environment
Γ′ (written Γ ` σ⇐ Γ′): for each variable x ∈ dom(σ), its substituend M must be
(almost) of the type A associated to x in Γ (rule σCons). Since each binding in a
parallel substitution is independent (it does not bind in the rest of the substitution),
but bindings in environments do, we need to substitute type A by the rest of the sub-
stitution, hence the type A[σ] in the first premise of σCons. There is an interesting
way of reading this judgment, that will be proved later on: if Γ ` σ⇐ Γ′, then σ is
the substitution taking an object M well-typed in environment Γ′ to an object M[σ]
well-typed in environment Γ (note the reversal).

Signatures must be verified by judgment ` Σ sig before they are used. An empty
signature is well-formed (SigNil), and a binding Σ, c : A (resp. Σ, a : K) is well-
formed if Σ is well-formed and A is a well-formed type family (resp. K kind) in the
empty environment and signature Σ (SigType and SigKind). Note that each constant
name in a signature must be unique.8

Verifying kinds or types necessitates an environment, since they both contain
bindings. An atomic type a (S) is well-formed if the argument objects match the
types mentioned in the kind of a (rule AAtom); this is done with the judgment
Γ; K ` S⇒ ∗ which is the type-level analogous to Γ; A` S⇒ P.

1.2.2 | METATHEORY

The metatheory of SLF mainly concerns substitution. It consists of two main theorems.
First, the typing rules of Figures 1.4 and 1.5 form an algorithm; this relies on the fact
that substitution is decidable, that is, substitution is not too strong. Secondly, SLF
enjoys the equivalent of the substitution principle [Martin-Löf and Sambin, 1984],
which states that a hypothetical proof can always become a categorical proof when
we get proofs for its hypotheses; this amounts to say that substitution is not too weak.

A | SUBSTITUTION

First, let us look at the termination of the substitution operation. In modern metathe-
ories of LF and its variants [Watkins et al., 2003, Harper and Licata, 2007, Sarnat,
2010], substitution is a defined as a predicate. A fixed point substitution like ∆∆
would accept an infinite derivation, except for the fact that this predicate is indexed

8Otherwise we would lose the property that if Γ ` F ⇐ P then Γ ` P type.
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Γ ` K kind Kind

KProd
Γ ` A type Γ, x : A` K kind

Γ ` Πx : A. K kind

KType

Γ ` ∗ kind

Γ ` A type Type

AProd
Γ ` A type Γ, x : A` B type

Γ ` Πx : A. B type

AAtom
a : K ∈ Σ Γ; K ` S⇒ ∗

Γ ` a (S) type

Γ; K ` S⇒ ∗ Type spine

ASCons
Γ ` M ⇐ A Γ; K[x/M] ` S⇒ ∗

Γ;Πx : A. K ` M , S⇒ ∗

ASNil

Γ;∗ ` · ⇒ ∗

` Σ sig Signature

SigNil

` · sig

SigType
` Σ sig · `Σ A type c /∈ dom(Σ)

` Σ, c : A sig

SigKind
` Σ sig · `Σ K kind a /∈ dom(Σ)

` Σ, a : K sig

` Γ env Environment

EnvNil

` · env

EnvCons
` Γ env Γ ` A type
` Γ, x : A env

Figure 1.5: Bidirectional typing algorithm for SLF (2/2)
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by the type of the substituend, that is strictly decreasing (which makes substitution a
partial operation). Since substitution is always fed with well-typed objects, this type
can be passed to from typing to substitution and ensure termination and totality.

We conjecture that our definition of hereditary substitution on Figure 1.3, that is
the slight variant where “implicit” η-expansion is not allowed, is indeed terminating,
even if it does not have to rely on typing information.

Conjecture 1.1 (Decidability of substitution).

1. For all M, σ, either there is a unique M ′ such that M[σ] = M ′ or there is no such
M ′;

2. For all F , σ, either there is a unique F ′ such that F[σ] = F ′ or there is no such F ′;
3. For all S, σ, either there is a unique S′ such that S[σ] = S′ or there is no such S′;
4. For all M, S, either there is a unique F such that M ? S = F or there is no such F.
5. For all A, σ, either there is a unique A′ such that A[σ] = A′ or there is no such A′;
6. For all K, σ, either there is a unique K ′ such that K[σ] = K ′ or there is no such K ′;

We follow by a few easy lemmas on inoperative substitutions. There are three
ways for a substitution to be the inoperative, that is to be equivalent to the identity:
to be empty, to be vacuous, and to be the identity substitution. The last one will be
dealt with further below.

Lemma 1.1 (Empty substitution). For X in {M , S, F , A, K}, X [·] = X

Proof. Easy induction over X .

Lemma 1.2 (Vacuous substitution). For X in {M , S, F , A, K}, if FV(X ) ∩ dom(σ) = ;,
then X [σ] = X

Proof. Easy induction over X .

The following lemma is non-trivial, but will be useful to prove the substitution
principle. Composing two substitutions amounts to applying the outer one to each
binding of the inner one. We need to know that two successive substitutions can be
applied in any order.

Definition 1.1 (Substitution composition). We define the composition σ0[σ] of two
substitutions by recursion on σ0:

·[σ] = · (1.25)

(σ′, x/M)[σ] = (σ′[σ]), x/(M[σ]) if x /∈ FV(σ) and x /∈ dom(σ) (1.26)

Lemma 1.3 (Substitution composition).

1. For any X in {M , S, F , A}, X [σ0][σ] = X [σ][σ0[σ]]
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2. If M ? S = F and M[σ] = M ′ and S[σ] = S′, then M ′ ? S′ = F ′ where F ′ = F[σ]

Proof. We first prove the clauses 1. with X ∈ {M , S, F} and 2., and then the clause
1. where X = A. Clause 1. is proved by mutual functional induction over the
computation of X [σ0], similarly 2. is proved over M[σ].

B | TYPING

The first important result now becomes easy: typing forms an algorithm. As before,
we prove the following theorem in an intuitionistic informal logic, which provides a
decision algorithm.

Theorem 1.3 (Decidability of typing).

1. For all Σ, either ` Σ sig or not.
2. Assume Σ such that ` Σ sig. Then:

(a) For all Γ and K, either Γ ` K kind or not.
(b) For all Γ and A, either Γ ` A type or not.
(c) For all Γ, K and S, either Γ; K ` S⇒ ∗ or not.
(d) For all Γ, M and A, either Γ ` M ⇐ A or not.
(e) For all Γ and F, either there exists P such that Γ ` F ⇒ P or not.
(f) For all Γ, A and S, either there exists P such that Γ; A` S⇒ P or not.

Proof. First, we prove parts 2. (d)-(f) by mutual induction over resp. M , F and S,
then we prove 2. (a)-(c) by induction over resp. K, A, S. We use conjecture 1.1 in
the SCons and ASCons cases.

Weakening is a standard property of “localized”, or first-order representations of
systems supporting hypothetical reasoning, like SLF. It states that if an object is well-
typed under a given environment, it is also well-typed in an extended environment:
new bindings just have to be ignored.

Lemma 1.4 (Weakening).

1. If Γ1@Γ2 ` M ⇐ A and ` Γ env then Γ1@Γ@Γ2 ` M ⇐ A
2. If Γ1@Γ2 ` F ⇒ P and ` Γ env then Γ1@Γ@Γ2 ` F ⇐ P
3. If Γ1@Γ2; A` S⇒ P and ` Γ env then Γ1@Γ@Γ2; A` S⇒ P

Proof. By easy mutual induction on Γ, followed by the given derivation.

Finally, the substitution theorem states that we can always replace variables in
the environment by actual terms, and not change the typing of the object. In other
words, substitution is a total operation on well-typed terms.

Theorem 1.4 (Substitution).
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1. If Γ; A` S⇒ P and Γ ` M ⇐ A then M ? S = F and Γ ` F ⇒ P;
2. Let σ such that Γ1 ` σ⇐ Γ:

(a) If Γ1@Γ@Γ2 ` F ⇒ P then F[σ] = F ′, P[σ] = P ′, Γ2[σ] = Γ′2 and Γ1@Γ′2 `
F ′⇒ P ′;

(b) If Γ1@Γ@Γ2 ` M ⇐ A then M[σ] = M ′, A[σ] = A′, Γ2[σ] = Γ′2 and
Γ1@Γ′2 ` M ′⇐ A′;

(c) If Γ1@Γ@Γ2 ` A type then A[σ] = A′, Γ2[σ] = Γ′2 and Γ1@Γ′2 ` A′ type;
(d) If ` Γ1@Γ@Γ2 env then Γ2[σ] = Γ′2 and ` Γ1@Γ′2 env;

Proof. Clause 1. is proved by mutual induction over A. If A = P, we conclude
easily by inversion of the two hypotheses. If A = Πx : A1. A2, by inverting the
hypotheses we get that S = M0, S0 with Γ ` M0 ⇐ A1 and Γ;A2[x/M0] ` S0 ⇒ P
(rule SCons) and M = λx. N with Γ, x : A1 ` N ⇐ A2 (rule MLam). By clause
2. (b), Γ ` N[x/M0] ⇐ A2[x/M0], which by induction gives us an F such that
N[x/M0] ? S = F and Γ ` F ⇒ P, by which we conclude.

Clauses 2. (a)-(d) are proved similarly by mutual induction on Γ. If Γ = · then
by inversion, σ = ·, and all clauses become trivial by lemma 1.1. If Γ = Γ0, x : C ,
then we reason by induction on C , after generalizing the properties. Most cases are
straightforward, except FVar, proved with the help of lemma 1.4, and SCons and
ASCons proved with lemma 1.3.

We are over with the strict core of the metatheory of SLF. The subsequent
sections define operations that we will need to use in Chapters 2 and 3.

C | VARIABLE η-EXPANSION

We now show how to compute a canonical object M of type A when we are given
a variable x of this type. This is non-trivial since our canonical objects must be
η-expanded: if A is a product, then M will need to be a λ-abstraction. It is also
non-trivial because η-expansion generates terms of the form λx. M x which can
naturally be written with a binary application but are syntactically not well-formed
with n-ary ones: η-expansion adds arguments at the end of a spine. Cervesato and
Pfenning [1997], Sarnat [2010] show η-expansion in a spine calculus by appealing
to a technical, ad-hoc construction of partial spines, which are “unfinished” spines
that are allowed to be non-η-expanded; they then use the concatenation operation
on spines, which introduces more properties like associativity and transitivity.

We prefer to introduce the notion of reversed objects which is more natural. . . in
the sense of the natural deduction: they are the usual atomic terms of the standard,
NJ-style presentation of canonical LF [Harper and Licata, 2007].9 We get a more

9This is a good instance of the utility of a data structure reversal as studied in Chapter 4.

20



CHAPTER 1. THE LF NOTATION FOR PROOFS

concise proof of η-expansion, and a more efficient implementation extracted from it,
not relying on concatenation.

Definition 1.2 (Reversed objects). Reversed objects are lists of canonical objects
finished by a variable: they are either variables or the (binary) application of a
reversed and a canonical object.

R ::= x
�

� R M

They are typed by the following two rules:

RVar
x : A∈ Γ
Γ ` x > A

RApp
Γ ` M ⇐ Πx : A. B Γ ` R> A

Γ ` R M > B[x/M]

The following definition and lemmas show the correspondence between reversed
R and atomic F objects.

Definition 1.3 (Reversal). The reversal revS(R) of a reversed object R in a spine S is
the atomic object defined inductively by:

RevVar

revS(x) = x (S)

RevApp
revM ,S(R) = F
revS(R M) = F

Lemma 1.5 (Decidability of reversal). For all S and R, there exists an F such that
revS(R) = F.

Proof. By easy induction on F .

Lemma 1.6. If Γ ` R> A and Γ; A` S⇒ P and revS(R) = F then Γ ` F ⇒ P.

Proof. By induction on the derivation of revS(R) = F .
In the RevVar case, we know for all Γ that if Γ ` x > A then Γ;A ` S ⇒ P.

By inversion of Γ ` x > A, (rule RVar), we have that x : A ∈ Γ and by hypothesis,
Γ; A` S⇒ P; therefore Γ ` x (S)⇒ A by rule FVar.

In the RevApp case, we have Γ ` R M > A. By inversion, we get (rule RApp)
Γ ` R > Πx : A1. A and Γ ` M ⇐ A by inversion of hypothesis Γ ` R M > A. We
also have Γ;A ` S ⇒ P. We must show that Γ ` F ⇒ P which by the induction
hypothesis reduces to showing Γ ` R > Πx : A1. A, which is one of our hypothesis,
and Γ;Πx : A1. A ` M , S ⇒ P. By SCons, this goal reduces to Γ ` M ⇐ A1 and
Γ; A` S⇒ P which are both assumptions.

Corollary 1.1. If Γ ` R> P then Γ ` rev·(R)⇒ P.
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Proof. By instantiation of the previous lemma in the case where S = ·: the second
derivation then has to be SNil, which forces A= P.

Thus, the rev·(R) operation maps a well-typed reversed object to a well-typed
atomic object. We can now define the actual η-expansion operation ηR(A). It maps a
type A to a canonical object of that type, provided we give it an accumulator R of
type A.

Definition 1.4 (reversed object η-expansion). The η-expansion ηR(A) of a type A
with respect to a reversed atomic object R is defined inductively by:

ηAtom

ηR(P) = rev·(R)

ηProd
ηx(A) = M1 ηR M1

(B) = M0

ηR(Πx : A. B) = λx. M0

Lemma 1.7 (Decidability of η-expansion). For all R and A, there exists M such that
ηR(A) = M.

Proof. By simple induction on A.

Lemma 1.8. If Γ ` R> A and ηR(A) = M then Γ ` M ⇐ A.

Proof. By induction on the derivation of ηR(A).
In the ηAtom case, A = P and M = rev·(R), and we know that Γ ` R > P; by

corollary 1.1, we conclude Γ ` rev·(R)⇐ P.
In the ηProd case, we know Γ ` R> Πx : A1. A2, ηx(A1) = M1 and ηR M1

(A2) = M0,
and we have by induction that if Γ, x : A1 ` x > A1 (which is true by ηAtom) then
Γ, x : A1 ` M1 ⇐ A1, and that if Γ, x : A1 ` R M1 > A2 then Γ, x : A1 ` M0 ⇐ A2.
We need to show that Γ ` λx. M0 ⇐ Πx : A1. A2. By MLam, it reduces to Γ, x : A1 `
M0 ⇐ A2 and by the second induction hypothesis to Γ, x : A1 ` R M1 > A2. By
RApp, we are left to prove Γ, x : A1 ` R > Πx : A1. A2, which is our hypothesis, and
Γ, x : A1 ` M1⇐ A1 which is our first induction hypothesis.

We will actually only need to η-expand variables, i.e., use ηx(A). This corollary
provides the first of the two following final results: if we know that x : A, then we
can construct an object of that type.

Corollary 1.2 (Variable η-expansion). For all A, Γ, x : A` ηx(A)⇐ A.

Proof. By instantiation of the previous lemma when R = x. Its second hypothesis
becomes Γ, x : A` x > A which we can deduce by rule RVar.

The second part of this soundness result is that substituting a variable by its
eta-expansion amounts to doing nothing:
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Lemma 1.9 (η-expansion substitution). Let Γ = Γ′, x : A.

1. If Γ ` F ⇒ P then F[x/ηx(A)] = F
2. If Γ; B ` S⇒ P then S[x/ηx(A)] = M
3. If Γ ` M ⇐ B then M[x/ηx(A)] = M
4. If Γ′; A` S⇒ P then ηx(A) ? S = x (S)
5. If Γ ` B type then B[x/ηx(A)] = B
6. If Γ ` K kind then K[x/ηx(A)] = K

Proof. We first prove the first four cases by mutual induction over the derivations
of resp. Γ ` F ⇒ P, Γ; B ` S ⇒ P, Γ ` M ⇐ B and ηx(A) = M . Cases 5 and 6 are
proved by easy induction over resp. B and K .

D | IDENTITY SUBSTITUTION

Next, we define the operation of building a inoperative substitution, the identity sub-
stitution, and prove that it is in fact inoperative. Because our objects are constrained
to be η-expanded, it is not a simple matter of mapping any variable to itself: the
variables must be η-expanded with respect to their types, which are given in an
environment Γ.

Definition 1.5 (Identity substitution). We define idΓ by:

id· = · (1.27)

idΓ,x:A = idΓ, x/ηx(A) (1.28)

As for any substitution, the identity substitution is classified by an environment,
and as for any classification, it happens in an environment. The identity substitution
is precisely the substitution that make these two environments equal Γ ` idΓ⇐ Γ. It
should be read as: idΓ is the substitution that takes an object M well-typed in Γ into
an object M[idΓ] well-typed in the same Γ.

Lemma 1.10 (Identity typing). For all Γ, Γ ` idΓ⇐ Γ

Proof. By functional induction on the derivation of idΓ = Γ′. The first case is trivially
solved by σNil. In the second case, by inversion Γ = Γ′, x : A and by induction,
Γ ` idΓ′ ⇐ Γ′. Combined with corollary 1.2, we conclude Γ′, x : A ` idΓ′ , x/ηx(A)⇐
Γ′, x : A.

Of course, its most important property is that it transports an object M into, well,
the same object M :

Lemma 1.11 (Identity substitution).

1. If Γ ` F ⇒ P then F[idΓ] = F.
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2. If Γ ` M ⇐ A then M[idΓ] = A.
3. If Γ; A` S⇒ P then S[idΓ] = S.
4. If Γ ` A type then A[idΓ] = A.

Proof. All clauses are proved by mutual induction over the computation of idΓ, with
the help of lemma 1.9.

We chose here to implement the identity substitution as a function; this is one
choice, another one could have been to make it part of the data structure of substitu-
tion, and have a special rule for it. This is the approach generally taken by calculi of
explicit substitutions [Abadi et al., 1991, Abel and Pientka, 2010] that we discuss in
Chapter 3.

E | STRENGTHENING

Finally, we will define and prove an operation of strengthening. First, it requires
to prove a property of the same name. Strengthening is the dual of weakening
(lemma 1.4): it states that if an object is well-typed in an environment, but does not
use some of the bindings of its environment, then it is well-typed in a contracted
environment without these bindings.

Lemma 1.12 (Strengthening). Let M (resp F, S) and Γ such that dom(Γ) ∩ FV(M) =
; (resp F, S). Then:

1. If Γ1@Γ@Γ2 ` M ⇐ A then Γ1@Γ2 ` M ⇒ A.
2. If Γ1@Γ@Γ2 ` F ⇒ P then Γ1@Γ2 ` F ⇒ P.
3. If Γ1@Γ@Γ2; A` S⇒ P then Γ1@Γ2; A` S⇒ P.

Proof. By lemma 1.2, it suffices to show Γ1@Γ2 ` F[idΓ]⇒ P[idΓ]; by theorem 1.4,
it reduces to proving Γ1@Γ@Γ2 ` F ⇒ P which is our hypothesis, and Γ1 ` idΓ⇐ Γ
which is lemma 1.10.

This is a somewhat surprising result for two reasons. First, it implies that an
object always has the same or more free variables than its type; the type cannot
contain more free variables than the object, otherwise the conclusion judgments
would be ill-formed. Secondly, it means that if an object M does not use one of Γ’s
variables x : A, we are free to remove it, and the environment will still be valid. This
is surprising seen that environments are dependent (a binding can be used in the
types of all subsequent bindings); yet, this tells us that if M uses a variable x, it also
uses all its dependencies in Γ.

Finally, thanks to this lemma, the strengthening operation reduces a typing
environment to its minimum with respect to an object:
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Definition 1.6 (Strengthening). Strengthening takes an environment Γ and an atomic
object F to an environment Γ′ containing only the free variables of F :

StrenNil

strenF(·) = ·

StrenCons1

x ∈ FV(F) strenF(Γ) = Γ′

strenF(Γ, x : A) = Γ′, x : A

StrenCons2

x /∈ FV(F) strenF(Γ) = Γ′

strenF(Γ, x : A) = Γ′

Lemma 1.13 (Decidability of strengthening). For all Γ and F, there exists Γ′ such
that strenΓ(F) = Γ′.

Proof. By easy induction over Γ.

Lemma 1.14. If Γ@Γ0 ` F ⇒ P and strenF(Γ) = Γ′ then Γ′@Γ0 ` F ⇒ P.

Proof. By induction on the derivation of strenF(Γ) = Γ′, generalized on Γ0. The
property is trivially true in the StrenNil case. In the StrenCons1 case, we know
x ∈ FV(F), strenF(Γ1) = Γ2 and Γ1, x : A@Γ′0 ` F ⇒ P, and we must show Γ2, x :
A@Γ′0 ` F ⇒ P. By the induction hypothesis taking Γ0 = x : A@Γ′0, this reduces to
proving strenF(Γ1) = Γ2, which is a hypothesis, and Γ1@(x : A@Γ′0) ` F ⇒ P, which
is equivalent to our hypothesis Γ1, x : A@Γ′0 ` F ⇒ P. In the StrenCons2 case, we
know x /∈ FV(F), strenF(Γ1) = Γ2 and Γ1, x : A@Γ′0 ` F ⇒ P, and we must prove
Γ2@Γ′0 ` F ⇒ P. By the induction hypothesis, this reduces to Γ1@Γ′0 ` F ⇒ P. By
lemma 1.12, it reduces to our hypothesis Γ1, x : A@Γ′0 ` F ⇒ P.

Corollary 1.3. If Γ ` F ⇒ P then strenF(Γ) ` F ⇒ P.

Proof. By the previous lemma, taking Γ0 = ·.
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2 | COMPUTING AND VERIFYING
PROOF CERTIFICATES

¶ | ABSTRACT How can we write software that users can formally trust? How can a user be
convinced that the result of a computation is correct, without even knowing precisely how
it was computed? Today, this question is too important to be left to human appreciation,
and requires to be based on formal proofs. Relying on the proof representation exposed
in Chapter 1, we develop in this chapter a language for writing certifying programs: along
with their result, they provide a proof certificate, that can be verified independently by the
users. After motivating the need for certifying software, we present DLF, a language for
dynamically computing SLF proof objects. It introduces notably a novel way of computing
hypothetical proofs, which is notably hard, and on-the-fly testing of programs. We then study
in detail a couple of example programs written in it, to demonstrate its usage.

2.1 | MOTIVATIONS

Bugs, security holes, malware have sadly taken a important part in our everyday life,
as much as computers have happily made it easier. We rely every day more heavily
on highly complex software, for banking, traveling, health. . . but also on our very
own computers, that should protect our privacy and the integrity of our personal
data.

How can I trust a piece software? How can I be certain that it will not endanger
my budget, privacy, anonymity or worse my health? If I wrote the software myself,
then I can maybe convince myself that it is bug-free, perhaps using automated static
analysis tools, but what if someone else wrote it, or thousands different people like
the Linux kernel we all use everyday? What if I cannot review its code, because it is
too large, because I do not have the skills or simply because the authors refuse to
communicate it?

These questions are today of paramount importance for informatics in general,
not only when it comes to high assurance software—programs on which rely critical

27



2.1. MOTIVATIONS

stakes, like embedded systems in avionics or automated transport, automated trading
systems etc.—but also in our very browser, operating systems, communication devices.
Every day, we execute mobile code on our browsers, written by people we do not
know and cannot trust, yet we need to be assured that these programs do not have a
bad behaviour on our computer, intentionally or unintentionally.

¶ | PROOF CERTIFICATES Several different answers exist to this legitimate fear.
One is to establish a network of trust with a certain set of programmers, information
sources, companies or institutions and accept programs only coming from these
sources, or from sources trusted by them. This kind of certification is used in practice
and widespread techniques exists to ensure the provenance of the information,
relying mostly on cryptography. If it reduces considerably the risk of malicious
attacks, human mistakes from these trusted entities is still possible.

In this chapter, we study a different approach relying on logical grounds: proof
certificates. When we receive an information from an untrusted source, from a large
piece of software to a single number resulting from a complex computation, we could
ask for a mathematical proof that it respects our criterion for it to be “acceptable”.
We could then check the validity of this proof, either manually or automatically, to
convince ourselves that this information can be trusted, and reject it if the proof was
erroneous, accept and use it if it was correct.

The idea of proof certificates emerged from the work on Proof-Carrying Code
[Necula, 1997] in the field of compilation. Take a compiler that translates a high-level
programming language into machine code. Even if some invariants are semantically
guaranteed on the high-level code (say, no memory access outside the reserved stack
and heap space), what can be said about machine code? How can I, the receiver of
such a machine code, be sure that it has the same guarantees, that it stemmed from
a valid high-level program, that a buggy compiler did not introduce faulty memory
access? The breakthrough of Necula [1997] was to propose to design compilers
that issue, together with the machine code, a formal proof of the safety of that code,
given a certain safety policy previously agreed upon. I could then verify myself, or
with a small proof checker that the code respects my safety policy. This is true in
the situation of mobile code, but also when dealing with pluggable, heterogeneous
components on a unique machine.

But the very same idea can be applied far outside the field of compilation, and
is generally called a certifying scheme: for instance, tools like proof search engines,
satisfiability solvers, type inference procedures, termination checkers, network packet
filters, memory managers all have in common that the relationship between their
input (a program, a formula. . . ) and their output (another program, a single boolean,
a route, a memory span) is a mathematically expressible statement; the proof of this
statement constitutes a certificate of the validity of the answer that can be issued by
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the tool. This scheme has several advantages:

2 it is formally safe, i.e., if someone trusts the logical basis and the formulation of
the safety criterion (the so-called trusted base), then she has no choice but to trust
the certificate;

2 a certificate can be communicated at a distance, independently verified by a small,
trusted kernel;

2 perhaps more importantly, this certificate does not reveal any information on the
way it was built, i.e., there is no need to reveal the source code of the program
that produced it.

Yet another logical approach is to certify the procedure itself by proving that for
any valid input, it will issue a safe answer, for instance in a proof assistant. This is the
certified scheme, and is compared lucidly with the certifying one by Leroy [2006].

¶ | COMPUTING CERTIFICATES With that established, how to express our formal
proofs? And how to write the piece of software (compilers for instance) that will
generate these proofs? In the light of the previous chapter, the first question will
be rapidly eluded by a non-answer: following Necula [1997], let us make the
uncommitted choice of LF. Remember: LF is only a logical framework, a syntactical
toolkit for hypothetical reasoning principle, in which we can encode any logic that
features this kind of reasoning. Choosing LF to represent proof certificates thus means
that the trusted base of the certificate system will have to provide the signature of
a particular logic, agreed upon between the producer and the consumer. Now, the
second question is the actual subject of the present chapter. We will present a
framework for computing and verifying certificates in SLF. It presents two prominent
characteristics.

First, it is difficult to write certificate-issuing programs because they are notably
hard to debug. Imagine feeding a large, complex certifying program P with an input
I ; it issues its output O together with a possibly large proof M , supposedly proving a
safety predicate S(I , O). What if the proof checker fails to check that M is a proof
of S(I , O)? This means that somewhere, program P generated an incorrect piece of
proof, but there is no way in general to relate the incorrect inference with a piece of
code in P. Leroy [2006] suggests that it is possible to use the compositionality of
this certification scheme and split up P into several independently checkable passes.
Our system turns this suggestion into a requirement by checking all certificates right
where they are produced.

Secondly, certificate-issuing programs have to manipulate proofs, that are inher-
ently higher-order objects: as we generate certificates, we will have to generate and
transform terms with binders. Now, usual, functional programming language are
notably not adapted to the manipulation of syntax with binders like LF objects: the
implementation of α-conversion, capture-avoiding substitution, the management
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of free variables are hard and error-prone to implement. Our proposition relies on
the genericity of LF—since a large family of logics can be encoded adequately in
LF, programming facilities to manipulate its objects should provide “the ultimate
solution” to binding—and on an original construct, function inverses, to compute over
objects with free variables.

¶ | OUTLINE This chapter is organized as follows. We begin by presenting informally
and discussing by means of examples the various aspects of our framework, putting
the emphasis on the two novel features evoked above. We will then formally present
our own DLF language: its syntax, that extends SLF with only a few new constructs,
its typed evaluation algorithm, and its properties with respect to SLF. Next, we
present in details two large-scale case studies for the framework: a type inference
procedure and an automated prover. We finally relate it to existing work and point
possible further work.

2.2 | PRESENTATION

SLF is a representation language for proofs, in the manner of HTML for structured
documents: it only provides an encoding and a verification algorithm for proofs.
Although it embeds a notion of computation (hereditary substitution), it is only
superficial: no “real programs” can be written as an SLF object. In other words, these
objects are the data structure we want programs to manipulate. How to generate or
more generally manipulate these proofs, in order to use them as certificates?

In this section, we present informally through examples a programming environ-
ment where the data manipulated are SLF objects. Implemented, it takes the form
of an OCaml library; we describe here only the minimal core of its computational
(functional) language and leave the description of the implementation to Section 3.4.
Its main purpose is to rapidly prototype and test certifying procedures: even though
a procedure can have bugs, the certificates returned are always dynamically checked
with a trusted kernel, equivalent to the type checker for SLF described in Section 1.2.
In the next section, we will formally present the corresponding language DLF and its
properties.

2.2.1 | SPECIFICATION AND EVALUATION
We propose to extend SLF with a few new syntactic constructs allowing to write
certifying code manipulating SLF objects: functions annotated by rich SLF types
serving as specifications, and their code, written using only a simple pattern matching
construct on atomic objects. It is thus a two-level system: the representation level
(SLF) and the computation level (pattern-matching). It is “only” a certifying scheme,
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therefore, the computational level can be thought as an untyped language; our
framework will however insert dynamic checks transparently.

A | SLF TYPES AS SPECIFICATIONS

We choose to represent the specification of these procedures by SLF type families,
giving a double role to the dependent product: its usual role as a way to indicate
the types of constants arguments, and as a way to describe the relationship between
the inputs and output of defined functions, i.e., the usual functional programming
function space, except with dynamic type checks. For instance, each occurrence
of a function f of type Πx : a. p (x) will be dynamically checked to be fed with an
argument M of type a and to return an object of type p (M). Combined with the
possibility for p (or even a itself) to be the encoding of a complex judgment as in
SLF, this allows to assign rich specifications to our procedures.

Example 2.1. Let us consider a weak call-by-name evaluator for the λ-calculus. Its
implementation can be arbitrarily complex (it can exploit e.g., closures, explicit
substitutions, abstract machine, compilation . . . ), but in the end it must obey the
two simple and well-known rules of big-step semantics, taking a closed term to a
closed value (a λ-abstraction):

EvLam

λx. M ↓ λx. M

EvApp

M ↓ λx. M ′ M ′[x/N] ↓ V
M N ↓ V

We can design a procedure eval taking a λ-term M and producing not only a value
V , but also a derivation M ↓ V , enforcing the output V to be correct with respect to
input M . First we declare λ-terms tm and their weak values vl using HOAS encoding:

tm : ∗.
app : tm→ tm→ tm.
lam : (tm→ tm)→ tm.
vl : ∗.
vlam : (tm→ tm)→ vl.

Then the judgment M ↓ V (ev) and its two rules:

ev : tm→ vl→ ∗.
EvLam : ΠM : tm→ tm. ev (lam λx. M x) (vlam λx. M x).
EvApp : ΠM N : tm. ΠP : tm→ tm. ΠV : vl.

ev M (vlam λx. P x)→ ev (P N) V →
ev (app M N) V.

We need a way to pair together a value V and a proof that M ↓ V :
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evt : tm→ ∗.
Pair : ΠM : tm. ΠV : vl. ev M V → evt M.

Type evt is the encoding of a dependent pair Σx : vl. ev (m, x), for a given term m : tm.
Finally, our certifying evaluator will have type:

eval : ΠM : tm. evt M = ...
independently of the actual implementation details. Fed with an object M : tm, and if
it returns an object N , we can check the validity of this answer by checking whether
Γ ` N ⇐ evt (M); if it is the case, then we know that N = Pair (M , M1, M2) where
M1 is our value of type vl.

B | JUST-IN-TIME TYPE CHECKING

What about just letting a complex procedure (say this time a whole compiler) issue
a large certificate as a black box, generated in a completely untrusted manner, and
simply check this certificate afterwards? If this certificate proves incorrect, debugging
the procedure will be a delicate task: there is no way to relate the ill-typed part of
the certificate to the piece of code that generated it. It could even be the case that it
was produced by a correct piece of code which was given an ill-typed object as input.

Example 2.2. A certifying compiler consists of two passes:

c : code
frontEnd−−−−−−→ {d : interm | sameSem′ (c, d)} backEnd−−−−−−→ {e : asm | sameSem (c, e)}

From code c, the front-end generates the pair of some intermediate code d, together
with a proof that it preserves semantics1. From this pair, the back-end generates
assembly code e and a proof that it has the same semantics as the original code c.
The back-end thus possibly transforms its input proof to generate its output. If the
front-end has a bug and generates an ill-typed proof, then checking the back-end’s
returned proof will likely fail a posteriori, without the user knowing where the bug
was. In this case we would better also type check the intermediate proof returned by
the front-end, so that erroneous proof generation is detected as early as possible and
reported where it was generated.

One could note that this is easily realized by introducing dynamic checks, or
assertions, at the beginning and end of functions frontEnd and backEnd. Actually,
expressing the specifications in SLF allows to give an even more precise error report.

Example 2.3. Imagine defining the compiler erroneously as:

compiler : Πc : code. {e : asm | sameSem (c, e)}= funx→ frontEnd (backEnd (x))
1It is common knowledge that this dependent pair can be coded in SLF, similarly to type evt in

the previous example.
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The error is in the glue code of compiler (we inverted the composition of both passes).
With simple assertions in frontEnd and backEnd, this error would be reported at the
beginning of backEnd, when passed an object of type code instead of interm. But
since we have declared types for these functions, we can report the error exactly
in this glue code. Let M : code; the object compiler (M) is well-typed and evaluates
in one step to object frontEnd (backEnd (M)), which is ill-typed. An error is raised,
before evaluating backEnd.

To conclude, type checking objects exactly when they are produced and consumed
by the function manipulating them helps to catch errors and debug certified proce-
dures: we can then produce sensible error messages and fail as early as possible2.
This requirement can be reformulated as:

Each object passed to and returned by a procedure is dynamically checked
for well-typing against the declared type of that procedure. If it succeeds,
its result is thus guaranteed to be correct with respect to its specification.

As we will see in the next section, this requires to interleave type checking and
evaluation phases.

C | EVALUATION BY PATTERN-MATCHING

In what language can we express the code of these functions? It turns out that
it can be written entirely with three construct: a “computational” λ-abstraction
binding formal arguments, SLF objects possibly containing argument variables, and
a pattern-matching construct on atomic terms.

Example 2.4. Let us implement the previous evaluator the simplest way possible,
i.e., by using the substitution built in SLF:

eval : ΠM : tm. evt M = " fun m→ match m with
| « lam "p" »→ « Pair (lam "p") (vlam "p") (EvLam "p") »
| « app "m" "n" »→

let « Pair "m" (vlam "p") "e" » = « eval "m" » in
let « Pair "_" "v" "f" » = « eval ("p" "n") » in
« Pair (app "m" "n") "v" (EvApp "m" "n" "p" "v" "e" "f") »".

We begin by binding argument M : tm to computational variable m with the
funm→ construct, then pattern-match on it. The first pattern is for the lam case:
it binds a computational variable p corresponding to the canonical object of type
tm→ tm (a λ-term with one free variable). On the other side, we create the pair

2At least during the prototyping phase, this seems to be a reasonable help. In production, we could
imagine these costly checks to be switched off, keeping only the global, final type check.
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of the value vlam (“p”) and the “dummy” evaluation proof EvLam (“p”). The second
case is application of objects bound to computational variables m and n. We create
term eval (m) and immediately pattern-match on it3. This has the effect of triggering
the evaluation of term m; for that, we check dynamically that m is of type tm and
that its returned object has type evt (m). The let construct binds p to the resulting
value’s content, and e to the corresponding certificate. The same process is repeated
for term “p” (“n”): p is bound to an object of type tm→ tm, i.e., a term with a free
variable, so its application to n : tm actually denotes the substitution of the free
variable of p to n. This binds the final value v and the corresponding certificate f.
Finally we construct the certificate for the whole term with Pair and EvApp.

Note that there is no variable case: if eval is applied only to closed objects at
top-level, this case will never arise.

2.2.2 | ENVIRONMENT-FREE COMPUTATIONS

Soon however, we will encounter the need for these functions to manipulate open
objects, since SLF objects possibly contain binders. For instance, our certifying
evaluator could be extended to evaluate under λ-abstractions (full evaluation);
function eval would then need to deal with open objects, since we used HOAS for
their representation.

A common choice is to make explicit the environment Γ by which terms are
closed. For instance, in Beluga [Pientka and Dunfield, 2010], such a function would
have a type:

eval : Πg : env.ΠM : ([g]tm). [g](evt (M[idg]))

A type [Γ]A is the type of objects closed by the environment Γ, and an object M[σ] is
the open object M closed by substitution σ. The first product binds an environment
g, the second a term M open in g; the function returns an open certificate evt of the
evaluation of M in the same environment (this is indicated by the identity substitution
on g written idg.

This leads to syntactically distinguish computational and representational types in
two strati: in Beluga, the dependent product in function types is not the same as the
one used to declare constants. Also, the Beluga code for eval would pattern-match
on M and include a variable case.

We propose a different and novel approach to this problem: instead of manipulat-
ing open objects, we “fool” the system into believing that they are all locally closed,
thanks to a notion of function inverses, inspired by and generalized from the idea of

3The let construct is just syntactic sugar for a one-branch match with an irrefutable pattern; the
same way, we use deep pattern-matching even though the formal presentation of Section 2.2 only
includes shallow case analysis.
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type checking without explicit environment (or context-free4) [Geuvers et al., 2010,
Boespflug, 2011]. See Section 2.5 for a comparison.

A | ENVIRONMENT-FREE TYPING

The usual presentation of type checking for e.g., the simply typed λ-calculus features
an environment that is threaded throughout the term; at variable nodes, we look up
their types in it. Another, more recent presentation is to add a “temporary” construct
infer0 (x, A) to the syntax of terms that annotates a variable with its type. When
crossing a binder, we substitute this construct for its variable:

EFLam

` M[x/infer0 (x, A)] : B
` λx : A. M : A→ B

EFApp
` M : A→ B ` N : A

` M N : B

EFAnnot

` infer0 (x, A) : A

Note that there is no variable case, since they should all have been substituted at
their binding site. This forms a type checking algorithm infer : tm → tp that is
equivalent to the usual presentation on closed terms. This technique, reminiscent of
the hypothetical notation of proofs (Section 1.1), is useful to mimic some predicate
logic features in type theory [Geuvers et al., 2010] and to implement an abstract
representation of typed terms in proof assistants [Boespflug, 2011]. It offers the
advantage of completely removing the environment of the picture: during the process,
all terms are closed, since we replaced every free variable by infer0 (x, A), which can
be considered closed (variable x is only kept for informative purpose). But it is at the
cost of having to add this new, “volatile”’ construct of open and typed variables to
the syntax: what to think of the syntactically correct term λx : A. infer0 (x, A)? Is it
equal to λx : A. x?

B | COMPUTING ON OPEN TERMS BY SUBSTITUTION

Remark that the new construct infer0 pairs up variables x (i.e., terms, the input of
function infer) to types A (i.e., its output). For reasons that will eventually become
clear, we call this pair the inverse of function infer. Rule EFAnnot expresses the fact
that inferring the type of an annotated term amounts to return the annotation: in
functional notation, infer (infer0 (x, A)) = A. This idea can be generalized to many
computations on open terms.

Example 2.5. Consider for instance the function computing the projection of a λ-
term prj : tm→ tm which erases all application arguments. It is defined on open
terms by:

prjΓ (λx. M) = λx. prjΓ,x (M) (2.1)

4We prefer to use the term (typing) environment, to avoid confusion with the (evaluation) contexts
of Chapter 4.
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prjΓ (M N) = prjΓ (M) (2.2)

prjΓ (x) = x (2.3)

We can define an equivalent one in the environment-free style:

prj (λx. M) = λx. prj (M[x/prj0 (x, x)]) (2.4)

prj (M N) = prj (M) (2.5)

or in our syntax:

lam : (tm→ tm)→ tm.
app : tm→ tm→ tm.
prj : tm→ tm = " fun x→ match x with
| « lam "m" »→ « lam λx. (prj ("m" (prj0 (x, x)))) »
| « app "m" "n" »→ « prj "m" »".

The annotated term prj0 (M , N) is a term such that prj (M) = N : it pairs up the
input M and output N of function prj. We use this annotation only on variables:
each bound variable will be replaced by prj0 (x, x), meaning: “the call of prj on this
variable should directly evaluate to x”. This way, no variable case is necessary for
prj: it is replaced by a built-in, generic reduction prj (prj0 (M , N)) = N that we call
contraction of a function with its inverse.

The type of inverse functions f0 is deduced from the type of f : we had infer :
tm→ tp, then infer0 : tm→ tp→ tm; we had prj : tm→ tm, so prj : tm→ tm→ tm.
This scheme is easily generalized to functions f with n arguments (see below): then,
we have a family of inverses fn, each with its own type.

C | COMPUTING CERTIFICATES BY SUBSTITUTION

The mechanism of substitution by inverses is particularly suitable to certificate-issuing
functions, where the return type depends on the arguments’ values. Let us see why
on an example:

Example 2.6. Consider now the equals function comparing two λ-terms up to α-
equivalence, and returning a certificate eq for it. This certificate will be built out of
this signature:

eq : tm→ tm→ ∗.
EqApp : ΠE1 : tm. ΠF1 : tm. ΠE2 : tm. ΠF2 : tm.

eq E1 F1→ eq E2 F2→ eq (app E1 E2) (app F1 F2).
EqLam : ΠE : tm→tm. ΠF : tm→tm.

(Πx : tm. eq x x→ eq (E x) (F x))→ eq (lam λx. E x) (lam λx. F x).

and the comparison function reads:
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equals : ΠM : tm. ΠN : tm. eq M N = " fun m n→ match m, n with
| « app "e1" "e2" », « app "f1" "f2" »→

« EqApp "e1" "f1" "e2" "f2" (equals "e1" "f1") (equals "e2" "f2") »
| « lam "t" », « lam "u" »→

« EqLam "t" "u" λx.λh. (equals ("t" (equals0 x x h)) ("u" (equals1 x x h))) »".

Pattern-matching is only partial: for concision, we use matching failure as a way to
signal non-equality. The app case should be self-explanatory. In the lam, we bind
t and u to the two subterms with one free variables. We return a certificate built
out of these, with a recursive call to equals, where the free variables of t and u
have been replaced by resp. equals0 (x, x, h) and equals1 (x, x, h). Both these inverses
have the same type ΠT : tm.ΠU : tm. eq (T, U)→ tm, so that these substitutions are
well-typed. They mean that when we will need to compare the two terms x and x (the
variables bound by these two λ-abstractions), we should return h of type eq (x, x). In
other words, we have the contraction rule equals (equals0 x x h) (equals1 x x h)= h.

D | PATTERN-MATCHING UNDER AN ENVIRONMENT

Note that in this last example, the recursive call to equals happens in the scope of
variables x and h which allows to use them to provide a certificate for the variable
case by contraction. But in more complex examples, this call may have to happen
out of this environment, and we will then need a variation on the pattern-match
construct as introduced in the following example.

Example 2.7. The “volatile” construct eval0 has type ΠM : tm. evt (M)→ tm: it pairs
up a term M and the proof of its correct evaluation. Let us sketch the extension of
our evaluator to full evaluation: the rules of our certificates need to be changed,
something in the line of:5

EvLam : ΠM V : tm→ tm. (Πx : tm. ev x x→ ev (M x) (V x))→ ev (lam M) (lam V).

This constant EvLam is the encoding of rule:

[x ↓ x]...
M ↓ V

EvLam
λx. M ↓ λx. V

The lam case in eval needs to be modified (among others). First, we have to evaluate
the open term M under the hypothesis that its variable evaluates to itself. By pattern-
matching on the result of this evaluation, we get back its value V and a certificate for
this evaluation. For this evaluation however, the system needs to know the extended

5With the previous definition of type ev, this definition is ill-typed (ev should take two objects of
type tm) but should give at least the general idea.
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environment in which it will take place; otherwise, type checking intermediate
results of this computation will fail. We extend the pattern-matching construct to
match M under Γ with C (and its let counterpart), where Γ is the extension of the
current environment in which M is well-typed. The construct match M with C is
then syntactic sugar for match M under · with C . Let us first compute the evaluation
of the open term, under the environment x : tm, h : ev (x, x):

| « lam "p" »→ let « Pair "_" "v" "e" » under «env x : tm; h : ev x x » =
« eval ("p" (eval0 x (Pair x x h))) » in

In the scrutinee, eval0 pairs together the term made up of the free variable, x, and
the desired output of eval when we meet this variable, i.e., the pair of the value x
and its certificate h. Note that the terms we get back (value v and certificate e) are
still open with respect to x and h. It is the responsibility of the programmer to ensure
that they are eventually closed in the return, otherwise the next dynamic type check
will fail:

« Pair (lam λx. "p" x) (lam λx. "v") (EvLam (λx. "p" x) (λx. "v") (λx.λh. "e")) »

The return is the pair of the value lam λx. "v" (v is closed with respect to x) and the
certificate formed by e closed with respect to x and h, and wrapped into the constant
EvLam.

Note that we exploited a meta-argument of the system here, namely the fact that
value v cannot mention name h. Indeed, v is put in a context where h is free. Since
v has type vl, it cannot depend on a variable h of type ev (x, x): values do not depend
on certificates. On the contrary, certificate e does potentially depend on h, so we
have to put it back in a context where both x and h are free.

In Section 2.4, we study some programs written in this style, especially a certifying
type checking procedure. Now would be a good moment for the reader to peek at
this example if the use of inverses is still not clear.

E | TYPE-LEVEL INVERSE ERASURE

We must be careful about one thing with this approach though: because of dependent
types, values can escape in types, in particular values containing inverses, making
some intermediate calls ill-typed. To illustrate it, let us follow by hand the evaluation
of object equals (lam λx. x) (lam λx. x). In one evaluation step, it becomes:

EqLam (λx. x) (λx. x) λx.λh. equals (equals0 x x h) (equals1 x x h)

and in another, to the awaited certificate EqLam (λx. x) (λx. x) λx.λh. h. The inter-
mediate value however is ill-typed: the subterm at the very end, equals (equals0 x x h) (equals1 x x h)
has type eq (equals0 x x h) (equals1 x x h) whereas it is expected by the type of
EqLam to have type eq x x. This is the reason why the inverse construction must
remain “volatile”: it is so to say attached to a surrounding call to equal, waiting to
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be simplified, but once it escapes from its object into a type, it must collapse to its
domain: let us call this reduction erasure. In this case, both inverses are collapsed to
just x; in general, equalsi (S) collapses to the i-th element of spine S, and we prove
further down that this reduction preserves well-typing.

2.2.3 | FULL EVALUATION STRATEGY
The algorithm we describe in the next section performs evaluation of special SLF
objects that may contain function symbols, and interleaved with evaluation is the
type checking of each intermediate results: it is thus a typed evaluation procedure.6

Since values (SLF objects) can contain λ-abstraction, the evaluation in question must
be full: for instance, in the previous section, we were expecting the intermediate
object

EqLam (λx. x) (λx. x) λx.λh. equals (equals0 x x h) (equals1 x x h)

to actually evaluate further, even if the call to equals was buried under two λ-
abstractions. This kind of evaluation differs from the weak evaluation performed in
most functional languages: there, no reduction is done under an abstraction until it
is substituted by an actual argument.

Moreover, remember that when put in contact with its inverse, a function must
not be evaluated, but the domain of the inverse directly returned: in the unary case,
f (f0 (M , N)) = M . To detect this situation, given an object f (M) to evaluate, we must
evaluate M and test if it is the inverse f0 before actually evaluating f . An adequate
strategy for this is call-by-value. Once again, we must be careful with this strategy:

Example 2.8. Consider the prj function of example 2.5 and the (contrived) input
term:7

prj (lam λx. prj0 x (prj x))

The inner call to prj should not be evaluated, since it does not know how to deal
with variables. However, if we evaluate the outer call first, it reduces to:

lam λx. prj (prj0 (prj0 x x) (prj (prj0 x x)))

Now, the inner call can be simplified to x, and computation can succeed with object
lam λx. prj0 x x.

In other words, we must first execute calls to functions outside λ-abstractions

6In a sense, this notion is reminiscent of typed conversion for Pure Type Systems found in e.g.,
Geuvers et al. [2010]: if we do not trust the reduction of a term to preserve typing we can check it at
each step of the reduction.

7This example may seem contrived, however we will use extensively terms of the form
f (c (λx.C1[f

0 (C2[x],C3[f (x)])])), with C1, C2 and C3 large contexts, to express the memoization of
calls to f under an environment.
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before executing calls to functions under one. The good news is that a well-known
technique for full evaluation already respects this constraint. We will thus use and
adapt full reduction by iterated symbolic weak reduction and readback as described by
Grégoire and Leroy [2002]. The idea is to implement full reduction by iterating a
two phases process:8

2 a variant of weak evaluation, symbolic weak evaluation, allowing free, applied
variables to appear in values;

2 a readback procedure that searches in these weak values a potential closure we
could fully reduce.

Note that the authors are interested in contracting β-redexes in arbitrary λ-terms;
on the contrary, our objects are already β -normal (canonical), but we are looking to
evaluate computational function applications.

2.3 | DLF: DYNAMICALLY COMPUTING SLF OBJECTS

2.3.1 | DEFINITION
We can now turn to the formal definition of our system, that we call DLF.

A | SYNTAX

The syntax of DLF is presented in Figure 2.1; it extends the syntax of SLF of
Figure 1.2. We first extend signatures of SLF with a new kind of binding Σ, f : A= “T”
declaring a function f with type A and code T . Functions can be referred to in objects,
so we extend heads with function symbols f . For each function f , we can also refer
to a family of inverses fn indexed by a natural number n (the argument number
on which we “invert” f). Terms T (function code) start with a list of λ-abstraction,
however of a different nature than SLF’s abstractions: they bind function arguments
(i.e., objects) with a new set of computational variables x, y. . . ; these can be referred
to in objects. Atomic terms U follow: they are either atomic objects «F», or a special
pattern-matching construct on a atomic terms match U under Γ with C , where C is
a list of branches, each carrying a pattern and an atomic term. A pattern is linear,
and can have only one form: a constant applied to pairwise distinct variables. The
environment Γ extends the current environment with a set of variables that can
appear free in U and C . We define the set FCV(X ) of free computational variables in
X (for X in {H, T , U , C ,Q, M , F}) the straightforward way.

8The big-step semantics of full reduction are not to be found in Grégoire and Leroy
[2002]; we wrote them down at http://syntaxexclamation.wordpress.com/2012/07/05/
strong-reduction-in-big-steps/ along with several variants in call-by-name, call-by-value,
with and without closures.
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Σ ::= . . .
�

� Σ, f : A= “T” Signature

H ::= . . .
�

� “x”
�

� f
�

� fn Head

T ::= U
�

� funx→ T Terms

U ::= «F»
�

� match U under Γ with C Atomic term

C ::= ·
�

� «Q»⇒ U | C Branches

Q ::= c (x, . . . ,x) Pattern

Figure 2.1: Syntax of DLF, relatively to SLF (Figure 1.2)

To enhance readability, we distinguish syntactically the two “phases” of this
language, the computational world of (atomic) terms, branches and computational
variables, and the representational world of objects, types, patterns, signatures etc.
by surrounding them by respectively antiquotations “T” and quotations «F».9

Note the unusual fact that there is no direct support for function call (application)
or recursion in the computational world. Instead, a “recursive” function is one that
returns or pattern-matches on an object containing its own name, that can be in turn
typed and evaluated by the main loop.

B | SUBSTITUTION

With our new set of computational variable comes a new substitution operation. On
Figure 2.2, we define the unary substitution of computational variables in (atomic)
terms, branches, (atomic) objects and spines. Most cases are straightforward homo-
morphisms, save the side conditions which indicate the binding structure of terms.
The only non-trivial case is Equation (2.13): when actually meeting the variable to
substitute, we trigger a hereditary cut, as defined in Equation (1.17).

Talking about hereditary substitution, its previous definition (Figure 1.3) must
be completed since we extended our language of objects with function symbols and
computational variables. Figure 2.3 defines this easy extension: we just go over these
constructs homomorphically.

C | PROJECTION

We have almost all material needed to present the typed evaluation algorithm. What
we are still missing is first a way to work out the type of an inverse function given

9As we will see in Section 3.4, this is actually the way this language is implemented as a library on
top of OCaml with a syntax extension written in CamlP4.
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(funy→ T )[x/M] = funy→ T[x/M] if x 6= y and x /∈ FCV(M)
(2.6)

(match U under Γ with C)[x/M] =match U[x/M] under Γ[x/M] with C[x/M]
(2.7)

(«c (~y)»⇒ U | C)[x/M] = «c (~y)»⇒ U[x/M] | C[x/M] if x /∈ ~y
(2.8)

«F»[x/M] = «F[x/M]» (2.9)

(λx. N)[x/M] = λx. N[x/M] (2.10)

x (S)[x/M] = x (S[x/M]) (2.11)

c (S)[x/M] = c (S[x/M]) (2.12)

“x” (S)[x/M] = M ? (S[x/M]) (2.13)

·[x/M] = · (2.14)

N , S[x/M] = N[x/M], S[x/M] (2.15)

Figure 2.2: Substitution of computation variables in DLF

. . . (2.16)

f (S)[σ] = f (S[σ]) (2.17)

f i (S)[σ] = f i (S[σ]) (2.18)

“x” (S)[σ] = “x” (S[σ]) (2.19)

Figure 2.3: Hereditary substitution of DLF, relatively to SLF (Figure 1.3)
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the type of its associated function: it is computed by a projection. To each function
f : A= T in a signature Σ, we associate a family of inverses fn for n ∈ N, that have
type (A)n. Each inverse fn should be thought as a projection on the n-th argument
of f . The “code” of this projection is morally computable from A by function πn(A),
but it is not used while evaluating: as exposed earlier, inverses only collapse to their
arguments when they are lifted in the type world.

Definition 2.1 (projection type). We define type (A)n recursively by:

(Πx : A. B)n+1 = Πx : A. (B)n (2.20)

(Πx : A. B)0 = Πx : A. (B)A0 (2.21)

(Πx : B. C)A0 = Πx : B. (C)A0 (2.22)

(P)A0 = Πx : P. A (2.23)

Note that (A)n is defined only for n< |A|, where |A| is the number of products of A
seen as a telescope. It actually consists of two recursive functions: one traversing the
telescope of dependent products until it finds the n-th argument, then, remembering
this argument’s type A, the second going to the bottom of the telescope and adding A
as the return type. Similarly:

Definition 2.2 (projection object). We define the canonical object πn(A) recursively
by:

πn+1(Πx : A. B) = λx.πn(B) (2.24)

π0(Πx : A. B) = λy.πy;A
0 (B) (2.25)

π
y;C
0 (Πx : A. B) = λy.πy;C

0 (B) (2.26)

π
y;C
0 (P) = ηy(C) (2.27)

Note the use of η-expansion in Equation (2.27): The n-th argument of a function
f is not necessarily of an atomic type, it could be itself functional. In that case, its
projection must be η-expanded accordingly.

Example 2.9. Let A be the type of eval, i.e., ΠM : tm. evt (M). It has only one
projection (A)0 = ΠM : tm. evt (M)→ tm and π0(A) = λx y. x. Let B be the type of
equals, i.e., ΠM N : tm. eq (M, N). It has two projections of the same type (B)0 =
(B)1 = ΠM N : tm. eq (M, N)→ tm and π0(B) = λx y z. x and π1(B) = λx y z. y. Let
C = (a→ b)→ c. (C)0 = (a→ b)→ c→ a→ b and π0(C) = λx y z. x (z).

Finally, we define the operation of erasure of inverses. It takes a DLF object to an
SLF object where all inverses have been projected out to their respective arguments.
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Definition 2.3 (Erasure of inverses). Let Σ be a signature. The erasure |M |Σ of a
DLF object M is defined recursively by:

|λx. M |Σ = λx. |M |Σ (2.28)

|x (S)|Σ = x (|S|Σ) (2.29)

|c (S)|Σ = c (|S|Σ) (2.30)

|M , S|Σ = |M |Σ, |S|Σ (2.31)

|·|Σ = · (2.32)

|f i (S)|Σ = |πi(A) ? S|Σ if f : A= “T” ∈ Σ (2.33)

Note that there is no case for functions f . It is on purpose: the erasure is defined and
will be only performed on objects containing no function.

If clear from context, we accept to omit the signatureΣ from the erasure operation.
The only non-trivial case is Equation (2.33): meeting an inverse, we look up its type,
and replace it by the corresponding projection. Since we cannot textually replace it,
we perform a cut.

D | TYPED EVALUATION

The typed evaluation algorithm is based on the tree kind of reductions mentioned
above. We will describe it in big-step semantics, but first let us recall the reductions
it follows

Definition 2.4 (Small-step semantics). Let f be a function of type A and code T . The
following rewriting rules define the small-step semantics of DLF:

f (f0 (S), . . . , fn (S))−→ πn(A) ? S (2.34)

f (S)−→ T � S (2.35)

(funx→ T ) � (M , S)−→ T[x/M] � S (2.36)

U � · −→ U (2.37)

(match «c (S)» with «c (~x)»⇒ U | C)−→ U (2.38)

(match «c (S)» with «c′ (~x)»⇒ U | C)−→match «c (S)» with C (2.39)

f i (S)−→ πi(A) ? S (2.40)

A function applied to all its inverses contracts to the last argument of the inverses
(the announced result of the function); otherwise, it is evaluated; an inverse that did
not meet its corresponding function for contraction is erased.

This rewrite system is clearly not confluent: for instance, a function symbol can
always be evaluated or contracted. The big-step semantics below fixes a strategy: we
give priority to contraction, then to evaluation, then only to erasure.
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Figures 2.4 to 2.6 describe the typed evaluation algorithm. It is presented as a
set of syntax-directed inference rules. Each judgment has the form X ` Y♥Z for ♥
ranging over {↓,↑,⇓}. These arrows indicate respectively weak evaluation, readback
and full evaluation. X and Y are inputs, Z is an output.

As for SLF, every judgment is implicitly parameterized by a constant signature
Σ. Evaluation can either succeed with a well-typed value, or fail in two ways:
either it can return an ill-typed object or it can fail to find a suitable branch in
pattern-matching (matching failure). It can also loop forever.

¶ | FULL EVALUATION The entry point of this algorithm is the judgment Γ ` F ⇓
F ′ : P which states: “In environment Γ, the DLF atomic object F fully evaluates to an
SLF object F ′ of type P”. Object F ′ is a value in the sense that it does not contain
any computational variable, or function or inverse symbols to evaluate anymore.

To fully evaluate an (atomic) object, it suffices to evaluate it weakly, and then
read back the weak value (rules SMObj and SFAtom); the readback will recursively
evaluate under λ-abstractions. A weak value is an object that does not contain
function symbols, except under λ-abstractions. It may still contain inverse symbols,
under and not under λ-abstractions.

¶ | WEAK EVALUATION OF OBJECTS AND SPINES Let us go over the rules of
weak typed evaluation (Figure 2.4). Like SLF, it is a bidirectional system: from a
canonical object M and a type A, we can infer its value M ′; from an atomic object
F , we can infer its value F ′ and its atomic type P. A λ-abstraction is already a weak
value, so we return it as-is (rule MLam). Note that we do not require the body of the
abstraction to be well-typed: this will be checked once it is “opened” by substitution
resulting from evaluation, or “traversed” by readback. There is an implicit type
comparison in rule MAtom. It is done implicitly, in the manner of SLF, only up to
α-equivalence. This means that no computation (function calls) can appear in types.

Evaluating a variable or constant atom is a matter of evaluating the spine attached
to it, returning the reconstituted atomic value (rules FVar and FCons). Along with
the evaluation, we thread the expected type of the variable (resp. constant) to check
it as we go. These two rules are characteristic of symbolic weak evaluation: open
variables applied to a spine are considered to be values (the usual weak evaluation
considers only λ-abstractions to be values). They are also characteristic of call-by-
value: arguments of open variables must be values too for their application to be a
value (in call-by-name, x (S) is a value, even if S is not). Rule FInv is similar: during
weak evaluation, an inverse fn alone behaves just as a constant; note that in this case,
the type of its arguments is checked against the n-th projection type of f as expected.
There is no rule concerning the application of computational variables “x”: they all
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must be substituted during evaluation.10

Argument spines are checked/evaluated by rules SNil and SCons. Similarly to
the typing of SLF (Figure 1.4) the type A of the head symbol is threaded throughout
the list of arguments. Unlike it, all arguments are evaluated recursively and we
reconstitute the spine of values in the end. Note the substitution in the codomain of
the type in SCons: not only do we substitute the value M ′ in the type (and not the
object M), such that we do not introduce computations in the resulting type, but the
value with all inverses erased |M ′|Σ, in accordance with the discussion of Section E.

Rule FEvalInv performs the contraction of a function applied to its inverses we
discussed above. If all the argument of a function f evaluate to the corresponding
inverses f0, . . . , fn, and if all arguments of these inverses are pairwise syntactically
equal, then the function is not called, and we simply return the last argument of the
inverse. This is performed by the cut πn(A) ? S0. If this contraction is not possible,
then we have to actually call the function (rule FEval): after evaluating the argument
spine S and computing the awaited return type P, we trigger the term evaluation
Γ ` T ? S′ ↓ F : P (T is the code of function f). This returns a value F and a type
that must be equal to P. Our initial requirement of Section B is respected here: a
function f ’s actual arguments are checked with respect to its specification A, then it
is executed, then the returned value is checked too.

¶ | WEAK EVALUATION OF TERMS AND BRANCHES Figure 2.5 concerns the
evaluation of terms. We recall that this evaluation is untyped; however, because
dynamic type checks will be inserted in its course, we thread the current environment
Γ. The first judgment for canonical terms, Γ ` T ? S ↓ F : P begins by “eating up”
formal arguments (computational variables bound in T) and actual arguments S of
the function pairwise, replacing one by the other in the body of the function (rule
TLam). When it is done (rule TAtom), the remaining atomic term U is evaluated.
If it is an object F (rule UAtom), this object is evaluated in turn, and its synthe-
sized type P becomes the type of the function’s return. If it is a pattern-matching
match U under Γ′ with C (rule UCase), we evaluate the scrutinee U only for its
value F , which is passed to each branch in C until a match is met (rules CNoMatch

and CMatch). Note that the scrutinee U is evaluated in the enlarged environment
Γ@Γ′ as described informally in example 2.7. Its value F is thus potentially “more
open” than the current environment allows. Since this computational language is
untyped, it is the programmer’s responsibility to ensure that the object eventually re-
turned “closes” the subterms emanating from F by enough λ-abstractions; otherwise
a scoping error will be issued in the final dynamic type check of rule UAtom.

10This is not enforced by this system, which does not check that every computational variable
is bound in a function’s definition. However, it will be enforced by our OCaml implementation in
Section 3.4 since computational variables are implemented by OCaml’s variables.
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Γ ` M : A ↓ M ′ Canonical object

MLam

Γ ` λx. M : (Πx : A. B) ↓ λx. M

MAtom

Γ ` F ↓ F ′ : P
Γ ` F : P ↓ F ′

Γ ` F ↓ F ′ : P Atomic object

FVar

x : A∈ Γ Γ; A` S ↓ S′ : P
Γ ` x (S) ↓ x (S′) : P

FConst

c : A∈ Σ Γ; A` S ↓ S′ : P
Γ ` c (S) ↓ c (S′) : P

FEval

f : A= “T” ∈ Σ Γ; A` S ↓ S′ : P S′ 6= f0 (S0), . . . , fn (Sn) Γ ` T ? S′ ↓ F : P
Γ ` f (S) ↓ F : P

FInv

f : A= “T” ∈ Σ Γ; (A)i ` S ↓ S′ : P

Γ ` f i (S) ↓ f i (S′) : P

FEvalInv

f : A= “T” ∈ Σ Γ; A` S ↓ f0 (S0), . . . , fn (Sn) : P ∀i, j, Si = S j

Γ ` f (S) ↓ πn(A) ? S0 : P

Γ; A` S ↓ S′ : P Spine

SNil

Γ; P ` · ↓ · : P

SCons

Γ ` M : A ↓ M ′ Γ; B[x/|M ′|] ` S ↓ S′ : P
Γ;Πx : A. B ` M , S ↓ M ′, S′ : P

Figure 2.4: Call-by-value weak typed evaluation of DLF objects
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Γ ` T ? S ↓ F : P Canonical term

TLam
Γ ` T[x/M] ? S ↓ F : P

Γ ` funx→ T ?M , S ↓ F : P

TAtom
Γ ` U ↓ F : P
Γ ` U ? · ↓ F : P

Γ ` U ↓ F : P Atomic term

UAtom

Γ ` F ↓ F ′ : P
Γ ` «F» ↓ F ′ : P

UCase

Γ@Γ′ ` U ↓ F : P Γ ` F ? C ↓ F ′ : P ′

Γ `match U under Γ′ with C ↓ F ′ : P ′

Γ ` F ? C ↓ F ′ : P Branches

CNoMatch

c 6= c′ Γ ` c (S) ? C ↓ F : P
Γ ` c (S) ? («c′ (~x)»⇒ U | C) ↓ F : P

CMatch
Γ ` U[x1/M1, . . . , xn/Mn] ↓ F : P ∀i j, if i 6= j then xi 6= xj

Γ ` c (M1, . . . , Mn) ? («c (x1, . . . , xn)»⇒ U | C) ↓ F : P

Figure 2.5: Call-by-value weak typed evaluation of DLF term
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¶ | READBACK Once an object has been put in weak normal form, the work is not
done: there might be some functions left to evaluate under λ-abstractions. We must
go over the object once more, and recursively evaluate under these abstractions. This
is the role of readback (Figure 2.6). All rules should be straightforward, since they
only traverse the term maintaining and verifying the type information, except for
two rules. First RMLam: meeting an object of the form λx. M , we have to guarantee
that M is a value (even a weak one), so we fully evaluate it. Secondly RFInv: if a
weak value does not contain function calls anymore, it might still contain inverses
(because of rule FInv) that were left there for possible contractions. We are now sure
that these contractions cannot happen anymore, since there is no function symbols
in the spine S.11 Hence, now is a good time to erase these inverses. This is what the
cut πn(A) ? S′ performs.

¶ | TYPES, KINDS AND SIGNATURES VERIFICATION We did not include judg-
ments for types, kinds, and signatures. This is because they are checked with the
exact same algorithm defined for SLF (Figure 1.5), only with DLF syntax. In particu-
lar, any constant declarations c containing functions f or inverses f i will be rejected.
This way we can make sure that in the type world, we manipulate only values, and
the comparison of two types can be made only up to α-equivalence. This might be a
controversial choice. We could imagine a system where some constants’ types include
functions to evaluate when they are applied, like in:

c : Πx : a. p (f (x))

We saw the following reasons not to handle this case:

2 first, when checking for the equality of two types, we would need to perform
evaluation, and thus thread the environment and the type information; it would
have complicated greatly the system;

2 secondly, it poses a question on the nature of certificates: if I am handed a proof
containing constant c above, I need to know the code of f and evaluate it to verify
this certificate; is it still a certificate then?

2 but most importantly, we could not think of meaningful examples making this
feature useful.

¶ | DISCUSSION AND CRITIQUE There are two major inefficiencies we can spot in
the evaluation algorithm. First, consider the value

c (M ,λx. N)

11There might be some under λ-abstractions, but these λ-abstractions will always be in the way
between a function and its inverses.
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Γ ` M : A⇓ M ′ and Γ ` F ⇓ F ′ : P Canonical object full evaluation

SMObj
Γ ` M : A ↓ M1 Γ ` M1 : A ↑ M2

Γ ` M : A⇓ M2

SFAtom
Γ ` F ↓ F1 : P Γ ` F1 ↑ F2 : P

Γ ` F ⇓ F2 : P

Γ ` M : A ↑ M ′ Canonical object readback

RMLam

Γ, x : A` M : B ⇓ M ′

Γ ` λx. M : (Πx : A. B) ↑ λx. M ′

RMAtom

Γ ` F ↑ P : F ′

Γ ` F : P ↑ F ′

Γ ` F ↑ F ′ : P Atomic object readback

RFVar

x : A∈ Γ Γ; A` S ↑ S′ : P
Γ ` x (S) ↑ x (S′) : P

RFConst

c : A∈ Σ Γ; A` S ↑ S′ : P
Γ ` c (S) ↑ c (S′) : P

RFInv

f : A= “T” ∈ Σ Γ; (A)n ` S ↑ S′ : P
Γ ` fn (S) ↑ πn(A) ? S′ : P

Γ; A` S ↑ S′ : P Spine readback

RSNil

Γ; P ` · ↑ · : P

RSCons

Γ ` M : A ↑ M ′ Γ; B[x/|M ′|] ` S ↑ S′ : P
Γ;Πx : A. B ` M , S ↑ M ′, S′ : P

Figure 2.6: Call-by-value full typed evaluation of DLF
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where M is a very large, purely applicative object (containing no abstraction). To
evaluate it, we first weakly evaluate it: M is traversed and type checked, and the
same term c (M ,λx. N) is returned since M did not contain any function to evaluate.
On the other hand, N is not traversed since it is under the abstraction. Then, we
must read it back: M is traversed again entirely, and N is finally fully evaluated. The
fact that M is traversed twice is inherent to full call-by-value: in call-by-name, the
weak evaluation step would stop at the constant c without traversing M . This remark
is absent of e.g., Grégoire and Leroy [2002] and to the best of our knowledge, it
would require further study.

The second inefficiency is that most objects, when passed or returned by a
function, will be evaluated/checked several times. Consider for instance the function:

not : bool→ bool= funx→match x with «true»⇒ «false» | false⇒ «true»

The application not (true) will trigger the evaluation of true a first time (rule FEval,
second premise), then the pattern-matching will again (rule UCase, first premise).
This is inevitable in the general case, since the scrutinee can be any term, not only
a computational variable. One solution would be to introduce a new construct in
objects, e.g., {F : P}, tagging the sub-object F as already evaluated and typed of
type P. Another, close solution is described in Chapter 3 and amounts to memoize
manually this procedure; we then gain not only efficiency, but a model for incremental
computations on higher-order term structure.

2.3.2 | METATHEORY
But before delving into this, let us expose the basic properties of this language, with
its inefficiencies.

A | PROJECTIONS

First, we prove that the “code” of an inverse—the projection object—agrees with
its type—the projection type. In an object M , we can substitute an inverse with its
projection without altering the type of the object M . This is established by this easy
lemma on SLF derivations:

Lemma 2.1. For all A such that Γ ` A type and πn(A) is defined for n ∈ N, we have
Γ ` (A)n type and Γ ` πn(A)⇐ (A)n.

Proof. By easy functional induction on the computation of πn(A), relying on corol-
lary 1.2 for Equation (2.27).

With that in mind, we can now prove that the erasure reduction i.e., collapsing a
inverse fn (S) to its n-th argument, preserves typing. The collapse is computed with a
cut between the n-th projection πA(n) and S:
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Lemma 2.2. For all A such that Γ ` A type and S, if Γ; (A)n ` S ⇒ F then Γ `
πn(A) ? S⇒ F.

Proof. By induction on A, using the previous lemma and Figure 1.3

Similarily, we want to prove that the contraction reduction preserves typing,
that is if f (f0 (S), . . . , fn (S)) has type P, then so has the last projection of S, which
represent the given result of the computation, πn(A) ? S. This translates a little
differently in SLF, since there, we do not have functions or inverses. Let us call A
the declared type of f ; inverses have types (A)i, for 0 ≤ i ≤ n; we use variables to
represent these inverses:

Lemma 2.3. For all A such that Γ ` A type and S, if Γ@x0 : (A)0, . . . , xn : (A)n;A `
x0 (S), . . . , xn (S)⇒ P then Γ ` πn(A) ? S⇒ P.

Proof. By lexicographic induction, first on A and then on the given derivation, using
the two previous lemmas.

B | SOUNDNESS

The next property we want to establish is the soundness of the system: if evaluation
returns an object, then this object is a value and this value is a well-typed SLF object.

Definition 2.5 (Value). An object M (resp. F , S, type A) is a value if it injects in the
syntax of SLF objects M (resp. F , S, type A), i.e., if it does not contain function and
inverse names.

Theorem 2.1. In a signature Σ such that ` Σ sig, and for all environment Γ such that
` Γ env:

1. If Γ ` M : A⇓ M ′ and A is a value, then M ′ is a value, and Γ ` M ′⇐ A;
2. If Γ ` M : A ↑ M ′ and A is a value, then M ′ is a value and Γ ` M ′⇐ A;
3. If Γ ` F ↑ F ′ : P, then F ′ and P are values and Γ ` F ′⇒ P;
4. If Γ; A` S ↑ S′ : P, and A value, then S′ and P are values and Γ; A` S′⇒ P.

Proof. By mutual induction over the provided derivations. In cases RFVar, RFConst

and RFInv, we rely on the fact that Σ and Γ contain only value types. In RFInv, we
rely on lemma 2.2.

Corollary 2.1. If Γ ` F ⇓ F ′ : P then F ′ and P are values, and Γ ` F ′⇒ P.

Proof. By rule SFAtom and theorem 2.1, clause 3.

Note that this property holds without appealing to the definition of weak evalua-
tion. Whatever weak evaluation does to an object, the result is rechecked afterwards,
which corresponds to our first requirement in Section B.

Next, we prove that weak evaluation is sound too, i.e., that it always returns a
well-typed object. First, we define the codomain of weak evaluation: weak values.
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Definition 2.6 (Weak value). A DLF object M (resp. F , S) is a weak value if it injects
in the following grammar:

M ◦ ::= λx. M
�

� F ◦

F ◦ ::= H◦ (S◦)

S◦ ::= ·
�

� M ◦, S◦

H◦ ::= c
�

� x
�

� fn

That is, if it contains no function symbols, except under λ-abstractions.

Now, what does it mean for a weak value to be well-typed? It means that the
“applicative tip” of the term, that is, everything outside λ-abstractions, is well typed.
Since weak values are not exactly SLF objects, we cannot use SLF typing directly. We
appeal to a slight variation of SLF:

Definition 2.7 (Weak SLF). We define the typing rules of weak SLF to be the typing
rules of SLF (Figures 1.4 and 1.5) where rule MLam is replaced by:

MLam

Γ ` λx. M ◦⇐ Πx : A. B

and the following rule is added for inverse functions:

FInv
f : A= “T” ∈ Σ Γ; (A)i ` S◦⇒ P

Γ ` f i (S◦)⇒ P

In the following theorem, the judgments in the conclusions of the four clauses
are, as expected, weak SLF judgments:

Theorem 2.2. In a signature Σ such that ` Σ sig, and for all environment Γ such that
` Γ env:

1. If Γ ` M : A ↓ M ′ and A is a value, then M ′ is a weak value, and Γ ` M ′⇐ A;
2. If Γ ` F ↓ F ′ : P, then F ′ and P are weak values and Γ ` F ′⇒ P;
3. If Γ; A` S ↓ S′ : P, and A value, then S′ and P are weak values and Γ; A` S′⇒ P.
4. If Γ ` U ↓ F : P then F and P are weak values and Γ ` F ⇒ P

Proof. By mutual induction over the provided derivations. In case FEvalInv, we use
lemma 2.3 together with Figure 1.3. In case FEval, we use clause (4). Again, cases
FVar, FConst, FEval and FInv, rely on the fact that Σ and Γ contain only value
types.
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2.4 | CASE STUDIES

We now turn to the study of two full-scale examples of DLF signatures, defining
two programs. The first one is a simple but safe automated theorem prover that
will demonstrate the versatility of programming with higher-order abstract syntax in
the production of proof certificates. Like any theorem prover, it needs to manage a
database of hypotheses; the resulting certificate is however produced in a format
where hypotheses are represented by SLF variables. This is implemented by main-
taining at run time a database of pairs of hypotheses and their proofs, which can be
a simple SLF variable bound in the resulting certificate.

The second one is a safe type checker for a language, System T<: which type
system is well-expressed in a declarative manner, but which type inference algorithm
is complex. This use case will demonstrate that letting the type checker emit a
certificate in the form of a typing derivation is feasible, and provides safety with
respect to the specification—the declarative rules. It will also demonstrate once more
the usage of function inverses to implement the traversal of a higher-order term
structure, the terms of our language.

Whereas the computational part of DLF was presented above as a minimalist
functional programming language, we will make here a rather big leap forward, and
assume more than this mere pattern-matching construct; notably, we use OCaml-
like exceptions for the first example. When discussing the implementation of our
framework in Section 3.4, called Gasp, we will see that this is actually realized: the
logical level is (a conservative extension of) SLF, but the computational language is
OCaml itself. By anticipation, we present our examples implemented in Gasp; the
reader must only convince himself that it would be theoretically possible to add the
missing features to DLF.

2.4.1 | CERTIFICATE-PRODUCING PROOF SEARCH

The first illustration of our certifying computation framework is the design of a
small, certifying automated theorem prover for propositional intuitionistic natural
deduction. We suppose an infinite sequence of comparable atomic propositions p,
q. . . Propositions are built out of the grammar:

A, B, C , D, G ::= p
�

� A∨ B
�

� A∧ B
�

� A⊃ B
�

� >
�

� ⊥

We will propose a natural way of programming a proof-search algorithm in Gasp
which, given a proposition, searches for a proof and, if found, returns a certificate in
the form of an LF object representing a natural deduction of the proposition.
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A | MOTIVATIONS

Automated theorem provers are programs used to automatically search for the proof
of a statement in a particular logic and theory. There are numerous calculi to search
for proofs,12 combined with many different implementation techniques (e.g., term
indexing [Ramakrishnan et al., 2001] to optimize one-to-many unification), move
the actual implementation of theorem provers further away from the actual logic
they are searching proofs of.

Many of these tools issue a simple ternary information: they either run forever, or
return a boolean indicating if the given goal is provable or not. These tools can have
a large codebase, that cannot be exempt from bugs: how can then a user trust their
answers? One answer to this legitimate fear is to formally verify a prover e.g., in a
proof assistant such as Coq (for instance Lescuyer [2011] proved a SMT prover);
this approach has the benefit of ensuring trustability of all answers of the prover,
at the expense of the tedious effort of proving the whole program. Another, more
lightweight approach is to design the prover so that it generates proof certificates in
case of success, in a format that can be transmitted and reverified, either by hand or
by a piece of software, usually much smaller than the prover itself (a kernel). Many
complex pieces of a prover (e.g., the term indexing data structures) do not have to
be proved correct then: generally, only the main loop is modified to issue a trace of
its (successful) run. The risk of a false negative (a non-theorem recognized as one by
the prover) is suppressed: soundness is ensured by the independent checker. The
possible returns of the package prover + independent proof verifier are the same
as before — loop forever, fail (because of the prover or the verifier) or succeed —
only the trusted code base, in the case of success, is reduced to just the independent
prover.

In the remainder of this section, we follow this last approach and take the (first)
pretext of proof search to demonstrate the use of our certificate generation library
Gasp. We use a calculus close to the sequent calculus, namely Dyckhoff [1992]’s LJT
to implement a simple tautology prover for intuitionistic propositional logic which
issues certificates in natural deduction.

B | THE LJT+ F CALCULUS

Natural deduction NJ [Gentzen, 1935] is a formulation of intuitionistic propositional
logic (we present it on Figure 4.1 in hypothetical style). It is universally accepted,
so it should form a good format to issue certificates in. However, it is not adequate

12To cite only the most popular, resolution [Bachmair and Ganzinger, 2001] or tableaux [Hähnle,
2001] looks for proofs in classical logic, paramodulation [Nieuwenhuis and Rubio, 2001] for equational
theories, SMT solving for first-order theories [Nieuwenhuis et al., 2006] or focusing [Andreoli, 1992],
a proof strategy devised for linear logic [Girard, 1987] but which turns out to be adaptable to
intuitionistic, classical and many other propositional logics.
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as-is for proof search: reading the rules bottom-up, they do not form an algorithm
(not even a non-deterministic one, with need for backtracking): their application
obliges to “invent” formulae in the premises that was not present in the conclusion
(e.g., the A in ImpE): this system does not have the strict subformula property. The
sequent calculus LJ (Figure 4.2), also introduced in Gentzen [1935], partially solves
this problem: it forms a non-deterministic semi-algorithm for proof search. The main
source of non-termination comes from the Permut and Contract rules, since they
do not strictly make the size of the sequent decrease. Permut is not too much trouble,
it only indicates that a left rule can select any hypothesis in Γ, and not only the
first one in the list: environments are multisets and not only lists. On the contrary,
Contract poses more problems: it makes the multisets into sets, and allows to use a
hypothesis more than once.

Dyckhoff [1992] shows that this duplication can actually be eliminated by chang-
ing the ConjL rule to an admissible, additive version, and refining rule ImpL into four
different rules, depending on the syntactic nature of the implication’s antecedent. In
this modified system LJT, contraction is useless, provided we see environments Γ
as multisets (that is, taking Permut as implicit and building permutation into the
notation). It thus forms a full-blown, complete decision procedure.

We refine the idea a slight bit further to get our own LJT+ F, presented declar-
atively on Figure 2.7, by introducing a limited form of focusing: in LJT, each
application of a rule is a choice among all other valid rule applications, and each
choice made is subject to backtracking (“don’t know” non-determinism). In our sys-
tem, we restrict this choice by restricting rules that can be applied on the judgment:
once we engage in decomposing the goal, there is no rule to switch to decomposing
another formula in the list of hypotheses, unless we meet a disjunction or an atomic
formula. The system consists in two mutually recursive judgments with an explicit
environment Γ, viewed as a multiset of formulae:

Judgment Γ ` A: From the multiset of hypothesis Γ, we can derive A. The derivation
must start by decomposing A into atomic formulae or disjunctions (i.e., positive
formulae), then chooses non-deterministically a hypothesis to focus on (rules
FocusR1/2). Note that is these two rules, the focused formula is actually taken out
from Γ.

Judgment Γ | A` C: From the multiset of hypothesis Γ∪ {A}, we can derive C . The
derivation must start by decomposing A.

This system restricts the use of contraction by concentrating on its only problem-
atic occurrence in LJ, i.e., in conjunction with rule ImpL: in this case, we analyze the
formula on the left of the implication, and specialize its treatment in each case (rules
ImpL1. . . ImpL4). This way, derivability is exactly preserved, as witnessed by the two
following theorems:
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Γ ` A Right rules

ImpR
Γ, A` B
Γ ` A⊃ B

DisjR1
Γ ` A
Γ ` A∨ B

DisjR2
Γ ` B
Γ ` A∨ B

ConjR
Γ ` A Γ ` B
Γ ` A∧ B

TopR

Γ ` >

FocusR1
Γ | A` p
Γ, A` p

FocusR2
Γ | C ` A∨ B
Γ, C ` A∨ B

Γ | A` A Left rules

InitL

Γ | p ` p

DisjL
Γ, A` G Γ, B ` G
Γ | A∨ B ` C

ConjL
Γ, A, B ` G
Γ | A∧ B ` G

ImpL1
Γ, p, A` G

Γ, p | p⊃ A` G

ImpL2
Γ, A⊃ (B ⊃ C) ` G
Γ | (A∧ B)⊃ C ` G

ImpL3
Γ, A⊃ C , B ⊃ C ` G
Γ | (A∨ B)⊃ C ` G

ImpL4
Γ, B ⊃ C ` A⊃ B Γ, C ` G
Γ | (A⊃ B)⊃ C ` G

BotL

Γ | ⊥ ` G

Figure 2.7: The LJT+ F proof search algorithm, declaratively

57



2.4. CASE STUDIES

Theorem 2.3 (Soundness). If Γ ` A then
[Γ]
D
` A

; if Γ | A` C then
[Γ] [` A]

D
` C

.

Proof. By mutual induction on the derivations of Γ ` A and Γ | A` C . We treat only the few
non-trivial cases:

Case ConjL: By induction,
` A ` B
D
` C

. We build

` A∧ B ConjE1` A
` A∧ B ConjE2` B

D
` A

.

Case ImpL1: By induction,
` p ` A
D
` G

. We build ` p

` p ` p⊃ A
ImpE` A

D
` G

Case ImpL2: By induction,
` A⊃ B ⊃ C

D
` G

. We build

[` A] [` B]
ConjI` A∧ B ` A∧ B ⊃ C ImpE` C ImpI` B ⊃ C ImpI` A⊃ B ⊃ C
D
` G

Case ImpL3: By induction,
` A⊃ C ` B ⊃ C

D
` G

. We build:

` A∨ B ⊃ C
[` A]

DisjI1` A∨ B ImpE` C ImpI` A⊃ C

` A∨ B ⊃ C
[` B]

DisjI2` A∨ B ImpE` C ImpI` B ⊃ C
D
` G

Case ImpL4: By induction,
` B ⊃ C
D1

` A⊃ B
and

` C
D2

` G
. We build:

[` C]
D2

` G ImpI` C ⊃ G
` (A⊃ B)⊃ C

[` (B ⊃ C)]
D1

` A⊃ B ImpI` (B ⊃ C)⊃ A⊃ B

` A⊃ B ⊃ C
[` B]

ImpI` A⊃ B ImpE` C ImpI` B ⊃ C
ImpE` A⊃ B

ImpE` C ImpE` G

Theorem 2.4 (Completeness). If
[Γ]
D
` A

then Γ ` A.

We skip the proof of this last theorem since it is of little use for our purpose: our
framework will not ensure it anyway. On the contrary, soundness plays a crucial part
in the construction of the certifying prover, as we will see now.
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C | THE LJT+ F PROVER IN Gasp

We now present the code for our prover, written in Gasp. It is presented as a DLF
signature with a few syntactic additions, since our actual library is based on OCaml
and inherits from it much more than just pattern-matching as a computational
language. We will use exceptions extensively here for backtracking. First, we declare
a few useful types:

bool : ∗.
tt : bool.
ff : bool.
nat : ∗.
z : nat.
s : nat→ nat.
atom : ∗.
top : atom.
bot : atom.
n : nat→ atom.

Atomic propositions are indexed by natural numbers nat, and for commodity we
include them together with > and ⊥ in the type atom.13 We will need later on to
decide their equality, so we define the two functions:

eqnat : nat→ nat→ bool = " fun x y→ match x, y with
| « z », « z »→ « tt »
| « s "x" », « s "y" »→ « eqnat "x" "y" »
| _→ « ff »".

eq : atom→ atom→ bool = " fun x y→ match x, y with
| « top », « top » | « bot », « bot »→ « tt »
| « n "x" », « n "y" »→ « eqnat "x" "y" »
| _→ « ff »".

The declaration of propositions o and natural deductions pf (A) has already been
seen in Section 1.1:

o : ∗.
at : atom→ o.
imp : o→ o→ o.
conj : o→ o→ o.
disj : o→ o→ o.

pf : o→ ∗.
TopI : pf (at top).

13This is acceptable in the context of intuitionistic logic, although generally incorrect.
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BotE : ΠA : o. pf (at bot)→ pf A.
ImpI : ΠA : o. ΠB : o. (pf A→ pf B)→ pf (imp A B).
ImpE : ΠA : o. ΠB : o. pf (imp A B)→ pf A→ pf B.
ConjI : ΠA : o. ΠB : o. pf A→ pf B→ pf (conj A B).
ConjE1 : ΠA : o. ΠB : o. pf (conj A B)→ pf A.
ConjE2 : ΠA : o. ΠB : o. pf (conj A B)→ pf B.
DisjI1 : ΠA : o. ΠB : o. pf A→ pf (disj A B).
DisjI2 : ΠA : o. ΠB : o. pf B→ pf (disj A B).
DisjE : ΠA : o. ΠB : o. ΠC : o.

pf (disj A B)→ (pf A→ pf C)→ (pf B→ pf C)→ pf C.
Our algorithm works by constructing NJ proofs both “in hypotheses” and “in the
goal” of the LJT+ F judgments. Type hyps encodes a list of hypotheses together
with their proofs, and function rev_append appends a hyps at the end of another in
reverse order:

hyps : ∗.
nil : hyps.
cons : ΠA : o. pf A→ hyps→ hyps.
append : hyps→ hyps→ hyps = " fun xs ys→ match xs with
| « nil »→ ys
| « cons "x" "a" "xs" »→ « append "xs" (cons "x" "a" "ys") »".

All the following functions are partial: they can either return their result, or fail with
an exception. Function assumption searches for the proof of an atom in the current
list of hypotheses (it is used by rule ImpL1). We use a predefined OCaml exception
Failure to signal that it was not found, and an if construct on our own booleans as
syntactic sugar for pattern-matching.

assumption : hyps→ ΠP : atom. pf (at P) = " fun hs p→ match hs with
| « nil »→ raise Failure
| « cons (at "q") "m" "hs" »→ if « eq "p" "q" » then m else « assumption "hs" "p" »
| _→ « assumption "hs" "p" »".

Finally, our main loop consists of three mutually recursive functions: search corre-
sponding to right rules, focus corresponding to left rules and select which role is to
try successively to focus on every hypotheses of the current list, backtracking to the
next one if it failed. Function search is the entry point of our algorithm. It takes a
hyps and a formula, and potentially returns a proof of it:

search : hyps→ ΠA : o. pf A = " fun hs a→ match a with

The first four case should be self-explanatory, since right rules of LJT+ F follow NJ
introductions: for each connective, we return the corresponding introduction rule,
where sub-proofs are replaced by recursive calls to search. In the implication case
A⊃ B, this call takes a list hyps extended by A together with its proof, which is given
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by the hypothesis of NJ’s rule ImpI:

| « conj "a" "b" »→ « ConjI "a" "b" (search "hs" "a") (search "hs" "b") »
| « at top »→ « TopI »
| « at "p" »→ « select "hs" nil (at "p") »
| « imp "a" "b" »→ « ImpI "a" "b" λx. search (cons "a" x "hs") "b" »

The case A∨ B is a little bit trickier, since it is a ternary point of backtrack: we can
apply either FocusR2 (this rule is transparent, so we return directly the certificate
returned by select), DisjL1 (justified by rule DisjI1 provided the recursive call to
search succeeds) or DisjL2 (resp. DisjI2):

| « disj "a" "b" »→
try let x = « select "hs" nil (disj "a" "b") » in x with Failure→
try let x = « search "hs" "a" » in « DisjI1 "a" "b" "x" » with Failure→
« DisjI2 "a" "b" (search "hs" "b") »".

Function select takes two hyps: the “active” list of hypotheses still worth to focus
on, and the “passive” one that have already failed to prove the goal. Each time we
focus on a formula, it is discarded from the “active” ∪ “passive” list, since LJT+ F is
contraction-free.

select : hyps→ hyps→ ΠC : o. pf C = " fun xs ys c→ match xs with
| « nil »→ raise Failure
| « cons "a" "m" "xs" »→

try let x = « focus (append "ys" "xs") "a" "m" "c" » in x with Failure→
« select "xs" (cons "a" "m" "ys") "c" »".

Now comes the most interesting function focus. Its type is close to the left rule’s
judgment, except that each formula is annotated by a natural deduction: it takes a
hyps as usual, the active formula A and its proof, and a formula G to prove. If A=⊥,
we conclude right away with BotE; if A= p, then G must be p, in which case we
conclude with the proof attached to the hypothesis we have at hand:

focus : hyps→ ΠA : o. pf A→ ΠG : o. pf G = " fun hs a m g→ match a with
| « at bot »→ « BotE "g" "m" »
| « at "q" »→ (match g with
| « at "p" » when « eq "p" "q" »→ m
| _→ raise Failure)

For disjunction A∨ B, we go back to “left mode” (function search) proving G twice
each time putting back respectively A and B in the hypothesis pool. We conclude by
rule DisjE, which provides the hypotheses ` A and ` B as variables.

| « disj "a" "b" »→
« DisjE "a" "b" "g" "m" (λx. search (cons "a" x "hs") "g")
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(λx. search (cons "b" x "hs") "g") »
Conjunction A∧ B follows the same pattern: we go back to “left mode” with two new
hypotheses A and B. This time, a non-trivial justification for these hypotheses must
be constructed, with rules ConjE1 and ConjE2.

| « conj "a" "b" »→
« search (cons "a" (ConjE1 "a" "b" "m") (cons "b" (ConjE2 "a" "b" "m") "hs")) "g" »

If the active formula is an implication A⊃ B, then we must discriminate on A. If A= p,
we must first make sure that it is in the hypotheses, 14 before searching for B with
the new hypothesis p. The justification for it is constructed in the hypothesis with
ImpE. The other cases are similar: they build justifications for hypotheses following
closely the proof of theorem 2.3:

| « imp "a" "b" »→ match a with
| « at "p" »→ let n = « assumption "hs" "p" » in

« search (cons "b" (ImpE "a" "b" "m" "n") "hs") "g" »
| « conj "c" "d" »→

« search (cons (imp "c" (imp "d" "b"))
(ImpI "c" (imp "d" "b") λpc. ImpI "d" "b" λpd.

ImpE (conj "c" "d") "b" "m" (ConjI "c" "d" pc pd)) "hs") "g" »
| « disj "c" "d" »→

« search
(cons (imp "c" "b") (ImpI "c" "b" λpc. ImpE (disj "c" "d") "b" "m" (DisjI1 "c" "d" pc))
(cons (imp "d" "b") (ImpI "d" "b" λpd. ImpE (disj "c" "d") "b" "m" (DisjI2 "c" "d" pd))

"hs")) "g" »
| « imp "c" "d" »→

« ImpE "b" "g"
(ImpI "b" "g" λpb. (search (cons "b" pb "hs") "g"))
(ImpE (imp "c" "d") "b" "m"

(ImpI "c" "d" λpc.
(ImpE "c" "d"

(ImpE (imp "d" "b") (imp "c" "d")
(ImpI (imp "d" "b") (imp "c" "d") λpdb.

(search (cons (imp "d" "b") pdb "hs") (imp "c" "d")))
(ImpI "d" "b" λpd.

ImpE (imp "c" "d") "b" "m"
(ImpI "c" "d" λpc. pd))) pc))) »".

The last case ((C ⊃ D)⊃ B) is the trickiest: it requires to search for two additional
proofs of G and C ⊃ D, corresponding to the induction hypotheses in the proof.

14The let binding is not required, but will ensure that we fail early in assumption when it is not
found, before continuing searching for B.
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The implementation of our prover is over. We can for instance ask the system to
evaluate the DLF object:

search nil (imp (imp (disj (at (n z)) (imp (at (n z)) (at bot))) (at bot)) (at bot))

and get the object coding for the NJ proof of the double negation of the excluded
middle ` ((p∨(p⊃⊥))⊃⊥)⊃⊥, with guarantee that it is well-typed, and even that
each intermediate objects, at each step of the computation is too. Thus, if there is a
bug in the code above, a dynamic check will stop its execution with an error exactly
where the ill-typed certificate will have been generated. As we saw, the structure of
the code follows very closely the proof of soundness of the system.

2.4.2 | SAFE TYPING

Our second illustration is the design of a certifying type checker for a small program-
ming language based of system F. If it is already a full-blown application in itself, it
will actually take even more sense in Chapter 3, where we show how to turn it “for
free” into an incremental type checker.

A | MOTIVATIONS

Type checkers, as found in front-ends of compilers, have grown to be increasingly
complex pieces of software, to the point that they become almost their central
module for some strongly-typed languages. For instance, about 30% of the code of
the OCaml compiler is dedicated to typing.15 On them depends critically the safety
of the compiled code: a type checker answering positively in presence of an ill-typed
term is subject to produce unsafe code. How can I trust the answer given by my type
checker?

A lightweight way to design a trusted type checker is to let it return a certificate
of well-typing, and let a small, trusted base of code check this certificate a posteriori.
The proof assistant Agda [Norell, 2007] and the Haskell compiler GHC [Peyton
Jones et al., 1993] adopt this architecture internally. GHC for instance takes Haskell
programs which are very scarce in type annotations; from the source program P,
it runs a complex type inference procedure infer which produces a term M in an
explicity typed variant of System F called FC (see Vytiniotis [2008, chapter 3] and
Sulzmann et al. [2007]). It is then type checked: provided M is no more than P
“decorated” with type annotations, and that it is well-typed, then we know that the
type inference procedure was correct. Note that the type checker for System F is a
very simple program, surely orders of magnitudes smaller and trustworthier than the
type inference subsystem. In that, M acts as a certificate, and infer as a certifying

15The compiler itself is 93 KLOC (counting out external and build tools and the standard library),
whereas the typing/ directory is 26.
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type checker.
Let us present another view on the same problem. Type systems are usually

presented in a declarative manner as a set of inference rules, together with proofs
that all programs accepting a derivation in this system respect a certain dependability
claim, e.g., the famous “progress and preservation” pair. Yet, actual algorithms
of verification often differ very much from their declarative description. This is
of course true when programs are provided with little type annotations as in the
previous example (“type inference”), in which case the missing information has to be
algorithmically synthesized, but is also true in many cases for mere “type checking”,
or explicit “church-style” calculi. Take for example dependent type systems, relying
on definitional equality on types, or type systems with subtype polymorphism: both
feature a rule of the form

Sub

` M : A′ ` A′ ≤ A
` M : A

(for a given notion of ≤) which is not syntax-directed: we could apply it to any given
term M , thus it does not make this set of rule an algorithm. The implementer has
to turn the declarative system into an algorithm, and convince himself that both
are equivalent. For instance, he can show that it is sufficient to change the usual
application rule to the “subtyping-aware” application rule where:

AppSub

` M : A→ B ` N : A′ ` A′ ≤ A
` M N : B

This task is highly non-trivial and non-compositional. For instance with subtyping,
every eliminator (e.g., pattern-matching) must be adapted to get a syntax-directed
presentation; if we later on add another non-syntax-directed rule, we will have to
adapt the whole system again. Often, the algorithm obtained is much larger and
more complicated than the declarative starting point. We end up with the same trust
problem as in the type inference case, and with a similar observation: it is difficult to
turn the declarative specification of a type system into an algorithm, but it is easy to
check whether a typing derivation in this declarative system is correct.

In the following, we show how to design in Gasp a certifying type checker for
such a system with subtyping. Given a term M , it will try to compute a certificate of
well-typing. Contrarily to the GHC example, this certificate will be issued as an SLF
term, coding for a typing derivation in the declarative system: its specification will be
something along the line of ΠM : tm. (` M : A). There are three clear advantages to
use Gasp to generate SLF certificates:

2 For one, GHC’s type inference has a type Haskell→ FC so a verification has to be
made a posteriori whether its input and output were actually related (represented
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the same program, differing only by annotations). This connection is expressed
in our type, thanks to the dependent product.

2 Besides, GHC’s trusted base is the checker for FC, an intermediate language used
only in GHC; our trusted base, the SLF checker, is generic and can be used for
any typed object language.

2 Finally, “just-in-time” certificate check (Section 2.2) allows to detect ill-typed
certificates exactly when there are produced (and not a posteriori when checking
the whole certificate), which helps to develop the program.

The comparison stops here of course, as the span of this example is much less
ambitious than to infer types for full Haskell.

B | SYSTEM T<:

How to infer the type of a System T recursor in presence of subtyping? System T is a
simply-typed λ-calculus with built-in naturals and a recursor, whose typing rule is
(in local notation):

Rec
Γ ` M0 : nat Γ ` M1 : A Γ, x : nat, y : A` M2 : A

` rec(M0, M1, x y. M2) : A

This rule is syntax-directed, considering environment Γ and term M as input and
type A as output: the type A of M1 is inferred, and only then added back to the
environment to infer the type of M2. How must this rule be adapted if we add rule
Sub, with a decidable subtyping relation ≤? Inferring the type A0 of M0, we could
end up with a type less general than nat, which is fine: in that case we apply Sub.
The problem is that we have to guess a type A more general than that of M1 and M2 ,
while giving that very type to variable y when typing M2! There seem to be a breach
of causality there. . .

There is a well-known algorithm16 if the subtyping relation forms a complete
lattice (if there is a most and least general type): iterate the typing of M2, starting
with y : A and assigning to y each time the join of the previously computed type and
the new type for M2 until a fixed point is reached, i.e., until Γ, x : nat, y : A′ ` M2 : A′.
Then A′ is the type of the whole recursor. This argument is hard to justify, but it is
easy to verify a given derivation for it in the declarative system.

In Figure 2.8, we expose System T<:, this time in hypothetical notation (since we
are going to represent them in SLF). It is an extension of System T with three base
types nat, even and odd, the last two being subtypes of the first.17 Naturals can be

16This trick is adapted from work on type inference in presence of polymorphism [Henglein, 1993],
which is undecidable; its adaptation to our subtyping makes it finitely computable.

17Type nat is the most general type. For concision, we do not include a least general type ⊥, and
prefer to fail when computing the least general type of e.g., even and odd.
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constructed with o and s(M), and will be assigned type even or odd. Function appli-
cation and the recursor will “do their best” to preserve this precise type information,
but will fall back on type nat if they can’t (this is “just” subtyping, not intersection
types): for instance, ` rec(o,o, x y. s(s(x))) : even, but ` rec(o,o, x y. s(x)) : nat. As
usual, the subtyping relation is extended to functional types by the SubArr rule,
contravariant on the domain of functions and covariant on their codomain. Just for
fun, we add a let construct.

C | THE T<: TYPE CHECKER IN Gasp

Let us now turn to the implementation of the certificate-generating type checker for
T<: in Gasp.

¶ | SIGNATURE We begin by declaring the syntax of terms tm and types tp:

tp : ∗.
nat : tp.
even : tp.
odd : tp.
arr : tp→ tp→ tp.

tm : ∗.
lam : tp→ (tm→ tm)→ tm.
app : tm→ tm→ tm.
o : tm.
s : tm→ tm.
letb : tm→ (tm→ tm)→ tm.
recb : tm→ tm→ (tm→ tm→ tm)→ tm.

For the rec construct, we actually have two choices for its third term argument:
either making it hypothetical in two terms (x and y) as we did, or suppose it is a
simple tm of type (arr nat (arr A) A). We chose the former because it allows less
typing annotations. Now come the encoded typing rules, separated in two judgments
encoded as type families sub (A, B) (subtyping) and is (M , A) (typing):

sub : tp→ tp→ ∗.
SubRefl: ΠA : tp. sub A A.
SubEven : sub even nat.
SubOdd : sub odd nat.
SubArr: ΠA BC D : tp. sub C A→ sub B D→ sub (arr A B) (arr C D).

is : tm→ tp→ ∗.
App : ΠM N : tm. ΠA B : tp. is M (arr A B)→ is N A→ is (app M N) B.

66



CHAPTER 2. COMPUTING AND VERIFYING PROOF CERTIFICATES

A, B ::= A→ B
�

� nat
�

� even
�

� odd Types

M ::= λx : A. M
�

� M M
�

� x
�

� o
�

� s(M)
�

� rec(M , M , x y. M)
�

� let x = M in M Terms

` M : A Term typing

[` x : A]...
` M : B Lam` λx : A. M : A→ B

App
` M1 : A→ B ` M2 : A

` M1 M2 : B

O

` o : even

Sn
` M : nat
` s(M) : nat

So
` M : even
` s(M) : odd

Se
` M : odd
` s(M) : even

Sub
` M : A ` A≤ B

` M : B
` M0 : nat ` M1 : A

[` x : nat] [` y : A]...
` M2 : A

Rec` rec(M0, M1, x y. M2) : A

` M0 : A

[` x : A]...
` M1 : C

Let` let x = M0 in M1 : C

` A≤ B Subtyping

SubEven

` even≤ nat

SubOdd

` odd≤ nat

SubRefl

` A≤ A

SubArr

` A′ ≤ A ` B ≤ B′

` A→ B ≤ A′→ B′

Figure 2.8: Definition of T<:
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Lam : ΠM : tm→ tm. ΠAB : tp. ΠB : tp.
(Πx : tm. is x A→ is (M x) B)→ is (lam A λu. M u) (arr A B).

O : is o even.
Se : ΠM : tm. is M odd→ is (s M) even.
So : ΠM : tm. is M even→ is (s M) odd.
Sn : ΠM : tm. is M nat→ is (s M) nat.
Let : ΠM : tm. ΠN : tm→ tm. ΠA B : tp.

is M A→ (Πx : tm. is x A→ is (N x) B)→ is (letb M λx. N x) B.
Rec : ΠM N : tm. ΠP : tm→ tm→ tm. ΠA : tp.

is M nat→ is N A→ (Πx y : tm. is x nat→ is y A→ is (P x y) A)→
is (recb M N λx.λy. P x y) A.

Sub : ΠM : tm. ΠA B : tp. sub A B→ is M A→ is M B.
Our type checker will take a term M and possibly return the pair of a type A and a
derivation ` M : A; as in Section 2.4.1 we need to pair up these two results into an
encoded Σ-type inf: it is the role of constant ex.

inf : tm→ ∗.
ex : ΠM : tm. ΠA : tp. ΠH : is M A. inf M.

¶ | SUBTYPING FUNCTIONS Two helper functions follow: subt computes the
subtyping derivation ` A ≤ B of two types A and B, or fails if A 6≤ B; subm tries
to coerce a derivation ` M : A into a derivation ` M : B, or fails if A 6≤ B; join (resp.
meet) computes the join Au B (resp meet At B) of two types A and B. For concision,
we use pattern-matching failure to signal errors:

subt : ΠAB : tp. sub A B = " fun a b→ match a, b with
| « even », « even » | « nat », « nat » | « odd », « odd »→ « SubRefl "a" »
| « odd », « nat »→ « SubOdd »
| « even », « nat »→ « SubEven »
| « arr "a1" "b1" », « arr "a2" "b2" »→

« SubArr "a1" "b1" "a2" "b2" (subt "a2" "a1") (subt "b1" "b2") »".

subm : ΠM : tm. ΠAB : tp. is M A→ is M B = " fun m a b d→ match « subt "a" "b" » with
| « SubRefl "_" »→ d
| s→ « Sub "m" "a" "b" "s" "d" »".

join : tp→ tp→ tp = " fun a b→ match a, b with
| « nat », _→ « nat »
| « even », « even »→ « even » | « even », _→ « nat »
| « odd », « odd »→ « odd » | « odd », _→ « nat »
| « arr "a1" "b1" », « arr "a2" "b2" »→ « arr (meet "a1" "a2") (join "b1" "b2") »".
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meet : tp→ tp→ tp = " fun a b→ match a, b with
| « nat », _→ b
| « even », (« even » | « nat »)→ « even »
| « odd », (« odd » | « nat »)→ « odd »
| « arr "a1" "b1" », « arr "a2" "b2" »→ « arr (join "a1" "a2") (meet "b1" "b2") »".

Note that function meet is incomplete: even t odd is undefined since there is no
bottom type to our lattice of subtypes.

¶ | THE TYPE CHECKER The type checker infer takes a term M to a pair of a type
A and a derivation ` M : A. We pattern-match on input term M . The first two cases
should be easily grasped: o has type even which is justified by rule O; s(M) has a
type that depends on the type of M so we match on the recursive call to infer (M).
The app case is very similar:

infer : ΠM : tm. inf M = " fun m→ match m with
| « o »→ « ex o even O »
| « s "m" »→

let « ex "_" "a" "d" » = « infer "m" » in
(match a with
| « nat »→ « ex (s "m") nat (Sn "m" "d") »
| « even »→ « ex (s "m") odd (So "m" "d") »
| « odd »→ « ex (s "m") even (Se "m" "d") »)

| « app "m" "n" »→
let « ex "_" (arr "a" "b") "d1" » = « infer "m" » in
let « ex "_" "a’" "d2" » = « infer "n" » in
« ex (app "m" "n") "b" (App "m" "n" "a" "b" "d1" (subm "n" "a’" "a" "d2")) »

Note that in this last case (application M N), we retrieve types A → B of M , A′

of N , and the respective derivations, and then use function subm to construct the
argument’s derivation: it will evaluate either to D2 if A= A′, to a Sub rule if A≤ A′ or
raise an error otherwise.

The λx : A. M case is the most emblematic of our type checker, since lam is
a constant with a higher-order type, using HOAS to represent open terms. Type
checking the open term M demonstrates the first usage of inverses:

| « lam "a" "m" »→
let « ex "_" "b" "d" » under «env x : tm; h : is x "a" » =

« infer ("m" (infer0 x (ex x "a" h))) » in
« ex (lam "a" "m") (arr "a" "b") (Lam "m" "a" "b" (λx.λh. "d")) »

First, we infer the type B and derivation D for M , but replacing the free variable
of M by “what infer should return when it meets this variable”. Remember: there
is no variable case. Actually, even if there was, we would be well distraught to tell
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what type a variable has without an environment! What should infer return when it
meets this variable? the pair of A and the derivation h for it. This is the sense of the
argument to M : (infer0) x (ex x "a" h). Now these x and h should be bound locally
for this call to infer to be well-typed. We use the match M under Γ with C construct
(actually written let because its pattern is irrefutable), with Γ = x : tm, h : is (x, A).
The result of this pattern-matching, B and D, potentially contains free variables x and
h; on the contrary, we know that B does not since it is a type (this is a meta-argument
on the system). In the returned object, we use B as the return type, and “close” D,
using the hypotheses x and h provided by rule Lam.

The let case works almost identically:

| « letb "m" "n" »→
let « ex "_" "a" "d1" » = « infer "m" » in
let « ex "_" "b" "d2" » under «env x:tm; h:is x "a" » =

« infer ("n" (infer0 x (ex x "a" h))) » in
« ex (letb "m" "n") "b" (Let "m" "n" "a" "b" "d1" (λx.λh. "d2")) »

Finally, the rec(M0, M1, x y. M2) case should not be a surprise either: we infer types
A0 and A1 for M0 and M1, then use A1 to infer the type A2 of M2 with a let “under
context” with four bindings (two variables and two derivations for them). The two
types A1 and A2 potentially differ, so we call infer once more on M2, to be sure it
reached a fixed point (nat). We know that it did with only two iterations since our
lattice is of size two. We then return the pair of this computed type and the derivation
formed with rule Rec and calls to subm to ensure that types are compatible.

| « recb "m" "n" "p" »→
let « ex "_" "tm" "dm" » = « infer "m" » in
let « ex "_" "tn" "dn" » = « infer "n" » in
let « ex "_" "tp" "_" » under «env x : tm; hx : is x nat; y : tm; hy : is y "tn" » =

« infer ("p" (infer0 x (ex x nat hx)) (infer0 y (ex y "tn" hy))) » in
let « "a" » = « join "tn" "tp" » in
let « ex "_" "tp" "dp" » under «env x:tm; hx:is x nat; y:tm; hy:is y "a" » =

« infer ("p" (infer0 x (ex x nat hx)) (infer0 y (ex y "a" hy))) » in
« ex (recb "m" "n" "p") "a"

(Rec "m" "n" "p" "a" (subm "m" "tm" nat "dm") (subm "n" "tn" "a" "dn")
λx.λy.λhx.λhy. (subm ("p" x y) "tp" "a" "dp")) »".

¶ | USAGE The type checker is over. We can now ask the system to infer the type of
the Ackermann function:

infer (lam nat λm. recb m (lam nat λx. s x) λ_.λf .
lam nat λn. recb n (app f (s o)) λ_.λg. app f g)

to what it will answer: (skipping the SLF objects for this term and its derivation)
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ex (...) (arr nat (arr nat nat)) (...)

or of the operation 23:

infer (letb (lam nat λx. lam nat λy. recb x y λz.λ_. s z) λadd.
letb (lam nat λx. lam nat λy. recb o y λz.λ_. app (app add x) z) λmult.
letb (lam nat λx. lam nat λy. recb (s o) y λz.λ_. app (app mult x) z) λexp.
letb (lam nat λx. recb o x λ_.λw. w) λpred.
app (app exp (s o)) (s (s o)))

which results in:
ex (...) nat (...)

The computed type is guaranteed to be right with respect to the rules of system T<:,
the accompanying typing derivation being the certificate of this fact.

Two kinds of errors can happen. If the user gives a term to type that is not typabe
(say lam nat λx. app x x), then an exception will be raised at computation time, i.e.,
in the code of a function (here a match failure, but more appropriate error messages
could be easily added). If, on the other hand, there is a typo in the code of the type
checker (e.g., it returns an invalid certificate), then an exception will be raised at
typing time. Since this typing is performed right after the certificate is returned, we
can easily pinpoint the place in the code where it was generated.

We saw in this case study one usage of the inverse function infer0 to indicate
at bind time what should be the output of infer on the variable, allowing the type
checker not to carry an explicit environment.

2.5 | RELATED AND FURTHER WORK

The DLF language is a core functional language specialized in the generation and
manipulation of proof certificates. It is atypical by several aspects: whereas it
manipulates proofs, it is not logic programming; while its values—SLF objects—obey
a strong typing discipline, it itself checks them dynamically; although it is based on
higher-order abstract syntax and thus manipulates open objects, it avoids having to
deal with an environment of free variables thanks to function inverses. Yet, it rests on
several orthogonal lines of work, of which here are a several.

¶ | PROGRAMMING WITH BINDERS Manipulating syntax with binders with the
traditional algebraic data types introduced by Burstall et al. [1980], is notably hard;
many “design patterns” have been proposed to squeeze their higher-order nature
into purely first-order data structures [de Bruijn, 1972, McBride and McKinna, 2004,
Aydemir et al., 2008]. Pouillard and Pottier [2010] designed a library which, thanks
to the abstraction provided by a module system, helps to enforce invariants on
the representation. Another approach is to enrich the language itself; for instance,
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Shinwell et al. [2003] propose FreshML, an extension of ML based on nominal
logic in which new constructs ensure the freshness of variable names. Similarly,
Cαml [Pottier, 2006] compiles a binding specification to the corresponding first-order
OCaml type. All these approaches are mainly concerned with forbidding to explicitly
manipulate bound names as strings, namely to avoid variable capture. Because DLF
uses the SLF apparatus as its values and relies on it for substitution, there is no
risk of variable capture; however, nothing statically prevents the programmer from
introducing free variables, but dynamic checks will then fail.

¶ | FUNCTIONAL LANGUAGES WITH HIGHER-ORDER DATA The closest relatives
to DLF are the functional languages that extend algebraic data types with values
that can represent proofs. Specifically, it should be categorized in the family of
so-called “two-level” specification languages. They distinguish syntactically two
strati in programs: the representational part, which is the specification of types and
constants, which can be higher-order, and the computational part itself, which consist
of functions manipulating these data. Beluga [Pientka, 2008, Pientka and Dunfield,
2008, 2010], already been mentioned in Section 2.2, takes LF as its representational
layer. It approaches the problem of manipulating open terms by contextual types,
which is based on the theoretical work of Nanevski et al. [2008]: the type of an
open term is parameterized by the environment that closes it. Contextual types
are a generalization of the necessity modality [Pfenning and Davies, 2001]. The
result is a statically typed programming language where functions are ensured to
return a well-typed LF object. VeriML [Stampoulis and Shao, 2010, 2012] is a
direct descendant of Beluga, that specializes in programming safely tactics for proof
assistants; their main difference is that its logical layer is not a logical framework
but a dependently typed programming language close to Coq. Delphin [Poswolsky
and Schürmann, 2008] uses LF as its logical engine, but distinguishes two kinds
of variables in its computational language: those subject to substitution and those
intended to remain uninstantiated. It is based on the use of the ∇ type quantifier of
Miller and Tiu [2005] that guarantees freshness of term variables.

We could maybe more adequately compare DLF with the way proof assistants are
generally implemented. Coq, Matita, Agda, HOL and many others are implemented
according to the so-called De Bruijn principle [Wiedijk, 2006]: the vast majority of
their code is dedicated to help the user build proof objects (by refinement, tactics
etc.), but ultimately all of them will be rechecked by a small, trusted part of the
code, the kernel [Asperti et al., 2009]. DLF can be considered as a refinement of this
idea in two ways: first, the production and the verification of proofs are intertwined,
such that ill-typed proofs can be caught earlier; secondly, its simple computational
language allows to hide most of the details concerning binder representation and
present only a named interface. Of course, there remains to implement a full-blown
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tactic-based proof assistant in DLF to judge if the approach scales up.
Of course, the principal difference with the systems mentioned above remains

that DLF is dynamically typed: there is no static check enforcing that the result
of a computation will be well-typed with respect to SLF, not even that function
inverses are well-utilized: it is only a “programming style”. Typing statically the
computational language is a clear next step in our further work.

¶ | ENVIRONMENT-FREE PROGRAMMING Although the two levels are well-
distinguished in DLF, our framework takes another approach to managing open data:
we prefer to think that input terms are given closed by the user, and that they are
open only in the recursive case; during the computation, we consider an open term
as being closed by a special construct representing all computations remaining to do on
variables; this is the essence of function inverses, a concept that is a generalization
to any computation of how Geuvers et al. [2010] and Boespflug [2011] program
type checkers without carrying an explicit environment. The reader familiar with
normalization by evaluation [Berger and Schwichtenberg, 1991] will have recognized
a known pattern. NbE is a full evaluation algorithm consisting of two passes: first,
it projects the syntax of terms into a model (usually the function space of the meta-
language); then it reifies back this meta-objects into the syntax of full values. The
parallel with DLF is double. First, our full evaluation algorithm performs exactly
these two steps, called here resp. weak evaluation and readback, even though we
do not disinguish syntactically “syntactic” objects, objects “in the model” and values:
they all share the same syntactic class of objects. This was already remarked by
Grégoire and Leroy [2002]. Secondly, and more questionably, the use of function
inverses recalls strongly the implementation of function reify of NbE: instead of de-
scending “syntactically” in the body of a λ-abstraction, we use a built-in substitution
(that of SLF in our case, that of the metalanguage in NbE) to substitute the variable
by the result of the evaluation on variables (an inverse in our case, a function reflect
for NbE, that has a type inverse of reify). This certain connection remains however to
be explored beyond the remark of this mere resemblance.

¶ | HIGHER-ORDER LOGIC PROGRAMMING Although further away from our
objective, we should mention the large body of work in logic programming languages
manipulating sorted or typed higher-order data. There, computation is not the
evaluation of a functional language, but proof search, starting from given axioms that
constitute the program. λProlog [Miller and Nadathur, 1986, 2012] is an extension
of Prolog that departs from first-order terms, and is based instead on an intuitionistic
fragment of Church [1940]’s simple theory of types. Therefore, it manipulates
a language of terms with λ-abstraction. One of its direct descendent is Twelf
[Pfenning and Schürmann, 1999], which emerged as the canonical implementation
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of LF. It features a logic programming engine that allows to see LF signatures as
logic programs, and a totality checker that checks coverage and termination of these
programs.

¶ | COMPUTING LF CERTIFICATES The practical purpose of DLF is to enhance
the trust of a particular piece of (initially untrusted) software by letting it issue a
proof certificate. A certificate is the syntactic representation of a mathematical proof
that the output respects a certain specification. It can be communicated from the
producer to a consumer, which can recheck its validity independently thanks to a
small proof checker. This approach, known as Proof-Carrying Code (PCC) [Necula,
1997], was initially thought as a mean to execute untrusted code by designing
certificate-issuing compilers and assembly code verification. It refers nowadays to
any form of certificate-issuing computation [Miller, 2011]. Leroy [2006] calls this
scheme certifying, as opposed to the certified scheme where the piece of software
itself is proved correct, e.g., in a proof assistant, and can thus only issue correct code;
he compares the two approaches and shows that they are observationally equivalent
in terms of trust. Certifying software is more lightweight (formal verification can be
avoided for inner parts of the software, they just have to issue a certificate) but more
subject to poor implementation (the certificate eventually issued can be ill-typed).

The LF logical framework [Harper et al., 1993] is a common choice of represen-
tation for certificates, due to its universal nature: the choice of a particular logics is
the matter of representing it as a signature. As studied by Appel and Felten [1999]
the trusted base of a PCC system based on LF includes its type checker, the signature
of the particular logic, and the formal description of the safety policy required by the
consumer. A similar goal is sought by Dedukti [Boespflug, 2011], a proof checker
for an extension of LF where types are seen equal modulo a set of user-provided
rewriting rule: Deduction modulo [Dowek et al., 2003]. It differs however from DLF
both by its goal (provide a compact universal evidence format by eliding computation
steps from proofs) and by its realization (rewriting rules where we use functional
programs, computation entirely in types where ours happen only in objects).

A common weakness found for proofs in LF are their sizes: they usually contain a
lot of redundancy, and communicating them as-is does not usually scale to large proof
objects. Several different variants have been proposed as the actual data structure
to transmit, most of them compressing proofs using sharing [Appel and Felty, 1999,
Stump and Dill, 2002, Appel et al., 2003] or reconstruction by unification [Necula
and Lee, 1998, Reed, 2004, Sarkar et al., 2005]. A recent, novel choice proposed
by Miller [2011] is to represent certificates using higher-order logic compressed
by the use of focusing [Andreoli, 1992]. All these techniques of proof reduction
have to make a compromise between the size of the proof (the amount of omitted
information) and the size of the proof checker (the complexity of the code necessary
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to rebuild the omitted information). Reducing the size of certificates produced by
DLF will be a major challenge if the system is used in real-world condition; a side
gain of the extension described in Chapter 3 is to implement a type safe sharing
mechanism, that still remains to be tested and evaluated in real conditions.

¶ | DYNAMIC TYPING Finally, an important aspect of our framework is that typing is
not checked statically, but at run-time. Type checking statically function code would
guarantee that they always return SLF objects of the announced type, i.e., these
functions would be certified. This would certainly impose a much stricter discipline
on how to write their code.18 Our proposition is more lightweight, at the cost of
having to do run-time checks. In this sense, it is close to dynamically typed languages:
the type information is conveyed at run time.

Practically, our OCaml implementation is a shallow embedding of DLF [Wildmoser
and Nipkow, 2004]: it uses OCaml itself as the computational language. For OCaml,
all SLF objects have the same type obj, but run-time checks are inserted at the right
places (see Section 3.4). In that, it is related to hybrid type systems [Findler and
Felleisen, 2002, Wadler and Findler, 2009]. Hybrid type systems separate two phases
in the language: the typed one and the unityped one [Harper, 2012], where all types
collapse to a single one, usually called Dyn. The comparison stops there since the
two phases of DLF are not mirrors of each other: the representational level is not a
programming language.

18For instance, on several occasions in Section 2.4, we used informally meta-arguments on the
signature to justify our code; this would need to be formally verifiable if statically checked.
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¶ | ABSTRACT What is the impact of a small, confined modification on the correctness
of a large program? Will it break the invariants and abstractions I carefully enforced by
typing? This chapter presents a safe method for incrementally judging of the well-typing of a
program, that is without having to batch recompile the whole program after each change.
We begin this chapter by an analysis and critique of available tools to ease the management
of changes in typed programming and proof languages. We then present an algorithm for
incrementally type checking SLF objects based on sharing. It will be the basis of cDLF,
a framework taking any certifying type checker written in Chapter 2’s DLF programming
language and turning it into an incremental type checker. We finish by presenting some
highlights of its implementation as an OCaml library.

3.1 | MOTIVATIONS

The interaction between a user and a compiler has not changed much since the
early days of compiled programming languages: a program is written in a text file
thanks to a (more-or-less) specialized text editor. When he is done, the user calls
the compiler which parses, checks and compiles the program. In case of error in any
of these passes, the compiler reports it, possibly with its location in the source file.
If there is none, the user is then free to launch the produced executable to test it
for possible bugs. Yet, the huge size and complexity of the programs we develop
today is such that a developer spends more time editing its already-written program
to correct bugs or add a feature than actually writing completely new code, and our
compilation toolchain is not adapted to this inherently non-linear workflow.

Richly typed programming languages offer the advantage of giving programs a
strict, static semantics, that helps greatly to detect bugs statically, i.e., without the
need for testing. In this context, the interaction with the compiler, more specifically
with the type checker, becomes the central part of the development process. As type
systems become richer, it becomes increasingly difficult for the programmer to write
a well-typed program in one try, compile it and run it: writing a program becomes
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more and more a tight and non-linear interaction between the human and the type
checker, involving constant experiments, fixes, etc.

We believe this to be true for strongly typed programming languages, in particular
functional languages exploiting higher-order functions and algebraic data types like
OCaml. There, a programmer will often even rely on the type checker to indicate
conflicting uses after a small change: for instance, he would add a constructor to
an existing data type, and launch compilation again for the type checker to detect
non-exhaustive pattern-matching on this type, and add a new case to each of them.
We believe this to be a fortiori true for proof languages, where the construction of a
valid proof is simply not conceivable without guidance from the system: most proof
assistants provide editing environments which show e.g., the goal to be solved at a
certain point.

¶ | INCREMENTAL TYPE CHECKING If a batch interaction, where we feed the
whole program to the type checker at every run, is possible for short programs and
fast checkers, it becomes increasingly hindered by the latency of complete rechecks
when programs get longer and the time taken to check then becomes non-negligible:
even if the modifications made to the program between two interactions are small,
the whole program is rechecked. In particular for languages with formal verification
aspects like proof assistants, the time taken to infer easy parts of the proofs (proof
search) not present in the source script can often be long. What if we could compute
incrementally the effect of the edition of the source by numerous small changes on
the well-typing of whole edifice (a program of thousands lines of code, a complex
proof requiring hundreds of lemmas)?

The following examples should illustrate the benefits of such an interaction, and
also the difficulties it poses:

Example 3.1. For instance, we could want to change a small subterm M in a large,
well-typed OCaml program C[M] by e.g., inserting the call to a function f resulting
in C[f M]. It suffices to know that M has type A—an information available from
the type checking of the original program—and f has type A→ A in context C to
conclude that C[f M] is well-typed: there is no need to recheck it entirely. We
could want to change completely the definition of a symbol, from the well-typed
C[let x = M in N] to C[let x = M ′ in N]. If M and M ′ have the same type, then
the new term is well-typed without the need to recheck it entirely; if their types are
different, it depends only on the use sites of x in N , except if this changes the type of
N , in which case we need to analyze its impact on context C . . .

On a higher level, we could add a constructor to a data type, and be instantly
pointed by the system at all problematic pattern matches, possibly very far away
from the type’s declaration, without having to wait for the recompilation of the whole
program. In the context of formal proof, we could realize that one of the hypotheses
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of a lemma is actually not needed in its proof, and suppress it from its statement; we
would be pointed by the system to all uses of this lemma in the whole development
needing to be changed, or if there is none, be instantly informed that the whole
development is still valid without needing to recheck it completely.

Incremental type checking thus encompasses the verification of well-typing of a
large program (or proof following the Curry-Howard isomorphism) when performing
arbitrary small modifications, and this in less time than rechecking the whole program.
An informal definition of the problem could be:

Definition 3.1 (Incremental type checking). Suppose a typed language of terms M ,
and a representation of changes, or deltas δ, on M such that a function apply takes a
term and a delta into another term. Given a well-typed term M and a term delta δ,
decide whether apply(M ,δ) is well-typed in a time less than O(|apply(M ,δ)|), where
|M | is the number of nodes in term M .

There remains to devise a particular type system, a notion of deltas, and the
incremental type checking algorithm. Note that in many interesting cases we cannot
hope to achieve incremental type checking in time O(|δ|) if the notion of delta chosen
follows the syntax of the language: as we saw on the previous examples, the impact
of a change on the type of a program can reside far outside the location of the change
itself.

D | INCREMENTALITY IN PROGRAMMING AND PROVING

This remark on the usefulness of incrementality is not new. Actually, several tools
have become standard nowadays to cope with the fact that compilers process source
in batch.

¶ | SEPARATE COMPILATION AND DEPENDENCY MANAGEMENT The most
important of these tools is separate compilation. A large development can be split
into several files or modules, and compiled separately (we are here interested only in
the type checking aspect of compilation); Each file comes with an interface, either
given or inferred, setting out the types of all values defined in the module. To
check the type of a module supposing that all its dependencies have been checked
already, we just look up in the interfaces the type of all external values contained
in that module; there is no need to recheck their implementation. Given a module
dependency graph, tools like make automatically recheck (recompile) a changed
module and all its reverse dependencies.

Separate compilation is a manual and coarse way of handling incrementality.
The programmer has to manually split its development into modules, making sure
by himself that the dependency relation is not circular. Besides, the atomic unit
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of compilation is the module, which can be arbitrarily large; small changes within
a module have to be handled in a batch fashion. Moreover, as remarked already
by Cardelli [1997], modules usually serve another purpose: that of organizing the
development into logical units and namespaces; yet, there is no reason for these two
purposes to coincide.

¶ | TOPLEVEL WITH GLOBAL ROLLBACK Incidentally, in the context of proof
assistants, separate compilation is not fine-grained enough of a tool, and the standard
approach is to split modules further into commands. Coq [Coq development team,
2012] or Matita [Asperti et al., 2007] are simple toplevels1 (or read-eval-print loops)
where one enters commands that modify the internal state of the prover and print
information about this state. On top of this mechanism, a global undo mechanism
is provided to roll back from erroneous commands. Their user interfaces, e.g.,
Aspinall [2000], follow this interaction model (Figure 3.1). A read-only, colored
zone delimited by the cursor indicates the commands that are taken into account by
the system and the user can move the cursor by commands forward or backward; the
zone after the cursor is editable. This provides a form of incremental proof checking:
one can change a command after the cursor without having to recheck all commands
before the cursor.

It is nonetheless very limited: there is no way to alter a command without having
to recheck all commands after it, even if they are not affected by the change at all.
For instance, if we modify the proof of a lemma (but not its statement), the theorems
depending on it will need to be rechecked. Note that there is a significant ongoing
effort to reform this model and implement parallel processing in proof assistants
[Wenzel, 2012], with possible gains on incrementality of checking.

¶ | BOTTOM-UP PROOF CONSTRUCTION The third, and maybe more complex
tool for incremental construction of proofs and programs is implemented in proof
assistants of the LCF family [Gordon et al., 1979] (of which Coq and Matita are
members along with many others), and is also adopted in a simpler form in Agda.
The idea is to construct proof terms sequentially from the root to the leaves, at each
step leaving “holes”, or metavariables, in the proof to be filled up later. For instance,
to prove the goal A, the user might provide a first term C[X,Y] with two holes X
and Y; he might then provide a second term C ′[Z] to fill up X, resulting in the term
C[C ′[Z],Y] with two goals etc. until there is no more holes in the proof. The gain
is twofold: at each step, the system can print the goals remaining to be solved (the
type of each hole), providing helpful feedback to the user. Secondly, this provides a
limited form of incrementality: C[X,Y] is checked to be of type A, and X is annotated
to be of type B; then C ′[Z] is checked to be of type B. If it is the case, we have the

1Actually, a system of separate compilation is also provided in these tools.
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Figure 3.1: The linear interaction loop in a proof assistant: Coqide

81



3.1. MOTIVATIONS

guarantee that the whole reconstructed proof will be of type A without ever having
to recheck it.2 This exact facility is provided in Agda [Norell, 2007]: the user can
put holes in its terms to query the type of the expression expected at that point,
and later fill them up without the system rechecking the whole file. In LCF and its
descendants, proofs are constructed bottom-up by the repeated application of tactics,
which are (untrusted) programs generating terms with holes.

But this system is limited in the kind of modifications we can incrementally make
on terms: for instance in Agda’s user interface, we can fill up a hole with a term,
but the modification of any term that is not a hole requires to recheck the entire file.
Similarly in e.g., Coq, no tactic can modify parts of an already-built proof: they can
only fill in holes.

This is why we believe that all these tools solve only instances of the more general
problem of incremental type checking. The goal of the rest of this chapter is to show
how the context developed in Chapter 2 can be adapted to help solve this problem.

E | INCREMENTALITY THROUGH SHARING OF SUBDERIVATIONS

Consider again definition 3.1. To save us from recomputing the type information
for already-typed terms, we somehow need to store the type information between
runs of the type checker. This way, if some annotated subterm changes, typing can
resume at that position, without needing to check unchanged subterms. This is what
separate compilation does when generating (or checking) the interface of a module,
or bottom-up proof construction systems when computing and storing the awaited
type of a hole. In all generality, this type information must be stored for all subterms
of the program, not only at special nodes, like module definition or holes. This way,
any subterm can be changed and rechecked incrementally.

We propose to actually store the typing derivation of the program, in hypothetical
notation. Since typing derivations contain explicitly the type information at each
node of the abstract syntax tree,3 it will allow to reuse any subderivations for any
unchanged parts of the program.

Example 3.2. Suppose that we computed the typing derivation of the simply-typed
λ-term (λf x. f x) (λx. s(x)) (s(o)):

2We will see in the rest of this chapter that the situation is actually more complicated since these
holes can appear under an environment of hypotheses.

3We should add: at least at every node, since there can be silent typing rules, for instance a
subtyping rule.
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[` f : nat→ nat] [` x : nat]
` f x : nat

` λx. f x : nat→ nat

` λf x. f x : (nat→ nat)→ nat→ nat

[` x : nat]
` s(x) : nat

` λx. s(x) : nat→ nat

` (λf x. f x) (λx. s(x)) : nat
` o : nat
` s(o) : nat

` (λf x. f x) (λx. s(x)) (s(o)) : nat

and that we are given the new term to type check (λf .λx. f x) (λx. s(s(x))) (s(o)).
Only the body of the first argument is changed, so there is no need to recompute the
typing derivation D of the functional λf x. f x, neither the second argument s(o) (let
us call it D2); subterm s(x)’s derivation D1 did not change either. We can reuse them
by building only the partial derivation:

D
` λf x. f x : (nat→ nat)→ nat→ nat

[` x : nat]
D1

` s(x) : nat
` s(s(x)) : nat

` λx. s(s(x)) : nat→ nat

` (λf x. f x) (λx. s(s(x))) : nat

D2

` s(o) : nat

` (λf x. f x) (λx. s(s(x))) (s(o)) : nat

Checking this second term amounts to only generate the nodes of this second deriva-
tion: all unchanged subderivations are shared, and not recomputed. Note that the
three nodes at the bottom (the two applications and the lambda) are regenerated,
even though they are identical to their equivalent in the original derivation. Note
also that thanks to the hypothetical notation of proofs, we reuse derivation D1, even
though it depends on hypothesis ` x : nat.

¶ | MEMOIZATION Reusing the result of a sub-computation when its input is equal
to a previous run is a well-known technique in functional programming called
memoization [Michie, 1968, Norvig, 1991, Acar et al., 2003]. For each successful call
to a function f , it amounts to record in a global map the pair of its input and output.
When the function is called, a lookup in the table is made with the arguments of
the function: if a binding is found, we return the previously computed result; if
not, we actually compute the result and store it in the table. This supposes that the
arguments to function f are first-order, comparable data. We could simply think of
the previous process of derivation sharing as memoizing a type checker:

check : env→ term→ type
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The approach of explicitly computing the derivation presents two main differences.
First, memoization can be optimized in language-dependent ways: for instance, the
comparison of argument during the lookup can be made up to “compatible” environ-
ments and terms (weakening, strengthening, substitution, type instantiation. . . ) that
are hard to justify metatheoretically. Generating the derivation allows to check it
afterwards, thus providing a justification for all changes. Secondly, reusing higher-
order derivations allows for more “intelligent” reuse of results than purely first-order
memoization, as witnessed in this example:

Example 3.3. Suppose now that we are given the term (λf x. f x) (λx. s(s(o))) (s(o))
to type check, knowing the first derivation of example 3.2. We can recognize this
term as the original term where we replaced x in the first argument by s(o), a term
for which we already have a derivation D2. We can generate the following derivation:

D
` λf x. f x : (nat→ nat)→ nat→ nat

D2

` s(o) : nat
D1

` s(s(o)) : nat
` λx. s(s(o)) : nat→ nat

` (λf x. f x) (λx. s(s(o))) : nat

D2

` s(o) : nat

` (λf x. f x) (λx. s(s(o))) (s(o)) : nat

To type s(s(o)), we first use D1, but instead of discharging its hypothesis ` x : nat,
we instantiate it by derivation D2. The amount of recheck to do is minimal here:
no new successor node is needed. Memoization would here fail to achieve as much
sharing, because it would only detect already-seen subterms. Specifically, it would
generate a successor node for the outer s() of s(s(o)).

Our key to incremental type checking is therefore having a type checker return a
typing derivation in hypothetical proof notation in a form where we can address and
reuse any subderivation. By grafting already-checked subderivation to a derivation
being built, we avoid type checking again subterms that were already type checked.

¶ | CERTIFICATES FOR INCREMENTAL TYPE CHECKING How should we rep-
resent and compute these typing derivations? It turns out that we can reuse the
apparatus constructed in the two previous chapters: SLF (Section 1.2) as a higher-
order data structure for proofs that can favorably represent typing derivations, and
DLF (Section 2.3) as a certifying computation language on them. In Section 2.4.2,
we gave a practical tutorial on how to program a type checker in this framework. To
implement our notion of incremental type checking, we are lacking only a way to
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store pre-generated derivations, and to refer to and instantiate pieces of derivations
marked as already checked.

In this chapter, we develop gradually a version of DLF that generates large
derivations, slices them into small, reusable pieces, and allows the user to refer
to these slices. For this we introduce successively systems cSLF (Section 3.2), a
contextual logical framework that constructs a context of derivation slices, and cDLF
(Section 3.3), a computation language close to DLF, but relying on cSLF instead
of SLF as a representation language. This language will allow a user to enter
successively program deltas, which derivations will be built and checked against
a context of already-constructed pieces of derivations. This will be demonstrated
in Section 3.3.3. Finally, in Section 3.4 we present an overview and some of the
important ideas of our implementation of cDLF, an OCaml library named Gasp.

3.2 | cSLF: SHARING AND REUSING SLF PROOFS

In our quest to incrementally check programs, we are first interested in verifying the
validity of typing derivations piece by piece. In this section, we construct a language
and algorithm cSLF that will allow to answer the question: given a set of already-
checked derivation pieces (we will call them slices), is the new slice D valid? Not
only will it answer it, but in case of success, it will add to the set of checked slices all
newly checked slices.

3.2.1 | PRESENTATION

Let us first introduce informally the different features that allow us to extend SLF to
form the contextual type theory of cSLF.

¶ | LOCAL VERIFICATION What is a slice of derivation? And can it be checked
independently of the context in which it appears? Two preliminary remarks will help
to answer these questions. We noted from the previous section that we need to be
able to address any subderivation or syntactical construct, that is any rule application.
Now, a constant spine c (S) in SLF is the encoding of the application of a rule, be it
syntactical or logical.

Example 3.4. Let M and N be the encodings of two λ-terms t and u, i.e., objects of
type tm in the signature of example 2.1. Then the constant spine app (M , N) is the
encoding of λ-term “t u”. Let D1 and D2 be the encoding of proofs of resp. ` p⊃ q
and ` p, i.e., objects of type is (p) and is (imp (p, q)) in the signature of NJ proofs
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(Figure 1.1). Then constant spine ImpE (p, q,D1,D2) is the encoding of proof:

D1

` p⊃ q

D2

` p
` q

Our language must thus give a name to all applications of constants, and the ability
to refer to these names.

Secondly, SLF is a local encoding of proofs: the encoding of a proof is a term
that is annotated enough to decide locally if two consecutive rule applications agree
on the judgment at their interface. By locally, we mean without having to look
at the subproofs of these two rules; by agreement, we mean that if the subproofs
are valid, then the whole proof is valid. This is due to the fact that each logical
rule application explicitly mentions the substitution by which it is instantiated, as
introduced in Section 1.1.1.

Example 3.5. For any objects M1 and M2, if object M = ImpE (p, q, M1, M2) is the
SLF encoding of a valid proof (this is all we know), and M0 is the encoding of a
valid proof of ` q, then we know that ImpE (q, r, M0, M) is a valid proof of ` r, and
contrarily that ImpE (q, r, M , M0) is not.

This is in opposition to a global encoding, where checking the validity of two
consecutive rules requires to know the encoding of the whole proof.

Example 3.6. Consider the encoding of NJ proofs by proof terms (rule ImpE is
encoded by an application, ImpI by a λ-abstraction etc.). For any proof term t1 and
t2, if proof term t = t1 t2 is well-typed (it is all we know) and t0 is the encoding of
a valid proof of ` r, what to say of term t0 (t1 t2)? To know if it is valid, we must
compute the types of t1 and t2, which implies to know t1 and t2.

In other words, the SLF encoding of a subproof contains enough information to
check it once and for all, and later graft it in another proof without having to inspect
it again. Whether the grafted proof is valid then amounts only to a local check, at
the boundary of the graft. This is exactly what cSLF will do.

¶ | CONTEXT AND METAVARIABLE To refer to already checked constant spines,
we introduce in objects a new set of special variables, called metavariables and noted
X, Y, Z. . . Each metavariable stands for a defined atomic object, which definition can
be found in a large store, the context ∆. We call each element of this context a slice,
and you can think of it as a named, already checked object, itself possibly referring
to other metavariables defined somewhere else in this context.

Because SLF objects are higher-order terms, possibly containing λ-abstractions, a
slice named X can potentially contain free variables. When we decide to reuse X when
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building another object, we will need to ensure that all free variables of that slice are
either bound or defined. This is why every slice is parameterized by an environment
of variables that are free in the slice, and all occurrences of a metavariable comes
with a substitution X[σ] that instantiates these variables. Then, we will need to
compare the awaited type at this point with the actual type of the metavariable; when
a slice has been checked and its type computed, we put it in the current context
with its actual synthesized type. This annotation behaves like a cache: it could be
reconstructed, but remembering it will allow to quickly compare the types when
grafting a metavariable. A context binding will thus be written X[Γ] : P = c (S).

Example 3.7. The object lam (λx.X[x/x]) in a context where X[x : tm] : tm =
lam (λy.Y[x/x, y/app (x, y)]) and Y[x : tm, y : tm] : tm = app (x, y) is a sliced repre-
sentation of the well-typed object lam (λx. lam (λy. app (x, app (x, y)))).

Note that Γ binds here not only in S but also in A: this type can contain objects
with free variables; besides, A is also free to refer to metavariables defined elsewhere
in the context. An invariant that we must preserve is for a valid context ∆ to be
acyclic, i.e., a metavariable must refer only to metavariables not referring to itself.

The introduction of metavariables is a common tool when implementing programs
that manipulate higher-order syntax: in Coq and other LCF-style proof assistants,
they are used as the holes to implement bottom-up proof search, but also unification
and disambiguation [Barras, 1999, Pfenning, 2001, Spiwack, 2010]. Although earlier
propositions [Dowek et al., 2000], were based on the use of (usual) variables of
function types to denote open objects, it is now standard to distinguish between
variables and metavariables. Nanevski et al. [2008] expose a type theory with
metavariables called Contextual Modal Type Theory (CMTT) that denote holes in
an object. Our language can be thought as a restriction of their work: contrarily to
CMTT, all of our metavariables actually have a definition, and can be expanded.

¶ | TYPING AND SLICING A context is thus a set of well-typed objects, and we can
already imagine that it is easy to check the well-typedness of a new object referring
to metavariables in this context. But how do we construct such a context?

At first sight, it might seem easy to design an algorithm traversing a well-typed
object M and returning the pair of a context ∆ and an object M ′ where M ′ is the
“sliced” version of M , which metavariables are defined in ∆. However, to record an
object as a slice, we need to know its type, and the types of each of its free variables,
so this type information has to be propagated throughout the traversal. All in all, this
algorithm will do type checking as well: both the typing phase and the slicing phase
will be interleaved. We present a simple algorithm, whose specification is:

slice : ctx× env× atom→ option (ctx× atom× type)
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such that slice (∆,Γ, F) = Some (∆′, F ′, P) only when F was well typed in Γ, with
metavariables defined in ∆. Its post-condition is that F ′ is well-typed of type P in Γ,
with its metavariables defined in ∆′, and that F ′ “represents” F with all its constant
spines sliced in ∆′ (F ′ is sliced).

3.2.2 | DEFINITION

We now extend the SLF representation language to include metavariables, giving
rise to cSLF, a subset of Nanevski et al. [2008]’s CMTT to represent proofs that are
cut up in small, open object slices. We present its bidirectional typing algorithm. It
takes place in a context ∆ of slices, and one can refer to these in objects; the typing
algorithm not only checks or infers the type of the object, but also returns the pair of
a new context ∆′, enlarged with the new slices resulting from slicing the object in
question, and the sliced object in question.

A | SYNTAX AND SUBSTITUTION

The syntax of cSLF is presented on Figure 3.2. We suppose an infinite set of
metavariables X, Y, Z. . . This grammar differs from that of SLF (Figure 1.2) by
only two additions: atomic objects are extended with metavariables attached to
a substitution X[σ]; also, we introduce contexts which are lists of metavariable
definitions. You can think of each metavariable definition X[Γ] : P = c (S) in a
context ∆ as the definition of an object c (S) that has already been checked to be of
type P in environment Γ. In context ∆, it can then be referred to by other objects
with the X[σ] construct, where substitution σ should instantiate all variables of Γ.
In this sense, cSLF objects are still canonical with respect to β-reduction, as in SLF,
but are not canonical with respect to unfolding of metavariables. Any cSLF term
without metavariable is also an SLF term; in the following, we implicitly use this
coercion.

Substituting cSLF objects is defined by extending SLF’s substitution (Figure 1.3),
and is showed on Figure 3.3. Only three new equations are added: when substituting
σ′ into a metavariable X[σ] (Equation (3.5)), we apply σ′ to σ. This amounts to
apply σ′ to each binding x/M of σ (Equations (3.13) and (3.14)).

B | TYPED SLICING

The typing and slicing algorithm of cSLF is presented on Figures 3.4 to 3.6. We
follow a syntactical convention to indicate the mode of its judgments: they are either
of the form X ` Y ⇒ Z or X ` Y where X and Y are inputs, and Z , if present, is an
output.

There are nine different judgments, corresponding to the nine judgments of SLF,
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K ::= Πx : A. K
�

� ∗ Kind

A, B ::= Πx : A. B
�

� P Type family

P ::= a (S) Atomic type

M , N ::= λx. M
�

� F Canonical object

F ::= H (S)
�

� X[σ] Atomic object

H ::= x
�

� c Head

S ::= ·
�

� M , S Spine

σ ::= ·
�

� σ, x/M Parallel Substitution

Γ ::= ·
�

� Γ, x : A Environment

Σ ::= ·
�

� Σ, c : A
�

� Σ, a : K Signature

∆ ::= ·
�

� ∆,X[Γ] : P = c (S) Contexts

Figure 3.2: Syntax of cSLF: contextual SLF

(λx. M)[σ] = λx. M[σ] if x /∈ FV(σ) and x /∈ dom(σ) (3.1)

(c (S))[σ] = c (S[σ]) (3.2)

(x (S))[σ] = x (S[σ]) if x /∈ FV(σ) and x /∈ dom(σ) (3.3)

(x (S))[σ] = M ? S[σ] if x/M ∈ σ (3.4)

(X[σ])[σ′] = X[σ[σ′]] (3.5)

·[σ] = · (3.6)

(M , S)[σ] = M[σ], S[σ] (3.7)

∗[σ] = ∗ (3.8)

(Πx : A. B)[σ] = Πx : A[σ]. B[σ] if x /∈ FV(σ) and x /∈ dom(σ) (3.9)

(a (S))[σ] = a (S[σ]) (3.10)

λx. M ? N , S = M[x/N] ? S (3.11)

F ? ·= F (3.12)

·[σ] = · (3.13)

(σ′, x/M)[σ] = (σ′[σ]), x/(M[σ]) if x /∈ FV(σ) and x /∈ dom(σ) (3.14)

Figure 3.3: Hereditary substitution of cSLF
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∆;Γ ` M : A⇒∆′; M ′ Canonical object

MLam

∆;Γ, x : A` M : B⇒∆′; M ′

∆;Γ ` λx. M : Πx : A. B⇒∆′;λx. M ′

MAtom

∆;Γ ` F ⇒∆′; F ′ : P ′ ↓∆P = ↓∆′P ′

∆;Γ ` F : P ⇒∆′; F ′

∆;Γ ` F ⇒∆′; F ′ : P Atomic object

FVar

x : A∈ Γ ∆;Γ; A` S⇒∆′; S′ : P
∆;Γ ` x (S)⇒∆′; x (S′) : P

FConst

c : A∈ Σ ∆;Γ; A` S⇒∆′; S′ : P strenΓ(c (S′)) = Γ′ X /∈ dom(∆′)
∆;Γ ` c (S)⇒ (∆′,X[Γ′] : P = c (S′));X[idΓ′] : P

FMeta

X[Γ′] : P = c (S) ∈∆ ∆;Γ ` σ : Γ′⇒∆′;σ′

∆;Γ ` X[σ]⇒∆′;X[σ′] : P[σ′]

∆;Γ; A` S⇒∆′; S′ : P Object spine

SCons

∆;Γ ` M : A⇒∆1; M ′ ∆1;Γ; B[x/M ′] ` S⇒∆2; S′ : P
∆;Γ;Πx : A. B ` M , S⇒∆2; (M ′, S′) : P

SNil

∆;Γ; P ` · ⇒∆; · : P

∆;Γ ` σ : Γ′⇒∆′;σ′ Substitution

σCons

∆;Γ ` σ : Γ′⇒∆1;σ′ ∆1;Γ ` M : A[σ′]⇒∆2; M ′

∆;Γ ` (σ, x/M) : (Γ′, x : A)⇒∆2; (σ′, x/M ′)

σNil

∆;Γ ` · : · ⇒∆; ·

Figure 3.4: Bidirectional typing algorithm for cSLF (1/3)
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plus an additional one for contexts. The main judgment is ∆;Γ ` F ⇒ ∆′; F ′ : P ′

and reads: “in the context of slices ∆ and environment Γ, slicing the well-typed
atomic object F (possibly with deep applications of constants) results in the atomic
object F ′, which is well-typed of type P ′ in the extended context ∆′”. We call F ′ the
residual of slicing: it represents the “tip” of F that has not been sliced. Binding in
this judgment is as follows: types in Γ have metavariables defined in ∆, object F has
its free variables bound in Γ and its metavariables bound in ∆, F ′ and P ′ have their
free variables bound in Γ and their metavariables bound in ∆′.

Example 3.8. The residual F ′ of the slicing of object F = x (c (y)) in environment
Γ = x : a→ b, y : b is x (X[y/y]) in context X[y : b] : a= c (y) if c : b→ a ∈ Σ, or:

·; (x : a→ b, y : b) ` x (c (y))⇒ (X[y : b] : a= c (y)); x (X[y/y]) : b

As is customary, all judgments except the one for signatures are implicitly param-
eterized by a signature Σ that is constant in all rules, and that declares the types
and kinds of constants c and a. The difference with SLF signatures is that cSLF
signatures themselves can contain metavariables X[σ] standing for open atomic
objects and defined in the input (left-hand side) context ∆.

In the following, we will need a notion of checkout, that relates sliced cSLF
objects to their unfolded counterpart of SLF.

Definition 3.2 (Checkout). The checkout of an object M with respect to a context ∆
is the operation of “stripping out” all metavariables in M , replacing them by their
definition in ∆. The result is an SLF object ↓∆M .

↓∆λx. M = λx.↓∆M (3.15)

↓∆H (S) = H (↓∆S) (3.16)

↓∆M , S = (↓∆M), (↓∆S) (3.17)

↓∆X[σ] = ↓∆(c (S)[σ]) if X[Γ] : P = c (S) ∈∆ (3.18)

This operation is extended homomorphically to kinds K , types A, P, environment Γ
and signatures Σ. In Equation (3.18), to compute the checkout of a metavariable,
we look up its definition in ∆, and substitute all its free variables with σ. Note that
this operation is partial, since substitution is partial.

Let us go over some of the important typing rules of Figure 3.4. Rule MLam

is similar to its SLF equivalent, except that its premise returns a context ∆′ and a
residual body M ′; in its conclusion, we reconstruct the sliced term λx. M ′ that forms
our residual. In SLF’s MAtom, the checked and the inferred types were compared up
to α-equivalence only; in presence of metavariables, this comparison must be done
up to unfolding of those. We thus require for the checkout of the given type ↓∆P to
be equal to the checkout of the inferred type ↓∆′P ′.
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∆;Γ ` A type⇒∆′; A′ Type

AProd

∆;Γ ` A type⇒∆1; A′ ∆1;Γ, x : A` B type⇒∆2; B′

∆;Γ ` Πx : A. B type⇒∆2;Πx : A′. B′

AAtom

a : K ∈ Σ ∆;Γ; K ` S⇒∆′; S′ : ∗
∆;Γ ` a (S) type⇒∆′; a (S′)

∆;Γ; K ` S⇒∆′; S′ : ∗ Type spine

ASCons

∆;Γ ` M : A⇒∆1; M ′ ∆1;Γ; K[x/M ′] ` S⇒∆2; S′ : ∗
∆;Γ;Πx : A. K ` M , S⇒∆2; M ′, S′ : ∗

ASNil

∆;Γ;∗ ` · ⇒∆; · : ∗

∆;Γ ` K kind⇒∆′; K ′ Kind

KProd

∆;Γ ` A type⇒∆1; A′ ∆1;Γ, x : A` K kind⇒∆2; K ′

∆;Γ ` Πx : A. K kind⇒∆2;Πx : A′. K ′

KType

∆;Γ ` ∗ kind⇒∆;∗

Figure 3.5: Bidirectional typing algorithm for cSLF (2/3)
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When meeting an applied constant c (S), we must slice it by giving it a metavari-
able name and recording it in the context. This is what rule FConst does: the spine
S is recursively sliced into S′, and we add a new binding X[Γ′] : P = c (S′) (with
X fresh) to the output context ∆′. This new binding represents the fact that c (S′)
has type P and can, from now on, be referred to as X. All its free variables are
in Γ, however, we strengthen this environment to the strict minimum, by taking
Γ′ = strenc (S′)(Γ). While we could have saved the whole environment Γ, taking its
minimum subset typing F allows to shorten greatly the substitutions attached to
metavariables. The residual object of this slicing is the metavariable X applied to the
identity substitution idΓ′ , that takes the recorded term from Γ′ back to Γ.

Rule FMeta is the essence of the proof reuse system: typing a metavariable
X[σ] does not require to type its definition c (S), since its type P has already been
computed and stored in ∆. We just check that the provided substitution σ agrees
with the local environment Γ′ of X.

In rule SCons slicing a spine M , S, the context is threaded, i.e., a context ∆1 is
returned for M , it is then passed as input to the slicing of S, which returns the final
context ∆2 (the same applies to several of the remaining rules). Note that in the
second premise, we substitute the residual M ′ for x in B, and not the input term M .
This will guarantee that the type P eventually returned will contain only sliced object
i.e., it will be sliced itself (see theorem 3.4). The same precaution of substituting
residuals is taken in rules FMeta, ASCons and σCons. Rules for substitutions, types,
kind should be straightforward as they are identical to their SLF equivalent, save
the threading of the context and the recomposition of the residual subterms in the
returned residual.

One could be surprised to see that the signature judgment carries and returns
a context too (after all, it serves only to verify that a signature is well-typed). This
is because we slice once and for all the objects contained in the declared constants’
types; this way we do not need to slice their type each time we use them. Given an
SLF signature Σ0, one uses it in cSLF by first slicing it in the empty context, to get
the pair of a ∆ and Σ (· ` Σ0 sig⇒ ∆;Σ); then this pair can be used to slice e.g.,
object M (∆;Γ `Σ M : A⇒∆′; M ′). This gives rise to a rather non-standard binding
structure between signatures and context: ∆ contains constants c declared in Σ, and
Σ contains metavariables X defined in ∆.

Finally, environment and context judgments are declared only for metatheoretical
reasons, and are not part of the implementation of cSLF. In particular, they do not
need to slice their argument; however they both need to carry a context ∆ defining
the metavariables they may contain.
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∆ ` Σ sig⇒∆′;Σ′ Signature

SigType

∆ ` Σ sig⇒∆1;Σ′ ∆1; · `Σ′ A type⇒∆2; A′ c /∈ dom(Σ′)
∆ ` Σ, c : A sig⇒∆2; (Σ′, c : A′)

SigKind

∆ ` Σ sig⇒∆1;Σ′ ∆1; · `Σ′ K kind⇒∆2; K ′ a /∈ dom(Σ′)
∆ ` Σ, a : K sig⇒∆2; (Σ′, a : K)

SigNil

∆ ` · sig⇒∆; ·

∆ ` Γ env Environment

EnvCons

∆ ` Γ env ∆;Γ ` A type⇒∆′; A′

∆ ` Γ, x : A env

EnvNil

∆ ` · env

∆ `∆′ ctx Context

CtxCons

∆0 `∆1 ctx c : A∈ Σ ∆1;Γ; A` S⇒∆2; S′ : P ′

∆0 `∆2,X[Γ] : P = c (S) ctx

CtxId

∆ `∆ ctx

Figure 3.6: Bidirectional typing algorithm for cSLF (3/3)
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3.2.3 | CASE STUDY

Let us consider again examples 3.2 and 3.3 and implement in cSLF these incremental
type checks. For the purpose of this example, we will use an intrinsic or Church-
style encoding of the simply-typed λ-calculus [Benton et al., 2012]: instead of first
defining the untyped λ-terms, and then superimposing them derivations, a relation
tying a term to its type (the extrinsic encoding), we directly define the type of well-
typed terms tp A indexed by their types A. Under the Curry-Howard isomorphism, we
are defining the types of proofs of a proposition A. Here is our initial signature Σ:

tp : ∗.
nat : tp.
arr : tp→ tp→ tp.
tm : tp→ ∗.
o : tm nat.
s : tm nat→ tm nat.
lam : ΠA : tp. ΠB : tp. (tm A→ tm B)→ tm (arr A B).
app : ΠA : tp.ΠB : tp. tm (arr A B)→ tm A→ tm B.

We can feed it to the system for checking and slicing, and get a sliced signature Σ0

and a context ∆0. It corresponds to judgment · ` Σ sig⇒∆0;Σ0. Here is Σ0:

tp : ∗.
nat : tp.
arr : tp→ tp→ tp.
tm : tp→ ∗.
o : tm E.
s : tm E→ tm E.
lam : ΠA : tp. ΠB : tp. (tm A→ tm B)→ tm F[A/A; B/B].
app : ΠA : tp. ΠB : tp. tm F[A/A; B/B]→ tm A→ tm B.

Each applied object constant in types has been replaced by a metavariable: nat has
been replaced by E (remember that nat alone is a constant applied to an empty spine
of arguments), and arr A B by F (since this expression has free variables A and B,
each occurrence of F must carry a substitution). The produced context ∆0 defining
these metavariables is:

E[] : tp = nat;
F[A : tp, B : tp] : tp = arr A B

For concision, we took the liberty to collapse metavariables that have the same
definition.4

4In the described system, we would get as many metavariables with definition nat as there
are occurrences of nat in the signature. The implementation employs the same trick: names of
metavariables reflect their content.
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Now that we have a sliced signature, we can check and slice objects. The initial
λ-term of example 3.2, (λf x. f x) (λx. s(x)) (s(o)), is encoded by the atomic object
F0:

app nat nat
(app (arr nat nat) (arr nat nat)

(lam (arr nat nat) (arr nat nat) λf . lam nat nat λx. app nat nat f x)
(lam nat nat λx. s x))

(s o)

Note how its intrinsic encoding obliges to annotate it largely with types, not only at
λ-abstractions, but also at applications; this is due to the fact that SLF is an encoding
with local verification (see Section 3.2.1).

We feed the system with F0, in signature Σ0 and context ∆0. The corresponding
judgment is ∆0; · `Σ0

F0 ⇒ ∆1; F ′0 : P ′0. We get back the residual F ′0 = X, of type
P ′0 = E, in the new context ∆1 which is ∆0 extended with:

G[] : tp = arr E E;
H[x : tm E] : tm E = s x;
I[] : tm E = s J;
J[] : tm E = o;
K[] : tm G = app G G L M;
L[] : tm F[G; G] = lam G G λf .N[f/f];
M[] : tm F[E; E] = lam E E λx.H[x/x];
N[f : tm G] : tm F[E; E] = lam E E λx.O[f/f ; x/x];
O[f : tm G, x : tm E] : tm E = app E E f x;
X[] : tm E = app E E K I

Our initial term is well-typed and sliced: we can check that ↓∆1
F ′0 = F0. We

can now reuse the metavariables in ∆1 to build incrementally the modified term
(λf .λx. f x) (λx. s(s(x))) (s(o)). We call F1 its shared encoding as an atomic object:

app E E (app G G L (lam E E λx. s H[x/x])) I

Note how we reused type annotations E and G, the functional term L that has
not changed, the last argument I and the inner successor H. We had however to
reconstruct the whole path from the tip of the term to the location of the change,
i.e., the two app and the lam nodes. Note that ↓∆1

F1 is indeed the encoding of our
modified term (λf .λx. f x) (λx. s(s(x))) (s(o)). Again, we feed it to the system in the
context of the new acquired typing information ∆1, an operation corresponding to
judgment ∆1; · ` F1⇒∆2; F ′1 : P ′1. We get back F ′1 = Q, P ′1 = E and ∆2 which extends
∆1 with:

P[x : tm E] : tm E = s H[x/x];
Q[] : tm E = app E E R I;
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R[] : tm G = app G G L S;
S[] : tm F[E; E] = lam E E λ_x.P[x/x]

Note that ↓∆2
F ′1 is again the encoding of our modified term. Note also that the slicing

of F1 takes a time proportional to the size of F1, not of ↓∆1
F1, since the system rules

are directed by the form of the shared term.
Finally, we can continue and build another diff, starting from the typing infor-

mation we acquired in ∆2. We encode λ-term (λf x. f x) (λx. s(s(o))) (s(o)) by the
object F2:

app E E (app G G L (lam E E (λ_x.P[x/I]))) I

Instead of, as before, reconstructing the whole path from the root of the term to
the location of the change (the inner o), this time we use the fact that we have
already type-checked the slice P where this inner term was a free variable (it is a
context: a term with an instantiable hole). Up to now, all substitutions attached to
metavariables of input terms were the identity; this is the first use of substituting by
an already typed piece of term I. Again, judgment ∆2; · ` F2⇒∆3; F ′2 : P ′2 allows to
feed F2 to the system for slicing, and get back F ′2 =W , P ′2 = E in context ∆3 which
extends ∆2 with:

T[] : tm G = app G G L U;
U[] : tm F[E; E] = lam E E λx.V;
V[] : tm E = s I;
W[] : tm E = app E E T I

Remark that an incorrect reuse would lead to a typing error. For instance, there
is no derivation of judgment ∆3; · ` app E E U U⇒∆′; F ′ : P ′.

3.2.4 | METATHEORY

How can we be sure that an incrementally checked piece of term is indeed well-typed,
i.e., that the incremental type checking of a cSLF object succeeds exactly when the
corresponding batch checking in SLF does? In the following, we prove the main
properties of cSLF, which shows the two main ideas explained earlier:

2 cSLF objects are only SLF objects, but with the ability to refer to previously typed
pieces of objects;

2 the typing and slicing process is such that the residual of an object is a sliced
object, and is also well-typed.

For this, we prove what we (maybe abusively) will call soundness and completeness
of cSLF with respect to SLF. Their composition will show that type checking in cSLF
is decidable.

First, soundness establishes that the residual of typing an object is always an
object which, stripped off of its metavariables, is well-typed with respect to SLF;
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we show at the same time that the returned context is also well-typed. This is
established by mutual induction over the main judgments. These judgments hold
in a signature Σ that has been generated by typing a signature Σ0 containing no
metavariables. Clause 1. proves such a signature is sound, i.e., it is well-typed in SLF.
A noticeable case is 3. (d): it states that a well-typed contexts necessarily contains
only well-typed objects.

Theorem 3.1 (Soundness).

1. If · ` Σ0 sig⇒∆;Σ then `∆ ctx and ` ↓∆Σ sig
2. If ∆ ` Γ env then ` ↓∆Γ env
3. Suppose · ` Σ0 sig⇒∆0;Σ and ∆0 `Σ ∆ ctx and ∆ `Σ Γ env.

(a) If ∆;Γ `Σ F ⇒∆′; F ′ : P ′ then `∆′ ctx and ↓∆Γ `Σ0
↓∆′F ′⇒ ↓∆′P ′.

(b) If ∆;Γ `Σ M : A⇒∆′; M ′ then `∆′ ctx and ↓∆Γ `Σ0
↓∆′M ′⇐ ↓∆A

(c) If ∆;Γ; A`Σ S⇒∆′; S′ : P ′ then `∆′ ctx and ↓∆Γ;↓∆A`Σ0
↓∆′S′⇒ ↓∆′P ′

(d) If ∆ `Σ ∆1@∆2 ctx and X[Γ] : P = c (S) ∈ ∆1 and c : A ∈ Σ then
↓∆1
Γ;↓∆1

A`Σ0
↓∆1

S⇒ ↓∆1
P

(e) If ∆;Γ `Σ A type⇒∆′; A′ then `∆′ ctx and ↓∆Γ `Σ0
↓∆′A′ type

(f) If ∆;Γ `Σ K kind⇒∆′; K ′ then `∆′ ctx and ↓∆Γ `Σ0
↓∆′K ′ kind

Proof. We first prove clauses 1, 2 and 3. (a)-(d) by mutual induction on the given
derivations, and on ∆1 for (d). Clauses (e) and (f) are proved by single induction
over the given derivation. Most cases are straightforward: they amount to unfold the
definition of checkout and apply the appropriate rule of SLF to the goal. Only a few
are more involved; let us go over them:

Case FConst Let us call ∆0 the enlarged context ∆′,X[Γ′] : P ′ = c (S′). We must
show ↓∆Γ ` ↓∆0

X[idΓ′]⇒ ↓∆0
P ′, knowing by induction ↓∆Γ′;↓∆A ` ↓∆′S′ ⇒ ↓∆′P ′.

By lemma 1.12, we have ↓∆Γ;↓∆A ` ↓∆′S′⇒ ↓∆′P ′ since strenc (S′)(Γ) = Γ′. By the
definition of checkout, it suffices to prove ↓∆Γ ` ↓∆0

c (S′)[idΓ′] ⇒ ↓∆0
P ′, which

reduces to ↓∆Γ ` ↓∆0
c (S′)⇒ ↓∆0

P ′ by lemma 1.11, which in turn reduces to our
hypothesis by SLF’s FConst.

Case FMeta We must show ↓∆Γ ` ↓∆′X[σ′]⇒ ↓∆′P ′[σ′], which reduces to ↓∆Γ `
↓∆′(c (S))[σ′]⇒ ↓∆′P ′[σ′] seen that we know X[Γ′] : P = c (S) ∈ ∆′ (a premise
of FMeta). By induction, we know that ↓∆Γ ` ↓∆′σ′ ⇐ ↓∆′Γ′, so by theorem 1.4,
we only need to show ↓∆Γ′ ` ↓∆′c (S)⇒ ↓∆′P ′, which is induced by FConst and
clause 4.

Case ∆= · By induction on the derivation of X[Γ] : P = c (S) ∈ ∆, we derive a
contradiction.

Case ∆=∆′,Y[Γ] : P = c (S) We conclude easily by induction on the derivation of
X[Γ] : P = c (S) ∈∆.
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The residual M ′ of an object M differs from M only by the recursive replacement
of subterms by metavariables standing for these subterms. In other words, checking
out an object or its residual gives the same result. This is established by this simple
proposition:

Lemma 3.1 (Residual). Suppose · ` Σ0 sig⇒∆0;Σ and ∆0 `∆ ctx and ∆ ` Γ env.
Then:

1. If ∆;Γ ` F ⇒∆′; F ′ : P ′ then ↓∆F = ↓∆′F ′.
2. If ∆;Γ ` M : A⇒∆′; M ′ then ↓∆M = ↓∆′M ′.
3. If ∆;Γ; A` S⇒∆′; S′ : P ′ then ↓∆S = ↓∆′S′.
4. If ∆;Γ ` σ : Γ′⇒∆′;σ′ then ↓∆σ = ↓∆′σ′.
5. If ∆;Γ ` A type⇒∆′; A′ then ↓∆A= ↓∆′A′.
6. If ∆;Γ ` K kind⇒∆′; K ′ then ↓∆K = ↓∆′K ′.

Proof. By induction on the derivation. The only non-trivial case is FConst:

↓∆′,X[Γ′]:P=c (S′)X[Γ′] = ↓∆′,X[Γ′]:P=c (S′)(c (S′)[Γ′]) (3.19)

= ↓∆′,X[Γ′]:P=c (S′)(c (S′)) (3.20)

= ↓∆′(c (S′)) (3.21)

Equation (3.20) is by lemma 1.11 and corollary 1.3 and theorem 3.1; Equation (3.21)
holds since X /∈ dom(∆′).

Corollary 3.1 (Constant lookup). Suppose · ` Σ0 sig⇒∆0;Σ and ∆0 `∆ ctx. Then:

1. If c : A∈ Σ0 then c : A′ ∈ Σ and ↓∆A′ = A
2. If a : K ∈ Σ0 then a : K ′ ∈ Σ and ↓∆K ′ = K

Proof. By induction over the derivation of · ` Σ0 sig⇒∆0;Σ, using lemma 3.1.

Next, completeness establishes a dual (but not inverse) property: if a well-typed
object (with respect to SLF) is given as input to the slicer, then it will return a sliced
version of this object. More precisely, suppose an object with metavariables, which
checkout is well-typed in SLF. Then there exists a corresponding derivation in cSLF.

Theorem 3.2 (Completeness).

1. If ` ↓∆Σ sig then ` Σ sig⇒∆′;Σ′.
2. If ` ↓∆Γ env then ∆ ` Γ env.
3. Suppose · ` Σ0 sig⇒∆0;Σ and ∆0 `∆ ctx and ∆ ` Γ env. Then:

(a) If ↓∆Γ ` ↓∆F ⇒ P then there is ∆′, F ′, P ′ such that ∆;Γ ` F ⇒∆′; F ′ : P ′ and
↓∆′P ′ = P.

(b) If ↓∆Γ ` ↓∆M ⇐ ↓∆A then there is ∆′, M ′ such that ∆;Γ ` M : A⇒∆′; M ′.
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(c) If ↓∆Γ;↓∆A` ↓∆S⇒ P then there is ∆′, S′, P ′ such that ∆;Γ; A` S⇒∆′; S′ :
P ′ and ↓∆′P ′ = P.

(d) If ↓∆Γ ` ↓∆σ⇐ ↓∆Γ′ then there is ∆′, σ′ such that ∆;Γ ` σ : Γ′⇒∆′;σ′
(e) If ↓∆Γ ` ↓∆A type then there is ∆′, A′ such that ∆;Γ ` A type⇒∆′; A′.
(f) If ↓∆Γ ` ↓∆K kind then there is ∆′, K ′ such that ∆;Γ ` K kind⇒∆′; K ′.

Proof. By mutual, functional induction on the computation of the checkout of the
judged syntactic category: ↓∆Σ, ↓∆Γ, ↓∆F , ↓∆M etc. Most cases are straightforward,
and amount to inverse the given derivation and apply the induction hypothesis,
relying on corollary 3.1 for cases involving constants and theorem 3.1 clause 3. (d)
for the case involving a metavariable.

Thanks to these two results, we conclude that typing/slicing cSLF objects is
decidable. As usual, this proof is carried in an informal intuitionistic logic and thus
serves as a decidability result.

Theorem 3.3 (Decidability of typing). Suppose · ` Σ0 sig⇒ ∆0;Σ and ∆0 ` ∆ ctx
and ∆ ` Γ env. Then:

1. For all M and A, either there is ∆′ and M ′ such that ∆;Γ ` M : A⇒∆′; M ′ or not;
2. For all F either there is ∆′, F ′ and P ′ such that ∆;Γ ` F ⇒∆′; F ′ : P ′ or not;
3. For all A and S either there is ∆′, S′, P ′ such that ∆;Γ; A` S⇒∆′; S′ : P ′ or not;
4. For all σ and Γ0, either there is ∆′ and σ′ such that ∆;Γ ` σ : Γ0⇒∆′;σ′ or not;
5. For all K, either there is ∆′ and K ′ such that ∆;Γ ` K kind⇒∆′; K ′ or not;
6. For all A, either there is ∆′ and A′ such that ∆;Γ ` A type⇒∆′; A′ or not;
7. For all K and S either there is ∆′ and S′ such that ∆;Γ; K ` S⇒∆′; S′ : ∗ or not;
8. For all Σ, either there is ∆′ and Σ′ such that ∆ ` Σ sig⇒∆′;Σ′ or not;

Proof. Take the first clause. We reason by case on whether ↓∆Γ ` ↓∆M ⇐ ↓∆A is
well-typed, relying on theorem 1.3. If it is, then by theorem 3.2 there is M ′ and a
derivation allowing to conclude. Otherwise, by the contraposition of theorem 3.1,
there is no such derivation. All other clauses are proved the same way.

Finally, the following shows the relationship between the input object F of our
algorithm and its output F ′: while the input can be any object with metavariables,
the output is in a form where all constants (and their arguments) have been sliced,
i.e., given a unique metavariable name, lifted from their environment and stored in
the context:

Definition 3.3 (Sliced form). An atomic cSLF object F (resp. M , S, P, A, K, σ, Σ,
Γ) is in sliced form if it contains no object constant c. A context ∆ is sliced if it is
empty, or written ∆,X[Γ] : P = c (S) where ∆, S and P are sliced.

Finally, this proposition states that the slicer does its job, i.e., always returns a
sliced term:
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Theorem 3.4 (Sliced form). Let ∆ and Γ be sliced. Then:

1. If ∆;Γ ` F ⇒∆′; F ′ : P ′, then ∆′, F ′ and P ′ are sliced.
2. If ∆;Γ ` M : A⇒∆′; M ′ and A sliced then ∆′ and M ′ are sliced.
3. If ∆;Γ; A` S⇒∆′; S′ : P and A sliced then ∆′ and S′ are sliced.
4. If ∆;Γ ` σ : Γ′⇒∆′;σ′ and Γ′ sliced then ∆′ and σ′ are sliced.
5. If ∆;Γ ` A type⇒∆′; A′ then ∆′ and A′ are sliced.
6. If ∆;Γ ` K kind⇒∆′; K ′ then ∆′ and K ′ are sliced.
7. If ∆ ` Σ sig⇒∆′;Σ′ then ∆′ and Σ′ are sliced.

Proof. By easy induction on the derivation. In case FConst, we put c (S′) in the
context, and Γ′ is sliced.

3.3 | cDLF: COMPUTING DLF CERTIFICATES INCREMEN-
TALLY

In Section 3.2.3, we constructed incrementally a λ-term that was well-typed by
construction, since the encoding of it was intrinsic: there was no distinction between
terms and derivations. Here, we will see the need to separate a term and its typing
derivation, and a way to still be able to incrementally type check them.

3.3.1 | PRESENTATION
There are two obvious reasons why we cannot really call cSLF a general-purpose
incremental type checker and we would want to go further. First, the terms we had
to provide in Section 3.2.3 needed to carry full type annotations, which are naturally
not present in real programs. While many programming languages need some typing
input from the user, notably on binders, we reasonably cannot imagine putting type
information on every subterm. A possible answer to this problem is a mechanism
for type reconstruction. As mentioned earlier in Section 2.5, a notable deficiency of
LF objects is that they are very redundant, since each rule application must carry its
substitution. For instance, in object

app (arr nat nat) (arr nat nat)
(lam (arr nat nat) (arr nat nat) λx. x) (lam nat nat λx. x)

all occurrences of annotation arr nat nat are bound to be equal, and so are occur-
rences of nat, otherwise it would be ill-typed. In other words, this information could
be eluded in all cases except one, for instance the first annotation on each lam con-
structor, and reconstructed everywhere else at typing time; when declaring constants,
we would have to indicate or compute which arguments are reconstructible and
which are not. Type reconstruction is a very common feature found in most systems
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implementing some form of dependent type theory, among which Twelf and Beluga,
but also Coq and Matita, and has been extensively studied in the literature [Pym,
1992, Pfenning and Schürmann, 1998, Dowek, 2001, Pientka, 2013, Asperti et al.,
2012]. It is thus helpful not only as a way to compress LF proofs as in Section 2.5,
but also to relieve the user from entering all type information. For instance, our first
delta in the previous example could then be written simply

app (app L (lam E λx. s H[x/x])) I

Yet, we cannot expect a generic type reconstruction algorithm to be powerful
enough to infer this implicit information for any typed language. In fact, another
problem lies directly in the fact that intrinsic encodings cannot represent faithfully a
type system where some rules are silent. For instance, we studied in Section 2.4.2
the design of a type checker for System T<:. This system comprises a subtyping rule

Sub

` M : A′ ` A′ ≤ A
` M : A

that is not directed by the syntax of M , even though typing remains decidable in its
presence. An intrinsic encoding of it would have to have a sub syntactic construct
apparent in the term. Another example of such a silent rule is the polymorphism of
Curry-style System F [Girard, 1972, Reynolds, 1974]:

Inst
` M : A
` M : ∀α. A

Gen
` M : ∀α. A
` M : A[x/B]

In this case, it is well-known that type checking becomes undecidable [Wells, 1994],
even though an algorithmic restriction of it is used in the ML family type systems
[Milner, 1978].

To conclude these two remarks, a full treatment of incremental type checking
requires a full treatment of type checking by itself: the terms and the typing deriva-
tions are two separate entities, and terms must be considered untyped before being
superimposed typing derivations that possibly have a much more involved structure.
The program computing these derivations can then be arbitrarily complex.

In this section, we propose to extend cSLF with an untyped computational
language, actually the exact same extension that made SLF into DLF in Chapter 2,
only with a representational layer that allows sharing in proof objects. As we shall
see, we obtain a way to turn any implementation of a certifying type checker into an
incremental type checker, supporting the mechanism of incrementality by sharing of
subderivations.

Maybe surprisingly, the key to express sharing will be function inverses and the
contraction reduction rule described in Section 2.3. Indeed, if a type checker takes
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Σ ::= . . .
�

� Σ, f : A= “T” Signature

H ::= . . .
�

� “x”
�

� f
�

� fn Head

T ::= U
�

� funx→ T Terms

U ::= «F»
�

� match U under Γ with C Atomic term

C ::= ·
�

� «Q»⇒ U | C Branches

Q ::= c (x, . . . ,x) Pattern

Figure 3.7: Syntax of cDLF, relatively to cSLF (Figure 3.2)

a term to a typing derivation, a term for which the derivation of some subterm is
known will need to coerce that already-checked derivation back to a term, which is
precisely what inverses do. Contracting the type checking function and its inverse
will then take a new sense: that of avoiding computing the derivation when it has
already been computed.

3.3.2 | DEFINITION

We turn to the formal description of cDLF. Since all the main ideas of this language
were already present in cSLF and DLF, the presentation will be more succinct. The
confident reader can skip directly to the next section which presents a usage example,
and come back to this formal description afterwards if necessary.

A | SYNTAX, SUBSTITUTIONS, OPERATIONS

The syntax of cDLF, defined on Figure 3.7, is an extension of the syntax of cSLF,
actually the exact same extension than what we did in Figure 2.1 to go from SLF to
cSLF: we add the ability to define functions in the signature, and to refer to these
functions, their inverses and special, computational variables x in heads. In other
words, the cDLF language is the DLF language where atomic objects are extended
with metavariables, defined in contexts.

Thus, if a cDLF object contains no metavariables, it is a DLF object; if it contains
no function or inverse symbols nor computational variables, it is a cSLF object. we
will use these implicit coercions in the following to lighten the definitions.

We first define the two kinds of substitution, for variable and computational
variable:

Definition 3.4 (Variable substitution). The hereditary substitution operation M[σ]
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is extended homomorphically from that of cSLF (Figure 3.3) by the three equations:

. . . (3.22)

f (S)[σ] = f (S[σ]) (3.23)

f i (S)[σ] = f i (S[σ]) (3.24)

“x” (S)[σ] = f (S[σ]) (3.25)

Definition 3.5 (Computational variable substitution). The substitution of computa-
tional variables M[x/N] is extended homomorphically from that of DLF (Figure 2.2)
on metavariables and substitutions by the equations:

. . . (3.26)

(X[σ])[x/M] = X[σ[x/M]] (3.27)

(·)[x/M] = · (3.28)

(σ, x/N)[x/M] = (σ[x/N]), x/(M[x/N]) (3.29)

The projections defining the type and code of inverses are unaffected by the
presence of metavariables, since they are defined only on the type structure. On the
contrary, erasure must be extended trivially:

Definition 3.6 (Projection types and objects). The projection type (A)n and object
πn(A) are defined identically to the corresponding definitions in DLF (definitions 2.1
and 2.2).

Definition 3.7 (Erasure). The erasure operation |M |Σ is extended homomorphically
from that of DLF (definition 2.3) on metavariables and substitutions:

. . . (3.30)

|λx. M |Σ = λx. |M |Σ (3.31)

|X[σ]|Σ = X[|σ|Σ] (3.32)

|·|Σ = · (3.33)

|σ, x/M |Σ = |σ|Σ, x/|M |Σ (3.34)

Checkout in cSLF was a partial operation: it was not defined when a metavariable
was carrying an ill-typed substitutions. It is “even more partial” in cDLF, since it is
undefined on terms containing functions.

Definition 3.8 (Checkout). The checkout operation ↓∆M maps a cDLF term to an
SLF term. Its definition is identical to the cSLF definition (definition 3.2).
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∆;Γ ` F ↓ F ′ : P Atomic object

FVar

x : A∈ Γ ∆;Γ; A` S ↓ S′ : P
∆;Γ ` x (S) ↓ x (S′) : P

FConst

c : A∈ Σ ∆;Γ; A` S ↑∆′; S′ : P
∆;Γ ` c (S) ↓ c (S′) : P

FMeta

X[Γ] : P = c (S) ∈∆ ∆;Γ ` σ : Γ′ ↓ σ′

∆;Γ ` X[σ] ↓ X[σ′] : P[σ′]

FEval

f : A= “T” ∈ Σ
∆;Γ; A` S ↓ S′ : P

S′ 6= f0 (S0), . . . , fn (Sn)
∆;Γ ` T ? S′ ↓ F : P

∆;Γ ` f (S) ↓ F : P

FInv

f : A= “T” ∈ Σ ∆;Γ; (A)i ` S ↓ S′ : P

∆;Γ ` f i (S) ↓ f i (S′) : P

FEvalInv

f : A= “T” ∈ Σ ∆;Γ; A` S ↓ f0 (S0), . . . , fn (Sn) : P ∀i, j, Si = S j

∆;Γ ` f (S) ↓ πn(A) ? S0 : P

Figure 3.8: Call-by-value weak typed evaluation of cDLF objects (1/5)

B | TYPED EVALUATION AND SLICING

The evaluation algorithm of cDLF is presented on Figures 3.8 to 3.12. With the typed
slicing algorithm of cSLF and the typing evaluation of DLF in mind, it should be
fairly easy to grasp despite its size. We maintain the invariant that all slices recorded
in a context∆ only contain values, that is objects with no function or inverse symbols.
Like the algorithm of DLF, it is separated in two phases.

First, a weak evaluation procedure traverses and type checks an object (Figures 3.8
and 3.9) looking for applied function symbols to evaluate (rule FEval) or contractions
to perform (rule FEvalInv), but only within the current scope, i.e., not traversing λ-
abstractions. When a function evaluation is triggered, its code is interpreted against
its arguments (Figure 3.10). The only differences with the evaluation of DLF are
that:

2 All rules carry a supplementary context as input, defining all metavariables. Type
comparison, which was purely syntactic in DLF, must be done up to unfolding of
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∆;Γ ` M : A ↓ M ′ Canonical object

MLam

∆;Γ ` λx. M : (Πx : A. B) ↓ λx. M

MAtom

∆;Γ ` F ↓ F ′ : P ′ ↓∆P = ↓∆′P ′

∆;Γ ` F : P ↓ F ′

∆;Γ; A` S ↓ S′ : P Spine

SNil

∆;Γ; P ` · ↓ · : P

SCons

∆;Γ ` M : A ↓ M ′ ∆;Γ; B[x/|M ′|] ` S ↓ S′ : P
∆;Γ;Πx : A. B ` M , S ↓ M ′, S′ : P

∆;Γ ` σ : Γ′ ↓ σ′ Substitution

σNil

∆;Γ ` · : · ↓ ·

σCons

∆;Γ ` σ : Γ′ ↓ σ′ ∆;Γ ` M : A[|σ′|] ↓ M ′

∆;Γ ` (σ, x/M) : (Γ′, x : A) ↓ (σ′, x/M ′)

Figure 3.9: Call-by-value weak typed evaluation of cDLF objects (2/5)

metavariables. This is seen in the second premise of rule MAtom.5

2 The weak evaluation of a metavariable (the new rule FMeta, similar to its cSLF
homonym) amounts to evaluating only its attached substitution, but does not
involve looking at its body, since it does not contain function symbols.

2 However, during the evaluation of a function, a metavariable must not block a
pattern matching. When a metavariable is the scrutinee of a match (the new
rule CMeta), we unfold its definition once, and continue looking for a matching
pattern.

2 A judgment is also added to evaluate and type substitutions (rules σNil and
σCons), similarly to the corresponding rules in cSLF. Note the type substitution
that is performed on the erased type in σCons, in the manner of rule SCons and
RSCons.

Secondly, the readback procedure takes a weak value F produced by weak evalua-

5Here, this comparison is presented very naively: we normalize completely both types P and P ′

and compare the result syntactically. A more efficient algorithm is not hard to find: when there is a
metavariable on one side, we unfold it only once and compare recursively; this way, we fail earlier.
In essence, this is the algorithm described in Harper and Pfenning [2005]. To further accelerate
this conversion, metavariable could be tagged as injective or not; when we have the same injective
metavariable on both sides, then we only need to compare their substitutions. A syntactic criterion for
being injective is proposed in Pfenning and Schürmann [1998].
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∆;Γ ` T ? S ↓ F : P Canonical term

TLam
∆;Γ ` T[x/M] ? S ↓ F : P

∆;Γ ` funx→ T ?M , S ↓ F : P

TAtom
∆;Γ ` U ↓ F : P
∆;Γ ` U ? · ↓ F : P

∆;Γ ` U ↓ F : P Atomic term

UAtom

∆;Γ ` F ↓ F ′ : P
∆;Γ ` «F» ↓ F ′ : P

UCase

∆;Γ@Γ′ ` U ↓ F : P ∆;Γ ` F ? C ↓ F ′ : P ′

∆;Γ `match U under Γ′ with C ↓ F ′ : P ′

∆;Γ ` F ? C ↓ F ′ : P Branches

CNoMatch

c 6= c′ ∆;Γ ` c (S) ? C ↓ F : P
∆;Γ ` c (S) ? («c′ (~x)»⇒ U | C) ↓ F : P

CMatch
∆;Γ ` U[x1/M1, . . . , xn/Mn] ↓ F : P ∀i j, if i 6= j then xi 6= xj

∆;Γ ` c (M1, . . . , Mn) ? («c (x1, . . . , xn)»⇒ U | C) ↓ F : P

CMeta

X[Γ′] : P ′ = c (S) ∈∆ ∆;Γ ` c (S[σ]) ? C ↓ F ′ : P
∆;Γ ` X[σ] ? C ↓ F ′ : P

Figure 3.10: Call-by-value weak typed evaluation of cDLF term (3/5)
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∆;Γ ` M : A⇓∆′; M ′ and ∆;Γ ` F ⇓∆′; F ′ : P Can. obj. full evaluation

SMObj

∆;Γ ` M0 : A ↓ M1 ∆;Γ ` M1 : A ↑∆′; M2

∆;Γ ` M0 : A⇓∆′; M2

SFAtom

∆;Γ ` F0 ↓ F1 : P ∆;Γ ` F1 ↑∆′; F2 : P
∆;Γ ` F0 ⇓∆′; F2 : P

∆;Γ ` F ↑∆′; F ′ : P Atomic object readback

RFVar

x : A∈ Γ ∆;Γ; A` S ↑∆′; S′ : P
∆;Γ ` x (S) ↑∆′; x (S′) : P

RFConst

c : A∈ Σ ∆;Γ; A` S ↑∆′; S′ : P strenΓ(c (S′)) = Γ′ X /∈ dom(∆′)
∆;Γ ` c (S) ↑ (∆′,X[Γ′] : P = c (S));X[idΓ′] : P

RFInv

f : A= “T” ∈ Σ ∆;Γ; (A)n ` S ↑∆′; S′ : P
∆;Γ ` fn (S) ↑∆′;πn(A) ? S′ : P

RFMeta

X[Γ′] : P = c (S) ∈∆ ∆;Γ ` σ : Γ′ ↑∆′;σ′

∆;Γ ` X[σ] ↑∆′;X[σ′] : P[σ′]

Figure 3.11: Call-by-value full typed evaluation of cDLF (4/5)
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∆;Γ ` M : A ↑∆′; M ′ Canonical object readback

RMLam

∆;Γ, x : A` M : B ⇓∆′; M ′

∆;Γ ` λx. M : (Πx : A. B) ↑∆′;λx. M ′

RMAtom

∆;Γ ` F ↑∆′; P : F ′

∆;Γ ` F : P ↑∆′; F ′

∆;Γ; A` S ↑∆′; S′ : P Spine readback

RSNil

∆;Γ; P ` · ↑∆; · : P

RSCons

∆0;Γ ` M : A ↑∆1; M ′ ∆1;Γ; B[x/|M ′|] ` S ↑∆2; S′ : P
∆0;Γ;Πx : A. B ` (M , S) ↑∆2; (M ′, S′) : P

∆;Γ ` σ : Γ′ ↑∆′;σ′ Substitution readback

RσNil

∆;Γ ` · : · ↑∆; ·

RσCons

∆0;Γ ` σ : Γ′ ↑∆1;σ′ ∆1;Γ ` M : A[|σ′|] ↑∆2; M ′

∆0;Γ ` (σ, x/M) : (Γ′, x : A) ↑∆2; (σ′, x/M ′)

Figure 3.12: Call-by-value full typed evaluation of cDLF (5/5)
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tion, together with its context ∆ and environment Γ, and traverses it a second time
to find λ-abstraction bodies to evaluate (Figures 3.11 and 3.12). Once a subterm
is an actual value, i.e., once it does not contain functions anymore, it is sliced (rule
RFConst), its inverses erased (rule RFInv), and the procedure eventually returns
a context ∆′ and a residual F ′. All rules are similar to their DLF equivalent, except
that:

2 All judgments take and return a context, and also return a residual of slicing;
context are threaded sequentially in the premises of rules RSCons and RσCons;
in most rules, the residual is the recomposed input term . . .

2 . . . except for rule RFConst which slices a constant application (this rule is
similar to FConst in cSLF), and rule RFInv, which projects out all inverses met.
Remember that we only slice constant applications, and not variable application:
this is why the residual of RFInv is x (S′).

2 Rule RFMeta is similar to FMeta: reading back a metavariable does not involve
inspecting its body, only its substitution, since its body is already a value.

Like in DLF, this walk must carry the type of the value (infer or check it), so as to
pass it to weak evaluation when we meet a λ-abstraction.

Finally, full evaluation (Figure 3.11) is the composition of these two phases.
Starting from a context ∆, an environment Γ and an atomic object F , they are passed
to weak evaluation (rule SFAtom); then the resulting weak value F1 is read back in
the same context ∆ and environment Γ. Readback returns a value F2, sliced in the
extended context ∆′.

We did not include judgments for types, kinds and signatures. This is because
they are the same as in cSLF (Figure 3.6), and we did not repeat them here: just
like DLF was relying on the signature verification of SLF, cDLF types cannot contain
function or inverse symbols.

3.3.3 | CASE STUDY
Let us consider again the certifying type checker of Section 2.4.2. We will use it as is
to implement the small term reuse examples of examples 3.2 and 3.3.

We recall that we declared a signature of terms and derivations:

tm : ∗.
tp : ∗.
is : tm→ tp→ ∗.

The type checker infer takes a term are returns the “package” of a type and a
derivation. This package was declared by type inf:
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inf : tm→ ∗.
ex : ΠM : tm. ΠA : tp. ΠH : is M A. inf M.
infer : ΠM : tm. inf M = " ... ".

Without modifying the code or the signature of this type checker, we can already
use it as an incremental type checker, thanks to the caching mechanism provided by
cDLF and the use of inverses to represent computations that can be avoided. First, let
us take the whole signature defined in Section 2.4.2 (all constants and functions) and
slice it. We get back a signature Σ0 where all applied constants have been replaced
by metavariables, and a context ∆0 defining among others:

A[M : tm→ tm, A : tp] : tm = lam A (λu. M u).
D[A : tp, B : tp] : tp = arr A B.
J[x : tm, x’ : tm] : tm = app x x’.
F[x : tm] : tm = s x.

¶ | INITIAL TERM Our first query is to type check the initial T<: term (λf x. f x) (λx. s(x)) (s(o)).
This query corresponds to the following atomic object F0 to be fed to the system for
evaluation and slicing:

infer (app (app
(lam (arr nat nat) λf . lam nat λx. app f x)
(lam nat λx. s x))

(s o))

Note how the encoding of the term is significantly shorter than that of Sec-
tion 3.2.3. This is because we use an extrinsic or à la Curry encoding of the language:
first, bare T<: terms are encoded, then derivations typing these terms a posteriori
are defined as a relation between a (term) and a type. Type annotations appear
nonetheless at λ-abstractions: we are not doing “full” type inference in the sense of
Pierce and Turner [2000].

Wrapping this object with a call to function infer makes the system generate and
slice a full typing derivation for it, i.e., an object of type inf X where X refers to the
sliced input term. Indeed, we have ∆0; · ` F0 ⇓∆1;Y : nat, and ∆1 is ∆0 extended
with slides:

B[f : tm] : tm = lam nat (λx.J[x/f ; x’/x]).
C : tp = arr nat nat.
E : is A[M/λx.B[f/x]; A/C] D[A/C; B/C] =

Lam (λf .B[f/f]) C C (λx.λh.O[x/x; h/h]).
G[x : tm, h : is x nat] : is F[x/x] nat = Sn x h.
H : tm = s o.
I : is H nat = Sub H odd nat SubOdd K.
K : is F[x/o] odd = So o L.
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L : is o even = O.
O[x : tm, h : is x C] : is A[M/λx’.J[x/x; x’/x’]; nat] D[A/nat; B/nat] =

Lam (λx’.J[x/x; x’/x’]) nat nat (λx’.λh’.P[x/x’; h/h; x’/x; h’/h’]).
P[x : tm, h : is x C, x’ : tm, h’ : is x’ nat] : is J[x/x; x’/x’] nat =

App x x’ nat nat h h’.
Y : inf X = ex X nat Z.
Z : is X nat = ...

We eluded some of the slices for concision. We could compute ↓∆1
F ′0 to get the full

typing derivation, and verify that it is well-typed with respect to SLF of type inf F0,
but this is actually guaranteed by the metatheory of our system.

¶ | FIRST DELTA Now, let us consider the second T<: term, (λf .λx. f x) (λx. s(s(x))) (s(o)),
and see how we can encode the derivations reuse. First, consider subterm s(o) on
the right; since it was in our original term as-is, there must be a slice in ∆1 of a type
convertible to is (s o) nat: there is, it is I. Contrarily to Section 3.2.3, we cannot
directly graft it in place of s(o) in the term, because it would be ill typed: a term is
not the same as a derivation anymore, infer precisely generates one from the other.
Yet, there is a “coercion” from derivations to terms: infer0 which “projects out” a
derivation back to the term it types. In fact it almost does: it takes an inf, and not
a derivation, to a tm (its type is ΠM : tp. inf M → tm). In a nutshell, reusing the
derivation of s(o) amounts to replacing sub-object s o in the query by:

infer0 H (ex H nat I)

When evaluating infer (infer0 H (ex H nat I)), the system will first check that the
argument of infer is well-typed (taking constant time with respect to the size of the
shared derivation stored in I) and then apply contraction (rule FEvalInv) and return
simply ex H nat I. Note that s(o) is a small term here, so this reuse is a small gain,
however the reuse of a much larger derivation for a hundred-lines program will take
the exact same time.

The same pattern applies to the reuse of derivation for subterm λf .λx. f x. The
computed derivation is stored in metavariable E; as indicated by its type, the asso-
ciated term and type were represented with sharing by resp. A[M/λx.B[f/x]; A/C]
and D[A/C; B/C]. In a nutshell, we reuse E by writing:

infer0 A[M/λx.Bλ_x. ; A/C] (ex A[M/λx.B[f/x]; A/C] D[A/C; B/C] E)

¶ | REUSING OPEN DERIVATIONS A harder reuse to express is the one of the
internal s(x) subterm, because it is an open term. The corresponding derivation is
G and is parameterized by both a term x and a derivation h stating that it has type
nat; under these parameters, it states that term F[x/x] (i.e., s x) has type nat. How
should we instantiate the parameter h? The answer is to use infer x: when the type
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checker will traverse the λ-abstraction binding x, it will substitute it with infer0 x h’
where h’ is the appropriate derivation. Object infer x cannot directly instantiate
the parameter h however since it is a “package” of type inf x and not is x nat; we
must open the package and project out the derivation part. An object of type inf M
is necessarily constructed by application of the ex constant. Let us introduce an
auxiliary function that destructs an inf into the derivation it contains:

prj : ΠM : tm. ΠA : tp. inf M → is M A = " fun _ _ i→
let « ex "_" "_" "h" » = i in h".

In a nutshell, the reuse of the derivation G for s(x) in an environment where x is a
variable is thus expressed by the object M :

infer0 F[x/x] (ex F[x/x] nat G[x/x; h/prj x nat (infer x)])

Note the inner call to infer: it is the crucial point of this example. The object infer M
is well-typed in an environment where x : tm. But if we evaluate as it is, it will
fail: the inner call to infer is made on a free variable. If on the contrary we evaluate
infer (lam λx. M), the first step will be to go under the λ-abstraction and substitute x
by infer0 x h (in an environment where x : tm, h : is x nat): this way the inner call to
infer can be contracted to just h.

Finally, our second query is object F1:

infer (app (app
(infer0 A[M/λx.Bλ_x. ; A/C] (ex A[M/λx.B[f/x]; A/C] D[A/C; B/C] E))
(lam nat λx. s (infer0 F[x/x]

(ex F[x/x] nat G[x/x; h/prj x nat (infer x)]))))
(infer0 H (ex H nat I)))

Note that even though this term is large, its size does not depend on the size of the
derivations referred by E, H and I we avoided to recompute; it depends however
on the number of free variables referred to in these metavariables, since we have to
explicitly mention their substitution. Note also that many arguments are redundant
here: for instance, in the frequently used subobject infer0 M1 (ex M ′

1 M2 M3), M1 is
always equal to M ′

1 and M2 can be deduced by just reading off the type of M3. This
is because our language is explicit: even though it would be possible, no inference of
implicit arguments is performed. Cleared from all arguments that could be inferred,
our query could be simply:

infer (app (app (infer0 E) (lam nat λx. s (infer0 G[h/infer x]))) (infer0 I))

which is far more readable and easier to generate.
Once evaluated, F1 gives rise to a sliced derivation for our modified program,

where some of the new derivation slices point to the first derivation we built. Because
we built, among others, a derivation for s(s(x)), the returned context ∆2 contains
new slices:
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M[x : tm] : tm = s F[x/x].
N[x : tm, h : is x nat] : is F[x/F[x/x]] nat = Sn F[x/x] G[x/x; h/h].

¶ | SECOND DELTA Finally, we can easily type term (λf x. f x) (λx. s(s(o))) (s(o)),
by instantiating term M with o and derivation N with infer o. There is a slight twist
however: subtyping. The generated type of o will be even, which cannot directly be
grafted in derivation N which awaits a nat parameter; however we can easily coerce
one to the other with function subm, which tries to coerce a typing derivation from
one type to a subtype. This gives the following query F2:

infer (app (app
(infer0 A[M/λx.B[f/x]; A/C] (ex A[M/λx.B[f/x]; A/C] D[A/C; B/C] E))
(lam nat λx. (infer0 M[x/o]

(ex M[x/o] nat N[x/o; h/subm o even nat (prj o even (infer o))]))))
(infer0 H (ex H nat I)))

Note here that the derivation nodes for the two internal s() constructors where
not regenerated, we instantiated the parametric slice M. If we were to use a purely
first-order representation of derivations and terms, as it is the case with memoization,
this would be impossible and we would need to regenerate the derivations for s()
nodes since their subterm went from x to o.

Again, the skeptical reader can evaluate it in the empty environment, get a context
∆3 and a residual F ′2, and verify that the object ↓∆3

F ′2 encodes a valid derivation for
the T<: term (λf x. f x) (λx. s(s(o))) (s(o)).

3.3.4 | METATHEORY

We finish this section by a quick look at the properties of cDLF. Since the major work
has been done already on its direct parents DLF and cSLF, we only outline here its
relation to them.

First, we sketch that it has the same operational behaviour as DLF, in the
sense that they evaluate equal objects to equal objects, modulo the substitution of
metavariables by their definitions: this is soundness.

Lemma 3.2 (Soundness). Let · ` Σ0 sig ⇒ ∆0;Σ and ∆0 ` ∆ ctx and ∆ ` Γ env.
Then:

1. If ∆;Γ `Σ M : A ↓ M ′ then ↓∆Γ `Σ0
(↓∆M) : (↓∆A) ↓ (↓∆M ′);

2. If ∆;Γ `Σ F ↓ F ′ : P ′ then ↓∆Γ `Σ0
(↓∆F) ↓ (↓∆F ′) : (↓∆P ′);

3. If ∆;Γ; A`Σ S ↓ S′ : P ′ then ↓∆Γ;↓∆A`Σ0
(↓∆S) ↓ (↓∆S′) : (↓∆P ′);

Theorem 3.5 (Soundness). Let · ` Σ0 sig⇒ ∆0;Σ and ∆0 ` ∆ ctx and ∆ ` Γ env.
Then:
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1. If ∆;Γ `Σ M : A⇓∆′; M ′ then ↓∆Γ `Σ0
(↓∆M) : (↓∆A) ⇓ (↓∆′M ′);

2. If ∆;Γ `Σ M : A ↑∆′; M ′ then ↓∆Γ `Σ0
(↓∆M) : (↓∆A) ↑ (↓∆′M ′);

3. If ∆;Γ `Σ F ↑∆′; F ′ : P ′ then ↓∆Γ `Σ0
(↓∆F) ↑ (↓∆′F ′) : (↓∆′P ′);

4. If ∆;Γ; A`Σ S ↑∆′; S′ : P ′ then ↓∆Γ; (↓∆A) `Σ0
(↓∆S) ↑ (↓∆′S′) : (↓∆′P ′).

Corollary 3.2. If ∆;Γ ` F ⇓∆′; F ′ : P ′ then ↓∆Γ ` ↓∆F ⇓ (↓∆′F ′) : (↓∆′P ′).

Proof. By rule SFAtom and the previous theorem.

With what we know about DLF, we can conclude that all cDLF residuals are
well-typed with respect to SLF.

Corollary 3.3. If ∆;Γ ` F ⇓∆′; F ′ : P ′ then ↓∆Γ ` ↓∆′F ′⇒ ↓∆′P ′ .

Proof. By composing theorem 2.1, and the previous corollary.

Secondly, it is easy to see that cDLF has also the same property as cSLF: whatever
its input term is, its output term will be sliced, i.e., there will be a metavariable name
assigned to all rule application:

Theorem 3.6 (Sliced form). Let ∆, Σ and Γ be sliced. Then:

1. If ∆;Γ `Σ F ↑∆′; F ′ : P ′, then ∆′, F ′ and P ′ are sliced.
2. If ∆;Γ `Σ M : A ↑∆′; M ′ and A sliced then ∆′ and M ′ are sliced.
3. If ∆;Γ; A`Σ S ↑∆′; S′ : P ′ and A sliced then ∆′, S′ and P ′ are sliced.
4. If ∆;Γ `Σ σ : Γ′ ↑∆′;σ′ and Γ′ sliced then ∆′ and σ′ are sliced.

Proof. By easy mutual induction over the derivation.

3.4 | IMPLEMENTATION HIGHLIGHTS

The Gasp framework is the implementation of cDLF in OCaml. We could call it a
library, since it is not a fully-fledged program but a set of primitives that can be
used in other OCaml programs to manipulate certificates. We could also call it an
embedded Domain Specific Language, since it is only a shallow embedding of the cDLF
language on top of OCaml. In particular, we will discover in this section that the
computational layer presented above is actually OCaml itself, used in a controlled
way thanks to carefully chosen abstractions.

¶ | ARCHITECTURE The implementation consists of three different modules. First,
the CLF module defines the abstract syntax tree of the surface language, just as it is
parsed. There, there is no distinction between objects, types and kinds: each of these
terms is parsed and has type term. At this level, concrete names typed by the user
are represented as strings; also, application is binary.
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Secondly, the cDLF module defines the syntax of cDLF objects, types etc. but
not its computational language (terms, atomic terms, patterns and branches): these
will be handled by OCaml itself. At this level, variables are represented by De Bruijn
indices, application is n-ary, and metavariables are represented by strings which are
hash keys to the pair of their environment and their definition. This way, we ensure
that there will never be two distinct metavariables for the same slice. In this module
is also defined a partial function from CLF terms to either objects, types or kinds,
and its inverses, mapping back a cDLF term to a CLF one. We call this operation
stratification (or unstratificaton for its inverse) since it determines the “level” of a
given term.

The kernel module defines the typed, slicing evaluation algorithm described
above. It defines the type of a repository repo to be the triplet of a signature sign, a
context ctx and a residual atomic object atom: it packs together all input and output
of the evaluation process. The module exports only four functions:

init : sign→ repo (3.35)

commit : repo→ env→ atom→ repo (3.36)

checkout : repo→ atom→ atom (3.37)

eval : repo→ env→ atom→ atom (3.38)

Function init takes a signature, checks and slices it into an initial repository formed
of the sliced signature, the context of these slices and a dummy residual (this initial
repository contains no object yet). The commit function takes an atomic object,
possibly containing function and inverse symbols and metavariables, and evaluates
it. The returned repository has the same signature as the input one, only a context
enlarged with new slices and a residual that is replaced by the residual resulting
from slicing. The checkout function implement the checkout operation of cSLF: it
takes an atomic object containing no functions to evaluate, and strips it off of all
its metavariables. If the atomic object is a residual (i.e., if it was well-typed with
respect to the repository’s context and signature) then this operation returns an
object that is well-typed with respect to SLF. Finally, eval implements weak cDLF
evaluation. It is used in the code of defined functions to evaluate recursively objects
before pattern-matching.

¶ | QUOTATIONS AND ANTIQUOTATIONS As is common when implementing a
DSL, our implementation relies heavily on the use of quotations and antiquotations.
We use the CamlP46 quotation facility to define the concrete syntax of the embedded
language of terms and to parse. CamlP4 is a multi-purpose tool that is shipped with
OCaml, and that can be viewed as a set of independent components, among which:

6http://brion.inria.fr/gallium/index.php/Camlp4
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2 an LL(1) parser, taking a string and the representation of an α-grammar (i.e., a
grammar which semantic actions have type α), and returning an α;

2 the abstract syntax e of OCaml itself, and an e-grammar to parse OCaml pro-
grams. . .

2 . . . extended with one parametric construct for quotations «L X » where L is a
special label string identifying the particular language in which the string X is
written;

2 a table associating an e-grammar to each label L, so that each quotation «L X » is
parsed by the associated grammar, and turned into an OCaml expression which
inserted in place of the quotation;

The OCaml compiler itself has an option to use CamlP4 instead of its own internal
parser. Note that with this simple mechanism, one is free to declare quotations
featuring a particular syntactic rule (written here “e”) which semantic action is to
parse string e with e-grammar, i.e., OCaml code itself; these are antiquotations. In
turn, antiquotations, like any OCaml expression, can themselves contain quotations,
which can contain antiquotations. . .

Gasp uses three different quotations: signatures «sign X », environments «env X »
and terms « X » (without label). Each of these quotations is replaced by a value of
OCaml type respectively sign, env and term which represent the abstract syntax of
CLF.

Example 3.9. The OCaml code

fun t→ « λx.λy. "t" x y »

has type term→ term and is preprocessed into

fun t→ Lam (”x”, Lam (”y”, App (App (t, Var ”x”), Var ”y”)))

¶ | THE COMPUTATIONAL LEVEL The abstract syntax tree of CLF defines notably
signatures the following way:

type func = (term→ term)→ term list→ term
type sign = (string × term × func option) list

Each element of the signature contains a name identifying the constant being defined,
a term representing the type or kind of this constant, and optionally an OCaml
function. This function will serve as the code associated to this function symbol: each
time the kernel has to evaluate an application f (S) (where S is already evaluated), it
unstratifies the cSLF spine S into a CLF list of term, retrieves this function’s code
f : func and apply the unstratified terms to this function. The higher-order function
in type func serves to call the evaluator recursively in the code of the functions when
pattern-matching. Finally when the call to f returns, the result (a term) is stratified
and passed back to the evaluator.
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Example 3.10. The following is a value of type sign:

let s = «sign

nat : ∗. o : nat. s : nat→ nat.
deux : nat = "fun eval []→ « s (s o) »".
plus : nat→ nat→ nat = "fun eval [m;n]→ match eval m with
| « o »→ n | « s "m" »→ « s (plus "m" "n")".

»
which with some syntactic sugar is transformed into the syntax we saw up until now
(function eval is made implicit, and the OCaml functions are currified by counting
the number of arguments of the type of the function symbol).

¶ | LOCALLY NAMED TERMS It is important to avoid variable capture when con-
structing a term in the code of a function. For instance, the (syntactically sugared)
function

f : tm→ tm = "fun t→ « lam λx. "t" »".

wraps a λ-term into a λ-abstraction which variable should not be used. A naive han-
dling of names in CLF would allow term lam λx. f x to evaluate to lam λx. lam λx. x,
where the expected result is of course lam λx. lam λx’. x.

Our solution is to distinguish two kinds of variables in CLF terms: named vari-
ables (e.g., Named ”x”), as entered by the user, for the bound variables, and De Bruijn
indices (e.g., Free 3) for free variables coming from unstratified terms. For instance,
when the triggering the evaluation of object f x, the argument x (represented in cDLF
as the de Bruijn index Var 0, since x is the 0-th binding in the current environment)
is first unstratified into the term Free 0; the function is then called, and its return is
the OCaml value « lam λx. "Free 0" » of type term, or, preprocessing the quotation,
App (Id ”lam”, Lam (”x”, Free 0)). As we see, the free variable is “protected” from
internal binders because it does not belong to the same namespace. Then, this value
is restratified to a cDLF object OApp (OConst ”lam”, [OLam (”x”, Var 1)]. The de
Bruijn index is incremented since we traversed a λ-abstraction. Finally, the whole
reconstructed term reads « lam λx. lam λx’. x » as expected.

Surprisingly, the exact opposite of this technique is very common when formal-
izing languages with binders, the locally nameless encoding [Aydemir et al., 2008]:
there, free variables are represented with names and bound ones with De Bruijn
indices.

¶ | FROM NON-CANONICAL TERMS TO CANONICAL OBJECTS When we pre-
sented SLF in Chapter 1, we described its canonical, spine-form syntax: a syntax
in which no β-redex can be written, and application is n-ary. The careful reader
will have noted in Chapter 2 that writing the eval function (example 2.4) actually
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necessitated a non-canonical, binary application to implement substitution by a
β-reduction in LF. In substance, this example was written:

eval : tm→ vl = " fun m→ match m with
| « lam "p" »→ « vlam "p" »
| « app "m" "n" »→ let « vlam "p" » = « eval "m" » in « eval ("p" "n") »

In the second case, computational variable p is bound to an LF λ-abstraction (since
it has an arrow type); yet, in this branch, it is applied to n. We eluded the problem by
stating that an application (λx. M) N was a notation for the cut operation (λx. M)?N .
Even if p was itself a partial application, this would require to add the last argument
n at the end of its spine.

The distinction between a surface language CLF and an internal representation
cDLF allows us to implement this properly. A CLF term will be non-canonical (allow-
ing β -redexes) and will have the usual, left-associative binary application. This way,
the previous term eval ("p" "n") is preprocessed simply as App (Id ”eval”, App (p, n)).
The internal representation however is canonical and spine-form; the translation
from surface to internal representation, i.e., stratification, thus turns the applications
upside down, and if needed performs substitutions: the corresponding cDLF object is
the OCaml expression OApp (OConst ”eval”, [cut (strato p) (strato n)]) where
strato and cut respectively stratify a term into an object and perform a series of
reductions.

3.5 | RELATED AND FURTHER WORK

The Gasp framework can be seen as a core language for verifying incrementally the
well-typing of a program. Through the Curry-Howard isomorphism, in can equally
well serve as an incremental verifier for proofs. It relies on five main aspects:

2 already-checked programs are stored along with their typing derivation in the LF
metalanguage, which makes typing annotation explicit;

2 these typing derivation are sliced so that each subderivation has a name;
2 a program delta is a program where already checked subterms refer to stored

subderivation
2 the type checker generates a derivation for each delta, reusing its shared sub-

derivations;
2 this reuse is expressed by function inverses, and contraction occurs when the type

checker reuses a shared subderivation.

It draws ideas from both the DLF language of Chapter 2 for manipulating certifi-
cates, and from recent developments in contextual type theory.
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¶ | CONTEXTUAL TYPES Contextual Modal Type Theory [Nanevski et al., 2008]
extends LF with metavariables, which are placeholders referring to open LF objects.
This development has interesting practical applications for the implementation of
proof assistants, as mentioned earlier, but also in staged computation; it is based
on the notion of contextual type, which can be viewed through the Curry-Howard
isomorphism as a generalization of a modal logic of necessity [Pfenning and Davies,
2001]. In CMTT, we can for instance express the type of a function taking an
argument that is necessarily closed, and returns a potentially open object: [·]A→ B.
In the body of this function, its argument will be a metavariable.

Our usage of this idea in cSLF is limited to the particular case where all metavari-
able definitions are known: they are not placeholders, but only notational definitions
which body is known to be well-typed. This is why we have no need for the con-
textual operator [Γ]A deep in our types: only defined metavariables in a context ∆
have a toplevel contextual type. Since they are only definitions, a cSLF object is not
canonical per se, and can be “expanded” (checked out as we said); we then lose the
potential sharing induced by these definitions. On the contrary, CMTT is canonical:
all metavariables in an object are undefined, and a hereditary meta-substitution
operation normalizes objects on the fly.

As we discussed already, our deltas are inherently very verbose, especially at the
contact point between a program and a reused derivation. It would be interesting
to reduce this verbosity by making some arguments implicit, and implement type
reconstruction as in Pientka [2013]; this would make the generation of deltas much
easier. Notably, type reconstruction in presence of metavariables is still mostly unex-
plored: we conjecture that it would allow to omit some bindings in the substitutions
attached to metavariables.

¶ | SLICING An object in sliced form is reminiscent of what is called monadic form
or A-normal form in compilation [Flanagan et al., 1993, Hatcliff and Danvy, 1994,
Danvy, 2003], in that every applicative term is named (here by metavariables),
such that the resulting applications are all “flattened”. Monadic translations are
designed to explicit the order of evaluation; we however do not care about the order
in which metavariables are registered in a context since our terms are already in
canonical form; also, we give names only to rule applications (constant application)
and not computations. The process of slicing an object also recalls another program
transformation, supercombinator conversion [Hughes, 1982, Peyton Jones, 1985]:
applicative, open pieces of programs that were buried deep inside a large program
are lifted at toplevel and named in a large map; such a combinator is abstracted
over its free variables, and can be referred to in other supercombinator definitions,
provided that these calls instantiate all the free variables. Supercombinators are here
to be compared with metavariables, and their (total) application to a metavariable
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together with its instantiating substitution: slicing and supercombinator conversion
produce a series of closed (with respect to variables) terms (but not closed with
respect to metavariables). Once again, the role of this transformation is to take a
functional program and put it in a form that is easier to interpret (by the G-machine
[Peyton Jones, 1987]); on the contrary, the role of slicing is only to “cache” the
typing of a large, canonical proof object.

¶ | INCREMENTAL COMPUTATION The problem of incremental type type checking
is of course an instance of incremental computation, to what it must be compared.
The literature on incremental computation is dominated by studies of memoization,
also known a function caching or tabling [Michie, 1968, Pugh and Teitelbaum, 1989,
Acar et al., 2003], and dependency graphs à la make [Paige and Koenig, 1982, Yellin
and Strom, 1991]. These are techniques to derive an incremental program from a
batch one.

As we discussed in the first section of this chapter, memoization is an automatic
technique: a table stores input-output pairs of a function, and the recognition of an
already-computed output is automated by looking up in this table. In particular, if
the input is a large term, output will be reused only for syntactically equal subterms.
Our method, on the contrary, is manual: the input of our incremental type checker
explicitly mentions what input should be reused, found in a table of slices: the
context. But in conjunction with the higher-order nature of the input and output, this
allows to have a more fine-grained notion of reuse: not only can we reuse derivations
for equal subterms, but we can also instantiate parametric slices of derivations, as
witnessed by our running example. An interesting further study would be to devise
an algorithm taking a context and a large term with no metavariables, and turning
it into a “minimal” delta reusing as much slices as possible. In the general case,
this is undecidable because it reduces to higher-order unification, but we might find
reasonable compromises.

¶ | ADAPTIVE FUNCTIONAL PROGRAMMING Acar et al. [2002], Acar [2005],
Acar et al. [2006b] are interested in combining memoization and dependency graphs
in functional programming, and call the combination adaptive functional program-
ming. They show that there exists an elegant duality between these two, describe a
small ML library for turning a batch program into an incremental one by explicitly
stating points in the program where computation can be resumed; this technique
amounts to invert the control flow of the program when the input data is changed.
It is, just as ours, explicit: the user has to explicitly point to the piece of input that
changed (by mutating it imperatively), and trigger the propagation of this change.
This library has been ported to Haskell by Carlsson [2002] by using monads and the
lazyness of the language. The combination of the two techniques turns out to be
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experimentally quite effective [Acar et al., 2006a].
A type checker written with this library could be turned into an adaptive one,

but it would differ from ours by several aspects. First, using a purely first-order
representation of programs and environments would hide some possible result
caching that we let the metalanguage handle. For instance, if a piece of term is
moved from one place to another, there is not reason for this type checker to reuse
the its computed type in a compatible, but not syntactically equal environment.
Secondly, substituting a piece of term for a variable in a large term, or α-renaming
a symbol is an atomic operation in our framework; it would take as many change
propagation as there are variables in an adaptive type checker.

¶ | STRUCTURED EDITOR The most direct application of our system is to build
structured text editors, or Integrated Development Environments, for a particular
programming language. It could reflect in real time the impact of the programmer’s
changes on the well-typing of the program, as well as display useful typing infor-
mation or support type-directed programming. This is not a new idea: the Cornell
Synthesizer [Teitelbaum and Reps, 1981, Reps et al., 1983, Reps and Teitelbaum,
1984] was such an editor: the language designer would describe the syntax and
semantics of the language thanks to an attribute grammar [Knuth, 1968], and the sys-
tem would generate a structured editor for it supporting incremental syntax and type
checking. Unfortunately, we believe that if attribute grammars were a convenient
notation for simple language semantics, it simply does not scale to contemporary
language where type inference is much conveniently expressed by a fully-fledged
functional program.

If Gasp is a core language for expressing type checking procedures and program
deltas, there remains to build a front end for it to become a typing-aware editor.
Keeping in memory the full typing derivation of a program would allow this editor to
provide type information at all point, and refactoring commands like α-renaming
could be easily automatized; the difficulty would be to translate user commands
(insertions, deletion, copy-paste of text) into deltas. Incremental parsing would also
be an interesting challenge, that we could base on recent work by Bernardy [2009].

¶ | VERSION CONTROL SYSTEM Another interesting application of Gasp is to build
a typed Version Control System. A VCS (e.g., CVS, Subversion, Git) is a database
that stores sequences of versions of a document (usually the source code of a large
program), and gives the ability to record changes, rollback on previous modifications,
merge changes coming from multiple sources. . . Yet, their view on source code is
purely textual: they have absolutely no knowledge over the syntax, even less over
the semantics of the programs they store. This results in numerous ad-hoc heuristics
in their conception, and numerous : for instance, Git has several merge heuristics
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based on the indentation of the source [Baudiš, 2008]. We believe that embedding
syntactic but also typing information in these tools would make them much more
precise and more secure: they could for instance base their merge choice on typing,
and ensure that a merge is always well-typed.

Actually, the idea of incrementality by sharing subterms was inspired to us by
the way Git stores files and directory structure in its object database.7 The careful
reader will have noted that most of the vocabulary surrounding cDLF comes from
this inspiration (commit, checkout, pull).

7see http://git-scm.com/book/en/Git-Internals-Git-Objects
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4 | FROM NATURAL DEDUCTION
TO THE SEQUENT CALCULUS:
A FUNCTIONAL CORRESPONDENCE

¶ | ABSTRACT How is the sequent calculus related to natural deduction? If they are equivalent,
why are there “more” sequent calculus proofs than there are natural deductions? In this
chapter, we analyze the connections between these two formalisms, not with the eyes of a
proof theorist, as it is usually the case, but with the eyes of a functional programmer. We will
see that, surprisingly, the program that verifies sequent calculus proofs is close to a compiled
version of the program that verifies natural deductions. This will bring us to considerations
about focusing, which is usually considered a property solely of sequent calculi.

4.1 | MOTIVATIONS

A typical introductory course to proof theory (like for instance Girard et al. [1989])
starts by presenting the two calculi introduced by Gentzen [1935]: first intuitionistic
natural deduction (NJ for short, Figure 4.1), since it provides an intuitive view on how
to define the meaning of each logical connectives by introduction and elimination,
then intuitionistic sequent calculus (LJ for short, Figure 4.2), as an equivalent
refinement of the latter, making it easier to search for proofs of a proposition.
Unfortunately, one could remark, this finer-grained calculus reveals to leave more
“space” to alternative proofs than the first: several sequent calculus proofs can
have the same natural deduction equivalent, which leads to more unwanted non-
determinism in proof search.

It is easy to show that both calculi are equivalent in terms of provability, an
“extensional” property, but what is the “intensional” relationship between them?
Why do both exist at all? The answer usually goes through the analysis of normal
proofs. Normal NJ proofs have the property that they admit a natural bidirectional
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ConjI
` A ` B
` A∧ B

ConjE1
` A∧ B
` A

ConjE2
` A∧ B
` B

[` A]...
` B ImpI` A⊃ B

ImpE
` A⊃ B ` A

` B

DisjI1
` A
` A∨ B

DisjI2
` B
` A∨ B

` A∨ B

[` A]...
` C

[` B]...
` C DisjE` C

Figure 4.1: Propositional natural deduction NJ

Structural rules

Init

Γ, A−→ A

Permut
Γ, A, B −→ C
Γ, B, A−→ C

Contract
Γ, A, A−→ C
Γ, A−→ C

Right rules

ImpR
Γ, A−→ B
Γ−→ A⊃ B

ConjR
Γ−→ A Γ−→ B
Γ−→ A∧ B

DisjR1
Γ−→ A
Γ−→ A∨ B

DisjR2
Γ−→ B
Γ−→ A∨ B

Left rules

ImpL
Γ−→ A Γ, B −→ C
Γ, A⊃ B −→ C

ConjL1
Γ, A−→ C
Γ, A∧ B −→ C

ConjL2
Γ, B −→ C
Γ, A∧ B −→ C

DisjL
Γ, A−→ C Γ, B −→ C

Γ, A∨ B −→ C

Figure 4.2: Propositional sequent calculus
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reading: introduction rules are read bottom-up, from the goal sequent until it is fully
decomposed in all its atomic parts; elimination rules are read top-down, from the
hypothesis down to atoms. Then, every judgment is a subterm of the previous one
(the subformula property). Both reading directions meet in the middle of the proof,
at atoms:

[Γ]




yE

` p
x



I

` A
But this obliges the reader (or the proof search procedure) to read (or generate

proof trees) in two directions. The sequent calculus is then presented as a response
to this cumbersome bidirectionality, by turning all elimination subproofs upside down:
then, every judgment is a subterm of the judgment directly below. Introductions
are renamed “right rules”, upside-down eliminations become “left rule” and operate
directly on the environment Γ, and the meeting of these two becomes the identity
rule Id.

Id

L

x









Γ

x









R

` A
The aim of this chapter is to turn this intuition into a system, using off-the-shelf

tools from functional programming theory (in the style of Ager et al. [2003]), and
reasoning on the verification procedures for proofs: the type checker. We will see that
there is a systematic transformation from a natural deduction-style checker into a
particular form of sequent calculus-style checker: LJT, a focused LJ. Surprisingly,
this transformation is the same as the transformation turning a recursive function
into an equivalent iterative function in accumulator-passing style. This will lead us to
a new completeness proof of LJT, by composition of semantics-preserving program
transformation.

4.2 | CANONICAL NJ PROOFS

We are first interested in characterizing canonical NJ proofs. Here, we reconstruct
a classical result dating back to Prawitz [1965] and formalized in Sieg and Byrnes
[1998]—the intercalation calculus—through the looking glass of proof term assign-
ment. This will allow a discussion on bidirectional type checking, the starting point of
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our transformations.
In the following, we will deal only with a fragment of natural deduction to

lighten the development. Our propositions are built out of implication, conjunction,
disjunction and atoms:

A, B, C ::= A⊃ B
�

� A∨ B
�

� A∧ B
�

� p

However, we will take great care in not making additional assumptions than the
fact that each connective is defined in a “natural deduction style”, i.e., by rules
of introduction (which conclusion is the connective in question) and elimination
(of which one principal premise is the connective) in a hypothetical notation (see
Section 1.1). The development should then easily be extensible to the full calculus.

4.2.1 | BIDIRECTIONAL READING OF CANONICAL PROOFS

Let us take a concrete example of canonical proof in NJ, and how it reads bidirec-
tionally:

Example 4.1. The barbara syllogism admits this normal proof:

[` (q⊃ r)]
[` (p⊃ q)] [` p]

ImpE` q
ImpE` r ImpI` p⊃ r

ImpI` (q⊃ r)⊃ p⊃ r
ImpI` (p⊃ q)⊃ (q⊃ r)⊃ p⊃ r

First, we introduce all three hypotheses (bottom-up) to end up with the atomic goal
` r. This bottom-up phase is over: if we were to continue, we would have to “invent”
a new formula since r has no more subformulae. We thus start anew from hypothesis
[` q⊃ r] that can be eliminated, ending up with goal ` q. Once again, it is an atom
so we stop reading here and start back from hypothesis [` p⊃ q] which is eliminated,
leaving us with ` p to prove, which is directly a hypothesis. It turns out that all four
subproofs we just constructed separately can be “glued together” at the atoms p, q,
and r.

Note that bidirectional reading is not possible if the proof is non-canonical, i.e., if
it features “roundabouts”. A roundabout, or cut, is a subproof that starts with the
introduction of a connective, and which is used in a context where this connective is
directly eliminated. In other words, it is a subproof that forms a detour, avoidable by
inlining it:
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Example 4.2. Barbara also admits the non-canonical proof:

[` (q⊃ r)] [` q]
ImpE` r ImpI` q⊃ r

[` (p⊃ q)] [` p]
ImpE` q

ImpE` r ImpI` p⊃ r
ImpI` (q⊃ r)⊃ p⊃ r

ImpI` (p⊃ q)⊃ (q⊃ r)⊃ p⊃ r

It reads bottom-up until the middle ` r, then from the leaf e.g., starting with [` q⊃ r].
However after decomposing the latter, we end up with judgment ` r: if we continue
reading top-down, a new formula q⊃ r is “recomposed” that is not a subterm of the
last judgment.

4.2.2 | INTERCALATION THROUGH PROOF TERM ASSIGNMENT

In a first approximation, an introduction rule immediately followed by and elim-
ination of the same connective forms a roundabout or cut in a natural deduction
and blocks the bidirectional reading of that deduction. We know that these can
always be avoided (cut elimination), but what is the syntactic shape of these normal
deductions? The purpose of this section is to derive it.

Let us assign to our non-normal deductions the standard notation of the λ-
calculus:

Definition 4.1 (Term assignment). The set of terms assigned to natural deductions
are the terms built out of the grammar:

T ::= λx. T
�

� inl(T )
�

� inr(T )
�

� T , T
�

� x
�

� case T of 〈x. T | x. T 〉
�

� T T
�

� π1(T )
�

� π2(T )

Constructors for introduction rules are on the first line, constructors for elimina-
tions on the second. This syntax comes with the usual typing judgment Γ ` T : A and
rules.

¶ | STRATIFICATION OF PROOF TERMS Now the derivation at the principal
premise of each elimination should not be the introduction of the corresponding
connective (for instance in M N , M is the notation for the principal premise of an
ImpI rule; it should thus not be λx. M ′). Note that we can strengthen this requirement
without loss of generality to “the principal premise of an elimination cannot be any
introduction”: this principal premise judges the connective defined, and any other
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introduction is a derivation judging another connective. Assembling them would
form an invalid derivation:

♦I` A♥B
... ♥E` C

To ensure this restriction, we stratify the syntax of λ-terms into two syntactic
classes: the class of all canonical terms M ◦, and the class of terms that are allowed
to be principal premise of an elimination, or atomic terms R◦, i.e., everything except
introductions. The first class is included in the second, so we include a coercion from
one to another:

M ◦, N ◦ ::= λx. M ◦
�

� inl(M ◦)
�

� inr(M ◦)
�

� M ◦, N ◦
�

� R◦

R◦ ::= x
�

� case R◦ of 〈x. M ◦ | x. M ◦〉
�

� R◦ N ◦
�

� π1(R
◦)
�

� π2(R
◦)

Do we have a syntax of normal derivations? Unfortunately not yet.

¶ | THE CASE OF POSITIVE CONNECTIVES If we were to treat only the negative
fragment of NJ (⊃, ∧, >, ∀), we would have a normal syntax. But some connectives,
the positive connectives (∨, ⊥, ∃) behave “pathologically” and oblige to add so-called
commutation rules (see Girard et al. [1989, chapter 10]). To convince us that M ◦ are
not yet notations for normal proofs, let us examine this contorted proof:

[` p∨ p]
[` p] [` p]

ConjI` p∧ p
[` p] [` p]

ConjI` p∧ p
DisjE` p∧ p

ConjE1` p
ImpI` p∨ p⊃ p

Surely this is not a canonical proof. First, it does not admit a bidirectional reading,
because of the parasitical presence of formula p∧ p which is not a subformula of the
goal nor of the hypotheses. Secondly, there exist an obvious, much shorter proof

[` p∨ p] [` p] [` p]
DisjE` p

ImpI` p∨ p⊃ p

admitting a bidirectional reading. Yet, the contorted proof admits a proof term

λx.π1(case x of 〈y. y, y | z. z, z〉)

in the syntax of stratified terms M ◦. It should not, since we are precisely looking for
a notation for bidirectional proofs! The problem with the proof above is that the
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DisjE rule hides a potential reduction between rules ConjI and ConjE1: if only we
could commute rules DisjE and ConjE1, then we would have

[` p∨ p]

[` p] [` p]
ConjI` p∧ p

ConjE1` p

[` p] [` p]
ConjI` p∧ p

ConjE1` p
DisjE` p

ImpI` p∨ p⊃ p

which we would recognize as clearly forbidden: the principal premises of both
ConjE1 are ConjI, and the whole forms a clear roundabout that reduces to simply
[` p] .

This is because rule

` A∨ B

[` A]...
` C

[` B]...
` C DisjE` C

has a conclusion ` C that is not related to its principal premise ` A∨ B (this is the
case for ⊥ and ∃ also). Or in other words, because its (non-principal) premises and
conclusion are the same formula, it can come interfere between an introduction and
an elimination that would otherwise be banned if put together directly.

Definition 4.2 (Connectives polarity). A logical connective is positive if the conclu-
sion of its elimination is not a subterm of its principal premise. A logical connective
is negative if the conclusion of its elimination is a subterm of its principal premise.

How to recover full normal forms? Disjunction elimination should not be allowed
as the principal premise of an elimination: it should be in the general class of normal
terms M , not in the specific class of atomic terms R. Only then we can call these
proofs canonical:

Definition 4.3 (Canonical term assignment). The set of canonical terms are the
terms built out of the grammar:

M , N ::= λx. M
�

� inl(M)
�

� inr(M)
�

� M , N
�

� case R of 〈x. M | x. M〉
�

� R

R ::= x
�

� R M
�

� π1(R)
�

� π2(R)

We end up with the same syntactical constructs as in the original term assignment,
except for the transparent coercion R from normal to atomic terms. From this
particular transformation, let us draw a general classification on canonical term
assignment, independently of the set of connectives chosen:

Remark 4.1 (Classification of terms). For any set of connectives:
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2 Canonical terms M are either introductions, or positive eliminations, or atomic
terms R

2 Atomic terms R are either variables x, or negative eliminations

Besides, from the completeness of our restriction follows a remark that will have
its importance in Section 4.3: the data structure of atomic terms look very much like
lists:

Lemma 4.1 (Atomic terms are list-like). If there is a canonical term for each normal
proof, then each constructor of atomic terms has at most one direct atomic subterm.

Proof. Atomic terms are either variables (in which case the statement holds), or
negative eliminations. Suppose a negative elimination constructor with two or more
direct atomic subterms. Only one of them is the term assigned to its principal premise
and must be restricted to be atomic; if one other is too, then there would be no
canonical term corresponding to the normal proof involving an introduction on this
non-principal subproof of the elimination.

¶ | INTERCALATION The term we assigned to normal proofs should not be a surprise
to those familiar with the intercalation calculus [Sieg and Cittadini, 2005, Sieg and
Byrnes, 1998]. They are exactly notations for intercalations, sometimes referred to
as the system of verifications and uses [Pfenning, 2010], a system of normal natural
deductions designed for proof search where we decompose NJ in two forms of
judgment ` A ↑ and ` A ↓, each rule having a subformula property with a direction
depending on the form of judgment they prove: ` A ↑ means that we can verify the
proof of A, reading bottom-up, and ` A ↓ means that we can use a proof of A, reading
top-down (Figure 4.3).

Both judgments communicate through the Atom rule, which states that “if I am
given a proof of an atom p to use, and if I was looking to verify a proof of p, then
I can connect the two”. The fact that this rule can only be applied on atoms p and
not on any formula A is a restriction that we have not seen in the original system.
The stratification above was interested in restricting proofs to β-normal forms (no
roundabouts). Another common restriction is to make them also η-long [Huet, 1976]:
this enforces that the proof of a formula begins by introducing its principal connective.
Restricting Atom to atoms guarantees that all proofs are fully η-expanded. Since
η-expansion depends not on the shape of a proof but on its judgment, in other words
it is a property of a typed term, the restriction was not enforceable syntactically, but
rather by this restriction on the judgment at the boundaries between verifications
and uses.

Is this stratification not too restrictive? Can we still write all NJ proofs? Yes, if
we can let all problematic case constructs “slide” over all other eliminators:

Theorem 4.1 (Soundness and completeness of intercalation). ` A if and only if ` A ↑.
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` A ↑ Verification

[` A ↓]...
` B ↑

Lam` A⊃ B ↑

Inl
` A ↑
` A∨ B ↑

Inr
` A ↑
` A∨ B ↑

Pair
` A ↑ ` B ↑
` A∧ B ↑

Atom
` p ↓
` p ↑ ` A∨ B ↓

[` A ↓]...
` C ↑

[` B ↓]...
` C ↑

Case` C ↑

` A ↓ Use

Pil
` A ↓
` A∧ B ↓

Pir
` B ↓
` A∧ B ↓

App
` A⊃ B ↓ ` A ↑

` B ↓

Figure 4.3: The Intercalation calculus

Proof. The direction backwards (soundness) is a straightforward induction on the
derivation of ` A ↑, since all intercalations are natural deductions by erasing the
direction marker and the occurrences of the Atom rule.

The direction forward (completeness) is proved by induction on the derivation of
` A, using two lemmas:

Lemma 4.2 (η-expansion). for any A (not only atomic), if ` A ↓ then ` A ↑.

Lemma 4.3 (Substitution). if ` A ↑ and
[` A ↓]...
` C ↑

then ` C ↑.

See e.g., Pfenning [2010] for the details.

This proof gives rise to a series of reductions on terms: the usual β-reduction,
plus four commutative reductions allowing a case construct to “slide” along a stack of
eliminations, gathered on Figure 4.4.

4.2.3 | BIDIRECTIONAL TYPE CHECKING

Consider the grammar of terms M and R assigned to normal proofs we just built. An
important remark is that, without any more type annotation, we can easily write a
simple type checker for them. We carry the following proof (almost) independently
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(λx. M) N −→ M[x/N] (4.1)

π1(M , N)−→ M (4.2)

π2(M , N)−→ N (4.3)

case inl(M) of 〈x1. N1 | x2. N2〉 −→ N1[x1/M] (4.4)

case inr(M) of 〈x1. N1 | x2. N2〉 −→ N2[x2/M] (4.5)

(case M of 〈x1. N1 | x2. N2〉) N −→ case M of 〈x1. N1 N | x2. N2 N〉 (4.6)

π1(case M of 〈x1. N1 | x2. N2〉)−→ case M of 〈x1.π1(N1) | x2.π1(N2)〉 (4.7)

π2(case M of 〈x1. N1 | x2. N2〉)−→ case M of 〈x1.π2(N1) | x2.π2(N2)〉 (4.8)

case (case M of 〈x1. N1 | x2. N2〉) of 〈y1. M1 | y2. M2〉 −→
case M of 〈x1.case N1 of 〈y1. M1 | y2. M2〉 | x2.case N2 of 〈y1. M1 | y2. M2〉〉 (4.9)

Figure 4.4: β-reduction rules of NJ

of the particular set of connective, reasoning inductively on the classes of atomic and
canonical terms (remark 4.1): atomic terms R consist uniquely of eliminations, and
the variable case; canonical terms M consist of introductions, positive, “pathological”
eliminations, and the coercion to atomic terms. It is performed constructively, so its
statement amounts to a decidability statement.

Theorem 4.2 (Bidirectional type checking). Let Γ be an environment.

1. Given an atomic term R, either there is A such that Γ ` R : A, or there is no such A;
2. Given a canonical term M and a type A, either Γ ` M : A or not.

Proof.

1. By induction on R: it is either a variable, or a “well-behaved”, negative elimination.
If R = x, then if x : A∈ Γ we conclude by the variable rule, otherwise no other rule
is applicable so there is no such A. If R is a negative elimination with principal
premise R′, then by induction, either there exists A′ such that Γ ` R′ : A′ or not.
If A′ exists, and since it is a negative elimination, the type A of its conclusion
must be a subterm of A′, so we can conclude. If there is no A′, then there is no A
either since no other rule applies. Note that R cannot be a positive elimination,
otherwise the calculus would not be normal (see previous section).

2. By induction on M : it is either an introduction, or an R (through the coercion), or
a “pathological”, positive elimination. If M = R, then if there exists A′ such that
Γ ` R : A′ by 1. and A= A′ then Γ ` R : A; otherwise there is no such derivation.
If M is an introduction of connective ♥(A1, . . . , An), and A=♥(B1, . . . , Bn), then
the premises of the rule are canonical terms M1. . . Mm: we made no restriction
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on subterms of introductions. By induction, if there are derivations Γ ` M1 : B1,
. . . , Γ ` Mn : Bn, we conclude by rule ♥I. If M is a positive elimination, we
have no choice but to reason case-by-case on the connective: for instance if
M = case R of 〈x. M | y. N〉, then if by induction there is Γ, x : B1 ` M : C and
Γ, y : B2 ` N : C , we can conclude by DisjE; otherwise, no other rule apply.

From this constructive proof, we deduce an algorithm for type checking terms
that can infer the type of R and check if an M has a given type: it is bidirectional. This
algorithm is presented on Figure 4.5 by two mutually recursive judgments Γ ` M ⇐ A
and Γ ` R⇒ A.

Note the rule Atom. At the boundaries of canonical and atomic terms, the type
must be an atom p: it ensures that all proof terms are in η-long normal form. For
instance, judgment ` λx y. x y ⇐ ((p ⊃ q) ⊃ r) ⊃ (p ⊃ q) ⊃ r is not derivable,
but ` λx y. x (λz. y z) ⇐ ((p ⊃ q) ⊃ r) ⊃ (p ⊃ q) ⊃ r is. Note also that, thanks
to bidirectionality, it is never necessary to annotate introductions with types: for
instance, the type of variable x in λx. M can always be left out.1

This algorithm translates directly to an OCaml program (Figure 4.6), that will
be the starting point of our work in the next section. For concision, we use pattern-
matching failure to signal errors, and often write patterns on the left of a let construct
when there is only one case, hence the constant complaints of OCaml about non-
exhaustiveness of pattern-matching. Because we are not performing any substitutions
in terms, we adopt a named representation of terms. Therefore, environments are
association lists from strings to types. We also take the convention to take names of
variables reflecting their types.2

4.3 | REVERSING THE TYPE CHECKER

In this section, we do a series of program transformations on the type checker of
Figure 4.6, going from a recursive to an iterative, accumulator-based one. This
requires to understand the concept of reversal of list-like data structures, that we first
introduce on two simple examples.

1There is actually no need for annotations at all with this particular set of connectives. It is not
always the case because of “pathological” eliminations: for instance, an elimination abortC(M) of ⊥
would need a type annotation C .

2The same way we called M a canonical term and the set of all canonical terms when writing “. . .
is a M”.
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A, B ::= A⊃ B
�

� A∨ B
�

� A∧ B
�

� p

M , N ::= λx. M
�

� inl(M)
�

� inr(M)
�

� M , N
�

� case R of 〈x. M | x. M〉
�

� R

R ::= x
�

� R M
�

� π1(R)
�

� π2(R)

Γ ` M ⇐ A Verification/checking

Lam
Γ, x : A` M ⇐ B
Γ ` λx. M ⇐ A⊃ B

Inl
Γ ` M ⇐ A

Γ ` inl(M)⇐ A∨ B

Inr
Γ ` M ⇐ A

Γ ` inr(M)⇐ A∨ B

Pair
Γ ` M ⇐ A Γ ` N ⇐ B
Γ ` M , N ⇐ A∧ B

Atom
Γ ` R⇒ p
Γ ` R⇐ p

Case
Γ ` R⇒ A∨ B Γ, x : A` M ⇐ C Γ, y : B ` N ⇐ C

Γ ` case R of 〈x. M | y. N〉 ⇐ C

Γ ` R⇒ A Use/inference

Var
x : A∈ Γ
Γ ` x⇒ A

Pil
Γ ` R⇒ A

Γ ` π1(R)⇒ A∧ B

Pir
Γ ` R⇒ B

Γ ` π2(R)⇒ A∧ B

App
Γ ` R⇒ A⊃ B Γ ` M ⇐ A

Γ ` R M ⇒ B

Figure 4.5: Bidirectional typing of canonical NJ
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type a =
| Nat | Imp of a × a | Or of a × a | And of a × a

type env = (string × a) list

type m =
| Lam of string × m | Inl of m | Inr of m | Pair of m × m
| Case of r × string × m × string × m | Atom of r

and r =
| Var of string | App of r × m | Pil of r | Pir of r

let rec check env : m × a→ unit = function
| Lam (x, m), Imp (a, b)→ check ((x, a) :: env) (m, b)
| Inl m, Or (a, _)→ check env (m, a)
| Inr m, Or (_, b)→ check env (m, b)
| Pair (m, n), And (a, b)→ check env (m, a); check env (n, b)
| Case (r, x, m, y, n), c→ let (Or (a, b)) = infer env r in
check ((x, a) :: env) (m, c); check ((y, b) :: env) (n, c)

| Atom r, Nat→ let Nat = infer env r in ()

and infer env : r→ a = function
| Var x→ List.assoc x env
| App (r, m)→ let (Imp (a, b)) = infer env r in

check env (m, a); b
| Pil r→ let (And (a, _)) = infer env r in a
| Pir r→ let (And (_, b)) = infer env r in b

Figure 4.6: Bidirectional type checker of canonical NJ, in OCaml
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4.3.1 | A TUTORIAL ON REVERSING LISTS-LIKE STRUCTURES

Let us thus depart completely from our logical motivations for a while, for a detour
into program transformation techniques. The goal of this section is to illustrate
how to systematically reverse a data structure and the program it operates on. On
the program, this amounts to turning a recursive function into the composition of a
reversal and an iterative function. We show this on two gradually involved example
data structures: first lists, and then herds.

A | PRELUDE: THE POWER TOWER

Consider the function:
let rec tower = function
| []→ 1.
| x :: xs→ x ∗∗ tower xs

It computes the power tower of all elements of the input list:

tower [x1; . . . ; xn] = x1
..

.xn
1

This function is non tail-recursive: the maximal size of the stack at run-time is
proportional to the length of the list. It begins by looking for the last constructor
[], all the way at the bottom of the structure, accumulating continuations (stack
frames); only then it starts computing exponents.

What if we are given the same input xs, but in reverse order? A priori, because
exponentiation is not commutative, there seem to be no easy way to write it similarly,
as a recursive descent. Surely we could run tower (List.rev xs), but there is actually
a more efficient solution: we can write it in accumulator-passing style: we accumulate
the result of the partial calculations in an additional argument acc, that we return
at the end of the computation:

let rec rev_tower xs acc = match xs with
| []→ acc
| x :: xs→ rev_tower xs (x ∗∗ acc)

This version is tail-recursive: it uses a constant stack space. It should be initially
passed 1. as accumulator what was the base case before:

let tower’ xs = rev_tower (List.rev xs) 1.

These are equivalent: for all lists xs, tower xs = tower’ xs. How to prove it? More
generally, what is the relationship between these two styles? It turns out that we
can go from one into the other by a composition of semantics-preserving program
transformations, unveiling two important facts:

138



CHAPTER 4. FROM NATURAL DEDUCTION TO THE SEQUENT CALCULUS

2 First, the data structure taken by tower is different than that taken by rev_tower:
the first takes a real list, the second takes the context, or zipper [Huet, 1997] of
a list, which happens to be isomorphic to a list. This context is made apparent
by the composition of CPS transformation and defunctionalization [Danvy and
Nielsen, 2001].

2 Secondly, this context is only half of the story: when generalizing this transfor-
mation, we will need to expose the reverse data structure, a context closed by
extrusion. Extrusion is a transformation of our own decoupling the reversal of the
list from the function it is used in.

Let us embark on the transformation.

¶ | STEP 1: CPS TRANSFORMATION This well-known program transformation
takes a program with general function calls, thus potentially needing a stack to
execute, to a higher-order program where all function calls are tail-recursive.3 We
abstract each non-tail call by a continuation, a function representing the computation
left to do after the call. Let us take our start function. We rename it aux, and add to
it a continuation argument k. In the recursive case, we just add the exponentiation
x ∗∗ acc to the remaining work to do k (acc representing the “result” of the call to
aux). We then continue tail-recursively with the rest of the list xs.

(* aux : float list→ (float→ float)→ float*)
let rec aux xs k = match xs with
| []→ k 1.
| x :: xs→ aux xs (fun acc→ k (x ∗∗ acc))

At the end of this accumulation in the base case, i.e., when the initial function
was about to return, the continuation is finally called with the value 1 that was
returned in the original code. This triggers all the work that was accumulated in
the continuation. The main call is to tower0, which applies the initial, identity
continuation fun acc→ acc:

let tower0 xs = aux xs (fun acc→ acc)

Note that while we got rid of non-tail calls, we introduced a higher-order function
aux that was not there before the transformation. Let us call respectively C1 and C0
the two anonymous functions applied to it.

¶ | STEP 2: DEFUNCTIONALIZATION Reynolds [1972] introduced this transfor-
mation for higher-order programs, which has been showcased in various aspects
by Danvy and Nielsen [2001] . It takes a program with higher-order functions to
a purely first-order program, where higher-order function have been reified, that is

3in the syntactic sense, but in reality, the stack is represented by linked continuations
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turned into a concrete representation, i.e., into a data type of closures k. In our case,
they are all continuations. An auxiliary function apply emulates the application
of these: it takes the “opcode” of a function and returns the function it stands for.
We thus replace every call to k x by apply k x . Every higher-order function is
replaced by its “opcode”, parameterized by all its free variables, if any. Let us apply
defunctionalization to our CPS-transformed program:

type α k =
| C0
| C1 of α × α k

(* apply : k→ (float→ float) *)
let rec apply = function
| C0→ (fun acc→ acc)
| C1 (x, k)→ (fun acc→ apply k (x ∗∗ acc))

(* aux : float list→ k→ float *)
let rec aux xs k = match xs with
| []→ apply k 1.
| x :: xs→ aux xs (C1 (x, k))

let tower1 xs = aux xs C0

As apply indicates, type k has two constructors: C0 corresponds to the identity
continuation, and C1 to (fun acc→ apply k (x ∗∗ acc)); since the latter had two
free variables x and k, they become parameters of the constructor. This type k is
isomorphic to a list: it represents the context of an α list.4 Defunctionalization
preserves tail-recursion: the resulting program is still tail-recursive, only now first-
order. Let us refactor that code a bit to make it clearer:

let rec rev_tower acc = function
| []→ acc
| x :: xs→ rev_tower (x ∗∗ acc) xs

let rec aux xs k = match xs with
| []→ rev_tower 1. k
| x :: xs→ aux xs (x :: k)

let tower2 xs = aux xs []

Observe what we end up with: by reifying continuations, we highlighted the
fact that our original function was recursive, and was doing all the interesting

4McBride [2001] would say ∂α(α list) = (α list)
2
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work (the exponentiation) “on the way back”. Function aux performs the descent,
accumulating a list of work k to do, and calls rev_tower with this list when it is
done; rev_tower then unrolls this list accumulator and computes the exponentiation
in an accumulator-passing style.

The scheme just described—defunctionalization of the CPS-transform to reify
continuations—is well-known since Danvy and Nielsen [2001], who showed this
way the correspondence between a recursive program and an iterative program with
accumulator. It has been used further, notably to transform small-step operational
semantics into abstract machines [Ager et al., 2003] and big-step semantics [Danvy
et al., 2011]. It has also been exploited in the context of type checkers as we are
about to do by Sergey and Clarke [2011, 2012], however with a different purpose
than what we are about to do.

Their story usually stops here. We extend this scheme one step further, to decouple
the reversal from the computation phase: we call this step extrusion, as it finishes to
separate the context from the actual list and reveals the reversed data structure.

¶ | STEP 3: EXTRUSION Observe the function aux: it takes a list and a continuation,
and pushes that list in reverse order onto the continuation stack k; then only in the
base case does it triggers rev_tower’s work, passing it the stack and the initial
argument 1. Modulo this last detail, this function is exactly the list reversal function
List.rev_append of OCaml’s standard library. Why not isolate this standard function,
that does only the reversal, from the particular work of rev_tower? This would
make the code smaller and more generic. It would also help to show where the
“real work” is done, i.e., in function rev_tower. In other words, we need to let
aux return the reversed list k, and let the main function tower2 call rev_tower,
instead of aux. For this we “lift” the base case of aux to the main function tower2
and make aux return its accumulator instead; it becomes List.rev_append [] xs,
which is exactly List.rev xs. The body of tower2 (renamed tower’) now reads
rev_tower 1. (List.rev xs): first perform the reversal, and then pass the reversed
list to rev_tower. The result is exactly the accumulator-passing style we were trying
to construct:

let rec rev_tower acc = function
| []→ acc
| x :: xs→ rev_tower (x ∗∗ acc) xs

let tower’ xs = rev_tower 1. (List.rev xs)

Note that this last transformation reintroduced a non-tail call to List.rev, however it
happens only once by call to tower’, and not at every recursive call as in the original
code. It allows to clearly separate the reversal from the actual computations on the
reversed list. Is tower’ really an optimization of tower in terms of stack use? It calls
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List.rev, which is recursive, so as for tower, the maximum size of stack needed is
proportional to the length of xs. If however the input list xs was given reversed,
then rev_tower xs would be more efficient than tower (List.rev xs).

If you are convinced that all transformations we performed preserved semantics,
then you will be convinced that:

Theorem 4.3. for all list xs, tower xs = tower’ xs.

Proof. by composition of all three semantics-preserving transformations.

We just showed how to systematically turn a recursive function operating on
lists into the composition of list reversal and an iterative function. In this particular
example, extrusion preserves the data structure: List.rev is an endomorphism. This
is not the case of all abstract data types: we will now take a small variant of lists,
herds, and start again. The transformation is similar, save that the reversed type will
not be equal to the input type: the extrusion step is then made a little bit trickier.

B | VARIATION ON THE SAME THEME: HERDS

Consider the data type of herds, a list of α with a distinguished element of type β at
the bottom:

type (α, β) herd =
| Cons of α × (α, β) herd
| Nil of β

The exponentiation function above used a fixed initial value of 1. We could
instead put this initial value in the distinguished element:5

let rec tower = function
| Nil x→ x
| Cons (x, xs)→ x ∗∗ tower xs

¶ | STEP 1: CPS TRANSFORMATION This step is identical to the previous example,
save the base case which now depends on the argument to Nil:

let rec aux k = function
| Nil x→ k x
| Cons (x, xs)→ aux (fun acc→ k (x ∗∗ acc)) xs

let tower1 xs = aux (fun x→ x) xs

5In this case, both α and β are instantiated by type float. Besides, for the sake of the argument, let
us ignore that this could be done simply by prepending the initial value, since we have the property of
exponentiation n1 = n.
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¶ | STEP 2: DEFUNCTIONALIZATION The anonymous functions being the same
as before, defunctionalization is unchanged. Notably, the type of contexts is still
isomorphic to lists: the difference between herds and lists is not at the top of the
structure, it is at the bottom.6

let rec rev_tower acc = function
| []→ acc
| x :: xs→ rev_tower (x ∗∗ acc) xs

let rec aux k = function
| Nil x→ rev_tower x k
| Cons (x, xs)→ aux (x :: k) xs

let tower2 xs = aux [] xs

¶ | STEP 3: EXTRUSION The difficulty arises in extrusion: now, the call to rev_tower
at the end of aux depends not only on the reversed list k, but also on x, the argument
of Nil. Therefore, this call cannot be directly lifted to the calling function tower2:
function aux needs to return both pieces of information. We declare a new type

type (α, β) dreh = Lin of β × α list

encapsulating them both. The base case of aux is replaced by the construction of a
dreh, and its content deported to an auxiliary function dreh. As before, the role of
aux is to reverse a herd; we rename it rev:

let dreh = function Lin (x, k)→ rev_tower x k

let rec rev k : (α, β) herd→ (α, β) dreh = function
| Nil x→ Lin (x, k)
| Cons (x, xs)→ rev (x :: k) xs

We can now proceed to the extrusion: function tower2 becomes

let tower’ xs = dreh (rev [] xs)

Note the type of rev: it takes a herd to a dreh.7 The reverse of a herd is exactly
a dreh (Figure 4.7): the distinguished element of the Nil constructor at the bottom
of the herd is placed on Lin at the top of the dreh, the order of all α elements is
reversed, and it finishes by a [] (corresponding to the information needed at the
“top” of a herd: nothing else than the series of Cons).

As before, we can state the equivalence theorem:

6Or in McBride [2001]’s words, ∂α((α,β) herd) = ∂α(µγ.β +α× γ) = α list× (α,β) herd.
7dreh is a semi-palindrome on “herd”: it means “turn around” in German.
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Cons

M Cons

N Nil

P

;

Lin

P ::

N ::

M ][

Figure 4.7: From a herd to a dreh

Theorem 4.4. for all list xs, tower xs = tower’ xs.

Proof. by composition of all three semantics-preserving transformations.

4.3.2 | REVERSING ATOMIC TERMS
We are now ready to apply the same series of transformations to our bidirectional
type checker of Figure 4.6. Observe the calls to function infer: they are all (non tail-
)recursive.8 The same way our list of float stacked up a series of continuations in the
tower example, atomic terms are traversed recursively, until a variable Var x is met:
its type is inferred by looking into the environment. On the way back, each atomic
element (App, Pil and Pir) is checked. In other words, atomic terms are processed in
reverse order, just like in the initial tower example. Isn’t there something to optimize
here?

¶ | STEP 1: CPS TRANSFORMATION We begin by partially CPS-transforming
our type checker, in the sense that it will affect only the infer function, and not
check. We add to it a functional argument k, and transform all calls of the form
let p = infer env r in ... to infer env r (fun p→ ...), without forgetting to apply
continuation k:

let rec check env : m × a→ unit = function
| Lam (x, m), Imp (a, b)→ check ((x, a) :: env) (m, b)
| Inl m, Or (a, _)→ check env (m, a)
| Inr m, Or (_, b)→ check env (m, b)
| Pair (m, n), And (a, b)→ check env (m, a); check env (n, b)
| Case (r, x, m, y, n), c→ infer env r

(fun (Or (a, b))→ check ((x, a) :: env) (m, c); check ((y, b) :: env) (n, c))
| Atom r, Nat→ infer env r (fun Nat→ ())

8Some calls to check are also recursive, but we focus on infer: in some sense it is more “urgent”
an optimization.
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and infer env : r→ (a→ unit)→ unit = fun r k→ match r with
| Var x→ k (List.assoc x env)
| App (r, m)→ infer env r (fun (Imp (a, b))→ check env (m, a); k b)
| Pil r→ infer env r (fun (And (a, _))→ k a)
| Pir r→ infer env r (fun (And (_, b))→ k b)

Note the type of infer: it now returns the same type as check, i.e., unit. This
gives rise to five anonymous functions, that we call SCase, SAtom, SApp, SPil and
SPir appearing respectively in the Case, Atom, App, Pil and Pir pattern-matching
branches.

¶ | STEP 2: DEFUNCTIONALIZATION Let us introduce the new data type of
continuations with constructors for each anonymous functions, i.e., apply defunction-
alization. For reasons that will eventually become clear, let us call it s and speak of a
spine. As before, we parameterize the constructors by the free variables appearing in
the body of the corresponding anonymous function, replace all these by their opcode,
and all applications of continuation k x by apply k x where apply is a new function
associating an opcode to the function it stands for (we uncurry it for readability):

let rec check env : m × a→ unit = function
| Lam (x, m), Imp (a, b)→ check ((x, a) :: env) (m, b)
| Inl m, Or (a, _)→ check env (m, a)
| Inr m, Or (_, b)→ check env (m, b)
| Pair (m, n), And (a, b)→ check env (m, a); check env (n, b)
| Case (r, x, m, y, n), c→ infer env r (SCase (env, x, m, y, n, c))
| Atom r, Nat→ infer env r SAtom

and apply : s × a→ unit = function
| SPil (_, s), And (a, _)→ apply (s, a)
| SPir (_, s), And (_, b)→ apply (s, b)
| SAtom, Nat→ ()
| SCase (env, x, m, y, n, c), Or (a, b)→
check ((x, a) :: env) (m, c); check ((y, b) :: env) (n, c)

| SApp (env, m, s), Imp (a, b)→ check env (m, a); apply (s, b)
and infer env : r→ s→ unit = fun r s→ match r with
| Var x→ apply (s, List.assoc x env)
| App (r, m)→ infer env r (SApp (env, m, s))
| Pil r→ infer env r (SPil (env, s))
| Pir r→ infer env r (SPir (env, s))

Sergey and Clarke [2011, 2012] also use the composition of CPS and defunction-
alization to transform a type checker by recursive descent into an abstract typing
machine, without any logical connection. For this, they use full CPS transformation
and not partial, and go in a different direction afterwards.

145



4.3. REVERSING THE TYPE CHECKER

¶ | STEP 2.5: ENVIRONMENT THREADING Unlike in the examples above, let
us stop here and simplify a bit this code. The code generated by the bare de-
functionalization complicates uselessly the type checker. For instance, constructor
SCase takes an environment as argument. Moreover, if we want the result of the
whole transformation to be a type checker itself, we must separate terms, types and
environments.

Function infer unrolls the atomic term r, saving each time in s the environment
env. It just so happens that this environment is constant throughout the recursive
invocations of infer: we could as well avoid saving it in the constructors, but
instead thread it as an additional argument to apply: (we show only a few changed
lines)

(* ... *)
and apply env : s × a→ unit = function
| SPil s, And (a, _)→ apply env (s, a)
| SPir s, And (_, b)→ apply env (s, b)
| SAtom, Nat→ ()
| SCase (x, m, y, n, c), Or (a, b)→
check ((x, a) :: env) (m, c); check ((y, b) :: env) (n, c)

| SApp (m, s), Imp (a, b)→ check env (m, a); apply env (s, b)
and infer env : r→ s→ unit = fun r s→ match r with
| Var x→ apply env (s, List.assoc x env)
| App (r, m)→ infer env r (SApp (m, s))
| Pil r→ infer env r (SPil s)
| Pir r→ infer env r (SPir s)

¶ | STEP 2.75: RETURN TYPE THREADING Next, observe the path of type c, the
argument of the SCase constructor: it is placed at the bottom of the spine, infer
then piles up constructors on top, then it is used in the base case of function apply.
Let us do the same as for environment: thread it as an argument to infer and
apply. We get: (again showing only a few changed lines)

(* ... *)
| Case (r, x, m, y, n), c→ infer env c r (SCase (x, m, y, n))
| Atom r, Nat→ infer env Nat r SAtom

and apply env c : s × a→ unit = function
(* ... *)
| SCase (x, m, y, n), Or (a, b)→
check ((x, a) :: env) (m, c); check ((y, b) :: env) (n, c)

)
and infer env c : r→ s→ unit = fun r s→ match r with
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| Var x→ apply env c (s, List.assoc x env)
(* ... *)
The final type of spines, in the light of these optimizations, is the following:

type s = SPil of s | SPir of s | SAtom
| SCase of string × m × string × m | SApp of m × s

¶ | STEP 3: EXTRUSION We are left off with an infer function whose only role is
to turn around an atomic term into a spine, and, in the base case, pass this spine to
function apply. This function performs the actual check of the spine, so we rename
it to spine. As in the herd example, we now want to isolate the actual work in
spine from the reverse pass infer: we want to extrude the calls to spine in the
body infer outside this body, in the caller of infer: check.

Let us lift off this call to spine directly into the call sites of infer. For this, we
look at the free variables of this base case (env and c do not count as free variables
since they are also arguments at the call sites), and create a type head for them:

type h = HVar of string × s

The base case of infer becomes HVar (x, s); we can now isolate it from its mutually
recursive block, lighten it from unused argument env, and rename it to the more
appropriate rev_spine:

let rec rev_spine s : r→ h = function
| Var x→ HVar (x, s)
| App (r, m)→ rev_spine (SApp (m, s)) r
| Pil r→ rev_spine (SPil s) r
| Pir r→ rev_spine (SPir s) r

Instead, we insert a new function head performing this base case’s work:

(* ... *)
and head env c : h→ unit = function
| HVar (x, s)→ spine env (s, List.assoc x env)

All call sites of former infer become the composition of rev_spine and head:

(* ... *)
| Case (r, x, m, y, n), c→ head env c (rev_spine r (SCase (x, m, y, n)))
| Atom r, Nat→ head env Nat (rev_spine r SAtom)

(* ... *)

Function spine is left unmodified (apart from the renaming). Here it is: the reverse
of an atomic term R with respect to a canonical term M is a head H.
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¶ | STEP 2.5: MORE EXTRUSION The type checker we just constructed is a strange
hybrid: given a term M , it type checks as usual all its canonical tip; when it arrives to
an atom R, it reverses it to a spine S, and check this spine. Once again, we would like
to extrude this reversal step outside the actual type checker; this way, both processes
would be completely decoupled: given a term M , we could reverse it once and for
all, and then begin checking it. For this however, we need to modify the structure of
our canonical terms M : where atoms appeared (i.e., in the Atom constructor, but
also in the Case constructor), we need to have a head (a.k.a upside-down atom).
Calling values v this new type, we end up with:

type v = VLam of string × v | VInl of v | VInr of v | VPair of v × v | VHead of h
and h = HVar of string × s
and s = SPir of s | SPil of s | SApp of v × s
| SAtom | SCase of string × v × string × v

Extrusion creates a new function rev_term : m→ v reversing the canonical
terms into values, mutually recursive with rev_spine: it calls it to reverse spines,
and is called by it for terms in spines to be reversed (App). Function head and
spine are left untouched, only check is changed to operate on values.

A | EPILOGUE

Figure 4.8 shows the whole code of this transformed type checker. Notice how
rev_term is a homomorphism on all cases of type v, except Case and Atom, that it
transforms into heads with rev_spine. As we were expecting, function spine is
now tail-recursive: we transformed a recursive function (infer) into an iterative
one (spine) with an accumulator, the input type a. Looking at the whole type
checker, the recursive nature of the initial program has been deported to the reversal
(which is recursive): we went from a single-pass, recursive program (check) to a
two-pass one, with an isolated and minimal recursive pass (rev_term) followed by
an iterative accumulator-based pass (check’).9

Figure 4.9 shows the reversal of a piece of canonical term into a piece of what
we will call a spine-form term for now. If we were to construct these terms out of
pieces of cord and pearls, and hold the left term by the case construct, we would
obtain the second by holding it in the middle of the cord attached to x. The variable
corresponds to the ? (or HVar) construct, and where before case was a canonical
term and had a scrutinee R (an atomic term), it is now at the tail of a spine, without

9Once again, we must precise what we intend by recursive and iterative: only with respect to
the helper functions infer and spine. Indeed, check’ is still recursive (e.g., in the VPair case),
since we performed only a partial CPS-translation. Had we performed a complete CPS-translation, we
would have come up with an abstract typing machine similar to that of Sergey and Clarke [2012] but
we would have lost the logical correspondence that follows.
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type v =
| VLam of string × v | VInl of v | VInr of v | VPair of v × v | VHead of h

and h =
| HVar of string × s

and s =
| SPil of s | SPir of s | SApp of v × s | SCase of string × v × string × v | SAtom

let rec rev_spine : r→ s→ h = fun r s→ match r with
| Var x→ HVar (x, s)
| App (r, m)→ rev_spine r (SApp (rev_term m, s))
| Pil r→ rev_spine r (SPil s)
| Pir r→ rev_spine r (SPir s)

and rev_term : m→ v = function
| Lam (x, m)→ VLam (x, rev_term m)
| Inl m→ VInl (rev_term m)
| Inr m→ VInr (rev_term m)
| Pair (m, n)→ VPair (rev_term m, rev_term n)
| Case (r, x, m, y, n)→

VHead (rev_spine r (SCase (x, rev_term m, y, rev_term n)))
| Atom r→ VHead (rev_spine r SAtom)

let rec check’ env : v × a→ unit = function
| VLam (x, m), Imp (a, b)→ check’ ((x, a) :: env) (m, b)
| VInl m, Or (a, _)→ check’ env (m, a)
| VInr m, Or (_, b)→ check’ env (m, b)
| VPair (m, n), And (a, b)→ check’ env (m, a); check’ env (n, b)
| VHead h, c→ head env c h

and head env c = function
| HVar (x, s)→ spine env c (s, List.assoc x env)

and spine env c : s × a→ unit = function
| SPil s, And (a, _)→ spine env c (s, a)
| SPir s, And (_, b)→ spine env c (s, b)
| SAtom, Nat→ ()
| SCase (x, m, y, n), Or (a, b)→
check’ ((x, a) :: env) (m, c); check’ ((y, b) :: env) (n, c)

| SApp (m, s), Imp (a, b)→ check’ env (m, a); spine env c (s, b)

Figure 4.8: The final type checker, after transformation
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Figure 4.9: From canonical to spine-form terms

scrutinee.
Once again, if you believe that all program transformations did preserve the

semantics, then you will agree to the following:

Theorem 4.5. For all term M and environment env, check env M if and only if
check’ env (rev_term M).

Proof. By composition of the semantics-preserving transformations.

Theorem 4.6. There is an isomorphism between types m and v.

Proof. One direction is function rev_term, the other is provided by the total func-
tion:

let rec ver_term : v→ m = function
| VLam (x, m)→ Lam (x, ver_term m)
| VInl m→ Inl (ver_term m)
| VInr m→ Inr (ver_term m)
| VPair (m, n)→ Pair (ver_term m, ver_term n)
| VHead h→ ver_head h

and ver_head : h→ m = function
| HVar (x, s)→ ver_spine (Var x) s

and ver_spine r = function
| SAtom→ Atom r
| SCase (x, m, y, n)→ Case (r, x, ver_term m, y, ver_term n)
| SPil s→ ver_spine (Pil r) s
| SPir s→ ver_spine (Pir r) s
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| SApp (m, s)→ ver_spine (App (r, ver_term m)) s
Then we prove that rev_term (ver_term v) = v (resp. ver_term (rev_term m) =
m) by induction on the values of v (resp. m).

What is this language of spine-form terms we end up with? This is what we shall
expose in the next section.

4.4 | THE LJT CALCULUS

Let us write Figure 4.8 in a more natural way. Figure 4.10 presents it as a typed
λ-calculus. It is in fact precisely the λ̄-calculus of Herbelin [1994], which is in
Curry-Howard correspondence with LJT.10 And LJT is a logic in the style of, and
provably equivalent to first-order, intuitionistic sequent calculus! This calculus was
devised as an intuitionistic restriction of the classical LKT [Danos et al., 1995], itself
accepting a dual calculus LKQ.

4.4.1 | DEFINITION

¶ | SYNTAX Values V contain all terms formed of introductions, plus a variable
construct. These variables, which were before buried under elimination constructs
are now exposed at top-level in the x (S) constructs.11

Restricted to its applicative fragment, we can understand the difference between
NJ and LJT as the difference between binary and n-ary application: a curryfied
application ((x M1) M2) M3 is now written x (M1, M2, M3), hence the name: a vari-
able against a spine of arguments.12 In the full fragment, a case construct like
case π1(x) of 〈x1. M1 | x2. M2〉 is now written x (π1,case〈x1. M1 | x2. M2〉): destruc-
tors are piled up in reverse order.

The fact that variables are visible at top-level of spines has been already recog-
nized crucial for the efficiency of e.g., unification algorithms [Cervesato and Pfenning,
1997]. In practice, all systems manipulating concrete representations of λ-terms of

10The name LJT happens to clash with the proof search calculus LJT of Dyckhoff [1992], discussed
in Section 2.4. One should not try to find connections between these two: this name clash is merely
an unfortunate coincidence, as mentioned in Dyckhoff and Pinto [1998]. Dyckhoff renames it to MJ
to point that it is a trade-off between LJ and NJ, but we stay faithful to the original name as long as
confusion is avoided.

11With respect to data type v of Figure 4.8, we inlined the head data type h into the syntax of values
for compactness.

12This terminology comes from Cervesato and Pfenning [1997, 2003], and is also used in Section 1.2.
Curien and Herbelin [2000] speak more willingly of continuations or contexts for their relation to
abstract machines, terminology that we could have adopted for a different reason, seen that spines
emerged precisely from the defunctionalization of continuations.
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V , W ::= λx. V
�

� V , W
�

� inl(V )
�

� inr(V )
�

� x (S)

S ::= V , S
�

� π1, S
�

� π2, S
�

� case〈x. V | y. W 〉
�

� ·

Γ ` V : A Right rules

ImpR
Γ, x : A` M : B
Γ ` λx. M : A⊃ B

ConjR
Γ ` M : A Γ ` N : B
Γ ` M , N : A∧ B

DisjR1
Γ ` M : A

Γ ` inl(M) : A∨ B

DisjR2
Γ ` M : B

Γ ` inr(M) : A∨ B

Focus
x : A∈ Γ Γ | A` S : C

Γ ` x (S) : C

Γ | A` S : C Focused left rules

ImpL
Γ ` V : A Γ | B ` S : C
Γ | A⊃ B ` V , S : C

ConjL1
Γ | A` S : C

Γ | A∧ B ` π1, S : C

ConjL2
Γ | B ` S : C

Γ | A∧ B ` π1, S : C

DisjL
Γ, x : A` V : C Γ, y : B `W : C
Γ | A∨ B ` case〈x. V | y. W 〉 : C

Id

Γ | p ` · : p

Figure 4.10: The LJT/λ̄ calculus [Herbelin, 1994]
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our knowledge adopt n-ary applications instead of binary in their implementation:13

Coq [Coq development team, 2012], Matita [Asperti et al., 2009], Twelf [Pfenning
and Schürmann, 1999] (described in Pfenning and Simmons [2007]), OCaml [Leroy
et al., 2012], Beluga [Pientka and Dunfield, 2010].

¶ | TYPING Like the canonical λ-calculus of Figure 4.5, it is composed of two judg-
ment forms. Unlike it, no type can be synthesized, they are all checked: the modes
(in the Prolog sense) of terms, types and environment are all positive (inputs). This
is different from what is found in Cervesato and Pfenning [2003] who define a
bidirectional type checker for spine-form terms, but with a smaller, only negative set
of formulae: extending a spine-form calculus to disjunction, we must provide the
return type. This mode arises in the translation as early as CPS-translation: function
infer takes the return type of check, i.e., unit.

Through Curry-Howard, we see environments Γ as sets of formulae. Judgment
Γ ` V : A classifies values as having type A. It corresponds to right rules: in this
“mode”, we can only affect the conclusion A of the judgment by decomposing it
(reading the rules upwards). Judgment Γ | A` S : B is for spines, and corresponds to
left rules. A special type A of its environment is distinguished, and commonly called
the stoup, following Girard [1991]: in this judgment, we can only act on type A. In
the light of previous section, we could have called it as well an accumulator. Once
in “right mode”, working on the conclusion, one goes in “left mode” by Focusing on
a chosen type of the environment. Once in “left mode”, one has no choice but to
decompose the type in focus, or apply the Identity on an atomic type (guaranteeing
η-long proofs, the equivalent of the Atom restriction above) to finish the proof, or
to go back to “left mode” with a case construct. In that, LJT is a focused sequent
calculus.

4.4.2 | FOCUSING IN LJT

Focusing is a proof search strategy that originated from the concept of uniform proofs
due to Miller et al. [1991], and was formalized by Andreoli [1992]. Originally
formulated in the context of Linear Logic [Girard, 1987], it is applicable to many
sequent calculi, in particular intuitionistic [Liang and Miller, 2007]. A focused
sequent calculus has fewer proofs than an unfocused one, thus reducing the non-
determinism in proof search; yet the focused system is complete: any proposition
provable “unfocusedly” admits a focused proof. The idea is to restrict the application
of left or right rules only to a particular focused formula: once we begin decomposing
it, we cannot switch to work on another one until it is fully decomposed into its

13Even if their treatment of other logical connectives (the case construct notably) often follows
natural deduction.
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parts. The definition of what is to be “fully decomposed” determines the kind of
focusing. Besides, strong focusing (see e.g., Liang and Miller [2009]) implies that
the switch can be made only if all formulae in the sequent are fully decomposed. On
the contrary, weak focusing does not enforce this requirement: as long as the current
formula is fully decomposed, the switch can be made.

¶ | A CHARACTERIZATION OF LJT To define this notion of decomposition, we
split the syntax of formulae into two categories of positive and negative connectives
(their polarity), depending on their inversion properties:

A− ::= p−
�

� A− ∧ A−
�

� A+ ⊃ A−
�

� ↑ A+

A+ ::= p+
�

� A+ ∨ A+
�

� ↓ A−

For A to be fully decomposed then means to have arrived at the boundaries of its
current polarity, i.e., A is translated to a polarized formula by inserting coercions (↑,
↓); focus change is possible only at these coercions. The translation in question is
critical, since there are many ways to translate a given formula and as many search
spaces, covering the full range between “optimal” focusing (inserting a minimal
number of coercions) and bare sequent calculus: the weakest focusing, introducing
coercions at every subformula, allows to switch active formula at every proof step,
which is what LJ permits.

In this context, we can redefine LJT as a translation from formulae to polarized
formulae:

Definition 4.4. LJT is the weakly focused calculus corresponding to the following
encoding of formulae into polarized ones:

(A∧ B)∗ = (A)∗ ∧ (B)∗ (4.10)

(A⊃ B)∗ =↓ (A)∗ ⊃ (B)∗ (4.11)

(A∨ B)∗ =↑ (↑ (A)∗∨ ↑ (B)∗) (4.12)

(p)∗ = p− (4.13)

This encoding is biased towards negative polarity: it returns only negative formu-
lae. This is related to the fact that LJT only has a focused judgment for hypotheses,
and is therefore biased towards hypotheses: the default judgment with no focus
allows to decompose the goal as well as switch to the focused hypotheses judgment.
Specifically, every domain of an implications is coerced to be negative (reflected in
the V , S construct: the argument is a value) and so are disjunctions (reflected in the
case〈x. V | y. W 〉 construct).
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¶ | FOCUSING IN NATURAL DEDUCTION We now know that LJT proofs still have
a little bit of “slack”: they are not fully focused; but they are not either completely
unfocused as is LJ. We also know that they are in one-to-one correspondence with
NJ proofs. What can we conclude on the “slack” present in NJ proofs? We will
illustrate what we learn on a couple of examples:

Example 4.3. The proposition (p⊃ q⊃ r)⊃ (p⊃ q)⊃ p⊃ r admits a focused proof
in LJ:

Idp−→ p

Idp−→ p Idq−→ q
ImpLp⊃ q, p−→ q Idr −→ r

ImpLp⊃ q, p, q⊃ r −→ r
ImpLp⊃ q⊃ r, p⊃ q, p−→ r

ImpR×3
−→ (p⊃ q⊃ r)⊃ (p⊃ q)⊃ p⊃ r

It is also a valid LJT proof, represented by the λ̄ term:

λx y z. x (z (·), y (z (·)))

It also admits another unfocused proof:

Idp−→ p
p−→ p

Idq−→ q Idr −→ r
ImpLq⊃ r, q−→ r

ImpLp⊃ q, q⊃ r −→ r
ImpLp, p⊃ q, p⊃ q⊃ r −→ r

ImpR×3
−→ (p⊃ q⊃ r)⊃ (p⊃ q)⊃ p⊃ r

where we permuted the application of the two last ImpL rules. It is unfocused because
we start decomposing hypothesis p ⊃ q ⊃ r once, but then switch to decompose
another hypothesis p⊃ q even if the first was not fully decomposed. This proof does
not have a representation in λ̄: we would need to have a construct allowing to go
out of “left mode” back to “right mode” with an implication.

Both proofs inject back into the same NJ proof:

[` (p⊃ q⊃ r)] [` p]
ImpE` q⊃ r

[` (p⊃ q)] [` p]
ImpE` q

ImpE` r ImpI` p⊃ r
ImpI` (p⊃ q)⊃ p⊃ r

ImpI` (p⊃ q⊃ r)⊃ (p⊃ q)⊃ p⊃ r

where the choice (destructing hypothesis p ⊃ q or p ⊃ q ⊃ r) is encoded into the
notation: after reading upwards until atom ` r, the reader decides which branch to
read first downwards.
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As far as implication on the left is concerned, LJT thus makes the “right choice”,
the one dictated by focusing: the right subformula of the implication is part of the
same focus as the implication itself. So does NJ, since both calculi are equivalent,
but there it is present as a quotient on proofs, thanks to the tree representation. The
same remark applies to conjunction on the left.

Disjunction, on the other hand, does not behave as nicely, as we expected from
the inefficient polarization LJT makes of it:

Example 4.4. the proposition p∨ p⊃ p∧ p admits a focused proof in LJ:
Idp−→ p Idp−→ p

DisjLp∨ p−→ p

Idp−→ p Idp−→ p
DisjLp∨ p−→ p

ConjRp∨ p−→ p∧ p
ImpR· −→ p∨ p⊃ p∧ p

represented by the λ̄-term:

λx. x (case〈y. y (·) | z. z (·)〉), x (case〈y. y (·) | z. z (·)〉)

It also admits another unfocused LJ proof:
Idp−→ p Idp−→ p

ConjRp−→ p∧ p

Idp−→ p Idp−→ p
ConjRp−→ p∧ p

DisjLp∨ p−→ p∧ p
ImpR· −→ p∨ p⊃ p∧ p

with rules DisjL and ConjR permuted. It is unfocused because after applying ImpR,
the goal is non-atomic (p ∧ p), and still we change focus to the hypothesis (rule
DisjL). Nonetheless, it is a valid LJT proof, represented by the well-typed λ̄ term:

λx. x (case〈y. (y (·), y (·)) | z. (z (·), z (·))〉)

These proofs inject respectively in the NJ proofs:

[` p∨ p] [` p] [` p]
DisjE` p

[` p∨ p] [` p] [` p]
DisjE` p

ConjI` p∧ p
ImpI` p∨ p⊃ p∧ p

and

[` p∨ p]
[` p] [` p]

ConjI` p∧ p
[` p] [` p]

ConjI` p∧ p
DisjE` p∧ p

ImpI` p∨ p⊃ p∧ p

with rules ConjI and DisjE permuted. The first proof can be called focused, since
it corresponds to a strongly focused LJT proof, whereas the second cannot: the
corresponding LJT proof breaks strong focusing.
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4.5 | RELATED AND FURTHER WORK

The basis of the work we just exposed, its starting point and finishing line so to
say, are two well-known facts: it is well-known since Herbelin [1994, 1995] that
LJT proofs are isomorphic to NJ proof; the machinery used to transform a recursive
program into an iterative one has been studied in many ways since Danvy and Nielsen
[2001]. To our best knowledge however, the connection between these two that we
put to light has remained to this day unexplored. It goes through the systematic
transformation of a canonical type checker for NJ into a canonical type checker for
LJT. Our main observation is that a canonical type checker for a logic in natural
deduction style necessarily consist of a recursive analysis of its elimination chains
(atomic terms), done on the way back of the recursion. Reversing the order of these
eliminations and turning that recursion into a loop gets us a type checker for the
same logic, but presented in sequent calculus-style.

Specifically the transformation was a composition of:

2 partial CPS-transformation of the function for atomic terms, evidencing the recur-
sive nature of atomic terms;

2 defunctionalization, reifying the continuations into a data structure of reversed
atomic terms, i.e., spines;

2 optimization by threading of constant arguments;
2 extrusion, isolating the reversal of a term from its actual checking.

We observed that the resulting calculus, LJT is more focused than the historical se-
quent calculus of Gentzen [1935], and, knowing that it is by construction isomorphic
to our starting point, NJ, we drew conclusions on the focused nature of NJ.

Naturally, this work does not end at this observation, and a large number of
variants and extensions remain to be explored to really comprehend what this
transformation reveals of the relationship between natural deduction and sequent
calculus. Let us present a few of them, some of which we already investigated and
some of which remain to be tackled in the future.

4.5.1 | VARIANTS
Although we chose in this development a quite reduced set of logical connectives (∧,
∨, ⊃), the same scheme extends to all connectives of intuitionistic predicate logic: >,
⊥, ∀, ∃, as well as variant definitions of these. For instance, there is an alternative,
multiplicative definition of the conjunction via the unique elimination:

` A∧ B

[` A] [` B]...
` C ConjE�` C
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which makes it a positive connective. It leads to the following normal term assignment
(we show only the ∧, ⊃ fragment):

M , N ::= λx. M
�

� M , N
�

� let x, y = R in M
�

� R

R ::= x
�

� R M

The new let construct corresponding to ConjE� ends up in canonical terms. Writing
the type checker and reversing it, we get the following syntax:

V ::= λx. V
�

� V , V
�

� x (S)
�

� R

S ::= ·
�

� M , S
�

� (x, y). M

and the corresponding elimination rule:

ConjL�
Γ, y : B, x : A` M : C
Γ | A∧ B ` (x, y). M : C

which, seeing the stoup as a hypothesis and erasing the term information, gives the
usual multiplicative left rule of conjunction in the sequent calculus. Note that the
premise loses the focus on the hypothesis, and focuses back on the goal. The exact
same rule was proposed in Herbelin [1995].

4.5.2 | EXTENSIONS

¶ | MODAL LOGIC OF NECESSITY Pfenning and Davies [2001] propose a re-
construction of modal logic in terms of the Gentzen apparatus, as opposed to the
traditional presentation in terms of combinators. They add (among other) a logical
connective 2A to the syntax of propositions, denoting the necessity for A to be true
under no hypotheses, and the following introduction and elimination rules:

BoxI
∆; · ` A
∆;Γ `2A

BoxE
∆;Γ `2A ∆, A;Γ ` C

∆;Γ ` C

This new connective obliges us to split the environment of hypotheses into two
distinct sets Γ and ∆, resp. the true and the necessarily true assumptions. To use a
necessary hypothesis, we use rule:

Meta
A∈∆
∆;Γ ` A
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Note that the elimination suggests that 2 is a positive connective. The authors
also propose a term assignment for these rules, that we easily make canonical by
stratification (again showing only the ⊃, 2 fragment):

M , N ::= λx. M
�

� box(M)
�

� let box X= R in M

R ::= x
�

� X
�

� R M

Note the new set of metavariables X referring to necessary hypotheses, stored in
∆. Again, we can write a type checker for these terms, and reverse it. We get the
following reversed syntax:

V ::= λx. V
�

� box(V )
�

� x (S)
�

� X (S)
�

� R

S ::= ·
�

� M , S
�

� X. M

Contrarily to all our examples yet, there is two different ways to focus on a particular
formula: by choosing among hypotheses or necessary hypotheses. The system we
end up with is LJT extended with the left and right rules for necessity, and a focus
rule for necessary hypotheses:

BoxR
∆; · ` M : A

∆;Γ ` box(M) : 2A

BoxL
∆,X : A;Γ ` M : C
∆;Γ |2A` X. M : C

FocusM
X : A∈∆ ∆;Γ | A` S : C

∆;Γ ` X (S) : C

Seeing the stoup as a (non-necessary) hypothesis, and erasing all term information,
we get back the exact sequent calculus rules proposed for the modal logic of necessity
in Nanevski et al. [2008].

¶ | THE LJQ SEQUENT CALCULUS Besides taking natural deduction-style calculi
and reversing their type checker, we can play the converse game: start from a well-
known sequent calculus, and ask ourselves if it is in the image of this transformation,
i.e., if there is a corresponding natural deduction-style calculus. The intuitionistic
sequent calculus LJQ makes up for an interesting continuation of this work, that we
keep for future exploration.

LJQ [Danos et al., 1995] is an intuitionistic sequent calculus that is dual to LJT
in the sense that its focusing is biased not on the hypotheses but on the (unique)
conclusion. There are therefore two different judgments Γ ` A (unfocused) and
Γ ` A | (focused on the conclusion). Danos et al. [1995] expose how this duality
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relates to the duality between the call-by-name and call-by-value reduction strategies.
Its rules in the minimal fragment of implication are:

Var
A∈ Γ
Γ ` A |

ImpL
Γ, A` B
Γ ` A⊃ B |

ImpR
Γ ` A | Γ, B ` C
Γ, A→ B ` C

Focus
Γ ` A |
Γ ` A

to what we can assign the canonical proof terms:

V ::= x
�

� λx. L

L ::= let x = y V in L
�

� V

that are strongly connected with Moggi [1991]’s monadic metalanguage. This chap-
ter’s thesis was that there are exactly the same proofs in the usual natural deduction
than in LJT, that is the focused proofs for a left-biased notion of focus. Is there an
alternative natural deduction corresponding to a right-biased notion of focus? This is
what we could answer to if we could find out the type checker whose transformation
leads to the type checker for LJQ.

¶ | (UN)FOCUSED NATURAL DEDUCTION As we observed in the last section, LJT
is not a fully focused calculus: it only presents some features of focusing, specifically
a kind focusing biased toward the hypotheses of its sequent. We showed examples of
this “slack” (in the mechanical sense) in LJT proofs, and how it translates back into
“slack” in NJ proofs. Two natural questions emerge from this observation. Does it
exist a fully focused natural deduction? In other words, what is the calculus that,
reversed as we did, projects into a focused intuitionistic sequent calculus, such as
the one of Liang and Miller [2007]? Recently, Brock-Nannestad and Schürmann
[2010] proposed a linear, focused natural deduction; is its intuitionistic equivalent
the calculus we are looking for? On the other side of the focusing spectrum, which
natural deduction corresponds to the unfocused, historical sequent calculus? We
showed that the tree structure of natural deduction encoded some of the quotients
made by focusing sequent calculus; is there a natural deduction-style calculus that
realizes this quotient?

¶ | CLASSICAL LOGIC Finally, another interesting extension of this work that we
leave for future investigation is classical logic. Since the late eighties and Griffin
[1990]’s logical account of call/cc, a large body of literature has been written on the
computational content of classical logic. The operators and type systems devised are
sometimes natural deduction-style [Parigot, 1992], sometimes sequent calculus-style
[Curien and Herbelin, 2000]. A legitimate question is then: what is the reversal of
such a natural deduction-style type checker? Is there a chance that this reversal turns
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out to be the term assignment for a known classical sequent calculus variant? We
would start to ask ourselves: what are the canonical forms of e.g., the λµ-calculus?
Since the reductions of these languages manipulate the context of a proof in a
non-local way, this question is hard and remains unanswered to us.
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CONCLUSION

Some two hundred pages ago, we started off our journey by posing a simple question:
what is the relationship between a program and its specification, and how can we
exploit it to the advantage of the user of the program? This question lead us to the
theory of proofs and types, seen as syntactical objects, and the algorithms to verify
these proofs, type checkers. We argued that with a universal representation of proofs
and purposely designed programming tools, we can increase the trust users have in
software and the facility for developers to program such trusted pieces of software;
to this end, we proposed a tool to develop programs emitting proof certificates. The
scope of our study spanned beyond this field of research, as we learned along the
way two significant lessons: first, this very scheme—proof certificates—can be used
for a seemingly unrelated purpose, that of checking the static typing of programs in
an incremental fashion; secondly, that type checking programs, like any program,
are subject to transformations and compilation, and these transformations map back
to the proof theory world into well-known theoretical objects, natural deduction and
the sequent calculus.

Taking a step back, we can now emphasize the central technical contributions of
this thesis:

2 the concept of inverse function as a facility to write programs on data structures
containing binders without maintaining an explicit environment;

2 the use of full, typed evaluation to type check certificates dynamically in the
context of an otherwise untyped language;

2 the idea of incremental type checking, its realization by maintaining a shared
typing derivation, and its relationship with the inverse of the type checking
function;

2 the reinterpretation of a sequent calculus as natural deduction “in accumulator
passing style”, by the systematic derivation of a type checker using off-the-self
program transformations.

It is now time to assess and evaluate these accomplishments, taking into account
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the bias induced by our subjective eyes, and judge the work that they open for further
investigation.

During the elaboration of our framework, we wrote many examples and test
cases to validate the approach. Some of them were reproduced here; others can
be found in the source code of Gasp. All in all, we can say that the “environment-
free” programming style that we advocated seems to be quite natural, once one
understands that computations on variables are “expedited” with respect to the
usual, first-order style: they have to be made explicit at binding time, not when
encountering a variable. In this sense, this style can be seen as a sane restriction, a
constraint over the usual, unbounded approach. In terms of conciseness, it compares
well with other approaches based on explicit environment. We did not yet consider
other applications, like constraint-based type inference, or System F-like inference,
which would help assess its scalability further. The reader will also have noticed
that our methodology was largely driven by examples. In terms of expressiveness,
there would remain to find an adequate criterion of completeness to ensure that we
capture “all” computations on binding structures; it is still not clear to us how these
can be characterized. To better convince of the generality of the approach and allow
it to be applied to different settings, a line of work that we intend to pursue is to
modularize it: separate the treatment of binding from typing and evaluation, restrict
the latter to a simply-typed setting, enforce our programming style by typing.

Throughout this investigation, maintaining an implementation of our framework
took a capital importance. A great care was taken to reduce the size of the code as
much as possible. More than a mere programming exercise in brevity, we strongly
believe that it can be elevated to a methodology to write principled code, even to
a tool that guides the discovery process, and maps back into clear theories. Code
factorization for instance can give the intuition of the relationship between two other-
wise distinct objects. The last chapter of this thesis emerged this way, and is intended
as an illustration of this belief: we used programming tools to relate two logical
concepts. In particular, a number of design choices were made in the implementation
of Gasp, that are reflected here in the formal presentation. The choice of spine forms
in the representation of LF (as opposed to the usual canonical objects) is one of
these. Our practical experience is that it makes many concepts easier to code, is
more efficient, and exhibits interesting properties, otherwise hidden. In particular, it
emerged from this implementation that only a fragment of the hereditary substitution
algorithm usually considered was practically necessary, namely one without implicit
η-expansion; we conjectured on Page 18 that it is a strongly normalizing fragment,
which would have interesting foundational implications: does non-termination in
the λ-calculus always result from implicit η-expansions? Many other questionings
emerged in the same manner, from programming artifacts, suggesting a much more
profound nature to programs.
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