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Abstract

The analysis of Complex Networks turn out to be a very promising field of research,
testified by many research projects and works that span different fields. Until recently,
those analysis have been usually focused on deeply characterize a single aspect of
the system, therefore a study that considers many informative axes along with a
network evolve is lacking. In this Thesis, we propose a new multidimensional analysis
that is able to inspect networks in the two most important dimensions of a system,
namely space and time. In order to achieve this goal, we studied them singularly and
investigated how the variation of the constituting parameters drives changes to the
network behavior as a whole.

By focusing on space dimension, we were able to characterize spatial alteration
in terms of abstraction levels. We propose a novel algorithm that, by applying a
fuzziness function, can reconstruct networks under different level of details. We call
this analysis telescopic as it recalls the magnification and reduction process of the lens.
Through this line of research we have successfully verified that statistical indicators,
that are frequently used in many complex networks researches, depends strongly on
the granularity (i.e., the detail level) with which a system is described and on the
class of networks considered.

We keep fixed the space axes (that is, nodes’ coordinates) and we isolated the
dynamics behind networks evolution process. In particular, our goal is to detect new
instincts that trigger online social networks utilization and spread the adoption of
novel communities. We formalized this enhanced social network evolution by adopt-
ing new special nodes, called “sirens” that, thanks to their ability to attract new
links, were also able to construct efficient connection patterns. We both simulate the
dynamics of individuals and sirens by considering three most known growth models,
namely random, preferential attachment and social.

Applying this new framework to real and synthetic social networks, we have shown
that the sirens, even when used for a limited period of time, effectively shrink the time
needed to get a network in mature state. In order to provide a concrete context of
our findings, we formalized the cost of setting up such enhancement and we provided
the best combinations of system’s parameters, such as number of sirens, time span of
utilization and attractiveness, which minimize this cost.
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Chapter 1

Introduction

For many years, researchers studied the components of the nature singularly omitting

to observe the whole system behavior. For instance, considering water molecules, the

state transformation from liquid to solid happens through a topological modification

of the interaction network of molecules. So, a study that takes into account only the

singular molecular behavior will necessarily be limited.

Complex systems have attracted so much attention in the last decade because

of the direct implications of results to medicine, business, computing, physics, mass

transportation, power distribution, law, and many other fields. For example, vaccina-

tion campaigns against hard to eradicate viruses, such as smallpox, is more effective

by first treating hub nodes of the social network, i.e., nodes that have many social

ties compared to the average. Unfortunately, identifying such individuals can be a

challenging task.

Mapping out the interactions among genes, proteins and other molecules regulating

cell’s activity in living organisms were fundamental to aid researchers uncovering and

controlling the side effects of drugs, before release to the market. Furthermore, the

critical analysis of these networks lead to the identification of new regulatory relations,

functional to the development of diseases [20]. On the business field, understanding

how companies, industries and people are connected each other could help researchers

to monitor and avoid cascading financial failures[91]. Moreover, understanding how

global market works, and in particular studying the spread of a contagion on a topo-

logical structured network could offer new effective ways to promote and sell products.

On the World Wide Web, identifying which the most critical nodes helps to eradicate

computer virus and defend from attacks and sabotages.

A complex network is a system containing many interdependent units that inter-
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16 CHAPTER 1. INTRODUCTION

act in a non-linear way. With this definition at hand, researchers have constructed

complex networked systems based on data gathered from many different fields: the

brain is a network of nerve cells connected by axons; cells themselves are networks of

molecules connected by biochemical reactions. Societies too are networks of people

connected by friendship, familial and professional relationships. On large scale, food

webs and ecosystems can be represented as networks of predator-prey relations. In-

deed, networks are presents also in technology: the Internet as web pages connected

by hyper links, the routers network (AS), power grids, and transportation systems

are but a few examples. Even the language we are using everyday is a network, made

up of words connected by semantic relationships. The most famous motto utilized is:

Networks are everywhere.

The first step toward understanding the principles that govern the creation, main-

tenance, dissolution and reconstitution of links and nodes of the graphs was to create

models that hypothetically generate such structures. The first scientists that devel-

oped models of network growth were mathematicians and physicists. Initially, they

pictured real world networks as they were random and supposed that nodes were pair

wisely connected with fixed probability p. In this way, the parameter p determines

the level of connectedness of the networks (i.e. the number of edges). When p → 0

the network becomes a cloud of disconnected nodes whereas in the opposite situa-

tion, when p → 1, the outcome graph will be complete, i.e. every node is connected

to every others. For intermediate values of p, the network will have approximately

pn· (n− 1)/2 links (for undirected networks) on average and nodes are connected to

randomly selected neighbors without any geographical or social constraints.

The availability of network datasets, allowed scientist to empirically verify that

random models do not have much in common with real networks nor with regular one

whose connection pattern is fixed (every node is connected to k close neighbors). In-

terestingly, Watts and Strogatz [110] found that real complex systems are structurally

similar to graphs that sit in between these two extremes: on one hand complete dis-

order and on the other regularity (see Background chapter 2 and in particular figure

2.3). They indeed proposed a model that, starting from a ring lattice, rewires each

edge at random with probability p. This parameter allows shifting between the two

extreme patterns. When 0 < p < 1, the properties of the output graph strongly match

with that of real networks. This finding was the beginning of a series of unexpected

and very important results.

Parallelly to the first discoveries on complex networks, researchers’ efforts were

focused also in defining and quantitatively characterize new measures that describe

the topology of real networks. The main result has been the identification of a series
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of unifying principles and statistical properties common to most of the real networks

considered. Two fundamental elements that characterize networks are nodes’ degree,

i.e. the number of its adjacent connections, and degree distribution P (k). The latter

is defined as the probability that a node chosen uniformly at random has degree k or,

equivalently, as the fraction of nodes in the graph having degree k. Another impor-

tant result was to find that the degree distribution P (k) of real networks significantly

deviates from Poisson distribution (expected for random graphs) exhibiting, instead,

a power law P (k) ∼ γ (scale-free) behavior (especially in the tail of the distribution)

with an exponent γ that empirically belongs to the range [2, 3]. Moreover, real net-

works are characterized by many other common features, such as correlations in the

node degrees, by average short paths between any two nodes (small-world property),

and by the presence of a large number of short cycles or specific motifs.

Furthermore, it was shown that the coupling architecture (for example degree-

degree correlation) has important consequences on the network functional robust-

ness and resilience to external perturbations, as random failures, or targeted attacks

[105][50][87]. At the same time, correlations have a strong impact on network dy-

namical properties such as epidemic diffusions. Real world networks are extremely

sensitive to assortativity by degree correlations.

This led to a series of evidences pointing to the crucial role played by the network

topology in determining the emergence of collective dynamical behavior, such as syn-

chronization, or in governing the main features of relevant processes that take place

in complex networks, such as the spreading of epidemics, information and rumors.

1.1 Outline of the thesis

Researches on complex systems of the last decade was permeated by static analysis of

graphs and generation models that aim at producing the structure that matches fea-

tures specific to real world dataset. However, few of them consider that real complex

systems are embedded and constrained by space and time. Because of that, it is of

fundamental importance that new analysis will be able to deal with these informative

axes in order to get a better understanding of the entire system.

This Thesis aims at filling this gap and in particular, we propose a novel multidi-

mensional analysis of complex systems in which we separately study networks along

the two most important informational axes, time and space, and subsequently we lay

the foundations for a complete, and first time seen, analysis that considers both of

them.

By fixing the time dimension and by focusing on spatial x, y axes, we were able to
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propose a new analysis that quantitatively describes how the metrical and topological

structure of complex networks varies as a function of the detail levels. To the best

of our knowledge, this is the first attempt to use such approach in the study of

complex networks. To achieve this goal, we developed a new algorithm (based on the

resolution power of human eyes) that abstracts from the local properties of nodes and

reconstructs the structure of the original graph as it was placed at specific distance

(fuzziness) from a point of view. This analysis, called telescopic, was fundamental

to uncover that not all statistical quantities are spatially universal but instead, they

strongly depends on the specific detail level with which a network is described.

On the other hand, by keeping fixed the space dimension we can concentrate on

studying how networks evolve as a function of time. Several works in the literature

has been devoted to understand how structure evolves and to depict the underlying

rules behind links and nodes creation (these analysis are referred as longitudinal). An

important, but by far underestimated aspect that has never been studied before is the

detection of the instincts that trigger and consequently spread the users’ commitment

in a new on line community. We already know that the adoption of new on line social

sites is a slow process. Because of that, we identify a method that successfully fosters

individuals’ network utilization.

The thesis is organized as follow. Chapter 2 reviews some basic definitions, sta-

tistical measures and models of complex networks. In particular, we introduce the

notations that have been adopted throughout this Thesis. For the sake of clarity, we

focus only on the concepts that will be used extensively in the rest of the Thesis. A

series of review articles and books referenced can be found in this chapter.

In Chapter 3 we present an introduction to the framework for multidimensional

analysis and the sub analysis that is formed by.

In Chapter 4 we introduce and characterize the telescopic framework that is able

to describe networks as a function of the detail levels. We tested our algorithm on

rapid transportation networks such as European and American subways and two on

line social networks. We also studied the abstraction process on synthetic networks

by systematically testing different types of perturbations on nodes’ positions and

edges connectivity and finally compared the results with those obtained in real world

networks.

Chapter 5 is devoted to present the analysis of the second informative axis though

which networks evolve: time. In particular, throughout all the simulations and ex-

periments carried out in this Thesis we review and apply the most straightforward

techniques known that are at the root of the network growth namely random (every

edge has the same probability to exists), aristocratic (the most connected nodes are
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those with higher probability to acquire new links) and social (two friend of a person

are likely to know each other). These mechanisms are extensively applied in con-

junction with a set of special nodes, called sirens, that effectively amplify network’s

utilization. The results obtained for two on line social networks, as well as artificial

networks, confirm that this is an effective method that governs the system’s evolution.

Finally, conclusions and future directions based on results obtained in this Thesis

are presented in chapter 6.
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Chapter 2

Background

In this section, we introduce some background concepts that will be useful to under-

stand the remainder of the Thesis. In particular, we will provide some definitions

originally proposed in the context of graph theory and now widely used in network

analysis.

2.1 Graph Theory

In mathematics, graph theory[40] has been around for almost three hundred years.

Leonhard Euler in 1736 was the first that applied graph theory concepts to solve real

world problems. He showed that citizens of Königsberg can not traverse their seven

bridges without back-tracking. This result was accomplished by reformulating the

main problem into the settings of the graph theory and by considering nodes as lands

(letter A, B, C and D in figure 2.1) and bridges as edges. Euler’s demonstration was

based on considering the degree of nodes, i.e. the number of its neighbors. In partic-

ular, he observed that, for a walk of the desired form, the graph must be connected

and its nodes must have odd degree.

The mathematical object that naturally fits in the previous example as well as in

all systems of interacting elements is the graph. It is utilized as an abstraction of

a system where each element of the network is a node and relations between them

are edges/arcs. This is the most trivial definition of graph though. The graph the-

ory community developed more expressive versions of graphs that account for edges’

orientation (directed and undirected), nodes’ strength, Euclidean nodes’ coordinates,

and so on. The following paragraphs are devoted to delve deeply into these concepts

in a more formal way.
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22 CHAPTER 2. BACKGROUND

Figure 2.1: Graph abstraction of the seven bridges of Königsberg problem.

A (simple) graph G is a pair (V,E) where V = {u1, u2, ..., un}, |V | = n is a

finite set of vertices and E ⊆ V × V , E = {(ui, uj), i 6= j}, |E| = m is the set

of edges that links couples of nodes. These graphs are called topological. A graph

G could be represented by a n × n adjacency matrix A with entries aij = 1 when

(ui, uj) ∈ E, aij = 0 otherwise. aii = 1 denotes self loops. A weighted graph is

defined as G = (V,E,w) where w : E → R is a function that assigns real values to

edges. In undirected graphs, (u, v) ∈ E ⇔ (v, u) ∈ E and adjacency matrix A will be

symmetric (with respect to its diagonal, that consists of all zeros if self loops are not

allowed). Conversely, in directed graphs, or digraphs, each edge (sometimes referred

as arc or link) has a orientation, so (ui, uj) 6= (uj , ui).

Metrical graphs (also known as spatial) extend weighted graphs as they are spa-

tially embedded, that is, every node exists in a Euclidean coordinates’ space. Specif-

ically, G = (V,E,C,w) where C = {(x1, y1), (x2, y2) · · · , (xn, yn)} is the set of nodes’

coordinates and the function w might assigns, for instance, Euclidean distances be-

tween nodes. Multigraphs are generalized graphs in which the same couple of nodes

might be connected by more than one edge. Even though many real world complex

systems could be represented by multigraphs, in many occasions, these networks are

transformed into weighted graphs in such a way that the number of edges connect-

ing two nodes is reflected in the edge weight of the new graph (see figure 2.2 for a

summary of of graph classes).

A path is a non empty graph P = (V,E) in the form of

V = {u0, u1, ..., uk} E = {(u0, u1), (u1, u2), ..., (uk−1, uk)};

simple paths are those in which all vertices ui are distinct. The number of edges in a

path determines its length and a path of length k is defined as P k. A path from a to
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b of length k is a path P k in which u0 = a and uk = b. A graph G is connected if for

each ui, uj ∈ V, i 6= j, there exists a simple path from ui to uj (denoted as ui  uj).

In order to simplify notations, in this Thesis we equivalently specify nodes as i or ui.

An important graph property is the shortest path between two vertices, dij (also

known as geodesic). The definition of shortest path depends on the class of graphs

we are dealing with. In simple graphs, the shortest path between nodes i and j

represents the minimum number of traversed nodes (hops) to reach j from i. If the

graph is connected, it is natural to observe dij ≥ 1 ∀i, j and dij = 1 if node i is

directly connected to node j. If there are no paths between i and j then dij = ∞.

Indeed, in weighted graphs, the shortest path is calculated taking into account the

weights on edges such that dij = min{wp|p is a path between i and j} where

wp =
∑

e∈E(p)

w(e)

is the sum of edge weights along path p.

The diameter D of graphs is usually defined as the maximum dij between every

couple of nodes. However, since dij depends on the graph type, D could also have

the following meanings: the number of hops that separates two vertices, the maxi-

mum shortest weighted path or the maximum Euclidean distance between the farthest

nodes, without considering the underlying topological structure (in this case we refer

to physical diameter).

Figure 2.2: Graph types.

The degree of a node u in a graph corresponds to the cardinality of the set N(u) =

{v ∈ V | (u, v) ∈ E} = deg(u) = ku and
∑

u∈V deg(u) = 2|E|. When deg(u) = 0,

then u is said to be isolated. In directed graphs, it is customary to split node degree

into inbound kin and outbound kout degree. Indeed, the degree distribution P (k) that

corresponds to the probability of having a node with degree k, has to be split into

two parts, inbound P in(k) and outbound P out(k) degree distribution. The average

degree of a graph 〈k〉 (or kmean) is 1/n
∑n

i=1 ki and the strength[16] si of node i is

the sum of the weights of the edges incident on i, si =
∑

j wij . In directed graphs,

the strength can be split relative to the edges directions, reflecting the total inbound

and outbound weight, as for the nodes’ degree and the degree distribution.
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A graph G is complete if for each i, j ∈ V (i 6= j) ⇒ (i, j) ∈ E. In the literature,

complete graphs are usually denoted as Kn, with n representing the total number

of nodes and |E| = n(n−1)
2 if the graph is undirected, n(n − 1) otherwise. Recent

experiments showed that those graphs are rare to find in nature mainly because of

the inherent high cost of creation and maintaining such a redundant structure. Think,

for instance, of having a telephone network in which there exist direct connections

between every user. This class of networks are usually used in ideal contexts or as

normalizing factor in formulas (see section § 2.1.1).
A graph T is a subgraph of a graph G, denoted by T ⊆ G, when VT ⊆ VG and

ET ⊆ EG holds. VT and VG are the set of nodes of G and V respectively. A graph

T ⊆ G is said to be induced when ET = {(ui, uj) ∈ EG|ui ∈ VT , uj ∈ VT }.
The previous definitions are only a subset of all concepts and ideas that have been

developed in the graph theory literature. For interested readers, Diestel’s [40] book

is a one of the best reference in this field.

2.1.1 Statistical properties

Before delving into the details of network modeling, we present an overview of metrics

that catch the most important network properties.

Watts and Strogatz [110] proposed two effective and intuitive metrics, namely the

characteristic path length L and the clustering coefficient C. The first measures the

typical separation between two vertices in a graph (a global quantitative measure of

graphs), whereas the second measures the cliquishness of a typical neighborhood (a

local property) [102]. More formally, the former is calculated as

L(G) =
1

n(n− 1)

∑

i6=j∈V

dij .

Since real world networks might have disconnected subgraphs (for example Escherichia

coli [10] or some protein to protein networks[20]), network scientists usually restrict

their study to the largest connected component (LCC), in which dij < ∞ for each

(ui, uj) ∈ E. The results, in order to be significant have to be calculated on big LCC,

i.e. the fraction of nodes that belongs to it must be very high.

Vice versa, clustering coefficient C is formally described as the mean of all Ci’s,

namely:

C(G) =
1

n

∑

i∈V

Ci Ci =
E[Gi]

ki(ki − 1)/2

where Ci is the fraction between the numbers of edges of the subgraph Gi over the

total number of edges of Ki. Subgraph Gi is the graph of the neighbors of node i (i
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excluded).

Latora and Marchiori [67] developed a set of metrics, based on the concept of

efficiency ǫ, that allow considering both connected and disconnected graphs. They

define global efficiency of a graph G as:

Eglob(G) =

∑

i6=j∈V ǫij

n(n− 1)
=

1

n(n− 1)

∑

i6=j∈G

1

dij

as the average of efficiency ǫij of the graph. Here, they assumed that efficiency ǫij

and distance dij are inversely proportional. However, other relationships might be

used (instead of dij), especially when justified by a more specific knowledge about the

system. Nevertheless, dij will have different meanings in weighted and unweighted

networks. In the first case, it corresponds to the number of hops between two nodes

in the shortest path (topological efficiency) whereas in the second one is the sum of all

edge weights in the shortest path (metrical efficiency). Global efficiency, as defined

above, ranges from 0 to +∞. In practical applications, it is convenient to normalize

it by the ideal network Kn, namely Eglob(G)/Eglob(Kn) such as 0 ≤ Eglob(G) ≤ 1,

therefore it can be used to compare efficiency of different graphs.

On the other side of the same measure, the efficiency can be used to evaluate any

subgraph of G, and therefore to characterize the local properties of a network as the

following:

Eloc(G) =
1

N

∑

i∈V

Eglob(Gi)

Eglob(G
ideal
i )

that is merely the average of the global efficiency applied to each subgraph Gi, nor-

malized by the referring ideal graph Gideal
i .

Moreover, the same authors proposed a statistical property that accounts for the

cost of a network, defined as:

Cost(G) =
2m

n · (n− 1)
, Cost(G) =

∑

i6=j∈G aijγ(dij)
∑

i6=j∈G γ(dij)

The leftmost formula is used in unweighted networks and is usually known as density

whereas the rightmost accounts for weighted networks where aij is an element of the

graph adjacency matrix A and γ is the cost evaluator function which calculates the

cost needed to build up a connection with a given distance (length) dij .

In order to depict the most important nodes of the network, the following indexes

are widely used in the literature. The closeness centrality defined as [109]:

CC
i =

n− 1
∑

j∈G,i6=j dij
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represents how far nodes’ neighborhood are from i. In undirected graphs, when a

node i is connected to every other nodes (i.e. obtaining a star network), the closeness

centrality is equal to 1.

Betweenness [109][46][47], CB, express the centrality of a node by calculating how

many shortest paths pass through a node, namely:

CB
i =

1

(N − 1)(N − 2)

∑

j,k∈G,j 6=k 6=i

njk(i)/njk

where njk is the number of shortest paths between j and k, and njk(i) is the number

of shortest paths between j and k that contains node i.

The straightness centrality, CS , represent how far are neighborhood’s nodes from

an origin considering ideal straight connections. In other words, this index captures

to which extent the connecting route between nodes i and j deviates from the virtual

straight line [108], namely:

CS
i =

1

N − 1

∑

j∈G,j 6=i

dEucl
ij /dij

where dEucl
ij is the Euclidean distance between nodes i and j along a straight lines.

The information centrality [68], CI , allow to identify a central nodes by calculating

the relative drop in the global efficiency of the network caused by the removal of the

edges incident in i from G [103]. It is defined as the following:

CI
i =

∆E

E
=

Eglob(G)− Eglob(G
′)

Eglob(G)

and G′ is the graph with n nodes and m− ki edges.

Another fundamental property of networks is the degree-degree correlation (also

known as network assortativity). This feature is extremely important in the resilience

of networks[105] [98] but it has also strong impact on the network dynamical proper-

ties, such as spreading processes. In assortative networks, most edges connect nodes

that exhibit similar degrees (nodes aristocracy). On the other hand, disassortative

networks are such that high-degree nodes are connected to low-degree nodes.

More analytically, the network correlation knn between vertices is calculated as

knn(k) =
∑

k′ k′P (k′|k) where P (k′|k) is the conditional probability that a node with

degree k is connected to a node with degree k′. If there is no degree correlation,

the formula simplifies to knn(k) = 〈k2〉/〈k〉, i.e. is independent of k. Positively

correlated graphs are classified as assortative if knn is an increasing function of k,

whereas they are referred to disassortative when knn(k) is a decreasing function of

k [84]. Degree correlations are usually quantified by reporting the numerical value
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of the slope of knn(k) as a function of k or by calculating the Pearson correlation

coefficient of the degrees at either ends of a link [85]. ER graphs are, by definition,

uncorrelated graphs, since the edges are connected to nodes regardless of their degree.

Consequently, the assortative-mixing value is neutral (zero). This holds also for the

preferential attachment model proposed by Barabási-Albert [15].

Along with assortativity by degree, Barrat et al. [16] defined the weighted nearest-

neighbors degree:

kwnn,i =
1

si

n
∑

j=1

aijwijkj .

They perform a local weighted average of the nearest-neighbor degree according to

the normalized weight of the connecting edges, wij/si. The kwnn,i thus measures

the effective affinity to connect with high- or low-degree neighbors according to the

magnitude of the actual interactions. As well, the behavior of the function kwnn(k)

marks the weighted assortative or disassortative properties considering the actual

interactions among the system’s elements.

Interestingly, Newman found that physics co-authorship [82], biology [82], mathe-

matics [53], film actors [110] and company directors [37] networks all share the same

assortative behavior. On the contrary, Internet[90], the World Wide Web[15], pro-

tein to protein interactions[60], neural[67] and food [73] network are disassortative.

For a survey of this and the previous statistical properties we refer to the following

references [21][26].

2.2 Network Modeling

Systems’ modeling is a fundamental element that is extensively used in many fields of

science. The main reasons for using modeling in network science are twofold. First,

it formalizes a system in order to being able to use mathematical and analytical tools

to describe properties in a precise way. Furthermore, is widely used as a prediction

tool for the systems behavior.

Generation models were the first ones to be introduced in network science. These

models produce a network from an initial core (seed) graph and generate output graphs

whose structure matches real data properties such as degree distribution P (k), local

clustering, assortativity, etc at a specific time in the future (for instance when a system

is in steady state). Even though these models were very precise in characterizing the

statistical properties of mature graphs, they discard completely the history and all

the events that govern and constraints the systems’ evolution. However, thanks to

the digitalization and the availability of big datasets and the possibility of knowing
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the exact timestamp of every element’s interaction, it is now possible to propose new

researches that aim at analyzing networks as time evolves (the so-called longitudinal

analysis, see section § 2.3) taking into account the history paths of those systems with

the aim of developing models that takes into account also the history paths of those

systems.

In the following sections, we review the most important and most used network

models proposed during the last decade.

2.2.1 Erdős-Rényi Networks

The systematic study of random graphs was initiated by Erdős and Rényi in 1959 [42]

with the original purpose of studying, by means of probabilistic methods, the prop-

erties of graphs as a function of the increasing number of random connections. The

term random graph refers to the disordered nature of the connections between nodes.

In their first article, Erdős and Rényi proposed a model to generate random graphs

(the so-called ER graphs) with n nodes and m links. Starting with n disconnected

nodes, the model randomly selects couples of nodes, connects them (prohibiting mul-

tiple connections), until the number of edges is equals to m [42]. An output graph is

only one of the possible outcomes of various realizations, an element of the statistical

ensemble of all possible combinations of connections.

An alternative model for ER random graphs consists in connecting each couple of

nodes with a probability 0 < p < 1. This procedure defines a different ensemble and

contains graphs with different numbers of links: graphs with m links will appear in

the ensemble with a probability pm(1 − p)M−m where M = n(n − 1)/2 is the total

number of edges in a complete graph[43]. These two models have a strong analogy

[88] and coincide in the limit of large n [113]. Notice that the limit n → ∞ is taken

at fixed 〈k〉, which corresponds to 2m/n in the first model and p(n− 1) in the second

one. Although the first model seems to be more close to applications, analytical

calculations are easier and are usually performed in the second model.

Many properties were discovered by Erdős and Rényi[22] in the context of graph

connectivity. For instance, if p > 1/n the corresponding average degree 〈k〉 = 1 and

when p ≥ lnn
n almost any random graph constructed is totally connected. Further-

more, it was demonstrated that when n is large, 〈k〉 ≃ p ·n and the degree distribution

P (k) (i.e. the probability of finding nodes with degree k) is approximated by a Poisson

distribution:

P (k) =
〈k〉k
k!

e−〈k〉.

For this reason, ER graphs are sometimes called Poisson random graphs.
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The topological diameterD varies in a small range of values around lnn/ ln(p·n) =
lnn/ ln〈k〉 [29] while the average geodesic L has the same behavior as a function

of n (as the diameter), L ∼ lnN/ ln〈k〉 [17]. The clustering coefficient is equal to

C = p = 〈k〉/n (see [110]):

Crand =
1

n

∑

Crand
i Crand

i =
p(ki(ki − 1)/2)

ki(ki − 1)/2

Hence, ER random graphs have a decreasing C in the limit of large system size.

The US highway network [9] and some other rapid transportation networks like

subways[66] are examples of networks whose properties (for instance the degree distri-

bution) are comparable to those of random models. However, empirical studies show

that the topology of the majority of real world networks does not share many com-

mon properties with ER graphs. For instance, in social networks, the probability of

knowing your neighbors is not the same as knowing a person 10 thousands kilometers

far from you, as random models suggest (even though in on line social network this

constraints could be slightly relaxed).

2.2.2 Small World Networks

The ability of collecting large-scale datasets in all fields that was almost impossible

until recently, the birth and development of computational and communication ca-

pabilities and the breakdown of boundaries between disciplines helped researchers to

propose models more representative of the real world.

Motivated by local clustering, a feature that lacked on previous random graphs

models, Watts and Strogatz [110], introduced a new model (in the following, WS

model), that will be known as small world. The starting point is a n nodes ring (see

figure 2.3), in which each node is symmetrically connected to its 2g nearest neighbors

for a total of k = gn edges. Then, for every node, each link connected to a clockwise

neighbor is rewired to a randomly chosen node with a probability p, and preserved

with probability 1 − p. Notice that for p = 0 we have a regular lattice, while for

p = 1 the model produces a random graph with the constraint that each node has a

minimum connectivity kmin = g.

For intermediate values of p the procedure generates graphs with low average dis-

tance between nodes and high local clustering coefficient. Networks with such features

are called small-world. Alternative procedures to construct small-world networks exist

and are based on adding edges instead of rewiring them[36][79].

The richness of the WS model has stimulated the scientific community to study

network’s properties as a function of the rewiring probability p and the network size
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Figure 2.3: Random rewiring procedure for interpolating between a regular ring lattices and

random networks, without altering the number of vertices or edges in the graph. The starting

configuration is formed by a ring of n vertices, each connected to 2g nearest neighbors.

n [75][19]. As observed in [110], the small-world property results from the immediate

drop in L(p) as soon as p is slightly larger than zero. This is because the rewiring of

links creates long-range edges (shortcuts) that connect otherwise distant nodes. The

effect of the rewiring procedure is highly nonlinear on L, and not only affects the

nearest neighbors’ structure, but it also opens new shortest paths to the next-nearest

neighbors and so on. Conversely, an edge redirected from a clustered neighborhood

to another node has, at most, a linear effect on C. In other words, the transition

from a linear to a logarithmic behavior in L(p) is faster than the one associated with

the clustering coefficient C(p). This leads to the appearance of a region of small (but

non-zero) values of p, where one has both small path lengths and high clustering.

Small world property have been widely founded in food web[80], the World Wide

Web [4][96], power grid networks [110], words networks[101], dictionaries networks[70],

transportation networks, biological networks [61], law networks[23], even though social

networks [83] were the firsts to be analyzed. In fact, in the 1960s, an empirical study

by Stanley Milgram[76] founds that every two people in the United States have an

average acquaintanceship of six. Similar results are obtained through collaboration

networks were actors are connected if they acted together, and scientists networks

where exists a link whenever two authors publish a paper together[82].

Even though small-world model is considerably more adherent to real networks

than random graphs, it has many limitations, for example:

• Small-world models do not follow the dynamics with which a real network

evolves,

• The degree distribution of many real networks is not bell shaped, instead it is a
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power law indicating the presence of hubs in the networks

The class of models that account for networks with degree distribution that deviates

from Poisson is called scale-free and are presented in the following section.

2.2.3 Scale-Free Networks

The models presented previously are devoted to construct networks that have small

average shortest path L and high local clustering C, or equivalently, high Eglob and

Eloc using Latora and Marchiori [67] framework metrics.

However, in many real world networks the degree distribution does not follow

a bell curve (that for instance characterize the frequency of humans heights), but

instead does follows a power law, i.e. P (k) ∼ c · k−γ where c is a constant and γ is

a positive exponent that empirically varies between two and three. The reason why

the exponent fits in that range is still unknown to network scientists and it remains

an open question since the firsts discoveries on networks science. Having a P (k) that

has a decaying tail in the power law means that the vast majority of nodes have low

degree and that there exist few nodes, the so-called hubs, that have an extremely high

connectivity.

Even though one might expect a limited influence of hubs in the overall develop-

ment and life of the networks because of the small cardinality, they play a fundamental

role in the evolution, robustness and connectivity of the entire networks. For instance,

in biology, hubs can represent genes that identify functional modules and whose re-

moval can be the cause of specific diseases. Hubs are also very important in brain

networks and represent functional areas that are anatomically highly connected with

neighborhood. Their importance stems from the possibility of use the degree rank

order in normal brain as an indicator of the first symptoms of diseases [3]. These

special nodes are not captured by both random and small-world models [86][95] (see

figure 2.4).

Power laws are not new in the literature. Pareto, back in 1900s, found that people’s

income is well approximated by a function that has long decaying tails. In other

words, power laws guarantee that rare events, such as people with very high income,

people that have many friends, popular web pages compared to the less popular ones,

the most cited papers, or the earthquakes with high magnitude[74][13], have positive

probability to happen.

Such networks have been named scale-free [7], because power-laws have the prop-

erty of having the same functional form at all scales. In fact, power-laws are the only

functional form f(x) that remains unchanged, apart from a multiplicative factor, un-

der a rescaling of the independent variable x, being the only solution to the equation
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Figure 2.4: Example of random (left) and scale-free (right) degree distributions on linear

and log-log scale respectively. One of the networks whose node distribution linkage follows

a bell-shape curve is the U.S. highway system[9].

f(αx) = βf(x). Power-laws have a particular role not only in complex system field

but also in statistical physics because of their connections to phase transitions [99]

and fractals [45].

When working with real networks, it may happen that the data have a rather

strong intrinsic noise due to the finiteness of the sampling. Therefore, when the

system size is small and the degree distribution P (k) is heavy-tailed, it is sometimes

advisable [86] to measure the cumulative degree distribution Pcum(k) =
∑∞

k′=k P (k′).

Indeed, when summing up the original distribution P (k), the statistical fluctuations

generally present in the tails of the distribution will be smoothed. Consequently the

exponent γ of P (k) ∼ k−γ can be obtained from Pcum(k) as one plus the slope of

Pcum(k) in a log-log plot, i.e., γ = 1 + γcum.

There are two types of scale-free models available in the literature: the first one

that creates static scale-free networks and the second that creates evolving scale-free

networks. The former is simply generated as a special case of random graphs with a

given degree distribution. A model that belongs to this category is for instance the

so-called fitness model [27]; it starts from n isolated nodes, and associates at every

node i a fitness ηi, which is a real number taken from a fitness distribution ρ(η). For

each couple of nodes, i and j, a link is drawn with a probability f(ηi, ηj), with f

being a symmetric function of its arguments. The model generates power-law P (k)

for various fitness distributions and attaching rules, while it gives ER random graph

if f(ηi, ηj) = p for each i, j.

Conversely, in the evolving scale-free category, the growth process that determines

the structural properties of the network is taken into account. The Barabási-Albert

(BA)[15] network growth model was inspired from the formation of the World Wide
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Figure 2.5: Example of noise reduction in the data calculating cumulative degree distribution

Pcum(x) [86]. A set of one million random numbers, power-law distributed, with scaling

exponent γ = 2.5 is considered (a). Plot of the original data (b). Same histogram on

logarithmic scale. Note the noise in the tail of the curve (c). A histogram with logarithmic

binning (d). A cumulative histogram of the same data. This curve follows a power law, but

the scaling exponent of the original curve can be obtained as the exponent of Pcum(x) minus

one, i.e., γ = 2.5 − 1.
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Web and it is based on two basic ingredients: growth and preferential attachment.

The basic idea is that in the WWW, web sites with high popularity (high degree)

acquire new hyper links at higher rate than unpopular web sites (low-degree). More

precisely, an undirected graph is constructed as follows: starting with m0 isolated

nodes, at each time step t = 1, 2, 3, ..., n − m0 a new node j with h ≤ m0 links is

added to the network. The probability that a link will connect j to an existing node

i is linearly proportional to the actual degree of i:

∏

j→i

=
ki

∑

l kl
.

As every new node has h links, the network at time t will have n = m0 + t nodes

and m = h · t links, corresponding to an average degree 〈k〉 = 2m for large times.

The Barabási-Albert model has been solved in the mean-field approximation and,

exactly, by means of rate equation [64] and master equation approaches. In the limit

t ∼ ∞, the model produces a degree distribution P (k) ∼ k−γ , with an exponent γ = 3.

On the contrary, the case of a growing network with a constant attachment probability
∏

j→i = 1/(m0 + t− 1) produces a degree distribution P (k) = e/h · exp(−k/h). This
implies that the preferential attachment is an essential ingredient of the model.

The BA model shares many similarities with the model developed by Price [38] in

1976. The author’s theory explains the power laws in citation networks he found out

a decade before. In Price’s model, the probability that a new published paper cites a

previous one is taken to be proportional to kin + 1, where kin is the number of times

that the paper has already been cited. Price’s model is a reformulation, in terms of

network growth, of a model developed by Simon in 1955 to explain the power laws

appearing in a wide range of empirical data, as well as in the distribution of words

in prose samples by their frequency of occurrence, or in the distributions of cities by

population. Here, we simply mention that the model differs from the BA model in

two main aspects: on one hand, it builds a directed graph and, on the other hand,

the number of edges added with each new node is not a fixed quantity.

2.3 Longitudinal analysis

The previous models are classified into two classes of network generator [55]: editing

and generative. The models that belong to the first class (for example the WS small

world model), start with a given network and apply some modifications to the system

in order to obtain specific features. Conversely, in the second class, the models produce

a network from a small initial seed graph (like in evolving scale-free model). The
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goal of such models is to reproduce the structure that matches real data in pre-

specified properties, such as degree distribution [71], local clustering[14], assortativity

by degree, average degree, etc.

In principle, scale-free networks presented above can be considered good candidates

as network evolution models. However, this approach although simple and intuitive,

can not resolve the full spectrum of interactions that thrives the whole complex system

development. Because of that, scientists are now focused on tracking all the most

important statistical quantities as the time runs using frequent static snapshots of

the system [59] (even though studies [49] reveals that not all the tendencies can

correctly be estimated using static snapshots only) or, in a more precise way, by using

a complete fine level description of the system’s evolution.

The longitudinal analysis is the consequence of the advent of the digitalization of

everyday’s actions that allowed to track in greater detail different types of mechanisms

underlying networks (this trend started with on line social networks [49] but nowadays

it is not limited to them only). This new framework of analysis was a fundamental

key in order not only to precisely map system’s evolution at individual level, but also

to develop more accurate prediction models. In particular, they also describe the

probabilistic tendencies of creation, maintenance, dissolution, and reconstitution of

interpersonal ties during the evolution of social networks[93]. For instance, compu-

tational social scientists, thanks to longitudinal datasets, were able to classify social

ties into five types of probabilistic tendencies, namely:

• social exchange, that corresponds to reciprocate a link that has been previously

established,

• balance, that represents the social rule by which two person are likely to know

each other if they have at least one common friend (also known as triadic clo-

sure),

• distant connection, as the name suggests, is a type of connection with a not

close node,

• collective action, represent a connection to a node whose connectivity is beyond

the average 〈k〉,

• structural hole, that corresponds to a link connecting two cluster not otherwise

connected.

The previous works aim at investigating on the rules that govern interactions in a

social setting. However, these represent only a limited list of all the features (such as

like densification of edges and shrinking average distance) that complex systems such
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as social networks exhibit. Work of Lescovec et al. [69], Holme et al. [58] and Kumar

et al. [65] are good starting points on that topic.

2.4 Critical analysis of complex networks

Robustness refers to the ability of a network to avoid malfunctioning when a fraction of

its constituents is damaged. This is a very interesting topic, since it affects directly the

efficiency of any process running on top of the network. In the literature, two are the

main results concerning the resilience of networks: random failures and intentional

attacks. The problem can be encountered in two different variants. The first one,

referred to as static robustness, is meant as the act of removing nodes without the need

of redistributing any quantity transported by the network. The second one, dynamical

robustness refers to the case in which the dynamics of redistribution of flows is to be

taken into account. An example can be found in the Internet at Autonomous System

(AS) level where nodes can fail to routes packets they receive and its load has to be

forwarded through alternative paths. Both types of robustness are similar in spirit,

but while the first can be analytically treated (i.e. by using the tools of statistical

physics such as percolation theory), the analytical treatment of the second case is

harder and in almost all cases one has to rely on numerical simulations.

2.4.1 Static robustness

Static tolerance to errors (or random failures) [8] is understood as the ability of the

system to maintain its connectivity properties after the random deletion of a fraction

r of its nodes or edges. On the other hand, we refer to an attack when such a deletion

process is targeted to a particular class of nodes or edges, for instance to the highly

connected nodes, the most central nodes, the nodes whose deletion cause the bigger

drop in the global efficiency, the bridge nodes or edges, etc.

Crucitti et al. [33] have conducted some numerical simulations to test how random

networks and Barabási-Albert (BA) scale-free model are robust to random failure

and intentional attacks. The importance of a node, that is at the basis of attacks

simulations, were determined by the following three criteria: the node degree, the

betweenness centrality (that is the number of shortest paths over all pairs of nodes of

the network that pass through a node) evaluated before any removal is performed and

the recalculated betweenness centrality, the same quantity as the previous one except

that shortest paths were recalculated after a node removal. As showed in figure 2.6

(a), the BA model shows highly different behavior with respect to attacks and random

errors: by removing approximately 15% of the nodes in a targeted way, the network
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(a) (b)

Figure 2.6: Random failures and attacks considering random networks (ER) and scale-free

network (Barabási-Albert). The plots show how global efficiency Eglob changes as a function

of removed nodes. Attacks are based on the degree (left panel) or on betweenness and

betweenness recalculated (right panel).

efficiency is reduced to about half of the initial value (Eglob = 0.33) and it is sufficient

to remove 35% of the nodes in order to destroy completely the system; on the contrary,

when nodes are removed in a random way, the network efficiency decreases very slowly

and the system maintains a considerable efficiency (Eglob = 0.15) even though the vast

majority of the nodes were removed (p = 80%).

This behavior is rooted in the heterogeneity of the scale-free model where few nodes

are responsible for the interconnectedness of the network: their (targeted) removal

causes a rapid drop in the capability of communicating and exchanging information

of the system. As far as the ER graph is concerned, differences of tolerance to attacks

and to errors are much less pronounced. In this case, in fact, there is not a substantial

variability in the degree: the removal of a node in a targeted or in a random way

produces similar, though not equal, behaviors.

Figure 2.6(b) shows the global efficiency for the Barabási-Albert and random

model as a function of the number of node removed. This time the attacks were

based on the betweenness centrality (recalculated or not). The curves concerning

the recalculated-load-based attacks for the BA model do not differ substantially from

those relating to degree-based attacks of figure 2.6(a). Larger differences are visible in

the ER graph, for which the recalculated-load-based attack causes a greater amount

of damage than the degree-based attack. This is because in the BA model many

nodes with the highest load are also those with the highest degree, while in the ER

model there is not a perfect parallel among load and degree. A different tolerance
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to recalculated and non-recalculated-load-based attacks is also evident for the ER

model: it means that load redistributes over the networks after removal, i.e., when an

attack is performed, shortest paths that passed through the removed nodes are not

redistributed in a uniform way and therefore nodes with low betweenness may become

those that carry the highest load.

Besides these numerical simulations, a series of analytical approaches to study

tolerance to errors and attacks in complex networks have been proposed [30].

As stated at the beginning of this section, the main idea is that random failure can

be analytically treated by using percolation theory [100][18]. A standard percolation

process can be, in general, of two types: site or bond. Site percolation on a given

graph means that the vertices are empty with a given probability f (or occupied with

a probability 1 − f), while bond percolation refers to the existence or not of an edge

between two arbitrarily chosen nodes. Once the random deletion (or placement) of

nodes or edges is done, several quantities allow the characterization of the network

properties. One usually looks at the existence and size of the giant component (LCC)

as a function of f , and at the average size and fluctuations in the size of finite com-

ponents. In such a way is possible to define a critical probability fc below which the

network percolates, and a set of critical exponents characterizing the phase transition.

2.4.2 Dynamical robustness

In the previous section, we have focused on static properties of a network as a function

of the fraction nodes’ removal. In particular, we presented two types of deletions:

random and targeted.

In real world systems, however, there is another important dimension to add to

the problem: it refers to modeling the dynamics of flows of the physical quantities

of interest over the network. A full characterization of a network cannot be fully

accounted for without considering the interplay between structural and dynamical

aspects. When it comes to modeling the dynamics, the situation is very complicate,

since the components of a network may have different transmission capacities, and

the load is often highly variable both in space and in time.

Fluctuations due to external factors can have much more devastating consequences

when the dynamics of flows of physical quantities in the network is properly accounted

for.

Avalanche of breakdowns over the network is a serious threat when node and links

are sensitive to overloading. In a power transmission grid, for instance, each node

(power station) deals with a load of power. The removal of nodes, caused either by

random breakdown or intentional attacks, changes the balance of flows and leads to a
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global redistribution of loads over the entire network that could not be, in some cases,

tolerated and might trigger a cascade of overload failures, disabling the majority of

facilities. The largest blackouts as the time of writing, were in India in 2012, Indonesia

in 2005 and Brazil were 670, 100 and 97 millions of people respectively were affected.

These, and other similar examples, constituted the motivation for the study of how the

extent and the dynamics of the avalanches are dependent on the network structure.

In Ref. [81] the fiber bundle model on scale-free networks is introduced as a

conceptual framework useful to describe cascading failures. In this model, the system

is subjected to an external pressure (load). The behavior of several network quantities

indicates that the system exhibits a sort of critical point which depends on both the

architecture of the underlying network and the heterogeneity of nodes’ capacity. More

important, the results point out that, in order to prevent the breakdown of scale-free

networks, it is necessary to find an optimal criterion that takes into account two

factors: the robustness of the system itself under repeated failures, and the possibility

of knowing in advance that the collapse of the system is approaching (prediction).

2.5 Spreading processes

2.5.1 Epidemic spreading

Epidemic spreading deals with the modeling of the spread of a particular infectious

disease in a population, with the aim of reproducing the actual dynamics of the

disease and designing the strategies to control and possibly eradicate the infection.

Conversely, the aim of rumor spreading is to spread the “rumors“ as fast and efficiently

as possible, not to prevent it from spreading. Practical examples are the design of

protocols for data dissemination on the Internet, or strategies of marketing campaigns.

The inclusion of complex topologies in standard epidemic and rumors models radically

changes the results previously established for random graphs and regular lattices.

The study of epidemiological models is a subject of great interest that has attracted

the attention of epidemiologists since long time ago. Mathematical epidemiology has

grown exponentially since the middle of the 20th century, so that a tremendous variety

of models has now been formulated, mathematically analyzed, and applied to field

research [56]. Epidemiology modeling has been used in planning, implementing and

evaluating various prevention, therapy and control programs.

At the same time, physicists became interested in these kinds of models when

it was pointed out that epidemiological processes could be regarded as percolation

like processes [52]. More recently, starting with the works by Pastor-Satorras and

Vespignani [89], there has been a burst of activity on understanding the effects of
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the network topology on the rate and patterns of disease spread. The two most

important models that describe disease spreading through a population by contacts

between infected and healthy individuals are: the susceptible-infected-removed (SIR)

and the susceptible-infected-susceptible (SIS) model.

The SIR model describes diseases resulting in the immunization or death of in-

fected individuals, and assumes that each individual can be in one of three possible

states, susceptible (denoted by S), infected (I), or removed (R). Susceptible individu-

als are healthy persons that can catch the disease, if exposed to infected individuals.

Once an individual catches the infection, it moves into the infected (and infective)

class, and then, after some time, into the removed class (becomes immune). The

model is based on two parameters, the transmission rate λ, and the recovery rate µ.

The SIS model, a more realistic disease model, considers only two states: suscepti-

ble (S) and infected (I). The former are the individuals that catch the infection, move

into the infected/infectious state and become again susceptible after a period of time

in which they recover. At the end, they are again exposed to the epidemic. Scientists

want to find a critical value σc (epidemic transition) of the ratio σ = λ/µ such that,

for σ < σc no infinite epidemic is possible, while for σ > σc an infinite epidemic occurs

with a finite probability.

Authors have observed that in random networks, the infection spreads to all the

nodes if λ exceeds a critic epidemic threshold, otherwise it remains confined in limited

zones of the network. In scale-free networks, when n → ∞, there is no epidemic

threshold, the epidemic becomes pandemic and spreads to all over the network, for all

the propagation ratio. At the same time, in finite size networks epidemic threshold

must exist otherwise all biological scale-free networks should be died. It is well known

that the topology of the scale-free networks helps the spreading process, but at the

same time, helps us to cure the system in a more effective way. In fact, it was shown

that we can obtain a better control over a disease by start treating the most central

nodes in the network instead of treating them randomly. This finding is directly

correlated to the studies of network robustness (section 2.4) where intentional attacks

are used to eradicate the infection/disease.

2.5.2 Rumors spreading

As seen before, the inclusion of complex topologies in standard epidemic models rad-

ically changes the results previously established for random and regular graphs and

helped scientists, for example, to improve patients’ treatments or control outbreaks.

Nevertheless, in a number of important technological and commercial applications, it

is desirable to achieve the opposite outcome. Instead of preventing an outbreak, we
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want to spread the epidemic as efficiently as possible.

Important examples of such applications are epidemic (or rumor-based) protocols

for data dissemination and resource discovery on the Internet [107], as well as market-

ing campaigns using rumor-like strategies (viral marketing). The above applications

and their dynamics have passed almost unnoticed to the physics community working

on complex networks even though computer scientists and sociologists [39] have ex-

tensively studied them. The problem here consists of designing an epidemic algorithm

in such a way that the dissemination of data or information from any node of a net-

work reaches the largest as possible number of remaining nodes. The main difference

with respect to epidemic models is that scientist are free to design the rules of the

dynamics in order to reach the desired result, instead of having to model an existing

process. Furthermore, in a number of applications, such as peer-to-peer file sharing

systems and grid computing built on top of the Internet, the connectivity distribution

of the nodes can also be changed dynamically in order to maximize the performance

of such protocols. The standard rumor model is the so-called DK model, proposed

several decades ago by Daley and Kendal [35]. The basic DK rumor model is defined

as follows. Each of the n elements of the network can be in one of three possible

states. Following the original terminology, these three classes correspond to ignorant

(denoted by I), spreader (S) and stifler (R) nodes. Ignorants are those individuals

who have not heard the rumor and hence they are susceptible to be informed.

The second class comprises active individuals that are spreading the rumor. In

the end, stiflers are those who know the rumor but that are no longer spreading it.

The spreading take place in a social network (virtual or real) by pair-wise contacts

between spreaders and other people. In case a spreader meets an ignorant, the latter

become a spreader whereas he meets another spreader, this one might decide not to

tell the rumor anymore, therefore becoming a stifler.
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Chapter 3

Multidimensional analysis of

networks

Real world dynamical complex networks are non linear systems. This means that

the full set of elements that interact pairwise (even in a trivial way) will result in

a behavior that is often unpredictable. Moreover, an aspect frequently neglected is

that these systems evolve along many informational axes. The two most important

and not completely explored are spatial and temporal. The first one is crucial because

all networks such as protein-to-protein networks, brain network[41], transportation

networks[54][34], social networks[24], power grids[110], the Internet at Autonomous

System (AS), companies network [25], etc are all embedded in Euclidean space, and

most interestingly, the space variable itself constraints the natural evolution. This

work is also justified by the fact that the space dimension is frequently underesti-

mated in the studies of complex systems. Conversely, when added as an evaluation

parameter, could help to characterize how it triggers environment changes. Moreover,

the second axis though which a network could change its structure (expand, shrink

or die) is time. Different models of network growth can result in faster or slower

time evolution of the whole system, so understanding how to accomplish the best

connection pattern is crucial in the context of complex systems. The mix of these two

dimensions, time and space, defines completely a network evolution (see figure 3.1).

In order to understand how these dimensions influence the complex systems as a

whole, it is fundamental to focus on them singularly. The intent of our novel multi-

dimensional analysis is to fix one of the two dimensions alternatively, and investigate

how the variation of the other drives changes in the network behavior (as is usually

done with experiments that involve multi parameters functions).

43
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Figure 3.1: High level overview of multidimensional analysis on complex networks. The graph

at the bottom of the panel evolves over time. The leftmost graph represent an hypothetical

snapshot of a graph at time t0 whereas on the rightmost the one at mature state. At every

time step, the graph could also evolve along spatial axes (x and y, vertically in this sketch)

by tuning the fuzziness f parameter that indicates the level of abstraction.

By keeping fixed the time dimension, and varying nodes’ Euclidean coordinates,

we focus our attention to spatial characterization of networks shedding light on how

this can alter statistical measures of the graphs under study. In particular, we defined

spatial characterization in terms of abstraction levels: we call this novel framework

telescopic as it recalls the ability of magnifying and reducing lens. The parameter

that accomplish for the capability of distinguish elements of the graph is the fuzziness.

The more a graph is close to the point of view (low fuzziness), the more precise the

connectivity and nodes will be. Conversely, the far it is the more imprecise and

unclear the structure will become (high fuzziness). The family of graphs calculated at

different resolution granularities forms the so-called telescopic spectrum. To the best

of our knowledge, this is the first work that attempts to study spatial network in this

way.

Through this line of research we were able to verify that statistical quantities

depends strongly on the granularity (i.e., the detail level) with which a system is de-

scribed and on the class of networks considered (for instance differences were detected

by examining exponential and small world scale-free networks). We made simulations

using two types of complex networks: rapid mass transportation systems (such as

subways and airline) and on line social-based networks. Chapter § 4 is devoted to

formalize this new analysis and reports on results obtained.
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The second informative axis that our multidimensional analysis deals with is the

temporal one. We fixed nodes’ coordinates and study the network evolution as a

function of time. In particular, our goal is to detect new instincts that trigger on line

social systems utilization and spread the adoption of novel communities. To do so,

we need to make assumptions on individuals’ evolution on a social system. The order

with which the nodes and edges are added into the network and the strength with

which some nodes could acquire new connections (compared to the average) defines

different temporal evolutions.

The most simple and straightforward growth model proposed was the one that

randomly choose the edges that will join the network. Although many studies demon-

strated that it is far from being realistic, this model still remains useful as a baseline

on the experiments. Furthermore, we employed other classical growth models that are

based on preferential attachment and on triadic closure respectively [6]. The first one

(aristocratic rule) proposed as a natural model of scale-free networks, is characterized

by older nodes that are more likely to acquire new links compared to the new ones.

The so-called triadic closure (social rule) approach is based on an empirical observa-

tion, typically present in social networks, by which two friends of a person are more

likely to know each other compared to two randomly chosen persons. In other than

social networks, triadic closure is still present and forms the basis of local clustering.

The identification of new important instincts is accomplished by using special

nodes, called “sirens”, that help to spread users’ adoption of social systems. Their

importance stems from the ability of attract new links and consequently to construct

an efficient connection pattern.

The use of additional nodes implies to consider also the dynamics of the sirens. We

assumed that is independent of normal nodes because the true mission of these nodes’

classes should be different. For simplicity of treatment, we decided to use similar rules

to that of normal nodes, namely random, aristocratic and social. The simulation

process starts with empty networks and iteratively adds links to both sirens’ and

individuals’ subnetworks until a time threshold is exceeded (for the sirens’) and until

the original network is obtained (for normal nodes).

We applied the previous network growth principles to two important on line com-

munities, VirtualTourist and Communities, and we verified the effectiveness of using

these special nodes as a mean of increasing individuals’ network engagement. To the

best of our knowledge, this is the first attempt to quantitatively explore and formal-

ize the spreading in the adoption in such a way. Details on this novel approach and

reports on results are described in chapter § 5.
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Chapter 4

The space dimension

As introduced in the previous chapter, multidimensional analysis consist of studying

how networks evolve along the two most important informative axes, time and space.

In order to attain this goal, we fixed one axis at time and see how the other one

influence the overall behavior of the system.

This chapter is devoted to depict how space influences local and global properties

of networks (so without considering growth over time) and in particular we study an

important but far underestimated problem connected to the spatial property of many

networks: the level of detail. Network modeling abstracts from a real system, and

such abstraction can be modeled in several ways. Upside down, some real systems

are, for various reasons, just too difficult to determine in a totally precise way, and so

an apparently correct network modeling could just be a bad approximation.

Because of that, our intent was to propose a new spatial analysis that is able to ar-

bitrarily model a network under different levels of abstraction by spatial modifications

of nodes’ coordinates and by reconstructing the network connectivity at a specific ab-

straction values. Doing so, we will be able to study, within the same framework, the

effects of abstraction (space informative axis) in the study of complex networks.

In particular, we investigate the variations of the statistical properties not only

when the network detail is high (the so-called “micro” view) or low (“macro” view),

but also in between these two extremes. The final questions that we would able to

answer are the following: Are the results of the static analysis that network scientists

proposed in the last years dependent on specific detail levels? Which property is

stable and which is not? In other words, what are the properties that are safe to

consider when abstracting networks? Which topological structures better preserves

system attributes?

47
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By stability, in our framework, we mean that the variation of properties’ values

in the spectrum is small compared to the values reported at the two extremes (i.e.

when the detail level is finer or coarser). Finding that many properties are unstable

for a network during the abstraction process is clear evidence that a single detail level

analysis could suffer from incompleteness and results will be consequently dependent

on the granularity selected.

The algorithm (that we call telescopic) is inspired from the ability of human eyes

to distinguish two points when placed at some distance from an observer. In this

metaphor, the observation object is a graph and the points are nodes. The networks

reconstruction is accomplished by tuning the distance parameter f (called equivalently

fuzziness, detail or granularity level) in order to virtually place a graph far or close

to a fixed point of view. Small f (f → 0) yields clear networks with finer detail level,

while big f (f → 1) results in obfuscated networks, reassembling the abstraction

process (see figure 4.1).

Our algorithm handles weighted and undirected graphs. It uses latitude and lon-

gitude nodes’ coordinates and links information gathered from many databases that

recently became freely accessible thanks to institutions, governments and companies

that understood the benefit of open data.

We applied our framework to a number of networks, both real world networks

(such as rapid transportation systems like subways, airline, and social-based networks)

and synthetic. Indeed, we show how this novel analysis could provide great insights

on what changes a network modeling bears with respect to the real system, and

correspondingly on what part of network analysis, in our view, is unsafe under certain

modelings.

Figure 4.1: Example of multidimensional analysis by keeping fixed the time dimension and

increasing (abstraction) fuzziness f . When f = 0, no abstraction is applied whereas at

increasing values of f , the network will be more obfuscated and the structure will be simpler.

In the extreme situation when f is maximum, f = 1 (not displayed in the figure), the original

network will be collapsed into a one node graph.



4.1. RELATED WORK 49

4.1 Related work

Telescopic analysis is a novel technique of network analysis and because of that lit-

erature on this argument is lacking. The only topics that might have some analogies

with our spatial abstraction are box covering and coarse graining of complex networks.

Coarse graining, is the process that reduces the size of a network by preserving the

most representative properties at the cost of throwing away some finer details of the

system. Coarse graining is useful because of the computational impracticability of

analyzing systems with a huge number of elements and, sometimes, from a statistical

point of view, it is not even required to completely map an entire network with fine

detail level [63].

One of the first method proposed by Song et al.[97] to coarse grain a network is the

box-counting technique. The underlying ideas go back to the work about fractals and

self-similarity under a renormalization procedure [72][106]. Since fractal’s structure is

similar no matter what length scale you choose, box-counting try to group together

system units into boxes whose dimension determine the length scale at which the

system is observed. The box covering procedure involves many steps of merging

nodes until the network will collapse into one single vertex.

Figure 4.2: Two different covering examples of a graph with l = 2 [97].

For example, in figure 4.2 are represented two covering instances of a graph with

eight nodes. Each box contains vertices whose distance (defined as shortest path

length) is smaller than l = 2. The number of boxes NB and the distance l are related

as follow:

NB ∝ l−d

with d the fractal dimension of the system. Box-counting and telescopic analyses share

some common characteristics since they both group together nodes with different

granularities. However, our analysis differs in the following points:



50 CHAPTER 4. THE SPACE DIMENSION

• The telescopic approach considers real nodes’ Euclidean positions whereas box-

counting technique uses only topological structure of the networks, throwing

away useful information that come with spatial dimension of the vertices.

• In box counting, the number of boxes NB varies according to length and fractal

dimension. Vice versa, in the telescopic approach, the number of nodes belong-

ing to boxes is not bounded: it depends on the spatial distribution of the nodes

on the plane and on the fuzziness value. The maximum number of boxes is

upper bounded and is inversely proportional to the fuzziness value (this concept

will be extensively described in section § 4.2).

• Box covering and telescopic analysis differ in the way they consider input and

output graphs. In the former, output and input graphs are the same, in the

sense that the input graph corresponds to the output of the previous step.

Conversely, in the latter, the same graph is provided as input but different

abstraction parameters will be applied at every step.

Since Song’s approach considered systems that are not embedded in Euclidean

space, Kim [63] proposed a modification of the previous coarse graining process that

deals with spatial networks. In particular, he studied the brain network formed by

cubic cells (voxel) [3] linked by edges representing correlation in the activity of two

partition of the brain. Indeed, he assessed how network properties like degree expo-

nent, the clustering property, the assortativity and the hierarchical structure varies

by repeatedly applying coarse graining.

Figure 4.3: Spatial coarse graining method for a two voxels formed by 2×2 nodes each. Two

voxels will be connected in the output graph if there exist at least one edge between the two

boxes. The number of crossing edges will be expressed by the edge weight.

The coarse graining process is exemplified in the figure 4.3, in which 2× 2 neigh-

bor square boxes are merged together and the number of edge crossing the boxes is

reflected in the edge weight of the resulting graph. Kim’s work represents a spatial
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analysis of a complex network. However, his work is strongly different from ours in

the following points:

• In the telescopic approach, the box dimension in the Euclidean space is not fixed

and it is correlated to the spatial parameter f . This means that the number of

nodes in a single box is variable and depends on the spatial distribution of the

vertices across the plane.

• Our approach consider weights as real distances between vertexes whereas in

Kim’s, weights represent the number of crossing edges between voxels.

• We do not remove edges to avoid the creation of complete networks as Kim did.

• The overall functional behavior of the (brain) network that Kim consider in his

paper is fundamentally different from ours. In fact, he do not consider actual

path of voxels through which biochemical signal transfers.

• We repeatedly coarse grain networks by starting from the same graph but using

different fuzziness values indicating the level of abstraction applied. Conversely,

Kim’s approach is similar to the original work of Song et al.[97] in which the

output’s graph at step t is used as input at the t+ 1 iteration.

4.2 Telescopic Algorithm

The aim of this section is (i) to describe our new analysis, which is called telescopic,

that is capable of abstracting networks at various granularities and (ii) to assess

whether statistical properties are affected by the multidimensional network analysis

itself. We start by describing how the telescopic algorithm works, the phases that

is composed by and subsequently present the dataset we used, describing statistical

attributes of those networks.

Telescopic analysis is a technique that resemble from resolution power of human

eyes, i.e., the ability to distinguish two points when placed at some distance from

an observer. In this way, the distance corresponds to the level of fuzziness perceived

by an observer, the more an object is far away from the viewer the more obfuscated

will be. The observation objects in our context are networks and nodes are points

in the human eyes resolution power metaphor. For instance, networks that are close

to a virtual observer are clearly distinguishable and therefore are characterized by a

finer level of details. Conversely, in networks far away from the point of view, the

nodes will be obfuscated and the overall structure will be simpler than the original

one (abstraction process). In the rest of this chapter, we indistinctly use fuzziness,
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distance, details or resolution level as synonyms of granularity with which a network

has been described.

The networks we consider are defined as weighted and undirected graphs G =

(V,E,C). For simplicity, we assume that the latitude and longitude coordinates of

the nodes (xi,yi)i=1,···n (see section § 2.1), are normalized in [0, 1]. Edge weights are

real normalized distances between nodes.

More precisely, we define the telescopic function as t : (G× f)→ G′ that takes a

graph G and a value of fuzziness f as parameters and return an abstracted graph G′.

In this way, by applying repeatedly the function t with different value of f we obtain an

abstraction spectrum that is formed by a family of networks FG = {G1, G2, . . . , Gk}
where Gi = t(G, fi), k sets the spectrum resolution and fi is the fuzziness value of

the ith step. A small value of fi leads to clear view of networks and thus the resulting

graphs Gi will have the finer detail level. Conversely, when fi is big (f → 1) the

view will be obfuscated and in the limit when fi = 1 only one node will belong to the

outcome network.

Network abstraction is accomplished by two distinct phases. The first one deals

with creating nodes in Gi while the second defines the topological structure. Intu-

itively, nodes in Gi are the result of collapsing nodes in G that are close each other,

hence not clearly distinguishable from an observer. The number of nodes that has to

be collapsed obviously depends on f and on their spatial distribution on the plane.

(a) (b)

Figure 4.4: One-step application of the abstraction process to a small graph. (a) Original

graph G. Red (dashed) circles identify the group of nodes that will be merged together.

(b) Output graph Gi in which nodes c, f, e, h, l and n,m are collapsed into new nodes

e, c, h ∈ Vi respectively. Coordinates are the barycenter of collapsed nodes. Three edges are

then removed because they connect the collapsed nodes: (n,m), (c, e), and (f, e).

More technically, the process by which nodes in Gi are created is based on placing

a virtual grid on top of G (see figure 4.4). This grid is formed by a set of square boxes
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whose spatial dimensions corresponds to the fuzziness f (see figure and 4.5). Since we

assumed that 0 ≤ f ≤ 1 and coordinates 0 ≤ xi, yi ≤ 1, the total number of square

boxes will be NB = f−2.

Figure 4.5: Example of grids applied on top of networks as a function of fuzziness. Leftmost

grid has low fuzziness f = 0.125 whereas the rightmost has f = 1. The granularity of the

spectrum in this example is equal to 7. In this Thesis, we only consider linear increase of f .

All nodes of G that belong to the same square cell are collapsed into a new node in

Gi and new coordinates will be the barycenter of the collapsed nodes. The maximum

number of nodes in Gi with fuzziness f is bounded to |Vi|f ≤ f−2 (maximum one

node per box). This procedure aims at grouping nodes that are far by almost f units

(eventually f
√
2 if the two points are at the extremes of the diagonal). However, the

limitation of this algorithm is that not all nodes that are close each other by almost

f units will be collapsed. This circumstance occurs when the grid fall in between

neighbors’ nodes as figure 4.6(a) shows. For figuring out this issue, we applied a

random grid shift that attenuates the bias introduced by grid displacement (see results

in § 4.3) and take averaged results of the statistical properties considered.

(a) (b)

Figure 4.6: Grid displacement issue when the distance between two nodes is less than fuzzi-

ness value. Wrong (a) and correct (b) grid displacement.

In the second phase, once vertices of Gi are defined, we re-establish the network

connectivity. Here we adopt the most straightforward rule that preserves network

structure: if two clusters of collapsed nodes of G are connected by at least one path,

then in Gi the two representative nodes will be connected. Let’s define this concept

in more detail using the notation presented above. Let Γi a set of nodes that belongs

to box i and

gij = {(k,m) ∈ E | k ∈ Γi, m ∈ Γj with i 6= j}

a set of edges whose source and target nodes belong to i and j box respectively. An



54 CHAPTER 4. THE SPACE DIMENSION

edge (u, v) ∈ Ei ⇔ |guv| > 0.

Figure 4.7 shows an example of application of telescopic analysis to Boston and

New York subway networks.

4.3 Experimental Results

In this section, we report our experimental analysis. The telescopic algorithm was

implemented as a C module and used in a Python script. All the experiments were

conducted on three Linux machines equipped with i5 Intel processors at 3.2 Ghz and

8Gb of RAM.

4.3.1 Datasets

We conducted experiments on several datasets: rapid transportation networks,

on line social networks and synthetic random networks. We decided to consider

subway networks because they are a fundamental element of mass transportation in

urban areas and important means of cost reduction in transportation. Indeed, in

the literature there exist some great network studies [94][32][66] that characterized

the most important subway networks. The networks we used in our experiments are

Paris Métro, Milan Metropolitana, New York and Boston Subways (see figure 4.8).

Paris Métro, one of the densest and busiest networks in the world, has sixteen lines

and the first line opened in 1900. It has 295 stations connected by 346 rail connections.

Milan Metropolitana, the smallest subway network we will consider, but the biggest

rapid transit system in Italy, opened in 1964, has 81 stations and 80 rail connections.

New York subway is the most extensive rapid transportation system in the world by

number of stations. It has 487 stations and 439 connections and opened in 1904.

Finally, Boston subway consisting of 124 stations and 125 connections had the first

subway line opened in the United States in 1897.

Each node stands for a station, edges for direct railway connection between sta-

tions. Networks are created collecting latitude and longitude coordinates about sta-

tions locations and converting them into x, y coordinates using Miller cylindrical pro-

jection [77] (Mercator projection might be another technique to use). We finally

normalize them in such a way every couple (xi, yi) ∈ [0, 1]. We also consider the US

airline transportation system in which nodes represent airports and edges are non-stop

flights. The US airline network has 235 airports and 1296 non-stop flights. Datasets

of transportation networks are freely available on the net.
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Figure 4.7: How Boston (leftmost panels) and New York (rightmost panels) subway networks

vary according to spatial informative axis at increasing values of fuzziness. From the panel,

it is clear that the spatial structure of the system remain unchanged in the first steps of the

abstraction process.
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(a) (b)

(c) (d)

Figure 4.8: Maps of the subway networks we will consider in this Thesis: New York City (a),

Paris (b), Boston (c) and Milan (d) ordered by number of stations.
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To investigate the effect of this novel analysis to other than transportation net-

works, we also consider on line social networks. In particular, we use VirtualTourist[2]

dataset. VirtualTourist (in the following abbreviated as VT) is an on-line tourist guide

in which users share their travel experiences, suggest and review hotels, write com-

ments and opinions on VT forums, find a place to visit, share photos and videos: it

is a community of people that love traveling around the world. Users can meet new

people and create a network of virtual friendships, like in many other social networks.

We explored the VirtualTourist social network through web crawling [44] all the

publicly available profiles, and for each anonymized user we collected the following

attributes: gender, birth date, subscription date and living location. We filter out

users with empty location or unreliable fields (for example those whose format is not

compliant).

Since VT locations span more than 150 countries, we decided to consider only

those countries with the highest number of users such as Australia, the Netherlands,

India, the United Kingdom and Italy and analyze them individually, leaving for future

work the analysis of the whole worldwide dataset.

(a) (b)

Figure 4.9: Example of city-based networks created from VirtualTourist on line community

of Australia and India users. Lines (yellow) represent edges of the network connecting cities

that share at least one friend.

Applying the telescopic algorithm to these networks may induce an unexpected

increase in the number of collapsed nodes starting immediately at small values of

f . This is caused by the presence of many users at the same location (for example

when they live in big cities). In order to overcome this issue, we decided to transform

these on line social networks into city-based networks, where nodes stands for cities
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(a) (b)

Figure 4.10: Example of city-based networks created from VirtualTourist on line community

of Italy and the Netherlands users. Lines (yellow) represent edges of the network connecting

cities that share at least one friend.

(in which lives at least one VT user) and links express friendship relations between

users of those cities. These networks now describe friendship relations at the level

of cities instead of the users. The GPS coordinates of the cities were gathered from

Geonames open source web service[1] and edge weights will be the Euclidean normal-

ized distance between cities (see figure 4.9 and 4.10). As the time of gathering data,

Italy network has 85 cities and 270 social ties, Australia has 76 cities and 183 links,

the Netherlands has 106 cities and 340 edges, India has 46 cities and 81 edges and

finally the United Kingdom has 446 cities and 1322 social ties. Both transportation

and city-based networks are undirected because people can move either in both di-

rections of the transportation line and friendships relations in VT are bidirectional.

Table 4.1 reports statistics of the datasets we used in this section of the Thesis. We

calculated the most important statistical properties such as the number of nodes n,

edges m, maximum degree kmax, average degree 〈k〉, standard deviation of the degree

σk, degree correlation ρ, diameters, local and global efficiencies and costs (see § 2.1.1
for the definitions). We indeed reported (table 4.2) on the same statistical quantities

for randomized transportation and social-based networks.

Among these datasets, subway networks are not scale-free nor small-world because

the diameter Dt do not scale as log(n), the average shortest path L is high, the

clustering coefficient is low (like in random networks) and efficiency is also low (see

table 4.1 and classification [11]). On average, these networks have low degree nodes,

i.e. the majority of stations are not interchange points where user can switch to
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Boston Milan New York Paris US airline Social IT Social AU Social NL Social IN Social UK

n 124 80 439 295 235 85 76 106 46 446

m 125 81 487 346 1296 270 183 340 81 1322

kmax 4 4 8 8 130 40 31 28 22 188

〈k〉 2.02 2.03 2.22 2.35 11.03 6.35 4.82 6.42 3.52 5.93

σk 0.54 0.57 0.81 1.06 17.98 7.82 6.81 7.68 4.71 12.66

ρ 0.32 -0.08 0.14 -0.07 -0.36 -0.26 -0.43 -0.07 -0.44 -0.19

Dt 43 34 68 38 4 5 5 6 6 7

Dp 1.08 1.12 1.15 1.17 1.26 1.08 1.01 1.07 1.00 1.07

Dm 1.54 1.47 1.93 1.36 1.86 2.00 2.47 2.29 2.16 2.11

Et
glob 0.11 0.14 0.07 0.11 0.46 0.41 0.41 0.36 0.44 0.34

Em
glob 0.65 0.76 0.62 0.75 0.65 0.49 0.52 0.44 0.65 0.45

Et
loc 5.38×−03 0.00e+00 3.17e-02 2.00e-02 6.97e-01 4.19e-01 4.50e-01 3.66e-01 2.64e-01 2.80e-01

Em
loc 9.60e-05 0.00e+00 1.90e-03 8.83e-04 1.36e-01 7.62e-02 6.03e-02 8.09e-02 5.61e-02 4.81e-02

Ct 1.64e-02 2.56e-02 5.07e-03 7.98e-03 4.71e-02 7.56e-02 6.42e-02 6.11e-02 7.83e-02 1.33e-02

Cm 1.89e-03 3.19e-03 3.63e-04 7.96e-04 3.46e-02 5.53e-02 5.58e-02 5.43e-02 6.27e-02 1.15e-02

Ct/Et 1.50e-01 1.80e-01 6.00e-02 7.00e-02 1.00e-01 1.80e-01 1.50e-01 1.60e-01 1.70e-01 3.00e-02

Cm/Em 0.00e+00 0.00e+00 0.00e+00 0.00e+00 5.00e-02 1.10e-01 1.00e-01 1.20e-01 9.00e-02 2.00e-02

Table 4.1: Datasets statistics of subways, the US airline and city-based social networks: number of nodes n and edges m of the graphs,

maximum degree kmax and average node degree 〈k〉, standard deviation of the degree σk, assortativity mixing by degree ρ, physical,

topological and metrical diameter, global and local efficiency Eglob, Eloc, costs and C/E property (defined as the ratio between cost

and global efficiency). Both topological and metrical versions are calculated of the latter three indicators.
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Rnd: Boston Milan New York Paris US airline Social IT Social AU Social NL Social IN Social UK

n 124 80 439 295 235 85 76 106 46 446

m 125 81 487 346 1296 270 183 340 81 1322

kmax 6.95 5.85 7.45 7.65 20.80 13.25 10.30 13.75 7.80 14.55

〈k〉 2.02 2.03 2.22 2.35 11.03 6.35 4.82 6.42 3.52 5.93

σk 1.45 1.38 1.46 1.51 3.22 2.53 2.11 2.55 1.77 2.40

ρ -0.05 -0.04 -0.01 -0.04 -0.00 -0.02 -0.01 -0.04 -0.03 -0.00

Dt 13.55 13.05 16.60 14.55 4.10 4.90 5.80 5.15 6.50 7.00

Dp 1.28 1.24 1.35 1.33 1.32 1.26 1.25 1.28 1.21 1.35

Dm 6.97 6.68 9.03 7.78 1.89 2.36 2.97 2.58 3.32 3.57

Et
glob 0.14 0.16 0.12 0.14 0.43 0.43 0.39 0.41 0.38 0.30

Em
glob 0.11 0.13 0.09 0.11 0.44 0.41 0.34 0.39 0.32 0.26

Ct 0.02 0.03 0.01 0.01 0.05 0.08 0.06 0.06 0.08 0.01

Cm 0.02 0.03 0.01 0.01 0.05 0.08 0.07 0.06 0.08 0.01

Ct/Et 0.11 0.15 0.04 0.05 0.11 0.17 0.16 0.14 0.20 0.04

Cm/Em 0.14 0.19 0.05 0.07 0.10 0.18 0.19 0.15 0.24 0.05

Table 4.2: Statistical properties of randomized transportation and city-based networks. The perturbation that is applied consists of

placing nodes in random positions and rewiring edges randomly. n and m corresponds to the number of nodes and edges of the graph,

kmax, 〈k〉 to the maximum and average node degree, σk to the standard deviation of the degree, ρ to the assortativity by degree, Dp, Dt

and Dm to the physical, topological and metrical diameter respectively, Et and Em to the global efficiency (topological and metrical)

and finally Ct and Cm to the topological and metrical costs. C/E property is the ratio between cost and efficiency (topological and

metrical versions are considered).
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other lines. The maximum degree is 4, or 8 for the biggest subways (they can not

be considered hubs as in scale-free networks though) and they are assortative or

eventually uncorrelated. However, by considering weighted version of the networks,

we found that subways are very efficient both locally and globally (Em
glob > 0.65). This

observation is also confirmed by previous studies [66] [32] in which authors tested small

world property on Boston and worldwide subways.

On the other hand, city-based and the US airline transportation networks have

a different connection pattern. We found that two randomly nodes are connected

by means of less than ten edges and the clustering coefficient is high compared to

the randomized versions (see table 4.2). kmax and σk are high compared to subway

networks and the degree distributions all displays long right tails (see figure 4.11

letter e to j) that is evidence for the presence of hubs. Indeed, high efficiency and low

diameter are detected. On average, high degree nodes tend to be connected to low

degree nodes (ρ is always negative) like in technological, neural and protein-to-protein

interactions networks[84]. These systems could be classified as small world scale-free

[31].

In addition to the transportation and city-based networks presented above, we

also consider artificial random networks (null models). These systems are created by

starting with the original network and randomize it through the iteration of same

fundamental rewiring move that alters the topology or by applying perturbation on

nodes’ positions but keeping fixed the number of nodes and edges. We considered sep-

arately random perturbation on nodes position and connectivity in order to clearly

distinguish two randomness effects on telescopic analysis. Moreover, we studied an-

other important connectivity manipulation based on rewiring the edges in a way that

the final topological structure results in a scale-free pattern (see section 4.4).
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Figure 4.11: The log-log plots of the cumulative degree distributions Pcum(k) of subways

(Boston, Milan, New York, Paris, a to d), the US airline (e) and city-based social networks

(letter f to j) of Italy, Australia, The Netherlands, India and the United Kingdom. The

distributions are characterized by exponents γ of P (k) ∼ k−γ that is one plus the slope of

Pcum(k) (in a log-log plot), i.e. γ = 1+γcum. The coefficient is γ = 3.5 for subways networks,

2.6 for the US airline, 1.85 for Indian city-based social network, 1.68 for the United Kingdom,

2.61 for Italy, 1.94 for Australia and 1.61 for the Netherlands. The coefficients for subways

might not be precise due to the small dimension of the networks.
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4.3.2 Results

In this section, we report on results obtained by applying the telescopic framework

to real world and artificial networks and we show how this novel approach based

on modifications of spatial axis on complex systems is effectively a robust tool that

precisely describes networks at different detail levels. A key feature of our study was

to compare the results with null models in order to investigate the role played by

topological structure and by nodes’ positions (in conjunction and separately).

In all the experiments we made in this Thesis, we randomly shift 104 times the

position of the square boxes to limit the bias in the grid displacement (the entire set

of boxes will be shifted, not the single boxes individually, see section § 4.2) and we

finally take averaged results.

The telescopic process creates a family of graphs FG = {G1, G2, . . . , Gk} where

Gi = t(G, fi), i = 1, . . . k. We selected k = 100 as the granularity of the telescopic

spectrum therefore the fuzziness will be increased (linearly) by 0.01 units at each step.

The telescopic process we are describing starts at low values of fuzziness (i.e., finer

detail level) and by aggregating nodes together at every step, it generates networks

that are more and more abstracted. This means that the networks given as input

to the telescopic algorithm must have a high detail level. Since it is not possible to

gather networks with arbitrary detail level, we decided to use as inputs the networks

presented in section § 4.3.1. This choice not necessarily limits the challenges of the

abstraction analysis we presented. Instead, we focused on the subset of the spectrum

that starts as the same detail level of the networks used.

In the plots that follow, as a matter of clarity, we decided not to consider the most

abstracted networks (at f = 1) since it contains only one node and consequently the

metrics will get trivial results. Furthermore, some plots contain relative quantities.

This means that the value obtained with fuzziness f , say vf , will be divided by vf=0,

that is, the value obtained with no abstraction at all. This helps to depict the increase

or decrease relative to the baseline.

Figure 4.12 shows how nodes and edges are merged together as a function of

fuzziness f . It is interesting to note that the overall behavior of collapsing nodes

and edges is similar over the same type of network (transportation and city-based

networks). However, the rate with which vertices and links are merged depends on

several factors such as the size of the system (instead of the history), the physical

position and the structure of the network itself. Bigger networks, for instance New

York or Paris have a faster merging rate.

Figure 4.13 shows how diameters metrics vary as a function of fuzziness f . The

three versions of these statistical quantities accounts for three different characteristic
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Figure 4.12: Number of collapsed nodes n and edges m as a function of f in log-log axes.

The values are normalized by the baseline values n(0) and m(0) respectively, obtained at

f = 0 (i.e., no abstraction applied). The leftmost panels refers to subway networks whereas

the rightmost refers city-based and the US airline networks. The decrease of n and m is

clearly exponential, even though the rate is influenced by many factors like network size and

nodes’ positions.
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of the networks: (i) the maximum physical extension of nodes in a 1× 1 unit square

box, (ii) the maximum topological extension on the shortest path and (iii) the max-

imum metrical extension on the shortest weighted path. The first one, as expected,

decreases linearly, mainly because of the linear increase of the fuzziness. The second

one decreases exponentially and this is evidence that the telescopic process creates

the right shortcuts links that decrease faster the diameter.
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Figure 4.13: Effect of the telescopic abstraction for the physical Dp, topological Dt and

metrical Dm diameter as a function of fuzziness f . All the values were normalized by the

baseline values at f = 0 (i.e., no abstraction is applied). The top panels contain results of

subways, the bottom ones of city-based and the US airline networks.

Figure 4.14 shows the effect of the telescopic abstraction on kmax, 〈k〉 and standard

deviation of the degree. The explanation of the observed behavior is not so trivial

even though a couple of observations can be made. First, we note a clear distinction

on result between the two types of networks (first and second row). For instance, in

subway networks, kmax decrease almost linearly and a joint observation that takes

into account both 〈k〉 and σk suggests that telescopic analysis triggers an increase of

the average degree (even though this is not necessarily evidence that in some part

of the telescopic spectrum, the analysis produces networks with hubs). Conversely,

in city based and the US airline networks (bottom panels), the effect of abstraction

on the degree is more prominent. Where in subways the decrease on relative kmax
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were almost linear, in these networks the rate with which maximum degree decrease

is exponential. This is mostly caused by the presence of hubs that will be collapsed

almost immediately as fuzziness f increases.
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Figure 4.14: Effect of the telescopic analysis on the degree: maximum degree kmax (leftmost

column), mean degree 〈k〉 (centermost column) and standard deviation σk (rightmost col-

umn) for subways (top panels), the US airline and social-based networks (bottom panels).

All values were normalized relatively to the baseline value at f = 0 (where no abstrac-

tion is applied). The explanation of the results obtained is not so trivial. In general, the

degree properties of the networks will be drastically modified as fuzziness increases. The

degree tend to decrease linearly in subway networks whereas in airline and social-based the

telescopic effect results in an exponential decrease.

Degree correlations knn on (unweighted) networks measure the level of interdepen-

dence between nodes. From table 4.1 we identified two different connection pattern

as we consider subways or city-based and the US airline. The first class of networks

is neutral whereas the second one is negatively correlated (that is, nodes with high

degree link to small degree nodes). Figure 4.15 summarize the degree correlations in

the telescopic spectrum. We note that the abstraction process yields disassortative

correlation at high values of fuzziness regardless of the network considered. As a

consequence, the initial topological structure of subway networks will be significantly

changed toward a completely different configuration whereas city based and airline
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remain relatively stable in the entire spectrum (at least they remain disassortative).
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Figure 4.15: Impact of the telescopic analysis on degree correlations ρ as a function of f

for subway networks (left panel), the US airline and city-based networks (right panel). It

is worth noting that the telescopic process yields disassortative networks regardless of the

network. This means that in subways, the topological structure will be drastically changed

whereas in the other networks the degree correlation tends to remain stable (at least will

have the same sign).

Figure 4.16 shows how global efficiency Eglob is influenced by the granularity level

with which a network is described. In particular, metrical and topological versions

are considered. One of the aims of this study is to verify whether the detail scale with

which networks are described affects network efficiency. Different observations can

be made for topological and metrical quantities. Firstly, we clearly note (top panels)

that the efficiency is strongly influenced by the current fuzziness value, regardless

of the networks considered. In particular, at micro level (that is, when the network

structure is highly detailed) the efficiency is smaller compared to the macro level. This

is an important element suggesting that the abstraction process is effectively a useful

methodology to simplify a system (in fact the number of nodes and edges decrease,

see figure 4.12) by selecting the substructure of the network that works best and that

is most efficient. One element that distinguishes the two different types of networks is

the connection pattern, reflected at micro level. We clearly note that as the fuzziness

increases the two classes of networks tend to gradually be similar, smoothing away

the initial differences.

Secondly, we notice how metrical Eglob of subways networks (bottom left panel) is

reasonable stable over telescopic spectrum meaning that metrical features will be pre-

served during the abstraction process. However, this finding holds only in exponential

networks like subways where the metrical element plays an important role during net-
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work creation and evolution. Conversely, in networks embedded in Euclidean space

but where physical constraints on edges are relaxed (like in the US airline and cities-

based networks, right panels) the Eglob (both topological and metrical) is not universal

in the spectrum and again strongly depends on fuzziness.

Generally speaking, this finding is evidence that under our telescopic hypothesis,

results of analysis on scale-free small-world networks to date, refers only to a specific

resolution level (fuzziness) and can not be considered as general results.
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Figure 4.16: Effect of the telescopic process on subways (leftmost column), the US airline

and city-based networks (rightmost column) as a function of f . The statistical properties

considered in these panels are topological and metrical Eglob. The abstraction process does

not preserves the topological Eglob (top panels) while varying f . In particular, regardless of

the network considered, the networks viewed at macro level are simpler and more efficient

compared to micro view. Conversely, the situation is slightly different for metrical Eglob

(bottom panels). In this case, the connection pattern of the system considered alters signif-

icantly the outcome of the abstraction process. In fact, we detected that the structure of

subway networks allow a good preservation of the metrical efficiency in the spectrum whereas

in city-based networks this feature is absent.

Eglob is a quantity that accounts for the global system flowing of information along
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the paths of the networks. Conversely, with the formalization of the local efficiency

Eloc (see section § 2.1.1), it is possible to detect how efficiently a system exchange

information in the nodes’ neighborhood.

Figure 4.17 shows how the telescopic analysis affects local efficiency as a f in-

creases. At micro scale, we distinguish a completely different local connection pattern

between the two types of networks (when no abstraction is applied). In fact, we note

that subways are poorly connected locally because of the intrinsic physical and eco-

nomic constraints that govern growth. In the US airline and city based networks, that

are almost free from constraints (at least in the way nodes are linked), will have more

redundant edges that increase local efficiency.

We observe again that the overall behavior of the metric considered is strongly

influenced by the type of dataset involved. The main difference between the two

types are not in the order of magnitude with which Eloc increase (in fact in both

cases the quantity will raise) but instead in the detected behavior over the spectrum.

We noted that Eloc is much more stable in subway networks compared to airline and

city-based networks. This is probably caused by the characteristic of redundancy in

the topological structure that makes Eloc more variable in the telescopic spectrum.

Even though local and global quantities are essential to characterize a network, the

cost is another factor that has to be considered in order to get a better understanding

of the entire system. Figure 4.18 reveals how metrical and topological costs behave in

the telescopic spectrum. Regardless of the networks, we clearly see that as fuzziness

f increases, the overall network cost will raise.

Although it seems counterintuitive because abstracted, i.e. simple, networks

should be cheap, it is an expected effect because (as figures 4.16 and 4.17 show)

these are also very efficient and as such, very expensive. All the curves are mono-

tonically increasing functions, but subways result in smaller increase compared to

city-based networks. This represents evidence that these networks have an economic

inborn principle that is maintained also during the abstraction process.

Networks are defined as economic when they have low cost and high efficiency, i.e.

whenever the ratio C/E tends to zero. Figure 4.19 shows how this variable changes

in the telescopic spectrum. We clearly see that detailed networks are more economic

than coarse-grained ones.

Figure 4.20 shows how the degree distribution P (k) changes by increasing the

fuzziness of 0.1 units at each step. We find that when decreasing the detail level,

networks tend to lose their original topological structure and every node is likely to

have the same degree. Therefore, hubs disappear and they became like low degree

nodes. This is an expected result because it follows from the definition of network
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Figure 4.17: Effect of the telescopic analysis on topological and metrical Eloc as a function

of f in subways (leftmost panels), the US airline and city-based networks (rightmost panels).

The left most panels show that Eloc is almost stable in the spectrum meaning that the local

properties of the subway networks are preserved by the analysis. However, in networks with

heterogeneous topological structure, the telescopic process will further increase Eloc resulting

in creating systems that are densely connected at local level.
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Figure 4.18: Effect of the telescopic analysis on topological and metrical cost (ct and cm)

as a function of f for subways (leftmost column), the US airline and city-based networks

(rightmost column). We note that our coarse graining process produces networks more

expensive than detailed ones. This effect might be caused by the creation of redundant

structures in macro level systems so that the whole cost will be higher. Even though both

curves are positively correlated to f , the slope in subways networks is smaller compared to

city-based networks. To verify whether this effect is not trivially caused by a low efficiency

value, we will consider C/Eglob index (see figure 4.19).
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Figure 4.19: Effect of the telescopic analysis on topological and metrical normalized cost over

efficiency for subways (leftmost column), the US airline and city-based networks (rightmost

column). By dividing the cost of the networks by the global efficiency (that ranges between 0

and 1), we verified that subway networks are cheaper as well as very efficient, more than city

based networks. This is evidence that subway network have an economic inborn principle

that is maintained during the telescopic abstraction process.
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abstraction.
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Figure 4.20: Effect of the abstraction process on the degree distribution P (k) for increasing

values of fuzziness f for the Netherlands city-based network. We detected that the behavior

starts from a small world scale-free configuration and is ideally maintained for f < 0.11.

When f increases, it changes to uniform and finally to random (when f is maximum).
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4.4 Network perturbations

Here we report on the application of the telescopic algorithm to synthetic networks.

The null models were created by iteratively applying different perturbations to the

original real transportation and city-based networks presented in section 4.3.1. In

this way, we precisely characterized the effect of randomization on the perception of

networks at different abstraction levels. We proposed four variants of null models (for

simplicity identified by a plus sign and a letter), namely:

• +n: Denotes a perturbation that consist on randomizing nodes’ positions leav-

ing unalterated the degree distribution. However, edge weights will be altered

and will reflect the new Euclidean distance between nodes in the network.

• +a: This modification consists of randomly rewire the edges of the network

maintaining nodes’ real positions. As a consequence, the degree distribution

will not be preserved and edges weights will be modified accordingly to the new

distances between nodes.

• +r: This perturbation simply represent the union of the previous two alterations

and is useful in order to understand the joined effect of edges and nodes shuffling.

• +s: In this perturbation, we aim at changing the connection pattern of the

network, switching to a scale-free structure, but maintaining the spatial layout

of the nodes. There are many models for small-world scale-free network in

the literature. However, no one allows matching the exact same number of

nodes and edges of the referring networks. Therefore, we decided to use the

Barabási-Albert scale-free model [15] because it best approximates n = |V | and
m = |E| and because of its simplicity of setting up the parameters (i.e. starting

with the number of nodes m0, the number of links m that connect younger to

older nodes). The alteration in the network topological structure results in edge

weight modification though.

To limit the noise due to the randomness introduced by +r, +a and +n pertur-

bations, we repeated the shuffling process generating one hundred random networks.

Finally, averaged results are then considered. We first start by presenting the results

obtained for randomized Boston subway and Australia city-based social network. We

selected these two systems as the most representative of the two categories. However,

appendix A includes the results for the other networks omitted in this section.

Figure 4.21 shows how the number of nodes n and edges m varies as a function

of f and the type of perturbation selected for Boston subway (leftmost panels) and
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Figure 4.21: Number of collapsed nodes n and edges m as a function of f and applying

different perturbations. Curves are normalized by the baseline value obtained at f = 0.

Straight lines refer to telescopic analysis without perturbations (also identified by +Norm).

The leftmost column outlines results of Boston subway network whereas the rightmost col-

umn about Australia city-based social network (the other networks’ results are presented in

appendix A).
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Australia city-based network (rightmost panels). All the values were normalized by

n(0) and m(0) respectively, i.e. by the values at micro scale (at f = 0).

We note that the slopes of the curves are very similar regardless of the networks

considered, even tough the underlying structure and node positioning is very different.

Indeed, the panels allow us to understand the effect of the single perturbations on

the outcome of telescopic algorithm. In general, every alteration we considered slows

down the collapsing rate of nodes and edges (compared to the baseline, i.e., the straight

line). However, nodes’ shuffling (+n) and combined nodes-edges (+r) are the one that

mostly slow down the collapsing rate, leading to bigger y coefficient of the fitting k−y

curve from −1 to −1.5 (with f < 1). This is in accordance with the intuition that

scattered nodes are more likely to be distinguishable during the abstraction process

compared to a layout consisting of close elements. Similar effect was detected for

edges. In fact, long-range edges will be collapsed later in the abstraction process.

From the panel it is interesting to note that the alteration of the topological

structure (like with +a and +s) does not influence the collapsing pattern apart from

subway networks where homogeneous spatial distribution of edges has the same effect

of scattered nodes discussed above.

In figure 4.22 we show the maximum degree kmax, average degree 〈k〉 and standard

deviation σk for Boston subway and Australia city-based networks as a function of f

and perturbation rule selected. Although is far from trivial to explain the telescopic

effect on network degree, we can make an interesting observation though. The panels

show that both kmax and 〈k〉 increase for small value of f and, since the standard

deviation also increase, we conclude that at least in the initial part of the spectrum,

the abstraction process creates heterogeneous degree nodes. This effect is amplified

in subways where there are no hubs compared to city-based networks. However, it

deserves more research effort in order to assert that nodes with high degree produced

by the abstraction process are effectively hubs for the network (it might be useful to

look at the degree distribution) and affirm that the abstraction process might create

small world scale-free networks at the beginning of the telescopic spectrum.

We see in figure 4.23 how knn varies as a function of fuzziness, for +r, +n, +a,

+s null models. By focusing on the effect of perturbations on knn (i.e., the leftmost

points in the x axis) we note that almost all perturbations tend to shift the initial knn

toward neutral configurations. This behavior is due to the randomness introduced

into the system by the different null models that destroy degree correlation. +n,

as expected, is the only exception because as a perturbation, it leaves unchanged

the topological structure and alters the nodes’ positions only. Indeed, we see that

the abstracted networks created by the telescopic process will be disassortative (or
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Figure 4.22: Effect of the telescopic analysis on various degree based indexes: maximum

degree kmax, average degree 〈k〉 and standard deviation σk for Boston subway (top panels)

and Australia city-based network (bottom panels). As for previous panels, the discussion

of the results for the omitted networks, were presented in the appendix A. All curves are

normalized relatively to the baseline (i.e. the value at f = 0). The panel clearly shows

that the telescopic abstraction on random perturbed networks (+r, +n and +a) drastically

changes the connection pattern of the entire network.
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Figure 4.23: Assortative mixing by degree ρ as a function of fuzziness f for Boston subway

(leftmost panel) and Australia city-based network (rightmost panel). The randomization

introduced by the perturbation process (see the leftmost point on the x axis) makes disas-

sortative networks even at macro scale, regardless of the type of networks considered.

uncorrelated) regardless of the null model considered. This means that when networks

are assortative at micro scale, they will become disassortative at macro scale. Vice

versa, networks that start disassortative at micro scale (for instance, city-based or

airline) will keep the same structure at macro level as well.

Figure 4.24 shows how the networks computed by the null models are globally

perceived at micro/macro level in the context of the telescopic framework. We initially

focused on the starting points of the curves (leftmost part of the x axis) and compare

them with the baseline (starting points of the curve titled “Norm”). In this way

we were able to precisely quantify the effect of +r, +a, +n, +s respectively. Every

curve represents the results of the telescopic algorithm in which varying degree of

randomness are applied to the networks.

In general, we note that after going beyond a certain fuzziness threshold, the

alteration produced by the perturbations is smoothed away and all the networks, that

initially were different, perform the same. This means that increasing the obfuscating

value in diverse networks effectively produce output networks that are perceived as

similar from an observer. This confirms the effectiveness of our abstraction process.

Figure 4.25 shows the effect of telescopic algorithm on different null models. Many

observations can be made. By considering the leftmost panels (i.e., Boston subway

network), we see that not all the perturbations by themselves alter the local connec-

tivity both topological and metrical. In fact, all the curves start approximately from

the same point. However, strong differences are then detected in the telescopic spec-
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Figure 4.24: Effect of the telescopic process on Boston subway (leftmost column) and Aus-

tralia city-based network (rightmost column) perturbed by different degree of randomness

and topological modification (curve titled “Norm” represents the baseline, i.e., the telescopic

analysis applied to the original network). Other networks perform similarly and are shown

in the Appendix A. The statistical properties considered in these panels are topological and

metrical Eglob as a function of f . From the plots, we clearly note that at macro level, every

network produced by the different null models becomes simpler (will have fewer nodes and

edges) and is very efficient compared to micro level. Indeed, another important point is the

consequence of perturbations on the starting point (leftmost point in the x axis). In general,

every perturbation alters the Eglob of the networks by slightly increasing it (for topological)

or drastically decreasing it (for metrical).
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Figure 4.25: Effect of the telescopic analysis on topological and metrical Eloc as a function

of f for Boston subways (leftmost column) and Australia city-based network (rightmost

column). Other networks perform similarly and therefore are shown in the appendix A. By

focusing on the left most points of the x axis, we clearly note that perturbations on Boston

subway do not alter considerably the local efficiency. Conversely, in homogeneous networks

like city-based social networks, perturbations influence considerably the local pattern and

consequently the starting point will be different.
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trum by comparing it with the baseline. This means that even though the original

networks and null models might have the same locality pattern at micro scale, they

can have very different connectivity at macro scale.

The situation is slightly different in small world scale free networks (rightmost

panels). In fact, since +r, +a and +s modify the local connectivity introducing noise

in the networks, the starting point of the curves will be altered toward a lower value.

However, the differences from the baseline will be smoothed away as the fuzziness

value increase and the abstracted networks will be similar.
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Figure 4.26: Effect of the telescopic analysis on topological and metrical cost (ct and cm)

as a function of f for Boston subway (leftmost panels) and Australia city-based network

(rightmost panels). Many perturbations of the original networks are considered. The plots

for the other networks are presented in appendix A. As detected for real networks, the cost

increases as networks become obfuscated. However, two different situations take places. In

subway networks, the cost of null models is always bigger than the baseline (Norm curve)

regardless of the perturbations. Conversely, for small world scale-free networks we found

that the behavior is very similar to randomized networks. This is evidence that small world

scale-free, in our telescopic context, share some characteristic with random networks.
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In figure 4.26 we see how perturbations affect telescopic curves for metrical and

topological costs. The effect of perturbations could be detected at the starting point of

the curves (leftmost part of the x axis) and during the whole spectrum. In the former,

no perturbation alters the cost of the networks. In the latter, the general telescopic

behavior is strongly dependent on the class of the considered networks. Perturbations

on small-world scale-free do not modify considerably the telescopic trend, as it grows.

Conversely, on subway networks we detected that the cost always increase as the

network will be more obfuscated. However, the increase is always lower than that of

perturbation. In all cases, networks at micro scale are very cost efficient, whereas in

macro scale they turn very expensive (even though they are very efficient, see figure

4.24).
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Figure 4.27: Effect of the telescopic analysis on topological and metrical normalized cost over

efficiency for Boston subway (leftmost panels) and Australia city-based network (rightmost

panels). By dividing the cost of network by the global efficiency (that ranges in [0, 1]), we

verified that subway networks are cheaper, as well as more efficient, than city based networks.

This is evidence that subway networks have an economic inborn principle (property) that is

maintained during the telescopic abstraction process.
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4.4.1 Null models as a function of networks’ size

The previous section was devoted to describe how different null models affect the

perception of networks at different abstraction scales. We now focus our attention to

study how the size of networks’ null models yields changes in the way networks are

reconstructed at different detail scales. Between all null models proposed, we selected

+r as it is less constrained by the original network features. This model starts with

the original network and randomizes it through the iteration of rewiring moves and

shuffling nodes’ positions, altering both topological and spatial structure.

Figure 4.28 shows log-log plots of the number of nodes n and edges m as a function

of the fuzziness. The values are normalized by the values obtained at f = 0. The

null models have the same n and m as of subway (leftmost column) and airline and

city-based networks (rightmost column). Clearly, the rate with which the nodes and

edges collapse is influenced by the size itself. The more nodes (or edges) a network

has, the faster they will be collapsed because the likelihood of belonging to the same

square box is greater.

Figure 4.29 shows the effect of the abstraction on null models and in particu-

lar on diameter metrics. Physical diameter (leftmost column) linearly decreases as

f increases. This is expected as the metric is based on the maximal extension of

the network without considering any topological or metrical underlying structure.

Conversely, topological and metrical diameter (centermost and rightmost column) de-

crease exponentially, meaning that in this case the abstraction process immediately

creates the right shortcuts links that drop the maximum length that separates nodes.

On figure 4.30 are plotted the degree based metrics such as maximum kmax, av-

erage degree 〈k〉 and standard deviation σk. We note that big networks exhibit a

peak approximately located at f ∼ 0.2 regardless of the feature. This means that,

at least initially, the telescopic analysis modify null models in such a way that high

degree nodes appear, changing the network structure toward a more organized one

(and similar to small world).

Topological and metrical efficiency Eglob as a function of fuzziness is pictured in

figure 4.31. We clearly distinguish two very different situations at the extreme of

the spectrum, similarly to what we have found for real world datasets. It is worth

noting that, in accordance with figures 4.30 and 4.32, at approximately f ∼ 0.2, the

networks were abstracted in a way that both Eglob and Eloc are high and nodes degree

tend to be homogeneous, evidence for a small world scale-free structure. However, a

deeper investigation that include also the degree distribution as a function of fuzziness,

might confirm this conjecture. Indeed, networks size influence the global efficiency

with reference to the abstraction process as bigger networks will be more efficient
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Figure 4.28: Number of collapsed nodes n (top panels) and edges m (bottom panels) as a

function of f . The values are normalized by the first value obtained at f = 0 and denoted

as n(0) and m(0) respectively. Leftmost column refers to +r null models created with the

same number of nodes and edges of subway whereas the rightmost refers to the airline and

city-based social networks. The plots clearly show that bigger networks tend to collapse

nodes and edges faster than smaller ones. This effect is also due to the density of nodes in

the 1× 1 square box.
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Figure 4.29: Effect of the telescopic abstraction on physical (leftmost column), topological

(centermost column) and metrical (rightmost column) diameter for +r null models with dif-

ferent sizes created by randomizing nodes’ positions and rewiring links of subways (topmost

panels), airline and city-based social networks (bottom panels). Physical diameter linearly

decreases as a consequence of how the metric is defined, i.e., the maximum distance between

nodes without considering the underlying structure. Metrical and topological diameters de-

crease exponentially. This clearly means that the telescopic algorithm find the right shortcuts

links that drop the maximum length.
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Figure 4.30: Effect of the telescopic abstraction on degree related metrics for +r null model

created by perturbation of nodes’ positions and rewiring links of subways (top panels), airline

and city-based social networks (bottom panels).

compared to the small ones.

Figure 4.32 show the local efficiency Eloc as a function of fuzziness. Null models,

under the telescopic framework, will have two different structures when compared

at micro and macro level. At micro scale, networks are poorly connected, mainly

due to the randomness with which networks were created. At macro scale, the local

efficiency explodes for every networks size. This means that telescopic algorithm is

able to create efficient networks even with null models (that are comparable to random

networks).

Figure 4.33 represent topological and metrical cost in the telescopic spectrum as

a function of fuzziness. We note that at macro scale, the cost level is high. The same

situation was found in real world networks. This clearly means that at high values of

fuzziness networks that originally are very different become comparable.
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Figure 4.31: Effect of the telescopic abstraction on topological and metrical global efficiency

Eglob for null model created by perturbation nodes’ positions and rewiring links. Models will

have the same number of nodes and edges of subways (leftmost panels) and the US airline

and city-based social networks (rightmost panel).
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Figure 4.32: How local efficiency Eloc is affected by different sizes of null models (+r).

Leftmost panels refers to subway networks size whereas the rightmost to the city-based

social networks. Efficiency starts low at micro view (in accordance with many works that

reported weak clustering coefficient in random networks [21]) and increases as f exceeds 0.1

reaching high values at macro view. As for global efficiency, Eloc is higher in bigger networks

compared to small ones.
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Figure 4.33: The effect of the telescopic analysis on topological and metrical cost in random-

ized subways (leftmost column), the US airline and city-based social networks (rightmost

column). In the topological version, the cost (also known as density) is defined as |E|
K|V |

whereas in metrical one the formula accounts for weighted edges (see § 2.1.1). The cost is

always increasing regardless of network size even though small networks tend to be cheaper

than bigger ones (mainly at macro scale). This clearly states that, under the telescopic

framework, abstracted networks are very expensive (but very efficient as well).
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Figure 4.34: Topological and metrical C/Eglob in randomized subways (leftmost column), the

US airline and city-based networks (rightmost column). This property measures the trade

off between cost and efficiency. Small values indicate economic networks with high efficiency

at low cost.
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4.4.2 Null model and real networks comparison

The aim of the previous section was to investigate the effect of networks’ size on

networks abstraction, with particular emphasis to null models created by shuffling

nodes’ positions and randomly rewiring edges. The following figures 4.35 and 4.36

compare the results obtained in real world networks (such as Nyc subway and city-

based social network of the Netherlands) and null models. We observed two completely

different behaviors: subway network have less redundancy and randomness so, in

general, the abstracted system will not be comparable to the outcome achieved with

null models, even at macro scale. Conversely, small world scale-free networks, being

more fault tolerant, will have a similar behavior in the telescopic context.
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Figure 4.35: Complete overview of the randomization effect on Nyc subway network. Com-

parison between results of telescopic analysis in terms of number of nodes n, edges m,

efficiency, cost and cost over efficiency. Nodes and edges were normalized by the first value

obtained at f = 0, defined as n(0) and m(0) respectively.
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Figure 4.36: Comparison between original and randomized city-based network of the Nether-

lands. The others’ city-based networks were not plotted because the results were similar.

All the most important statistics were used, such as number of nodes, edge, topological and

metrical efficiency, cost and cost over efficiency. Nodes and edges were normalized by the

value at f = 0, denoted as n(0) and m(0) respectively. It is interesting to note that the effect

of abstraction process has strong similarities with that obtained in city-based networks.



94 CHAPTER 4. THE SPACE DIMENSION



Chapter 5

The time dimension

5.1 Introduction

In the previous chapter, we studied how abstraction modifies networks along with

their spatial informational axes. We now focus on the other informative axis: time.

This analysis is accomplished by keeping fixed the spatial axes and investigating how

networks evolve as time pass by. Our analysis is designed to evaluate on line social

systems. However, we think that the simplicity of our models can be easily fit to other

complex networks.

Studies [57][112] suggest that on line interaction is driven by the same needs as

face-to-face interaction, and should not be regarded as a separate arena but as an

integrated part of modern social life [112]. Thus, communicative actions taken by

members of on line communities can be expected to share many features with the

web of human acquaintances and romances in the social off line world. Indeed, for

many people in contemporary western societies, interaction on the Internet is as real

as any other interaction [111]. For this reasons, the formation, the dynamics and

the general evolution over time of the social networks in an Internet community can

provide important information for enhancing our understanding of social networks.

This is confirmed by latest works [12][57][24] that shed new light on the hidden rules

behind social mechanism like creation, maintenance, dissolution, and reconstitution

of interpersonal ties.

Researchers that study these communities use heavily the digital traces that virtual

users leave while using social networks. Even though these datasets are usually owned

by private companies, we’re increasingly seeing new trends toward openness of data,

for example by letting people to access sampled subset of the entire dataset (Twitter

95
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for example allow to get 1 − 2% of all users’ tweets, friendship relations, etc) or by

releasing anonymized data for mining or edge prediction challenges. This benefits the

network scientific community that is able, firstly, to work in this new challenging area

and secondly to propose researches that are not limited by the number of persons

involved in the experiments, as it was for the off-line social studies.

The most studied social mechanisms include random wiring, triadic closure and

preferential attachment (the latter usually used to describe other than social networks

evolution). The first model assumes that the social networks evolve without being

constrained by exogenous or endogenous factors like geographical proximity, socio-

demographics, belonging to topic-specific sub communities (homophily), technological

differences, etc. Every couple of people is linked in a random fashion. The second

one, also known as the friend of a friend’s rule (or triadic closure), states that two

friends of a person are more likely to know each other compared to two randomly

chosen persons. In the latter model, new nodes are injected into the system and form

links with existing nodes proportional to their current connectivity. Because of that,

the older nodes will have a higher degree compared to the younger.

However, the main goal of the study of temporal dimension of complex network

was to identify a new instinct, found in particular in on line social network, which

drives network evolution. This interesting feature is detected by using special nodes

(the so-called sirens) that, when added into the system, trigger a boost in network

connectivity, spreading utilization to the entire community. This interesting phenom-

ena was studied by trying to predict the best configuration in term of number of

sirens, attractiveness (i.e., the ability to create new links), and length of time these

nodes are effective.

In the following sections we first describe more formally the characteristics of the

evolution models and in particular network growth with sirens. Finally, we report on

the encouraging results obtained by simulating two on line social networks (Virtual-

Tourist.com and Communities.com) and show the benefit that bring special nodes in

enhancing growth.

5.2 Network growth models

In this section, we describe the details of network’s growth models we investigated

in this Thesis. We start from an empty network and by repeatedly apply rules at

local level, the network evolves and (eventually) reaches a mature state. We already

know that many real world systems such as power grids, communication networks,

biochemical interaction as well as social networks can be modeled as graphs [7]. Based
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on graph theory notation introduced in § 2.1, we will consider on line social networks

as unweighted undirected graphs G = (V,E). Nodes ui ∈ V represent users while

edges (ui, uj) ∈ E mutual friendship relations between them. The evolution of a

graph G = (V,E) is conceptually represented by a series of graphs G1, · · · , Gt, so that

Gi = (V,Ei) is the graph at step i. Since G1, · · · , Gt represent different snapshots

of the same graph, we have Ei ⊆ E. The simulations that we will consider are

constrained in the sense that the final graph Gt has to be equal to the referring

networks. In this phase of our research, we will not consider links or nodes removal,

therefore E1 ⊆ E2 ⊆ · · · ⊆ Et. This choice is motivated by the observation that in on

line social networks, removals are fewer than users and friendships relations [49].

Simple network dynamics simulations need at least two parameters. The first is

the definition of the order with which edges will be inserted into the network (the

order will influence the overall connection pattern) and the second one defines how

many edges will be added at each step. Network connectivity evolves according to

the following three rules:

• Random order. Every edge will have the same probability p = 1
|E|−|Ei|

to be

selected during the growth process. This rule, as many studies showed, is far

from real. However, it is a good candidate for a baseline.

• Aristocratic order. This rule is based on the preferential attachment process

[15][92] where older nodes have an higher probability of attracting new links.

The process selects edges by choosing a source node, according to degree, and

a target node, randomly chosen on available neighbors’ nodes. By randomly

choosing target nodes, low degree nodes can acquire new links as well. More

formally, the probability of a node u to be selected is the following:

pu =
1 + deg(u)·α

∑

j∈V (1 + deg(j)·α)

where α is a scale factor that increase or decrease the influence of degree on the

final probability value, deg(u) is the node degree.

• Social order. This rule is inspired by the local clustering of small world networks

(also known as triadic closure), and in particular from the observation that two

friends of a person is likely that know each other [51]. This rule will consider

more likely to be selected those edges that close triangles. Edges that make more

than one triadic closure will be inserted sooner into the network than others.

More formally, the probability of edge (u, v) of being selected is the following:

pu,v =
1 + soc(u, v)·α

∑

j 6=k∈V (1 + soc(j, k)·α)
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where soc(i, j) is the number of times edge (i, j) closes triangles (see for example

figure 5.1). As for the previous rule, α tunes the effect of triadic closures on

final probability value.

Figure 5.1: Example of social rule. The figure represents a hypothetical snapshot of graph

G at time t during network evolution. Straight links indicate already existing edges whereas

the dashed lines the ones that will be added in the following steps. Edge (a, c) closes three

triades (a, d)(d, c), (a, b)(b, c) and (a, f)(f, c) whereas (d, f) and (b, e) only close two and one

triangle respectively. Therefore, the probability of been selected at time t+1 is 0.5, 0.33 and

0.16 respectively.

5.2.1 Evolutionary models: serial and parallel

Although the previous three rules are sufficient to define the order with which nodes

will be connected, it is also necessary to define how many edges are inserted into

the network at every time. One trivial solution is to add serially (alternatively called

inertial) an edge every time slot so, in a network composed by m edges, the simulation

will lasts m simulated time units. This represents the baseline in our experiments (see

section 5.4.2) and is crucial for reporting which rules achieve best when the system

behavior will be unfolded.

However, since the previous dynamics is realistic but only in specific situations (for

instance in the initial part of a network evolution), we also consider simulations where

more than one edge are allowed to be inserted at the same time. We assume that the

number of edges added changes as a function of network efficiency Eglob. This model,

that we call parallel (alternatively called accelerated), is described in Algorithm 1.

The algorithm accepts as input: (i) a graph G = (V,E) and (ii) a rule rn =

{random|aristocratic|social}. It starts from a graph G′ that has the same nodes as

G and no edges. The algorithm deals with parallel edges creation by selecting at each

time a subset F such that F ⊆ E to be added to G′. Since the edges can be added

into the network only once, E will be updated adequately with the remaining edges.
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The number of connections selected varies according to the following formula:

e = 1 +

⌊

C · E(Gt−1)

E(Gideal)
· (nart−1 − 1)

⌋

(5.1)

where Gideal is the ideal network in which all edges exist K|V |, nari−1 is the number

of edges that has to be inserted into the network, C is a constant factor and E(Gt−1)

is the global efficiency (see § 2.1.1) of the network G at step t− 1. At the beginning,

few nodes will be inserted because of low efficiency and, as soon as the network grows

and many people are involved in the network, more edge will be chosen and added

concurrently. The one factor at the beginning of formula 5.1 allows to pick at least

one edge at each step. The C factor is used to tune the effect of the efficiency in the

number of chosen edges. We studied the effect of C on the network growth and we

found out that it only expands (C < 1) or shrinks (C > 1) the time needed to get

target efficiency without altering considerably the curve behavior (see figure 5.2). For

this reason, we decided to use C = 1 in all our experiments.
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Figure 5.2: How the scale parameter C influences the global efficiency curve. It directly

impacts the time span needed to get the referring network.
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Algorithm 1: Parallel networks simulation

input : G = (V,E), rn

1 G′ = (V,E′ = ∅)

2 while E 6= ∅ do

3 F = Choose e edges from E with method rn

4 E = E − F

5 E′ = E′ ∪ F

6 calculates statistics on G′

7 e = Number of edges as a function of Eglob(G
′)

8 end

5.3 Sirens

The aim of this section is to present a method we developed that is able to detect

a new instinct, typical of social networks, that drives network evolution and boost

network connectivity. This technique make use of external nodes (in the sense that

they are new to the network) V s = {s1, s2, . . . , sm}, that we called sirens, whose

goal is to interact with normal users and to stimulate overall network utilization, i.e.

people engagement on on line social networks (see figure 5.3) and increase efficiency.

Figure 5.3: Example of on line social network with sirens V s = {s1, s2, s3}. Nodes inside

the rounded rectangle belong to the users’ graph. Sirens aim to connect to nodes of users’

network in order to increase overall utilization (edge (s1, c)).

The whole graph now becomes Gs = (V ∪ V s, E ∪Es), the total number of nodes

|V ∪V s| = n+m and the number of edges |E∪Es| depends on the following parameters:

• m, specifies the number of sirens,
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• a, the sirens’ ability of attracting new edges (i.e. generate interest in the com-

munity),

• d, the operating timespan of sirens.

In particular, we define a configuration as a tuple ci = (m, a, d) formed by the

previous three parameters. Furthermore, we define a cost of a configuration, Cs,

proportional to the previous parameters, that is:

Cs = m· a· d (5.2)

Combinations of these parameters lead to different costs and ideally to different

growth behaviors. Another important goal of this Thesis is to understand how the

overall network evolution changes as a function of ci and in particular to test whether

increasing the investment on the sirens (that is, Cs) yields a proportional benefit in

the global efficiency. Furthermore, we study which configuration’s parameter attains

the best performance in the same cost configurations (see § 5.4.2). In this context,

for the remainder of the thesis, we make the following assumptions:

• during the network evolution, edges between sirens {(si, sj)|si ∈ V s, sj ∈ V s},
are not allowed

• sirens {s1, s2, . . . , sm} are active at the beginning of simulation only, i.e. from

time t0 to td. Improvements of this study might consider relaxing this constraint

and studying the effect of the activation in different time periods.

The rules by which edges {(s, u)|s ∈ V s, u ∈ V } will be added are identical as for

normal users, namely random, aristocratic and social (see previous section). In gen-

eral, sirens’ edges evolve independently of users’ edges. However, an exception still

exists. In fact, a new link in users’ subnetwork could trigger a modification in the

likelihood of sirens’ edges of being selected, specifically with the social rule. Figure

5.4 pictures some examples. In particular, figure 5.4(b) shows what happens when

a new link (b, c) in users’ network is added: edges (s1, c),(s2, c),(s3, c) will be more

likely to be selected in the following steps because of triadic closure rule.

Algorithm 2 describes how simulations are made. It uses two sets E and Es from

which the edges will be selected, two rules rn and rs (that specify which edge to choose

in the users’ and sirens’ subnetworks) and a configuration ci. The algorithm has a

main loop (line 4) in which two distinct phases are executed and each one manages

users’ and sirens’ selection of edges (line 5 and 9) according to rn and rs respectively.

The number of edges selected in the first process (line 5) is calculated similarly

as in algorithm 1 (using equation 5.1) apart from the input graph that now become
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(a) (b)

Figure 5.4: Examples of word of mouth model (a-b). si ∈ V s and {b, c, e,m} ∈ V . High-

lighted links indicate the edges that have just been added to the network, straight line are

edges inserted in the previous steps and dashed ones represents the possible options for new

links (and that have an higher probability to be chosen).

G′ = (V ∪ V s, E′) instead of G = (V,E). In the second phase (line 9), the number

of selected edges is fixed and equal to |V s|· |V |· a. This means that the total number

of links between sirens and users can be estimated in advance as the following: Es =

|V s|· |V |· a· d (this number will be reached at time td and will not change afterwards).

The effect of sirens will be limited to the first d iterations, after that the sirens will

be deactivated (line 8) and the system will evolve independently by itself.

Algorithm 2: Accelerated networks simulation with sirens

input : E,Es, rn, rs, m, a, d

1 G′ = (V ∪ V s, E′ = ∅)

2 p← 1

3 q ← a ·m · n
4 while E 6= ∅ do

5 F=Choose p edges from E with method rn

6 E = E − F

7 E′ = E′ ∪ F

8 if s < d then

9 F=Choose q edges from Es with method rs

10 Es ← Es − F

11 E′ ← E′ ∪ F

12 s← s+ 1

13 end

14 calculates statistics on G′

15 p = Number of edges as a function of Eglob(G
′)

16 end
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The attractiveness parameter a quantifies how much a siren is able to promote the

utilization (i.e. edges creation) of the on line community. It is defined as follow:

a(s) =
q(s)

∑

u∈V ∪V s q(u)
(5.3)

where q(s) is a weight function. Clearly, in order to meet the requirement that sirens

have a better ability to establish new friendships, we assigned a doubled weight to

them compared to normal nodes (see section § 5.4.2).

5.3.1 Network Cost

From a business point of view, every system has to deal with costs. In our context,

the cost could be split into two parts. The first, that accounts for sirens cost (think

of sirens as employees), and the second one that accounts for web site cost. More

formally, the following formula gives an estimation of managing cost of setting up a

network until it reaches a steady state:

f(Cs) = Cs + β · Tmin(Cs) (5.4)

where Cs is the cost due by using a particular configuration (as defined in § 5.2), β
is the cost by time units of the web site and Tmin is the minimum timespan needed

to the network to evolve toward a connection pattern with a specific global efficiency

(given a configuration which costs Cs).

We are now interested in knowing the points in which the function f has minimums.

For this reason, by calculating the first derivative of (5.4) and solve f ′(Cs) = 0, we

found that

f ′(Cs) = 1 + β · T ′
min(Cs) = 0

and so the cost is minimum when:

T ′
min = − 1

β
(5.5)

We will return to this topic in section § 5.4.2 where we test how f ’s minimal points

change versus hypothetical values of β.

5.4 Experimental Results

In this section, we report our experimental analysis. The simulation algorithms were

implemented in Python and C programming languages. All the experiments were

conducted on three Linux machines equipped with i5 Intel processor at 3.2Ghz and

8Gb of RAM.
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5.4.1 Datasets

We conducted experiments on two real world datasets: Communities1 and Virtual-

Tourist 2 online social networks. Communities, considered the first social network

in the world started in 1996, is similar to many other social networks like Facebook,

Google Plus or LinkedIn where users meet new people, share photos and chat with

friends. Communities is managed by users themselves that creates customized web

pages in which they express passions, loves and friendships. Every user can keep track

of friends in friends list, can use a guestbook, blog or use photo gallery. In Commu-

nities, users can establish virtual contacts, but unlike real world, these ties could be

easily maintained over distance. This produces a network of virtual social ties that

connects the entire world. Communities let members to create and join communities

in order to easily find group of people with same interests. Joining a community

means being able to chat with other members in community forums and chat rooms.

User’s locations in Communities are widely distributed and span over 185 nations.

VirtualTourist (in the following abbreviated as VT) is an on line travel-oriented

community, started in 1998, in which users share their own travel experiences, suggest

and review hotels, write comments and opinions on forums, find a places to visit, share

photos and videos: it is a community of people that love traveling around the world.

In VirtualTourist, users can meet new people and create a network of social virtual

friendships as well.

Both analyzed networks were collected by crawling web pages of the sites as time

of 2005 and 2006 [44][28]. Publicly available profiles and friendships were parsed and

anonymized. At that time, there were approximately 700 thousands users in VT, 650

of which are singletons (92.4% of the total), i.e., users that have joined the service

but have never made a connection with another user. Conversely, 57 thousands users

have at least one friend (approximately 7.6% of the total). There were more that 200

thousands social ties at that time. The VT network has a giant component, a group

of users who are pair wisely connected through paths in the social network, formed

by 53.034 nodes (92% of the total nodes with degree greater than zero). The rest of

the network is formed by 2077 small (less than 14 nodes each) isolated communities

(also called middle region [65]) that are disconnected from the giant component.

In Communities, there were about 30 thousands registered users, 18 of which are

singletons (60% of the total) and 12 have more than one friend (about 40%). There

exists approximately 60 thousands friendship links. Apart from singletons, the vast

majority of the nodes (about 12.131, 92.7% of the total) of the community belong to

1
www.communities.com

2
www.virtualtourist.com
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Feature Communities VirtualTourist Randomized CM Randomized VT

|V | 12.479 57.639 12.479 57.639

|E| 60.209 211.415 60.209 211.415

〈k〉 9.64 7.34 9.64 7.34

kmax 656 963 24 21

L 4.18 4.95 4.42 5.72

C 0.1067 0.04425 0.0006 0.0001

Eglob 0.238683 0.201822 0.23296 0.17817

Eloc 0.131466 0.056248 0.00074 0.00013

Cost (density) 0.00077 0.00013 0.00077 0.00013

Cost/Eglob 0.00324 0.00063 0.00332 0.00073

γ 2.5 2.7 ∼ 0 ∼ 0

#CC 161 2078 3 43

ρ -0.027 -0.027 -0.002 0.00082

Table 5.1: Statistical feature of Communities.com and Virtualtourist.com on line social net-

works together with randomized versions of the same networks: number of nodes |V |, number

of edges |E|, average node degree 〈k〉, maximum degree kmax, average shortest path L and

average clustering coefficient C (for the largest connected component), global efficiency Eglob,

local efficiency Eloc, cost, cost over efficiency, exponent of the cumulative degree distribution

γ, number of connected clusters #CC and the correlation pattern ρ.

the giant component, whereas the rest to the middle region were small communities

having less than 8 nodes each.

Since social ties are bidirectional in both systems, we mathematically tract those

graphs as undirected. Table 5.1 summarizes the most important network statisti-

cal features. It also contains the metrics calculated on randomized versions of the

same graphs. We note that both networks have small average shortest path L (less

than 5 hops separates two randomly chosen nodes) and high clustering coefficient C

(compared to the randomized versions, fourth and fifth columns). High Eglob and

Eloc has been detected too. These facts are evidence for classifying them as small

world[28]. Both networks are formed by many connected clusters, so average path

length and clustering coefficient are calculated on the largest connected component

(LLC), whereas global and local efficiency on the entire network (the latter two quan-

tities work correctly even for disconnected networks, see § 2.1.1). Indeed, since cumu-

lative degree distributions Pcum have tails that decays as power law with exponents

equal to 2.5 and 2.7 (see figure 5.5) and maximum degree kmax is higher compared to

the average 〈k〉, they could be classified as scale-free networks.

The plots on figure 5.6 and the assortativity values ρ on table 5.1 suggest that

both networks are disassortative (Pearson correlation equal to −0.59 and −0.30 re-

spectively). This means that, on average, users with many connections tend to connect

to users with few friends (see classification on [84]). Many other studies found the



106 CHAPTER 5. THE TIME DIMENSION

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

K
 ≥

 k
)

k

α = 2.5

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

K
 ≥

 k
)

k

 

 

α = 0.77

α = 2.7

Figure 5.5: Cumulative degree distributions Pcum(k) of Communities (left panel) and Virtu-

alTourist (right panel). k is the degree, α is the coefficient of the fitting (dashed) line k−α.

Figures clearly show a power law behavior in the degree and α is approximately equal to 2.5

and 2.7 respectively.
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Figure 5.6: Node degree correlations in Communities.com (left panel) and VirtualTourist.com

(right panel) on line social networks. 〈knn〉 is the average degree of first neighbors. Figures

show a negative correlation. In fact, Pearson correlation is equal to −0.59 and −0.30 respec-

tively. The inset graphs contain the same data but plotted in linear axes.
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same correlation pattern in on line social networks, like for instance in Youtube[78],

pussokram[57] or Cyworld[5] networks. Being elite in on line social networks simply

means to have many connections and is just a matter of clicks[59]. However, this

assortative pattern is the opposite compared to the real world where establishing

and maintaining friendships require time and efforts and where many factors might

influence the likelihood of being a friend of a person, such as cultural, economical

factors.
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|V | m q(s) an as

12479 6 10 0.000079751 0.000797512

12479 6 20 0.000079371 0.001587428

12479 12 10 0.000079371 0.000793714

12479 12 20 0.000078623 0.001572451

57639 6 10 0.000017331 0.000173313

57639 6 20 0.000017313 0.000346266

57639 12 10 0.000017313 0.000173133

57639 12 20 0.000017277 0.000345548

Table 5.2: Summarize of attractiveness values used during network simulations in Commu-

nities (first four rows) and VirtualTourist (last four rows). |V | is the number of nodes, m

the number of sirens, q(s) is the weight assigned to sirens, an is the attractiveness of normal

nodes, as is the attractiveness of sirens.

Cs Configurations ci

600 (6,10,10)

1200 (6,10,20) (6,20,10) (12,20,20)

2400 (12,10,20) (12,20,10) (6,20,20)

4800 (12,20,20)

Table 5.3: List of the all possible configurations available with m = 6, 12, a = 10, 20 and

d = 10, 20 with the corresponding costs.

5.4.2 Results

We now evaluate our models by simulating the network evolution with respect to

suitable configurations ci. We selected the global efficiency as the main statistical

feature that has been tracked during the experiments. A configuration is defined as

a tuple composed by (i) the number of sirens m used, (ii) the sirens’ attractiveness

a and (iii) the length of time d in which the sirens are active (starting from t0). We

decided to employ 6 or 12 sirens and to use those special nodes for the firsts 10 or 20

initial time units. To estimate the attractiveness as defined in equation 5.3, we use a

weight function that is q(u) = 1 for u ∈ V and q(s) = 10 or 20 for s ∈ V s, in order

that these special nodes acquire more links compared to normal nodes. Table 5.2

present the estimated attractiveness values of normal users an and sirens as, together

with the variables used to calculate them. With the previous parameters, we created

a set of 8 configurations and 4 levels of cost (listed in table 5.3).

The possible configurations that were planned do not exhaust all the axes along

with our simulations are based. In fact, two more parameters are needed: the rule

that selects edges between normal nodes and the rule that select edges between sirens

and users. Since these dynamics are independent but the names of the rules are still
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the same, we define the sirens’ rules as Broadcast, Word of Mouth and Preferential

models in order to uniquely distinguish them from the users’ rules.

The simulations considered in this Thesis are constrained in the sense that every

edge that is added must exists in the original network. We decided to use this approach

because other techniques like for instance stochastic simulations (Construct, Link

Probability Model) are not well suited to describe big social systems (incurring in

computational issues) and because they usually require to set an high number of

initial parameters (incurring in a not trivial initial setting).

In order to evaluate the effectiveness of our methods to detect new instincts in

social systems and to verify whether they are valuable as incentive for network uti-

lization, we test (i) how faster global efficiency will increase when using sirens and

(ii) whether growth curve will be altered by using these special nodes. Before that,

we start by looking at results obtained for serial analysis (see section 5.2.1) so as

to understand the effect each rule has in the unfolded network evolution and subse-

quently, we consider the more realistic situation in which more than one edge can be

added at the same time (called accelerated or parallel analysis). We are interested

to uncover all this aspects of on line virtual communities by trying to answers the

following questions:

Q0 Does each rule behaves equally in the inertial (serial) context? What happens in

the accelerated context?

Q1 How the same cost configurations influence efficiency?

Q2 How do parameters variations influence global efficiency?

Q3 How much we have to invest in special nodes?

Q4 How beneficial is the adoption of sirens in on line social networks?

Before delving into the details of the answers for the previous questions, we can

delineate a general discussion about the results for all the growth patterns. In fact,

regardless of the configuration adopted, we found that S-shaped curve characterizes

all the growth pattern of Eglob. It is well known that S-shaped curve is at the heart

of many diffusion processes and is characteristic of a chain reaction, in which the

number of people who adopt a new behavior follows a logistic-like function [104]: a

slow growth in the initial stage, rapid growth for critical mass time, and a rapid flat-

tening of the curve beyond this point. Because of that, our models and rules could

be considered as good candidate for estimating the real network evolution.

Q0: Unfolded serial setting. Figure 5.7 shows the unfolded behavior of the systems
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CM VT

rnd soc ari rnd soc ari

Normal 1384 1333 1931 3130 2996 7505

Randomized 2585 2571 2294 13718 13704 12003

Table 5.4: Summarize of Tmin for all accelerated simulations in Communities (CM), Virtu-

alTourist (VT) and randomized version of both networks. Random, aristocratic and social

rules are considered.

for the three proposed rules, namely: random, aristocratic and social. Each curve

represents global efficiency Eglob of the temporal networks that have been created by

adding one edge at time. The plots allow for interesting observations. First, we note

that until one sixth of the complete spectrum, each rule produces an indistinguishable

behavior probably due to weak network structure. After that point, we observe the

cumulative effect of drawing edges in different ways. The behavior detected is super-

linear for aristocratic rule meaning that preferential attachment is an effective way to

boost network efficiency in networks. Conversely, with social rule we observe a weak

sub-linear increase ideally meaning that triadic closure is not the only key ingredient

for network evolution. Linear increase is then detected for random rule. To avoid the

bias of randomness, we made 100 simulations and then averaged results are considered.

Standard deviations are small are not plotted in favor of clearer plots.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  20000  40000  60000

E
gl

ob

step

CM

rnd
ari

soc
 0

 0.05

 0.1

 0.15

 0.2

 0  50000  100000  150000  200000

E
gl

ob

step

VT

rnd
ari

soc

Figure 5.7: Effect of serial network simulation for Communities (left panel) and Virtual-

Tourist (right panel). After an initial time span (approximately one sixth of the entire

simulation time), the preferential attachment rule (aristocratic) outperforms the others.

Even though preferential attachment seems to perform better than other rules in

serial evolution, this not necessarily holds even in accelerated (parallel) simulations.

In fact, as figure 5.8 shows, random and social rule turn out to be 30% and 60%

(CM and VT) faster in reaching the maximum Eglob compared to the preferential

attachment (see table 5.4 that contains the minimum time needed (Tmin) to get the



5.4. EXPERIMENTAL RESULTS 111

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  600  1200  1800  2400  3000

E
gl

ob

Step

CM

rnd
ari

soc

 0

 0.05

 0.1

 0.15

 0.2

 0  2000  4000  6000  8000

E
gl

ob

Step

rnd
ari

soc

Figure 5.8: Effect of parallel network simulation for Communities (left panel) and Virtual-

Tourist (right panel). These plots help us to understand how parallel links’ creation modifies

the dynamics of on line social systems. Surprisingly, preferential attachment, that outper-

forms other rules in inertial setting, is the slowest obtaining bad performance in terms of

time needed to reach the target efficiency. Curves start at simulation time t0, but we cropped

the points for low values of Eglob for graphical clarity. Standard deviations are very small

and are not plotted for graphical reasons.

original efficiency). This is probably due to a combined effect of topological structure

and rule applied. In fact, on line social networks, like social networks in general[51], are

formed by weak ties responsible of keeping together sub-communities and preserving

the global reachability among nodes. According to preferential attachment, nodes

with high degree are more likely to acquire new links. However, weak ties are not

necessarily connected to hubs meaning that they will not be selected at the beginning,

maintaining low the global efficiency.
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Figure 5.9: Effect of simultaneous network simulation in randomized version of Communities

(left panel) and VirtualTourist (right panel). Curve starts at simulation time t0, but we

cropped the points for low values of Eglob for graphical clarity. Standard deviation is very

small and is not plotted for graphical reasons.
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In order to verify whether network topology affects the overall behavior, we applied

the same rules on randomized version of the networks. Surprisingly, as figure 5.9 and

table 5.4 show, the preferential attachment rule that previously was the slowest, now

is 11% and 12% (CM and VT) faster that the others.

The explanation of this phenomenon is again dependent on the specific topological

structure of the random networks. The main characteristic of these networks is that

global connectivity is not based on the weak ties, but instead by scattered edges

that connects randomly chosen nodes. As a consequence, the preferential attachment

effect will be now strongly limited by the degree homogeneity of these networks and

consequently the likelihood of selecting long-range edges is higher, bringing together

far away substructures, yielding a fast increase of efficiency.

Q1: Same cost configurations. The following set of figures (from 5.10 to 5.16)

represents how the same cost configurations affect the global efficiency. In particular,

we consider the cost levels Cs that have at least two configurations ci, namely 1200

and 2400. In table 5.3 collects all the possible configurations with a specific cost.

A single simulation’s run needs three parameters: a configuration and two rules.

The first rule that specifies the the dynamics of users and the second of the sirens’.

In order to limit the bias due to the randomness of selecting the edges, we decided

to repeat 100 times the same simulation and get the averaged results. However,

the (simulated) timespan needed to get the target efficiency might vary in every

run, making the calculation of averages not so straightforward. For this reason, we

extended the timespan in order that every simulation fits to the longest. In this way,

we were able to average the y values at fixed x intervals. We found that when the

range of the timespan values is large (see for instance figure 5.13 (c)) and in particular

with some Cs of VirtualTourist dataset, the method we use for averaging the results

could create averaged behavior that seems like stepping functions. We think this issue

could be easily figured out by increasing the number of simulations.

Figure 5.10 shows that only one specific configuration performs better, compared

to the others and in particular the one that has the higher value of attractiveness.

Surprisingly this result is also quite general because it holds no matter what cost level

or rule selected and indeed regardless of sirens’ dynamics chosen.
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Figure 5.10: The figures describe the benefit of higher attractiveness for the same cost

configurations of Communities on line social network. In particular, we selected broadcast

model, random and aristocratic rules. Two cost levels have been considered: Cs = 1200 (left

panels) and Cs = 2400 (right panels). Configurations (6, 20, 10) and (12, 20, 10) outperform

the others and in this case network efficiency will start to increase earlier regardless of the

growing rule of the users’ network.
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Figure 5.11: Comparison between same cost configurations of Communities on line social

network. We consider cost Cs = 1200 (left panels), Cs = 2400 (right panels) and random,

aristocratic and social rules. All plots refer to word of mouth model. We clearly see that net-

work efficiency increases faster in configurations that have an higher value of attractiveness,

no matter what cost level or rule has been selected.
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Figure 5.12: Accelerated analysis with sirens, random and aristocratic, social rules, preferen-

tial, for Communities social network with cost Cs = 1200 (left panels) and Cs = 2400 (right

panels).
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Figure 5.13: Effect of multiple runs of simulations on the same VT dataset.
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Figure 5.14: Behavior of the network’s Eglob with two different cost levels: Cs = 1200 (left

panels) and Cs = 2400 (right panels) for VirtualTourist social network, broadcast model. In

total, six configurations are considered. The one that has higher attractiveness is the favored

one because can reach the efficiency of the original network faster than others.
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Figure 5.15: Same cost configurations for VirtualTourist, Cs = 1200 (left panels) and Cs =

2400 (right panels), word of mouth model. For each cost Cs, three configurations are then

considered. In all experiments, the configuration that performs better is the one that has

fewer sirens and higher attractiveness (or equivalently that last more). In accordance with

the results of accelerated analysis with no sirens (figure 5.7), random and social rules attain

the target efficiency in fewer steps than aristocratic.
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Figure 5.16: Accelerated analysis with sirens, random, aristocratic and social rules, prefer-

ential model, in VirtualTourist social network with cost equal to Cs = 1200 (left panels)

and Cs = 2400 (right panels). We clearly see that the configurations that have higher

attractiveness reach faster the target efficiency, regardless of the users’ growing rules.
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Q2: Parameters variation. In the following experiments, we investigate the effects

of parameters’ variation in configurations. In particular, we fixed the number of sirens

(m = 6 and m = 12) and check the performance of other configurations compared

to the baseline (that are (6, 10, 10) and (12, 10, 10) respectively). The plots presented

are grouped by network: figure 5.17, 5.18 and 5.19 show the results obtained for

Communities by varying the dynamics with which the sirens connect to users, namely

broadcast, word of mouth and preferential sirens’ dynamics. Conversely, figures 5.20,

5.21 and 5.22 show the results of VirtualTourist.

All the plots presented in this section clearly show that increasing Cs results in

shrinking times to obtain the target efficiency. This is a very interesting result be-

cause it confirms the effectiveness of employing more sirens in order to boost network

efficiency and in particular to lower the threshold after which the connectivity spreads

all over the network. Indeed, other interesting observations could be made. We note

that even though increasing Cs always triggers a broader connectivity distribution,

the benefit is not proportional to Cs. For instance, quadrupling Cs, the simulated

time shrinks less than four times. The question Q3 will account for quantitatively

define this benefit. Remarkably, the observed effects are universal in the sense that

they hold regardless of network and rule considered suggesting their validity in a wide

class of social networks.
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Figure 5.17: Accelerated analysis with sirens, broadcast model (for sirens’ dynamics), Com-

munities on line social network, fixing m = 6 (top panels) and m = 12 (bottom panels).

Three cost levels are then considered for each plot.
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Figure 5.18: Accelerated analysis with sirens fixing m = 6 (top plots) and m = 12 (bot-

tom plots), random, aristocratic and social rules, word of mouth model model (for sirens’

dynamics). Communities on line social network.
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Figure 5.19: Accelerated analysis with sirens fixing the number of sirens to m = 6 and

m = 12, random, aristocratic and social rules. The sirens’ dynamics evolve according to the

preferential model. Communities.com on line social network.
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Figure 5.20: Effect on parameters’ variation on the configurations fixing the number of sirens

to m = 6 (top panels) and m = 12 (bottom panels). Four cost levels are then considered in

each plot, from 600 to 4800. Broadcast model.
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Figure 5.21: Accelerated analysis with sirens fixing m = 6 and m = 12, random, aristocratic

and social rules, word of mouth model (for sirens’ dynamics), Virtualtourist on line social

network.
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Figure 5.22: Accelerated analysis with sirens fixing m = 6 and m = 12, with random,

aristocratic and social rules, preferential model (for sirens’ dynamics), Virtualtourist social

network.
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Q3: Trade-off between the benefit of investing on sirens and the cost. In the

plots presented previously, we described how the timespan needed to get the reference

efficiency varies according to Cs. The figures 5.23 and 5.24 (rightmost panels) show

Tmin as a function of Cs and this allow to describe more quantitatively the benefit

of investing on sirens. In fact, plots clearly show that this is not linear as one might

guess, instead it is inversely proportional as Cs. We think this is probably due to

system saturation. In other words, the network is not able to respond to high level of

exogenous stimuli from sirens resulting in performance that are comparatively similar

to those obtained with lower cost configurations.

In order to test whether this finding holds when considering threshold values of

efficiency, we investigated the time needed to get half Eglob and one third Eglob.

Surprisingly, as figures show (left most and centermost panels), the benefit is still

inversely correlated to Cs. This means that the efficiency growth behavior is quite

regular.

In section 5.3.1 we introduced the Eq. (5.4) that accounts for the cost of running

a social network and we analytically found that f(Cs) is minimum when Eq. (5.5)

holds. Since in real contexts, β, i.e. the hypothetical cost of running a web service, is

influenced by many factors, a unique value might not exist. For this reason, we tried

many combinations of β that meet Eq. (5.5). To obtain those values we calculate the

first discrete derivative of Tmin(Cs) (different threshold values are then considered).

Table 5.7 lists all the values of β we examined in our experiments. Table 5.8 shows

the total cost Ct as a function of Cs and for different threshold values. This is a very

interesting finding because, once the cost per unit time of a web service is known,

our method can estimate the Cs that accounts for the minimum Ct. Indeed, since

many configurations can have the same cost, the one that has the higher value of

attractiveness will be the one that reach faster the target efficiency (see question Q1).
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Figure 5.23: Scatter plots between cost Cs and Tmin in Communities. Tmin represents the

minimum number of steps (in simulated time units) necessary to get target efficiency (Eglob).

We consider three thresholds: half efficiency (leftmost column), one third (centermost col-

umn) and full (rightmost column). Every row represent a different sirens’ model namely

broadcast, word of mouth and preferential.

CM bro rnd bro ari word rnd word ari word soc pref rnd pref ari pref soc

(no sirens) 1381 1930 1381 1930 1328 1381 1930 1328

(6,10,10) 112.92 128.16 111.66 126.95 113.01 106.82 118.48 108.16

(6,10,20) 73.10 73.67 73.80 73.80 74.93 72.45 71.28 74.20

(6,20,10) 68.28 68.29 68.61 68.61 69.90 67.38 66.88 69.08

(6,20,20) 58.14 56.75 58.52 56.65 59.09 57.61 55.02 59.22

(12,10,10) 72.35 73.32 72.07 74.23 73.34 70.51 70.39 72.34

(12,10,20) 60.29 58.69 60.44 58.09 62.01 59.25 56.70 60.70

(12,20,10) 55.08 52.73 55.21 52.92 56.12 53.90 51.90 55.60

(12,20,20) 49.44 47.90 50.05 48.60 50.81 49.23 47.11 50.66

Table 5.5: Summarize of the average Tmin in all combinations of the number of sirens (m),

attractiveness (a) and length of time (d) of accelerated analysis with and without sirens,

Communities social network.
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Figure 5.24: Scatter plots between cost Cs and Tmin in VirtualTourist. Tmin represent the

minimum number of steps (in simulated time units) necessary to get the target efficiency

(Eglob). We consider three thresholds: half (leftmost column), one third (centermost column)

and full (rightmost column) efficiency. Every row represent a different sirens’ model namely

broadcast, word of mouth and preferential.

VT bro rnd bro ari word rnd word ari word soc pref rnd pref ari pref soc

(no sirens) 3120 7496 3120 7496 2987 3120 7496 2987

(6,10,10) 1051.37 2272.84 1041.35 2215.34 999.88 752.16 1607.41 771.30

(6,10,20) 283.12 461.48 262.40 428.12 264.58 243.19 375.16 242.17

(6,20,10) 293.92 512.32 276.52 454.18 276.97 253.02 392.34 245.84

(6,20,20) 137.42 163.84 134.42 156.91 136.71 130.49 148.74 132.45

(12,10,10) 431.78 807.28 432.89 725.23 415.61 311.19 521.40 333.13

(12,10,20) 147.04 180.44 144.94 174.75 146.64 138.53 163.60 140.48

(12,20,10) 145.96 184.40 143.78 178.64 146.17 137.33 168.59 138.82

(12,20,20) 98.46 98.70 96.63 95.89 98.95 94.74 93.39 96.72

Table 5.6: Summarize of the average Tmin in all combinations of m, a and d of accelerated

analysis with and without sirens, VirtualTourist social network.
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T ′
min(1200) β T ′

min(2400) β T ′
min(4800) β

1/1 · E(G) −0.05875 17.02 −0.01104 90.56 −1.145e− 3 872.72

1/2 · E(G) −0.055 18.12 −0.0094 106.38 −4.16e− 4 2400

1/3 · E(G) −0.054 18.23 −0.0092 108.10 −0.0003 3333

Table 5.7: Summarize of T ′
min(Cs) and β calculated for different threshold values of E(G)

and Cs.

(a)

Cs Ct

600 1.732

1200 1.732

2400 2.728

4800 5.110

(b)

Cs Ct

600 7.248

1200 4.327

2400 4.327

4800 6.621

(c)

Cs Ct

600 150.600

1200 71.760

2400 45.888

4800 45.888

(d)

Cs Ct

600 1.700

1200 1.700

2400 2.698

4800 5.085

(e)

Cs Ct

600 7.126

1200 4.168

2400 4.168

4800 6.490

(f)

Cs Ct

600 201.833

1200 92.733

2400 56.933

4800 56.933

(g)

Cs Ct

600 2.314

1200 2.314

2400 3.289

4800 5.642

(h)

Cs Ct

600 9.724

1200 7.132

2400 7.132

4800 9.283

(i)

Cs Ct

600 88.527

1200 58.363

2400 48.000

4800 48.000

Table 5.8: Total cost Ct = Cs + β · Tmin(Cs) as a function of Cs and different values of β.

First row, from left to right: β = 18.12 (a), 106.38 (b) and 2.400 (c) for half Eglob. Second

row: β = 18.23 (d), 108.23 (e) and 3.333 (f) for one third of the efficiency. Third row:

β = 17.02 (h), 90.56 (h) e 872.72 (i) with no threshold at all. Once β is known, our method

estimates the best Cs to obtain the minimum cost. For instance, suppose that the cost per

unit time β is approximately equal to 90 (with no threshold on Eglob), the configurations

that achieve the minimum cost are those with Cs ∈ [1200, 2400]. Indeed, since there are

many configurations with the same cost level, the one that performs better will have the

higher value of attractiveness.



Chapter 6

Conclusions and Future

Directions

In this Thesis, we have introduced a novel network analysis that we called multidi-

mensional. This new framework consists of studying the two most important infor-

mational axes along with a complex network evolve: space and time. To the best of

our knowledge, this is the first work that examines complex networks in that way.

In order to achieve this goal we investigated singularly each dimension by keeping

fixed the other. In this way, we addressed two problems: the first one was to under-

stand how systems change their spatial structure when viewed at different abstraction

scales (macro and micro detail levels). Conversely, by keeping fixed the space (x, y

dimensions) we depicted how they evolve over time, and in particular shedding new

lights on what are the basic instincts that trigger networks evolution.

The so-called telescopic analysis, inspired from the human eyes capability to dis-

tinguish two points when placed at some distance from a point of view, was devoted

to propose a new method that arbitrarily models networks under different levels of

abstraction. Its importance stems from the ability of changing nodes’ spatial coordi-

nates and connectivity according to some predefined rules. Doing so, we were able to

understand what happens to the most important statistical network properties not

only when the network detail is high (at micro level) or low (at macro level), but also

in between these two extremes. At this point, we were concerned to answer a set of

questions such as: which properties are safe to consider after abstracting a network?

Which topological structure better preserves system attributes? Are the results of

static analysis incomplete because they strongly rely on the detail level with which a

network is constructed?

127
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Our experiments are focused on many networks that are embedded in the space,

whose evolution is constantly shaped by the surrounding environment. We considered

rapid transportation networks (such as subways and airline) and city-based on line

social networks. An important finding suggests that complex networks, when observed

at finer or coarse-grained level of detail, exhibit statistical features that in many cases

are different, meaning that networks characteristics are not stable under the telescopic

(or abstraction) process. Because of that, many networks researches are confined to

describe only one of all the possible configurations a network could take, showing

results that might not be valid for the entire grained spectrum.

The second dimension of complex networks that we studied in this Thesis is the

time. To date, many models of network growth have been proposed, especially in

the context of social network. For instance, some researches observed that new social

ties are driven by randomness. Because of that, some classical models are based on

random wiring rule, whereas others are based on preferential attachment (i.e., the

rate with which older nodes acquire new links is faster than new nodes) or on triadic

closure rule (also known as friend’s friend rule, that is, two friends of a person are

more likely to know each other compared to two randomly chosen people).

Even though the previous classical growth models are well known and applied in

social networks as well as in many other complex networks settings, we found that,

there exists a new instinct, never studied before, that is a fundamental ingredient in

the process of network evolution and that is also able to considerably boost connectiv-

ity. We detected this new phenomenon in the context of on line social communities.

In particular, we were able to identify this important instinct by using a new set

of special nodes, called “sirens”, whose aim was to increase network utilization by

establishing new links with existing nodes.

The main questions we raised in this Thesis are the following: Are the sirens

beneficial as a way to widely spread the adoption of new on line social systems? How

the global network behavior is shaped by employing special nodes? Which of serial

(i.e., one edge added at time) and parallel (i.e., the number of edges added varies

dynamically according to the current efficiency) model achieve the best performance?

How same cost configurations influence network efficiency? How much does it cost

using the sirens?

We systematically simulated two on line communities with different sizes and topics

demonstrating the effectiveness of sirens to drive social evolution and boost community

engagement in general. Indeed, simulations were performed as a function of the

configurations. Configurations represent model’s growth variables and are: number

of sirens, attractiveness and time span of sirens’ utilization respectively. We found
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that at the same cost, the configurations that attain the best results are those with

high attractiveness, regardless of the on line social network considered.

Several other interesting features could be explored as a natural extension of this

Thesis. The first one, with regard to telescopic analysis, is to expand the types

of networks and the perturbations accounted for in the simulations. For instance,

it will be interesting to know whether force-based layouts such as Kamada-Kawai

[62] or Fruchterman-Reingold [48] can influence the overall outcome of the telescopic

abstraction process. This could greatly increase the understanding of the telescopic

effect on different settings. Secondly, in the context of time dimension, it could be of

great importance to investigate whether the found instinct is present in other than on

line social networks. Another future direction that might be important in the context

of social network modeling with special nodes is to consider other statistical features

such as local efficiency, assortativity, centrality, etc to develop a more complete insight

on network evolution.

Here, we introduced a new approach that study singularly two important dimen-

sions of network, making progress toward a network analysis framework that not only

is able to understand the single dimensions when taken apart (minimalist approach),

but also infer good results at global perspective. Interestingly, this can opens several

new perspectives in the understanding of the general behavior of complex systems.

In conclusion, we believe that this novel approach of studying complex networks

by investigating the two most important informative axes, time and space, has a great

potential to impact the way the future complex system analysis will be.
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Appendix A

Supplementary material for

space dimension

Our novel analysis, called multidimensional, consists of separately study how a com-

plex network evolves along the two most important dimensions: time and space. We

were able to identify fundamental facts that were not yet known. Telescopic analysis

consists of fixing the time axes and study how networks’ statistical properties varies

while modifying the spatial structure. In particular, we were able to successfully

implement a method that can create networks at different abstraction levels.

This section contains the outcome of the experiments of the telescopic analysis. In

particular, we applied the algorithm to transportation networks such as subway and

airline and to city-based online social networks. We considered four subways, such

as Boston, Paris, New York and Milan; the US airline network formed by non-stop

flights and airports; the VirtualTourist city-based online communities of Italy, United

Kingdom, India, Australia and the Netherlands. In section § 5.4.2 we presented the

results of Boston subway and Australia online community.
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Figure A.1: Log-log plots of the number of nodes (normalized by the baseline, i.e. at f = 0) as a function of f in subway

networks such as Paris (a), Nyc (b), Milan (c) and in VirtualTourist city-based network of Italy (d), United Kingdom (e),

India (f), the Netherlands (g) and airline (h). Straight lines represent the baseline, that is, no perturbation is applied; in

the other cases, different perturbations on nodes (+n), edges (+a, +s) and on both (+r) were applied. In all networks we

found a slower decrease in those specific perturbations that shuffle nodes (+r and +n). This is arguably due to the scattered

nodes’ positions in the space and this means that nodes will be visible in more abstraction level and will be collapsed later

in the process.
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Figure A.2: Log-log plots of edges (normalized by the baseline, i.e. at f = 0) as a function of f in rapid transportation

systems of Paris (a), Nyc (b) and Milan (c) and in VirtualTourist city-based network of Italy (d), United Kingdom (e), India

(f), the Netherlands (g) and airline (h). Straight lines represent the baseline, that is, no perturbation is applied. Four types

of perturbations are applied on nodes’ positions (+n, +r) and on edges (+a, +s). Clearly, without any perturbation, edges

will be collapsed faster due for instance to local clustering (even though in subway networks is low) and in general to some

sort of organization in wiring edges. Conversely, any other perturbations considered slow down the rate with which edges

are collapsed mainly because of the long range edges created by the randomization process.
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Figure A.3: Normalized kmax as a function of f in subway networks such as Paris (a), Nyc (b), Milan (c) and in VirtualTourist

city-based network of Italy (d), United Kingdom (e), India (f), the Netherlands (g) and airline (h). Values are normalized

by the baseline (straight lines), i.e. at f = 0. Interestingly, only the randomized perturbations (+r, +n and +a) produce a

peak in the maximum degree, approximately at f/5 of the telescopic spectrum. This is evidence that telescopic analysis on

subway networks creates hubs (this is also confirmed by results on kmean and standard deviation in the figures that follow).
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Figure A.4: Normalized kmean as a function of f (the normalization is carried out by dividing the values by the baseline at

f = 0) in Paris (a), Nyc (b), Milan (c) rapid transportation systems and in VirtualTourist city-based networks of Italy (d),

United Kingdom (e), India (f), the Netherlands (g) and airline (h). Values are normalized by the baseline (straight lines),

i.e. at f = 0. Many perturbations applied: those who randomize nodes’ positions (+n and +r) and connectivity (+a, +r

and +s). We note that any type of rewiring or node shuffling cause an increase immediately as the network is abstracted.
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Figure A.5: Standard deviation of the degree as a function of f in subway networks such as Paris (a), Nyc (b), Milan

(c) and in VirtualTourist city-based networks of Italy (d), United Kingdom (e), India (f), the Netherlands (g) and airline

(h). Straight lines represent the baseline, i.e., when no perturbations applied. This measure is very useful in conjunction

with other degree related statistics in order to have a complete perspective on how nodes’ degree change while abstracting

networks.
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Figure A.6: Topological Eglob as a function of f in rapid transportation systems of Paris (a), Nyc (b), Milan (c) and in

VirtualTourist city-based networks of Italy (d), United Kingdom (e), India (f), the Netherlands (g) and airline (h). Many

perturbations are then considered, +n that shuffles node positions, +a rewires in a random fashion the edges, +r that both

shuffles and rewires and +s that creates a small world scale-free structure leaving unchanged the nodes’ positions. The figures

show an important characteristic of analyzing networks at different granularities. In fact, networks that are poorly connected

at micro scale (leftmost points on the plots) become highly efficient at micro scale. Under our framework, we never found

that an highly connected network at micro scale become poorly connected at macro scale.
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Figure A.7: Metrical Eglob normalized as a function of f in rapid transportation systems such as Paris (a), Nyc (b) and Milan

(c) and in VirtualTourist city-based networks of Italy (d), United Kingdom (e), India (f), the Netherlands (g) and airline

(h). Straight lines represent the baseline, i.e., when no perturbations applied. Different perturbations are then considered

in order to see how randomization affects the outcome of the telescopic analysis and compare them to the baseline (i.e. the

straight lines, where no perturbations at all are applied). As expected, the randomization on all dimensions destroys the

connectivity (leftmost points on the figures). However, on the other side of the telescopic spectrum, the original randomized

networks are indistinguishable because of the high level of fuzziness causing high uncertainty on the network structure.
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Figure A.8: Topological Eloc as a function of fuzziness in subway networks of Paris (a), Nyc (b), Milan (c) and in Vir-

tualTourist city-based networks of Italy (d), United Kingdom (e), India (f), the Netherlands (g) and airline (h). Straight

lines represent the baseline, i.e., when no perturbations applied. Randomization on nodes’ positions (+n), link connectivity

(+a, +s) and on both (+r) are then considered. Even though not all perturbations alter local efficiency at micro scale,

the spatial and topological modifications affect considerably the way networks are perceived at macro scale. We note that

small world/scale-free networks are more sensible to perturbations compared to subway systems. Conversely, when viewed

at macro scale, they tend to look like perturbed networks.
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Figure A.9: Metrical Eloc as a function of f in subway networks of Paris (a), Nyc (b), Milan (c) and in VirtualTourist

city-based networks of Italy (d), United Kingdom (e), India (f), the Netherlands (g) and the US airline network (h). Straight

lines represent the baselines. Perturbations on nodes’ positions (+n,+r) and on edges (+a,+s) are then considered. Just like

topological Eloc, at macro scale the effect of perturbation is modest and randomized and real networks perform the same.

However, as the abstraction process starts, small world/scale-free networks do not exhibit a different behavior compared to

randomized versions.



143

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
t

Fuzziness

Norm
+r
+a
+n
+s

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

C
t

Fuzziness

Norm
+r
+a
+n
+s

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
t

Fuzziness

Norm
+r
+a
+n
+s

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
t

Fuzziness

Norm
+r
+a
+n
+s

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

C
t

Fuzziness

Norm
+r
+a
+n
+s

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
t

Fuzziness

Norm
+r
+a
+n
+s

(f)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

C
t

Fuzziness

Norm
+r
+a
+n
+s

(g)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

C
t

Fuzziness

Norm
+r
+a
+n
+s

(h)

Figure A.10: Topological cost as a function of f in subway networks such as Paris (a), Nyc (b), Milan (c) and in VirtualTourist

city-based networks of Italy (d), United Kingdom (e), India (f), the Netherlands (g) and the US airline network (h). Straight

lines represent the baselines. Different perturbations on nodes’ positions (+n, +r) and on edges (+a,+s) are then applied.

Generally speaking, these plots suggest that topological cost is higher at macro level compared to micro. Indeed, ct of small

world scale-free networks in the telescopic spectrum is comparable to the randomized versions. However, subway networks

have a different behavior in the telescopic spectrum, due to the high efficient topological structure that allow, at macro level,

to have high Eglob and low cost.
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Figure A.11: Metrical cost as a function of f in subway networks such as Paris (a), Nyc (b), Milan (c) and in VirtualTourist

city-based networks of Italy (d), United Kingdom (e), India (f), the Netherlands (g) and the US airline network (h). Straight

lines represent the baselines. Different perturbations on nodes’ positions (+n, +r) and on edges (+a,+s) are then applied.



145

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
op

ol
og

ic
al

 C
 / 

E
gl

ob

Fuzziness

Norm
+r
+a
+n
+s

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
op

ol
og

ic
al

 C
 / 

E
gl

ob

Fuzziness

Norm
+r
+a
+n
+s

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
op

ol
og

ic
al

 C
 / 

E
gl

ob

Fuzziness

Norm
+r
+a
+n
+s

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
op

ol
og

ic
al

 C
 / 

E
gl

ob

Fuzziness

Norm
+r
+a
+n
+s

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
op

ol
og

ic
al

 C
 / 

E
gl

ob

Fuzziness

Norm
+r
+a
+n
+s

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
op

ol
og

ic
al

 C
 / 

E
gl

ob

Fuzziness

Norm
+r
+a
+n
+s

(f)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
op

ol
og

ic
al

 C
 / 

E
gl

ob

Fuzziness

Norm
+r
+a
+n
+s

(g)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
op

ol
og

ic
al

 C
 / 

E
gl

ob

Fuzziness

Norm
+r
+a
+n
+s

(h)

Figure A.12: Topological Ct/Eglob as a function of f in subway networks such as Paris (a), Nyc (b), Milan (c) and in

VirtualTourist city-based networks of Italy (d), United Kingdom (e), India (f), the Netherlands (g) and the US airline

network (h). Straight lines represent the baselines. Different perturbations on nodes’ positions (+n, +r) and on edges

(+a,+s) are then applied. Economic are networks cheap to create and with good local and global connectivity pattern. Cost

over efficiency is an indicator of how much a network is economic. The best one is that with low Ct/Eglob value. Under our

framework, we found that only at micro scale networks are very economic, whereas at macro the networks are very efficient

but still very expensive.
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Figure A.13: Topological Ct/Eglob as a function of f in subway networks such as Paris (a), Nyc (b), Milan (c) and in

VirtualTourist city-based networks of Italy (d), United Kingdom (e), India (f), the Netherlands (g) and the US airline

network (h). Straight lines represent the baselines. Different perturbations on nodes’ positions (+n, +r) and on edges

(+a,+s) are then applied. Economic are networks cheap to create and with good local and global connectivity pattern. Cost

over efficiency is an indicator of how much a network is economic. The best ones are those with low Ct/Eglob value. Under

our framework, we found that only at micro scale networks are very economic, whereas at macro the networks are very

efficient but still very expensive.
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[31] V. Colizza, A. Barrat, M. Barthélemy, and A. Vespignani. The role of the

airline transportation network in the prediction and predictability of global

epidemics. Proceedings of the National Academy of Sciences of the United States

of America, 103(7):2015, 2006.

[32] Regino Criado, Benito Hernandez-Bermejo, and Miguel Romance. Efficiency,

vulnerability and cost: an overview with applications to subway networks world-

wide. I. J. Bifurcation and Chaos, 17(7):2289–2301, 2007.

[33] P. Crucitti, V. Latora, M. Marchiori, and A. Rapisarda. Error and attack toler-

ance of complex networks. Physica A: Statistical Mechanics and its Applications,

340(1-3):388–394, 2004.



150 BIBLIOGRAPHY

[34] P. Crucitti, V. Latora, and S. Porta. Centrality measures in spatial networks of

urban streets. PHYSICAL REVIEW E, 73(3):036125, Part 2006.

[35] DJ Daley and DG Kendall. Epidemics and rumours. 1964.

[36] J. Davidsen, H. Ebel, and S. Bornholdt. Emergence of a small world from

local interactions: Modeling acquaintance networks. Physical Review Letters,

88(12):128701, 2002.

[37] G.F. Davis, M. Yoo, and W.E. Baker. The small world of the corporate elite.

Preprint, University of Michigan Business School, 2001.

[38] D. J. de S. Price. A general theory of bibliometric and other cumulative advan-

tage processes. J. Amer. Soc. Inform. Sci., 27:292–306.

[39] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,

D. Swinehart, and D. Terry. Epidemic algorithms for replicated database main-

tenance. In Proceedings of the sixth annual ACM Symposium on Principles of

distributed computing, pages 1–12. ACM, 1987.

[40] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer,

August 2005.
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[81] Y. Moreno, JB Gómez, and AF Pacheco. Instability of scale-free networks under

node-breaking avalanches. EPL (Europhysics Letters), 58:630, 2002.

[82] M. E. J. Newman. The structure of scientific collaboration networks. Proceedings

of the National Academy of Sciences of the United States of America, 98(2):404–

409, January 2001.

[83] M. E. J. Newman and Juyong Park. Why social networks are different from

other types of networks. Phys. Rev. E, 68:036122, Sep 2003.

[84] M.E.J. Newman. Assortative mixing in networks. Physical Review Letters,

89(20):208701, 2002.

[85] M.E.J. Newman. Mixing patterns in networks. Physical Review E, 67(2):26126,

2003.



154 BIBLIOGRAPHY

[86] MEJ Newman. Power laws, pareto distributions and zipf’s law. Contemporary

Physics, 46(5):323–351, 2005.

[87] Jae Dong Noh. Percolation transition in networks with degree-degree correla-

tion. Phys. Rev. E, 76:026116, Aug 2007.

[88] J. Park and M.E.J. Newman. Statistical mechanics of networks. Physical Review

E, 70(6):66117, 2004.

[89] R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free net-

works. Physical review letters, 86(14):3200–3203, 2001.

[90] Romualdo Pastor-Satorras, Alexei Vasquez, and Alessandro Vespignani. Dy-

namical and correlation properties of the internet. Physical Review Letters,

87:258701, 2001.

[91] Tobias Preis, Dror Y. Kenett, H. Eugene Stanley, Dirk Helbing, and Eshel

Ben-Jacob. Quantifying the behavior of stock correlations under market stress.

Scientic Reports, 2(752), 2012.
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