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Abstrakt

Spinově polarizované zdroje zářeńı jako např́ıklad spinově polarizované světelné emisńı

diody (spin-LED) a spinově polarizované lasery (spin-lasery) jsou perspektivńı zař́ızeńı

v nichž zářivé rekombinace spinově polarizovaných nosič̊u náboje vedou k emisi foton̊u

s kruhovou polarizaćı. Hlavńım ćılem této práce je modelováńı emitovaného pole a po-

larizačńıch vlastnost́ı spin-LED struktur a spinových laser̊u s vertikálńım uspořádáńım

(spin-VCSEL). Je odvozen nový př́ıstup založený na 4× 4 maticovém formalismu, který

popisuje interakci světla s rezonančńı multivrstevnou strukturou. Kvantové přechody,

které vedou k emisi foton̊u, jsou popsány Jonesovými zdrojovými vektory.

Abstract

Spin-polarized light sources such as the spin-polarized light-emitting diodes (spin-

LEDs) and spin-polarized lasers (spin-lasers) are perspective devices in which the radia-

tive recombinations of spin-polarized carriers result in emission of circularly polarized

photons. Main goal of this thesis is modeling outside emited field and polarization prop-

erties of spin-LED and spin-controled vertical-cavity surface-emiting laser (spin-VCSEL)

structures. New approach based 4× 4 matrix formalism is derived for modeling of light

interaction in resonant multilayer structure. Quantum transitions, which result in photon

emission, are described using Jones source vectors.
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Nomenclature

A(n) wave amplitude in the n-th layer

B magnetic flux density

D electric displacement

D(n) dynamic matrix of the n-th layer

D̂ dipole moment operator

E electric field intensity

H magnetic field intensity

J total angular momentum of the electron

Jd
↑↓ Jones vector of the source

M magnetization vector

M total matrix

Nx, Ny, Nz effective refractive index components

P(n) propagation matrix of the n-th layer

d(n) thickness of the n-th layer

e(n), h(n) normalized eigen-polarization in the n-th layer

j current density

k wave number

mj magnetic quantum number

n± density of electrons in ±1/2
t time

x̂, ŷ, ẑ unit vectors

γ weight coefficient of spontaneous emission

δ weight coefficient of stimulated emission

ε̂(n) permitivitty tensor of the n-th layer

ω angular frequency of monochromatic wave

ψkm Bloch wave function

ξhh, ξlh transition probability including heavy holes and light holes
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Chapter 1

Introduction

Spin-polarized light sources such as the spin-polarized light-emitting diodes (spin-LEDs)

and spin-polarized lasers (spin-lasers) are perspective devices in which the radiative re-

combinations of spin-polarized carriers result in emission of circularly polarized photons.

The connection between spin polarization of the charge carriers and optical polarization of

the emitted photons can be applied in many practical areas. In experimental spintronics,

spin-LEDs are already used for detection and characterization of spin-polarized carri-

ers in novel spintronic structures [1, 2, 3, 4]. Spin-lasers promise lower threshold [5, 6],

faster modulation dynamics [7], improved polarization stability and polarization determi-

nation [8, 9]. Moreover, the ability to control modulated light polarization together with

improved properties opens new horizons in laser technology, cryptography and modern

optical components.

For the above applications, a precise modeling of light emission from multilayer struc-

ture with active layer is needed. It could be based on two steps: (i) Representation of

active layer by using dipole sources and (ii) Modeling of light emission in resonant multi-

layer structure by using appropriate matrix approach fulfilling Maxwell equations in each

layer and boundary conditions for electromagnetic field. It is well established that spon-

taneous emission in a semiconductor can be represented as an electric dipole emission in

the so-called weak-coupling regime. When atoms in the active area spontaneously emit

electromagnetic radiation, each atom acts like a small randomly oscilating electric dipole

with the frequency of the transition. If the emission is stimulated, each atom acts like

a miniature passive resonant electric dipole, which is set oscilating by the incident wave

and hence oscilation is not random but is coherent with the incident wave [10]. In the

case of the resonant-cavity LED (RCLED), the active layer is embeded in a multilayer

nanostructure [11]. Optical interaction of the dipole field and the isotropic multilayer
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CHAPTER 1. INTRODUCTION 2

structure was efectively described by Benisty [12] by using transfer matrix formalism,

while the vectorial problem of the dipole emission was decomposed in three scalar prob-

lems: s- and p-field generated by a dipole paralel to the interface and p-field generated

by a dipole, which is perpendicular to the interfaces. This approach enables to calculate

both field amplitudes radiated from the structure as well as field in any point of the

structure.

However, in the spin-LEDs and spin-lasers, spin polarization of the carriers is di-

rectly related to the optical polarization of the emited photons through the quantum

selection rules. Moreover, the magnetic field used for electric current polarization causes

anisotropic magneto-optical effects and s-p conversion. Main goal of this thesis is mod-

eling outside emited field and polarization properties of spin-LED and spin-controled

vertical-cavity surface-emiting laser (spin-VCSEL) structures. In Chapter 2, we first in-

troduce the 4x4 Yeh’s matrix formalism for anisotropic multilayer structure including

active source layer, which is described by general source amplitude vector. Considering

the anisotropy is very important because of presense of the external magnetic field in

spin-optoelectronics devices. In Chapter 3, we discuss particular form of the source am-

plitude distribution of the active layer, which are directly related to the quantum optical

selection rules. We introduce method of two crossed linear sources emitting circularly

polarized light with parameters, which could be obtained by fitting experimental data or

using theory. Chapter 4 shows application of general approach to typical spin-VCSEL

structures.



Chapter 2

Electromagnetic response of

multilayer structure

In this chapter, the 4×4 Yeh’s matrix formalism is described [13]. This formalism provides

effective mathematical method for description of electromagnetic response of anisotropic

multilayered system. The main part of this chapter deals with the new approach for

modeling of anisotropic multilayer systems, which include active source layer defined by

general Jones vectors representing quantum transitions.

2.1 Wave equation for the anisotropic media

The Maxwell equations are partial differential equations, which describe classical prop-

erties of the electromagnetic field and can be written in the following diferential form

divD = ρ (2.1)

divB = 0 (2.2)

rotE = −∂B
∂t

(2.3)

rotH = j+
∂D

∂t
, (2.4)

where E, H, D, B, ρ, and j denote the electric field intensity, the magnetic field intensity,

the electric displacement, the magnetic flux density, the volume density of the free charges,

and the current density, respectively. For a monochromatic plane wave solution with the

3



CHAPTER 2. ELECTROMAGNETIC RESPONSE OF MULTILAYER STRUCTURE4

propagation vector k, the field vectors can be expressed as

E(r, t) = ℜ{E0exp[i(ωt− kr)]} (2.5)

H(r, t) = ℜ{H0exp[i(ωt− kr)]}, (2.6)

where ω is the angular frequency. The time course of the direction of E(r, t) determines

polarization state of the light, which is commonly described in Cartesian coordinates

using Jones vector

J =

[
Ex0

Ey0

]
, (2.7)

where Ex0 and Ey0 are the x and y components of the complex amplitude E0 in the

case of a wave propagating in the z-direction [14]. We define s- and p- polarizations (see

Fig 2.1) and the reflections coefficient

rij =
E0j

E0i

, (2.8)

where the indices denote i (incident s− or p−) and j(reflected s− or p−) polarized wave.

Figure 2.1: S-polarization lies along x-axis - perpendicular to the plane

of incidence. P -polarization lies in the plane of incidence.

By substituting (2.5) and (2.6) into last two Maxwell equations (2.3) and (2.4), we

obtain the condition for the complex amplitudes E0 and H0

k× E0 − ωµ0µ̂H0 = 0 (2.9)

k×H0 + ωε0ε̂E0 = 0,
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where ε0 and µ0 denotes the vacuum permittivity and permeability Note, that for optical

frequencies the permeability tensor µ̂ ≈ 1. After eliminating H, we obtain the wave

equation in the form

k0ε̂E0 − k2E0 + k(kE0) = 0, (2.10)

where the permittivity tensors ε̂ decribe anisotropy of the enviroment and can be generally

written in the form

ε̂ =




εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

.


 (2.11)

In the case of cubic crystal, we can distinguish three basic configuration of linear

magneto-optical tensor in relation with the direction of the magnetization M:

1. Polar geometry with the magnetization in z-direction

ε̂polar =




εxx −iεxy(Mz) 0

iεxy(Mz) εxx 0

0 0 εxx


 (2.12)

2. Longitudinal geometry with the magnetization in y-direction

ε̂longitudinal =




εxx 0 iεxz(My)

0 εxx 0

−iεxz(My) 0 εxx


 (2.13)

3. Transverse geometry with the magnetization in x-direction

ε̂transverse =




εxx 0 0

0 εxx −iεyz(Mx)

0 iεyz(Mx) εxx


 . (2.14)

Note, that the Jones vector defined by (2.7) only spans the space of fully polarized

light. However, it’s common to define the Stokes vector

S =




S0

S1

S2

S3



=




I0

Ix − Iy

I45 − I−45

IRP − ILP



, (2.15)

which shows the light intensities of different polarization states and could describe unpo-

larized, partially polarized, and fully polarized light. The Stokes parameters are defined

by following:
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• S0 = I0 ... total intensity,

• S1 = I0 = Ix−Iy ... intensity diference between vertically and horizontally polarized
light,

• S2 = I45 − I−45 ... intensity diference between light linearly polarized along the

plane with angle ±45◦ about the x-plane,

• S3 = IRP − ILP ... intensity diference between right and left circularly polarized

light.

Moreover, the portion of an electromagnetic wave, which is polarized, can be described

by the degree of polarization defined by

P =

√
S2

1 + S2
2 + S2

3

S0

, (2.16)

which for totally polarized, unpolarized, and partially polarized light is equal to P = 1,

P = 0, and 0 < P < 1, respectively.

2.2 Matrix formalism

Let us consider anisotropic multilayer structure consisting of N -anisotropic layers char-

acterized by permittivity tensors ε̂(n) and the thicknesses d(n), with n = 1, ..., N . The

interface planes are normal to a common axis parallel to the z axis of the Cartesian

coordinate system. The wave equation for each layer can be written in the following

form [15, 13]

k2
0 ε̂

(n)E0
(n) − k2(n)

E0
(n) + k(n)[k(n)E0

(n)] = 0, (2.17)

where E0
(n) is the amplitude of the electric field in each layer E(n) = E

(n)
0 ei(ωt−k(n)r). Be-

cause of the Snell’s law, the wave propagates in each medium with the same tangential

component of the wave vector k(n) = k0(Nxx̂ + Nyŷ + N
(n)
z ẑ). Let us choose coordi-

nate system, for which Nx = 0 and Ny = n(n)sin θ(n) = const. and rewrite the wave

equation (2.17) in the matrix form



ε
(n)
xx −N2

y −N
(n)2
z ε

(n)
xy ε

(n)
xz

ε
(n)
yx ε

(n)
yy −N

(n)2
z ε

(n)
yz +NyN

(n)
z

ε
(n)
zx ε

(n)
zy +NyN

(n)
z ε

(n)
zz −N2

y




︸ ︷︷ ︸
♠




E
(n)
0x

E
(n)
0y

E
(n)
0z


 = 0, (2.18)
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where the condition for existence of nontrivial solution is ensured by fourth-order algebraic

equation

det(♠) = 0. (2.19)

Four solutions N
(n)
zj , where (j = 1, 3) and (j = 2, 4), correspond to the forward and

backward propagating modes called eigen-modes. The eigenmode polarizations E
(n)
0j are

specific for each media and do not change during the propagation and take the form

E
(n)
0j = A

(n)
j e

(n)
0j , (2.20)

whereA
(n)
j is the amplitude of particular wave and e

(n)
0j is the normalized eigen-polarization

satisfying [
e

(n)
0j

]+
e

(n)
0j , (2.21)

where
[
e

(n)
0j

]+
denotes Hermitian adjoint. Inside n-th layer at the interface n/n + 1, we

express the field vector E(n) as a linear combination of these eigen-polarizations

(n/n+1)E
(n)
0 =

4∑

j=1

A
(n)
j e

(n)
0j . (2.22)

The propagation in the n-th layer change the field vector according to a factor exp[ik0N
(n)
zj d

(n)]

(n−1/n)E
(n)
0 =

4∑

j=1

A
(n)
j e

(n)
0j exp[ik0N

(n)
zj d

(n)]. (2.23)

The boundary conditions require continuity of tangential components of the field vectors

E and H at the interface

(n−1/n)E
(n)
0x =(n−1/n) E

(n−1)
0x , (n−1/n)E

(n)
0y =(n−1/n) E

(n−1)
0y ,

(n−1/n)H
(n)
0x =(n−1/n) H

(n−1)
0x , (n−1/n)H

(n)
0y =(n−1/n) H

(n−1)
0y ,

and in the matrix form take the form

D(n−1)A(n−1) = D(n)P(n)A(n),
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where D(n) (Dynamical matrix) and P(n) (Propagation matrix) have the following form

D(n) =




e
(n)
x1 e

(n)
x2 e

(n)
x3 e

(n)
x4

h
(n)
y1 h

(n)
y2 h

(n)
y3 h

(n)
y4

e
(n)
y1 e

(n)
y2 e

(n)
y3 e

(n)
y4

h
(n)
x1 h

(n)
x2 h

(n)
x3 h

(n)
x4



, A(n) =




A
(n)
1

A
(n)
2

A
(n)
3

A
(n)
4




(2.24)

P(n) =




ik0N
(n)
z1 d

(n) 0 0 0

0 ik0N
(n)
z2 d

(n) 0 0

0 0 ik0N
(n)
z3 d

(n) 0

0 0 0 ik0N
(n)
z4 d

(n)



. (2.25)

Using P(n) and D(n), the amplitudes in the halfspaces (0) and (N +1) can be related

in the following form

A(0) =
[
D(0)

]−1
D(1)P(1) . . .

[
D(N)

]−1
D(N+1)P(N+1)

︸ ︷︷ ︸
M

A(N+1), (2.26)

where M is the total matrix of the system.

 

 

 

 

 

 

y

zd(n)

θ(0)

(0)
(1)
(2)

(n)

(N)
(N + 1)

Figure 2.2: Multilayer structure embeded in isotropic halfspaces (0) and

(N +1). Each layer is characterized by the permitivitty tensor

ε̂(n) and the thickness d(n).

Note, that in the case of isotropic layered media, the electromagnetic field can be

divided into two uncoupled modes: s-modes and p-modes with electric field vector per-

pendicular and parallel to the plane of incidence, respectively. Since they are uncoupled,
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characteristic equation for N
(n)
z,j biquadratic with solution

N
(n)
z,1,3 = N

(n)
z,2,4 = n(n)cos θ(n), (2.27)

and the dynamic matrix takes the block diagonal form

D =




1 1 0 0

n(n)cos θ(n) −n(n)cos θ(n) 0 0

0 0 cos θ(n) cos θ(n)

0 0 −n(n) n(n)



. (2.28)

2.3 New approach for spin-LED and spin-VCSEL

structures

The 4x4 Yeh’s matrix formalism provides effective approach for investigation of the prop-

agation of electromagnetic radiation in anisotropic layered media, where each layer is

characterized by the complex relative permittivity tensor ε̂(n). In the case of anisotropic

layered media, the field in a individual layer can be expressed as a linear superposition

of monochromatic plane waves with four proper polarization, which are obtained by non-

trivial solution of wave equation in each anisotropic layer. The boundary conditions,

which require continuity of tangential components of the field vectors, are expressed by

using a 4x4 dynamical matrix D(n) as a relation between four field amplitudes and the

corresponding four field amplitudes in the adjacent layer. Propagation of these partial

waves in each each layer is described by diagonal matrix P(n), which consists of the phase

excursions [15, 13].

Let us consider the multilayer system including the isotropic layer (n) with the emit-

ting active region (see Fig.2.4). Outside field amplitudes in the halfspaces (0) and (N+1)

are related to the field amplitudes on both sides of the active region by relations




A
(n)′

1

A
(n)′

2

A
(n)′

3

A
(n)′

4



=




M̃
(u)
11 M̃

(u)
12 M̃

(u)
13 M̃

(u)
14

M̃
(u)
21 M̃

(u)
22 M̃

(u)
23 M̃

(u)
24

M̃
(u)
31 M̃

(u)
32 M̃

(u)
33 M̃

(u)
34

M̃
(u)
41 M̃

(u)
42 M̃

(u)
43 M̃

(u)
44







0

A
(0)
2

0

A
(0)
4 ,




(2.29)
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


A
(n)′′

1

A
(n)′′

2

A
(n)′′

3

A
(n)′′

4



=




M
(d)
11 M

(d)
12 M

(d)
13 M

(d)
14

M
(d)
21 M

(d)
22 M

(d)
23 M

(d)
24

M
(d)
31 M

(d)
32 M

(d)
33 M

(d)
34

M
(d)
41 M

(d)
42 M

(d)
43 M

(d)
44







A
(N+1)
1

0

A
(N+1)
3

0



, (2.30)

where total matrixes are calculated in the following way

M̃(u) =
[
P(n)′

]−1 [
D(n)

]−1
D(n−1)

[
P(n−1)

]−1
. . .
[
P(1)

]−1 [
D(1)

]−1
D(0)

and

M(d) = P(n)′′
[
D(n)

]−1
D(n+1)P(n+1). . .P(N)

[
D(N)

](−1)
D(N+1).

The matrices P(n)′ and P(n)′′ are the propagation matrices of the (n)-th layer region above

and below of the active plane. Let us write the complex amplitudes above and below

active region in the form of the Jones vectors

J′↓ =

(
A

(n)′

1

A
(n)′

3

)
, J′′↓ =

(
A

(n)′′

1

A
(n)′′

3

)
, J′↑ =

(
A

(n)′

2

A
(n)′

4

)
,

and

J′′↑ =

(
A

(n)′′

2

A
(n)′′

4

)
.

Note that the amplitudes A
(n)
1 , A

(n)
3 , and A

(n)
2 , A

(n)
4 correspond to orthogonal eigenpolar-

izations.

Figure 2.3: Jones vectors

Field amplitudes traveling through the source plane are amplified by interactions with

the active region. First, we describe amplification of the waves propagating downwards

using the Jones vector of the source Jd
↓ = [Ad

1 A
d
3]

T , which polarization is related to
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particular quantum transition. In the case of stimulated emission, emited waves are

coherent and have equivalent polarisation as the waves (or part of waves), which stimulate

the emission. If the incident wave polarization J′↓ is diferent from the polarization Jd
↓,

then only a part of the wave J′↓ is amplified by the stimulated emission. Therefore we

express the incident Jones vector J′↓ as a weighted superposition of two orthogonal Jones

vectors

J′↓ = αJd
↓ + βJ↓, (2.31)

where Jd
↓ = [Ad

1 A
d
3]

T is the Jones vector of the source and βJ↓ is it’s orthogonal counter-

part. From orthogonality reason the Hermitian product is in the form

(
Jd
↓,J↓

)
= Jd

↓J
+
↓ = Ad

1A
∗
1 + Ad

3A
∗
3 = 0, (2.32)

it follows

α =

(
J′↓, J

d
↓

)
(
Jd
↓, J

d
↓

) . (2.33)

Amplitudes traveling through the source plane are amplified in the following way

J′′↓ = J′↓ + αδ
√(

Jd

↓ , J
d

↓

)
Jd
↓ + γJd

↓, (2.34)

where the second and third term correspond with stimulated and spontaneous emission,

respectively. γ and δ represent the weight coefficients of spontaneous and stimulated emis-

sion, respectively. Thus, field amplitudes on each side of the active region are bounded

by the relation

J′′↓ = T↓J′↓ =




1 + δ
Ad

1Ad∗
1√

(Jd

↓
,Jd

↓)
δ

Ad

1Ad∗
3√

(Jd

↓
,Jd

↓)

δ
Ad

3Ad∗
1√

(Jd

↓
,Jd

↓)
1 + δ

Ad

3Ad∗
3√

(Jd

↓
,Jd

↓)


J′↓ + γJd

↓ (2.35)

and anagolously by using the source vector Jd
↑ = [Ad

2 A
d
4]

T for upward propagating ampli-

tudes

J′↑ = T↑J′′↑ =




1 + δ
Ad

2Ad∗
2√

(Jd

↑
,Jd

↑)
δ

Ad

2Ad∗
4√

(Jd

↑
,Jd

↑)

δ
Ad

4Ad∗
2√

(Jd

↑
,Jd

↑)
1 + δ

Ad

4Ad∗
4√

(Jd

↑
,Jd

↑)


J′′↑ + γJd

↑. (2.36)

From Eq. (2.29), (2.30), (2.35), and (2.36), we obtain the system of four algebraic equa-

tions for four outside field amplitudes in the folowing form



T ↓
11M̃

(u)
12 + T ↓

12M̃
(u)
32 T ↓

11M̃
(u)
14 + T ↓

12M̃
(u)
34 −M

(d)
11 −M

(d)
13

−M̃
(u)
22 −M̃

(u)
24 T ↑

11M
(d)
21 + T ↑

12M
(d)
41 T ↑

11M
(d)
23 + T ↑

12M
(d)
43

T ↓
21M̃

(u)
12 + T ↓

22M̃
(u)
32 T ↓

21M̃
(u)
14 + T ↓

22M̃
(u)
34 −M

(d)
31 −M

(d)
33

−M̃
(u)
42 −M̃

(u)
44 T ↑

21M
(d)
21 + T ↑

22M
(d)
41 T ↑

21M
(d)
23 + T ↑

22M
(d)
43







A
(0)
2

A
(0)
4

A
(N+1)
1

A
(N+1)
3




= −γ




Ad

1

Ad

2

Ad

3

Ad

4




,

(2.37)
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which is solved by using standard matrix algebra.

Note, that the spontaneous emission is not coherent and thus the term γJd
↓ has to be

added incoherently to the incident amplitude. Therefore we consider phases eiϕ1 , eiϕ2 ,

eiϕ3 , and eiϕ4 of the source vector on the rigth side of Eq.(2.37)




Ad
1

Ad
2

Ad
3

Ad
4



→




eiϕ1Ad
1

eiϕ2Ad
2

eiϕ3Ad
3

eiϕ4Ad
4



= eiϕ1




Ad
1

ei(ϕ2−ϕ1)Ad
2

ei(ϕ3−ϕ1)Ad
3

ei(ϕ4−ϕ1)Ad
4



≡ eiϕ1




Ad
1

ei∆ϕ2Ad
2

ei∆ϕ3Ad
3

ei∆ϕ4Ad
4



. (2.38)

Let us distinguish between two cases. By averaging outside Stokes vector components

over all phases ∆ϕ2, ∆ϕ3, and ∆ϕ4

S↑, ↓out =
〈
S↑, ↓out (∆ϕ2, ∆ϕ3, ∆ϕ4)

〉
∆ϕ2, ∆ϕ3, ∆ϕ4

, (2.39)

we obtain case of source without prefered polarization, which could be used in light sources

without spin polarized current. This approach corresponds with [12], but Benisty con-

sidered coherence between incident and spontaneously emited field.

However, in the case of spin-polarized light emission, particular optical polarizations

are prefered. Thus, ϕ2 = ϕ4 and let us ϕ1 = ϕ3 = 0. By averaging outside Stokes vector

components over ϕ2

S↑, ↓out =
〈
S↑, ↓out (∆ϕ2)

〉
∆ϕ2

, (2.40)

we obtain outside Stokes vector of the structure with totally polarized source.
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Figure 2.4: Anisotropic multilayer structure with isotropic active layer

(n).



Chapter 3

Distribution of the source amplitude

Probability of the photon emission is related to the mechanism of the radiative recombi-

nation process and hence in most cases depends on the angle θ(n). It is well established

that emission in a semiconductor can be represented as an electric dipole emission in the

weak coupoling regime. Electric dipole is a vectorial point source, which in bulk material

can have any orientation. However, in quantum well structures, there is preference for

emission through horizontal dipoles [16]. In this section, we will discuse the optical quan-

tum selection rules for bulk and quantum well (QW) semiconductor structure. Because

of the conservation of angular momentum, the circularly-polarized photons are emited.

To model these transitions, we introduce system of two crossed linear sources (dipoles)

with the phase shift π/2. This approach enables to find the source terms Jd
↓ = [Ad

1 A
d
3]

T

and Jd
↑ = [Ad

2 A
d
4]

T of the active region, which amplify incident amplitudes as described

by Eq.(2.34).

3.1 Quantum optical selection rules

The optical selection rules are given by evaluating the dipole moment of the transition

between conduction band state |c〉 and valence band state |v〉 using the transition matrix
element

Dcv =
〈
c|D̂|v

〉
, (3.1)

where D̂ is the dipole moment operator. The Bloch states may be denoted using |J, mj〉,
where J denotes the total angular momentum and its projection onto the z axis is de-

scribed by the magnetic quantum number mj. The conduction band is represented by

14
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two states |1/2, ±1/2〉 , while the valence band is represented by two heavy hole states
|1/2, ±3/2〉 and two light hole states |1/2, ±1/2〉. Let us have the quantization axis

along the wavevector k and the crystal axis of the cubic AIIIBV crystal (001) in the z

direction. An electron state in the Γ-point of the conduction band can be described using

the Bloch wave function

ψc
km = ume

ik′r, (3.2)

where the Bloch amplitudes have the folowing form

uc
1/2 = |S ↑〉, uc

−1/2 = |S ↓〉. (3.3)

The |S〉 denotes the s-type wavefunction and arrows denote spin functions. The Bloch

amplitudes of the valence band can be described using the p-type wavefunctions |X〉, |Y 〉
and |Z〉 with symmetry in x, y, and z, respectively

uhh
3/2 = − 1√

2
(|X ↑〉+ i|Y ↑〉) (3.4)

uhh
−3/2 =

1√
2
(|X ↓〉 − i|Y ↓〉) (3.5)

ulh
1/2 =

1√
3

[
− 1√

2
(|X ↓〉+ i|Y ↓〉) +

√
2|Z ↑〉

]
(3.6)

ulh
−1/2 =

1√
3

[
1√
2
(|X ↑〉 − i|Y ↑〉) +

√
2|Z ↓〉

]
. (3.7)

Using previous relations, one can calculate the matrix element of dipole moment between

conduction and valence band, which corresponds to a classical dipoles representation

emitting circular and linear polarization [17](see Table 1).

cb 〈1/2, +1/2| 〈1/2, +1/2|
hh |3/2, +3/2〉 −

√
1/2(x̂+ iŷ) 0

|3/2, −3/2〉 0
√
1/2(x̂− iŷ)

lh |1/2, +1/2〉
√
2/3ẑ −

√
1/6(x̂+ iŷ)

|1/2, −1/2〉
√
1/6(x̂− iŷ)

√
2/3ẑ

Table 3.1: Matrix elements of the dipole moment Dcv/D [17].

As required for conservation of the angular momentum, radiative recombinations lead

to emission of right- (σ+) and left-circularly polarized photons (σ−), which have a projec-

tion of their angular momentum on the direction of the k vector equal to ±1, respectively.



CHAPTER 3. DISTRIBUTION OF THE SOURCE AMPLITUDE 16

Moreover, from intensity of dipoles follows, that the hh transition are three times more

probable than lh transition. Note, that the transition probability is proportional to |Dcv|2.
Let us define normalized transition probabilities

ξhh = 3/4 ξlh = 1/4 ξhh + ξlh = 1. (3.8)

Note, that in direct bulk semiconductor, hh and lh bands are degenerate at the Γ−point
and those rules are valid for all direction of the emission. In the case of the QW structure,

the degeneracy between the hh and lh valence bands is lifted due to quantum confinement

and in many cases occuring epitaxial strain. Moreover, this selection rules are valid only

in the vertical (Faraday) geometry, where the carrier spin orientation and the photon

emission are oriented perpendicular to the QW plane [17, 18].

Figure 3.1: (a)Selection rules in direct bulk semiconductor. Transitions

for which ∆mj = +1 and ∆mj = −1 result in the emission

of circularly polarized photons with negative (σ−) and posi-

tive (σ+) helicity, respectively. Moreover, transitions involving

heavy holes (hh) are three times more probable then those in-

volving light holes (lh). When we consider 2D quantum system

(b), the energetic splitting between hh and lh states appears

as a consequence of the quantum confinement and epitaxial

strain. In this case, the depicted selection rules are valid only

for vertical geometry [17, 18].

3.2 Dipole radiation

Electric dipole is a vectorial point source, which in bulk material can have any orientation.

However, in quantum well structures there is a preference for emission through horizontal
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dipoles [16]. Note, that the vector of the electric field emitted by a dipole lies in the plane

defined by vector k and vector of the dipole moment µ̄ [19]. The maximal field amplitude

is emitted in the plane normal to the dipole moment µ̄ and drops sinusoidally to 0 for

the direction of the dipole moment. Thus, in the case of the horizontal dipoles (plane

xy parallel to the interfaces), we could decompose the total emitted field into two scalar

cases: s-polarized and p-polarized fields generated by horizontal dipoles [12]

Ah
s = A sinϕ (3.9)

Ah
p = A cos θ cosϕ = A

k
(n)
z

nk0

cosϕ, (3.10)

where ϕ and θ are the azimuth and the elevation, respectively. If we consider random

randomly oriented dipoles, we could use an average of the amplitude over ϕ [20]

< P h
s >= A2 < sin2 ϕ >= A2 1

2π

2π∫

0

sin2 ϕdϕ =
A2

2

and

< P h
p >= A2

[
k

(n)
z

nk0

]2

< cos2 ϕ >= A2

[
k

(n)
z

nk0

]2
1

2π

2π∫

0

cos2 ϕdϕ =
A2

2

[
k

(n)
z

nk0

]2

.

Thus, we obtain

Ah
s =

A√
2

(3.11)

Ah
p =

A√
2
cos(n) ϕ =

A√
2

k
(n)
z

nk0

. (3.12)

We can express total radiated power through 4π sr

P h
s total =

∫

Ω

A2

2
dΩ′ =

A2

2

∫

4π

dΩ′ = 2πA2

P h
p total =

∫

Ω

A2

2
cos2 θdΩ′ =

2

3
πA2

To obtain normalized field amplitudes, let us consider total radiated power through 4π sr

as 1

P h
total = P h

s total + P h
p total = 2πA2 +

2

3
πA2 ≡ 1 ⇒ A = ±

√
3

8π
.
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Thus, final normalized field amplitudes are [12]

Ah
s = ±

√
3

16π
(3.13)

Ah
p = ±

√
3

16π
cos θ = ±

√
3

16π

k
(n)
z

nk0

. (3.14)

This approach enables calculation of the outside field amplitude of the classical RCLED

anisotropic structures, where active layer emitts linearly polarized photons.

3.3 Method of two-crossed linear sources

First let us consider that emission probability of the circularly polarized photon is angular

independent. Hence, for right- and left-circularly polarized waves propagating in the

+z (↓) and −z (↑) direction, respectively, we obtain source Jones vectors in the form

Jd
↓,R = Jd

↑,R =

(
1

i

)
(3.15)

Jd
↓,L = Jd

↑,L =

(
1

−i

)
. (3.16)

In other words, as described in previous section, circularly polarized part of incident

waves, which travel through the active plane, are amplified (see Eq.(2.34)). Imaginary

unit i represents π/2 phase shifting between two orthogonal (s- and p-polarized) linear

waves.

3.4 General appproach

Both photon emission probability and photon polarization in most cases depend on the

angle θ(n) and are related to the mechanism of the radiative recombination and to the pa-

rameters of the structures. Thus, it could be very useful to introduce general parametrized

function of the amplitude dependence on the emission angle θ(n). In the case of QW struc-

ture, where most energy is emitted in the direction normal to the plane, we introduce
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paremetrization of the source Jones vectors Jd
↓,R (3.15) and Jd

↓,R (3.16)

Jd
↓,R =

(
A↓s + B↓scoslθ(n)

i (A↓p + B↓pcoslθ(n))

)
Jd
↑,L =

(
A↑s + B↑scoslθ(n)

−i (A↑p + B↑pcoslθ(n))

)
(3.17)

and

Jd
↑,R =

(
A↑s + B↑scoslθ(n)

i (A↑p + B↑pcoslθ(n))

)
Jd
↓,L =

(
A↓s + B↓scoslθ(n)

−i (A↓p + B↓pcoslθ(n))

)
, (3.18)

where A, B and l are the nonnegative parameters, which could be determined using

theory or obtained from fit of experimental data. Note, that from symmetry reason is

sufficient to let θ(n) ∈< 0,π/2 >.

Let us combine this approach together with the quantum selection rules depicted in

Fig. 3.1. The source vectors Jd
↑,R and Js

↓,L (3.18) correspond with a transitions ∆mj = +1

resulting in the emission of circularly polarized photons with negative helicity (σ−) when

propagating in the +z direction (↓) but positive helicity (σ+) for −z direction (↑). If we
consider symmetry of the source

A↓s + B↓scoslθ(n) = A↑s + B↑scoslθ(n) = As + Bscos
lθ(n) (3.19)

and

A↓p + B↓pcoslθ(n) = A↑p + B↑pcoslθ(n) = Ap + Bpcos
lθ(n), (3.20)

the number of parameters is reduced and source vector has folowing form

Jd
↑ = Js

R =

(
As + Bscos

lθ(n)

i (Ap + Bpcos
lθ(n))

)
Jd
↓ = Js

L =

(
As + Bscos

lθ(n)

−i (Ap + Bpcos
lθ(n))

)
. (3.21)

Similarly, for ∆mj = −1 transitions we obtain

Jd
↓ = Js

R =

(
As + Bscos

lθ(n)

i (Ap + Bpcos
lθ(n))

)
Jd
↑ = Js

L =

(
As + Bscos

lθ(n)

−i (Ap + Bpcos
lθ(n))

)
. (3.22)

In the special case, when circularly polarized waves is considered in all direction, the

elements of the source vectors have simple form

As + Bscos
lθ(n) = Ap + Bpcos

lθ(n) = A+ Bcoslθ(n). (3.23)

Note that if we use parameters l = 1, Ap = Bs = 0 in (3.18) and (3.17), we obtain

situation of two crossed electric dipoles with a relative phase difference π/2. This source

emits circularly polarized wave in the direction orthogonal to the plane of these dipoles (z
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axis). Polarization changes from circularly through elliptical to linear in the direction of

the dipoles.

Recal from previous section that transition involving heavy holes are three times more

probable then those involving light holes. For example, if we inject carriers with 100%

spin polarization in mj = 1/2 state, the emited photons consists both of photons with

positive (σ−) and negative (σ−) helicity, while the intensity of σ− is three times stronger(in

the +z direction ↓). Denoting n± the densities of electrons in the ±1/2 electron states,
we can use following combination of the dipole sources.

Ad
↓↑ =

n+

n+ + n−

[
√
ξhh

(
1

icos θ(n)

)
+ eiϕ

√
ξlh

(
1

−icos θ(n)

)]
+

+
n−

n+ + n−

[
√
ξlh

(
1

icos θ(n)

)
+ eiϕ

√
ξhh

(
1

−icos θ(n)

)]
= (3.24)

=
1

n+ + n−

(
n+

√
ξhh + n−

√
ξlh + eiϕ

(
n+

√
ξlh + n−

√
ξhh

)

icos θ(n)
(
n+

√
ξhh + n−

√
ξlh − eiϕ

(
n+

√
ξlh + n−

√
ξhh

))
)
(3.25)

≡ hh

n+ + n−

(
nR + eiϕnL

icos θ(n) (nR − eiϕnL)

)
, (3.26)

where ξlh and ξhh are normalized transition probabilities defined by Eq.(3.8). Let us

define the effective polarization degree of emited photons

P ′ =
nR − nL

nR − nL

=

√
ξhh −

√
ξlh√

ξhh +
√
ξlh

n+ − n−
n+ + n−

, (3.27)

which is in the form of the product of the degree of transition probabilities and the spin

polarization of carriers

P =
n+ − n−
n+ + n−

. (3.28)

We let θ(n) ∈< 0,π/2 > and θ(n) ∈< π,π/2 > for A↑ and A↓, respectively. By averaging

final Stokes intensities over ϕ, we describe independence of hh and lh transitions. Note,

that the quantization axis is along the +z direction (↓).



Chapter 4

Models

In this chapter we demonstrate the theory on practical structures of multilayers with difer-

ent dipole sources. First we demonstrate basic aspects on simplified symmetric structure

with different Jones source vectors. In the next step, more realistic half spin-VCSEL

structure is modeled.

4.1 Simple multilayer structure with source layer

Figure 4.1 shows schematically modeled structure including source dipole layer in the

center. Thicknesses of the films are d(1) = d(3) = λ/n(1) = λ/n(3) and d(2) = 2λ/n(2),

where λ = 860 nm. Light emitted from the structure as a function of the angle from

surface normal θ(0) is calculated using Eqs. (2.37) (3.3) in terms of Stokes vectors.

Figures 4.2a and b show special case of isotropic system with the source layer emitting

pure s- and p- polarizations Js
↑ = Js

↓ = [1 0]T and Js
↑ = Js

↓ = [0 1]T , respectively.

Figure 4.1: Modeled structure shown schematically

21
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Figure 4.2: Special isotropic case with the source layer emitting pure s-

and p- polarizations.

Figure 4.3a shows special case of isotropic system with the source layer emitting pure

circular polarizations described using the Jones vectors Js
↑ = [1 i]T and Js

↓ = [1 − i]T .

Figure 4.3b shows radiation of the structure with the source emiting circular polarization

of oposite handness described using the Jones vectors Js
↑ = [1 − i]T and Js

↓ = [1 i]T .

Emitted light from the structure is partially polarized as shown in Figure 4.3c.
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Figure 4.3: Structure with the source layer emitting right and left handed

circular polarizations. Polarization degree of emited light is

shown as a function of emitting angle.



CHAPTER 4. MODELS 24

4.2 Realistic half spin-VCSEL

For the following model, Jones source vector (3.26) will be used. Figure 4.4 shows

schematically modeled structure including electrode (Au), magneto-optical spin-injection

layer (Co) in polar geometry ε
(Co)
12 = −ε(Co)

21 = −0.2i, tunnel barrier (MgO), active
layer GaAs with active plane in the center and Bragg structure. This structure is

part of so-called half spin-VCSEL, where the external mirror could be used. The wave-

length of the emitted light is λ = 860 nm. Optical constants are n(Au) = 0.23 + i5.68,

n(Co) = 3.82 + i4.84, n(MgO) = 1.73, and n(GaAs) = 3.66 [21, 22].

Figure 4.4: Modeled spin-structure shown schematically including the gold

electrode (Au), magneto-optical spin-injection layer (Co), tun-

nel barrier (MgO), active layer GaAs with active plane in the

center and Bragg structure.

Figures 4.5 and 4.6 demonstrate changes of the Stokes vector components during

varying of the injected spin polarization defined by Eq (3.28). One can see, that total

intensity S0 and component S1 do not change, but components S2 and S3 switch signs due

to different transition probabilities. Experimental measurment of the Stokes vector can

thus bring valuable information about injected spin polarized current. Maximal field is

emitted in the case of θ(0) = 18◦. This could be explained as an interference effect. Degree

of polarization shows depolarization effect which is caused by incoherent summation of

spontaneously emitted waves propagating in the direction up and down. As can be seen

on Figure 4.8, thickness of the GaAs film has crucial impact on extracted light due

to the interference effects. Figures 4.9 and 4.10 show effects of the weight coefficients

of spontaneous emission γ and stimulated emission δ, respectively. While γ does not

significantly change the emited pattern but has impact on the total intensity, δ enhances

significantly resonant peaks and thus changes the emitted pattern.
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Figure 4.5: The effect of the electron spin polarization. Subplots show

emission pattern for varying injected spin polarization P = 1,

P = 0.5, and P = 0.
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Figure 4.6: Continuation of Fig. 4.5. Subplots show emission pattern for

varying injected spin polarization P = −0.5 and P = −1.
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Figure 4.7: Degree of polarization of the emitted light in the case P = 1.
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Figure 4.8: Effect of thickness d(n). Subplot a d(n) = λ/3n(n) and subplot

b d(n) = λ/4n(n).
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Figure 4.9: Effect of the weight coefficient of spontaneous emission γ. Sub-

plot a γ = 0.2 and subplot b γ = 0.6.
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Figure 4.10: Effect of the weight coefficient of stimulated emission δ. Sub-

plot a δ = 0.2 and subplot b δ = 0.6.



Chapter 5

Conclusion

This thesis enabled me to study interesting part of modern physics including spin-

polarized light sources.

The main contribution of this diploma thesis is development of the new approach for

modeling spin-polarized LEDs and spin-VCSELs:

• modeling of light emission in resonant multilayer structure by using generalized 4×4
matrix approach fulfilling Maxwell equations in each layer and boundary conditions

for electromagnetic field

• representation of active layer by using two crossed dipole sources, which are directly

related to the quantum optical selection rules

• numerical demonstration of the approach on the half spin-VCSEL structure

Theoretical results is going to be published in a journal with impact factor. Main goals

for future work

• application of the formalism to the more complex structure such as spin-VCSEL

with multiple quantum wells

• experimental study of spin-VCSELs structures and fitting experimental data to

model

• study and modeling of quantum transition in more complex structures with spin-

polarized electric and polarized optical pumping

To continue my research in this part of physics, I would like to apply for joint PhD study

at VŠB-TUO, Ostrava and at Unité Mixte de Physique CNRS/Thales, Paris.
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