
10 

GeoScience Engineering Volume LVIII (2012), No.4 

http://gse.vsb.cz p. 10-22, ISSN 1802-5420 

EFFECT OF CALCINATION TEMPERATURE AND CALCINATION 
TIME ON THE KAOLINITE/TIO2 COMPOSITE FOR 

PHOTOCATALYTIC REDUCTION OF CO2 

VLIV KALCINAČNÍ TEPLOTY A DOBY KALCINACE NA 
KOMPOZIT KAOLINIT/TIO2 PRO FOTOKATALYTICKOU 

REDUKCI CO2 

Martin RELI
1
, Kamila KOČÍ

2
, Vlastimil MATĚJKA

3
, Pavel KOVÁŘ

4
, Lucie OBALOVÁ

5
 

1 
Ing, Department of Physical Chemistry and Theory of Technological Processes, Faculty of 

Metallurgy and Materials Engineering, VSB-Technical University of Ostrava  

17. listopadu 15, Ostrava, tel. (+420) 59 732 1529 

e-mail martin.reli@vsb.cz 

2
 doc., Ing., Ph.D, Department of Physical Chemistry and Theory of Technological Processes, Faculty 

of Metallurgy and Materials Engineering, VSB-Technical University of Ostrava 

 17. listopadu 15, Ostrava, tel. (+420) 59 732 1592  

e-mail: kamila.koci@vsb.cz 

3
 Ing., Ph.D, Nanotechnology center, VSB-Technical University of Ostrava 

 17. listopadu 15, Ostrava, tel. (+420) 59 732 1519  

e-mail: vlastimil.matejka@vsb.cz 

4 
 Ing, The Czech Technological Centre for Inorganic Pigments, Nábřeží Dr. E. Beneše 24, Přerov, tel. 

(+420) 58 125 2629 

e-mail: pavel.kovar@precheza.cz 

5
 prof., Ing., Ph.D, Department of Physical Chemistry and Theory of Technological Processes, Faculty 

of Metallurgy and Materials Engineering, VSB-Technical University of Ostrava 

 17. listopadu 15, Ostrava, tel. (+420) 59 732 1532  

e-mail: lucie.obalova@vsb.cz 

 

Abstract 

The kaolinite/TiO2 composite (60 wt% of TiO2) was prepared by thermal hydrolysis of a raw kaolin 

suspension in titanyl sulphate and calcined at different temperatures (600, 650 and 700°C) and for different times 

(1, 2 and 3 h). The obtained samples were characterized by XRPD, N2 physical adsorption and SEM, and tested 

for photocatalytic reduction of CO2. The different calcination conditions did not influence TiO2 phase 

composition, only slightly changed the specific surface area, and significantly affected crystallite size of 

kaolinite/TiO2 composite. A higher temperature and longer duration of calcination lead to higher crystallinity of 

the powder. The photocatalytic results showed that the crystallite size determined the efficiency of kaolinite/TiO2 

photocatalysts. 

Abstrakt 

Kompozit kaolinit/TiO2 (60 hm% TiO2) byl připraven termální hydrolýzou suspenze surového kaolinu v 

síranu titanylu a kalcinován při různých teplotách (600, 650 a 700°C) a po různou dobu (1, 2 a 3 h). Získaný 

vzorek byl charakterizován pomocí XRPD, N2 fyzikální adsorpcí a SEM, a testován na fotokatalytickou redukci 

CO2. Rozdíl kalcinačních podmínek neovlivnil složení fáze TiO2, pouze se mírně pozměnila specifická 

povrchová plocha a výrazně byla ovlivněna velikost krystalitu kompozitu kaolinit/TiO2. Vyšší teplota a delší 

doba kalcinace vedly k vyšší krystalitě prášku. Fotokatalytické výsledky ukázaly, že velikost krystality určuje 

účinnost fotokatalyzítoru kaolinit/TiO2. 

Key words kaolinite, TiO2, photocatalysis, carbon dioxide, reduction 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VSB Technical University of Ostrava

https://core.ac.uk/display/17303048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:martin.reli@vsb.cz
mailto:kamila.koci@vsb.cz
mailto:vlastimil.matejka@vsb.cz
mailto:pavel.kovar@precheza.cz
mailto:lucie.obalova@vsb.cz


11 

GeoScience Engineering Volume LVIII (2012), No.4 

http://gse.vsb.cz p. 10-22, ISSN 1802-5420 

1 INTRODUCTION 
The emission of carbon dioxide into the atmosphere is one of the most serious problems with regard to 

the greenhouse effect. Therefore, investigators make special effort to find effective methods to reduce CO2 

emissions, and moreover to convert CO2 into more useful compounds (methane, methanol, ethanol, formic acid 

etc.). The efficient photocatalytic reduction of CO2 with H2O is one of the most desirable and challenging goals 

in research around the topic of the environment [1-8]. 

Nano-sized TiO2 has received great attention as a photocatalyst due to a strong resistance to chemical and 

photocorrosion, high efficiency, lack of toxicity, and low cost. One of the possibilities regarding how to increase 

its photocatalytic activity is the introduction of TiO2 nanoparticles into the clay mineral structure [9]. 

Preparation, characterization and photocatalytic efficiency for CO2 photocatalytic reduction of kaolinite/TiO2 

composite was the subject of our recent work [10]. Significantly higher yields of CO2 reduction products were 

observed in comparison to a commercial TiO2 catalyst. Based on these promising results, we decided to provide 

the detailed study of an effect of kaolinite/TiO2 composite preparation conditions on physicochemical and 

photocatalytic properties. Calcination temperature is one of the factors determining these properties. 

Hamadanian et al. tested photocatalytic activity of the copper and sulfur codoped TiO2 photocatalyst for 

degradation of methyl orange (MO) solutions [11]. The hotocatalytic activity of undoped TiO2 calcinated at 500–

700°C and 0.1% Cu, S-codoped TiO2 calcinated at 500 and 700–850°C was tested under UV irradiation. 

Because of the sintering phenomenon, the size of nanoparticles increased while the calcination temperature was 

increased. Therefore, the surface area and photocatalytic activity decreased. 

Mahdjoub et al. studied photoinduced degradation of a mono azo dye methylorange by titania 

nanopowders [12]. The samples were prepared with the sulphate process and were annealed in air at 

temperatures of up to 750°C, for 30 min. The X-ray diffraction indicates that the thermal annealing resulted in 

coarsening the average crystallite size from 13 to 72 nm. The highest photoactivity was observed in material 

treated at 500°C (average crystallite size was 20 nm). 

Jia et al. probed photocatalytic activities of Ni, La-codoped SrTiO3 photocatalysts [13]. The 

characterization results show that the calcination temperature has a strong influence on the physical–chemical 

properties of as-synthesized photocatalysts. The surface area and porosity, even the initial adsorption rate for 

malachite green (MG), decreased with increasing calcination temperature. 

Kubacka et al. explored the simultaneous W–N doping of the anatase structure and, particularly, the 

influence of the calcination temperature in the photoactivity of the samples [14]. Gas-phase photodegradation 

tests were carried out with two organic pollutants (toluene and styrene). The maximum photoactivity was 

reached by calcination at 450°C and was concomitantly observed with near complete selectivity to partial 

oxidation products. Higher calcination temperatures yielded solids with significantly inferior photocatalytic 

performance. 

Zheng et al. investigated photocatalytic degradation of methyl blue (MB) on a P-doped TiO2 catalyst [15]. 

The rate constant of the P-doped TiO2 increased gradually with the increasing calcination temperature of up to 

approximately 700°C, and decreased at higher calcination temperatures. After calcination at 900°C, the activity 

of P-doped TiO2 was smaller, but its kinetic constant was still 2.5 times higher than that one during the 

calcination at 600°C. In contrast, the photocatalytic activity decreased greatly when the calcination temperature 

of pure TiO2 was increased from 600 to 700°C. 

The influence of calcination temperature of kaolinite/TiO2 composite on its photocatalytic against carbon 

dioxide has not been studied yet. The aim of the presented paper is to investigate the influence of the temperature 

and duration of kaolinite/TiO2 composite calcination on the yields of CO2 photocatalytic reduction in both 

phases (liquid and gas). 

2 EXPERIMENTAL PART 

2.1 Kaolinite/TiO2 composite preparation 

The composite kaolinite/TiO2 containing 60 wt.% of TiO2 was prepared by a thermal hydrolysis of the 

suspension of raw kaolin (SAK47, LB minerals) in titanyl sulphate (TiOSO4, Precheza a.s.), described in detail 

in a work published by Mamulová – Kutlaková et al [16]. The prepared composite was assigned KATI16, 

number 1 signals the sample in state after drying at 100°C, 6 depicts the content of TiO2 (60 wt.%). For the 

purpose of the evaluation of the influence of the KATI16 heat treating conditions on its photodegradation ability 

against CO2, KATI16 was calcined for 1h at 600°C to give sample KATI66; at 650°C to give sample 

KATI(65)6; at 700°C to give sample KATI76. With the aim to describe the influence of the duration of the 

KATI16 calcination at 600°C on its photodegradation ability against CO2, the composite KATI16 was calcined 

at 600°C for 2 and 3 hours to give samples being assigned KATI66(2) and KATI66(3), respectively. 



12 

GeoScience Engineering Volume LVIII (2012), No.4 

http://gse.vsb.cz p. 10-22, ISSN 1802-5420 

2.2 Characterization of kaolinite/TiO2 catalysts 

The phase composition of the prepared samples was studied using the X-ray powder diffraction method 

(XRPD). The XRPD patterns were recorded under CoKα irradiation using a Bruker D8 Advance diffractometer 

(Bruker AXS, Germany) equipped with a fast position sensitive detector VÅNTEC 1. Measurements were 

carried out in a reflection mode, and powder samples were pressed in a rotational holder. The phase composition 

was evaluated using the database PDF 2 Release 2004 (International Centre for Diffraction Data). The crystallite 

size Lc of anatase was calculated using the Scherrer equation, lanthanum hexaboride (LaB6) was utilized as a 

standard [17]. 

The morphology of composite particles was observed on SEM Philips XL 30 (PHILIPS). Samples were 

coated with an Au/Pd film and the SEM images were obtained using a secondary electron detector. Elemental 

composition of samples was determined using the energy dispersive X-ray analysis (EDAX). 

The specific surface area (SSA) of the powder samples was analyzed by nitrogen adsorption in a NOVA 

4000e (QUANTACHROME INSTRUMENTS) nitrogen sorption apparatus. The samples were degassed for 3h 

at 105°C before the measurement. SSA was determined by the multipoint BET method using the adsorption data 

in the relative pressure range of 0.1 - 0.3. 

The content of sulfur was determined using the CS244 carbon/sulfur determinator (LECO Corporation) 

equipped with the HT1000 induction furnace. The combustion process was carried out in ceramic crucibles filled 

with 1g of flux LECOCEL (tungsten particulates) and 1g of iron chip accelerator. 

2.3 Photocatalytic reduction of CO2 

The photocatalytic reduction of carbon dioxide was carried out in a homemade apparatus equipped with a 

stirred batch annular reactor with a suspended catalyst illuminated by a UV 8W Hg lamp (254 nm). The gas 

chromatograph (GC) equipped with flame ionization and thermal conductivity detectors (FID, TCD) were used 

for the analysis of gas and liquid reaction products. The details of the photocatalytic CO2 reduction experiment 

and analytical methods were described in our previous publication [18]. It is important to minimize the influence 

of transport phenomena during kinetic measurements. The elimination of CO2 diffusion from the bulk of gas 

through the gas–liquid interface in a laboratory batch slurry reactor was accomplished by saturating the liquid 

with pure CO2 before the reaction started [2, 3]. Catalyst loading of 1g . dm
-3

 was chosen to avoid concentration 

gradients in the bulk of stirred liquid with kaolinite/TiO2 suspension due to the scattering effect of light caused 

by the high catalyst concentration [3, 4, 19, 20]. The determination of a suitable volume of the liquid phase in 

our annular photoreactor to fulfill the requirement of perfect mixing has been published recently as 100 ml [21]. 

3 RESULTS AND DISCUSSION 

3.1 Characterization of kaolinite/TiO2 nanoparticles 

The X-ray diffraction pattern registered for all the samples of kaolinite/TiO2 reveals the presence of 

kaolinite, quartz, mica and anatase (Fig. 1). The kaolinite (001) basal diffraction line disappeared in all patterns 

of the calcined samples. This fact is attributed to the dehydroxylation of the kaolinite structure, which leads to 

the formation of an amorphous phase called metakaolinite. Another significant feature is the sharpening of 

anatase diffraction peaks related to the growth of the anatase crystallite size and increase of anatase content. 
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Fig. 1 XRPD of the original composite KATI16 and KATI16 calcined at the different temperatures (600°C, 

650°C and 700°C) and for different calcination time (1, 2 and 3 hours). 1 … kaolinite, 2 … quartz, 3… mica, 4 

anatase. 

The crystallite size is closely related to the calcination temperature (Tab. 1) as well as to the duration of 

the calcination at a given temperature as shown in Tab. 2, and the same relationship is true for sulphur content.  

Tab. 1 Selected characteristics of kaolinite/TiO2 catalysts calcinated at different temperatures  

 
Calcination temperature 

(ºC) 

Crystallite size 

(nm) 

SBET 

(m
2
 . g

-1
) 

SO3 

(wt. %) 

KATI16 dried 6* 65 3.50 

KATI66 600ºC 18 39 2.48 

KATI(65)6 650ºC 27 29 0.73 

KATI76 700ºC 34 24 0.35 

*The calculation of crystallite size was not feasible due to the overlapping of the 101 anatase diffraction 

line and 002 kaolinite diffraction line. The value was extrapolated from a specific surface area–crystallite size 

relation. 

The increase of the calcination temperature caused the decrease of the specific surface area and the 

increase of kaolinite/TiO2 crystallite size. The dried catalyst KATI16 had the highest specific surface, and the 

catalyst calcinated at 600ºC (KATI66) had the smallest crystallite size. 
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Tab 2. Selected characteristics of kaolinite/TiO2 catalysts calcinated at 600ºC with different duration of 

calcination  

 
Duration of calcination 

(hour) 

Crystallite size 

(nm) 

SBET 

(m
2
 . g

-1
) 

SO3 (wt. %) 

KATI66 1 18 39 2.48 

KATI66(2) 2 22 34 1.21 

KATI66(3) 3 23 33 1.13 

The increasing duration of calcination increased the crystallite size and decreased the sulphur impurity 

content of kaolinite/TiO2 catalysts. The specific surface area decreased with the duration of calcination only 

slightly. The highest changes of the crystallite size, specific surface area and impurity content were registered for 

the catalyst with a calcination duration of 1 and 2 hours (KATI66 a KATI66(2)) while the changes, when 

calcination was longer than 2 hours, were minimal (KATI66(2) and KATI66(3)). 

The morphology of the kaolinite sample and KATI66 sample that was studied using the scanning electron 

microscopy is illustrated in Fig. 2. It is evident from this image that TiO2 particles preferably grow on the 

kaolinite particles’ edges. This observation implies the idea that the rigid, smooth surface of kaolinite particles 

without cracks are not a suitable matrix for a TiO2 nanoparticles growth. This observation is in contrast with the 

observation proposed by Chong et al. who prepared a 7 nm thick compact layer using titanium (IV) 

tetraisopropoxide as a TiO2 precursor [22].
 

 

Fig. 2 SEM micrograph of kaolinite (a) and sample KATI66 (b). 

3.2 The photocatalytic reduction of CO2 

The effect of irradiation time on the formation of CO2 photocatalytic reduction products was investigated 

over a period of 0 – 24h on kaolinite/TiO2 catalysts calcined at different temperatures and for different 

calcination time. Fig. 3 shows the evolution of all reaction products as the functions of the irradiation time for 

the KATI66 catalyst. Two main products were determined: methane in the gas phase and methanol in the liquid 

phase. Hydrogen and low amounts of carbon oxide were also detected. Other products such as formic acid, 

formaldehyde, ethane and ethylene could also be formed [1, 4], but they were undetectable. The observed order 

of yields (μmol . g
-1

 . cat) was: H2 > CH4 > CH3OH ≥ CO. 
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Fig. 3 Time dependence of the product yields of CO2 photocatalytic reduction over the KATI66 catalyst. 

3.3 Effect of calcination temperature 

Comparisons of CH4, CH3OH and H2, CO yields over kaolinite/TiO2 calcined at different temperatures 

are shown in Fig. 4A, B and 5A, B, respectively. The yields of methane were negligible during the first 8h of 

irradiation in all cases with the exception of the most active KATI66 catalyst (Fig. 4A). A similar trend of CH4 

yield-time dependency was observed over all catalysts. 
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B 

Fig. 4 Time dependence of methane (A) and methanol (B) yields over the kaolinite/ TiO2 catalysts calcined at 

different temperatures. 

The yields of methanol were lower than the yields of methane (Fig. 4B). Incipient methanol can act as a 

sacrificial agent and in part can be completely oxidized to carbon dioxide and H2 [23, 24]. The data at 5 hours 

were measured but were under the limit of determinableness which was determined as 12 μg CH3OH per L (i.e. 

0.38 μmol CH3OH per g catalyst). The steepest curve of methanol yield was measured for the KATI66 catalyst. 

The hydrogen yields were not detected during the first 5 h of irradiation in all cases (Fig. 5A). After 5 h 

the hydrogen yields started to increase with the exception of the KATI76 catalyst. The yields of carbon 

monoxide increased after the first 5 h of the reaction over all catalysts with the exception of the KATI66 catalyst, 

formation of CO over this catalyst did not start until 16 h of the reaction. However, all CO yields were near the 

limit of detection (Fig. 5B). The most effective catalyst regarding main products was KATI66, which had a 

calcination temperature of 600°C. 
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B 

Fig. 5 Time dependence of the hydrogen (A) and the carbon monoxide (B) yields over the kaolinite/ TiO2 

catalysts calcined at the different temperatures. 

3.4 Effect of calcination duration 

The catalyst with the best photocatalytic activity – KATI66 – was calcinated for a different time (1, 2 and 

3 h) at 600ºC. Comparisons of CH4, CH3OH and H2, CO yields are shown in Fig. 6A, B and 7A, B, respectively. 

The yields of methane were negligible during the first 8 h of irradiation for the catalysts KATI66(2) and 

KATI66(3) (Fig. 6A). The highest yield of methane after 24 h of irradiation was observed over the KATI66(2) 

catalyst. The yields of methanol were almost the same (Fig. 6B). 
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B 

Fig. 6 Time dependence of methane (A) and methanol (B) yields over the kaolinite/TiO2 catalysts calcined for 

different calcination time. 

The hydrogen yields and yields of carbon monoxide are showed in Fig. 7A, B. A similar trend of yield-

time dependencies of both products was observed for both KATI66(2) and KATI66(3). These yields on 

KATI66(2) and KATI66(3) are higher than over KATI66 in the case of CO and lower in the case of H2. 
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B 

Fig. 7 Time dependence of the hydrogen (A) and the carbon monoxide (B) yields over the kaolinite/ TiO2 

catalysts calcined for different calcination time. 

Generally, all studied physicochemical characteristics; phase composition, specific surface area, 

crystallite size and sulphur impurity contents can influence photocatalytic properties of kaolinite/TiO2 catalysts. 

In our case, different conditions of calcination did not change the TiO2 phase composition. Specific surface areas 

of calcinated composites were lower in comparison to a dried one. However, different calcination conditions 

(temperature, duration) did not change the specific surface area substantially; their deviations were close to the 

experimental error (± 10%). For the above mentioned reasons, the specific surface area and phase composition of 

kaolinite/TiO2 composites calcined at different conditions were not the main parameters that determined their 

photocatalytic activity. 

For examination of the effect of crystallite size on CO2 photocatalytic reduction efficiency, the yields of 

CH4, CH3OH and CO after 24 hours irradiation for all tested catalysts were compared (Fig. 8). The data from the 

longest reaction time span were chosen for the photoactivity comparison because the yields of all products were 

the highest and their GC analysis was the most accurate. It is obvious from the Fig. 8 that the photoreactivity of 

kaolinite/TiO2 increases when the crystallite size is increased from 6 nm to 22 nm, but decreases when it is 

further increased to 34 nm. The yields of all products were the highest over the catalysts with a crystallite size of 

18-23 nm; these samples were calcined at 600°C for different times (1h, 2h a 3 h). The crystallite size influenced 

the dynamic of e
-
/h

+
 recombination, and so influenced the efficiency of photocatalytic reactions. 

 
Fig 8. Dependence of the product yields (after 24 hours of irradiation) on different catalysts. 
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yields was also found for other photocatalytic reactions which depend on the oxidation potential of 

photogenerated holes, e.g. the degradation of trichloroethylene (with an optimal crystallite size of 7 nm) [25], 

phenol (with an optimal crystallite size of 25-40 nm) [26], trichlormethane (with an optimal crystallite size of 10 

nm) [27], congo red (with an optimal crystallite size of 10 nm) [28]. From the results in Tab. 1 and Tab. 2, it is 

evident that the sulphur impurity contents decreased with an increase of temperature and duration of calcination. 

However, this parameter probably was not predominant for photocatalytic activity of kaolinite/TiO2 composites. 

4 CONCLUSIONS 

The influence of calcination conditions (the temperature and duration) of the kaolinite/TiO2 composite on 

the physicochemical properties and on the yields of CO2 photocatalytic reduction was studied. It was determined 

that different calcination conditions did not influence TiO2 phase composition; only anatase diffraction lines 

were found in all kaolinite/TiO2 samples. A slight decrease of specific surface area was observed for the 

calcinated kaolinite/TiO2 composite compared to that of a noncalcinated kaolinite/TiO2 composite. The 

crystallite size was closely related to the temperature as well as to the duration of the calcination. The crystallite 

size increased with an increase of the calcination temperature and duration. The photocatalytic results showed 

that the crystallite size plays an important role in the nanocrystalline kaolinite/TiO2 composite. The yields of all 

products were the highest over the catalysts with a crystallite size of 18-23 nm; these samples were calcined at 

600°C for different times (1 h, 2 h a 3 h). 
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RESUMÉ 

Kompozit kaolinit/TiO2 (60 hm% TiO2) byl připraven termální hydrolýzou suspenze surového kaolinu v 

síranu titanylu a kalcinován při různých teplotách (600, 650 a 700°C) a po různou dobu (1, 2 a 3 h). Získaný 

vzorek byl charakterizován pomocí XRPD, N2 fyzikální adsorpcí a SEM, a testován na fotokatalytickou redukci 

CO2. Rozdíl kalcinačních podmínek neovlivnil složení fáze TiO2, pouze se mírně pozměnila specifická 

povrchová plocha a výrazně byla ovlivněna velikost krystalitu kompozitu kaolinit/TiO2. Vyšší teplota a delší 

doba kalcinace vedly k vyšší krystalitě prášku. Fotokatalytické výsledky ukázaly, že velikost krystality určuje 

účinnost fotokatalyzítoru kaolinit/TiO2. 

 

 


