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A Review of Wood Machining Literature with a Special 
Focus on Sawing 
 

Andrew Naylor,* and Phil Hackney 

  
In this review, fundamental wood machining research is evaluated to 
determine the general cutting mechanics of simple, orthogonal, and 
oblique cutting tools. Simple tool force trends and chip formation 
characteristics are indentified here, along with the cause and effects of 
tool wear. In addition to this, specific methods of evaluating sawing 
processes have been investigated. These include the use of 
piezoelectric dynamometers to record tool forces and high speed 
photography to evaluate chip formation. Furthermore, regression 
analysis has been previously used to identify tool force trends with 
respect to both tooth geometry parameters and work-piece properties. 
This review has identified the original findings of previous research. This 
will allow for further original research to be conducted. 

 
Keywords:  Wood Machining; Tool Forces; Tool Wear; Sawing 

 
Contact information:  a- School of Computing, Engineering and Information Sciences, Ellison Building, 

Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom  

* Corresponding author: andrew2.naylor@northumbria.ac.uk 

 
 
INTRODUCTION 

Throughout history the handsaw has proven to be one of the most widely used 

hand tools. This dates back to the first flint saws used during the Neolithic revolution 

circa 9500 BC (Jones and Simons 1961). In subsequent eras the technology continued to 

advance through the bronze and iron ages. Applications of the hand saws widened 

through the Roman era, where they became increasingly used in construction and even as 

a method of execution (Suetonius-Tranquillus, AD 119). The closed handle handsaw that 

we recognize today has its origins at the turn of the 18
th

 century. Prior to this, saws with 

an open handle or “pistol grip” were the norm. The teeth were manually filed and set 

using a small hammer and anvil. In the developing world, where carpenters see their tools 

as an investment rather than a replaceable good, this method is still widely used. The saw 

teeth are re-set and filed when the edges become too worn for functional use, thus 

increasing the life of the saw. Since the latter part of the 20
th

 century, the developed 

world has opted for hardened saw teeth. This is achieved by inducing an electromagnetic 

field at the edge of the blade heating the steel and hence forcing martensitic transform-

ation. This makes the saw teeth extremely resilient to tool wear, removing the need to re-

sharpen. Additionally, grinding and setting are fully automated processes.   

Research performed into optimum wood machining conditions (Eyma et al. 2004; 

Méausoone 2001) states that there are generally three types of factors that affect the 

cutting mechanics:  

 

1. Factors attributed to the machining process 

2. Factors associated with wood species/intrinsic properties 
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3. The moisture content of the wood 

Analysis of the wood cutting process in the published literature (Franz 1958; 

Kivimaa 1950; Koch 1964; McKenzie 1961) examines these three effects, with 

publications investigating defects in the wood grain such as knots (Axelsson 1994). 

Wood has three planes of symmetry; axial, radial, and tangential. Corresponding 

to these planes of symmetry are the cutting directions by which machining processes can 

be described (Fig. 1). When referring to a machining direction, the established labeling 

system employs two numbers separated by a hyphen. The first number denotes the 

orientation of the cutting edge to the wood grain direction; the second number denotes the 

movement of the tool with respect to the grain direction. To illustrate this, the three main 

cutting directions are listed: 

 

 90°-90° - The axial plane or the wood end grain. Both the cutting edge and tool 

movement are perpendicular to the grain.  

 0°-90° - The radial and tangential planes, cutting across the grain. The cutting 

edge is parallel to the grain but the tool movement is perpendicular. 

 90°-0° - The longitudinal plane, cutting along the grain. The cutting edge is 

perpendicular to the grain but the tool movement is parallel. 

 

Previous research into wood-cutting mechanics investigated machining parallel 

and perpendicular to the grain (Axelsson 1993, 1994; Franz 1955, 1958; Huang 1994; 

Koch 1964; McKenzie 1961; Woodson and Koch 1970). Additionally, more recent 

studies have investigated the effects of cutting across the grain at various angles with and 

against the annual growth rings (Costes et al. 2004; Goli et al. 2002b, 2003, 2005, 2009).   

Contrary to wood machining, a significant volume of research has been performed 

in the area of metal cutting, the most fundamental of which describe it as a plastic 

deformation process of an isotropic material (Ernst 1938; Merchant 1944). Wood is a 

material that is both heterogeneous and  anisotropic,  making it very unpredictable during   

 

 
 
Fig. 1. Wood machining directions 
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any machining process. On a macroscopic level, wood gains its non-uniform structure 

from its concentric annual growth rings composed of earlywood cells (formed during the 

darker, cooler spring months) and latewood cells (formed during the warmer, lighter 

summer months). These cells grow longitudinally through the trunk of the tree. 

Additionally, wood contains knots where limbs grow out from the trunk; these weaken 

wood as a material as they are poorly bonded to the surface which surrounds them. 

 

 
THE PLAINING PROCESS 
 
Orthogonal Plaining 

Plaining is a process by which a knife edge removes a layer of material on the top 

surface of a work-piece. As there is clearly material removal in the form of chip or swarf, 

analysis of the chip formation is often used to characterize the process. Early research 

into the metal-cutting process by Ernst (1938), Merchant (1944), and Lee and Shaffer 

(1951) has established relationships between the cutting conditions and the deformed 

chip. These relationships have successfully explained the process as plastic deformation 

of an isotropic material. As wood is an anisotropic material, chip formation changes with 

respect to the machining direction. 

The first comprehensive investigation into wood machining (Kivimaa 1950) 

investigated the effects of varying tool geometry and species factors for plaining 

operations. In experimental work evaluating the cutting action of the tool, the work-piece 

properties were not varied, standardizing on Finnish birch as the sole species. It was 

found that the main cutting force was inversely proportional to the sharpness of the tool, 

i.e. the sharper the tool, the lower the force. It also can be stated at this point that the 

thrust force is caused by contact between the rake face and the chip. Larger rake angles 

result in greater chip thickness hence lower thrust force. This is because the chip is not 

being compressed at the extreme cutting edge. Although it is observed that there is no 

significant effect of cutting velocity on the major cutting force, the orientation of the tool 

with respect to the grain does have a significant effect on the cutting forces. The highest 

cutting forces are observed to be in the 90°-90° direction (wood end grain), with the 

lowest cutting forces in the 90°-0° direction (cutting along the grain). 

In other experimental work (Axelsson et al. 2003) the tool sharpness and rake 

angle remain constant for the testing of 21 different species of wood. Analysis of data 

found a linear trend between the density of the wood and the major cutting force. From 

this empirical data, a predictive model for cutting force was created. 

For orthogonal wood cutting, extensive work into the chip formation produced 

through varied cutting conditions has been carried out by Franz (1955, 1958), McKenzie 

(1961), and Woodson and Koch (Koch 1964; Woodson and Koch 1970). The cutting 

tools used in the experiments represent a planing tool that removes material across the 

entire width of the work-piece. This set-up typically consists of the tool being attached to 

a strain gauge rosette (measuring cutting and thrust force components). Cutting along the 

grain gives three types of characterized chip (Fig. 2):  

 Type I chip is caused by a large rake angle producing negative thrust forces 

(acting in a positive vertical direction relative to the work-piece). The wood fibres 

split ahead of the tool and finally fail due to bending. This type of chip is 

beneficial where quick removal of material is required. 
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 Type II chip is formed by a very sharp tool edge and a diagonal plane of shear. 

Excellent surface finish is achieved due to the continuous chip formation. 

 Type III chip is caused by dull tool edges and very small or negative rake angles. 

It is also suggested that very large depths of cut may form this chip where there is 

too much contact with the blade surface. This type of chip causes a raised fuzzy 

grain where wood fibres protrude, hence a poor surface finish.  

 

Further work done by Woodson and Koch (1970) cutting across the grain 

demonstrates that higher moisture contents increase the length of chip type II before 

failure. The forces observed in the latewood fibers are approximately double that of the 

earlywood fibers with a positive correlation between cutting force and moisture content. 

The same publication documents the effects of cutting across the grain in what is 

described as the veneer peeling process. This process uses high rake angles 

(approximately 70°) and small depth of cut (less than 1 mm) with a nosebar used to 

compress the cells before cutting to ensure that the veneer remains a single unbroken 

sheet. The chip is formed by an initial compaction of the wood fibres (3) followed by an 

ongoing shearing process (2) with some tensile failure also observed (1) (Fig. 3). This 

form of cutting results in higher forces and discontinuous chip compared to veneer 

peeling. Cutting forces for ealywood and latewood in this direction are the same. 

McKenzie (1961) investigated the effects of cutting across the grain and 

discovered two distinct chip types (Fig. 4). Type I is typical for cutting wood with a very 

high moisture content and type II for low moisture content. The cutting mechanics for 

both conditions specify a tensile failure mode causing parallel gaps to propagate between 

the fibers; however, these gaps become larger with decreased moisture content. Cutting 

forces in this direction are strongly affected by cell type, moisture content, depth of cut, 

and rake angle, where the values of the cutting force for latewood are approximately 

three times the values for earlywood.  

Further research (Goli et al. 2001a, 2002a,b, 2003, 2005, 2009) delves into the 

change in cutting mechanics when machining at different orientations with respect to the 

grain. The grain orientation that provides the highest forces and leaves behind the most 

protruded distorted grain is cutting in the 90°-90° direction (Goli et al. 2005). As 

previously discovered by Kivimaa (1950), cutting parallel to the grain provides the 

lowest cutting force values (Costes et al. 2004) with chip formation characteristic of the 

Franz type 1 chip. Furthermore cutting at angles with the annual growth rings produces 

smaller cutting forces and less distorted grain compared to cutting against the growth 

rings (Goli et al. 2009). 

Analysis of the formation of the surface finish also has been investigated (Goli et 

al. 2001a,b, 2002a; Goli and Uzielli 2004). Surface roughness measurements using a 

perthometer (optical 3D roughness measurement) and a profileometer (surface roughness 

stylus) were taken to quantify the surface finish of the woods. Machining in the standard 

machine directions (90°-0°, 0°-90°, 90°-90°) provides results concurrent to the respective 

chip formation types of Franz, McKenzie, and Koch.  

Typically cutting along the grain provides a better surface finish than cutting 

across the grain, where the effects of moisture content, rake angle, depth of cut, and edge 

sharpness all affect the surface finish in the same way as previously investigated in the 

fundamental studies (Franz 1958; Koch 1964; McKenzie 1961). In reflection, when 

cutting at angles with and against the annual growth rings it is established that the surface 
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Fig. 2. McKenzie chip types, along the grain (McKenzie 1961) with permission from the University 
of Michigan 

 

 

 

 
Fig. 3. Veneer Peeling, Across the Grain (Woodson and Koch, 1970) with permission from the 
U.S Department of Agriculture 

 

 

 

 
Fig. 4. Machining the wood end grain (Woodson and Koch 1970) with permission from the U.S 
Department of Agriculture 
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roughness is significantly larger when cutting at angles against the growth rings as 

opposed to with the growth rings. This has been verified by both surface roughness 

measurement techniques.  
 
Oblique Plaining 

In orthogonal cutting, it has been known for tools with large rake angles (>25°) to 

produce negative thrust forces (acting in a positive vertical direction relative to the work-

piece), although this observation is usually attributed to a larger depth of cut (Franz 1958; 

Woodson and Koch 1970). For oblique cutting parallel to the grain, the cutting and thrust 

forces decrease as the oblique edge angle increases (Jin and Cai 1996, 1997). As 

observed with orthogonal cutting, it is also recognized that negative thrust forces can also 

occur when wood is machined using oblique tools (Jin and Cai 1997). This occurs for the 

same cutting conditions as with oblique cutting (large rake angles and depths of cut) for 

oblique edge angles over 30°. It is recognized that the negative thrust forces cause the 

propagation of longitudinal cracks in front of the knife edge during cutting (Franz 1958; 

Stewart 1971, 1986). By decreasing the rake angle and depth of cut, the magnitude of the 

negative thrust force becomes lower and eventually changes from negative to positive. 

This reduces the roughness of the surface caused by the chip splitting ahead of the tool, 

instead leaving behind a slight fuzzy grain (Fernando 2007). 

It has been observed that fibers have been pulled out or up-rooted from the work-

piece when cutting perpendicular to the grain (de Moura and Herandez, 2006). After 

further investigation, this phenomenon has been explained as being caused by lateral 

forces exerted on the work-piece by the oblique tool (de Moura 2006). This causes 

greater observed surface roughness when compared to that of surfaces that have been 

machined using orthogonal tools. Furthermore, an increase in the oblique edge angle 

causes more fibers to be pulled out, and hence, an increase in the surface roughness of the 

work-piece.    

A study investigating cutting with extreme oblique angles (Fischer et al. 2011) 

states that cutting with very large oblique angles (45° to normal and above) provides a 

much better surface finish when compared with orthogonal cutting. This is a result of the 

time delayed edge engagement and an increased cutting edge contact with the work-

piece. This effect also results in lower forces acting on the tool, which in turn, reduces 

tool wear.  

 
 
TOOL WEAR 
 

Causes of Tool Wear 
In a comprehensive review on wood cutting tool wear (Klamecki 1979), it was 

concluded that the abrasive wear plays the largest role in the edge recession of tools. 

From recent studies (Bailey et al. 1983; Bayoumi et al. 1983, 1985; Mohan and Klamecki 

1982; Scholl and Clayton 1987) it is evident that cemented carbide tools are extremely 

sensitive to corrosive wear, suggesting that high speed steel is a better corrosion resistant 

alternative. Having said this, corrosive wear has been known to significantly affect high 

speed steel when cutting green wood (McKenzie and Hillis 1965; Mohan and Klamecki 

1982). This is due to much higher moisture content values as well as naturally occurring 

acids and phenolic compounds.    
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The presence of silica and other mineral entrapments is known to play a role in 

corrosive wear (Müller et al. 2011); however, further study has shown that the silica 

residue found within the wood cell walls plays a very small role. Instead, contamination 

with coarse silica during the harvesting and storage of timber/lumber is seen to contribute 

in a larger way to corrosion. It is also suggested that the mechanical properties of tool 

material at the tip, or even coating materials, can be altered by corrosive wear (Gauvent 

et al. 2006). This can allow the effects of abrasive wear to become more prominent or 

even result in brittle failure. 

 
Effects of Tool Wear on Cutting Mechanics 

Kivimaa was the first to notice an increase in cutting forces due to the dulling of 

the cutting edge (Kivimaa 1950). It has been documented that all of the tool forces 

(cutting, thrust, and side force) are sensitive to tool wear (McKenzie and Crowling 1969) 

with side force said to be the most affected by wear. 

Further research documents a rise in the cutting force with respect to continuous 

length of cut (Pahlitzsch and Jostmeier 1965). Cutting force vs. length of cut has a similar 

trend to edge recession vs. length of cut (Bartz and Breier 1969); both exhibit a rapid 

exponential rise which then levels off. A more detailed study offers an explanation of 

how tool forces increase due to wear (Bier and Hanicke 1963), describing the wear and 

cutting force increase over a continuous length of cut in three stages: 

 

1. An exponential increase in cutting force which plateaus. This is caused by the 

initial blunting of the tool. 

2. A linear increase with small gradient. The tool is now blunt and this trend is 

caused by edge rounding where the radius gradually increases. 

3. An exponential increase and then failure. When critical edge radius has been 

reached, the clearance face starts to wear, eventually causing the failure of the 

tooth.        

Using this knowledge, research into a predictive model for tool wear was 

conducted (McKenzie and Cowling 1971), revealing a linear relationship between the 

main cutting force and the square root of the edge radius. It was also noted that the 

relationship between the main cutting force and wear on the clearance face was 

approximately linear.  

When compared to the machining of wood using sharp tools, it is widely accepted 

that worn edges generally lead to a more compressed chip formation and to a work-piece 

with a fuzzier, protruded grain (Franz 1958; Kivimaa 1950; Koch 1964; McKenzie 1961; 

Woodson and Koch, 1970). This is true for all of the major machining directions.  

 
 
MECHANICS OF WOOD SAWING 
 
Tooth and Blade Geometry 

Nomenclature for tooth geometry is detailed by British Standards (British-

Standards-Institute 1999). The geometry of the saw teeth can be varied to suit the end use 

of the saw. Rip saws have unbeveled cutting edges and small rake angles to remove 

material parallel to the grain. Cross cutting saws, however, need negative rake angles and 

sharp beveled edges to sever the wood fibers perpendicular to the grain. Compound saw 
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teeth have more than one cutting edge so that they can generally perform well cutting 

both parallel and perpendicular to the grain. Fleam teeth are usually seen on bow-saws 

for cutting green wood, where the rake and flank angles are the same to allow cutting in 

both directions. 

The thicknesses for the blade raw material is also specified (British Standards 

Institute 1999) with the prospective user in mind. The teeth should be alternately set on 

either side of the blade. Approximately two-thirds of each tooth measured from the tip 

shall be set, and the method of setting shall be such that the remainder of the tooth will 

remain undeformed. The set width of the left and right set teeth should be equal and shall 

be expressed as a ratio of the thickness of the blade. For cross cutting and general use 

saws, this should be no less than one-fifth and no more than two-fifths the thickness of 

the blade on each side of the tooth. For rip saws no less than one-quarter and no more 

than one-half the thickness of the blade should be on each side. Saw blades use a variety 

of different set patterns depending upon the wood grain direction and the driving method 

(either manual or machine driven). Hands saws use a variation of the raker set.  

During rip sawing, the wood fibers are initially compressed and then sheared 

(Lundstrum 1985). Post shearing the compressed fibers adjacent to the shearing edge 

causes them to spring back nearly to their original position. For this reason, the set of the 

saw must be large enough to prevent the sprung back fibers from making contact with the 

body of the saw. Softwoods produce fuzzy grain leaving the kerf not as cleanly cut as 

hardwoods, hence sawmills processing mainly softwoods apply greater set widths to the 

saw teeth.  

Increased gullet size limits the number of teeth per unit of length of blade (i.e. 

decreases pitch). The feed velocity during sawing must be reduced for decreased pitch 

saws to prevent an excessive depth of cut per tooth, known as over-biting. Conversely, 

small gullet sizes tend to increase the tooth pitch (Lundstrum 1985). In band sawing, the 

cutting velocity needs to be reduced, as sawdust can become compressed within the 

reduced gullet. The reciprocating cutting stroke does not provide enough of a respite for 

the sawdust to be removed from the kerf. In order to overcome these problems, it is 

recommended that the area of the gullet should be approximately the same as the area of 

the tooth. Furthermore, the bite of the tooth should be approximately one third of set 

width. This is to ensure that the smallest of the sawdust particles will not be any larger 

than the set width and hence will be completely swept out of the machined groove by the 

set teeth, whereby reducing lateral cutting forces. 

Using a blade with uniform tooth pitch results in the set and unset teeth having the 

same bite profile, and hence, the same principle cutting and thrust forces (Andersson et 

al. 2001). Using a differential pitch (i.e. the gullet size of the set teeth is smaller than that 

of the neutral teeth) means that the set teeth have only a fraction of the bite of the neutral 

teeth. This results in the role of the set teeth to be that of removing swarf from the kerf 

rather than actually performing any of the cutting action. Reduced lateral cutting forces 

and wear are observed for the set teeth. 

Beveling the outer lateral edge of the set teeth reduces the bite profile and 

improves the surface quality through less damage to the fibers (creating cleaner cuts) 

(McKenzie 2000). Beveling the inner lateral edge of the set teeth can increase the bite 

profile up to two fold. This in turn can cause an increase in the cutting forces and a 

reduction in observed surface quality. Overall, beveled teeth reduce the cutting forces, 

hence improving cutting performance. Uniform tooth pitch and geometry results in high 
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surface quality and accurate sawn dimensions. The number of teeth/points per 25 mm 

shall be in accordance to British Standards (British Standards Institute 1999). 

 
Tool Forces 

Cutting forces for single saw tooth tests are generally measured and recorded 

using one or more piezoelectric transducers. A piezoelectric transducer is a quartz crystal 

that generates an electric charge in response to an applied load. They can be calibrated to 

measure exact forces with very small margins of error. The simplest of data acquisition 

systems consist of a single transducer connected to a single saw tooth, aligned to measure 

the force in the direction of cutting (Ratnasingam and Scholz 2011). Where three 

transducers are simultaneously used to measure forces in the X, Y, and Z directions, they 

are collectively referred to as a force dynamometer. Dynamometers are generally set up 

to constrain the work-piece (wood), and thus, record the resultant forces applied by the 

single tooth. The transducers aligned in the X, Y, and Z directions are set up to record 

cutting, lateral, and thrust forces. Usually the X and Y directions record cutting or later 

forces and the Z direction records the thrust force, although this is completely dependent 

on orientation of the tool path with respect to the work-piece. This method has also been 

used for a constrained tooth with the work-piece attached to a moving feed bed 

(Loehnertz and Cooz 1998). Regarding wood cutting mechanics, the tool forces are the 

most important measured response attributed to the tooth for a repeatable work-piece (i.e. 

if the work-piece stays the same but the tooth changes).  This can either be in the pure, 

unaltered force form (Axelsson 1994; Axelsson et al. 1993; Cristóvão et al. 2011; Ekevad 

and Marklund, 2011; Lhate et al. 2011; Porankiewicz et al. 2011), or as a specific force 

value with respect to depth of cut or volume of material removed (Cooz and Meyer 2006; 

Ko and Kim 1999; Orlowski et al. 2011; Orlowski and Palubicki 2009). 

For band-sawing operations, machining across the wood fiber direction positive 

rake angles of 15°-30° are used for high power driven processes (Lundstrum 1985). The 

tooth is allowed to “hook” or “barb” onto the work-piece to allow for quick machining. 

These rake angles would be far too large for hand sawing operations, as the forces 

required for cutting would be too large to perform manually. Clearance angles are varied 

(between 6° and 16°) for varying feed velocities. This is to prevent the flank of the tooth 

from making unnecessary contact with the work-piece during sawing. This will decrease 

the overall friction hence reducing thrust forces. Research into the effects of changing the 

rake angle of band-saw teeth when machining the wood end grain (the 90°-90° direction), 

has yielded interesting results with regard to the force in the direction of cutting 

(Vazquez-Cooz and Meyer 2006).  Three teeth with 25°, 30°, and 35° rake angles were 

examined. It was found that the largest rake angle produced the lowest cutting forces and 

the smallest rake angle produced the largest cutting forces.  

A comparison of the performance between individually set teeth and swaged teeth 

show a reduction in lateral forces for the swaged teeth (Okai et al. 2006). Furthermore a 

quadratic relationship has been established between the variation (standard deviation) of 

lateral forces and side clearance. Through analysis of the cutting and thrust and side 

forces, a mechanistic cutting force model could be developed evaluating the individual 

roles of the set and neutral teeth (Ko and Kim 1999). It was found that the unset teeth 

contribute to the majority of the cutting and thrust force, and the set teeth cause the 

majority of the lateral forces measured. 

Regression analysis has been frequently used to develop predictive cutting force 

models for simple rip tooth geometries (Axelsson et al. 1993; Cristóvão et al. 2011; 
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Lhate et al. 2011; Porankiewicz et al. 2011) where a linear decrease in the cutting force 

for an increased positive rake angle (10° to 30°) has been observed (Axelsson et al. 

1993). At the same time a linear increase in cutting forces is observed for increased edge 

radii (5 to 20 m). This shows that in the ripping scenario, sharp teeth with small rake 

angles provide the lowest cutting forces. Factors that are considered to have a significant 

effect on the major cutting force are depth of cut, rake angle, and edge radius. Cutting 

force increases with depth of cut, increases with edge radius, and decreases with rake 

angle. Furthermore, cutting the wood end grain yields the largest cutting forces with the 

lowest cutting forces observed machining along the fiber direction. Work-piece 

parameters have been used as predictors in statistical modeling to describe force trends. 

The most often used parameters are density, moisture content, and grain direction. In 

addition to this, numerical coefficients have previously been determined to discretely 

quantify wood species (Porankiewicz et al. 2011). Adding additional moisture to a piece 

of timber leads to swelling; likewise, removing moisture from timber leads to shrinkage. 

As a result of this change in volume, the density did not dramatically change with respect 

to moisture content. Higher tool forces are observed when cutting wood species of greater 

density (Cristóvão et al. 2011; Lhate et al. 2011). It is generally accepted that tool forces 

decrease with increased work-piece moisture content, although an exception to this rule 

has been found for frozen wood specimen (Porankiewicz et al. 2011). Increased moisture 

content for frozen wood leads to an increase in tool forces. Furthermore, work-pieces at 

decreasing sub-zero temperatures lead to a significantly higher tool forces.  

An investigation into lateral tool forces was conducted for sharp beveled tooth 

geometries (Ekevad and Marklund 2011). Very sharp teeth yielded insignificant lateral 

forces in all machining directions. Lateral forces only became noticeable when the teeth 

became worn or damaged. In this instance, high lateral forces were observed machining 

both the wood end grain (90°-90° direction) and the across the fiber direction (0°-90° 

direction), with lower lateral forces machining along the grain (90°-0° direction).  

Evidence from fundamental literature suggests that cutting velocity has negligible 

effect on the forces acting on the tool. This is for the ranges of 0.2 m/s to 6.3 m/s along 

the grain (McKenzie 1961) and 2.5 m/s to 50 m/s across the grain (Kivimaa 1950). 

 
Chip and Surface Formation 

Research into the effects of varied rake angle band-saw teeth on the on surface 

formation was conducted (Vazquez-Cooz and Meyer, 2006). This was performed 

machining in the 90°-90° direction (wood end grain). Three teeth with 25°, 30°, and 35° 

rake angles were examined. Initially, it appeared that the 25° and 35° rake angles 

produced a smooth work-piece finish after machining, whilst the 30° rake angle produced 

a rough finish with fuzzy grain. Microscope images showed that the 25° rake angle only 

appeared smooth, when in fact the machining caused fuzzy grain which was then 

compressed due to the comparably lower rake angle of the tooth. 

A high speed camera has been previously utilized to capture footage of the cutting 

process for single circular saw teeth (Ekevad et al. 2011). The camera was set up to 

record 40,000 frames per second for a circular saw rotating at a speed of 3250 RPM. 

Green, dry, and frozen wood were machined in the 90°-0° direction (along the grain) 

using single rip teeth with rake angles of 0°, 10°, 20°, and 30°. The only observed 

continuous chip formation was for green wood, with the dry and frozen work-pieces 

yielded smaller broken wood particles. Furthermore the footage was able to evaluate the 

action of the gullet. Reduced rake angle leads to a reduction in gullet volume; still images 
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from this footage show a build up of wood particles for the larger rake angles (lower 

gullet volume), as the wood chips/particles are prevented from curling past the much 

smaller root radii. This results in an impaction of wood particles in the gullet, which 

impedes removal of the material from the kerf. 

 

 
CONCLUSIONS 
 

1. The fundamental mechanics of wood machining have been well established through 

the published literature. These are illustrated here by the Franz, McKenzie, Woodson, 

and Koch chip formation types. 

2. The primary mode of tool wear is abrasion. The worn tools cause excessive 

compaction of fibers during cutting, resulting in a fuzzy chip and respective poor 

surface finish to the work-piece. 

3. Recorded tool forces and observed chip formation are the most common methods of 

evaluating the cutting mechanics of saw-teeth. Predictive force models have been 

developed using both tooth geometry parameters and work-piece (wood) properties.  

4. The original findings from previous research have been identified. This will allow for 

further research to be conducted in the field of wood-sawing in order to investigate 

novel, previously unexplored areas. This includes (but is not limited to) the influence 

of geometric parameters associated with the saw-tooth on tool forces. 
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