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Abstract 

A quasi-3D hyperbolic shear deformation theory for functionally graded plates is 

developed. The theory accounts for both shear deformation and thickness stretching 

effects by a hyperbolic variation of all displacements across the thickness, and satisfies 

the stress-free boundary conditions on the top and bottom surfaces of the plate without 

requiring any shear correction factor. The benefit of the present theory is that it contains 

less number of unknowns and governing equations than the existing quasi-3D theories, 

but its solutions are compared well with 3D and quasi-3D solutions. Equations of 

motion are derived from Hamilton principle. Analytical solutions for bending and free 

vibration problems are obtained for simply supported plates. Numerical examples are 

presented to verify the accuracy of the present theory. 
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1. Introduction 

Functionally graded materials (FGMs) are a type of nonhomogeneous composites 

materials, in which the material properties vary smoothly and continuously from one 

surface to another. A typical FGM is made from a mixture of two material phases, for 

example, a ceramic and a metal. An advantage of FGMs over laminated composites is 

that it eliminates the delamination mode of failure found in the laminated composites. In 

addition, the material properties of FGMs can be tailored to different applications and 

working environments. This makes FGMs preferable in many structural applications 

such as nuclear reactor, aerospace, mechanical, automotive, and civil engineering. 

Since the shear deformation effects are more pronounced in advanced composites like 

FGMs, shear deformation theories such as first-order shear deformation theory (FSDT) 

and higher-order shear deformation theories (HSDTs) should be used. The FSDT [1-9] 

gives acceptable prediction, but requires a shear correction factor which is hard to find 

out consistently because of dependent on many parameters including geometry, 

boundary conditions, and loading conditions. The HSDTs [10-17] do not require a shear 

correction factor, but their equations of motion are more complicated than those of the 

FSDT. It should be noted that the thickness stretching effect (i.e., 0ze = ) is ignored in 

both the FSDT and HSDTs by assuming a constant transverse displacement through the 

thickness of the plate. Although this assumption is appropriate for moderately thick 

functionally graded (FG) plates, but is inaccurate for thick FG ones [18]. The 

importance of the thickness stretching effect in FG plates has been pointed out in the 

work of Carrera et al. [19]. 

Quasi-3D theories are HSDTs in which the transverse displacement is expanded as a 

higher-order variation through the thickness of the plate, and hence, thickness stretching 
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effect is captured. There are several quasi-3D theories proposed in the literature. For 

example, Kant and Swaminathan [20] proposed a quasi-3D theory with all displacement 

components expanded as a cubic variation through the thickness. The theories presented 

by Chen et al. [21], Talha and Singh [22], Reddy [23], and Neves et al. [24] are based on 

a cubic variation of in-plane displacements and a quadratic variation of transverse 

displacement. Instead of using polynomial functions, Ferreira et al. [25] employed the 

sinusoidal functions for all displacement components. Neves et al. [26-27] employed the 

polynomial and the non-polynomial (sinusoidal [26] and hyperbolic [27]) functions for 

transverse and in-plane displacements, respectively. It should be noted that the above-

mentioned quasi-3D theories are too cumbersome and computationally expensive since 

they handle many unknowns (e.g., theories by Ref. [20] with twelve unknowns, Refs. 

[21-23] with eleven unknowns, and Refs. [25-27,24] with nine unknowns). Recently, 

Mantari and Guedes Soares [28] presented a generalized formulation in which many 

hybrid quasi-3D theories with six unknowns can be derived. Although the hybrid quasi-

3D theories [28] have six unknowns, they are still more complicated than the FSDT. As 

a consequence, a simple quasi-3D theory proposed in the present work is necessary. 

This work aims to develop a simple quasi-3D theory with only five unknowns for 

bending and free vibration analysis of FG plates. The displacement field is chosen based 

on a generalized formulation [28] with a hyperbolic variation for all displacements. By 

dividing the transverse displacement into the bending and shear parts, the number of 

unknowns of the theory is reduced, and thus saving computational time. Equations of 

motion derived from Hamilton principle are analytically solved for bending and free 

vibration problems of a simply supported plate. Numerical examples are presented to 

verify the accuracy of the present theory. 
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2. Theoretical formulation 

As mentioned above, the displacement field of the present theory is chosen based on 

the generalized formulation with a hyperbolic variation for all displacement components. 

In fact, the use of hyperbolic functions was first proposed by Soldatos [29], later used 

by Xiang et al. [30], Akavci [31], and El Meiche et al. [32], and recently by Neves et al. 

[27]. According to Refs. [33,28], the displacement field takes the form 

 

( ) ( ) ( )
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 (1) 

where u , v , w , xj , yj  and zj  are six unknown displacement functions of midplane of 

the plate; and ( )zY  is a shape function representing the distribution of the transvese 

shear strains and shear stresses through the thickness. In this study, the shape function is 

chosen based on the hyperbolic function proposed by Soldatos [29] as 

 ( ) 1sinh cosh
2

zz h z
h

æ ö æ öY = -ç ÷ ç ÷è ø è ø  (2) 

with h  being the thickness of the plate. By deviding the transverse displacement w  

into bending and shear parts (i.e., b sw w w= + ) and making further assumptions given 

by /x sw xj = ¶ ¶  and /y sw yj = ¶ ¶ , the displacement field of the present theory can be 

rewritten in simpler form as 
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where ( ) ( )f z z z= - Y  and ( ) ( ) ( ) ( ) ( )1 cosh / cosh 1/ 2g z z f z z h¢ ¢= Y = - = - . 

Clearly seen that the displacement field in Eq. (3) handles only five unknowns, i.e., 

, , , ,b s zu v w w j .  

The strains associated with the displacement field in Eq. (3) are: 

 ( )2 2

2 2
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It can be seen from Eqs. (4e) and (4f) that the transverse shear strains ( xzg , yzg ) are 

equal to zero at the top ( / 2z h= ) and bottom ( / 2z h= - ) surfaces of the plate. A shear 

correction factor is, therefore, not required. 

The constitutive relations of a FG plate can be written as 
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 (5) 

where ijC  are the three-dimensional elastic constants determined by 
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 ( )( )( )11 22 33
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 ( )( )12 13 23 1 2 1
EC C C n
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 ( )44 55 66 2 1
EC C C n= = = +  (6c) 

with E  and n  being Young’s modulus and Poisson’s ratio, respectively, of a FG plate. 

Hamilton’s principle is used herein to derive the equations of motion. The principle can 

be stated in analytical form as  

 ( )
0

0
T

U V K dtd d d+ - =ò  (7) 

where Ud  is the variation of strain energy; Vd  is the variation of work done by 

external forces; and Kd  is the variation of kinetic energy. 

The variation of strain energy is given explicitly by 
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where N , M , P , Q , and R  are the stress resultants defined by 
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Substituting Eq. (4) into Eq. (5) and the subsequent results into Eq. (9), the stress 

resultants can be expressed in terms of generalized displacements ( ), , , ,b s zu v w w j  as  
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The variation of work done by externally transverse loads q  can be expressed as 
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The variation of kinetic energy is 
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where dot-superscript convention indicates the differentiation with respect to the time 

variable t ; r  is the mass density; and ( ), ,i i iI J K  are the mass moments of inertia 

defined by 
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The equations of motion can be obtained by substituting the expressions for Ud , Vd , 

and Kd  from Eqs. (8), (12), and (13) into Eq. (7), integrating by parts, and collecting 

the coefficients of ud , vd , bwd , swd , and zdj . 
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Substituting Eq. (10) into Eq. (15), the equations of motion of the present theory can be 

expressed in terms of displacements ( ), , , ,b s zu v w w j  as 
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3. Analytical solutions 

Consider a simply supported rectangular plate with length a  and width b  under 

transverse load q . Based on Navier solution method, the following expansions of 

displacements ( ), , , ,b s zu v w w j  are assumed as 
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where 1i = - , /m aa p= , /n bb p= , ( ), , , ,mn mn bmn smn zmnU V W W f  are the unknown 

maximum displacement coefficients, and w  is the vibration frequency. The transverse 

load q  is also expanded as 
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For the case of sinusoidal load, coefficient 0mnQ q=  represents the intensity of the load 

at the plate center. Substituting Eqs. (17) and (18) into Eq. (16), the analytical solutions 

can be obtained by 
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4. Numerical results 

4.1. Results for bending analysis 

Consider a simply supported FG plate subjected to sinusoidal loads. The effective 

Young’s modulus ( )E z  is assumed to vary exponentially through the thickness of the 

plate as [33] 

 ( ) ( ) ( ) (0.5 / )
0 , p z hE z E f z f z e += =  (21) 
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where 0bE E=  and 0
p

tE E e=  denote Young’s modulus of the bottom and top 

surfaces of the FG plate, respectively; 0E  is Young’s modulus of the homogeneous 

plate; and p  is a parameter that indicates the material variation through the thickness 

and takes values greater than or equal to zero. The variation of the exponential function 

( )f z  through the thickness of the plate is presented in Fig. 1 for different values of p . 

Poisson’s ratio is assumed to be constant 0.3n = . For convenience, the following 

dimensionless forms are used: 

 

( ) ( )
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0 0
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 (22) 

The dimensionless displacement and stress are presented in Tables 1-4 for various 

values of aspect ratio /b a , thickness ratio /a h , and material parameter p . The 

through thickness variations of the dimensionless displacements and stresses are also 

given in Fig. 2 for a thick FG plates with / 4a h =  and 0.5p = . The obtained results 

are compared with the exact 3D [33] and quasi-3D solutions [28,33-34]. It should be 

noted that the quasi-3D solutions [33-34] are derived based on a trigonometric variation 

of both in-plane and transverse displacements, while the quasi-3D solutions [28] are 

computed based on a cubic variation of in-plane displacements and a parabolic variation 

of transverse displacement across the thickness. In addition, the results of HSDT [35] 

are also provided to show the importance of including the thickness stretching effect. 

The HSDT solution [35] is computed based on a trigonometric variation of in-plane 

displacements and a constant transverse displacement across the thickness (i.e., 
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thickness stretching effect is omitted, 0ze = ).  

It can be observed that the obtained results are in excellent agreement with 3D and 

quasi-3D solutions, particularly with those reported by Mantari and Guedes Soares 

[28,34]. The present quasi-3D theory is even more accurate than the quasi-3D sinusoidal 

theory [33]. Since the present quasi-3D theory and other quasi-3D theories include the 

thickness stretching effect, their solutions are very close to each other. Meanwhile, the 

HSDT [35], which omits this effect, gives inaccurate prediction and slightly 

overestimates the deflection especially for very thick plates (i.e., / 2a h = , see Tables 1 

and 3). The errors in the HSDT are reduced with increasing the thickness ratio /a h . In 

general, the present quasi-3D theory is highly accurate and comparable to 3D solution 

even in the case of very thick plates, e.g., / 2a h = . It is worth noting that the developed 

theory consists of five unknowns, while the number of unknowns in the HSDT [35] and 

other quasi-3D theories [28,33-34] is five and six, respectively. Consequently, it may be 

concluded that the present quasi-3D theory is not only more accurate than the HSDT 

having the same five unknowns, but also comparable with the quasi-3D theories having 

more number of unknowns. 

4.2. Results for free vibration analysis 

The accuracy of the proposed quasi-3D theory is also verified through the free 

vibration analysis. Consider a simply supported Al/ZrO2 plate made from a mixture of a 

metal (Al) and a ceramic (ZrO2). Young’s modulus and density of the metal are 

70mE = GPa and 2702mr = kg/m3, respectively, and that of ceramic are 380cE = GPa 

and 3800cr = kg/m3, respectively. Poisson’s ratio is assumed to be constant and equal 

to 0.3. The effective Young’s modulus is estimated using the power-law distribution 

with Mori-Tanaka scheme. According to the power-law distribution with Mori-Tanaka 
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scheme, the bulk modulus ( )K z  is given by [36] 

 ( ) ( )
4/31

c
m c m K Kc m

m K Gm m

VK z K K K
V -

+
= + - +  (23) 

where subscripts m  and c  represent the metal and ceramic constituents, respectively; 

G  is the shear modulus; and the volume fractions of the metal phase mV  and ceramic 

phase cV  are given by 

 1m cV V= -  and ( )0.5 / p
cV z h= +  (24) 

with p  being the power law index. The variation of the volume fraction cV  through 

the thickness of the plate is given in Fig. 3 for various values of the power law index p . 

Recall that the bulk modulus and the shear modulus are related to Young’s modulus E  

and Poisson ratio n  by ( )/ 3 1 2K E n= -  and ( )/ 2 1G E n= + . Thus, by rewriting Eq. 

(23) in terms of E  and n , the effective Young’s modulus ( )E z  is rewritten by 

 ( ) ( )
1

1 3 31
c

m c m
Ec

m Em

VE z E E E
V n

n
æ ö +ç ÷-ç ÷ -è ø

= + - +  (25) 

The effective density ( )zr  is estimated using the power-law distribution with Voigt's 

rule of mixtures as [10] 

 ( ) ( )m c m cz Vr r r r= + -  (26) 

Table 5 contains the dimensionless fundamental frequency w  of square plates for 

different values of thickness ratio and power law index. The dimensionless frequency is 

defined by /m mh Ew w r= . The calculated frequencies are compared with 3D 

solutions of Vel and Batra [37], quasi-3D solutions of Neves et al. [27,26,24], and third-

order shear deformation (TSDT) solutions of Ferreira et al. [12]. It should be noted that 
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the quasi-3D solutions are derived based on the sinusoidal [26], hyperbolic [27], and 

cubic [24] variations of the in-plane displacements, and a quadratic variation of the 

transverse displacement across the thickness. Since the proposed and quasi-3D theories 

include the thickness stretching effect, they lead to solutions close to each other, and 

their solutions match well with 3D solution [37]. Whereas, the TSDT solutions [12] 

slightly underestimates frequency due to ignoring the thickness stretching effect. Again, 

it shoud be noted that the number of unknowns of the proposed theory is only five as 

against nine in the case of the quasi-3D theories of Neves et al. [27,26,24]. 

5. Conclusions 

A quasi-3D hyperbolic shear deformation theory is developed for bending and 

vibration analysis of FG plates. The approach contains five unknowns, but accounts for 

both shear deformation and thickness stretching effects without the need for any shear 

correction factor. Equations of motion derived from Hamilton principle are analytically 

solved for bending and free vibration problems of a simply supported plate. By dividing 

the transverse displacement into the bending and shear parts, the number of unknowns 

of the theory is reduced, and the computational time is thus saved. The following main 

points may be drawn from the present study: 

(1) The results predicted by the proposed theory are in an excellent agreement with 3D 

solutions even for the case of very thick plates with /a h = 2. 

(2) The present quasi-3D theory has five unknowns, but gives results comparable with 

those predicted by the existing quasi-3D theories having more number of unknowns. 

(3) The proposed theory is even more accurate than the quasi-3D sinusoidal theory 

when compared to 3D solution. 

(4) The thickness stretching effect is more pronounced for thick plates and it needs to 
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be taken in consideration in the modeling. 
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Figure Captions 

Fig. 1. Variation of exponential function ( )f z  through the thickness of a FG plate for 

various values of parameter p  

Fig. 2. Variation of dimensionless displacement and stresses through the thickness of 

plates ( / 4a h = , 0.5p = ) 

Fig. 3. Variation of volume fraction cV  through the thickness of the plate for various 

values of the power law index p  
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Table Captions 

Table 1. Dimensionless deflection ( )0w  of plates ( / 2a h = ) 

Table 2. Dimensionless deflection ( )0w  of plates ( / 4a h = ) 

Table 3. Dimensionless stress ( )/ 2y hs  of plates ( / 2a h = ) 

Table 4. Dimensionless stress ( )/ 2y hs  of plates ( / 4a h = ) 

Table 5. Dimensionless fundamental frequency w  of square plates 
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Table 1. Dimensionless deflection ( )0w  of plates ( / 2a h = ) 

b/a Methods p 
0.1 0.3 0.5 0.7 1.0 1.5 

6 3D [33] 1.6377  1.4885  1.3518  1.2269  1.0593  0.8261  
 quasi-3D [33] 1.6294  1.4731  1.3307  1.2010  1.0282  0.7906  
 quasi-3D [34] 1.6365  1.4795  1.3364  1.2062  1.0333  0.7939  
 Present 1.6367  1.4796  1.3365  1.2063  1.0327  0.7939  
 HSDT [35] 1.7347  1.5688  1.4182  1.2815  1.1003  0.8500  
5 3D [33] 1.6065  1.4601  1.3261  1.2035  1.0391  0.8102  
 quasi-3D [33] 1.5983  1.4449  1.3052  1.1780  1.0086  0.7754  
 quasi-3D [34] 1.6053  1.4513  1.3109  1.1832  1.0135  0.7787  
 Present 1.6054  1.4514  1.3110  1.1833  1.0130  0.7787  
 HSDT [35] 1.7025  1.5397  1.3919  1.2576  1.0798  0.8340  
4 3D [33] 1.5515  1.4101  1.2807  1.1624  1.0035  0.7824  
 quasi-3D [33] 1.5435  1.3954  1.2605  1.1376  0.9740  0.7487  
 quasi-3D [34] 1.5504  1.4017  1.2661  1.1427  0.9788  0.7520  
 Present 1.5505  1.4018  1.2662  1.1428  0.9783  0.7520  
 HSDT [35] 1.6458  1.4885  1.3455  1.2157  1.0437  0.8060  
3 3D [33] 1.4430  1.3116  1.1913  1.0812  0.9334  0.7275  
 quasi-3D [33] 1.4354  1.2977  1.1722  1.0579  0.9057  0.6962  
 quasi-3D [34] 1.4421  1.3037  1.1776  1.0628  0.9104  0.6993  
 quasi-3D [28] 1.4419  1.3035  1.1774  1.0626  0.9096  0.6991  
 Present 1.4422  1.3038  1.1777  1.0629  0.9098  0.6993  
 HSDT [35] 1.5341  1.3784  1.2540  1.1329  0.9725  0.7506  
2 3D [33] 1.1945  1.0859  0.9864  0.8952  0.7727  0.6017  
 quasi-3D [33] 1.1880  1.0740  0.9701  0.8755  0.7494  0.5758  
 quasi-3D [34] 1.1941  1.0795  0.9750  0.8799  0.7538  0.5786  
 quasi-3D [28] 1.1938  1.0793  0.9748  0.8797  0.7530  0.5785  
 Present 1.1942  1.0796  0.9751  0.8800  0.7532  0.5786  
 HSDT [35] 1.2776  1.1553  1.0441  0.9431  0.8093  0.6238  
1 3D [33] 0.5769  0.5247  0.4766  0.4324  0.3727  0.2890  
 quasi-3D [33] 0.5731  0.5181  0.4679  0.4222  0.3612  0.2771  
 quasi-3D [34] 0.5779  0.5224  0.4718  0.4257  0.3649  0.2794  
 quasi-3D [28] 0.5776  0.5222  0.4716  0.4255  0.3640  0.2792  
 Present 0.5780  0.5225  0.4719  0.4258  0.3642  0.2794  
 HSDT [35] 0.6363  0.5752  0.5195  0.4687  0.4018  0.3079  
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Table 2. Dimensionless deflection ( )0w  of plates ( / 4a h = ) 

b/a Methods p 
0.1 0.3 0.5 0.7 1.0 1.5 

6 3D [33] 1.1714  1.0622  0.9633  0.8738  0.7550  0.5919  
 quasi-3D [33] 1.1668  1.0551  0.9535  0.8611  0.7382  0.5697  
 quasi-3D [34] 1.1703  1.0583  0.9563  0.8636  0.7403  0.5713  
 Present 1.1703  1.0583  0.9563  0.8636  0.7403  0.5713  
 HSDT [35] 1.1920  1.0789  0.9767  0.8844  0.7623  0.5955  
5 3D [33] 1.1459  1.0391  0.9424  0.8548  0.7386  0.5790  
 quasi-3D [33] 1.1414  1.0321  0.9327  0.8423  0.7221  0.5573  
 quasi-3D [34] 1.1448  1.0352  0.9355  0.8448  0.7242  0.5588  
 Present 1.1448  1.0352  0.9354  0.8448  0.7242  0.5588  
 HSDT [35] 1.1663  1.0556  0.9556  0.8653  0.7458  0.5825  
4 3D [33] 1.1012  0.9985  0.9056  0.8215  0.7098  0.5564  
 quasi-3D [33] 1.0968  0.9918  0.8963  0.8094  0.6939  0.5355  
 quasi-3D [34] 1.1001  0.9948  0.8989  0.8118  0.6959  0.5370  
 Present 1.1001  0.9948  0.8989  0.8118  0.6959  0.5370  
 HSDT [35] 1.1211  1.0147  0.9186  0.8317  0.7169  0.5599  
3 3D [33] 1.0134  0.9190  0.8335  0.7561  0.6533  0.5121  
 quasi-3D [33] 1.0094  0.9127  0.8248  0.7449  0.6385  0.4927  
 quasi-3D [34] 1.0124  0.9155  0.8272  0.7470  0.6404  0.4941  
 quasi-3D [28] 1.0124  0.9155  0.8272  0.7470  0.6404  0.4941  
 Present 1.0124  0.9155  0.8272  0.7470  0.6404  0.4941  
 HSDT [35] 1.0325  0.9345  0.8459  0.7659  0.6601  0.5154  
2 3D [33] 0.8153  0.7395  0.6707  0.6085  0.5257  0.4120  
 quasi-3D [33] 0.8120  0.7343  0.6635  0.5992  0.5136  0.3962  
 quasi-3D [34] 0.8145  0.7365  0.6655  0.6009  0.5151  0.3973  
 quasi-3D [28] 0.8145  0.7365  0.6655  0.6009  0.5151  0.3973  
 Present 0.8145  0.7365  0.6655  0.6009  0.5151  0.3973  
 HSDT [35] 0.8325  0.7534  0.6819  0.6173  0.5319  0.4150  
1 3D [33] 0.3490  0.3167  0.2875  0.2608  0.2253  0.1805  
 quasi-3D [33] 0.3475  0.3142  0.2839  0.2563  0.2196  0.1692  
 quasi-3D [34] 0.3486  0.3152  0.2848  0.2571  0.2203  0.1697  
 quasi-3D [28] 0.3486  0.3152  0.2848  0.2571  0.2203  0.1697  
 Present 0.3486  0.3152  0.2848  0.2571  0.2203  0.1697  
 HSDT [35] 0.3602  0.3259  0.2949  0.2668  0.2295  0.1785  
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Table 3. Dimensionless stress ( )/ 2y hs  of plates ( / 2a h = ) 

b/a Methods p 
0.1 0.3 0.5 0.7 1.0 1.5 

6 3D [33] 0.2943  0.3101  0.3270  0.3451  0.3746  0.4305  
 quasi-3D [33] 0.2912  0.3118  0.3339  0.3573  0.3955  0.4679  
 quasi-3D [34] 0.2763  0.2954  0.3159  0.3378  0.3737  0.4416  
 Present 0.2759  0.2951  0.3155  0.3374  0.3730  0.4411  
 HSDT [35] 0.2187  0.2345  0.2512  0.2690  0.2980  0.3498  
5 3D [33] 0.2967  0.3128  0.3299  0.3483  0.3782  0.4350  
 quasi-3D [33] 0.2935  0.3144  0.3366  0.3603  0.3988  0.4719  
 quasi-3D [34] 0.2789  0.2983  0.3191  0.3412  0.3776  0.4461  
 Present 0.2786  0.2980  0.3187  0.3408  0.3768  0.4456  
 HSDT [35] 0.2219  0.2378  0.2548  0.2729  0.3024  0.3549  
4 3D [33] 0.3008  0.3173  0.3349  0.3537  0.3844  0.4426  
 quasi-3D [33] 0.2974  0.3186  0.3412  0.3653  0.4045  0.4786  
 quasi-3D [34] 0.2834  0.3032  0.3243  0.3469  0.3839  0.4537  
 Present 0.2830  0.3028  0.3239  0.3465  0.3832  0.4532  
 HSDT [35] 0.2272  0.2435  0.2610  0.2795  0.3097  0.3634  
3 3D [33] 0.3081  0.3252  0.3436  0.3633  0.3953  0.4562  
 quasi-3D [33] 0.3042  0.3261  0.3493  0.3741  0.4143  0.4904  
 quasi-3D [34] 0.2912  0.3118  0.3337  0.3571  0.3954  0.4673  
 quasi-3D [28] 0.2920  0.3127  0.3347  0.3582  0.3963  0.4688  
 Present 0.2909  0.3114  0.3333  0.3567  0.3947  0.4668  
 HSDT [35] 0.2368  0.2539  0.2721  0.2914  0.3230  0.3788  
2 3D [33] 0.3200  0.3385  0.3583  0.3796  0.4142  0.4799  
 quasi-3D [33] 0.3146  0.3376  0.3620  0.3880  0.4300  0.5092  
 quasi-3D [34] 0.3042  0.3261  0.3495  0.3743  0.4148  0.4905  
 quasi-3D [28] 0.3049  0.3269  0.3503  0.3752  0.4155  0.4918  
 Present 0.3040  0.3259  0.3492  0.3740  0.4142  0.4901  
 HSDT [35] 0.2539  0.2723  0.2919  0.3128  0.3469  0.4064  
1 3D [33] 0.3103  0.3292  0.3495  0.3713  0.4067  0.4741  
 quasi-3D [33] 0.2955  0.3181  0.3421  0.3675  0.4085  0.4851  
 quasi-3D [34] 0.2924  0.3147  0.3383  0.3633  0.4041  0.4785  
 quasi-3D [28] 0.2927  0.3149  0.3385  0.3636  0.4039  0.4790  
 Present 0.2924  0.3146  0.3382  0.3632  0.4034  0.4783  
 HSDT [35] 0.2943  0.3101  0.3270  0.3451  0.3746  0.4305  
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Table 4. Dimensionless stress ( )/ 2y hs  of plates ( / 4a h = ) 

b/a Methods p 
0.1 0.3 0.5 0.7 1.0 1.5 

6 3D [33] 0.2181  0.2321  0.2470  0.2628  0.2886  0.3373  
 quasi-3D [33] 0.2369  0.2520  0.2683  0.2857  0.3144  0.3699  
 quasi-3D [34] 0.2127  0.2255  0.2393  0.2544  0.2795  0.3294  
 Present 0.2121  0.2249  0.2387  0.2537  0.2787  0.3285  
 HSDT [35] 0.2010  0.2149  0.2298  0.2455  0.2711  0.3192  
5 3D [33] 0.2206  0.2348  0.2498  0.2659  0.2920  0.3413  
 quasi-3D [33] 0.2391  0.2545  0.2710  0.2886  0.3176  0.3737  
 quasi-3D [34] 0.2152  0.2283  0.2424  0.2577  0.2832  0.3337  
 Present 0.2147  0.2277  0.2418  0.2570  0.2825  0.3328  
 HSDT [35] 0.2037  0.2178  0.2329  0.2488  0.2747  0.3235  
4 3D [33] 0.2247  0.2392  0.2546  0.2710  0.2977  0.3482  
 quasi-3D [33] 0.2429  0.2586  0.2754  0.2934  0.3230  0.3800  
 quasi-3D [34] 0.2196  0.2330  0.2475  0.2633  0.2894  0.3411  
 Present 0.2190  0.2324  0.2469  0.2626  0.2887  0.3402  
 HSDT [35] 0.2082  0.2226  0.2380  0.2544  0.2808  0.3307  
3 3D [33] 0.2319  0.2469  0.2629  0.2800  0.3077  0.3602  
 quasi-3D [33] 0.2493  0.2656  0.2831  0.3017  0.3323  0.3911  
 quasi-3D [34] 0.2272  0.2414  0.2566  0.2731  0.3004  0.3540  
 quasi-3D [28] 0.2286  0.2429  0.2583  0.2749  0.3024  0.3563  
 Present 0.2267  0.2408  0.2560  0.2725  0.2997  0.3532  
 HSDT [35] 0.2162  0.2312  0.2472  0.2642  0.2917  0.3435  
2 3D [33] 0.2431  0.2591  0.2762  0.2943  0.3238  0.3797  
 quasi-3D [33] 0.2588  0.2761  0.2946  0.3143  0.3464  0.4079  
 quasi-3D [34] 0.2395  0.2550  0.2715  0.2894  0.3187  0.3756  
 quasi-3D [28] 0.2407  0.2563  0.2730  0.2909  0.3204  0.3776  
 Present 0.2391  0.2545  0.2710  0.2888  0.3181  0.3749  
 HSDT [35] 0.2294  0.2454  0.2624  0.2805  0.3097  0.3647  
1 3D [33] 0.2247  0.2399  0.2562  0.2736  0.3018  0.3588  
 quasi-3D [33] 0.2346  0.2510  0.2684  0.2870  0.3171  0.3739  
 quasi-3D [34] 0.2237  0.2391  0.2554  0.2729  0.3014  0.3556  
 quasi-3D [28] 0.2244  0.2398  0.2563  0.2738  0.3024  0.3567  
 Present 0.2235  0.2388  0.2551  0.2726  0.3010  0.3551  
 HSDT [35] 0.2164  0.2316  0.2477  0.2649  0.2927  0.3451  
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Table 5. Dimensionless fundamental frequency w  of square plates 

Method 
p=0  p=1   a/h=5   

/ 10a h =  a/h=10 a/h=5 a/h=10 a/h=20 p=2 p=3 p=5 

3D [37] 0.4658  0.0578  0.2192  0.0596  0.0153  0.2197  0.2211  0.2225 
Quasi-3D [26] - - 0.2193  0.0596  0.0153  0.2198  0.2212  0.2225 
Quasi-3D [27] - - 0.2193  0.0596  0.0153  0.2201  0.2216  0.2230 
Quasi-3D [24] - - 0.2193  - - 0.2200  0.2215  0.2230 
TSDT [12] - - 0.2188 0.0592 0.0147 0.2188 0.2202 0.2215 
Present 0.4661  0.0578  0.2192  0.0597  0.0153  0.2201  0.2214  0.2225 
 

 


