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Abstract

A quasi-3D hyperbolic shear deformation theory for functionally graded plates is
developed. The theory accounts for both shear deformation and thickness stretching
effects by a hyperbolic variation of all displacements across the thickness, and satisfies
the stress-free boundary conditions on the top and bottom surfaces of the plate without
requiring any shear correction factor. The benefit of the present theory is that it contains
less number of unknowns and governing equations than the existing quasi-3D theories,
but its solutions are compared well with 3D and quasi-3D solutions. Equations of
motion are derived from Hamilton principle. Analytical solutions for bending and free
vibration problems are obtained for simply supported plates. Numerical examples are

presented to verify the accuracy of the present theory.
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1. Introduction

Functionally graded materials (FGMs) are a type of nonhomogeneous composites
materials, in which the material properties vary smoothly and continuously from one
surface to another. A typical FGM is made from a mixture of two material phases, for
example, a ceramic and a metal. An advantage of FGMs over laminated composites is
that it eliminates the delamination mode of failure found in the laminated composites. In
addition, the material properties of FGMs can be tailored to different applications and
working environments. This makes FGMs preferable in many structural applications
such as nuclear reactor, aerospace, mechanical, automotive, and civil engineering.

Since the shear deformation effects are more pronounced in advanced composites like
FGMs, shear deformation theories such as first-order shear deformation theory (FSDT)
and higher-order shear deformation theories (HSDTs) should be used. The FSDT [1-9]
gives acceptable prediction, but requires a shear correction factor which is hard to find
out consistently because of dependent on many parameters including geometry,
boundary conditions, and loading conditions. The HSDTs [10-17] do not require a shear
correction factor, but their equations of motion are more complicated than those of the

FSDT. It should be noted that the thickness stretching effect (i.e., ¢ =0) is ignored in

both the FSDT and HSDTs by assuming a constant transverse displacement through the
thickness of the plate. Although this assumption is appropriate for moderately thick
functionally graded (FG) plates, but is inaccurate for thick FG ones [18]. The
importance of the thickness stretching effect in FG plates has been pointed out in the
work of Carrera et al. [19].

Quasi-3D theories are HSDTs in which the transverse displacement is expanded as a

higher-order variation through the thickness of the plate, and hence, thickness stretching



effect is captured. There are several quasi-3D theories proposed in the literature. For
example, Kant and Swaminathan [20] proposed a quasi-3D theory with all displacement
components expanded as a cubic variation through the thickness. The theories presented
by Chen et al. [21], Talha and Singh [22], Reddy [23], and Neves et al. [24] are based on
a cubic variation of in-plane displacements and a quadratic variation of transverse
displacement. Instead of using polynomial functions, Ferreira et al. [25] employed the
sinusoidal functions for all displacement components. Neves et al. [26-27] employed the
polynomial and the non-polynomial (sinusoidal [26] and hyperbolic [27]) functions for
transverse and in-plane displacements, respectively. It should be noted that the above-
mentioned quasi-3D theories are too cumbersome and computationally expensive since
they handle many unknowns (e.g., theories by Ref. [20] with twelve unknowns, Refs.
[21-23] with eleven unknowns, and Refs. [25-27,24] with nine unknowns). Recently,
Mantari and Guedes Soares [28] presented a generalized formulation in which many
hybrid quasi-3D theories with six unknowns can be derived. Although the hybrid quasi-
3D theories [28] have six unknowns, they are still more complicated than the FSDT. As
a consequence, a simple quasi-3D theory proposed in the present work is necessary.

This work aims to develop a simple quasi-3D theory with only five unknowns for
bending and free vibration analysis of FG plates. The displacement field is chosen based
on a generalized formulation [28] with a hyperbolic variation for all displacements. By
dividing the transverse displacement into the bending and shear parts, the number of
unknowns of the theory is reduced, and thus saving computational time. Equations of
motion derived from Hamilton principle are analytically solved for bending and free
vibration problems of a simply supported plate. Numerical examples are presented to

verify the accuracy of the present theory.



2. Theoretical formulation

As mentioned above, the displacement field of the present theory is chosen based on
the generalized formulation with a hyperbolic variation for all displacement components.
In fact, the use of hyperbolic functions was first proposed by Soldatos [29], later used
by Xiang et al. [30], Akavci [31], and El Meiche et al. [32], and recently by Neves et al.

[27]. According to Refs. [33,28], the displacement field takes the form

ul(x,y,z,t)=u(x,y,t)—zaa—WJrLI’(z)qo)r
X

0

uz(x,y,z,t):v(x,y,t)—za—;v+‘l’(z)¢)y (1)
U, (x, v, z,t) = w(x,y,t) + ‘P'(z)(pz (x,y,t)

where u,v,w,p ,p, and ¢, are six unknown displacement functions of midplane of

the plate; and W(z) is a shape function representing the distribution of the transvese

shear strains and shear stresses through the thickness. In this study, the shape function is

chosen based on the hyperbolic function proposed by Soldatos [29] as
. z 1
V¥ (z)=hsinh [—j —zcosh (—j ()
h 2
with 2 being the thickness of the plate. By deviding the transverse displacement w
into bending and shear parts (i.e., w=w, +w, ) and making further assumptions given

by ¢ =0w,/0x and ¢, =0w,/dy, the displacement field of the present theory can be

rewritten in simpler form as

“1(x’yﬂz’f)=u(x,y,t)—z%‘f(z)aavf
“2(x’y’z’f):V(x,y,f)‘z%‘f(z)EZ;S 3)

U, (x, ¥, z,t) =w, (x,y,t)+ w, (x, y,t)+g(z)(pz (x,y,t)



where  f(z)=z-¥(z) and g(z)=¥'(z)=1-/"(z)=cosh(z/h)—cosh(1/2) .

Clearly seen that the displacement field in Eq. (3) handles only five unknowns, i.e.,

UV, Wy, W, 0, .

The strains associated with the displacement field in Eq. (3) are:

ou o*w, o*w

* :E_ 8x2b _f(Z) 8)c2S

_ov O'w, o*w,

y 8y z 8y2 f(Z) 5)/2
e.=g'(2)p.

ow. 0
7. zg(z)(_ur&J

oy 0y

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

It can be seen from Egs. (4¢) and (4f) that the transverse shear strains (y,.,7,. ) are

equal to zero at the top (z=4/2) and bottom (z =—4/2) surfaces of the plate. A shear

correction factor is, therefore, not required.

The constitutive relations of a FG plate can be written as

where C; are the three-dimensional elastic constants determined by

]

ol [G G, Gy 0 0 0]l
o, G, & G 0 0 011¢
o1 |G G G 00 0 |]e
o, 0 0 0 Cg 0 0|y,
o, 0O 0 0 0 Cs 0 ||y
o.] L0 0 0 0 0 C,|\7,.

©)



(l—v)E

C,=C,=C,,=——"—— 6
1 2 33 (1—2V)(1+V) (6a)
vE
c,=C.,=C,=————— 6b
12 13 23 (1—2V)(1+V) ( )
E
Cp=Cs55=Cy = m (6¢)

with £ and v being Young’s modulus and Poisson’s ratio, respectively, of a FG plate.
Hamilton’s principle is used herein to derive the equations of motion. The principle can

be stated in analytical form as
[ (U +6V ~5K)dt =0 (7)

where oU 1is the variation of strain energy; oV is the variation of work done by
external forces; and 6K is the variation of kinetic energy.

The variation of strain energy is given explicitly by

oU = L j (axé'gx + Gy§€y +0,0¢ + ny5yxy +o0 oy + ayz57yz)dAdz

2 2 2 2
_ Nxa5u—an5‘;)b—Pva§?}S+N 85V—M851;}”—P85?}S
4 ox ox toox Yoy Yoy Yoy ®

2 2
dSu 85Vj—2M O°w, _,p, 070w,

+ROop.+N_ | —+——
20P: T s ( oy  Ox Y oxoy Y oxoy

10, oow, N 00, ‘0 oow, N 00, A
ox Ox "\ oy oy

where N, M, P, Q,and R are the stress resultants defined by

hl2

(NoN.N, )= [ (0..0,.0,)d (9a)

Y2 xy
—h/2

(Mx,My,Mxy)= hj.z (O'X,Gy,O'xy)ZdZ (9b)

—h/2



hi/2

(PoPuRy)= [ (000,.0,) 1 (2)dz (9¢)
(0.0,)= | (0..0,.)2(z)dz (9d)
R = hj.z 0.g'(z)dz (%e)

Substituting Eq. (4) into Eq. (5) and the subsequent results into Eq. (9), the stress

resultants can be expressed in terms of generalized displacements (u,v,w,,w,,¢.) as

%
B S s ] @
Nx A11 A12 0 Bn B12 0 Bll Blz 0 Xl3 oy
N ¥ 4, 4, 0 B, By 0 B, B, 0 X, %: %
ny 0 0 4, O 0 B 0 0 B;, 0 _Ozv;b
M, B, B, 0 D, D, 0 D, D 0 Y, ;XWI)
My — Bl2 BZZ O D12 D22 0 D1S2 D;Z 0 YZ3 _0,\/72 (103)
M, o 0 B, 0 0 Dy, 0 0 Dy 0|
S N s N s OxOx
P, B, B, 0 D, D, 0 H, H, 0 Yy fzws
Py Blsz Bgz 0 D ISZ D;Z 0 H, H, 0 Yz} zxz
ny 0 0 B, O 0 D, O 0 Hy, O - ayz“
Rz _X13 X23 0 Yls st 0 Ylg sza 0 Z33 _ 262ws
T ovy
(pZ
O |4 05 (10b)
Qy 0 Ai4 %+%
where
h2
(4,.4;.B,,B;,D,,0;,H,)= [ (1.g".2.f.2°, fe. f*) C,dz (11a)
)
/2
(X,.%,.%.2,)= | (Lz./,8)g'Cydz (11b)
—h/2

The variation of work done by externally transverse loads ¢ can be expressed as



5V=—Lq5(wb+ws+gqoz)dA (12)

The variation of kinetic energy is

h/2
SK = [ p(tou, +ii, 51, +ii, Sy ) dAd

—h/2

= [ {1, [16t+ 989+ (3, + 40, ) 8 (30, + 90, ) [+ T, [ (O, +90, ) 5. + .6 (30, + )|

. (u 05V, oWy o OO, +%5v_j+[2[awb 05w, O, a5WbJ 13)

ox ox oy oy ox Ox oy Oy
_Jla 0ow, N ow, 55[+1>65WS N ow, 5 |+ K, oW, 0OW, N ow, 00w,
ox ox oy oy ox Ox oy Oy

o, (aw,, 05w, 0¥, 0O, OV, 08w,  Ow, 0OW,

+ - +K .00, A
ox Ox ox Ox oy Oy oy Oy

where dot-superscript convention indicates the differentiation with respect to the time

variable ¢; p is the mass density; and (Ii,Ji,Ki) are the mass moments of inertia

defined by

hl/2

(1,,1,,1,)= J. (l,z,zz)pdz (14a)
—h/2
hi/2

(JooJis) = [ (2.1 f) pdz (14b)
—h/2
h/2

(KinKo)= [ (&°./7) pdz (140)
—h/2

The equations of motion can be obtained by substituting the expressions for oU, oV,
and 0K from Egs. (8), (12), and (13) into Eq. (7), integrating by parts, and collecting

the coefficients of ou, ov, ow,, ow,,and Ogp..

ON_ ON, ow ow
ou: 6xA + 6; =11, 6xb —-J, 6; (15a)
a aN .o ..
v Do O gy Oy O (15b)
X oy oy oy



O*M 82M O°M

ow, : £ +2 =+ L4+
P’ ox0oy oy’ 1
ol ov 5. 3.
=1,(W, + W, )+ Jo@. +1,| —+— |- LV, —J,VWi,
ox Oy
2 o’P, O°P,
5wv:alj"+2 =+ +8Q Q+q
COx oxoy 0y°  ox Oy
O OV 2 2.
=1, (W, +W,)+J,@. +J,| —+— |-/, Vi, —K, VW,
ox Oy
0
5¢z:G&—F&_Rz—}_gq:‘]o(wb+ws)+KO¢z
ox Oy

(15¢)

(15d)

(15e)

Substituting Eq. (10) into Eq. (15), the equations of motion of the present theory can be

expressed in terms of displacements (u,v,w,,w,,@.) as

2 2
A 8—M+A ou

11 axz 66 5)/_2

0%y o'w,
+(A12 +Aﬁé)%_Bll Kgb_
o*w, o*w ow, ow,

s s s s 8¢Z o )
—B\ —=- o’ (Blz 2Béﬁ)axay2+X13g_10”_]1g U ox

0% o’ o’u o*w
+A66$+(A12 + Ay ) —— — Byy 2~

A
“Toaxdy 7 oy

22@

, O'w, s NGA™ o0, ..
—By—=- (BIZ 2B66)T+X23_:[0V_11__
oy’ Ox~0y oy oy oy

3 3 3 3 4
B,la—f+(3,2+2366)( ou_, 9V ]+Bzza§—1)”avfb— -
ox oxoy” Ox 0Oy oy ox oy
o'w, 0w CO'w

N s N N S N 64W
P 28 7Dy P -Dy, ay4 _2(D12+2D66)8 2(3)/

—2(D12 +2Dy, )

2

+Y P +Y

13 2 23
ox

oti 8v
ox Oy

‘zy%_'_q I, (%, +0, )+ J @, +I( j LV, = J, Vi,

(16a)

(16b)

(16¢)



., Ou . . ou o’y , Oy , O'w . 0'w
Bil a 3 +(B|2 +2Bés)( 2 + 2 +Béz 3 _Dil 4b Dﬁz 4b
X oxoy” Ox 0y oy ox oy
4 4 4 4
—2(D|§2 +2Dg6) aZsz _H1| a VZL _sz a v:’s _2(H12 +2H66) a2‘/‘}6‘2
Ox“0Oy Ox 0 ox"0y (16d)
N azWS N azwj s s 82¢ \) s 82¢
5 P +A44 P +(K5+A55)8722+(E3+A44) ay; tq
=1, (wb +wW )+J0(pz +J, (O_u_i_@_vj_JZVsz K,V
ox Oy
ou ov o’w, o’w, s\ O, NG
_XBE_XZ; 5‘}‘ Yl3 axz +)723 2 +(K3 A55) axz ()/23 A44)—2
; 5 (16e)

—Z30, +g‘]:']o(wb +ws)+K0¢z

2

s a (pz s
+4s5 5 T Ay,

. Analytical solutions

Consider a simply supported rectangular plate with length @ and width 5 under

transverse load ¢. Based on Navier solution method, the following expansions of

displacements (u,v,w,,w,,¢.) are assumed as

0 0 X
)=>.>U,,e" cosaxsin By

m=1 n=1

xy,

o0 0

y

mn

(x,».t) e sinaxcos By

—_

n=1

3

w, (X, .1) :iinmn “ sin axsin By

3
i
=
i

/4

Aml’l

Ms

w, (x,,1) “'sin axsin By

=
1l
—_

DM 3D
NgE

9. (x,:1) 4...e” sinaxsin By

3
I
i

where iZ\/——l, a=mrla, V

mn?

p=nzlb, (U

mn?

17)

WynsWons@one ) @re the unknown

maximum displacement coefficients, and @ is the vibration frequency. The transverse

load ¢ is also expanded as

10



iian sinaxsin By (18)

m=1 n=1
For the case of sinusoidal load, coefficient O, =g, represents the intensity of the load

at the plate center. Substituting Eqs. (17) and (18) into Eq. (16), the analytical solutions

can be obtained by

ki ky, ky kg ks m, 0 my m, 0 U 0
ki, Ky kyyo Ky ko 0 my my my, 0 Vo 0
ki kyy ko ko ks |- @’ My My, My My My W ¢ =1 ¢ (19)
ky hyy ko kyo kg my My, Ny My, My W O,
ks ks kys o kys o ks ] L 0 0 my mys  mg Do 0
where

k,= 161”052 +A66ﬁ2, k,, = 66052 +A22ﬂ2 k12 =(A12 +A66)aﬂ

by =—Bua’ —(B, +2By)af’, k,=—B\a' —(B), + 2B )af’, ks =X,

kyy ==B,B° —(B,, + 2By )&’ B, ky, = =By, B’ — (B, + 2By ) o’ B, kys ==X, B

kyy =Dy a' +2(Dy, + 2Dy ) o’ B + Dy B ks = (Y5 + A ) o + (Yo + 45,) B°

ks, = Dia* +2(Dyy +2D5 ) B+ Dy, B keys = Al + 4, + Z,, (20)
ki =Y,o' + Y, B ky =H ' +2(H, +2H )’ B + H,, B + A0’ + 4, °
m,=1,, m,=-al,m,=-al,m, =1, m,=-pBI,m,, =—BJ,

m, =10+12(0€2 +,82), my, =1, +J1(a2 +/32), my =J,

my, =1,+K, (a +ﬂ) my =J,, my =K,

4. Numerical results

4.1. Results for bending analysis
Consider a simply supported FG plate subjected to sinusoidal loads. The effective
Young’s modulus E(z) is assumed to vary exponentially through the thickness of the

plate as [33]

E(z)=E,f(z), j?(z):ep(o'S”/h) (21)

11



where E, =FE, and E, =E;” denote Young’s modulus of the bottom and top
surfaces of the FG plate, respectively; E, is Young’s modulus of the homogeneous
plate; and p is a parameter that indicates the material variation through the thickness
and takes values greater than or equal to zero. The variation of the exponential function

]7(2) through the thickness of the plate is presented in Fig. 1 for different values of p.

Poisson’s ratio is assumed to be constant v =0.3. For convenience, the following

dimensionless forms are used:

3 3
2 272

%a4 q0a4
- K’ ab \ _ 104
OLy (Z) = 70,4 O,y (E,E,ZJ, o, (z) = e axy(0,0,z) (22)
_ h b _ h a
o, (Z) = qo_aaxz (O;E,ZJ, Gyz (Z) = qo—aayz (E,O,ZJ

The dimensionless displacement and stress are presented in Tables 1-4 for various

values of aspect ratio b/a, thickness ratio a/h, and material parameter p. The

through thickness variations of the dimensionless displacements and stresses are also
given in Fig. 2 for a thick FG plates with a/h=4 and p =0.5. The obtained results
are compared with the exact 3D [33] and quasi-3D solutions [28,33-34]. It should be
noted that the quasi-3D solutions [33-34] are derived based on a trigonometric variation
of both in-plane and transverse displacements, while the quasi-3D solutions [28] are
computed based on a cubic variation of in-plane displacements and a parabolic variation
of transverse displacement across the thickness. In addition, the results of HSDT [35]
are also provided to show the importance of including the thickness stretching effect.
The HSDT solution [35] 1s computed based on a trigonometric variation of in-plane

displacements and a constant transverse displacement across the thickness (i.e.,

12



thickness stretching effect is omitted, &, =0).

It can be observed that the obtained results are in excellent agreement with 3D and
quasi-3D solutions, particularly with those reported by Mantari and Guedes Soares
[28,34]. The present quasi-3D theory is even more accurate than the quasi-3D sinusoidal
theory [33]. Since the present quasi-3D theory and other quasi-3D theories include the
thickness stretching effect, their solutions are very close to each other. Meanwhile, the
HSDT [35], which omits this effect, gives inaccurate prediction and slightly
overestimates the deflection especially for very thick plates (i.e., a/h=2, see Tables 1
and 3). The errors in the HSDT are reduced with increasing the thickness ratio a/A4. In
general, the present quasi-3D theory is highly accurate and comparable to 3D solution
even in the case of very thick plates, e.g., a/h=2. It is worth noting that the developed
theory consists of five unknowns, while the number of unknowns in the HSDT [35] and
other quasi-3D theories [28,33-34] is five and six, respectively. Consequently, it may be
concluded that the present quasi-3D theory is not only more accurate than the HSDT
having the same five unknowns, but also comparable with the quasi-3D theories having
more number of unknowns.

4.2. Results for free vibration analysis

The accuracy of the proposed quasi-3D theory is also verified through the free
vibration analysis. Consider a simply supported Al/ZrO, plate made from a mixture of a
metal (Al) and a ceramic (ZrO;). Young’s modulus and density of the metal are

E =70GPaand p, =2702 kg/m’, respectively, and that of ceramic are E =380GPa
and p, =3800 kg/m’, respectively. Poisson’s ratio is assumed to be constant and equal

to 0.3. The effective Young's modulus is estimated using the power-law distribution

with Mori-Tanaka scheme. According to the power-law distribution with Mori-Tanaka

13



scheme, the bulk modulus K (z) is given by [36]

K(z)=K,+(K. ‘Km)% (23)

14V, Lt

m K, +4/3G

where subscripts m and c¢ represent the metal and ceramic constituents, respectively;

G i1s the shear modulus; and the volume fractions of the metal phase V, and ceramic
phase V, are given by

V. =1-V, and Vc:(0.5+z/h)p (24)
with p being the power law index. The variation of the volume fraction V, through
the thickness of the plate is given in Fig. 3 for various values of the power law index p .
Recall that the bulk modulus and the shear modulus are related to Young's modulus E
and Poisson ratio v by K=E/3(1-2v) and G=E/2(1+v). Thus, by rewriting Eq.
(23) interms of £ and v, the effective Young’s modulus £ (z) is rewritten by

E(2)=E, +(E, - E,)— 25)

1+V [E" 1] v

m a 33y

The effective density p(z) is estimated using the power-law distribution with Voigt's
rule of mixtures as [10]

p(2)=pu+(p.=Pu)V. (26)

Table 5 contains the dimensionless fundamental frequency @ of square plates for

different values of thickness ratio and power law index. The dimensionless frequency is
defined by @=wh\/p,/E, . The calculated frequencies are compared with 3D

solutions of Vel and Batra [37], quasi-3D solutions of Neves et al. [27,26,24], and third-

order shear deformation (TSDT) solutions of Ferreira et al. [12]. It should be noted that

14



the quasi-3D solutions are derived based on the sinusoidal [26], hyperbolic [27], and
cubic [24] variations of the in-plane displacements, and a quadratic variation of the
transverse displacement across the thickness. Since the proposed and quasi-3D theories
include the thickness stretching effect, they lead to solutions close to each other, and
their solutions match well with 3D solution [37]. Whereas, the TSDT solutions [12]
slightly underestimates frequency due to ignoring the thickness stretching effect. Again,
it shoud be noted that the number of unknowns of the proposed theory is only five as

against nine in the case of the quasi-3D theories of Neves et al. [27,26,24].

5. Conclusions

A quasi-3D hyperbolic shear deformation theory is developed for bending and
vibration analysis of FG plates. The approach contains five unknowns, but accounts for
both shear deformation and thickness stretching effects without the need for any shear
correction factor. Equations of motion derived from Hamilton principle are analytically
solved for bending and free vibration problems of a simply supported plate. By dividing
the transverse displacement into the bending and shear parts, the number of unknowns
of the theory is reduced, and the computational time is thus saved. The following main
points may be drawn from the present study:

(1) The results predicted by the proposed theory are in an excellent agreement with 3D
solutions even for the case of very thick plates with a/h =2.

(2) The present quasi-3D theory has five unknowns, but gives results comparable with
those predicted by the existing quasi-3D theories having more number of unknowns.

(3) The proposed theory is even more accurate than the quasi-3D sinusoidal theory

when compared to 3D solution.

(4) The thickness stretching effect is more pronounced for thick plates and it needs to

15



be taken in consideration in the modeling.
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Figure Captions

Fig. 1. Variation of exponential function ]_‘(z) through the thickness of a FG plate for

various values of parameter p

Fig. 2. Variation of dimensionless displacement and stresses through the thickness of
plates (a/h=4,p=0.5)

Fig. 3. Variation of volume fraction ¥, through the thickness of the plate for various

values of the power law index p
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Table Captions

Table 1. Dimensionless deflection vT/(O) of plates (a/h=2)
Table 2. Dimensionless deflection w(0) of plates (a/h=4)
Table 3. Dimensionless stress &, (h / 2) of plates (a/h=2)

Table 4. Dimensionless stress &, (h/2) of plates (a/h=4)

Table 5. Dimensionless fundamental frequency @ of square plates
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Table 1. Dimensionless deflection w(0) of plates (a/h=2)

p
b/a Methods 0.1 03 05 0.7 1.0 15
6 3D [33] 16377 14885 13518 12269  1.0593  0.8261
quasi-3D [33] 16294 14731 13307 12010 1.0282  0.7906
quasi-3D [34] 1.6365 14795 13364 12062 1.0333  0.7939
Present 1.6367 14796 13365 12063 1.0327  0.7939
HSDT [35] 17347 15688 14182 12815 1.1003  0.8500
5 3D [33] 16065 14601 13261 12035 1.0391  0.8102
quasi-3D [33] 15983 14449 13052 1.1780 1.0086  0.7754
quasi-3D [34] 16053 14513 13109 1.1832 1.0135  0.7787
Present 16054 14514 13110 1.1833  1.0130  0.7787
HSDT [35] 17025 15397 13919 12576  1.0798  0.8340
4 3D [33] 15515 14101 12807 1.1624  1.0035  0.7824
quasi-3D [33] 15435 13954 12605 1.1376 09740  0.7487
quasi-3D [34] 15504 14017 12661 1.1427 09788  0.7520
Present 15505 14018 12662 1.1428 09783  0.7520
HSDT [35] 16458 14885 13455 12157 1.0437  0.8060
3 3D [33] 14430 13116  1.1913  1.0812 09334  0.7275
quasi-3D [33] 14354 12977 11722 1.0579 09057  0.6962
quasi-3D [34] 14421 13037 11776 1.0628 09104  0.6993
quasi-3D [28] 14419 13035 1.1774 1.0626 09096  0.6991
Present 14422 13038 1.1777 1.0629  0.9098  0.6993
HSDT [35] 15341 13784 12540 1.1329 09725  0.7506
2 3D [33] 1.1945  1.0859 09864 08952 07727  0.6017
quasi-3D [33] 11880 1.0740 09701 08755  0.7494  0.5758
quasi-3D [34] 1.1941  1.0795 09750 0.8799 07538  0.5786
quasi-3D [28] 11938 1.0793 09748 08797 07530  0.5785
Present 11942 1.0796 09751 0.8800 07532  0.5786
HSDT [35] 12776 1.1553  1.0441 09431  0.8093  0.6238
1 3D [33] 05769 05247 04766 04324 03727  0.2890
quasi-3D [33] 05731 05181 04679 04222 03612 02771
quasi-3D [34] 05779 05224 04718 04257 03649 02794
quasi-3D [28] 05776 05222 04716 04255 03640 02792
Present 05780 05225 04719 04258 03642 02794
HSDT [35] 0.6363 05752 05195 04687 04018 03079
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Table 2. Dimensionless deflection w(0) of plates (a/h=4)

p
b/a Methods 0.1 03 05 0.7 1.0 15
6 3D [33] 11714 1.0622 09633 08738 07550  0.5919
quasi-3D [33] 11668  1.0551 09535 08611 07382  0.5697
quasi-3D [34] 1.1703  1.0583 09563 08636  0.7403  0.5713
Present 11703 1.0583 09563 08636  0.7403  0.5713
HSDT [35] 11920 1.0789 09767 08844 07623  0.5955
5 3D [33] 11459  1.0391 09424 08548 07386  0.5790
quasi-3D [33] 11414 1.0321 09327 08423 07221  0.5573
quasi-3D [34] 1.1448  1.0352 09355 0.8448 07242  0.5588
Present 1.1448  1.0352 09354 08448 07242  0.5588
HSDT [35] 1.1663  1.0556 09556  0.8653  0.7458  0.5825
4 3D [33] 11012 09985 09056 08215 07098  0.5564
quasi-3D [33] 1.0968 09918  0.8963  0.8094  0.6939  0.5355
quasi-3D [34] 1.1001 09948 08989 08118 0.6959  0.5370
Present 11001 09948 08989 08118 06959  0.5370
HSDT [35] 11211 1.0147 09186 08317 0.7169  0.5599
3 3D [33] 10134 09190 08335 07561  0.6533  0.5121
quasi-3D [33] 1.0094 09127 08248 07449  0.6385  0.4927
quasi-3D [34] 10124 09155 08272 07470  0.6404  0.4941
quasi-3D [28] 10124 09155 08272 07470  0.6404  0.4941
Present 10124 09155 08272 07470  0.6404  0.4941
HSDT [35] 10325 09345 08459 07659 06601  0.5154
2 3D [33] 08153 07395 06707 0.6085 05257 04120
quasi-3D [33] 08120 0.7343  0.6635 05992 05136  0.3962
quasi-3D [34] 08145  0.7365  0.6655 0.6009 05151 03973
quasi-3D [28] 08145 0.7365  0.6655 06009 05151 03973
Present 08145 0.7365  0.6655 06009 05151 03973
HSDT [35] 08325 0.7534 0.6819 06173 05319  0.4150
1 3D [33] 03490 03167 02875 02608 02253  0.1805
quasi-3D [33] 03475 03142 02839 02563 02196  0.1692
quasi-3D [34] 03486 03152 02848 02571 02203  0.1697
quasi-3D [28] 03486 03152 02848 02571 02203  0.1697
Present 03486 03152 02848 02571 02203  0.1697
HSDT [35] 03602 03259 02949 02668 02295  0.1785
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Table 3. Dimensionless stress &,(h/2) of plates (a/h=2)

p
bla  Methods 0.1 03 05 0.7 1.0 1.5
6 3D [33] 02943 03101 03270 03451 03746  0.4305
quasi-3D [33] 02912 03118 03339 03573 03955  0.4679
quasi-3D [34] 02763 02954 03159 03378 03737  0.4416
Present 02759 02951 03155 03374 03730 04411
HSDT [35] 02187 02345 02512 02690 02980  0.3498
5 3D [33] 02967 03128 03299 03483 03782  0.4350
quasi-3D [33] 02935 03144 03366 03603 03988  0.4719
quasi-3D [34] 02789 02983 03191 03412 03776  0.4461
Present 02786 02980 03187 03408 03768  0.4456
HSDT [35] 02219 02378 02548 02729 03024  0.3549
4 3D [33] 03008 03173 03349 03537 03844  0.4426
quasi-3D [33] 02974 03186 03412 03653 04045  0.4786
quasi-3D [34] 02834 03032 03243 03469 03839  0.4537
Present 02830 03028 03239 03465 03832 04532
HSDT [35] 02272 02435 02610 02795 03097 03634
3 3D [33] 03081 03252 03436 03633 03953  0.4562
quasi-3D [33] 03042 03261 03493 03741 04143  0.4904
quasi-3D [34] 02912 03118 03337 03571 03954  0.4673
quasi-3D [28] 02920 03127 03347 03582 03963  0.4688
Present 02909 03114 03333 03567 03947  0.4668
HSDT [35] 02368 02539 02721 02914 03230  0.3788
2 3D [33] 03200 03385 03583 03796 04142 04799
quasi-3D [33] 03146 03376 03620 03880 04300  0.5092
quasi-3D [34] 03042 03261 03495 03743 04148  0.4905
quasi-3D [28] 03049 03269 03503 03752 04155 04918
Present 03040 03259 03492 03740 04142  0.4901
HSDT [35] 02539 02723 02919 03128 03469  0.4064
1 3D [33] 03103 03292 03495 03713 04067 04741
quasi-3D [33] 02955 03181 03421 03675 0.4085  0.4851
quasi-3D [34] 02924 03147 03383 03633 04041 04785
quasi-3D [28] 02927 03149 03385 03636 04039  0.4790
Present 02924 03146 03382 03632 04034 04783
HSDT [35] 02943 03101 03270 03451 03746 04305
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Table 4. Dimensionless stress &, (h/2) of plates (a/h=4)

p
b/a Methods 0.1 03 05 0.7 1.0 15
6 3D [33] 02181 02321 02470 02628 02886 03373
quasi-3D [33] 02369 02520 02683 02857 03144  0.3699
quasi-3D [34] 02127 02255 02393 02544 02795 03294
Present 02121 02249 02387 02537 02787  0.3285
HSDT [35] 02010 02149 02298 02455 02711 03192
5 3D [33] 02206 02348 02498 02659 02920 03413
quasi-3D [33] 02391 02545 02710 02886 03176 03737
quasi-3D [34] 02152 02283 02424 02577 02832 03337
Present 02147 02277 02418 02570 02825  0.3328
HSDT [35] 02037 02178 02329 02488 02747  0.3235
4 3D [33] 02247 02392 02546 02710 02977  0.3482
quasi-3D [33] 02429 02586 02754 02934 03230  0.3800
quasi-3D [34] 02196 02330 02475 02633 02894 03411
Present 02190 02324 02469 02626 02887  0.3402
HSDT [35] 02082 02226 02380 02544 02808  0.3307
3 3D [33] 02319 02469 02629 02800 03077  0.3602
quasi-3D [33] 02493 02656 02831 03017 03323 03911
quasi-3D [34] 02272 02414 02566 02731 03004  0.3540
quasi-3D [28] 02286 02429 02583 02749 03024  0.3563
Present 02267 02408 02560 02725 02997  0.3532
HSDT [35] 02162 02312 02472 02642 02917  0.3435
2 3D [33] 02431 02591 02762 02943 03238 03797
quasi-3D [33] 02588 02761 02946 03143 03464  0.4079
quasi-3D [34] 02395 02550 02715 02894 03187 03756
quasi-3D [28] 02407 02563 02730 02909 03204 03776
Present 02391 02545 02710 02888 03181  0.3749
HSDT [35] 02294 02454 02624 02805 03097 03647
1 3D [33] 02247 02399 02562 02736 03018  0.3588
quasi-3D [33] 02346 02510 02684 02870 03171 03739
quasi-3D [34] 02237 02391 02554 02729 03014 03556
quasi-3D [28] 02244 02398 02563 02738 03024 03567
Present 02235 02388 02551 02726 03010  0.3551
HSDT [35] 02164 02316 02477 02649 02927  0.3451

29



Table 5. Dimensionless fundamental frequency @ of square plates

p=0 p=1 a/h=5
Method

a/h=+10 a/h=10 ah=5 a/h=10 a/h=20 p=2 p=3  p=5
3D [37] 04658  0.0578 0.2192 0.0596 0.0153 0.2197 02211 0.2225
Quasi-3D [26] - - 0.2193  0.0596 0.0153 02198 0.2212 0.2225
Quasi-3D [27] - - 0.2193  0.0596 0.0153 02201 0.2216 0.2230
Quasi-3D [24] - - 0.2193 - - 0.2200 0.2215 0.2230
TSDT [12] - - 0.2188 0.0592 0.0147 02188 0.2202 0.2215
Present 0.4661 0.0578 02192 0.0597 0.0153 0.2201 0.2214 0.2225
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