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Abstract

A size-dependent model for bending and free vibration of functionally graded plate is

developed based on the modified couple stress theory and sinusoidal shear deformation

theory. In the former theory, the small scale effect is taken into consideration, while the

effect of shear deformation is accounted for in the latter theory. The equations of motion

and boundary conditions are derived from Hamilton’s principle. Analytical solutions for

the bending and vibration problems of simply supported plates are obtained. Numerical

examples are presented to illustrate the influences of small scale on the responses of

functionally graded microplates. The results indicate that the inclusion of small scale

effects results in an increase in plate stiffness, and consequently, leads to a reduction of

deflection and an increase in frequency. Such small scale effects are significant when

the plate thickness is small, but become negligible with increasing plate thickness.

Keywords: Functionally graded plate; modified couple stress theory; sinusoidal shear

deformation theory; bending; vibration
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1. Introduction

Functionally graded materials (FGMs) are a class of composites that have continuous

variation of material properties from one surface to another and thus eliminate the stress

concentration found in laminated composites. Recently, the application of FGMs has

broadly been spread in micro- and nano-scale devices and systems such as thin films [1],

atomic force microscopes [2], micro- and nano-electro-mechanical systems (MEMS and

NEMS) [3]. In such applications, size effects or small scale effects are experimentally

observed [4-6]. Conventional plate models based on classical continuum theories do not

account for such size effects due to the lack of a material length scale parameter. Thus,

needs exist for the development of size-dependent plate models which account for these

size effects.

In general, size-dependent plate models can be developed based on size-dependent

continuum theories such as classical couple stress theory [7-9], nonlocal elasticity

theory [10], and strain gradient theory [11]. In view of the difficulties in determining the

material length scale parameters, the modified couple stress theory first proposed by

Yang et al. [12] takes an advantage over the aforementioned size-dependent continuum

theories due to involving only one material length scale parameter. The modified couple

stress theory proposed by Yang et al. [12] results from the classical couple stress theory

[7-9]. The two main advantages of the modified couple stress theory over the classical

one are the inclusion of asymmetric couple stress tensor and the involvement of only

one material length scale parameter. Based on the modified couple stress theory, several

size-dependent plate models have been developed. For example, Park and Gao [13]

developed Euler-Bernoulli beam model for bending analysis of microbeams. Akgoz and

Civalek [14] developed Euler-Bernoulli beam models for buckling analysis of axially
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loaded microbeams. Ke and Wang [15] developed Timoshenko beam model to study the

size effect on dynamic stability of functionally graded (FG) microbeams. Tsiatas [16]

developed a size-dependent model for static analysis of microplates using Kirchhoff

plate theory (KPT). This model was employed by Yin et al. [17] and Akgoz and Civalek

[18] to study the vibration of microplates and nanoplates, respectively. Due to ignoring

the shear deformation effect, the KPT provides accurate results for thin homogeneous

plates only. For moderately thick FG plates, it underestimates the deflection and

overestimates the frequency. Ma et al. [19] and Ke at al. [20] overcome the deficiency

of Tsiatas’s model by using the first-order shear deformation theory (FSDT) to account

for the shear deformation effect. Although the FSDT gives sufficiently accurate result

for moderately thick FG plates, it is not convenient to use due to requiring a shear

correction factor which is hard to find since it depends on many parameters. To avoid

the use of the shear correction factor, Reddy and Kim [21] adopted a higher-order shear

deformation theory to develop a size-dependent model for FG microplates.

In general, higher-order shear deformation theories are can be developed based on the

higher-order variations of in-plane displacements through the thickness, notable among

them are the third-order shear deformation theory of Reddy [22], the sinusoidal shear

deformation theory of Touratier [23], the trigonometric shear deformation theory of

Ferreira et al. [24], the hyperbolic shear deformation theory of Soldatos [25], and the

exponential shear deformation theory of Karama et al. [26]. Among them, the sinusoidal

shear deformation theory [23] is widely used because of accuracy and efficiency. Thus,

it is adopted herein to develop a size-dependent model for static and free vibration of

FG microplates. The aim of this paper is to reformulate the sinusoidal shear deformation

theory [23] to account for the small scale effect. The material properties of FG plates are
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assumed to vary through the thickness according to the power law distribution of the

volume fraction of the constituents. The equations of motion and boundary conditions

are derived using the modified couple stress theory and Hamilton’s principle. Analytical

solutions for the bending and vibration problems are obtained for a simply supported

plate. Numerical examples are presented to illustrate the influences of small scale on the

responses of FG microplates.

2. Theoretical formulation

2.1. Modified couple stress theory

Unlike classical couple stress theory, the modified couple stress theory includes a

symmetric couple stress tensor and involves only one length scale parameter. According

to the modified couple stress theory, the virtual strain energy can be written as [12]

ij ij ij ijV V
U dV m dV      (1)

where summation on repeated indices is implied; ij are the components of the stress

tensor; ij are the components of the strain tensor; ijm are the components of the

deviatoric part of the symmetric couple stress tensor; and ij are the components of

the symmetric curvature tensor defined by
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where i are the components of the rotation vector related to the displacement field
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2.2. Kinematics

The sinusoidal theory of Touratier [23] is based on the assumption that the transverse

shear stress vanishes on the top and bottom surfaces of the plate and is nonzero

elsewhere. Thus there is no need to use shear correction factors as in the case of FSDT.

According to Touratier [23], the displacement field of sinusoidal theory is given as
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where ( , ,u v w ) are the displacements along the ( , ,x y z ) coordinate directions of a point

on the midplane of the plate; x and y are the rotation of the middle surface in the

x and y directions, respectively; and h is the plate thickness. The nonzero linear

strains of the sinusoidal theory are
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where ( / )sin( / )f h z h  , cos( / )g f z h  . It can be observed from Eqs. (5d)

and (5e) that the transverse shear strains ( xz , yz ) are zero at the top ( / 2z h ) and

bottom ( / 2z h  ) surfaces of the plate. A shear correction factor is, therefore, not

required. Substituting the displacement field ( 1 2 3, ,u u u ) from Eq. (4) into Eq (3), the

components of the rotation vector are obtained as
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w g

y
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Substituting Eq. (6) into Eq (2), the components of the curvature tensor take the form
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where 2( / )c h .
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2.3. Equations of motion

Hamilton’s principle is used herein to derive the equations of motion. The principle

can be stated in an analytical form as [27]

 
0

0
T

U W K dt     (8)

where U is the virtual strain energy, W is the virtual work done by external forces,

and K is the virtual kinetic energy. The virtual strain energy is given by (see Eq. (1))
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where N , M , P , Q , R , S , and T are the stress resultants defined by
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h
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  (10a)
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h
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  (10b)

The virtual work done by external forces consists of three parts: (1) virtual work done

by the body forces in ( / 2, / 2)V h h   , (2) virtual work done by surface tractions

acting on the top and bottom surfaces  , and (3) virtual work done by surface tractions
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acting on the lateral surface ( / 2, / 2)S h h   , where  denotes the middle surface

of the plate and  is the boundary of the middle surface. Let ( , ,x y zf f f ) be the body

forces, ( , ,x y zc c c ) be the body couples, ( , ,x y zq q q ) be the surface forces acting on  ,

and ( , ,x y zt t t ) be the surface forces acting on S . Then, the virtual work done by

external forces is [21]
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The virtual kinetic energy is expressed as
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where dot-superscript convention indicates the differentiation with respect to the time

variable t ;  z is the mass density; and  0 1 1 2 2 2, , , , ,I I J I J K are mass inertias

defined by
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Substituting the expressions for U , V , and K from Eqs. (9), (11), and (12) into

Eq. (8) and integrating by parts, and collecting the coefficients of ( , , , ,x yu v w     ),

the following equations of motion are obtained
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where
2 22
2 2x y

 


 
  is the Laplacian operator in two-dimensional Cartesian coordinate

system. The boundary conditions involve specifying one element of each of the

following five pairs:

1
or

2
yzxz

u x xy y zx yx

RR
u N N n N n c n

x y

 
       

(15a)

1
or

2
yzxz

v xy x y zyy x

RR
v N N n N n c n

x y

 
       

(15b)

1 2 2 1 2 2

or xy xy y xy
x y x

yy yy

xy
y x x y

x

x
y

x

x

M M M R RM
w V n n n

x y x y x y

RR w w
n I u J I n I v J I n

x y x y
 

         
                    

                        

 
  

(15c)

 1 1
or

2 2
yzxz

xx yy zx x x xy y y x y zy x y

TT
M P n P n n S n S n S n

x y
 

         
(15d)



10

 1 1
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2 2
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where xn and yn denote the direction cosines of the unit normal to the boundary of

the middle plane.

2.4. Constitutive relations

Consider a FG plate composed of ceramic and metal. The material properties of FG

plates such as Young’s modulus E and mass density  are assumed to vary

continuously through the thickness by a power law as [28]
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where the subscripts m and c represent the metallic and ceramic constituents,

respectively; and p is the power law index. The value of p equal to zero represents

a fully ceramic plate, whereas infinite p indicates a fully metallic plate.

The linear elastic constitutive relations are
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where  is the Poisson’s ratio assumed to be constant,  is the material length scale

parameter which is regarded as a material property measuring the effect of couple stress

[29]. This parameter can be determined from torsion tests of slim cylinders [4] or

bending tests of thin beams [11]. Substituting Eq. (17) into Eq. (10), the stress resultants
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can be expressed in terms of generalized displacements ( , , , ,x yu v w   ) as
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2.5. Equations of motion in terms of displacements

Substituting Eq. (18) into Eq. (14), the equations of motion can be expressed in terms

of generalized displacements ( , , , ,x yu v w   ) as
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Clearly, when size effect is neglected ( 0 ), the present model recovers the classical

sinusoidal theory [30].
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2.6. Analytical solutions

Consider a simply supported rectangular plate under a transverse load. Based on the

Navier approach, the solutions are assumed as
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(21)

where 1i   , /m a  , /n b  ,  , , ,mn mn bmn smnU V W W are coefficients, and

 is the frequency of vibration. The transverse load q is also expanded in the double-

Fourier sine series as
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Substituting Eqs. (21) and (22) into Eq. (20), the analytical solutions can be obtained

from the following equations
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12 22 23 24 25 22 23 25
2

13 23 33 34 35 13 23 33 34 35

14 24 34 44 45 14 34 44

15 25 35 45 55 25 35 55
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where
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3. Numerical results

3.1. Verification studies

Since the results of microplate made of FGM are not available in the open literature,

only homogeneous microplates ( 0p  ) is used herein for the verification. Table 1

shows the fundamental frequencies of simply supported square plates with various

values of side-to-thickness ratio /a h . The microplate is made of epoxy with the

following material properties: 1.44E  GPa, 0.38  , 1220  kg/m3,

617.6 10  m, and 2h   [20]. The obtained frequencies are compared with those

reported by Yin et al. [17] based on the KPT and Ke et al. [20] based on the FSDT. It

can be seen that the obtained analytical results are in good agreement with the p-version

Ritz solutions of Ke et al. [20] based on the FSDT. The difference between the KPT [17]

and shear deformation theories (i.e., FSDT [20] and present model) is observed to be
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quite small when side-to-thickness ratio / 20a h  but relatively large when / 20a h  .

This is due to the transverse shear deformation effects which are more pronounced in

moderately thick and thick plates are included in the shear deformation theories, but

neglected in the KPT [17].

3.2. Parameter studies

Parameter studies are presented to investigate the influences of material length scale

parameter  and power law index p on the bending and vibration responses of FG

microplate. Unless mentioned otherwise, a simply supported square FG microplate with

/ 10a h  is considered. This plate is composed of aluminum Al (as metal) and alumina

Al2O3 (as ceramic). Young’s modulus and mass density of aluminum are 70mE  GPa

and 2702m  kg/m3, respectively, and that of alumina are 380cE  GPa and

3800c  kg/m3, respectively. Poisson’s ratio is assumed to be constant through the

thickness and equal to 0.3. The material length scale parameter  = 617.6 10 m is

based on the experimental work reported by Lam et al. [11]. For convenience, the

following dimensionless forms are used:

 

     

3 2

4
0 0

0 0

10
, , / , , , ,

2 2 2 2

0,0, , 0, ,
2

c
c c x x

xy xy xz xz
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(26)

Numerical results of dimensionless stresses are presented in Table 2 for different

values of dimensionless material length scale parameter / h and power law index p .

The through thickness variation of stresses are plotted in Figs. 1-3 for a FG microplate

( 1p  ). In these figures, the results of both present model ( 0 ) and classical model

( 0 ) are presented. It can be observed that the classical model overestimates stresses
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of microplates (see Table 2 and Figs. 1-3). It is because the classical model ignores the

small scale effects which are significant in microplates. The effects of the length scale

parameter on deflection w and frequency  are also presented in Figs. 4-6. It can be

seen that the effects of length scale parameter are significant when the plate thickness is

small especially at the higher modes (see Fig. 6), but become negligible with increasing

plate thickness. This means that the size effect is only significant when the thickness of

the plate is at the micron scale, which agrees with the general trends observed in

experiments.

The effects of the power law index p on the deflection and frequency are presented

in Figs. 7 and 8. It can be seen that increasing value of the power law index leads to an

increase in the magnitude of deflection (see Fig. 7) and a reduction of the amplitude of

frequency (see Fig. 8). This is due to the fact that higher values of power law index

correspond to high portion of metal in comparison with the ceramic part. In other words,

an increase of the power-law index results in a reduction of elasticity modulus and

bending stiffness, which also implies that the plate becomes flexible. Therefore, it leads

to an increase in deflection and a reduction of frequency.

4. Conclusions

Based on the modified couple stress theory and sinusoidal shear deformation theory,

a size-dependent model is developed for the bending and free vibration of functionally

graded plates. The equations of motion and boundary conditions are derived using

Hamilton’s principle. Analytical solutions for a simply supported plate are obtained. The

present models contain one material length scale parameter and can capture the small

scale effect, shear deformation effect, and two-constituent material variation through the

plate thickness. The present models can also recover the classical sinusoidal plate model
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by setting the material length scale parameter equal to zero. The numerical results show

that the inclusion of the small scale effect will increase stiffness of the plates, and

consequently, leads to a reduction of both deflection and stresses and an increase in

frequency. The differences in bending and vibration responses predicted by the present

model and the classical model are significant when the plate thickness is small, but they

are negligible when the plate thickness becomes larger. These predicted trends agree

with the size effect at the micron scale observed in experiments.
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Figure Captions

Fig. 1. Variation of in-plane normal stress x across the thickness of a square plate

( 1p  )

Fig. 2. Variation of in-plane shear stress xy across the thickness of a square plate

( 1p  )

Fig. 3. Variation of transverse shear stress xz across the thickness of a square plate

( 1p  )

Fig. 4. Effect of the material length scale parameter  on the deflection w of a

square plate

Fig. 5. Effect of the material length scale parameter  on the fundamental frequency

 of a square plate

Fig. 6. Effect of the material length scale parameter  on the higher-order frequencies

 of a square plate ( 1p  )

Fig. 7. Effect of the power law index p on the deflection w of a square plate

Fig. 8. Effect of the power law index p on the fundamental frequency  of a square

plate
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Table Captions

Table 1. Fundamental frequency (MHz) of a homogeneous square plate ( 0p  , 2h   )

Table 2. Dimensionless stresses of a FG plate
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( 1p  )

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-2 -1.5 -1 -0.5 0 0.5 1

z/
h

5h   2h   h  

xy

0(present model)
0(classicalmodel)

Fig. 2. Variation of in-plane shear stress xy across the thickness of a square plate

( 1p  )



25

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3

z/
h

5h  2h  h  

xz

0(present model)
0(classicalmodel)
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Fig. 5. Effect of the material length scale parameter  on the fundamental frequency

 of a square plate
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Fig. 6. Effect of the material length scale parameter  on the higher-order frequencies

 of a square plate ( 1p  )
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Table 1. Fundamental frequency (MHz) of a homogeneous square plate ( 0p  , 2h   )

/a h KPT [17] FSDT [20] Present
10 0.4204 0.4042 0.4132
20 0.1051 0.1040 0.1046
30 0.0467 0.0465 0.0466

Table 2. Dimensionless stresses of a FG plate

p / h  / 2x h  / 3xy h   0xz

0 0 1.9955 0.7065 0.2462
0.2 1.6945 0.6007 0.1901
0.5 0.9528 0.3392 0.0725
1 0.3762 0.1345 0.0133

1 0 3.0870 0.6110 0.2462
0.2 2.5541 0.5061 0.1881
0.5 1.3467 0.2677 0.0725
1 0.5048 0.1007 0.0159

10 0 5.0890 0.5894 0.2198
0.2 4.4019 0.5111 0.1665
0.5 2.6050 0.3044 0.0612
1 1.0737 0.1262 0.0123


