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Abstract

A size-dependent model for bending and free vibration of functionally graded plate is
devel oped based on the modified couple stress theory and sinusoidal shear deformation
theory. In the former theory, the small scale effect is taken into consideration, while the
effect of shear deformation is accounted for in the latter theory. The equations of motion
and boundary conditions are derived from Hamilton’s principle. Analytical solutions for
the bending and vibration problems of simply supported plates are obtained. Numerical
examples are presented to illustrate the influences of small scale on the responses of
functionally graded microplates. The results indicate that the inclusion of small scale
effects results in an increase in plate stiffness, and consequently, leads to a reduction of
deflection and an increase in frequency. Such small scale effects are significant when

the plate thicknessis small, but become negligible with increasing plate thickness.
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1. Introduction

Functionally graded materials (FGMs) are a class of composites that have continuous
variation of materia properties from one surface to another and thus eliminate the stress
concentration found in laminated composites. Recently, the application of FGMs has
broadly been spread in micro- and nano-scale devices and systems such as thin films [1],
atomic force microscopes [2], micro- and nano-el ectro-mechanical systems (MEMS and
NEMS) [3]. In such applications, size effects or small scale effects are experimentally
observed [4-6]. Conventiona plate models based on classical continuum theories do not
account for such size effects due to the lack of a material length scale parameter. Thus,
needs exist for the development of size-dependent plate models which account for these
Size effects.

In general, size-dependent plate models can be developed based on size-dependent
continuum theories such as classical couple stress theory [7-9], nonlocal elasticity
theory [10], and strain gradient theory [11]. In view of the difficulties in determining the
material length scale parameters, the modified couple stress theory first proposed by
Yang et al. [12] takes an advantage over the aforementioned size-dependent continuum
theories due to involving only one material length scale parameter. The modified couple
stress theory proposed by Yang et al. [12] results from the classical couple stress theory
[7-9]. The two main advantages of the modified couple stress theory over the classical
one are the inclusion of asymmetric couple stress tensor and the involvement of only
one material length scale parameter. Based on the modified couple stress theory, severd
size-dependent plate models have been developed. For example, Park and Gao [13]
developed Euler-Bernoulli beam model for bending analysis of microbeams. Akgoz and

Civalek [14] developed Euler-Bernoulli beam models for buckling analysis of axialy



loaded microbeams. Ke and Wang [15] developed Timoshenko beam model to study the
size effect on dynamic stability of functionaly graded (FG) microbeams. Tsiatas [16]
developed a size-dependent model for static analysis of microplates using Kirchhoff
plate theory (KPT). This model was employed by Yin et a. [17] and Akgoz and Civalek
[18] to study the vibration of microplates and nanoplates, respectively. Due to ignoring
the shear deformation effect, the KPT provides accurate results for thin homogeneous
plates only. For moderately thick FG plates, it underestimates the deflection and
overestimates the frequency. Ma et al. [19] and Ke at a. [20] overcome the deficiency
of Tsiatas’s model by using the first-order shear deformation theory (FSDT) to account
for the shear deformation effect. Although the FSDT gives sufficiently accurate result
for moderately thick FG plates, it is not convenient to use due to requiring a shear
correction factor which is hard to find since it depends on many parameters. To avoid
the use of the shear correction factor, Reddy and Kim [21] adopted a higher-order shear
deformation theory to devel op a size-dependent model for FG microplates.

In general, higher-order shear deformation theories are can be developed based on the
higher-order variations of in-plane displacements through the thickness, notable among
them are the third-order shear deformation theory of Reddy [22], the sinusoidal shear
deformation theory of Touratier [23], the trigonometric shear deformation theory of
Ferreira et a. [24], the hyperbolic shear deformation theory of Soldatos [25], and the
exponential shear deformation theory of Karama et al. [26]. Among them, the sinusoidal
shear deformation theory [23] is widely used because of accuracy and efficiency. Thus,
it is adopted herein to develop a size-dependent model for static and free vibration of
FG microplates. The aim of this paper isto reformulate the sinusoidal shear deformation

theory [23] to account for the small scale effect. The material properties of FG plates are



assumed to vary through the thickness according to the power law distribution of the
volume fraction of the constituents. The equations of motion and boundary conditions
are derived using the modified couple stress theory and Hamilton’s principle. Analytical
solutions for the bending and vibration problems are obtained for a smply supported
plate. Numerical examples are presented to illustrate the influences of small scale on the

responses of FG microplates.
2. Theoretical formulation

2.1. Modified couple stress theory
Unlike classical couple stress theory, the modified couple stress theory includes a
symmetric couple stress tensor and involves only one length scale parameter. According

to the modified couple stress theory, the virtual strain energy can be written as [12]

dU = | s de,dV + | mdec,dv (1)
where summation on repeated indices is implied; s are the components of the stress
tensor; e; are the components of the strain tensor; m; are the components of the
deviatoric part of the symmetric couple stress tensor; and c¢; are the components of

the symmetric curvature tensor defined by
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where g, are the components of the rotation vector related to the displacement field
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2.2. Kinematics

The sinusoidal theory of Touratier [23] is based on the assumption that the transverse
shear stress vanishes on the top and bottom surfaces of the plate and is nonzero
elsewhere. Thus there is no need to use shear correction factors as in the case of FSDT.

According to Touratier [23], the displacement field of sinusoidal theory is given as

u(xy zt)=u(xyt)- zg—vxv+pﬂsin(p—hzjj .

U, (%, Y, z,t) = v(X, y,t)—za—w+ﬁsin£Ejj y 4)
Uy (X, Y, Zt) = W(X, y,t)
where (u,v,w) are the displacements along the ( X, y, z) coordinate directions of a point

on the midplane of the plate; j , and j , are the rotation of the middle surface in the

x and y directions, respectively; and h is the plate thickness. The nonzero linear
strains of the sinusoidal theory are
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where f =(h/p)sin(pz/h), g=f'=cos(pz/h). It can be observed from Egs. (5d)
and (5e) that the transverse shear strains (g,,,9,,) are zero at the top (z=h/2) and
bottom (z=-h/2) surfaces of the plate. A shear correction factor is, therefore, not
required. Substituting the displacement field (u,,u,,u,) from Eq. (4) into Eq (3), the
components of the rotation vector are obtained as

_w_g,

68
a, oy 2y (63)
oW g.
=——t= 6b
Gy =7 "5 (6b)
qzzl(av_8UJ+i(aJ y _aj xj (6C)
2lox oy) 2\ ox oy

Substituting Eg. (6) into Eq (2), the components of the curvature tensor take the form

2 a
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where c=(p/h)>.




2.3. Equations of motion
Hamilton’s principle is used herein to derive the equations of motion. The principle

can be stated in an analytical form as[27]
T
0=jO (dU +dw —dK)dt (8)

where dU isthevirtual strain energy, dW isthe virtual work done by external forces,

and dK isthevirtual kinetic energy. The virtual strain energy is given by (see Eq. (1))
h/2
du = .[Aj-h/z(s XXdeXX +S WdeW +S Xydgxy +S degxz +S yzdgyZ)dAdZ

h/2
+ IAJ:h,Z(”l«dCxx +m,dc,, +mydc,+2mdc, +2mJdc,, + Zmﬂdcyz)dAdz
2 - 2 a(f
=I N adu—Mxxad;NJrPxxadjx N @_Mwad;/erPW )y
OX OX oy oy oy

adu  odv o*dw odj dJ
+NW(E+ j 2M +P( — |+Q.di +Q,di , |dxdy

OX Y oxoy oy OX
2 odj S, —-S '
JRe-R S 2D B e S g T )
A 6x8y 2 oX 2 oy 2
‘R, azdw 82dw S adj , odj, R o*dv _ o%du
2 oX oy 2 | ox*  oxoy

aZd 2 2 2 2d 2
Te Jy Lo, +Ryz o7dv 8du+ g, adj2X dixcly
2 Oxoy oxoy  oy* oxoy oy 9)

whee N, M, P, Q, R, S,and T arethe stress resultants defined by

h/2
(N,M;,P,Q)= j (Lzf,g)s,dz (10a)
-h/2

(R.S.T)= [ (Lg, f)mdz (10b)

-h/2
The virtual work done by external forces consists of three parts: (1) virtual work done

by the body forcesin V =Qx(-=h/2,h/2), (2) virtua work done by surface tractions

acting on the top and bottom surfaces Q, and (3) virtual work done by surface tractions



acting on the lateral surface S=T"x(-h/2,h/2),where Q denotesthe middle surface

of the plate and T" isthe boundary of the middle surface. Let ( f f,) be the body

X! y1
forces, (c,,c,,c,) be the body couples, (q,,q,,q,) be the surface forces acting on Q,
and (t,,t,,t,) be the surface forces acting on S. Then, the virtual work done by

external forcesis|[21]

dW = _UQ( f.du, + f,du, + f,du, +c,da, +c,dg, +cdg, ) dxdy

(11)
+[_ (adu, +a,du, +qdu;)axdy+ [ (t,du +tdu, +tzdu3)dr}
The virtual kinetic energy is expressed as
dK = [ (udu,+u,du, +udu,)r (2)dAdz
IA[IO(udu+vdv+vwlw)+J (i du+ud, +",dv+v, )
-1, uadw+8_de+V8dw+8_wd 8_vv6dw ow adw (12)
oX  oXx oy oy ox ox oy oy
.. odw ow .. .. odw ow e
_ 2( XW+&dj A+ yW+5dj yJ+K (7,0, +i",0i y)}dxdy

where dot-superscript convention indicates the differentiation with respect to the time
variable t;r (z) is the mass density; and (l,,1,,J,,1,,J,,K,) are mass inertias

defined by

(I 11, 30,15, 35, K,) = hjz (Lzf,2°,2,1%)r (z)dz (13)

-h/2
Substituting the expressions for dU, dV,and dK from Egs. (9), (11), and (12) into

Eq. (8) and integrating by parts, and collecting the coefficients of (du,dv,dw,dj ,,dj ),

the following equations of motion are obtained

oN 2 0° i
du: 8NXX+ Xy+1 0 RQ Re +fx+qx+lacz:Iol'j—lla—W+J]j"X (143)
oX oy axay oy? 2 0y OX




oN,, ©oN 2 o A
dv: —2+ w 110 R2‘2+ Re +fy+qy—lacz:IO\'i—Ila—W+J]j"y
OX oy 2\ ox oxoy 2 0X oy

M, M, M, PR, R, F(R,-R))
ox? oxoy oy’ ox> oy’ OX0Y

ac .o .o Tee a"'
+ f +qZ+—y—aCX:Io\i\'/—IZVZW+Il 8_U+Q +J, d « Ay
oy OX

dw

‘ OX oy ox oy
oP, oS, 0S 2 o°T
g, BB o (Y By P 85,00 Ilp o 10D
0 oy 2 ox oy oy oxoy oy p
oW
=Jli-J,—+K
1 Zax ZJX
oP, P oS o°T
d , Xy+—W—Qyz—1 OS, y 05, aZTZXZ+ Z 4T, —cxD
ox oy 2l ox oy ox oOx oxoy p

(14b)

(14c)

(14d)

(14e)

2 2 . . . . . . .
where V2= 6% + 2 isthe Laplacian operator in two-dimensiona Cartesian coordinate

a2

system. The boundary conditions involve specifying one element of each of the

following five pairs:

0
uor N,=N_n +N_n L &—F&-i—cz n
Xy 2|1 ox 8y y

0
vor N,=N_n +N_n 1 &-F&-FCZ n,
Xy wey 21 ox 6y

oM oM oM 0 0
worV = aMXX+—xy n +| —~+—=—%|n, + &+& n,
OX oy OX oy OX oy

OX

jor MjXEPXXnX+PXyny+§ =

10T, Ty
oxX oy

(15a)

(15b)

(15¢)

1
j n, + E(sxynx +S,n,-S,n)  (15d)
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. oT_ OT
jyoersznerPWny—E(—xz z

+ —j n, - %(Swny +S,n,—S,n,) (15€)

Xy

ox oy

where n. and n, denote the direction cosines of the unit normal to the boundary of

the middle plane.
2.4. Constitutive relations

Consider a FG plate composed of ceramic and metal. The material properties of FG
plates such as Young’s modulus E and mass density r are assumed to vary

continuously through the thickness by a power law as [28]
E(2)=E,+(E,-E )(1+Ejp
m C m 2 h

(16)
1

r (z):rm+(rc—rm)(§+ﬁjp

where the subscripts m and ¢ represent the metallic and ceramic constituents,
respectively; and p isthe power law index. The value of p equal to zero represents
afully ceramic plate, whereasinfinite p indicatesafully metallic plate.

The linear € astic constitutive relations are

S 1 n O 0 0
S n 1 O 0 0
w E(z (1-n) W
Sy (= 1_(nz 00 > ( 0) 0 Jy (179
1-n
S 0O 0 O = 0 9,
S 0O 0 O 0 (1‘2”) g,
E(2) .
mj 1+n ij ( )

where n isthe Poisson’s ratio assumed to be constant, ¢ isthe material length scale
parameter which is regarded as a material property measuring the effect of couple stress
[29]. This parameter can be determined from torsion tests of slim cylinders [4] or

bending tests of thin beams [11]. Substituting Eq. (17) into Eq. (10), the stress resultants

10



can be expressed in terms of generalized displacements (u,v,w,j ,,j ,) as

2 2 H a
NXX:A@ ol -B 8\/2v+n8v2v +C 8JX+n Ly
oX oy OX oy OX oy
2 2 H a
N, =An 8_u+@ —BnaW 8W+CnL+£
- ox oy Xt oy? ox oy
2 _ ; oi
ny=Al n 8u ov B(l—n)aW+C1 n 8JX+ ]y
ay ox OxXoy 2 Loy oX
8
Mxx=Ba—un@—Da Wi ajx Jy
ox oy ox*
M, =B[n M —Dn LT P O
oX oy OX
2 _ : oi
Mxy:Bl ou av D(l—n)aw Fl n 81X+ )y
2 8y ox oxoy 2 oy ox
2 2 H 8
P, =C 6_u+n@ -F 6\/2v n@_vzv +H L+n£
oxX oy oX oy oX oy
2 2 H 6
P,=C na—u+@ -F na_vzv 6_\/2v +H nL+Q
oxX oy ox- oy ox oy
2 _ ; Oi
R, = Cl n(aou 6‘v F(l—n)aWJrHl n 8]X+ )y
ay Ox oxoy 2 Loy oXx
sz:Aij’QyZ:Ajy
o'w  _
=2 -B
R A‘axay " ox
ajx
R/y_ = X
a><6y "oy
o®w o*w) B[4, O]
Rw:Ah 2 2 T —X -
oy- OX 2\ ox oy

|

11

|

J

(18a)

(18b)

(18c)

(18d)

(18e)

(18f)

(18g)

(18h)

(18i)

(18))

(18K)

(181)

(18m)



szzﬁ(ﬁ_z\/_ aqu_’_Cn(ajy_&_’_q‘ y] (18n)

2 ox2 axoy) 2| o oxvy
ov o) C (05, &5, .
Rﬂ:% A S _y__J;_q ) (180)
oxoy oy 2 oxoy oy
2 8
sxxzansW—Dnﬂ (18p)
X0y OX
o*w dj
S, =-2B +D =X 18
vy nﬁxay nay ( q)
.
S,=D, Ay _dx (18r)
ox oy
2 2 H a
S, =B, 5\’2V_5‘Q’ L B P (189)
oy~ OX 2 ox oy
2 2 62' 2
T,=Sof 0V OU ) Faf )y Ol g (181)
2 ox° oxoy 2| ox* oxoy
2 2 82' 2
Tﬂ:& oV _5_‘;' LH y__aJZX_q' ) (18u)
2\ oxoy oy 2 |oxoy oy
where
h/2 E h/2 E
(AB.C.D,F,H)= j(Lz,f,zz,zf,fz)Lszz, K= | g (D 4 (109
—h/2 1-n ~h/2 2(1+n)
h/2 ézE(Z)
,B,C,D ,H )= f,g2, f2 dz 190
(A.B,.C,.D,.H,) hflz(lg g )2(1+n) (190)

2.5. Equations of motion in terms of displacements
Substituting Eg. (18) into Eqg. (14), the equations of motion can be expressed in terms

of generalized displacements (u,v,w,j ,,j ,) as

12



a2 2 o2 2 oxvy) 4 ooy oy X

OX
2: _ 2: 62- a 2: 82. 2
+C 0 2x+1 naJ2x+1+n Jy +& VZ JY_ajzx +C JY_aJZX (203.)
o’ 2 oy 2 oxdy) 4 oxdy oy oxdy oy
+fx+qx+£acz=IOU—I18\—N+‘J]j"X
2 dy X

2 A2 2 2
A(8u+1 n o 1+n 8v]+iv[6 6uj vz oW

2 _ 2 2 2 2
A6\2/+1 na\2/+1+n o°u +iV2 6u_8v_BV26_vv
oy 2 0OXx 2 oxoy

4 oxoy ox2 oy
ot e \ 5 oA 5 oA
+C 2"+1 n Jzy+1+n8 X +& V2 01 _ t+c 01, 91y (20b)
oy 2 0OX 2 oxoy 4 oxoy  OX oxoy  ox
1aoc, Lo, OW
+fy+qy_§&:|ov_lla_y+\]jj y
0
By 204 —(D+ﬂ)v4w+(F+5jv2 A, Ay
o 2 ox oy
: 7 (209
+f +q,+ y—acleow |,V2W+ 1, A N J, I Ay
ox oy ox oy

o°u 1-nd°u 1+n 0°v | C, |_,[ ov ©du o’v o«
Cl—+ >+ +—V -— |+¢C -
OX 2 oy 2 oxoy 4 oxoy oy oxoy oy
2 _ 2 o3 o5 2: o3 2
H 6]2X+1 no 2X+1+n 1y +iV2 Jy—ajzx +2c Jy—ajzx (20d)
OX 2 oy 2 oxoy 4 oxoy oy oxoy oy
2 2 82' 2 .
Dl 0y 490 390y —(F+5jv28—w— A+SH i g Wk
4\ ox oy oxoy 2 OX 4 oX
2 _ 2 2
c 6_\2/+1 na_\2/+1+n ou +& V2 o%u
oy 2 0OX 2 oxoy 4 6xay ax axay ax
ol —ndj 0’ g 07
+H Jy+1n Jy+1+n61X+ % 09y Jy+c 01, 9y (20e)
oy? 2 ox 2 Oxoy 4 oxoy  ox oxoy  ox
62' 82' 2 .
$Pu) Ay g9y 300 —(F+5]v28—w— +LE; =393, Wk
4\ oy OX oxoy 2 oy 4 oy

Clearly, when size effect is neglected (¢ =0), the present model recovers the classica

sinusoidal theory [30].
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2.6. Analytical solutions
Consider a simply supported rectangular plate under a transverse load. Based on the

Navier approach, the solutions are assumed as

(SR o]

u(x,y,t)=>>U, cosaxsinbye"

m=1n=1

00 00

v(x,y,t)=>.>V, sinaxcosbye™

m=1n=1

(o SR o]

w(x y,t)=> > W, sinaxsinbye™ (21)

m=1n=1

o 0

j (% y,t)=>"> X cosaxsinbye™
m=1n=1

o0 00

i ,(xy,t)=>>"Y, sinaxcosbye"

m=1n=1

where i=+-1, a=np/a, b=mp/b, (U, VW, W,,) ae coefficients, and

bmn
w isthe frequency of vibration. Thetransverseload q isaso expanded in the double-

Fourier sine series as

xy :iiQrmsinaxsinby (22)

m=1n=1

where

4 20 q, for sinusoidally distributed load
=— x smaxsmb dxdy = 23
Om =2 l { 4(xy) Y= 16% for miformly distributed load >

mnp
Substituting Egs. (21) and (22) into Eq. (20), the analytical solutions can be obtained

from the following equations

S: S, S5 S Ss m 0 my; m, 0]V, 0
S S» S5 Su Ss 0 m, my, 0 my|||Vy 0
S5 S5 Su Sy S |"W My my my omy, my | |\W, r=1Q., ¢ (24)
%.4 SZ4 %4 S44 S45 rn.l.4 O %4 m44 O an 0
L %.5 SZ5 S?:5 S45 S55 a L 0 rTES ”55 0 rnSS | Ymn 0

where
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suzA(a2+1;‘b2)+%b2(a2+b2), s, =2 Aab —%ab(a%bz)
s;=-Ba(a’+b?), 914:C(a2+12”b2)+%b2(a2+b2—c)

s; =27 Cab —%ab(a2+b2—c), Sp= A(b2+12”a2)+%a2(a2+b2)
S,=-Bb(a’+b?),s, =5, 525:C(b2+l;a2)+%a2(a2+b2—c)
s,=(D+A)(a%+b?), 334=_(F+%j(a2+b2)a

835:—[F +%)(a2+b2)b, s%:{lg‘H - ll” (a2+b2—20)—34D”}ab

s44=AS+H(a2+1‘2”b2)+%[b2(a2+b2—20)+02}+%(a2+4b2)

555=A5+H(b2+12”a2)+%[a2(a2+b2—20)+c2]+%(4a2+b2)

m,=m, =1, my=-al, m,=J, ng=—b|1, My =J; (25)
my, = |o+|2(a2+b2)’ my, =-aJd,, mg=-bJ,, m, =m; =K,

3. Numerical results

3.1. Verification studies

Since the results of microplate made of FGM are not available in the open literature,
only homogeneous microplates (p=0) is used herein for the verification. Table 1
shows the fundamental frequencies of simply supported square plates with various
values of side-to-thickness ratio a/h. The microplate is made of epoxy with the
following material propertiess E=144 GPa, n=0.38 , r =1220 kg/m®,
0=17.6x10°m, and h=2¢ [20]. The obtained frequencies are compared with those
reported by Yin et a. [17] based on the KPT and Ke et a. [20] based on the FSDT. It
can be seen that the obtained analytical results are in good agreement with the p-version
Ritz solutions of Ke et a. [20] based on the FSDT. The difference between the KPT [17]

and shear deformation theories (i.e., FSDT [20] and present model) is observed to be

15



guite small when side-to-thicknessratio a/h>20 but relatively largewhen a/h<20.
This is due to the transverse shear deformation effects which are more pronounced in
moderately thick and thick plates are included in the shear deformation theories, but
neglected in the KPT [17].
3.2. Parameter studies

Parameter studies are presented to investigate the influences of material length scale
parameter ¢ and power law index p on the bending and vibration responses of FG
microplate. Unless mentioned otherwise, a simply supported square FG microplate with
a/h=10 isconsidered. This plate is composed of aluminum Al (as metal) and alumina

Al>O3 (as ceramic). Young’s modulus and mass density of aluminum are E_ =70GPa
and r =2702 kg/m®, respectively, and that of aumina are E. =380 GPa and
re =3800kg/m®, respectively. Poisson’s ratio is assumed to be constant through the

thickness and equal to 0.3. The material length scale parameter ¢=17.6x10°m is
based on the experimental work reported by Lam et al. [11]. For convenience, the

following dimensionless forms are used:

_ 10ER® (ab) _ @ _ h a b
W= —W =, = | |W=w—Jr /E,S (2)=—s,| =.=. 2|,
0,2 2 2 h G 2’2
h h b (26)
(2= 355,(002). 5, (2)- 55 02,2

Numerical results of dimensionless stresses are presented in Table 2 for different
values of dimensionless material length scale parameter ¢/h and power law index p.
The through thickness variation of stresses are plotted in Figs. 1-3 for a FG microplate

(p=1). In these figures, the results of both present model (/= 0) and classical model

(¢ =0) are presented. It can be observed that the classical model overestimates stresses
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of microplates (see Table 2 and Figs. 1-3). It is because the classica model ignores the
small scale effects which are significant in microplates. The effects of the length scale
parameter on deflection w and frequency W are also presented in Figs. 4-6. It can be
seen that the effects of length scale parameter are significant when the plate thicknessis
small especially at the higher modes (see Fig. 6), but become negligible with increasing
plate thickness. This means that the size effect is only significant when the thickness of
the plate is at the micron scale, which agrees with the genera trends observed in
experiments.

The effects of the power law index p on the deflection and frequency are presented

in Figs. 7 and 8. It can be seen that increasing value of the power law index leads to an
increase in the magnitude of deflection (see Fig. 7) and a reduction of the amplitude of
frequency (see Fig. 8). This is due to the fact that higher values of power law index
correspond to high portion of metal in comparison with the ceramic part. In other words,
an increase of the power-law index results in a reduction of elasticity modulus and
bending stiffness, which aso implies that the plate becomes flexible. Therefore, it leads

to an increase in deflection and a reduction of frequency.
4. Conclusions

Based on the modified couple stress theory and sinusoidal shear deformation theory,
a size-dependent model is developed for the bending and free vibration of functionally
graded plates. The equations of motion and boundary conditions are derived using
Hamilton’s principle. Analytical solutions for asimply supported plate are obtained. The
present models contain one material length scale parameter and can capture the small
scale effect, shear deformation effect, and two-constituent material variation through the

plate thickness. The present models can also recover the classical sinusoidal plate model
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by setting the material length scale parameter equal to zero. The numerical results show

that the inclusion of the small scale effect will increase stiffness of the plates, and

consequently, leads to a reduction of both deflection and stresses and an increase in

frequency. The differences in bending and vibration responses predicted by the present

model and the classical model are significant when the plate thickness is small, but they

are negligible when the plate thickness becomes larger. These predicted trends agree

with the size effect at the micron scale observed in experiments.
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Figure Captions

Fig. 1. Variation of in-plane normal stress S, across the thickness of a square plate

(p=1)

Fig. 2. Variation of in-plane shear stress s°, across the thickness of a square plate
(p=1)

Fig. 3. Variation of transverse shear stress s, across the thickness of a square plate
(p=1)

Fig. 4. Effect of the material length scale parameter ¢ on the deflection w of a
square plate

Fig. 5. Effect of the material length scale parameter ¢ on the fundamental frequency
w of asguare plate

Fig. 6. Effect of the material length scale parameter ¢ on the higher-order frequencies
w of asquareplate (p=1)

Fig. 7. Effect of the power law index p onthedeflection w of asquare plate

Fig. 8. Effect of the power law index p on the fundamental frequency w of asquare

plate
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Table Captions

Table 1. Fundamental frequency (MHz) of a homogeneous square plate (p=0, h=2/)

Table 2. Dimensionless stresses of a FG plate
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Fig. 1. Variation of in-plane normal stress S, across the thickness of a square plate
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Fig. 2. Variation of in-plane shear stress §,, across the thickness of a square plate

(p=1)
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Fig. 4. Effect of the materia length scale parameter ¢ on the deflection w of a

square plate
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Fig. 5. Effect of the materia length scale parameter ¢ on the fundamental frequency
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Fig. 6. Effect of the material length scale parameter ¢ on the higher-order frequencies

w of asquareplate (p=1)
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Fig. 7. Effect of the power law index p onthedeflection W of asquare plate
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Fig. 8. Effect of the power law index p on the fundamental frequency w of asquare

plate
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Table 1. Fundamental frequency (MHz) of ahomogeneous square plate (p=0, h=2¢)

a/h KPT [17] FSDT [20] Present
10 0.4204 0.4042 0.4132
20 0.1051 0.1040 0.1046
30 0.0467 0.0465 0.0466

Table 2. Dimensionless stresses of a FG plate

¢/h s, (h/2) S, (-h/3) $.(0)
0 0 1.9955 0.7065 0.2462
0.2 1.6945 0.6007 0.1901
0.5 0.9528 0.3392 0.0725
1 0.3762 0.1345 0.0133
1 0 3.0870 0.6110 0.2462
0.2 2.5541 0.5061 0.1881
05 1.3467 0.2677 0.0725
1 0.5048 0.1007 0.0159
10 0 5.0890 0.5894 0.2198
0.2 4.4019 0.5111 0.1665
05 2.6050 0.3044 0.0612
1 1.0737 0.1262 0.0123
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