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Mathematics Dept., University College London, Gower Street, London WC1E
6BT, UK

Abstract. A new family of solutions has been found for force free magnetic fields
and Beltrami flows, which admits a complete classification in terms of the eigenvalues
of the problem. In the absence of boundary values to determine them uniquely, the
eigenvalues correspond to the entire set of real numbers, except for zero. The eigen-
values are degenerate in that each eigenvalue has many eigensolutions associated
with it. For each eigensolution we have been able to identify sets of equilibrium
or null points and lines. The linear mappings of these null points and lines are all
unstable. Finally, we derive the first integral of energy associated with this family
of solutions.

1. Introduction

It is well known that the force free field equation

B ∧∇ ∧B = 0 (1)

admits the solution given by Arnold (1965), which in its most general
form can be written as

Bx = A sin(nz) + C cos(ny),

By = B sin(nx) +A cos(nz), (2)

Bz = C sin(ny) +B cos(nx).

The subsequent publication by Hénon (1966) corroborated numerically
the theoretical predictions made by Arnold in the former paper, namely
that the Beltrami sub-Eulerian flow formally characterized by Eq. (1),
is ergodic. The importance of this type of fields in hydrodynamics
(where B is a velocity field) and magnetohydrodynamics (where B
is a magnetic field) can hardly be overemphasized, since in both cases
energy and mass can be transported with no dissipation of energy and
released at the null points of the flow. As such, linear force free fields
have been used to describe phenomena in the solar photosphere (Moon
et al., 2002), the solar corona (Bungey et al., 1996; Démoulin et al.,
1997; Berton, 2000; Yurchyshyn et al., 2000), as well as astrophysical
and laboratory plasmas (Clegg et al., 2000).

c© 2013 Kluwer Academic Publishers. Printed in the Netherlands.
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2 Evangelidis & Botha

Eq. (1) can be written as an eigenvalue equation

∇∧B = αB, (3)

with the scalar quantity α a constant of proportionality, when provided
with suitable boundary values. Arnold’s solution is an eigensolution
for α = n. For the last forty years this solution has been the only
known solution in three-dimensional Cartesian space for constant α
(i.e. linear force free fields), and as such it has provided valuable insight
into the nature of these strange fields (Biskamp, 1993; Marsh, 1996). It
is known that Arnold’s solution has eight hyperbolic equilibrium points
associated with every energy level (when n = 1), as well as ergodic and
non-ergodic regimes in phase space (Dombre et al., 1986), which can be
determined through its first integral of energy (Evangelidis et al., 2000).
The elegance of Arnold’s solution has made it a convenient tool to study
coronal activity in the sun (Galsgaard and Nordlund, 1997; Galsgaard
et al., 2000). Naturally, one would like to know whether there are any
other solutions. We have been able to construct a family of solutions,
of which the Arnold solution is not a member. The first integral of
energy for this new family of solutions is also presented. In anticipation
of the detailed exposition, we mention that each energy manifold is
characterized by the existence of equilibrium or null points, as well as
equilibrium lines parallel to one of the Cartesian axes.

2. The solution

Let us consider the magnetic field B, with components

Bx =

∫
Almn

(m2 + n2)

k
cos(lx) cos(my) cos(nz) δlmn dl dmdn, (4)

By = −
∫
Almn

[
n cos(lx) cos(my) sin(nz)

− lm
k

sin(lx) sin(my) cos(nz)

]
δlmn dl dmdn, (5)

Bz =

∫
Almn

[
m cos(lx) sin(my) cos(nz)

+
ln

k
sin(lx) cos(my) sin(nz)

]
δlmn dl dmdn, (6)

where the integration is over the real numbers l, m, and n, subject to
the constraint imposed by the Dirac-delta function, which is defined as
δlmn = δlmn(l2+m2+n2−k2). It is easily verified by direct substitution,
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New force free field solution 3

that this magnetic field is divergence free and satisfies Eq. (3) for α = k.
It is noted that the eigenvalue k is triply degenerate in that an infinite
set of values of l, m, and n corresponds to a single eigenvalue k. One way
to visualize this is by constructing eigenspheres of radius k for different
values of l, m, and n. This is in stark contrast to Arnold’s solution
(Eqs. 2), where the n inside the argument of the trigonometric functions
determines the constant α in Eq. (3) uniquely. The above solution is not
related to Arnold’s solution, in that one cannot reproduce one solution
from the other by any choice of parameters. Lastly, whereas Eq. (2)
has three arbitrary constants (A, B, and C), the new solution has only
one in front of the terms for every particular combination of l, m, and
n, namely Almn.

3. Integral of energy

In order to construct the integral of energy, we follow the method
expounded in our previous publication (Evangelidis et al., 2000). From
the expressions

dxi
ds

= Bxi , (7)

d2xi
ds2

=
∂Bxi

∂xj
Bxj , (8)

where xi and xj ∈ {x, y, z}, we find

d2x

ds2
= −Jl sin(2lx)

[
L+ n2 cos(2my) +m2 cos(2nz)

]
, (9)

d2y

ds2
= Jm sin(2my)

[
M − n2 cos(2lx) + l2 cos(2nz)

]
, (10)

d2z

ds2
= Jn sin(2nz)

[
N −m2 cos(2lx) + l2 cos(2my)

]
, (11)

where the constants J , L, M , and N are defined by

L = m2 + n2, M =
l2m2 − k2n2

L
, (12)

J = A2
lmn

L

4k2
, N =

l2n2 − k2m2

L
, (13)

and k2 = l2 +m2 + n2 as before. In these expressions we have omitted
the integral representation by means of the Dirac-delta function, so
that we do not overburden the notation. These results can be written
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4 Evangelidis & Botha

in the succinct form
d2xi
ds2

= −∂U
∂xi

, (14)

with xi representing x, y, and z, and the potential U given by

U = −J
2

[L cos(2lx)−M cos(2my)−N cos(2nz)

−l2 cos(2my) cos(2nz) +m2 cos(2lx) cos(2nz)

+n2 cos(2lx) cos(2my)
]
. (15)

The existence of a potential function allows for the derivation of the
Hamiltonian of the family of solutions, namely

H =
1

2

(
ẋ2 + ẏ2 + ż2

)
+ U. (16)

This expression is also the formulation for the first integral of energy,
i.e. E = H, or more explicitly,

E = F [ cos(2lx) cos(2my) cos(2nz)

+ cos(2lx) cos(2my) + cos(2lx) cos(2nz) + cos(2my) cos(2nz)

+ cos(2lx) + cos(2my) + cos(2nz) +G ] (17)

with the constants F and G given by

F = A2
lmn

(m2 + n2)(1−m2 − n2)

16k2
, (18)

G =
1 + k2 + l2

1− k2 + l2
. (19)

4. Null points and lines

At the equilibrium or null points the solution becomes Bx = By =
Bz = 0. From Eq. (4) it follows that Bx = 0 when one of the following
is true:

cos(lx) = 0, (20)

cos(my) = 0, (21)

cos(nz) = 0. (22)

From Eq. (5) we observe that for By to be zero under (20), either
sin(my) or cos(nz) should be zero. In the former case Eq. (6) dictates
that Bz = 0 only when sin(nz) = 0, while in the latter case Bz = 0 only
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New force free field solution 5

when cos(my) = 0. Collecting these results, we obtain the following sets
of equilibrium points:

[ cos(lx) = 0 ; sin(my) = 0 ; sin(nz) = 0 ], (23)

[ cos(lx) = 0 ; cos(my) = 0 ; cos(nz) = 0 ]. (24)

A similar analysis with condition (21) produces the null points of By

when sin(lx) = 0 or cos(nz) = 0. These, combined with the null points
of Bz, produce equilibrium points that are described by

[ sin(lx) = 0 ; cos(my) = 0 ; cos(nz) = 0 ], (25)

as well as equilibrium lines that are parallel to the Ox axis, each of
which satisfies the equation

[ x ; cos(my) = 0 ; cos(nz) = 0 ] (26)

for all values of x. Finally, condition (22) duplicates the results already
obtained, and does not introduce any new information.

A comparison of the null points (24) and (25) with the description
of the null lines (26), shows that all these points lie on the lines. It
follows that the solution contains the null points (23) and the null lines
(26). We can rewrite these as[

(2i+ 1)π

2l
;
πj

m
;
πh

n

]
, (27)

[
x ;

(2f + 1)π

2m
;

(2g + 1)π

2n

]
, (28)

where f, g, h, i, j ∈ {0, 1, 2, ...}. As the values of l, m, and n increase,
the distances between the null points and null lines decrease, so that
more points and lines fit into the interval [0, 2π]. In the case of l, m, and
n integers, we obtain discrete sets of null points, while for non-integers
the null points fill the whole of the interval [0, 2π].

When l = 0, the null points disappear and we are left with the null
lines parallel to the Ox axis. To see this, we substitute the l = 0 into
the solution (4) to (6) to obtain

Bx =

∫
A0mn

√
m2 + n2 cos(my) cos(nz) δ0mn dmdn, (29)

By = −
∫
A0mnn cos(my) sin(nz) δ0mn dmdn, (30)

Bz =

∫
A0mnm sin(my) cos(nz) δ0mn dmdn, (31)
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6 Evangelidis & Botha

for all values of x. It follows that we have null lines parallel to the
Ox axis, and it is easy to verify that they are described by the points
(26), or more explicitly by (28). In a similar way, we find that for
m = 0 we have null lines running parallel to the Oy axis, and for n = 0
we have null lines running parallel to the Oz axis. When two of the
three constants l, m, n are zero, we obtain either the trivial case, or a
magnetic field reduced to two dimensions with no null points or lines.

In order to visualize the structure of the magnetic field, we reduce
the complexity of the field by choosing a single term from the general
solution (4) to (6), namely A111 = l = m = n = 1. Figs. 1 and 2
are respectively contour and vector plots of the magnetic field B on
the (y, z) plane, presented at constant x values (x = 0, π/2, π, and
3π/2). This field has four null lines parallel to Ox, situated on the
(y, z) plane at (iπ/2, jπ/2), with i, j ∈ {1, 3}. They are clearly visible
in Fig. 1(a) as the four minima of the contour plot. As well as these
null lines, the solution with A111 = l = m = n = 1 has eight null
points, situated at ((2h + 1)π/2, iπ, jπ), with h, i, j ∈ {0, 1}. Four of
these null points, together with the four null lines, are shown in Fig.
1(b). Both the y and z directions are periodic. This means that the
magnetic field structure around the null point at (π/2, π, 0) continues
at z = 2π, and the structure around (π/2, 0, π) continues at y = 2π.
The null point (π/2, 0, 0) lies at the corner of the contour plot, so that
the magnetic field structure around it is divided into four parts, each of
which is situated at (y, z) = (0, 0), (0, 2π), (2π, 0), and (2π, 2π). Due to
the presence of the four null points and the four null lines at x = π/2,
the maximum value of the magnetic field is half of what it is at x = 0,
where only the four null lines are present. Fig. 1(d) shows the other
four null points of solution A111 = l = m = n = 1 at x = 3π/2.

Figs. 3 and 4 present contour and vector plots of the (x, z) plane at
specific values of y. Four of the eight null points are situated at y = 0,
and the other four are at y = π. Fig. 3(a) shows the four null points
at ((2i + 1)π/2, 0, jπ), with i, j ∈ {0, 1}. The (x, z) plane is periodic
in both directions, so that the magnetic field structure around the two
null points at (π/2, 0, 0) and (3π/2, 0, 0) continues at z = 2π. The other
four null points lie at y = π, as shown in Fig. 3(c). Two of the four
null lines parallel to the Ox axis are situated at y = π/2 and two are
situated at y = 3π/2. In the Oy direction the null lines are situated
midway between the planes with null points, so that the (x, z) planes
containing the lines, contain no null points. Figs. 3(b) and (d) show
the lines at z = π/2 and z = 3π/2. The local maxima on these (x, z)
planes are caused by the null points lying at y = 0 and y = π.
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New force free field solution 7

By choosing the z planes 0, π/2, π, and 3π/2, a similar picture
emerges as in Figs. 3 and 4. The only difference is that the z axis is
replaced with the y axis to form (x, y) planes.
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8 Evangelidis & Botha

Figure 1. Contour plot of the field magnitude B on the (y, z) plane for solution with
A111 = l = m = n = 1. Colour scale: white represents the maximum value 1.15 and
black represents zero.

Figure 2. Vector plot of B on the (y, z) plane for solution with
A111 = l = m = n = 1. The same data as in Fig. 1 is used.
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New force free field solution 9

Figure 3. Contour plot of B on (x, z) plane for solution with A111 = l = m = n = 1.
Colour scale: white represents the maximum value 1.15 and black represents zero.

Figure 4. Vector plot of B on (x, z) plane for solution with A111 = l = m = n = 1.
The same data as in Fig. 3 is used.
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10 Evangelidis & Botha

5. Field configuration near null points

The field line configuration near the null points is obtained by a Taylor
expansion of the magnetic field around these points:

Bxi =
∂Bxi

∂xj

∣∣∣∣
x0y0z0

δxj , (32)

where xi and xj ∈ {x, y, z}, and the null point is represented by
(x0, y0, z0). Eq. (32) can be written in matrix form. This allows us
to calculate the eigenvalues λi with their corresponding eigenvectors
Xi, which leads directly to the result Xi(s) = Xi(0) exp(λis), where
i = 1, 2, 3. Field lines with characteristic exponents λi < 0 move
towards the null point, and those with λi > 0 move away from the
null point. No movement occurs when λi = 0. The system is then
in a metastable equilibrium. Due to the divergence free condition,∑3

i=1 λi = 0, it follows that all divergence free fields are inherently
unstable.

The coordinates of the null points that do not lie on the null lines,
are given by (23) or (27). The eigenvalues obtained from their Taylor
expansion are presented in Table I, with the integers i, j, h ∈ {0, 1, 2...}
corresponding to those in coordinates (27). Using the terminology of
Priest and Titov (1996), a spine forms in the x direction and a fan on
the (y, z) plane, when m = n. One example of this is drawn in Fig. 5.

Next we consider the field around the null points that lie on the
null lines. They are given by Eqs. (24) and (25), and can be written
explicitly as [

(2i+ 1)π

2l
;

(2j + 1)π

2m
;

(2h+ 1)π

2n

]
, (33)

[
πi

l
;

(2j + 1)π

2m
;

(2h+ 1)π

2n

]
, (34)

where i, j, h ∈ {0, 1, 2, ...}. For these null points, the field lines lie on a
plane perpendicular to the null line, examples of which are shown in
Figs. 6 and 7. The fact that there is no movement in the Ox direction
can be seen from Table I, which shows that in both cases the eigenvalue
λ1 = 0. As before, the integers i, j, h in Table I corresponds to those
with coordinates (34), so that the configuration of the field lines changes
as the coordinates change.
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Table I. Eigenvalues and the basis for each corresponding eigenspace.

Null point Eigenvalue Basis of eigenspace

Coordinates (27) λ1 = −(−1)i(−1)j(−1)hAlmnl(m
2 + n2)/k

[1, 0, 0] for l 6= 0

λ2 = (−1)i(−1)j(−1)hAlmnlm
2/k

[0, 1, 0] for l 6= 0; m 6= n

[0, 1, 0] and [0, 0, 1] for l 6= 0; m = n

λ3 = (−1)i(−1)j(−1)hAlmnln
2/k

[0, 0, 1] for l 6= 0; m 6= n

[0, 1, 0] and [0, 0, 1] for l 6= 0; m = n

Coordinates (33) λ1 = 0 [1, 0, 0] for lmn 6= 0

λ2 = Almnlmn/k [0, 1,−(−1)i(−1)j(−1)h] for lmn 6= 0

λ3 = −Almnlmn/k [0, 1, (−1)i(−1)j(−1)h] for lmn 6= 0

Coordinates (34) λ1 = 0 [1, 0, 0] for mn 6= 0

λ2 = Almnmn(−1)i(−1)j(−1)h

[0, 1, 0] for mn 6= 0

λ3 = −Almnmn(−1)i(−1)j(−1)h

[0, 0, 1] for mn 6= 0

Figure 5. The B field lines for a solution with A111 = l = m = n = 1, around the
null point [π/2, π, π]. This is an example of coordinates (27) with i = 0, j = h = 1.
Solid lines represent field lines moving in the positive x direction, and dashed lines
move in the negative x direction. The null point is represented by the black dot.
The spine is in the x direction and the fan on the (y, z) plane.

paper.tex; 20/06/2013; 13:29; p.11



12 Evangelidis & Botha

Figure 6. The B field lines for a solution with A111 = l = m = n = 1, around the
null point [π/2, π/2, π/2]. This is an example of coordinates (33) with i = j = h = 0.
The null point lies on a null line, both of which are drawn in bold. The solid lines
represent field lines. They move along the dash-dotted line towards the null point
and then along the dashed line away from the null point. There is no movement in
the x direction, so that every field line lies on a (y, z) plane perpendicular to the
null line.

Figure 7. The B field lines for a solution with A111 = l = m = n = 1, around
the null point [π, π/2, π/2]. This is an example of coordinates (34) with i = 1 and
j = h = 0. The field configuration is similar to Fig. 6, but rotated by π/4 around
the null line.
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New force free field solution 13

6. Field configuration between null points

In order to discuss the field structure between the null points, we sim-
plify the magnetic field by choosing one term (namely A111 = l = m =
n = 1) from the general solution (4) to (6). This allows us to make a
comparison with the previous figures in this paper.

From the previous section it is clear that the field structure around
the null points is repeated throughout the three-dimensional (3D) space,
but with the field orientation changing as one moves from null point to
null point. The magnetic field can be thought of as consisting of a lim-
ited number of units. These units are fitted together (using rotations,
translations, and reflections) to fill the 3D space. One can also see this
in Figs. 1 to 4. In this section we will consider only two field structures
between the null points, in order to demonstrate the complicated nature
of the field lines in 3D space.

Fig. 8 shows the field structure between two null points of the type
presented in Fig. 5. The field line forming the spine between the two null
points is drawn as a dashed line. The field lines close to the spine rotate
in a clockwise direction as they move in the negative Ox direction.
This structure is repeated around all the spines in the 3D space, but
the rotation alternates between clockwise and anti-clockwise, as can be
seen in Fig. 2.

Fig. 9 also shows the field structure between two null points of the
type in Fig. 5, but this time we consider the field close to the fan plane.
The projection onto the (x, z) plane shows that the field lines do not
cross the fan plane, while the (y, z) projection shows that the field lines
are not symmetric around the field line joining the two null points. The
fact that there is a field component in the negative Oy direction can
also be seen in Fig. 2, when one compares the field lines at y = π and
z ∈ (π, 2π) while moving from x = 0 to x = π/2.

7. Stability analysis

The nonlinear behaviour of solution (4) to (6) is studied by considering
only one term in its summation series, i.e. only one set of l, m, and
n values. A study of the Poincaré plots shows that the field lines are
non-ergodic when the constant Almn in front of the terms, as well as the
constants l, m, and n in the arguments of the trigonometric functions,
are all integers. Figs. 10 and 11 show the Poincaré plots for yc = 3.4 as
the field lines cross it in the positive Oy direction (Fig. 10) and in the
negative direction (Fig. 11). These plots are symmetrical around the
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14 Evangelidis & Botha

Figure 8. Field lines with A111 = l = m = n = 1, between null points (3π/2, π, π)
and (π/2, π, π). The dashed line is the spine between the null points, which are
drawn as black dots. Field lines move in the negative Ox direction, with solid
lines representing increasing z values and dot-dashed lines decreasing z values. The
projection on the (y, z) plane is added to show the clockwise rotation around the
spine.

Figure 9. Field lines with A111 = l = m = n = 1, between null points (π/2, π, π)
and (π/2, π, 2π). The dashed line connects the null points (black dots) on the fan
plane. Field lines move in the positive Oz direction and are drawn as solid lines.
Their (x, z) and (y, z) projections are drawn as dot-dashed lines.
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New force free field solution 15

Figure 10. Poincaré plots (a) (x, ẋ) and (b) (z, ż), taken as the field lines cross
yc = 3.4 in the positive Oy direction. The parameters are A111 = l = m = n = 1
and the initial values are x0 = 3.2, y0 = 2.4, and z0 = 3.7. Each plot contains 1 000
points.

Figure 11. Poincaré plots (a) (x, ẋ) and (b) (z, ż), taken as the field lines cross
yc = 3.4 in the negative Oy direction. The parameters and initial values are the
same as in Fig. 10. Each plot contains 1 000 points.

x = z = π axes. A similar picture emerges when the Poincaré plots for
zc = 2.7 are considered, namely that they are symmetrical around the
x = y = π axes when the direction in which the field lines cross the
z planes changes from positive to negative. For the initial x0, y0, and
z0 values used in Figs. 10 and 11, the field lines never cross the plane
xc = 5.1. This implies that some field lines do not fill the whole of the
three-dimensional space, which corroborates Fig. 9 that shows no field
lines crossing the fan plane between two null points.

The symmetries between Poincaré plots depend on the initial values
x0, y0, and z0, as well as the choice of xc, yc, and zc planes. Table
II shows the relations between different Poincaré plots. Note that one
obtains symmetries between the yc = 0.25 and zc = 0.25 planes.

Poincaré plots with non-integer Almn values show no sign of chaotic
behaviour. The reason for this is that each term in the solution is

paper.tex; 20/06/2013; 13:29; p.15



16 Evangelidis & Botha

Table II. Symmetries between Poincaré plots with x0 = y0 = z0 = 1.0, for field lines
crossing planes xc = yc = zc = 0.25. Parameters A111 = l = m = n = 1 were used.

Poincaré plot Reflection axis Poincaré plot

(y, ẏ) cross xc in − Ox direction y = π (y, ẏ) cross xc in + Ox direction

(z, ż) cross xc in − Ox direction z = π (z, ż) cross xc in + Ox direction

(x, ẋ) cross yc in + Oy direction x = π (x, ẋ) cross zc in − Oz direction

(x, ẋ) cross yc in − Oy direction x = π (x, ẋ) cross zc in + Oz direction

(y, ẏ) cross zc in − Oz direction ẏ = ż = 0 (z, ż) cross yc in + Oy direction

(y, ẏ) cross zc in + Oz direction ẏ = ż = 0 (z, ż) cross yc in − Oy direction

multiplied by Almn, so that the whole solution simply scales with Almn.
An example of a non-integer value of l is presented in Fig. 12. We
found that for non-integer l values the solution does not show ergodic
behaviour. Not only that, but movement along the Ox direction seems
to be severely restricted. However, non-integer values of m and n leads
to ergodic behaviour. Figs. 13 to 15 present the case for m = 3.731, and
for non-integer n values we obtain similar Poincaré plots. The reason
for the difference between non-integer l values versus non-integer m
and n values, is not obvious. It is likely that the relative sizes between
the terms in the solution play a role. With this in mind, it is interesting

Figure 12. Poincaré plots (a) (x, ẋ) and (b) (z, ż), taken as the field lines cross yc = 4
in the negative Oy direction. The parameters are Al11 = m = n = 1, l = 3.731 and
the initial values are x0 = 3.1, y0 = 1.9, and z0 = 5.5. The number of points in each
plot is 1 839.
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Figure 13. Poincaré plots (a) (y, ẏ) and (b) (z, ż), taken as the field lines cross xc = 3
in the positive Ox direction. The parameters are A1m1 = l = n = 1, m = 3.731 and
the initial values are x0 = 3.1, y0 = 1.9, and z0 = 5.5. The number of points in each
plot is 4 000.

Figure 14. Poincaré plots (a) (x, ẋ) and (b) (z, ż), taken as the field lines cross yc = 2
in the positive Oy direction. The parameters and initial values are the same as in
Fig. 13. The number of points in each plot is 636.

Figure 15. Poincaré plots (a) (x, ẋ) and (b) (y, ẏ), taken as the field lines cross
zc = 3 in the positive Oz direction. The parameters and initial values are the same
as in Fig. 13. The number of points in each plot is 2 068.
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to observe that for large chosen values of l, Eq. (4), the x component
of the solution, becomes much smaller than the y and z components,
Eqs. (5) and (6). For a large m value, the y component is much smaller
than the x and total z component, while the z component consists of
a large first term and a small second term. A similar picture emerges
for large n values.

By making the identification ẋi = Bxi with xi ∈ {x, y, z}, as in Eq.
(7), we are able to draw the phase plots (ẋi, xi). Fig. 16 is obtained
by projecting the values of Bx from three-dimensional space onto the
x axis, i.e. by drawing Bx along the x axis for all values of y and z.
It shows the position of the null points at x ∈ {π/2, 3π/2}, as well as
max(Bx) = 1.15 at x ∈ {0, π, 2π}. The null lines are parallel to the
x axis and do not show in Fig. 16. One cannot assign any direction
to the field lines, because the projection overlays different lines. As an
example, the null point at x = π/2 has field lines pointing towards it
in the Ox direction at y = 0, z = 0, but away from it at y = 0, z = π,
as can be seen in Fig. 4. Similarly, the phase plot (ẏ, y) in Fig. 17
is a projection of the values of By from three dimensions onto the y
axis. The null points are located at y ∈ {0, π, 2π}, and the null lines at
y ∈ {π/2, 3π/2}. The amplitude of the field is easily observed in Figs.
16 and 17. Fig. 16 shows that the x dependence of Bx takes the form
1.15 cos(x), corresponding to Eq. (4). From Eq. (5) we know that the
y dependence of By consists of a combination of sine and cosine terms.
Fig. 17 shows that the contribution from its sin(y) component is 0.58
that from its cos(y) component. The projection of Bz onto the z axis
gives an identical picture to Fig. 17.

8. Conclusion

The classic solution by Arnold of the force free field equation revealed
the existence of null points in ordinary flows and magnetic fields. The
same paper proved the chaotic nature of such configurations and showed
the rich structure of this sub-Eulerian flow. Up till now it has been
the only known constant α field in three dimensional Cartesian space,
apart from trivial permutations, translations and rotations, and a con-
siderable amount of research has been dedicated to the study of its
implications for solar magnetic configurations, as well as for controlled
fusion laboratory devices. By comparison, not much information is
available on ordinary flows with regard to turbulence.
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Figure 16. The phase plot (ẋ, x) with parameters A111 = l = m = n = 1. The plot
is obtained by projecting the values of Bx onto the x axis.

Figure 17. The phase plot (ẏ, y) with parameters A111 = l = m = n = 1. It is
obtained by projecting the By values onto the y axis. The plot (ż, z) is identical to
this.

We have presented here a new set of solutions for linear force free
fields, that is independent of Arnold’s solution. This new family of solu-
tions admits sets of null points and bundles of null lines. The existence
of the integral of energy, which was constructed analytically, shows the
existence of hyper-tori in phase space, on which these sets of points lie.
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20 Evangelidis & Botha

All this information points to the existence of an extremely complex
substructure underlying the Eulerian flows. The implications for the
generation of turbulence, magnetic and hydrodynamic alike, remain to
be explored.
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