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The structure of force free magnetic fields
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Abstract. Incontrovertible evidence is presented that the force free magnetic fields
exhibit strong stochastic behaviour. Arnold’s solution is given with the associated
first integral of energy. A subset of the solution is shown to be non-ergodic whereas
the full solution is shown to be ergodic. The first integral of energy is applied to
the study of these fields to prove that the equilibrium points of such magnetic
configurations are saddle points. Finally, the potential function of the first integral
of energy is shown to be a member of the Helmholtz family of solutions. Numerical
results corroborate the theoretical conclusions and demonstrate the robustness of
the energy integral, which remains constant for arbitrarily long computing times.
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1. Introduction

The concept of magnetic configurations producing no effect on ionised
matter was introduced in astrophysics by Lüst and Schlüter (1954) in
order to interpret an eruption on the sun. The explicit solution of the
governing equation was given by Chandrasekhar (1956), Chandrasekhar
and Kendall (1957) in terms of the Hansen (1935) solutions of the
vectorial Helmholtz equation. The theoretical development of the issue
led to Woltjer (1958) formulating the following result: For any magnetic
configuration with a magnetic field B derivable from a vector potential
A constant on some boundary enclosing a volume V , the integral

∫
V A ·

5 ∧AdV =
∫
V A ·BdV is an ideal MHD invariant. This expression

was then used by Chandrasekhar and Woltjer (1958) to show that the
variation of the integral

∫
V [B2/8π − (α/8π)A · 5 ∧ A]dV , with α a

constant Lagrange multiplier and A constant on the boundary, leads
to the force free field expression

5∧B = αB. (1)

It is noticed that the only requirement on α is that it should be a
constant. With the advent of projects aiming at the magnetic con-
finement of thermonuclear plasma to produce energy from fusion, the
force free field configuration has been used extensively in spheromacs
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2 Evangelidis et al.

and reversed field pinches. An exhaustive review of this state of affairs
can be found in Taylor (1986).

Today we know that the solar atmosphere is structured on a wide
range of scales and that it is extremely dynamic (Golub and Pasachoff,
1997). The first evidence for this was obtained from ground-based ob-
servations during the 1950s and 1960s, but it was only with the advent
of space-based observations that the true nature of the solar atmosphere
was discovered. Observations from Skylab during the 1970s (Poletto et
al., 1975) and more recently from the Yohkoh, SoHO and TRACE
missions show a solar plasma dominated by an ubiquitous magnetic
field where force free fields play a major role (Priest, 1984; Zirker et
al., 1997; Démoulin, 1999). Since there is an extensive literature on this
subject we concentrate on the discussion of the structure of the force
free field equation.

The present analysis begins by presenting Arnold’s solution of the
force free field equation in Cartesian coordinates and the first integral
of energy is derived, which has gone undetected so far. A subset of solu-
tions, with one of the components of the magnetic field zero, is proved
theoretically and confirmed numerically to be non-ergodic (Section 3).
Then, in Sections 4 and 5, the equilibrium points of the full solution are
shown to be saddle points of hyperboloidal surfaces in phase space, thus
proving that the force free field configuration is unstable. Finally, the
analytic solution is generalised and the associated potential function of
the energy integral is shown to be an eigenfunction of the Helmholtz
equation of eigenvalue

√
2.

2. The dynamical structure of the force free magnetic fields

The solution of the force free field equation in Cartesian coordinates
offers an insight into the nature of such magnetic configurations. It is
a simple matter to prove that the following system of equations

dx

ds
= Bx = A sin z + C cos y

dy

ds
= By = B sinx+A cos z (2)

dz

ds
= Bz = C sin y +B cosx

satisfies the force free field equation in the form B ∧ (5 ∧B) = 0. In
system (2) A, B and C are constants and x, y and z are some gener-
alised angle coordinates. s is an affine parameter, for instance it could
represent distance along a streamline, or time in the case of a velocity
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(a) (b)

Figure 1. Streamlines of Arnold’s solution with: (a) A = 1.1, B = 0.3, C = 1.3
and initial position x = 3.78, y = 0.08 and z = 1.53; (b) typical parameters and
initial conditions.

field. This solution was first given by Arnold (1965) in the context
of topology. Figure 1(a) follows one streamline in three dimensional
Cartesian space, using a Runge-Kutta numerical integration of system
(2). The pitch angle can be calculated from the expression dz/dy. The
solution is extremely sensitive to the parameters and initial position, as
shown by Figure 1(b). Figure 1(b) also shows that the streamlines twist
around each other as they move through space. These numerical results
were obtained with an energy conservation to machine accuracy. The
general case of solution (2) with all constants nonzero, will be discussed
first, since this will facilitate the understanding of the analysis of the
special cases.

Taking the derivatives of expressions (2) the system follows

d2x

ds2
= α cosx cos z − β sinx sin y

d2y

ds2
= β cos y cosx− γ sin y sin z (3)

d2z

ds2
= γ cos z cos y − α sin z sinx

with α = AB, β = BC and γ = CA. These are the equations of
motion of a three dimensional oscillator each component of which is
under the influence of a combination of periodic forces described by the
expressions on the right hand sides. It is remarkable that the simplest
possible equation of magnetohydrodynamics has been transformed into
a complicated problem of dynamical mechanics. These results can be
written in the succinct form

d2xi
ds2

= −∂U
∂xi

(4)
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4 Evangelidis et al.

with
−U = α sinx cos z + β sin y cosx+ γ sin z cos y. (5)

The existence of a potential function allows the derivation of the Hamil-
tonian of the system, which in this occasion reads

H =
1

2
(ẋ2 + ẏ2 + ż2)

−α sinx cos z − β sin y cosx− γ sin z cos y (6)

=
1

2
(A2 +B2 + C2). (7)

It is noticed that the results presented so far correspond to the special
case of the force free field equation 5 ∧ B = kB when k = 1. The
generalisation of Arnold’s solution to cases when k 6= 1 will be given in
section 6.

3. Particular cases of Arnold’s solution

If Arnold’s solution, system (2), is considered with any two of its con-
stants equal to zero, then the motion it describes is non-ergodic. For
instance, when B = C = 0 the motion is the straight line y = α0x+α1

with α0 and α1 constant.
If one of the constants in Arnold’s solution is zero (say A = 0),

then the system of equations can be reduced to its normal form of two
independent oscillators

d2ξ

dt2
= β cos ξ

d2η

dt2
= β cos η (8)

with
2x = ξ − η, 2y = ξ + η. (9)

The corresponding energy levels are

1

2
ξ̇

2 − β sin ξ = e1,
1

2
η̇2 − β sin η = e2 (10)

whereas the integral of energy is

E =
1

2

(
ξ̇

2
+ η̇2

2
+ ż2

)
− β sin

ξ + η

2
cos

ξ − η
2

. (11)

The solution of equations (10) can be given in terms of elliptic functions
and the problem is reduced to the motion of a point under the influence
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Structure of force free fields 5

of two forces perpendicular to and independent of each other. Hence,
the motion in the (ξ, η) plane is in general a complicated Lissajous
figure. The z-component can be written now as

ż =
√

2E − (e1 + e2) ≡ D, constant. (12)

Equations (10) are valid for e1 − BC ≥ 0, e2 − BC ≥ 0, so that the
motion in the (ξ, η) plane takes place inside the rectangle defined by
the turning points of these equations. The decomposition (10) shows
that the reduced problem with one of the constants A, B or C zero, is
non-ergodic, since a point lying initially on manifold e1 will never visit
manifold e2 and vice versa.

Another way of studying the reduced Arnold’s solution is the fol-
lowing. The system of equations

ẋ = C cos y, ẏ = B sinx (13)

has the particular integral

B cosx+ C sin y = D, (14)

a result directly derivable from the z-component of (3), which confirms
that the velocity ż is constant and therefore z = Dt + z(0). The sim-
plified form of Arnold’s solution for B = C, D = 0 can be integrated
immediately to give

tan
x

2
= eCt, tan

y

2
=
eCt − 1

eCt + 1
(15)

which shows that the solution settles to the point attractor x = π,
y = π/2 as t→∞. Arnold’s solution for A = 0, B, C 6= 0 (see Figures
2 and 3) is reduced to quadrature upon deriving

ẋ2

C2
+
D2

C2

(
1− B

D
cosx

)2

= 1 (16)

ẏ2

B2
+
D2

B2

(
1− C

D
sin y

)2

= 1. (17)

These expressions are obtained by squaring each component of system
(2) and substituting equation (14) into them. Equations (16) and (17)
will be used to draw two and three dimensional phase portraits (ẋ, x),
(ẏ, y) or (x, y, ẋ). It is rather obvious that they represent segments of
circles in phase space of radii C and B respectively. For instance, the
circle for (16) is defined by the transformation X = D(1−B cosx/D).
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6 Evangelidis et al.

(a) (b)

(c)

Figure 2. Non-ergodic Poincaré surface sections: (a) on the x = 0 plane and (b) on
the z = 0 plane, with (c) the associated attractor, obtained by projecting the solution
onto a periodic cylinder and plotting the (r, θ) plane with the z axis contracted. The
parameters are A = 0, B = 2, C = 5 and the initial position is x = 0, y = 0.201,
z = 3.

(a) (b)

Figure 3. Non-ergodic (a) Poincaré surface section on the z = 0 plane with (b) the
associated attractor. The parameters are A = 0, B = 1.7321, C = 1.333 and the
initial position is x = 4.867, y = 0.862, z = 0.
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Structure of force free fields 7

The integrated form of (16) reveals a palindromic motion. In order to
integrate (16) it is rewritten in the form

Cdt =
dx√

1− D2

C2

(
1− B

D cosx
)2 (18)

the denominator of which leads to the inequality

D − C
B

< cosx <
D + C

B
(19)

which provides the upper and lower limits of the integration. By ex-
panding the right hand side of (18) and applying the integration limits
(19), the integrated form of (16) gives

Tx
2

=
1

C

{[
cos−1

(
D − C
B

)
− cos−1

(
D + C

B

)][
1 +

D2

2C2
+

B2

4C2

]
+
BD

4C2

[(
3− C

D

)√
1− (D + C)2

B2

−
(

3 +
C

D

)√
1− (D − C)2

B2

]}
(20)

accurate to first order, where Tx is the period of the palindromic motion.
Similarly the motion in (ẏ, y) space has two turning points and the
motion takes place within the limits

D −B
C

< sin y <
D +B

C
. (21)

The period of the (ẏ, y) motion is obtained from (20) by interchanging
the constants B and C. Similar results hold true for the particular
cases of Arnold’s solution when one of B or C is zero and the relevant
equations are summarised immediately below:

B = 0 : (22)

ẋ = C cos y +A sin z ≡ F,
ẏ2

A2
+
F 2

A2

(
1− C

F
cos y

)2

= 1,
ż2

C2
+
F 2

C2

(
1− A

F
sin z

)2

= 1.

C = 0 : (23)

ẏ = A cos z +B sinx ≡ G,
ż2

B2
+
G2

B2

(
1− A

G
cos z

)2

= 1,
ẋ2

A2
+
G2

A2

(
1− B

G
sinx

)2

= 1.
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The corresponding integrals of energy, similar to (11), can be found
by equating to zero the corresponding coefficient in (6). Therefore, the
study of this subset of special force free configurations leads to the
conclusion that in the cross section z = constant there develop areas
in which motion along streamlines becomes trapped in “boxes”, within
which it performs a crescent like motion. On this motion is further
superimposed the downstream motion. The similarity of this behaviour
with that of the “banana” orbits of magnetohydrodynamics is striking.
Since the period of the palindromic motion depends only on the con-
stants B, C and D (for A = 0), there is an ∞3 of points partaking in
the motion for any given set. At the same time the downstream motion
along the z-direction tends to produce thinner and thinner filaments
of any initial magnetic field, due to the incompressibility of such fields.
This behaviour corresponds to the classical description of an attractor
and therefore, there are a total of∞5 such objects (Landau and Lifshitz,
1993).

4. Stability analysis of force free magnetic configurations

Figure 4 shows numerically the ergodic behaviour of force free magnetic
fields when A, B, C 6= 0 for Arnold’s solution (2). These numerical
results were obtained with an energy conservation to machine accuracy.
The ergodic behaviour was also shown by Hénon (1966) using a purely
numerical approach. In section 2 it was shown that Arnold’s solution
leads naturally to the formulation of the potential function (5) and to
the first integral of energy

E =
1

2
(ẋ2 + ẏ2 + ż2)− α sinx cos z − β sin y cosx− γ sin z cos y. (24)

The existence of this first integral allows the discussion of ergodicity
to proceed in terms of the decomposability of the energy manifold
(Birkhoff, 1966; Chintsin, 1964). The existence of a potential function
reduces the discussion of stability of the dynamical problem to the dis-
cussion of its extrema (Lagrange criterion). Indeed, if x is a maximum
of the potential function then for a perturbation leading to movement
away from the maximum, ẋ2/2 = U(x)−U(x) > 0. For a real potential
this relation can always be satisfied. For direction of motion towards a
maximum the relation ẋ2/2 = U(x)−U(x) < 0 shows that such motion
is physically impossible for real potentials.

Let (x, y, z) be such an equilibrium point of system (2). Then from
the defining expressions

A sin z = −C cos y, B sinx = −A cos z, C sin y = −B cosx (25)
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(a) (b)

(c) (d)

Figure 4. Ergodic Poincaré surface sections with their attractor. The parameters are
A = 1.111, B = 0.3115, C = 1.333 and the initial position is x = 1.57, y = 1.57,
z = 0. (a) The x = 0 plane. (b) The y = 0 plane. (c) The z = 0 plane. (d) The
attractor.

the solution

cos 2x =
C2 −A2

B2
, sin2 x =

A2 +B2 − C2

2B2
, cos2 x =

B2 + C2 −A2

2B2

cos 2y =
A2 −B2

C2
, sin2 y =

B2 + C2 −A2

2C2
, cos2 y =

C2 +A2 −B2

2C2

cos 2z =
B2 − C2

A2
, sin2 z =

C2 +A2 −B2

2A2
, cos2 z =

A2 +B2 − C2

2A2

(26)

follows. One verifies easily that the derivatives of the potential function
(5), that is the equations of motion (3), become zero at the stationary
points (26). According to a theorem of real analysis:
A critical point c of a function f is a relative strict maximum, if the
second derivative satisfies the relation Dijf(c)wiwj < 0 for all direc-
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tions w. (Bartle, 1976)
Indeed, let us expand the potential in the vicinity of the critical point
x as defined by (25). It is

U(x) = U(x) + (x− x)iDiU(x) +
1

2
(x− x)i(x− x)jDijU(x). (27)

We have already proved that the first derivatives DiU(x), that is the
equations of motion, are zero for the stationary points of the force free
field equations. Recalling that at equilibrium points the velocity is zero,
it follows from (24) that U(x) = E and since U(x) − E = −u2/2, we
are left with the equation

(x− x)i(x− x)jDijU(x) + u2 = 0. (28)

The second term can be calculated in the vicinity of the critical point
from (2). It is

u2 = A2 +B2 + C2 + 2α(x− x) + 2β(y − y) + 2γ(z − z) (29)

when terms up to first order are kept. Hence we find

B2(x− x)2 + C2(y − y)2 +A2(z − z)2

−2(x− x)(y − y)
√

(E0 − C2)(E0 −B2)

−2(y − y)(z − z)
√

(E0 −A2)(E0 − C2)

−2(z − z)(x− x)
√

(E0 −B2)(E0 −A2)

−2α(x− x)− 2β(y − y)− 2γ(z − z)− 2E0 = 0 (30)

where 2E0 = A2 +B2 +C2. Expression (30) can be further transformed
into its canonical form upon using a well established algebraic theorem,
namely that:
Every quadratic form A(x, x) =

∑n
r=1

∑n
s=1 αrsxrxs in n variables and

of rank r, with coefficients in a given field F , can be transformed by
a non-singular transformation, with coefficients in F , into the form
α1X

2
1 + ...+αrX

2
r (canonical form), where α1, ..., αr are numbers in F

and no one of them is equal to zero. (Ferrar, 1957)
For n = 3 the six distinct quadratic surfaces of geometry are retrieved.
The actual expressions effecting the canonical transformation can be
found in the Appendix, but they are of no importance in the qualitative
discussion of the stability here. Naturally, not all of these six surfaces
are acceptable solutions. Since they represent potentials of the force free
magnetic fields, their second derivatives must satisfy the constraints
mentioned above. We summarise the situation in Table I.

The relief maps of the potential function in figures 5 and 6 demon-
strate clearly that the equilibrium points are saddle points, confirming
the results of the theoretical description.
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Table I. Quadratic surfaces of geometry

1 U = α2x2 + β2y2 + γ2z2 − 1. D2f(c)(w)2 = 2(α2x2 + β2y2 + γ2z2) > 0.

Ellipsoid. Always positive. Physically unacceptable.

2 U = α2x2 + β2y2 − γ2z2 − 1. D2f(c)(w)2 = 2(α2x2 + β2y2 − γ2z2).

One-sheet hyperboloid. A saddle point in general.

In the present context

D2f(c)(w)2 < 0 for α2x2 + β2y2 < γ2z2

is the only physically acceptable branch.

Branch α2x2 + β2y2 > γ2z2 is inadmissible.

3 U = α2x2 − β2y2 − γ2z2 − 1. Critical points are saddles. Only

Two-sheet hyperboloid. branch α2x2 < β2y2 + γ2x2 is acceptable.

4 U = α2x2 + β2y2 − z. No critical point. Therefore, it is not a

Elliptic hyperboloid. solution of the present dynamical system.

5 U = α2x2 − β2y2 − z. No critical point.

Hyperbolic paraboloid. Inadmissible.

6 U = α2x2 + β2y2 − γ2z2. Trivial case,

Quadratic cone. realisable for A = B = C. (U(0) = 0)

5. Stability of the linear mapping

Similar conclusions can be reached upon examination of the eigenvalues
of the linear mapping of Arnold’s solution (2). Expanding the right
hand sides of those expressions in the neighbourhood of the equi-
librium point (x, y, z), using double angle formulas and small angle
approximations for the trigonometric functions, it is found that

Ẋ = ZA cos z − Y C sin y

Ẏ = XB cosx− ZA sin z (31)

Ż = Y C cos y −XB sinx

where X = x−x, Y = y−y and Z = z− z. Then the normal solution
of the form

X = (X,Y, Z) = (Xi(0), Yi(0), Zi(0))eλit (32)

can be found from system (31)’s characteristic equation (Dombre et al.,
1986)

λ3 − λΛ1 − Λ0 = 0 (33)
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Figure 5. The potential function U on the (x, z) plane with y = π/5 and
α = β = γ = 1

(a) (b)

(c) (d)

Figure 6. Relief maps of the potential U for typical values of α, β and γ on the
(x, y) plane for (a) z = 0, (b) z = π/6, (c) z = π/4, (d) z = π/2.
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with

Λ1 = −A cos zB sinx− C sin yB cosx−A sin zC cos y (34)

Λ0 = ABC(cosx cos y cos z − sinx sin y sin z). (35)

Employing further expressions (25) we find

Λ1 =
1

2
(A2 +B2 + C2) = E0 (36)

Λ0 = 2ABC cosx cos y cos z. (37)

The last expression can be further transformed by means of (26) and
2E0 = A2 +B2 + C2 into the form

Λ0 = ±2
√

(E0 −A2)(E0 −B2)(E0 − C2) (38)

so that the eigenvalues are given by the roots of

λ3 − E0λ∓ 2
√

(E0 −A2)(E0 −B2)(E0 − C2) = 0. (39)

The behaviour of the general solution depends on whether the discrim-
inant

b2

4
− E3

0

27
with b ≡ 2

√
(E0 −A2)(E0 −B2)(E0 − C2) (40)

is larger, equal or smaller than zero. The particular case where E0

assumes the value of any amplitude A2, B2 or C2 leads to the simplified
equation

λ(λ2 − E0) = 0 (41)

with eigenvalues

λ = 0, λ = ±
√
E0. (42)

In this case solution (32) is

X = X1(0) +X2(0)e+
√
E0t +X3(0)e−

√
E0t (E0 = A2, B2, C2). (43)

The existence of the positive eigenvalue shows clearly that these partic-
ular equilibrium points are unstable for all real values of the parameters
A, B, C in this particular case, except when the initial value of X2(0)
is zero. The special case of the subset of solutions with A = 0, say,
leads to exactly the same expression with E0 = (B2 + C2)/2.
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6. A remark on the potential function of the force free
magnetic fields

As can be seen from the rotation of the force free magnetic field equa-
tion (1),

52B + k2B = 0 (44)

for any divergence free field, i.e. 5 ·B = 0. It follows that all solutions
of equation (1) should be members of the family of solutions to the
Helmholtz equation (44), although the reverse is not true. Therefore,
the question arises as to whether Arnold’s solution is a member of
the Helmholtz family of solutions. To that effect Arnold’s solution is
generalised to cases with k 6= 1. The generalised solution is easily found
to be

ẋ = A sin kz + C cos ky (45)

ẏ = B sin kx+A cos kz (46)

ż = C sin ky +B cos kx (47)

−U = α sin kx cos kz + β sin ky cos kx+ γ sin kz cos ky (48)

with the first integral of energy

E =
1

2
(ẋ2 + ẏ2 + ż2)− α sin kx cos kz − β sin ky cos kx− γ sin kz cos ky.

(49)
The second partial derivatives of the generalised potential (48) give

∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= −2k2

mU. (50)

The subscript has been added to indicate the eigenvalue of the mag-
netostatic problem. The eigenvalue of Arnold’s solution (k = 1) is

√
2.

For the generalised case the relation kH =
√

2km holds true. Therefore,
Arnold’s solution is a member of the Helmholtz family of solutions.

7. Concluding remarks

Following Arnold’s considerations about fields described by magnetic
force free or vorticity free type of equations, that they are generally
chaotic, we have been able to derive rigorously explicit expressions for
the source of this chaos. That is, we have proved that the equations
of motion of these fields are described by an autonomous (time inde-
pendent) potential, whose equilibrium points are saddle points. The
analysis has been particularly successful in defining explicitly ergodic
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and non-ergodic regions in parameter space and numerical integrations
have borne out to any degree of accuracy the analytical proofs.

Force free magnetic fields have attracted interest in space plasma
research, where it is thought that this type of magnetic configuration
might hold the key to the interpretation of observations. The idea
has evolved that force free fields represent steady state minima. This
study shows that these fields are extremely unstable, which may play
a significant part in explaining plasma behaviour in space.

Appendix

We proceed here with the detailed derivation of the canonical expres-
sions for the potential describing the force free magnetic fields in the
vicinity of their equilibrium point(s). For

b12 = −
√

(E0 − C2)(E0 −B2) , b11 = B2

b23 = −
√

(E0 −A2)(E0 − C2) , b22 = C2 (51)

b13 = −
√

(E0 −B2)(E0 −A2) , b33 = A2

equation (30) can be written as

B(x, x) =
3∑

i,j=1

bijxixj =
3∑
r=1

brrx
2
r + 2

3∑
r<s=1

brsxrxs

= 2E0 + 2αx+ 2βy + 2γz (52)

with x1 = x, x2 = y and x3 = z. By making the transformation

X1 = x1 +
b12

b11
x2 +

b13

b11
x3, Xs = xs, s = 2, 3 (53)

β22 = b22 −
b212

b11
, β33 = b33 −

b213

b11
, β23 = b23 −

b12b13

b11
(54)

followed by a second transformation

X = X1, Y = X2 +
β23

β22
X3, Z = X3 (55)

α11 = b11, α22 = β22, α33 = β33 −
β2

23

β22
(56)

the bilinear form of equation (52) becomes

B(x, x) = α11X
2 + α22Y

2 + α33Z
2. (57)
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Using transformations (53) through to (56), the initial variables are
now expressed in terms of the canonical variables of the quadratic form.
They are

x = X − c12Y + c13Z, y = Y − c23Z, z = Z (58)

with

c12 =
b12

b11
, c13 =

1

b11

(
b12

β23

β22
− b13

)
, c23 =

β23

β22
. (59)

Substituting expressions (57) and (58) in (52), completing the squares
and collecting terms produce the required expression

δ1x
2
1 + δ2x

2
2 + δ3x

2
3 − 1 = 0 (60)

used in the text. The symbols δi are abbreviations for the quantities

δ1 =
α11

4
, δ2 =

α22

4
, δ3 =

α33

4
(61)

where

4 =
α2

α11
+
γ2

12

α22
+
γ2

13

α33
+ 2E0 (62)

γ12 = β − αc12, γ13 = αc13 − βc23 + γ (63)

and also

x1 = X − α

α11
, x2 = Y − γ12

α22
, x3 = Z − γ13

α33
. (64)

With these expressions we have completed our task of deriving the
canonical magnetic surfaces of the force free fields in terms of the initial
constant magnetic fields of the problem.
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