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Vibration and Buckling of Cross-Ply Composite Beams  
using Refined Shear Deformation Theory 
 
Thuc Vo, Fawad Inam 
 
School of Mechanical, Aeronautical and Electrical Engineering, Glyndŵr University, Plas Coch, Mold Road, Wrexham, LL11 2AW, UK 

Abstract: Vibration and buckling analysis of cross-ply composite beams using refined shear deformation theory is presented. The 

theory accounts for the parabolical variation of shear strains through the depth of beam. Three governing equations of motion are 

derived from the Hamilton’s principle. The resulting coupling is referred to as triply coupled vibration and buckling. A two-noded C1 

beam element with five degree-of-freedom per node is developed to solve the problem. Numerical results are obtained for composite 

beams to investigate modulus ratio on the natural frequencies, critical buckling loads and load-frequency interaction curves. 

 

Key Words: Composite beams, Refined shear deformation theory, Triply coupled vibration and buckling. 

1. Introduction 

 

Structural components made with composite materials are 

increasingly being used in various engineering applica-

tions due to their attractive properties in strength, stiff-

ness, and lightness. Understanding their dynamic and 

buckling behaviour is of increasing importance. The clas-

sical beam theory (CBT) known as Euler-Bernoulli beam 

theory is the simplest one and is applicable to slender 

beams only. For moderately deep beams, it overestimates 

buckling loads and natural frequencies due to ignoring the 

transverse shear effects. The first-order beam theory 

(FOBT) known as Timoshenko beam theory is proposed 

to overcome the limitations of the CBT by accounting for 

the transverse shear effects. Since the FOBT violates the 

zero shear stress conditions on the top and bottom sur-

faces of the beam, a shear correction factor is required to 

account for the discrepancy between the actual stress state 

and the assumed constant stress state. To remove the dis-

crepancies in the CBT and FOBT, the higher-order beam 

theory (HOBT) is developed to avoid the use of shear 

correction factor and have a better prediction of response 

of laminated beams. The HOBTs can be developed based 

on the assumption of higher-order variations of in-plane 

displacement or both in-plane and transverse displace-

ments through the depth of the beam. Many numerical 

techniques have been used to solve the dynamic and/or 

buckling analysis of composite beams using HOBTs. 

Some researchers studied the free vibration characteristics 

of composite beams by using finite element (Chandra-

shekhara and Bangera, 1992; Marur and Kant, 1996; Shi 

and Lam, 1999; Murthy et. al., 2005; Subramanian, 2006). 

Khdeir and Reddy (1996, 1997) developed analytical so-

lutions for free vibration and buckling of cross-ply com-

posite beams with arbitrary boundary conditions in con-

junction with the state space approach. Analytical solu-

tions were also derived by Kant et al. (1997, 2001) and 

Zhen and Wanji (2008) to study vibration and buckling of 

composite beams. By using the method of power series 

expansion of displacement components, Matsunaga 

(2001) analysed the natural frequencies and buckling 

stresses of composite beams. Aydogdu (2005, 2006a, 

2006b) carried out the vibration and buckling analysis of 

cross-ply and angle-ply with different sets of boundary 

conditions by using Ritz method. Jun et al. (2009, 2011) 

introduced the dynamic stiffness matrix method to solve 

exactly the free vibration and buckling problems of axi-

ally loaded composite beams with arbitrary lay-ups. Al-

though the HOBTs offer a slight improvement in accuracy 

compared to the FOBT, they are computationally more 

demanding due to higher-order terms included in the the-

ory. Hence, there is a scope to develop accurate refined 

shear deformation theory which is simple to use. 

In this paper, which is extended from previous research 

(Vo and Thai, 2012), vibration and buckling analysis of 

composite beams using refined shear deformation theory 

is presented. The displacement field of the present theory 

is chosen based on the following assumptions: (1) the 

axial and transverse displacements consist of bending and 

shear components in which the bending components do 

not contribute toward shear forces and, likewise, the shear 

components do not contribute toward bending moments; 

(2) the bending component of axial displacement is simi-

lar to that given by the CBT; and (3) the shear component 

of axial displacement gives rise to the higher-order varia-

tion of shear strain and hence to shear stress through the 

depth of the beam in such a way that shear stress vanishes 

on the top and bottom surfaces. The most interesting fea-

ture of this theory is that it satisfies the zero traction 

boundary conditions on the top and bottom surfaces of the 

beam without using shear correction factors. The three 

governing equations of motion are derived from the Ham-

ilton’s principle. The resulting coupling is referred to as 

triply coupled vibration and buckling. A two-noded C1 

beam element with five degree-of-freedom per node 

which accounts for shear deformation effects and all cou-

pling coming from the material anisotropy is developed to 

solve the problem. Numerical results are obtained for 
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Figure 1. Geometry of a laminated composite beam. 
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composite beams to investigate effects of fiber orientation 

and modulus ratio on the natural frequencies, critical 

buckling loads and load-frequency interaction curves as 

well as corresponding mode shapes.  

 

2. Kinematics  
 

A laminated composite beam made of many plies of 

orthotropic materials in different orientations with respect 

to the x-axis, as shown in Fig. 1, is considered.  
Based on the assumptions made in the preceding sec-

tion, the displacement field of the present theory can be 

obtained as: 

    
where u is the axial displacement along the mid-plane of 

the beam, wb and ws are the bending and shear compo-

nents of transverse displacement along the mid-plane of 

the beam, respectively. The non-zero strains are given by:  

      
where  

        
and  and  are the axial strain, shear 

strains and curvatures in the beam, respectively defined 

as: 

                 
where differentiation with respect to the x-axis is denoted 

by primes (').  
 
3. Variational Formulation 

 

In order to derive the equations of motion, Hamilton's 

principle is used: 

                    
where U is the variation of the strain energy, V is the 

variation of the potential energy, and K is the variation of 

the kinetic energy. 

The variation of the strain energy can be stated as: 

( ) ( ) ( )

( )

( )
( ) ( ) ( )

2

,
, , ,

,1 5

4 3

, , 0

, , , ,

b

s

b s

w x t
U x z t u x t z

x

w x tz
z

h x

V x z t

W x z t w x t w x t

¶
= - +

¶

é ù ¶æ ö+ -ê úç ÷ ¶è øê úë û
=

= +

(1) 

(1 )

b s

x x x x

xz xz xz

u
z f

x

w u
f g

x z

e e k k

g g g

¶
= = + +
¶
¶ ¶

¢= + = - =
¶ ¶

(2) 

2

2

1 5

4 3

5
1 1 4

4

z
f z

h

z
g f

h

é ùæ ö= - +ê úç ÷
è øê úë û

é ùæ ö¢= - = -ê úç ÷
è øê úë û

(3) 

, , ,b s

x xz x xe g k k xyk

x

xz s

b

x b

s

x s

u

w

w

w

e

g

k

k

¢=

¢=

¢¢= -

¢¢= -

(4) 

( )
2

1

- - 0

t

t

K U V dtd =ò (5) 

  
where  and  are the axial force, bending 

moments and shear force, respectively, defined by inte-

grating over the cross-sectional area A as: 

                 
The variation of the potential energy of the axial force 

can be expressed as: 

  
The variation of the kinetic energy is obtained as: 

     
where the differentiation with respect to the time t is de-

noted by dot-superscript convention and ρk is the density 

of a kth layer and m0, m1, m2, mf, mfz and mf 2 are the inertia 

coefficients, defined by: 

     
where 

  
By substituting Eqs. (6), (8) and (9) into Eq. (5), the 

following weak statement is obtained: 
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4. Constitutive equations 

 

The stress-strain relations for the kth lamina are given by: 

                       
where  and  are the elastic stiffnesses transformed 

to the x-direction. More detailed explanation can be found 

in (Jones, 1999). 

The constitutive equations for bar forces and bar strains 

are obtained by using Eqs. (2), (7) and (13): 

   
where Rij are the laminate stiffnesses of general composite 

beams and given by: 

     
where Aij, Bij and Dij matrices are the extensional, cou-

pling and bending stiffness and Eij, Fij, Hij matrices are the 

higher-order stiffnesses, respectively, defined by: 

  
 

5. Governing equations of motion 

 

The equilibrium equations of the present study can be 

obtained by integrating the derivatives of the varied quan-

tities by parts and collecting the coefficients of du, dub 

and dus: 

     
The natural boundary conditions are of the form: 
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By substituting Eqs. (4) and (14) into Eq. (17), the ex-

plicit form of the governing equations of motion can be 

expressed with respect to the laminate stiffnesses Rij . Eq. 

(17) is the most general form for axial-flexural coupled 

vibration of axially loaded of composite beams, and the 

dependent variables, u, wb and ws are fully coupled. 

 

6. Finite element formulation 

 

The present theory for composite beams described in the 

previous section was implemented via a displacement 

based finite element method. The variational statement in 

Eq. (12) requires that the bending and shear components 

of transverse displacement wb and ws be twice differenti-

able and C1-continuous, whereas the axial displacement u  

must be only once differentiable and C0-continuous. The 

generalized displacements are expressed over each ele-

ment as a combination of the linear interpolation function   

Yj for u and Hermite-cubic interpolation function yj for   

wb and ws associated with node j and the nodal values: 

              

Substituting these expressions in Eq. (19) into the cor-

responding weak statement in Eq. (12), the finite element 

model of a typical element can be expressed as the stan-

dard eigenvalue problem: 

        

where [K], [G] and [M] are the element stiffness matrix, 

the element geometric stiffness matrix and the element 

mass matrix, respectively. In Eq.(20), {D} is the eigen-

vector of nodal displacements corresponding to an eigen-

value: 

     
 

7. Numerical examples 

 

In this section, a number of numerical examples are pre-

sented and analysed for verification the accuracy of the 

present theory in predicting the natural frequencies, criti-

cal buckling loads and corresponding mode shapes of 

composite beams with arbitrary lay-ups. All laminate are 

of equal thickness and made of the same orthotropic ma-

terial, whose properties are as follows: 
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Material I: 

              
Material II: 

            
For convenience, the following non-dimensional terms 

are used in presenting the numerical results: 

               
As the first example, vibration and buckling analysis of 

a symmetric and an anti-symmetric cross-ply composite 

beam with simply-supported boundary condition is per-

formed. Material I and II with E1/E2 = 10 and 40 are used. 

The fundamental natural frequencies and critical buckling 

loads for different span-to-height L/h ratios are compared 

with exact solutions (Khdeir and Reddy, 1994; Khdeir 

and Reddy, 1997) and the finite elements results (Murthy 

et al., 2005; Aydogdu, 2005; Aydogdu, 2006a) in Ta-

bles 1 and 2. An excellent agreement between the predic-

tions of the present model and the results of the other 

models mentioned can be observed.  

Material I with E1/E2 = 40 is chosen to show the effect 

of the axial force on the fundamental natural frequencies 

of beam with various L/h ratios (Fig. 2). It can be seen 

that the change of the natural frequency due to axial force 

is noticeable. The natural frequency diminishes when the 

axial force changes from tensile to compressive, as ex-

pected. It is obvious that the natural frequency decreases 

with the increase of axial force, and the decrease becomes 

more quickly when the axial force is close to critical 

buckling load. For an anti-symmetric cross-ply lay-up, 

with L/h = 5, 10 and 20, at about P = 3.903, 4.936 and 
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5.290, respectively, the natural frequencies become zero 

which implies that at these loads, bucklings occur as a 

degenerate case of natural vibration at zero frequency. It 

also means that the buckling loads of composite beams 

under axial force can be also obtained indirectly through 

vibration problem by increasing the axial force until the 

corresponding natural frequency vanishes. Besides, Fig. 2 

explains the duality between the buckling load and natural 

frequency. In order to show the effect of material anisot-

Table 2. 

Effect of span-to-height ratio on the critical buckling  
loads of a simply-supported cross-ply composite beam  

(Material I and II with E1/E2 = 40). 

Lay-ups Reference 
L/h 

5 10 20 

Material I     

[00/900/00] 

Khdeir and 

Reddy (1997) 
8.613 18.832 - 

Aydogdu (2006a) 8.613 - 27.084 

Present 8.609 18.814 27.050 

[00/900] 
Aydogdu (2006a) 3.906 - 5.296 

Present 3.903 4.936 5.290 

Material II     

[00/900/00] 
Aydogdu (2006a) 5.896 - 24.685 

Present 5.895 14.857 24.655 

[00/900] 
Aydogdu (2006a) 3.376 - 5.225 

Present 3.373 4.697 5.219 

Table 1. 
Effect of span-to-height ratio on the fundamental natural  

frequencies of a simply-supported cross-ply composite beam  

(Material I with E1/E2 = 40). 

Lay-ups Reference 
L/h 

5 10 20 

[00/900/00] 

Murthy et al. (2005) 9.207 13.614 - 

Khdeir and 

Reddy (1994) 
9.208 13.614 - 

Aydogdu (2005) 9.207 - 16.337 

Present 9.206 13.607 16.327 

[00/900] 

Murthy et al. (2005) 6.045 6.908 - 

Khdeir and 

Reddy (1994) 
6.128 6.945 - 

Aydogdu (2005) 6.144 - 7.218 

Present 6.058 6.909 7.204 
Figure 2. Load-frequency curves of a simply-supported  

cross-ply composite beam (L/h = 5, 10 and 20). 

b) Anti-symmetric cross-ply lay-up ([00/900]) 

a) Symmetric cross-ply lay-up ([00/900/00])  
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ropy (E1/E2) on the critical buckling loads and the first 

four natural frequencies of a symmetric and an anti-

symmetric cross-ply lay-up, a simply-supported compos-

ite beam with L/h = 5 is performed. It is observed that the 

critical buckling loads and natural frequencies increase 

with increasing orthotropy (Figs. 3 and 4). For a symmet-

ric cross-ply lay-up, as ratio of E1/E2 increases, the order 

of the second and third vibration mode as well as the third 

and fourth vibration mode changes each other at E1/E2 = 7 

and 27, respectively (Fig. 4). 

 

8. Conclusions 

 

A two-noded C1  beam element of five degree-of-freedom 

per node is developed to study the vibration and buckling 

behaviour of cross-ply composite beams using refined 

shear deformation theory. This model is capable of pre-

dicting accurately the natural frequencies, critical buck-

ling loads and load-frequency interaction curves. It ac-

counts for the parabolical variation of shear strains 

through the depth of the beam, and satisfies the zero trac-

tion boundary conditions on the top and bottom surfaces 

of the beam without using shear correction factor.  The 

present model is found to be appropriate and efficient in 

analyzing vibration and buckling problem of cross-ply 

composite beams. 
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Figure 3. Effect of material anisotropy on the critical buckling loads of 
a simply-supported cross-ply composite beam (L/h = 5).  

a) Symmetric cross-ply lay-up ([00/900/00]) 

b) Anti-symmetric cross-ply lay-up ([00/900]) 

Figure 4. Effect of material anisotropy on the first four natural fre-
quencies of a simply-supported cross-ply composite beam (L/h = 5). 
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