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Insulin-like growth factor I (IGF-I) is implicated in breast cancer development and 1, 25-dihydroxyvitamin D
3
(1, 25-D3) has been

shown to attenuate prosurvival effects of IGF-I on breast cancer cells. In this study the role of IGF binding protein-3 (IGFBP-3) in 1,
25-D
3
-induced apoptosis was investigated using parentalMCF-7 breast cancer cells andMCF-7/VDR cells, which are resistant to the

growth inhibitory effects of 1, 25-D
3
. Treatment with 1, 25-D

3
increased IGFBP-3 mRNA expression in both cell lines but increases

in intracellular IGFBP-3 protein and its secretion were observed only in MCF-7. 1, 25-D
3
-induced apoptosis was not associated

with activation of any caspase but PARP-1 cleavage was detected in parental cells. IGFBP-3 treatment alone produced cleavage of
caspases 7, 8, and 9 and PARP-1 in MCF-7 cells. IGFBP-3 failed to activate caspases in MCF-7/VDR cells; however PARP-1 cleavage
was detected. 1, 25-D

3
treatment inhibited IGF-I/Akt survival signalling inMCF-7 but not inMCF-7/VDR cells. In contrast, IGFBP-

3 treatment was effective in inhibiting IGF-I/Akt pathways in both breast cancer lines. These results suggest a role for IGFBP-3 in
1, 25-D

3
apoptotic signalling and that impaired secretion of IGFBP-3 may be involved in acquired resistance to vitamin D in breast

cancer.

1. Introduction

The insulin-like growth factor I (IGF-I) system is essential
for normal growth and development. IGF-I is known to
modulate control by insulin of normal carbohydrate and lipid
metabolism. In addition, IGF-I has been reported to play
a role in several pathological conditions. Interaction with
the IGF binding proteins (IGFBPs) has been shown to both
enhance and attenuate actions of IGF-I [1]. In addition, the
IGFBPs are known to possess intrinsic growth regulatory
activity, independent of their interactionswith IGF-I. Insulin-
like growth factor I (IGF-I) is implicated in breast cancer
development and has been shown to rescue breast cancer
cells from apoptosis induced by a range of chemothera-
peutic agents [2]. Cellular responsiveness to IGF-I growth
stimulation depends on the expression and activity of the
signal transducing IGF-I receptor (IGF-IR) and a family
of structurally related insulin-like growth factor binding
proteins (IGFBP-1 to IGFBP-7). The major carrier of IGF-
I in the circulation is IGFBP-3, which has been shown to

inhibit cell growth and induce apoptosis in several cancer cell
lines [3]. IGFBP-3 has been shown to regulate cell growth
through both IGF-IR-dependent and -independent mecha-
nisms (reviewed in [4]). The latter may involve signalling
through an alternative cell surface receptor [5] ormay involve
direct nuclear actions by IGFBP-3 [6].

A number of factors with potent growth-inhibitory and
apoptosis-inducing effects have been shown to induce the
expression and secretion of IGFBP-3 in breast cancer cell
lines, including 1, 25-dihydroxyvitamin D

3
(1, 25-D

3
), the

active metabolite of vitamin D
3
which has been shown to

inhibit breast cancer cell growth [7]. This finding suggests
that IGFBP-3 may mediate or facilitate the inhibitory effects
of 1, 25-D

3
. The aim of our study was to evaluate the role of

IGFBP-3 in 1, 25-D
3
-induced apoptosis in breast cancer cells.

To this end, IGFBP-3 expression and secretion were inves-
tigated in parental MCF-7 breast cancer cells and the 1, 25-
D
3
-resistant cell line MCF-7/VDR. This cell line is a vitamin-

D-resistant clone of MCF-7 cells, which was developed by
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incubation of parental cells with a low concentration of 1, 25-
D
3
, separating out the viable (resistant) cells and repeating

this procedure with increasing concentrations of 1, 25-D
3

[8]. This cell line contains fully functional VDR, although
in a lower number than seen with the parental MCF-7 cells.
The regulation of the 24-hydroxylase enzyme appeared to
be intact and no differences with regard to growth rate and
morphological appearance between parental and resistant
clone were observed.TheMCF-7/VDR cell line thus provides
a valuable tool for identifying the exact mechanism of action
of vitamin D and the development of vitamin D resistance.

2. Materials and Methods

2.1. Cell Culture and Reagent. MCF-7 human breast can-
cer cells were obtained from the European tissue culture
collection and used between passages 5 and 20. Vitamin-
D-resistant MCF-7/VDR cells were obtained as a gift from
Dr. Mork Hansen [8]. Both parental and resistant cells were
grown in RPMI 1640 supplemented with 2mM of glutamine,
100 IU/mL of penicillin, 100𝜇g/mL of streptomycin, and 2%
of foetal bovine serum (FBS). 1, 25-D

3
(Sigma UK) was used

at a concentration of 100 nM and IGFBP-3 (R&D Systems) up
to 100 nM.

2.2. Viability Assay. MCF-7 and MCF-7/VDR cells were
seeded into 24 well plates at a density of 1 × 104 cells/well.
After 24 h, cells were treated with reagents or vehicle for up
to six days. At the end of the incubation period, medium was
removed and cells were incubated with neutral red solution
(40 𝜇g/mL in phenol red-free medium) for 2 h at 37∘C.
Following washing, fixation, and solubilisation, absorbance
at 550 nm was determined.

2.3.Western Blot Analysis. Cells were lysed in radioimmuno-
precipitation assay (RIPA) buffer containing 1% NP40, 0.5%
sodium deoxycholate, 0.1% SDS, 1X PBS. Equal amounts of
protein (30 𝜇g per lane) were subjected to SDS-PAGE and
transferred to nitrocellulose membranes. Membranes were
blockedwith 5%milk in 0.05%Tween-20/TBS and then incu-
bated with the primary antibody of interest overnight. Mem-
branes were then incubated with the appropriate secondary
horseradish-peroxidase-conjugated antibody. Bands were
visualised using the enhanced chemiluminescence Western
blotting detection system (ECL, Amersham). Anticleaved
caspases 7, 8, and 9 and Poly [ADP-ribose] polymerase 1
(PARP-1) and antitotal caspases 7, 8, and 9, phospho-Akt,
and PARP-1 antibodies were purchased from Cell Signalling.
Anti-𝛽-actin (Sigma Aldrich) was used as a loading control.

2.4. RNA Isolation and cDNA Synthesis. Total RNA from
cells was extracted by using the PureLink RNA Mini-kit
(Invitrogen). The quantity and the quality of RNA extracted
was estimated by Nano-drop Spectrophotometer. For the
reverse transcription, 2𝜇g of RNA was resuspended in 10 𝜇L
of nuclease free water with 2 𝜇L random hexamer (50𝜇g)
and was incubated at 70∘C for 5min. Then, the samples were
resuspended with 13 𝜇L of Master Mix (5 𝜇L RT 5X Buffer,

2.5 𝜇L of dNTP 10mM, 0.5 𝜇L Rnase OUT 40U/𝜇L, 0.5𝜇L
of Reverse Transcriptase (MMLV, Promega), and 3.5 𝜇L of
Nuclease FreeWater). This mix was run for 1 h at 42∘C, 5min
at 95∘C, and 5min at 4∘C.The cDNA was stored at −20∘C.

2.5. RT-PCR Analysis of IGFBP-3 mRNA. The primers used
to amplify IGFBP-3 and 28S rRNA were IGFBP-3 for-
ward (GAAGGGCGACACTGCTTTTTC), IGFBP-3 reverse
(CCAGCTCCAGGAAATGCTAG), 28S forward (GTT-
CACCCACTAATAGGGAAC), and 28S reverse (GGATTC-
TGACTTAGAGGCGTT). PCR was carried out in a total
volume of 50 𝜇L containing 3 𝜇L of cDNA sample and 10 𝜇M
sense and antisense primers. The RT-PCR exponential phase
was determined in 28 to 33 cycles to allow quantitative
comparisons. IGFBP-3 cDNA was amplified at 94∘C for 2
minutes followed by 33 cycles at 94∘C for 45 seconds, 63∘C
for 45 sec, and 72∘C for 1 minute. 28S cDNA was amplified
at 94∘C for 2 minutes followed by 28 cycles at 94∘C for
45 seconds, 58∘C for 45 sec, and 72∘C for 1 minute. Final
extension was performed at 72∘C for 5min. Amplification
products (8𝜇L) were resolved in 2% agarose gel, stained with
ethidium bromide, and visualized under UV light.

2.6. Detection of IGFBP-3 Secretion in Medium by ELISA
Assay. IGFBP-3 protein level in each 200𝜇L of medium
and 100𝜇g of cell extract was determined using a human
IGFBP-3 ELISA kit (RayBioTech, USA) according to the
manufacturer’s protocol.

2.7. Antibody Specific Array. Mitogen-activated protein
kinases (MAPK) protein phosphorylation was measured in
each 300 𝜇g of cell extracts using Human Phospho-MAPK
Array Kit according to the manufacturer (Proteome Profiler;
R&D Systems). Briefly, antibody array membranes were
incubated with protein lysates and then incubated with
antibody array biotinylated antibody. Finally the membranes
were incubated with streptavidin HRP-conjugated antibody.
Immunoreactivity was visualized using a chemiluminescent
substrate. Densitometric analysis was performed using
GS-800 Calibrated Densitometer (Bio-Rad, UK).

2.8. Statistics. Data are reported as mean ± SD and analyzed
with one-way ANOVA followed by the Bonferroni posttest
for multiple comparisons using GraphPad Prism version 4.0.
A value of 𝑃 < 0.05 was considered significant.

3. Results

3.1. Effects of 1, 25-D
3
on Growth and IGFBP-3 Expression

in Parental MCF-7 and Resistant MCF-7/𝑉𝐷𝑅 Cells. MCF-
7 and MCF-7/VDR cells were treated with increasing con-
centrations of 1, 25-D

3
for up to 6 days. Cell viability was

examined by neutral red dye assay (Figure 1(a)). Whilst 1, 25-
D
3
significantly decreased viability of MCF-7 cells, it had no

significant effect on MCF-7/VDR cell viability (Figure 1(a)).
To determine effects on IGFBP-3 mRNA expression, MCF-
7 and MCF-7/VDR cells were treated with 100 nM 1, 25-D

3

for up to 5 days. Whole RNA was extracted from the cells
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Figure 1: Effect of 1, 25-D

3
onMCF-7 andMCF-7/VDR cell viability and IGFBP-3 expression. (a) MCF-7 andMCF-7/VDR cells were treated

with increasing concentrations of 1, 25-D
3
(up to 100 nM) or 0.1% ethanol vehicle as a control for 6 days. Cell viability was determined by

neutral red assay. Means of 3 separate experiments are shown. ∗𝑃 < 0.05 and ∗∗𝑃 < 0.001 are statistically significant compared to the control.
(b) (i) MCF-7 and MCF-7/VDR cells were treated with 100 nM 1, 25-D

3
for up to 60 hours. IGFBP-3 mRNA expression was measured by

RT-PCR. 28S mRNA expression was used as house-keeping gene. Nontreated cells were used as controls. (ii) Densitometric analysis of of
IGFBP-3 mRNA expression. Data shown means of three separate experiments. (c) Intracellular IGFBP-3 levels and secretion into medium
was determined by ELISA in MCF-7 and MCF-7/VDR cells. (i) IGFBP-3 expression and secretion into the medium in untreated MCF-7 and
MCF-7/VDR cells. (ii) IGFBP-3 secretion into the medium in MCF-7 and MCF-7/VDR cells treated with 100 nM of 1, 25-D

3
for up to 5 days

quantitated by ELISA. (iii)The amount of intracellular IGFBP-3 production byMCF-7 andMCF-7/VDR cells treated with 100 nM of 1, 25-D
3

was measured at day 0, 3, and 5 by ELISA. Means of 3 separate experiments are shown. ∗𝑃 < 0.05 and ∗∗𝑃 < 0.001 are statistically significant
compared to the control.
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at different times of treatment and IGFBP-3 expression was
examined by RT-PCR (Figure 1(b)). In both MCF-7 and
MCF-7/VDR cells, 1, 25-D

3
treatment enhanced IGFBP-3

mRNA expression indicating that 1, 25-D
3
was effective

in inducing IGFBP-3 mRNA expression irrespective of the
observed resistance in MCF-7/VDR cells to 1, 25-D

3
-induced

apoptosis (Figure 1(b)).
Next, we examined effects of 1, 25-D

3
on IGFBP-3 at the

level of protein expression and secretion in MCF-7 versus
MCF-7/VDR cells. Cells were treatedwith 100 nM 1, 25-D

3
for

up to 5 days. The amount of IGFBP-3 protein present in the
cell or secreted into the medium was assessed by ELISA. The
basal level of intracellular IGFBP-3 protein expression was
found to be similar in both cell lines (𝑃 > 0.05); however,
the amount of IGFBP-3 protein in medium conditioned
by parental MCF-7 cells was significantly higher than for
the resistant cell line (𝑃 < 0.001), indicating a reduced
secretion of IGFBP-3 by the MCF-7/VDR cells (Figure 1(c)).
In addition, 1, 25-D

3
treatment induced IGFBP-3 protein

expression and secretion in MCF-7 but not in MCF-7/VDR

cells (𝑃 < 0.05 and 𝑃 < 0.001, resp.). Taken together, these
results showed that impaired secretion but not transcriptional
regulation of IGFBP-3 is associated with resistance of MCF-
7/VDR to 1, 25-D

3
.

3.2. 1, 25-D
3
- and IGFBP-3-Induced Apoptosis in MCF-7

and MCF-7/𝑉𝐷𝑅 Cells. To compare characteristics of 1, 25-
D
3
- and IGFBP-3-induced apoptosis, parental and MCF-

7/VDR cells were treated for 5 days with 100 nM 1, 25-
D
3
or 100 nM IGFBP-3. Activation of caspases 7, 8, and 9

was monitored by detection of cleaved (active) caspase frag-
ments by immunoblotting. In addition, PARP-1 cleavage was
examined and 𝛽-actin was used as a house-keeping protein
(Figure 2). 1, 25-D

3
treatment did not lead to activation of

any caspase but induced PARP-1 cleavage in parental MCF-7
but not in MCF-7/VDR cells. In contrast, IGFBP-3 treatment
produced cleavage of caspases 7, 8, and 9 and PARP-1 inMCF-
7 cells. IGFPB-3 failed to activate caspases in MCF-7/VDR

cells; however PARP-1 cleavage was detected indicating an
alternative pathway by which the protein induces apoptosis
in these vitamin-D-resistant cells.

3.3. Effect of 1, 25-D
3
and IGFBP-3 on IGF-I/Akt Survival

Signalling in MCF-7 and MCF-7/𝑉𝐷𝑅 Cells. While parental
MCF-7 cells do not express detectable IGF-I [9], the cells
respond to the mitogenic and antiapoptotic effects of exoge-
nous IGF-I and previous experiments have demonstrated that
vitamin D treatment can attenuate the survival effect of IGF-
I in parental MCF-7 cells [10]. To compare effects on IGF-
I-mediated cell survival, MCF-7 and MCF-7/VDR cells were
treated with 100 nM 1, 25-D

3
and 30 nM IGF-I, alone or in

combination in serum-free medium and cell viability was
examined by neutral red dye assay. Cells were also cultured
in medium supplemented with 2% foetal bovine serum as
a control. For both cell lines serum deprivation induced
up to 70–80% of cell death compared to cells cultured in

the presence of serum (𝑃 < 0.001) and addition of IGF-
I to serum-free medium rescued cell viability (𝑃 > 0.05
compared to control). 1, 25-D

3
treatment attenuated prosur-

vival effects of IGF-I in parental but not in resistant MCF-
7/VDR cells (Figure 3(a)). Failure of 1, 25-D

3
to modulate

IGF-I survival signalling in resistant cells could be due to
differential regulation of IGF-I bioavailability by IGFBPs such
as IGFBP-3, which is not secreted by these cells.

We next compared 1, 25-D
3
and IGFBP-3 treatment on

MAPK and Akt activation in parental and resistant cells
since it is well documented that IGF-I/MAPK and IGF-
I/Akt signalling plays a crucial role in proliferation and
survival of breast cancer cells. Cells were treated for 5
days with 100 nM 1, 25-D

3
and 30 nM IGF-I, alone or in

combination in serum-free medium. Cells were collected
and isolated proteins were analysed on human phospho-
MAPK antibody array. With respect to Akt phosphorylation,
1, 25-D

3
attenuated the positive effect of IGF-I on activation

of Akt in MCF-7 cells but failed to do so in MCF-7/VDR

cells (Figure 3(b)). No significant differences in activation
of ERK, JNK, and p38 were detected between the two cell
lines with these treatments (data not shown). Differential
effects of 1, 25-D

3
in parental and resistant cells on IGF-I-

stimulated Akt activation were confirmed by immunoblot-
ting. In contrast, treatment with IGFBP-3 reduced IGF-I-
stimulated Akt phosphorylation in both cell lines (Figures
4(a) and 4(b)).

4. Discussion

The IGFBPs are secreted proteins, which bind to IGFs with
high affinity. The IGFBP family has 7 distinct subgroups,
IGFBP-1 through 7, and their production is tissue-type
specific. Approximately 98% of IGF-1 is always bound to
one of these binding proteins. The IGFBPs help to lengthen
the halflife of circulating IGFs in all tissues and enhance
or attenuate IGF signaling depending on their physiological
context. IGFBP-3 is the most abundant of the family and
accounts for 80% of all IGF binding [11]. IGFBP-3 is known
to control IGF-I signalling leading to differential regulation
of cell growth and apoptosis [12, 13]. A number of growth
factors and hormones, including 1, 25-D

3
, have been shown

to induce the expression of IGFBP-3 in breast cancer cell lines
[7]. Comparative expression profiling of human IGFBP genes
in different cancer cells demonstrated that IGFBP-1, -3 and
-5 are primary 1, 25-D

3
target genes [14]. In breast cancer,

it was shown that 1, 25-D
3
causes cyclical IGFBP-3 mRNA

accumulation with a periodicity of 60min [15]. Accordingly,
VDR also showed cyclical ligand-dependent association with
the chromatin regions of its VDREs. Interestingly, HDAC4
and HDAC6 proteins, which are upregulated in a cyclical
fashion in response to 1, 25-D

3
, show cyclical VDR ligand-

induced association with VDRE regions of the IGFBP-3 gene.
Available evidence indicates that IGFBP-4 and 6 are not
primary 1, 25-D

3
target genes [14]. IGFBP-5 can colocalize

with VDR in the nucleus and modulate vitamin D responses
in osteoblasts [16]. IGFBP-6 has also been reported to interact
with VDR in the bone [17].
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ethanol as vehicle control for 5 days (left hand panel) or 100 nM IGFBP-3 for 3 days. Control cells received an equal volume of PBS diluent
(right-hand panel). Whole cell extracts were prepared and analysed by immunoblotting using specific antibodies of interest and 𝛽-actin was
used as a loading control. Data shown are representative of three identical experiments.

Although there is an increasing body of evidence that 1,
25-D
3
exerts potent regulatory effects on breast cancer cell

growth, differentiation, and apoptosis [18], the mechanisms
involved are not fully understood. Our results demonstrate
that 1, 25-D

3
treatment leads to an increase in IGFBP-3

mRNA in both sensitive and resistant MCF-7 cell lines, sug-
gesting that the resistance to 1, 25-D

3
is not due to impairment

in IGFBP-3 gene expression at the mRNA level. This result
was not surprising because the MCF-7/VDR cells have been
reported to express a functional Vitamin D receptor [8]. We
next determined if there was a difference between sensitive
and resistant cells at the level of IGFBP-3 protein. Whilst

there was no difference in basal intracellular IGFBP-3 protein
expression, the level of IGFBP-3 in conditioned medium
from resistant cells was significantly lower than medium
from parental MCF-7 cells. Furthermore, we detected a clear
impairment of increased expression and secretion of this
protein inMCF-7/VDR cells in response to 1, 25-D

3
treatment

compared to parental cells, suggesting that effective secretion
of this protein facilitates 1, 25-D

3
responsiveness. A functional

role of secreted versus nonsecreted IGFBP-3 is an interesting
issue in the literature. One study demonstrated that nuclear
translocation of IGFBP-3 and induction of apoptosis in
parentalMCF-7 cells require IGFBP-3 secretion and reuptake
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Figure 3: Modulation of IGF-induced Akt phosphorylation in response to 1, 25-D
3
treatment in MCF-7 and MCF-7/VDR cells. (a) MCF-7

and MCF-7/VDR cells were treated with 100 nM 1, 25-D
3
or 30 nM IGF-I, alone or in combination in serum-free medium. Cells were also

cultured in medium supplemented with 2% serum as a control. After 6 days of treatment, cell viability was estimated by neutral red assay.
∗
𝑃 < 0.05 and ∗∗𝑃 < 0.001 are statistically significant compared to control. Means of 3 separated experiments are shown (𝑛 = 12). (b) (i)
MCF-7 and MCF-7/VDR cells were treated with 100 nM 1, 25-D

3
or 30 nM IGF-I, alone or in combination, in serum-free medium. After

5 days of treatment, whole cell extracts were prepared and analysed on a phospho-MAPK antibody array (R&D Systems, UK) following
manufacturer’s instruction. (ii) Densitometric analysis of Akt phosphorylation. Data shown are means of 3 replicates, significantly different
from parental cells. ∗∗𝑃 < 0.001.

[19]. In contrast, Battacharyya and colleagues [20] reported
that secreted and non-secreted IGFBP-3 may be functionally
equivalent in induction of apoptosis in prostate cancer cells.
Several studies have indicated that structural modifications
such as glycosylation [21] and phosphorylation [22] can affect
IGFBP-3 binding activity. However an ELISA approach, as

used in our study, was unable to detect any such differences
in secreted IGFBP-3 fromMCF-7 cells.

It has been previously reported that 1, 25-D
3
and IGFBP-3

induceMCF-7 cell death [23, 24]. Available evidence suggests
differences in the characteristics of 1, 25-D

3
- and IGFBP-3-

induced apoptosis in MCF-7 cells. It was previously reported
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that 1, 25-D
3
induced apoptosis in a caspase-independent

manner in MCF-7 cells [25] and this is confirmed in our
present study. Whilst we found that 1, 25-D

3
treatment did

not induce activation of caspases 7, 8, and 9 in either MCF-
7 or MCF-7/VDR cell line, PARP-1 cleavage was detected in
parental but not resistant cells. Indeed, it has previously been
demonstrated that PARP-1 cleavage associated with 1, 25-D

3
-

induced apoptosis could involve other proteinases such as
calpains [26]. In contrast, we found that exogenous IGFBP-
3-stimulated activation of caspases 7, 8 and 9 in parental
MCF-7 but not in MCF-7/VDR cells. However PARP-1
cleavage was detected in response to IGFBP-3 treatment in
both cell lines suggesting that IGFBP-3 produces PARP-1
cleavage in a caspase-independent manner in MCF-7/VDR

IGFBP-3

Apoptosis

IGFBP-3

AKT

MCF-7

IGF-I
IGFBP-3

AKT

IGF-I

Survival

MCF-7/VDR

1, 25-D3

1, 25-D3

Figure 5: Proposed interaction between 1, 25-D
3
and IGFBP-3

in MCF-7 and MCF-7/VDR cells. In parental cells stimulation by
1, 25-D

3
of IGFBP-3 secretion attenuates IGF-1-induced activation of

Akt, leading to apoptosis. In addition, 1, 25-D
3
may initiate caspase-

independent pathways contributing to cell death in parental cells.
In resistant cells, failure of IGFBP-3 secretion is associated with
activation of the IGF-I/Akt pathway, leading to cell survival.

cells. PARP-1 processing leading to activation of nucleases
and DNA fragmentation appears as a key point in the
execution phase of apoptosis. In support of our findings
other reports have demonstrated PARP-1 processing in the
absence of any caspase activation suggesting the role of other
proteases in this process [27–29]. The ability of IGFBP-3 to
induce apoptosis by both caspase-dependent and caspase-
independent mechanisms suggests that this protein could act
through two different signalling pathways. This observation
also suggests that biochemical properties of endogenous and
secreted IGFBP-3 may differ from exogenous protein.

A number of studies have indicated IGF-I-dependent
and -independent mechanisms by which IGFBP-3 induces
apoptosis. By limiting IGF-I bioavailability, IGFBP-3 controls
signal transduction through the IGF-I receptor, including
survival signalling and induction of cell death. Exogenous
IGFBP-3 also appears to exert IGF-I-independent effects,
activating apoptosis via novel or death receptor pathways
[9, 30, 31]. In contrast, other studies have shown that IGFBP-
3 modulates RXR/Nur77 signalling in the nucleus, thereby
inducing apoptosis in a mitochondria-dependent manner
[32]. We found that RXR-𝛼 is expressed only in parental
MCF-7 but not in MCF-7/VDR cells (unpublished observa-
tions) suggesting that a RXR/Nur pathway does not exist
in these cells and this is supported by absence of caspase 9
activation in response to IGFBP-3.

It is well documented that Akt activation plays a crucial
role in antiapoptotic actions of IGF-I in breast cancer cells
and our initial experiments clearly demonstrated that 1, 25-D

3

treatment attenuated the survival effect of IGF-I in parental
cell line but not in resistant MCF-7/VDR cells. Our results
using MAPK/Akt antibody array analysis demonstrated that
1, 25-D

3
attenuated IGF-I-induced Akt phosphorylation in

MCF-7 cells but failed to do so in MCF-7/VDR cells, sug-
gesting that failure to modulate IGF-I/Akt survival signalling
could contribute to the resistance of this cell line to 1, 25-D

3
.

In contrast, induction of apoptosis by exogenous IGFBP-3 in
both 1, 25-D

3
-sensitive and -resistant cells was associatedwith
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inhibition the IGF-I/Akt pathway (Figure 5). In this regard
the ability of IGFBP-3 to downregulate Akt activity in Her2
overexpressing MCF-7 cells has been previously reported
[33].

5. Conclusion

Taken together our results suggest a role for IGFBP-3 in 1, 25-
D
3
apoptotic signalling and impaired secretion of IGFBP-3

may be involved in acquired resistance to vitamin D in breast
cancer cells. In addition, regulation of IGF-I/Akt survival
signalling may function as a key point of convergence that
may determine breast cancer cell fate in response to 1, 25-
D
3
/IGFBP-3.
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