Non-Equilibrium Phenomena in Graphene

Submitted by Samuel Martyn Hornett to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics April, 2013

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

> Samuel Martyn Hornett April, 2013

Abstract

Graphene has displayed much promise as an electrical conductor and as a optical material. To date there is a large body of literature dedicated to the equilibrium properties of graphene. In this thesis the properties of graphene out of equilibrium are probed. Through combined optical and transport measurements the behaviour of hot electrons are probed at temperatures over five orders of magnitude from 50mK to 2000K. This wide range of temperatures allows access to the behaviour of quantum corrections at the lowest temperatures to the highest energy phonon modes. From ultrafast femtosecond laser pulses to steady state heating from an electric field the cooling of hot electron populations through coupling to various phonon modes in the graphene and the substrate are explored. Additionally the effect of an electric field on the weak localisation correction to the conductivity was separated from heating effects using applied magnetic fields combined with careful modelling of the heat transport properties of the graphene. Finally the desorption dynamics of oxygen bound to the surface are shown using a combination of transport and two pulse correlation technique using an ultrafast laser. Surprisingly the cooling of hot carriers in graphene at low energies shows substrate surface phonons as an important cooling mechanism, highlighting the importance of substrate choice in future graphene devices. In contrast at the very highest energy scales accessed only by photoexcitation the cooling is shown not to be influenced by the presence of a substrate, but out-of-plane phonon modes increase cooling of the hot optical phonons.

Contents

Abstract Acknowledgements							
							C
\mathbf{Li}							
In	trod	uction		14			
1	The	eory		16			
	1.1	Band	Structure of Graphene	16			
		1.1.1	Linear Regime	21			
		1.1.2	Chirality	22			
		1.1.3	Berry Phase	23			
		1.1.4	Density of States	23			
	1.2	Condu	activity of two dimensional systems at low temperatures	24			
		1.2.1	Electron Specific Heat Capacity	25			
		1.2.2	Hall Effect	25			
		1.2.3	Weak Localisation	27			
		1.2.4	Universal Conductance Fluctuations	31			
		1.2.5	Phonons in Graphene	32			
		1.2.6	Phonon Phonon Scattering	32			
2	Exp	erime	ntal Method	35			
	2.1	Sampl	le Fabrication	35			
	2.2	Optica	al Contrast	37			
	2.3	Rama	n Spectroscopy of Graphene	38			

		2.3.1 Layer Determination	41
	2.4	Low Temperature Transport Measurements	45
		2.4.1 Dependence of the Resistance on carrier concentration	46
	2.5	Optical Techniques	46
3	Hea	at Dissipation Mechanisms in Graphene	49
	3.1	Introduction	49
	3.2	Samples and Measurement Technique	50
	3.3	Contact Pinning	51
	3.4	Comparison of temperature profiles with data	53
	3.5	Simple Temperature Model	53
	3.6	Heat Transport Model	58
		3.6.1 Acoustic Phonons	62
		3.6.2 Remote Optical Substrate Phonons	64
	3.7	Conclusions	65
4	Qua	antum Corrections to the Conductivity in a High Electric Field	66
	4.1	Field Dependent Weak Localisation model	67
	4.2	Averaging of the Universal Conductance Fluctuations (UCF)	68
	4.3	Sample Characterisation	71
	4.4	Magnetoconductivity	72
	4.5	Conclusions and Future Work	75
5	Hot	Phonon Decay in Graphene	77
	5.1	Measurements of the Differential Reflection	78
	5.2	Two Temperature Model	79
		5.2.1 Excitation Pulse	82
		5.2.2 Computation of the Model	83
		5.2.3 Fitting the Data	84
	5.3	Layer Dependence of the Phonon Decay Time	84
		5.3.1 Layer Dependence of the Phonon Decay Time in Suspended	
		samples	85
	5.4	Conclusions	87

6	Des	orption of Oxygen from Graphene by Femtosecond Laser					
	Pul	ses	89				
	6.1	Experimental Method	91				
	6.2	Laser Desorption of Oxygen	93				
	6.3	Two Pulse Correlation	96				
	6.4	Conclusion	100				
7	Con	clusions and Future Work 1	.01				
Bibliography							