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ABSTRACT

We focus on Hinode Solar Optical Telescope (SOT) calcium II H-line observations of a solar quiescent prominence
(QP) that exhibits highly variable dynamics suggestive of turbulence. These images capture a sufficient range of
scales spatially (∼0.1–100 arcsec) and temporally (∼16.8 s–4.5 hr) to allow the application of statistical methods
used to quantify finite range fluid turbulence. We present the first such application of these techniques to the spatial
intensity field of a long-lived solar prominence. Fully evolved inertial range turbulence in an infinite medium
exhibits multifractal scale invariance in the statistics of its fluctuations, seen as power-law power spectra and
as scaling of the higher order moments (structure functions) of fluctuations which have non-Gaussian statistics;
fluctuations δI (r, L) = I (r + L) − I (r) on length scale L along a given direction in observed spatial field I have
moments that scale as 〈δI (r, L)p〉 ∼ Lζ (p). For turbulence in a system that is of finite size, or that is not fully
developed, one anticipates a generalized scale invariance or extended self-similarity (ESS) 〈δI (r, L)p〉 ∼ G(L)ζ (p).
For these QP intensity measurements we find scaling in the power spectra and ESS. We find that the fluctuation
statistics are non-Gaussian and we use ESS to obtain ratios of the scaling exponents ζ (p): these are consistent with
a multifractal field and show distinct values for directions longitudinal and transverse to the bulk (driving) flow.
Thus, the intensity fluctuations of the QP exhibit statistical properties consistent with an underlying turbulent flow.
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1. INTRODUCTION

Solar prominences or filaments in the lower solar corona are
relatively cool, dense plasma structures with temperatures of
about 104 K. Solar filaments can be seen on the disk, while
prominences are observed above the solar limb. In practice,
they are classified in three main categories according to their
location on the Sun, namely, active, intermediate, and quiescent.
The latter usually occur on the quiet Sun at high latitudes and as
a consequence are also known as “polar crown” prominences,
while active and intermediate filaments are often observed at
low latitudes associated with active regions (Engvold 1998).
All prominences originate from filament channels and develop
above the polarity inversion line. They show many different
morphologies and dynamics (see Mackay et al. 2010 for a recent
review).

The Hinode Solar Optical Telescope (SOT) provides observa-
tions of solar prominences revealing detailed internal dynamics
at unprecedented spatiotemporal resolution. In particular, dy-
namics associated with quiescent prominences (QPs) are seen
to exhibit spatiotemporal evolution characterized by high vari-
ability (Berger et al. 2008). Most of the QPs in the SOT data
set appear vertically structured and dominated by upward and
downward transport of matter; the ascending flows appear dark
and are faster (25 km s−1 on average) than the descending flows
(about 10 km s−1). The upflows have often been observed to
ultimately evolve into vortices (Liggett & Zirin 1984) and are
considered to be associated with small-scale turbulence (Berger
et al. 2010). The prominence is a low-β plasma with electron
density ∼1011 cm−3 and temperatures up to ∼104 K (Tandberg-
Hanssen 1995); these typical parameters suggest that the upward
flow is supersonic. Indeed, evidence of bow-shock compressions
is seen in Berger et al. (2010) and the corresponding Reynolds
number is estimated as ∼105. The question then immediately

arises as to whether the observed fluctuations do in fact corre-
spond to a turbulent flow.

Many models have been developed to describe possible
scenarios for the production of dynamical structures in the
corona. The local magnetic field is suggested to play a key
role as it is thought to be the driver of the prominence
threads (e.g., Low & Hundhausen 1995; Foullon et al. 2009;
Hershaw et al. 2011). Recently, in strongly inhomogeneous
coronal plasma structures, processes such as magneto-thermal
convection in solar prominences (Berger et al. 2011) and
Kelvin–Helmholtz instabilities in the corona (Foullon et al.
2011) have been suggested as mechanisms for the generation
of dynamical structures. Furthermore, the observed complexity
of the coronal magnetic field may be generated by photospheric
turbulence (Abramenko et al. 2008; Dimitropoulou et al. 2009).
Intriguingly, correlations between outer corona and solar wind
have also been found in the statistics of large-scale density
fluctuations (Telloni et al. 2009) suggestive that the signature
of coronal turbulence is convected with the solar wind plasma
(Matthaeus & Goldstein 1986). To distinguish these processes
from turbulence evolving in situ (locally) in the flow, we will
apply analysis methods that have been specifically developed to
quantify finite range fluid turbulence.

The characteristic, reproducible properties of a turbulent flow
are statistical in nature. They characterize a scale invariance of
the statistical properties of fluctuations—that is, these properties
are unchanged as we move from scale to scale subject to
a rescaling. Thus, in a fully evolved magnetohydrodynamic
(MHD) turbulent flow in an infinite medium, one finds power-
law dependence of the physical observables of the flow—e.g.,
the velocity and magnetic field fluctuations have power-law
power spectra over a range of scales, which is identified
as the inertial range of the turbulence. As power-law power
spectra are not unique to turbulence (Sornette 2000) and do not
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Figure 1. QP observed by SOT in the Ca ii line on 2006 November 30 at 01:10:31 UT. Image resolution: 1 pixel ∼ 77.22 km on the solar surface. The image has been
rotated to the horizontal position with respect to the solar limb. Intensity levels increase from blue to white. The white grid and five squares are shown as a reference
for the analysis in the space domain (transverse strips T1 to T5 and longitudinal strips L1 to L5) and in the time domain (squares A, B, C, D, and E).

(A color version of this figure is available in the online journal.)

uniquely characterize the scaling of the fluctuations (Chapman
et al. 2008), multifractal scaling of the higher order moments
(structure functions) of fluctuations is also needed to identify
a turbulent flow (Frisch 1995). These statistical methods have
been applied extensively to in situ observations of the outgoing
flow from the solar corona, namely, the solar wind, and have
established its turbulent character (e.g., Horbury & Balogh
1997; Sorriso-Valvo et al. 1999; Pagel & Balogh 2003; Bruno &
Carbone 2005). However, these in situ observations are typically
single or from a few points in space so that Taylor’s hypothesis
(Taylor 1938) is usually evoked to characterize the scaling
properties of the flow. Here, SOT observations of a QP provide
a direct observation of the spatial field of fluctuations.

In this paper, we present the first application of these statistical
methods to the spatial intensity field of a long-lived solar
prominence. The SOT images are of intensity, rather than
velocity, and so intrinsic to our analysis is the assumption that
the moving structures in the images follow the flow, acting
as markers or passive scalars for the plasma dynamics (e.g.,
the intensity measurements can be treated as proportional to
the squared density of the plasma flow). This assumption is
supported by the correspondence between traceable UV motions
and true mass motions, found using combined imaging and
Doppler data of prominences (Kucera et al. 2003). Importantly,
the QP is of finite physical size, and the turbulence may not
be fully developed. Under these circumstances, we anticipate
a generalized form of scale invariance, that is, generalized
similarity (scale invariance) also known as extended self-
similarity (ESS; Benzi et al. 1993). Generalized similarity has
been seen in the fast solar wind (Carbone et al. 1996; Hnat et al.
2005; Nicol et al. 2008; Chapman & Nicol 2009), in laboratory
simulations of MHD turbulence (Dudson et al. 2005; Dendy
& Chapman 2006) and in hydrodynamics (Grossmann et al.
1994; Bershadskii 2007). We find that the intensity fluctuations
in the QP do indeed exhibit quantitative features consistent with
a finite size turbulent flow, namely, ESS, multifractality, and
non-Gaussian statistics.

2. THE DATA SET

The Hinode spacecraft was launched in 2006 September and
moves in a Sun-synchronous orbit over the day/night terminator,

allowing near-continuous observations of the Sun. The SOT
on board Hinode is a diffraction-limited Gregorian telescope
with a 0.5 m aperture, which is able to provide images of
the Sun with an unprecedented resolution up to 0.2 arcsec and
cadences between 15 and 30 s. The Broadband Filter Imager,
one of the four instruments of the Focal Plane Package on
the SOT, provides observations over a range of wavelengths
(380–670 nm), which distinguish different coronal structures.
We use the Ca ii H spectral line (396.85 nm) images of a QP
observed by the SOT on the northwest solar limb (90W 52N)
on 2006 November 30 (see the time evolution of the QP of
interest in animation 1 of Berger et al. 2008). The time interval
considered covers ∼4.5 hr, from 01:00:00 UT to 05:30:00 UT
corresponding to about 1000 images with a cadence Δt = 16.8 s
on average at a spatial resolution of 0.10896 arcsec pixel–1, that
is, one pixel corresponds to Δr ∼ 77.22 km on the solar surface;
each image is 800×420 pixels. The images have been calibrated
(normalized to the exposure time) and aligned with respect to the
solar limb. Furthermore, these specific observations are along
a line of sight that is to a good approximation perpendicular to
the prominence sheet.

Figure 1 shows the first frame of the data set. Note the
different structures: large-scale structures appear brighter at
the edge of the prominence while at smaller scales, bright and
dark threads alternate within the plasma sheet. We will examine
fluctuations in space by taking differences in intensity along
directions longitudinal (vertical) and transverse (horizontal)
to the direction of upward/downward flow. This procedure is
shown by the overlaid grid which is made of 10 strips labeled as
strips L1 to L5 along the longitudinal direction and strips T1 to
T5 along the transverse direction; each strip is 10 pixels wide.
We will also examine fluctuations in time, that is, from one
image to the next. Five white squares, labeled A to E, with size
21 × 21 pixels, indicate the regions over which the respective
intensity time series are formed across all the images.

In order to improve statistics we will construct local spatial
averages and will present the variation about these averages
(Dudok de Wit 2004). The procedure used to analyze the
intensity measurements in the strips consists in calculating
statistical quantities for small ensembles of 10 neighboring
rows (columns) for each strip along the horizontal (vertical)
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Figure 2. Top panels: intensity series I (r) in the space domain for strip T5 (left)
and the corresponding first differences δI = I (r + L) − I (r) with L = 1 pixel
(right). Bottom panels: intensity series I (t) in the time domain for square D
(left) and the corresponding first differences δI = I (t +τ )−I (t) with τ = Δt =
16.8 s (right).

(A color version of this figure is available in the online journal.)

direction and then performing an average across the strip width.
For example, the mean value of the intensities for strip T1 will
be the average over the mean values calculated for each of
the 10 rows within T1. The same procedure is adopted for the
analysis in the time domain: the statistical quantities calculated
for each time series associated with the pixels that compose the
square are averaged over the 21 × 21 pixels.

Figure 2 plots the variation in intensity I (r) for strip T5 versus
pixel position r (top-left panel) and I (t) for square D versus
time (bottom-left panel). They fluctuate strongly in their first
differences, which are defined in space as δI (r, L) = I (r +
L) − I (r) with L = 1 pixel (top-right panel) and in time as

Table 1
Spectral Indices

Domain Data α ± Δα

T4 3.17 ± 0.15
Wavenumber T5 2.93 ± 0.19

L1 2.73 ± 0.29
L2 2.74 ± 0.37

A 1.21 ± 0.04
B 1.17 ± 0.04

Frequency C 1.29 ± 0.04
D 1.27 ± 0.04
E 1.20 ± 0.04

δI (t, τ ) = I (t + τ ) − I (t) with τ = Δt = 16.8 s (bottom-right
panel). This is a typical aspect of a stochastic process including
turbulence (Kantz & Schreiber 1997).

3. POWER SPECTRA

Fully evolved MHD turbulence is self-similar in character
exhibiting power-law scaling in the power spectrum. We thus
analyze the power spectral densities (PSDs) of the intensity
measurements both in the time and space domains.

The left panel in Figure 3 shows the PSDs of the intensity
measurements for strips T4 and T5 along the transverse direction
and L1 and L2 along the longitudinal one. All power spectra
are dominated by two main slopes: at small wavenumbers the
spectra scale as ∼k−2 consistent with a Brownian process, that
is, additive noise (Percival & Walden 2000), while at larger
wavenumbers the spectra scale as ∼k−α with spectral index
α reported in Table 1 for each strip and suggestive of non-
trivial dynamics. The α values are estimated by extracting the
gradient of the linear fits to the plots in Figure 3 (left) within the
wavenumber ranges 2.43–4.55 Mm−1 for the longitudinal strips
and 2.07–4.61 Mm−1 for the transverse strips. The α values
found are distinct from −5/3, which is the value expected for
the Kolmogorov spectrum for an ideal turbulent flow. This is
not surprising since these observations are integrated, line-of-
sight intensity measurements. However, we should still expect
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Figure 3. Log–log plots of the intensity spectra for strips T4, T5, L1, and L2 (left) and for squares A, B, C, D, and E (right). All the spectra are shifted in the y-direction
for clarity. PSDs in the wavenumber domain (left) reveal two regions with different scaling exponents: k−2 (solid line) and k−α (dashed line), while in the frequency
domain (right) the PSDs show a single scaling, f −α , with spectral index α (dashed line). All the α values are given in Table 1.

(A color version of this figure is available in the online journal.)
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Figure 4. PDFs of the intensity fluctuations in space δI = I (r + L) − I (r) for strip T5 with L = 15 pixel ∼ 1.16 Mm (left) and in time δI = I (t + τ ) − I (t) for square
D with τ = 1.12 min (right). Both PDFs are normalized to the mean 〈δI 〉 and the variance σ of the intensity. Red solid lines are Gaussian PDFs with μ = 0 and σ = 1.

(A color version of this figure is available in the online journal.)

line-of-sight measurements to capture qualitative features of
turbulence (such as non-Gaussian fluctuations, multifractal
scaling, and ESS) while not necessary giving the same numerical
values of scaling exponents as in situ point observations.

The time series associated with squares A to E reveal different
dynamics: they have power-law power spectra in the frequency
domain with fitted spectral indices α in the frequency range
1–20 mHz very close to −1 (see Table 1 and the right panel of
Figure 3). This ∼1/f scaling may be simply attributable to a
“random telegraph” process, that is, how a series of uncorrelated
pulses or features in the flow moving through the line of sight
of the observations (Kaulakys & Meš Kauskas 1998; Kaulakys
et al. 2005). We estimate the “maximum observable speed”
of structures moving past a line of sight as u = Δr/Δt ∼
4.6 km s−1. Since the prominence flow has a bulk velocity
(uflow ∼ 25 km s−1) larger than u then, at a given pixel, intensity
fluctuations are moving too fast for us to observe correlations
in time. In other words, the time needed to catch a coherent
structure (e.g., upflows), at fixed space coordinates across two
consecutive frames, is much shorter than the cadence; therefore,
all the moving flows in the prominence appear decorrelated in
time.

4. PROBABILITY DISTRIBUTION

We now investigate the statistics of the intensity fluctuations
in the space domain, δI (r, L) = I (r + L) − I (r) with length
scale L, and in the time domain, δI (t, τ ) = I (t + τ ) − I (t),
with timescale τ . Turbulent fluctuations in the inertial range
invariably possess a non-Gaussian “heavy tailed” probability
density function (PDF) that arises from the intermittent nature
of the energy cascade in the flow (Marsch & Tu 1997; Sorriso-
Valvo et al. 1999; Hnat et al. 2002).

The left panel in Figure 4 shows the PDF of the intensity
fluctuations for strip T5, normalized to the mean value μ and
standard deviation σ , in order to allow comparisons with a
Gaussian distribution (solid red line). The PDF of the spatial
variations appears to be more peaked compared to the Gaussian
distribution. A measure of the “peakedness” of a probability
distribution is given by the kurtosis parameter, k, defined as
k = 〈δI 〉4/σ 4, where 〈δI 〉4 is the fourth moment probability
distribution. Since Gaussian distributions have k = 3, then

the excess kurtosis k is commonly used, which is defined as
k = k − 3.

The excess kurtosis k calculated for the PDF of strip T5
is 2.44 ± 0.17 indicating a non-Gaussian distribution. Further
evidence of non-Gaussian statistics is given by the normal
probability plot of the cumulative distribution function (CDF).
This is a quantile–quantile (Q–Q) plot where quantities of the
observed CDF (y-axis) are plotted against that of a normal or
Gaussian CDF (x-axis). If the data are normal distributed then
the normal probability plot of the CDF will be linear, while
other distribution types will introduce curvature in the plot.
The left panel of Figure 5 shows the CDF of strip T5, which
does not follow the theoretical function expected for a Gaussian
distribution (red dot-dashed line). The temporal fluctuations
are of different character: they are more closely described by
a Gaussian distribution function. The right panel of Figure 4
shows the PDF of the intensity fluctuations for square D which
has k = 0.78 ± 0.16, indicating statistics very close to Gaussian.
Furthermore, the Q–Q plot in the right panel of Figure 5 confirms
a distribution nearly Gaussian for the temporal fluctuations. The
quasi-normal distribution of the fluctuations in the time domain
may again be a consequence of the cadence of the observations
as discussed in the previous section.

5. STATISTICAL SCALING PROPERTIES OF FINITE
RANGE TURBULENCE

A key property of turbulence is that it can be characterized
and quantified in a robust and reproducible way in terms of the
ensemble averaged statistical properties of fluctuations. We can
gain access to the statistical scaling properties of a spatial series,
f (x), along a given direction x, by constructing differences δf
with increment L:

δf (x, L) = f (x + L) − f (x) (1)

on the spatial field. Generalized structure functions (GSFs) are
a powerful tool to test for statistical scaling and are defined as

Sp(L) = 〈|δf |p〉 =
∫ ∞

−∞
|δf |pP (δf, L)d(δf ), (2)

where the angular brackets indicate an ensemble average over x,
implying an assumption of approximate statistical homogeneity.
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Figure 5. Normal probability plots (Q–Q plots against a Gaussian) of the CDFs of the intensity fluctuations for strip T5 in space (left) and square D in time (right).
Length and timescales are those in Figure 4. Dashed red lines refer to the probability expected for a Gaussian distribution.

(A color version of this figure is available in the online journal.)

Fully developed inertial range turbulence in an infinite medium
exhibits the following scaling for the pth moment of the GSF:

Sp(L) ∼ Lζ (p), (3)

where the ζ (p) are the scaling exponents, which are generally a
nonlinear function of p.

For the special case of statistical self-similar (fractal) pro-
cesses one finds a linear form of ζ (p) in p, such that

ζ (p) = pH, (4)

where H is the Hurst exponent.
In fluid turbulence, we anticipate intermittency, that is, ζ (p)

is quadratic in p (Frisch 1995). Determining the precise ζ (p) is
central to testing turbulence theories. Since we do not have
measurements in situ here, we cannot directly compare our
observed ζ (p) value with predictions of turbulence theories.
However, we can test whether the ζ (p) that we observe are
nonlinear with p, consistent with a multifractal, intermittent
flow and we discuss this in the next section.

First, we will focus upon the direct observations of fluctua-
tions in the spatial field as these capture non-trivial correlations
in the fluctuations in the flow. The left panels of Figure 6 show
log–log plots of the averaged third moment of the GSF, 〈S3〉,
versus Ltrans (top panel) for strips T1 to T5 and versus Llong
(bottom panel) for strips L1 to L6, where Ltrans and Llong iden-
tify the pixel increments of the fluctuations δI (L) along the
transverse and longitudinal direction, respectively. Recall that
〈S3〉 refers to the average over the structure functions calculated
for each of the 10 rows (or columns) forming a single strip.
The structure function analysis provides a measurement of the
correlation of the fluctuations with length scale L. The increase
of the GSFs with L in the left plots of Figure 6 thus suggests that
the spatial intensity fluctuations of the QP are highly correlated.
This is a signature of the presence of coherent structures in the
flow. In particular, the intensity fluctuations in the longitudinal
direction (bottom-left panel) reveal a correlation over a broader
range of spatial scales as the coherent structure detected are
associated to the up and down flows of the QP, which move
along the vertical direction; this is the longitudinal direction in
which we expect to see the strongest correlation in a turbulent
flow (Frisch 1995). Along the transverse direction (top panel

of Figure 6), the curves exhibit a knee within a range of length
scales of 0.9–2 Mm (dashed black lines). These “break points”
delimit the crossover between the small-scale turbulence and
the large-scale coherent structures; the above length scales have
been attributed to the typical distances between the dark upflows
and seem to be in good agreement with the multi-mode regime
of Rayleigh–Taylor instability (Ryutova et al. 2010).

6. EVIDENCE FOR ESS AND MULTIFRACTAL SCALING

The GSFs shown in the left panels of Figure 6 clearly do
not follow the power-law scaling of Equation (3). Corrections
to this equation indeed have to be taken into account for real
turbulent flows for which finite range turbulence effects may
arise (Dubrulle 2000; Bershadskii 2007); either when turbulence
is not completely evolved (low Reynolds number), the data sets
are of finite size (realistic cases) or the system is bounded,
then symmetries in the flow are broken and the similarity is lost.
Nevertheless, a generalized similarity or ESS has been observed,
which suggests a generalized scaling for the pth moment of the
GSF by replacing L in Equation (3) by an initially unknown
function G(L), such that

Sp(L) ∼ G(L)ζ (p). (5)

This arises directly from ESS (Benzi et al. 1993; Carbone et al.
1996). Comparing structure functions of different order p and
q, we can then write:

Sp(L) = [Sq(L)]ζ (p)/ζ (q). (6)

A log–log plot of Sp versus Sq will therefore give the ratio of the
respective scaling exponents, ζ (p)/ζ (q).

The middle panels in Figure 6 show the ESS in logarithmic
scale of the GSF for p = 2 and q = 3. These are straight lines
on the log–log of Figure 6 thus confirming that Equation (6)
holds. The gradient of such plots in the inertial range provides
a measurement of the ratio ζ (2)/ζ (3). Departures of the curves
from a linear behavior occur for length scales outside the inertial
range and are associated with large-scale coherent structures in
the flow. Finally, the right panels in Figure 6 show ζ (2)/ζ (3)
for strips T1 to T5 along the transverse direction (top panel)
and for strips L1 to L5 in the longitudinal direction (bottom
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(A color version of this figure is available in the online journal.)

panel). The error bars provide an estimate of the uncertainty in
the gradients of the fitted lines in the inertial range. The ratio
ζ (2)/ζ (3) appears to be roughly constant across all the strips
and, more interestingly, differs from the value that one would
expect if ζ (p) was linear in p, i.e., ζ (2)/ζ (3) = 2H/3H ∼ 0.66
(see Equation (4)). The ratios of the scaling exponents found for
all the strips are therefore consistent with a nonlinear form of
the scaling exponent ζ (p). This is a signature of the multifractal
nature of this system which indicates intermittency within the
QP flow.

The generalized similarity has been tested explicitly in the
inertial range of solar wind turbulence by, e.g., Chapman et al.
(2009) who formalized Equation (5) as follows:

Sp(L) = [Sp(L0)]G(L/L0)ζ (p), (7)

where L0 is some characteristic length scale of the flow. We
finally test this generalized scaling for the intensity fluctuations
of strip T5. In Figure 7 we plot the third moment of the
structure function, S3, normalized to a value L0 ∼ 0.54 Mm
against L/L0 (in logarithmic axes) for seven consecutive time
intervals separated by ΔT = 1.12 minutes and starting at t0 =
01:10:31 UT. The choice of the value for the parameter L0 arises
from the characteristic width (on average) of the upflows. The
collapse of all the GSFs onto each other within the inertial range
indicates the existence of a single scaling function G(L/L0).
The overlapping of the various GSFs in Figure 7 breaks where
the effects of large-scale structures become important. This
break point for the strip T5 occurs at a length scale of ∼2.8
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Figure 7. Log–log plot of 〈S3(Ltrans)〉/〈S3(L0)〉 vs. Ltrans/L0 with L0 =
0.54 Mm for strip T5 for seven different frames of the data set separated by
ΔT = 1.12 minutes. t0 is the time of the observation corresponding to the first
frame of the data set. Note that the various structure functions superimpose up
to scale L ∼ 2.8 Mm.

(A color version of this figure is available in the online journal.)

Mm, which corresponds to the width of the large bright structure
shown in Figure 1 on the right of the prominence and crossed by
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strip T5 and the length scale of transition to coherent structures
in Figure 6 (top-left panel).

7. CONCLUSIONS

We performed the first qualitative test for in situ turbulence
in a QP observed by Hinode/SOT. We analyzed the statistical
properties of the spatiotemporal intensity fluctuations associated
with the imaged QP from the prospective of a finite sized
turbulent system. We found the following.

In space:

1. The PSDs of the intensity measurements in the space
domain exhibit power-law scaling suggestive of non-trivial
dynamics.

2. The PDFs of the intensity fluctuations are described by
non-Gaussian statistics consistent with small-scale MHD
turbulence.

3. The GSFs of the intensity fluctuations suggest a generalized
scaling for the structure functions with a dependence
on a function G(L). They also reveal a high degree of
correlation especially along the longitudinal direction to
the bulk (driven) flow. Characteristic length scales in the
transverse direction have been detected and associated to
the characteristic distances between the upflows.

4. ESS holds for all the strips considered and it is consistent
for each direction transverse and longitudinal to the flow as
a signature of the generalized similarity expected for finite
range turbulent systems.

5. The ratio of the scaling exponents ζ (2)/ζ (3) is roughly
constant for all the strips along each direction and its value
is distinct from 0.66, that is the value expected for a fractal
system. The prominence flow is therefore multifractal in
character, again consistent with in situ turbulence.

6. The intensity fluctuations in the space domain satisfy
the generalized scaling anticipated by ESS and a scaling
function G(L/L0) is observed for different successive time
intervals.
In time:

7. The PSDs show ∼1/f scaling, consistent with uncorrelated
pulses moving past the line of sight of the observations; the
intensity fluctuations are close to Gaussian distributed.

The principal aim of this paper has been to explore, for the
first time, the possibility of discerning the quantitative signatures
of turbulence, namely, multifractal or intermittent statistical
scaling, within the flows of a long-lived QP. We have shown
how tests for non-Gaussianity, multifractality, scaling, and ESS
can be applied in order to fully identify and quantify statistical
properties of turbulent fluctuations. For these specific intensity
measurements we are restricted to a qualitative characterization
of the fluctuations since the observations are integrated along
the line of sight rather than in situ in the flow. Despite this
constraint, the statistical methods used are powerful tools to test
the hypothesis that in situ flows are turbulent. Their application
indeed revealed that the statistical properties of the intensity
fluctuations associated with the QP of interest are consistent
with a MHD turbulent flow for systems of finite size. This is a
clear evidence of in situ evolving small-scale turbulence within
the prominence flow.

Since many QPs in the Hinode/SOT database exhibit similar
dynamics, then this opens up the possibility of using these QPs
as a “laboratory for turbulence,” to investigate, for example,
finite sized effects on the turbulent flow. The question that
immediately arises is whether the flow in these prominences

is more generally found to be turbulent. It would be intriguing
to determine if or how the presence of turbulence in QPs
correlates with their physical properties. Importantly, turbulence
is a mechanism by which directed flow is transformed into heat.
Heating at the loop footpoints is known to drive condensations
at the loop tops (e.g., Karpen et al. 2001). Rather than heating
driven by a coronal or a chromospheric reconnection process,
the evidence of turbulence presented here suggests a continuous
heating supply that could account for the continuous formation
process of QPs.
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Science and Technology Facilities Council on the CFSA Rolling
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