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Are pre-main-sequence stars older than we thought?
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ABSTRACT
We fit the colour–magnitude diagrams of stars between the zero-age main-sequence and
terminal-age main sequence in young clusters and associations. The ages we derive are a
factor of 1.5–2 longer than the commonly used ages for these regions, which are derived from
the positions of pre-main-sequence stars in colour–magnitude diagrams. From an examination
of the uncertainties in the main-sequence and pre-main-sequence models, we conclude that
the longer age scale is probably the correct one, which implies that we must revise upwards
the commonly used ages for young clusters and associations. Such a revision would explain
the discrepancy between the observational lifetimes of protoplanetary discs and theoretical
calculations of the time to form planets. It would also explain the absence of clusters with ages
between 5 and 30 Myr.

We use the τ 2 statistic to fit the main-sequence data, but find that we must make significant
modifications if we are to fit sequences which have vertical segments in the colour–magnitude
diagram. We present this modification along with improvements to the methods of calculating
the goodness-of-fit statistic and parameter uncertainties.

Software implementing the methods described in this paper is available from
http://www.astro.ex.ac.uk/people/timn/tau-squared/.

Key words: methods: statistical – stars: early-type – stars: formation – stars: fundamental
parameters – stars: pre-main-sequence – open clusters and associations: general.

1 IN T RO D U C T I O N

The ability to determine the ages of pre-main-sequence (PMS) stars
is crucial for advancing our understanding of the early phases of
stellar evolution. There are two key applications. First, and perhaps
most obviously, we need stellar ages if we are to carry out experi-
ments, such as tracing the evolution of stellar angular momentum
or following the fraction of stars with protoplanetary discs as a
function of time. Secondly, for PMS stars, the conversion from ob-
servables such as temperature and luminosity into mass is highly
age-dependent, making accurate ages vital for determining the mass
function. The primary method of determining the ages required for
these studies is to compare the observed properties of PMS stars
with models. The most easily accessible observables are a star’s
temperature and luminosity, since they can be measured from its
colours and magnitudes. The problem is that for the same colours
and magnitudes different models can predict ages which differ by
a factor of 2, and even the same models will predict different ages
depending on which colours and magnitudes are used. This makes
meaningful comparisons between the ages quoted in the literature
for clusters or associations at best difficult, and often impossible. It
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was these problems which led us to devise a model-independent age
ordering of young clusters and associations based on their colour–
magnitude diagrams (Mayne et al. 2007). For PMS stars, the primary
age diagnostic is based on the fact that stars fade as they get older
and contract towards the main sequence (MS). We used this move-
ment of the sequence towards progressively fainter magnitudes to
derive an age ordering, although to do so we also had to measure a
consistent set of distances, which we derived from the more massive
stars which have already reached the MS (Mayne & Naylor 2008).

Whilst an age ordering such as ours is useful, for example it has
showed unambiguously that different clusters take different times to
reach the same disc fraction or angular momentum distribution, for
quantitative work an absolute scale is required. For PMS clusters
and associations, there are several usable age indicators, each of
which relies on comparing stellar properties with models. For this
reason, it is best to group them according to the underlying physics.
First is the contraction of PMS stars as they approach the MS. As
pointed out above, and discussed at length in Mayne et al. (2007),
these ‘contraction’ or ‘PMS’ ages are highly model-dependent, and
given the current disagreements between the models cannot yield an
absolute age scale. Although most stars in a young cluster or associ-
ation are in the PMS phase, the evolution of the most massive stars
proceeds so fast that they may not only have reached the MS, but
evolved beyond it. This gives us access to two more age measures.
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The PMS age scale 433

First, having reached the MS, stars move redwards and to higher
luminosities away from the zero-age main-sequence (ZAMS), due
to the increasing helium content of their cores. This movement con-
tinues until the point of core hydrogen exhaustion, when the star
has reached the reached the terminal age MS (MS turn-off). Finally,
after the turn-off, the post-MS evolution is driven by the burning of
heavier elements which leads to much more rapid movement in the
CMD. This relatively high velocity in the CMD means that post-MS
evolution has the potential to give precise ages. However, for young
Galactic clusters the paucity of stars in this region of the CMD
means such an age can depend on just one star, and such ages are
rightly treated with some scepticism. Conversely, the MS evolution
(from the ZAMS to the turn-off) has a larger number of stars, but
the movement is often subtle, and using the normal technique of
simply plotting isochrones over the data leads to large uncertainties
in age, and to questions over objectivity. However, we have been
developing a method of making objective fits to colour–magnitude
data, which should allow us to unlock the information in this stage
of a star’s evolution. The technique, called τ 2 fitting, can be viewed
as an extension of χ 2 to data points with uncertainties in two or
more observables, and to models which are distributions (not just
lines) in the data space.

The aim of this paper is to apply the τ 2-fitting technique to the
MS evolution of young stars, and use the resulting ages to create
a revised age scale for PMS stars. Surprisingly, this leads to sig-
nificantly older ages than the commonly used contraction ages, a
result which we will discuss in Section 11. To derive this result, we
first have to update our statistical techniques originally described in
Naylor & Jeffries (2006), since, as we discuss in Section 4, the tech-
nique will not work for the isochrones we wish to fit. We therefore
lay out the changes which need to be made by following an example
through fitting (Section 5), testing the goodness of fit (Section 6)
and determining the uncertainties in the derived parameters (Sec-
tion 7). Before doing so, however, we discuss the data and models
we use (Sections 2 and 3). We deal with the effects of interstellar
extinction in Section 8, and the details of each cluster in Section 9.
We draw all the results together in our discussion in Section 11.

2 TH E DATA

To compare a set of ages derived from MS evolution with contraction
ages, we need a sample of clusters and associations which have
contraction ages, and for each of which data are available for MS
fitting. Our sample is, therefore, based on the groups we placed in
age order using the PMS in Mayne & Naylor (2008). Clearly, for
each of these groups we require stars in the appropriate mass range
to show significant MS evolution, but we also require extinctions
and reliable distance measurements. UBV photometry can provide
all three of these. First, the U − B/B − V diagram provides
extinctions. Secondly, the upper part of V /B − V diagram is age-
sensitive, tracing the evolution of stars from the ZAMS to the turn-
off. Finally, in the age range of interest the lower mass stars are
still close to the ZAMS, and the sequence turns redwards, making
it ideal as a distance measure. Furthermore, the UBV photoelectric
system is very consistent and well characterized. However, to ensure
we maintain the highest level of consistency we have restricted
ourselves as far as possible to the data of Johnson and collaborators,
primarily taken in the 1950s and 1960s. As we shall show later, the
quality of these data when combined with the transformations of
Bessell, Castelli & Plez (1998) is impressive, giving τ 2 values which
means that the model is a good fit to the data. Clearly, we wish to
avoid PMS stars contaminating our sample at faint magnitudes and

red colours, and so for most objects we apply a cut in observed
B − V which roughly corresponds to (B − V )0 < 0.0.

Most of the data sets we use have robust uncertainties derived
from comparisons of many measurements of stars. This presents us
with a problem, as the quoted uncertainties in colour are always
smaller than those in magnitude. Conventional error analysis yields
a correlation between, say, V and B − V , and in previous work we
have always been careful to include that correlation when modelling
the uncertainties. The starting point for such an analysis is that V
and B are measured independently, and so the uncertainties in V and
B − V are δV and

√
δV 2 + δB2, respectively. Such an analysis also

leads to the conclusion that the uncertainty in B − V must be larger
than that in V , in direct contradiction to the quoted uncertainties
for most of the data presented here. This is because it is not photon
statistics which are the driver of the uncertainties, but changes in
the transparency. In this work, we therefore model the uncertainties
as uncorrelated.

3 TH E M O D E L S

Although we will try other models later, we begin by using ‘Geneva–
Bessell’ isochrones. For the stellar interior, we follow the suggestion
of Lejeune & Schaerer (2001), and use the ‘basic model set’ (i.e. set
‘c’) of the Geneva isochrones (Schaller et al. 1992). Temporal in-
terpolation is a much more significant issue for post-MS isochrones
than the PMS isochrones we have fitted in the past, as there are
sharp discontinuities in the rate of change of magnitude and colour
with time, as exemplified by the MS turn-off. We therefore use
the code provided on the web site to interpolate the isochrones to
the appropriate age. We then convert from luminosity and effective
temperature to colours and magnitudes using the tables of Bessell
et al. (1998), assuming that the colours of Vega are zero (though
V = 0.03). We also use Bessell et al.’s colour-dependent extinction
vectors.

For some of the most luminous stars, the gravities are rather low,
and fall just outside the range of gravities given by Bessell et al.
(1998). In these cases, we extrapolate the models by simply setting
the colour to that for the lowest available gravity. In these cases,
a linear extrapolation would be different by less than 0.001 mag,
implying that the overall error due to the extrapolation is much
smaller than the uncertainties in colour.

For reasons explained in Section 9.2, we used the Tycho-2 pho-
tometry for σ Ori. In this case, we have used the conversion given
in Bessell (2000) to convert the Geneva–Bessell isochrones into the
Tycho system. (Høg et al. 2000a, state that the Tycho-1 and Tycho-2
systems should be identical.) We used the reddening vector derived
in Mayne & Naylor (2008).

4 STATISTICS

In Naylor & Jeffries (2006), we introduced a solution to the long-
standing problem of how to fit photometric data to isochronal
models in colour–magnitude diagrams (CMDs). Whilst fitting an
isochronal model (a curve) to a set of data points may at first ap-
pear to be a simple χ 2 problem, the facts that the data points have
uncertainties in two dimensions and that the curve is smeared by
binarity into a two-dimensional distribution mean a more sophis-
ticated technique is required. We have now used our solution to
derive ages and distances for the young clusters NGC 2547 (Naylor
& Jeffries 2006) and NGC 2169 (Jeffries et al. 2007), and consistent
distances to some of the best-studied star-forming regions (Mayne
& Naylor 2008). In Jeffries et al. (2009), we derive distances to Vel
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434 T. Naylor

OB2 and the association around γ Vel, and Joshi et al. (2008) use
our technique for measuring the distance to NGC 7419.

Naylor & Jeffries (2006) provide a rigorous development of τ 2,
but for the purpose of understanding the improvements we have had
to make to the method, a relatively simple intuitive interpretation
gives a better insight into the problems. Fig. 1 shows a typical fit
of a data set (shown as circled error bars) to a model (the colour
scale). The model is a simulation of roughly a million stars (includ-
ing binaries) using a specific age, metallicity, mass function and
distance, which is then sampled on to a grid in colour–magnitude
space. A fit in (e.g.) distance can be viewed as moving the model
in the y-direction until one obtains the strongest overlap between
the model and the data. This overlap can be quantified for a single
data point by taking the function which represents its position and
uncertainties (normally a two-dimensional Gaussian), multiplying
it on a gridpoint-by-gridpoint basis by the grid, and then summing
the resulting values. If the grid is ρ(c, m) (where c and m are the
colour and magnitude coordinates, respectively) and the ith data
point and its uncertainties U i(c − ci, m − mi) (where ci, mi are its
coordinates), then mathematically the overlap is the integral of U iρ

over the entire space. The product of these integrals for all the data
points will therefore reflect the overall overlap between the data

Figure 1. The data and best-fitting model for Cep OB3b. The colour scale
is the model (ρ in equation 1) and the encircled error bars are the data.

points and the model, and so we define a statistic

τ 2 = −2
∑
i=1,N

ln
∫

Ui(c − ci, m − mi)ρ(c,m)dc dm, (1)

whose minimum value corresponds to the best fit.
In Naylor & Jeffries (2006), we showed that this definition will,

for models which are curves in (c, m) space, and only have uncer-
tainties in the m-axis, reduce to that for χ 2. However, this is only
the case if one chooses to multiply ρ by a normalization factor
which is dependent on the gradient of the isochrone. Unfortunately,
this normalization factor becomes infinite if the isochrone is verti-
cal, and double-valued at any magnitude at which the isochrone is
double-valued. This means our χ 2-like normalization will fail for
the CMD fitting required here, because as one moves up the se-
quence towards bright magnitudes the isochrones become vertical,
before finally switching to a negative gradient. Furthermore, if we
wish to fit in U − B/B − V space, the isochrones are double-valued
for certain values of B − V .

In what follows, we therefore develop an alternative normal-
ization, which allows us to fit the data. In doing so, we expose
the limitations of an approximation we made when calculating the
probability that the data are a good fit to the model.

5 FI T T I N G TH E DATA

5.1 The model CMD

We must first create a probability density function to fit to the data.
As in Naylor & Jeffries (2006), we create this by simulating stars
over the appropriate range of masses. For each star, we choose a
mass randomly from the Salpeter IMF, and if the star is a binary we
assign it a companion of a mass drawn from a uniform distribution
between zero and the mass of the primary. The stellar model then
provides a luminosity, gravity and effective temperature for each
star, which we then convert into colour and magnitude using the
appropriate bolometric corrections. If a binary companion is so low
mass, or so cool, that it does not appear in the models, it is assigned
a flux of zero. [Note that this assignment is a change from Naylor &
Jeffries (2006), but has been used in all our subsequent work.] The
value of each pixel in the image is then simply the number of stars
whose colours and magnitudes lie within the pixel. We typically
simulate 106 stars, and for this work we have used pixels of size
0.0025 mag in each axis. This is half the value we have used in the
previous work, but is necessitated by the small uncertainties of the
current data. We find that the residual effects of the placement of
pixel boundaries are much smaller (∼0.005 mag in derived distance
modulus) than the uncertainties in derived parameters.

5.2 The normalization of ρ

Before proceeding further, we must address the normalization of
the model image, ρ. In Naylor & Jeffries (2006), we used our
χ 2-like normalization which was a function of magnitude. Here,
we instead explore the results of a much simpler normalization,
setting the integral of ρ over the entire image to one. This raises
the question of how faint a magnitude we must integrate down
to. In fact, the strictly correct way to proceed would be to first
multiply the image by the photometric completeness function, such
that below a certain magnitude ρ was zero, and then set the integral
of what remains to one. Such a normalization has an interesting,
though subtle implication. When fitting for distance modulus as the
distance modulus increases, there is a decrease in the non-zero area
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The PMS age scale 435

of ρ, the region between the faintest observable absolute magnitude
(as defined by the completeness function) and the brightest model
star. Given that the integral over the model remains one, this means
the value of any non-zero pixel will increase, implying that τ 2

will decrease, and hence the fit will improve. This is actually the
correct behaviour, since it means that a model which fully populates
the upper part of the sequence is better than one which does not.
Practically, for our data, we can use a simpler normalization, where
we make the integral between the faintest and the brightest data
points one. This means that we have thrown away one possible
source of information, but in practice this does not significantly
affect the fits.

Comparing the results obtained using this normalization with that
used in Naylor & Jeffries (2006) simply changes the values of τ 2 in a
given τ 2 parameter grid by an additive factor; it does not change the
best-fitting parameters. This is at first a surprising result since we are
changing the value of ρ in one part of the isochrone compared with
another, which may appear as a weighting of the points. However, it
should be remembered that adding the logarithms of the integrals in
equation (1) is equivalent to multiplying them together, so changing
the relative values of ρ as a function of magnitude is a normalization,
not a weighting process. The only possibility for altering the best fit
is if the length-scale for changes in ρ is small compared to the size
of an error bar. Then, data points will drag the fit so that they lie in
the higher valued regions of ρ. Since the data point is more likely to
originate in the higher density part of the model, this would again
be the correct behaviour.

Finally, it is important to note that we have no longer ‘normal-
ized out’ the mass function as we did in Naylor & Jeffries (2006).
Changing the mass function will change the value of τ 2. In practice,
we have chosen to fix it such that dN/dM ∝ − 2.35, which results
in good fits to the models.

5.3 The normalization of U

If we are to change the normalization of the model, we must also
consider the normalization of the uncertainty function (U in equa-
tion 1). In χ 2 fitting, this is set such that the maximum value of U
is always the same, so the highest probability attainable is always
the same, corresponding to a perfect fit, i.e. χ 2 = 0. This is the
normalization we adopted in Naylor & Jeffries (2006). However,
there is another obvious possibility, setting the integral of U to be
one. This would have a very significant advantage in cases where
the error bars seem to have been significantly underestimated, and
to obtain a good fit [i.e. a value of τ 2 which corresponds to a Pr(τ 2)
of approximately 0.5] one has to add an extra uncertainty to U, in
addition to those from the observations. This could well be due to
mismatches between photometric systems. In such cases, the proce-
dure we have previously adopted has been to calculate τ 2, and then
Pr(τ 2) for increasing values of the added uncertainty, until Pr(τ 2)
exceeds 0.5. However, if one normalizes U such that its integral is
one, then conceptually one is comparing a model which includes
the uncertainties with data points which are δ-function. One can,
therefore, simply adjust the values of the uncertainties until one
obtains the lowest value of τ 2.

This normalization has an additional conceptual advantage. In the
case where the uncertainties are very small one can now approxi-
mate U as two-dimensional δ-functions. This effectively removes
the integral in equation (1), and means that one can evaluate τ 2 by
simply multiplying together the values of ρ at the positions of the
data points.

We will refer to a normalization where the integral of the models
and the integrals of the uncertainty functions are all one as the
natural normalization. This clearly distinguishes it from the χ 2-like
normalization used in Naylor & Jeffries (2006).

5.4 The fit

Given that we now have the correct normalizations, we can now
fit our example data, which is a sample from Cep OB3b described
in detail in Section 9.6. We calculated the extinction on a star-by-
star basis as described in Section 8, and corrected for it. We then
evaluated equation (1) at values of the age and distance modulus
which cover the range of interest. The resulting τ 2 space is shown
in Fig. 2. The best fit, which lies at 10 Myr and a true distance
modulus of 8.7 mag, is shown overlaid on the data in Fig. 1.

In some fits, we find that there are data points which clearly do not
lie on the sequence and are presumably non-members. To deal with
these objects, we first fit the data with a variant of the ‘soft clipping’
first described in section 7.1 of Naylor & Jeffries (2006). We adapt
this to the new normalization by imposing a maximum τ 2 for any
one data point. The value used is the minimum value of τ 2 amongst
all the data points, plus a fixed value, normally 20. We implement
this by calculating the probability corresponding to the imposed
maximum τ 2 and adding this to the calculated probabilities for each
data point before calculating their τ 2 values. We then performed a
second fit removing the data points which had τ 2 values close to the
clipping limit, with no clipping limit applied.

Figure 2. The τ 2 grid for Cep OB3b. The contour is at the 68 per cent
confidence level.
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6 IS TH E M O D E L A G O O D F I T ?

To test whether the model is a good fit, one must evaluate the chance
of obtaining a given τ 2 or below. One does this by calculating Pr(τ 2),
the cumulative distribution of the expected value of τ 2. In Naylor
& Jeffries (2006), we showed how to calculate this, for no free
parameters, in such a way that it was insensitive to an incorrect
choice of mass function. We then suggested that one allow for
free parameters by multiplying the τ 2-axis of the distribution by
(N − n)/N .

Although our numerical simulations in Naylor & Jeffries (2006)
showed that the above approach to the free parameter problem
may be approximately correct for the χ 2-like normalization, it is
straightforward to show that it cannot be correct in an arbitrary nor-
malization, such as the one described in Section 5.2. Consider a plot
of the cumulative distribution of Pr(τ 2) as a function of τ 2 (Fig. 3).
Changing the normalization of the model means multiplying ρ in
equation (1) by a constant. This has the effect of adding a constant
to the values of τ 2 as shown by the solid curves in Fig. 3. Allow-
ing for free parameters by scaling the τ 2-axis of the distribution by
(N − n)/N would yield different values for the decrease in τ 2 when
adding extra parameters, depending on the normalization. This can-
not be correct, the decrease must be additive for the shape of the
distribution to be invariant for a change in normalization.

There is an approximate solution to this problem, though, based
on the fact that for CMD fitting the distribution of Pr(τ 2) is similar
to Pr(χ 2), save an additive factor. The reason for this is that both dis-
tributions derive from the distribution of probability, and therefore
τ 2, in the CMD plane. For a χ 2 problem, this distribution is a line,
smeared by a one-dimensional Gaussian. For the τ 2 CMD problem,
the distribution approximates to two sequences (those of single stars
and of equal-mass binaries) smeared by a two-dimensional Gaus-
sian. It is, therefore, unsurprising that the resulting distributions of
Pr(τ 2) and Pr(χ 2) are similar. So we could approximate Pr(τ 2) by
simply using the χ 2 distribution directly. However, for large values
of N − n the differential form of the χ 2 distribution tends to a

Figure 3. The probability of obtaining a given τ 2 for a fit of 30 data points to
a MS. This is the distribution one would obtain if one created a large number
of data sets at a given distance modulus and extinction, and then ‘fitted’ the
data with the distance modulus and extinction fixed at their original values.
The right-hand solid curve is for the χ2-like normalization, the left-hand
solid curve for a natural normalization where the sum of the probability
over all colours is independent of magnitude. For comparison, the dashed
curves show the χ2 distribution for 30 degrees of freedom and the Gaussian
distribution for σ = 60, with their expectation values shifted to match those
for the χ2-like and natural distributions, respectively.

normal distribution whose mean is N − n and σ is 2(N − n).1 This
means that we can allow for n free parameters by subtracting the ex-
pectation value from the distribution of τ 2, multiplying the τ 2-axis
by (N − n)/N , and adding back the expectation value less n. We
have implemented the latter approach, as it retains any asymmetry
in the distribution. Applying this to the Cep Ob3b data results in a
value of Pr(τ 2) of 0.05. This is on the margins of acceptability, but
no single data point is clearly discrepant.

7 UNCERTAI NTI ES

We have found a faster method for calculating the uncertainties
than that presented in Naylor & Jeffries (2006). The aim of the
calculation is to place a contour in the τ 2 grid of Fig. 2 which
represents a region within which the parameters lie with a given
confidence. We can derive the uncertainties by first converting the
values of τ 2 in the grid into probability, and then integrating over the
entire grid. We then divide this into the integral of the probabilities
below progressively higher values of τ 2 to obtain the cumulative τ 2

distribution. We can then pick off values of τ 2 at given confidence
limits, and draw contours on the τ 2 space.

There are four practical issues which have to be solved when
using this method. The first is that to carry out the integral one must
multiply each pixel by its area. If the axes are linear, then the area
of the pixels is the same, and the sum of the pixels will suffice,
as we normalize by the integral over the whole area. However, if
the age axis is logarithmic, the simplest method is to multiply the
probability by the age for that pixel, before performing the sum.

The second problem is the underlying assumption that the model
is correct. This means that the fitting to create the grid must be
carried out using only those data points which are consistent with
the model. So practically this means that a second fit must be car-
ried out excluding any points which the first fit clipped, without
any further clipping (see Section 5.4). Even so, this means one fit
as opposed to fitting typically 100 Monte Carlo data sets for the
previous technique, giving a speed improvement of a factor of 100.

The third issue is that one must sum the grid out to infinity. This
is less demanding than it might at first appear. For example, if fitting
a single data point in one dimension with Gaussian uncertainties,
one only has to move ±3σ from the best fit to include 99.7 per cent
of the total probability, which is accurate enough for calculating a
95 per cent confidence interval. Note, however, that the probability
enclosed for a given σ declines as the power of the number of
observables measured for each data point, and so if generalizing τ 2

to many dimensions one would have to act with caution.
The final issue is that the machine precision may be exhausted

for some data points towards the edge of the τ 2 grid, where the
corresponding values of ρ are very close to zero. For example, if
the smallest representable number greater than zero is 1 × 10−36,
the highest τ 2 which can be obtained is approximately 168. Once
the τ 2 for any data point lies below this probability, the computer
will calculate τ 2 for the whole data set to be infinite. To flag such
points in the grid, we set them to a high value of τ 2 (the number
of data points times the τ 2 resulting from a probability of twice

1 It is interesting that the differential form of the τ 2 distribution (like the χ2

distribution) tends towards a Gaussian. This is a natural consequence of the
central limit theorem, since multiplying functions together and then taking
the logarithm is equivalent to averaging their logarithms. Whilst the mean
and width of the distribution are problem-dependent, this may still provide
a key to the solution in more general cases.
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the smallest representable number). Since such a τ 2 is guaranteed
to return a probability of zero, this works transparently in code
which implements the new method of calculating confidence limits.
However, we also note this number in the header of the grid file,
so its meaning is clear if plots are made from the file. Applying
this technique to the Cep OB3b data results in the contour shown in
Fig. 2.

For the work here, the distance is a nuisance parameter, and we
need to be able to quote an uncertainty in age alone. We therefore
integrate the probability in Fig. 2 over all distance moduli at each
value of the age to create a run of probability with age. We then
define a confidence limit as that region in age which integrates
to give 68 per cent of the probability, and which excludes equal
integrals of probability above and below it. For Cep OB3b, this
gives an age range of 8.6–10.9 Myr.

8 TH E E X T I N C T I O N

Now having shown how we can fit for age, we must return to the
question of the extinction. We follow an improved version of the
two-strand approach developed in Mayne & Naylor (2008). We first
attempt to fit the U − B/B − V data with just the reddening as a

free parameter. We can now (in contrast to Mayne & Naylor 2008)
test whether the model is a good description of the data. If it is, we
assume the extinction is uniform, and apply the derived extinction
to all the data points. If Pr(τ 2) is too high, we conclude that the
extinction is non-uniform and resort to deriving individual extinc-
tions for each star by moving them along the (colour-dependent)
reddening vector until they reach the single-star U − B/B − V

isochrone. This is essentially a modern version of the Q method
of Johnson & Morgan (1953). As explained in Mayne & Naylor
(2008), the disadvantage of this method is that it cannot allow for
the fact the star may be a binary. This has the effect of narrowing
the dereddened sequence in V /B − V space, hence our prefer-
ence for the τ 2 method where the extinction can be shown to be
uniform.

9 MAI N-SEQU ENCE AG ES

We can now apply our technique to the rest of our sample of clusters
and associations to derive MS ages. Each data set we fit is given as
a (electronic only) table as summarized in Table 1 (see Supporting
Information), though we show the data for λ Ori as an example in
Table 2.

Table 1. MS and PMS ages.

Cluster or PMS age MS age (Myr) Pr(τ 2) Distance E(B − V ) Data Numbering
group (Myr) Best fit 68 per cent confidence modulus table system reference

λ Ori 3 6.6 5.8–7.5 0.52 8.05 0.121 2 HD catalogue
NGC 6530 2 5.5 4.9–6.1 0.84 10.76 0.331 3 Walker (1957)
NGC 2264 3 5.5 2.4–6.0 0.06 9.24 0.05 4 Walker (1956)
ONC 3 5.0 2.8–5.2 0.10 7.92 0.03 5 Brun (1935)
σ Ori 3 0.4 < 6.6 0.26 7.98 0.062 6 HD catalogue
NGC 2362 4.5 9.1 5.4–12 0.08 10.71 0.08 7 Johnson (1950)
CepOB3b 4.5 10 8.6–10.9 0.05 8.72 0.891 8 Blaauw et al. (1959)
IC2602 25 44 28–62 0.27 5.88 0.02 9 HD catalogue
NGC 2547 38 48 27–62 0.13 8.03 0.04 10 Claria (1982)
Pleiades – 115 104–117 0.81 5.35 0.021 11 Hertzsprung (1947)

1Median from individual extinctions.
2 From Brown et al. (1994).

Table 2. A sample of Tables 2–11, the fitted data set for λ Ori. Table 1 gives the number of the electronic table for each
data set (see the Supporting Information), along with the reference for the star numbering system. As shown here, for
each cluster we give, along with the uncertainties, the fitted V , B − V and U − B. In the case of groups where extinctions
were derived on a star-by-star basis, these are the reddening- and extinction-free values, and the E(B − V ) used is given
in the last column.

Star V B − V U − B E(B − V )
number (mag) σ (mag) σ (mag) σ

36822 4.036 0.010 −0.270 0.008 −1.047 0.010 0.120
36861 3.346 0.010 −0.271 0.008 −1.049 0.010 0.061
36862 4.710 0.010 −0.241 0.008 −0.953 0.010 0.281
36894 8.662 0.010 −0.086 0.008 −0.295 0.010 0.036
36895 6.512 0.010 −0.188 0.008 −0.745 0.010 0.068
37034 8.976 0.010 −0.069 0.008 −0.216 0.010 0.109
37035 8.249 0.010 −0.141 0.008 −0.562 0.010 0.121
37051 8.699 0.010 −0.074 0.008 −0.239 0.010 0.114
37110 8.657 0.010 −0.097 0.008 −0.346 0.010 0.097

245140 8.568 0.010 −0.107 0.008 −0.398 0.010 0.217
245168 9.077 0.010 −0.057 0.008 −0.173 0.010 0.177
245185 9.313 0.010 −0.050 0.008 −0.153 0.010 0.190
245203 6.972 0.010 −0.188 0.008 −0.745 0.010 0.158
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Figure 4. The best-fitting model for NGC 6530 with the age fixed at 2 Myr
(left-hand panel) and the best-fitting model with both age and distance as
free parameters (right-hand panel). Note how the five brightest data points
are better fitted in the right-hand panel, and how the group of data points
below them would have to be interpreted as binaries in the model in the
left-hand panel. The very faintest single stars also lie marginally closer to
the single-star sequence in the better-fitting model.

9.1 NGC 6530

We used the data and uncertainties of Walker (1957), which are for
a sample which is unbiased in colour and taken from a specific area
of the cluster. To ensure that we excluded the PMS, we selected
only those stars bluewards of B − V = 0.28 and brighter than V =
13 and derived individual extinctions. The resulting fit is shown in
the right-hand side of Fig. 4.

9.2 σ Ori

Our sample consisted of the members listed by Sherry et al. (2008)
that are bluewards of B − V = 0.1. We omitted the two stars noted
by Sherry et al. (2008) as variable, and HD 37333 which is above
the MS, and probably a PMS star. We could not find a consistent
Johnson UBV data set for this cluster, and so used the Tycho-2
catalogue and its first supplement (Høg et al. 2000b), although it
does not contain a magnitude for σ Ori C. In this data set, a combined
magnitude is given for σ Ori A and B. As σ Ori A is itself a binary,
we removed the effect of σ Ori B on the combined magnitude by
assuming that the magnitude difference between the components is
the mean of the values for the difference found from speckle (Horch,
Ninkov & Franz 2001) and adaptive optics (ten Brummelaar et al.
2000) work. σ Ori B will have little effect on the combined colour.

The disadvantage of using the Tycho-2 data is that we cannot
determine the extinction, as there are no U-band data. We therefore
simply adopted E(B −V ) = 0.06 from Brown, de Geus & de Zeeuw
(1994). The resulting τ 2 contour does not close at low ages, and so
we have only an upper limit on the age. We therefore quote (in

Table 1) the upper limit below which 68 per cent of the probability
lies, but exclude this cluster from further analysis.

9.3 NGC 2264

We used the photoelectric data of Walker (1956), as presented in
his table 1. Fitting all stars bluewards of B − V = 0 for extinction
in U − B/B − V space gives Pr(τ 2)=0.37, implying uniform
extinction over the field. We then fitted in V /B − V and obtained a
Pr(τ 2) of 0.06. This is on the margins of acceptability, and there is
a case that the two data points furthest redwards from the sequence
should be removed. However, in not doing so we simply enlarge
our uncertainty estimate, and so are being conservative.

9.4 λ Ori (Collinder 69)

We used the data from Murdin & Penston (1977) taking only those
stars within half a degree of λ Ori. We excluded objects with
B − V > 0.2, which results in a sample which is almost com-
pletely bluewards of this colour and has no stars redwards of
(B − V )0 = −0.04. After applying reddenings determined on a
star-by-star basis, we obtained a value of Pr(τ 2) of 0.52, provided
we assumed that the uncertainties were 0.01 mag in V and 0.008
mag in B − V (Murdin & Penston 1977, do not provide error bars)
and removed two objects (HD 36881 and HD 36913) which appear
to be non-members based on their positions in the V 0/(B − V )0

diagram. The resulting fit is shown in the right-hand side of Fig. 5.

9.5 NGC 2362

We used the data and associated uncertainties for NGC 2362 from
Johnson & Morgan (1953), which were taken as part of a pro-
gramme to define what became the UBV system. We used only
those stars bluewards of B − V = 0.04 and excluded stars noted as
non-members by Johnson & Morgan (1953). We also excluded the
brightest star (τ CMa) as it is clearly beyond the turn-off. Finally,
we found that star 36 gave a high τ 2 in both U − B/B − V and
V /B − V , and star 50 in V /B − V , and so we removed them
from the fit as well. We then measured a global extinction from the
U − B/B − V diagram, before fitting in V /B − V .

9.6 Cep OB3b

Blaauw, Hiltner & Johnson (1959) carried out a photometric survey
of stars of spectral type A0 and earlier identified from objective
prism plates. We take the membership list from Pozzo (2001), but
exclude BHJ11 for which the measurement is a combined light
measurement for a rather wide 
m = 2.5 binary. We dereddened
this sample on a star-by-star basis. Using the uncertainties quoted
in Blaauw et al., we obtain a just about acceptable value of Pr(τ 2) =
0.05.

9.7 The environs of the Orion Nebula Cluster

Our data and uncertainties are taken from Walker (1969), who aimed
to obtain photometry for as many stars as possible within the outline
of the dark cloud, since this area will be the least contaminated by
background stars. We removed stars redwards of B − V = 0.0,
those marked as variables or visual doubles, and three stars which
lie away from the sequence in the U − B/B − V diagram. We fitted
the data for a single extinction in U − B/B − V space, and after
removing two outliers in τ 2 obtained a good fit with Pr(τ 2) = 0.46.
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Figure 5. The best-fitting model for λ Ori with the age fixed at 3 Myr (left-
hand panel) and the best-fitting model with both age and distance as free
parameters (right-hand panel). The brightest three stars are clearly better
fitted by the model in the right-hand panel.

At first, this may sound counterintuitive, since it implies uniform
extinction, yet it is well known that the extinction of ONC members
is highly variable. In fact, it seems that this only applies to stars in
the central cluster. We then fitted in V /B − V to obtain the results
shown in Table 1. The resulting fit is shown in the right-hand side
of Fig. 6.

9.8 NGC 2547

We took the photometry from Claria (1982), and used an uncertainty
of 0.02 mag in both magnitude and colours. This is an estimate for
U − B and corresponds to the deviations for single observations
derived by Claria (1982) from comparison with the data of Fernie
(1959). Although Claria (1982) often has four observations per star,
we prefer to take the view that the uncertainty represents the dif-
ference between the photometric systems. We use the membership
list of Claria (1982), which is based on proper motions, photometry
and spectroscopy, and select only stars with B − V < 0.1 to ensure
that we exclude PMS stars. We found that if we included star 40,
which appears to sit just below the MS, we obtained an unaccept-
ably low value of Pr(τ 2). Furthermore, this star is right on the edge
of the proper motion distribution of the bulk of the members, so we
excluded it.

Figure 6. The best-fitting model for the ONC with the age fixed at PMS
age of 3 Myr (left-hand panel) and the best-fitting model with both age and
distance as free parameters (right-hand panel). The 68 per cent confidence
interval for the best-fitting age just encompasses 3 Myr, and so we expect
the improvement in the fit from left to right to be only marginal. We can
see the improvement in the fit is due entirely to the improvement in the fit
for the brightest star, and even that is at the expense of a worse fit for the
second brightest star. Thus, the conclusion that the statistics drive us to, that
the improvement is marginal, seems reasonable.

9.9 IC2602

We used the data of Eggen (1972), excluding stars with B −V > 0.0,
and HD 93163, which lies away from the sequence. Unfortunately,
Eggen (1972) does not provide uncertainties, but we found that a
single extinction would yield Pr(τ 2) = 0.79 for uncertainties of
0.014 and 0.014 mag in B − V and U − B, respectively, which
suggests that the extinction is uniform. Using that extinction and an
uncertainty in V of 0.025 mag gives Pr(τ 2) = 0.27 when fitted in
V versus B − V .

9.10 The Pleiades

We again used the data and memberships from Johnson & Morgan
(1953). The U − B/B − V diagram, especially the region where the
gradient is reversed, shows that there is variable extinction to this
cluster. We therefore dereddened the data on a star-by-star basis,
which limits us to B − V < 0.0. Before fitting, we also excluded
Hertzsprung 371 (which appears to be reddened).
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Figure 7. The positions of stars in the vicinity of the Orion Nebula Cluster.
The dots in the central region are one in five of the stars from Hillenbrand
(1997). The dots around the periphery are X-ray sources from Ramı́rez et al.
(2004). The filled circles are the MS sample.

10 PRE-MAIN-SEQUENCE AG ES

For the PMS ages, we require a set of consistent ages, and therefore
adopt the ages of Mayne & Naylor (2008), with the following
exceptions.

10.1 NGC 2547, IC2602 and Cep OB3b

We take the PMS age for NGC 2547 from Naylor & Jeffries
(2006) as 38.5 Myr, which is derived from isochrone fitting, though
also agrees with the lithium depletion age. The age for IC2602
(25 Myr) is taken from Stauffer et al. (1997), which again is based
on isochrone fitting to the PMS stars. We use a PMS age of 4.5 Myr
for Cep OB3b, which is from Littlefair et al. (in preparation), but is
based on the system of Mayne & Naylor (2008).

10.2 The environs of the Orion Nebula Cluster

The position on the sky of our MS sample is shown in Fig. 7,
along with the positions of the sample of Hillenbrand (1997), which
represents stars in the ONC itself, and the flanking fields of Ramı́rez
et al. (2004). Given the distribution of stars, it is clear that the PMS
age we should use is that of the flanking fields. Although Ramı́rez
et al. (2004) calculate this, they do so on the assumption that the
ONC is 470 pc away, whilst a more modern estimate is 400 pc
(Mayne & Naylor 2008, and references therein). In the V 0/(V −
I )0 diagram, Ramı́rez et al. (2004) place the flanking fields 0.3 mag
above NGC 2264. Correcting the distance to 400 pc will bring the
flanking field PMS to the same magnitude as that of NGC 2264,
and therefore to an age of 3 Myr on the scale of Mayne & Naylor
(2008).

11 DISCUSSION

We collect together our measurements of the ages of the groups
and clusters in Table 1, along with the other parameters from our
fits. For completeness, we include the distances, though as these are
derived from two-parameter fits we emphasize that those of Mayne
& Naylor (2008) are to be preferred. We plot PMS against MS
age in Fig. 8. Whilst the PMS and MS ages for individual clusters
may agree to within the uncertainties, the average of the MS ages

Figure 8. The MS and PMS ages for our sample. The groups at PMS ages
of 3 and 4.5 Myr have been separated slightly in age to aid visibility.

is significantly older than the average of the PMS ages. If we take
only those clusters and associations less than 10 Myr old, the MS
ages are, on average, a factor of 2 larger. The issue is clearly which
of these age scales is correct.

11.1 Are the main-sequence ages incorrect?

Explanations as to why the MS ages may be incorrect fall into two
groups, those associated with the statistical techniques and those
associated with the models. We can rule out problems with the
fitting procedure by comparing our ages with those obtained by
Meynet, Mermilliod & Maeder (1993). They use similar isochrones
to the ones presented here and measure the age of the Pleiades as
100 Myr and the environs of the ONC as 4 Myr. Both these ages are
compatible with those we measure, suggesting our technique gives
similar ages to ‘by eye’ fitting. Equally importantly, our age for
NGC 2547 matches its lithium depletion age (34–36 Myr; Jeffries
& Oliveira 2005) and our age for the Pleiades is very close to
its depletion age (125–130 Myr; Stauffer, Schultz & Kirkpatrick
1998).

To check that our uncertainties are at least reasonable we tested
how the result changes if one star is removed from each fit. As
one might expect, the brightest star in the fit provides the tightest
limits on the age. We therefore removed the brightest star from each
data set and replotted Fig. 8. As Fig. 9 shows, the result remains
clear, though as one might expect the error bars are larger, and
one more data set (the ONC) returns an upper limit for the age.

Figure 9. As Fig. 8, but with PMS ages calculated without the brightest star
for each data set.
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This strongly suggests that our uncertainty estimates are reason-
able, and the result is robust. This experiment also shows what the
effect might be of a non-member being included in the fit. Were a
non-member very far from the fitted sequence, it would have been
clipped out by the procedure described at the end of Section 5.4.
Were it close to the sequence, then it could deviate the fit suffi-
ciently to have a reasonable τ 2, but then would only change the
best fit by a small amount, similar to the effect of removing a data
point.

As a final check of the uncertainties, in Figs 4–6 we plot the
data over the best-fitting models if the age is fixed at the PMS age
(left-hand panels) or left as a free parameter (right-hand panels).
The first two examples (NGC 6530 and λ Ori) are ones where the
PMS age lies far outside the 68 per cent confidence region for the
upper-MS age. As one expects, we see that the brightest stars lie
to the right of the model when the age is fixed at the PMS age.
Our final example, the ONC, is one where the PMS age lies almost
exactly on the edge of the 68 per cent confidence limit. Here the
improvement in the fit is, as it should be, marginal. Although such
comparisons with our expectations are at best subjective, that they
fit with our expectations adds to our confidence in the result. When
combined with the experiment of missing out the brightest data
point, we have a strong case that our uncertainties are correct, and
the result is robust.

The obvious problems with the models are the absence of ro-
tation, uncertainties as to the mass-loss rates and the treatment of
convective core overshoot. Fig. 9 of Meynet & Maeder (2000) shows
that if the stars were rotating, and we fitted them with isochrones
for stationary stars, the resulting ages would be too young by about
10 per cent. This therefore exacerbates the discrepancy between the
PMS and MS ages.

All modern models include a degree of core overshoot, which
has the effect of mixing more hydrogen into the core, and hence
lengthening the MS lifetime. Naively, models with no overshoot
will have shorter MS lifetimes than those used here, by roughly the
decrease in available hydrogen (perhaps 20–40 per cent), which is of
the right order to bring the MS and PMS ages back into agreement.
However, our CMD fitting does not measure lifetime on the MS, but
how far from the ZAMS a star at a given luminosity (not mass) has
moved. A close comparison of figs 4 and 5 of Maeder & Mermilliod
(1981) shows that for the youngest ages they calculate (25 Myr) the
difference in the position of the isochrone corresponds to an age
difference of around 5 per cent.

Mass-loss rates for early-type stars are uncertain, and so in addi-
tion to using the Geneva models with the standard mass-loss rates
(set ‘c’ of Maeder & Meynet 1994) we also tried the higher mass-
loss rate, set ‘e’. Comparison of the resulting isochrones for the
masses and ages we are interested in shows differences in colour
which are too small to affect our results.

Finally, we have tested the effect of using different MS mod-
els. As an alternative to the Geneva models with the Bessell et al.
(1998) conversions to colour and magnitude we used the conver-
sions presented with the isochrones in Lejeune & Schaerer (2001).
We obtained ages somewhat older than those from the Geneva–
Bessell models, exacerbating the age difference problem. More im-
portantly, the values of Pr(τ 2) are much worse than those for the
Geneva–Bessell models, typically around 0.01 or 0.001, showing
that these models can be ruled out as good descriptions of the data.
To test whether this is the interior models or the atmospheres, we
fitted the data to the Padova models (Girardi et al. 2002) but with
the same model atmospheres (Bessell et al. 1998) as we used for the
Geneva–Bessell models. We find that this gives slightly younger

ages (a factor of 1.5 older than the PMS ages in the range 1–
10 Myr), but very similar values of Pr(τ 2) to the Geneva–Bessell
models. In summary, therefore, our fitting gives strong support to
the Bessell et al. (1998) conversions, and there is only a weak effect
from the interior models, which can explain some, but not all of,
the age discrepancy.

11.2 Are the pre-main-sequence ages incorrect?

The PMS ages are much less robust than the MS ones. We have
adopted the PMS age scale of Mayne & Naylor (2008). However,
as Mayne & Naylor (2008) and Mayne et al. (2007) make clear, the
primary aim of this scale is an age ordering. The age scale itself is
rather arbitrary, though was chosen to match as closely as possible
the commonly quoted ages for the young groups. The problem is that
there is no single PMS age scale, a point nicely illustrated in Jeffries
et al. (2009). They show that the γ Vel association could have a PMS
age between 5 and 15 Myr depending on which PMS models are
used, and which part of the sequence is considered. They estimate
that the association is about 7 Myr old on the Mayne & Naylor
(2008) scale, so doubling the ages of these young associations is
consistent with some PMS models. Our conclusion, therefore, is
that the MS age scale is probably the correct one.

11.3 Implications of lengthening the PMS time-scale

Before discussing the implications of a longer time-scale, we should
be wary of overinterpreting Fig. 8. Whilst it clearly shows a discrep-
ancy between mean PMS and MS ages, the error bars for individual
data points are large. All we can say with any certainty is that
there is a difference of approximately a factor of 2 at PMS ages of
3 Myr. By 30 Myr, our data are consistent with the age scales match-
ing, though a difference of a factor of 1.5 is still, in the statistical
sense, likely. We therefore limit ourselves to discussing the implica-
tions of a lengthening of the time-scales in the 1–10 Myr PMS age
range. Even here, however, we find that there are problems it might
solve.

There is a long-standing issue that the observed time-scale for the
dissipation of protostellar discs (3 Myr; Haisch, Lada & Lada 2001)
may be shorter than the time required by the models for planet
formation (10 Myr; Pollack et al. 1996). In recent years, there
has been significant effort to find mechanisms which will shorten
the planet-forming time-scales. Whilst a case can be made that this
problem has been solved (Mordasini et al. 2008), there is a view that
significant problems remain (see e.g. the introductory sections of
Dodson-Robinson et al. 2008; Ayliffe & Bate 2009). A fair summary
is probably that whilst there are mechanisms which could shorten
the time-scale, such as dust settling (Hubickyj, Bodenheimer &
Lissauer 2005) and planetary migration (Alibert et al. 2005), the
uncertainties in the physics remain such that it is not clear if they
do. Our result offers an interesting alternative solution. If the clusters
used to measure the disc dissipation time-scale are 50–100 per cent
older than previously thought, there may be no contradiction with
the Pollack et al. (1996) time-scale.

Jeffries et al. (2007) point out that there is a lack of clusters in the
age range 5–30 Myr. Revising the age scale in the way suggested by
the MS fitting would move clusters from the youngest ages into this
age range. Furthermore, if the age scales come back into register at
around 30 Myr, as Fig. 8 suggests they might, there would not be a
compensating movement out of the 5–30 Myr range, leading to an
increased number of clusters at these ages.
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1 2 C O N C L U S I O N S

We have shown that there is a systematic difference between the
ages of clusters and associations measured from the MS and ages
commonly used which are based on the PMS. The difference is
in the sense that the MS ages are a factor of 1.5–2.0 greater than
the PMS ages in the age range 2–5 Myr (on the PMS scale). The
most straightforward solution is to adopt the MS age scale, as there
are PMS models which fit with the longer time-scale. Adopting the
longer time-scale offers a solution to the problem that the lifetimes
of discs around stars (3–5 Myr on the PMS age scale) are shorter
than the time taken to form planets, and to the apparent absence of
clusters in the 5–30 Myr age range.

Finally, we should be clear that although we favour the age-scale
given by MS fitting, we are not recommending it as a method for
deriving ages for individual clusters and associations. As Fig. 8 and
Table 1 make it clear, the uncertainties for individual groups are
large. Nor can we at this point make any clear recommendation as
how one should reflect this result when quoting PMS ages. Whilst it
is clear that the youngest ages need to be increased, how far down the
age scale that should be propagated is unclear. We therefore continue
to commend the Mayne et al./Mayne & Naylor age ordering, though
recommend that if these ages are quoted one clearly states that they
are on the Mayne et al./Mayne & Naylor scale. If absolute ages
are required for clusters younger than 10 Myr for comparison with
other data, we recommend multiplying the Mayne et al./Mayne &
Naylor values by 1.5 and quoting the age scale as originating from
this paper.
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