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Abstract. The continued research and development of high-order methods in Computational Fluid 

Dynamics (CFD) is primarily motivated by their potential to significantly reduce the computational 

cost and memory usage required to obtain a solution to a desired level of accuracy.  The present 

work presents the developed computer code based on Finite Volume Methods (FVM) Cell-centred 

Finite Volume Method applied for the case of Quasi One dimensional Inviscid Compressible flow, 

namely the flow pass through a convergent divergent nozzle. In absence of the viscosity, the 

governing equation of fluid motion is well known as Euler equation. This equation can behave as 

Elliptic or as Hyperbolic partial differential equation depended on the local value of its flow Mach 

number. As result, along the flow domain, governed by two types of partial differential equation,  in 

the region in which the local mach number is less than one, the governing equation is elliptic while 

the other part is hyperbolic due to the local Mach number is a higher than one. Such a mixed type of 

equation is difficult to be solved since the boundary between those two flow domains is not clear. 

However by treating as time dependent flow problems, in respect to time,   the Euler equation 

becomes a hyperbolic partial differential equation over the whole flow domain.  There are various 

Finite Volume Methods can be used for solving hyperbolic type of equation, such as Cell-centered 

scheme, Cusp Scheme Roe Upwind Scheme and  TVD Scheme.  The present work will concentrate 

on the case of one dimensional flow problem through five nozzle models.  The results of 

implementation of Cell Centred Finite Volume method to these five flow nozzle problems are very 

encouraging. This approach able to capture the presence of shock wave with very good results.  

Introduction 

Any disturbance in a flow field emanates signals which travel with the speed of sound to 

influence the incoming flow. In a subsonic flow, the velocity of fluid particles is less than the speed 

of sound, and therefore, the existence of an obstacle downstream felt by the fluid . Subsequently the 

fluid particles adjust their path and maneuver them shelves around object.  On other hand for a 

supersonic flow, the existence of an obstacle cannot be communicated upstream.  Thus a 

phenomena must take place to decelerate the supersonic flow as well as to provide mechanism for 

turning of a supersonic flow. As a consequence of  this physical requirement shock wave for in 

nature. Shock waves are extremely thin region in the flow field across which large variation in flow 

properties take place. The actual thickness of shock wave is typically in order of the mean free path 

of molecules ( 10
-7

 m ).  The velocity and temperature gradients are large within this region in the 

flow field. Within the shock wave the flow is highly dissipative and heat transfer take place. 

However since the shock wave just covered in very thin flow domain compared to the whole 

domain of the flow problem along the nozzle,  Hence it is adequate to represent the governing 

equation of fluid motion is governed by  the compressible Euler equation.  In steady flow condition, 

the Euler equation is a mixed type of differential equation depends on the local Mach number[1].  

To solve such kind equation is difficult, to avoid such difficulties, can be done by representing the 

Euler equation in the form as Euler equation for unsteady flow problem.  In respect to time 

independent, the Euler equation behaves as hyperbolic type of partial differential equations. There 
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are various method can used for solving hyperbolic type of equation, they are namely  Cell-centered 

scheme [2], Cusp Scheme [3] Roe Upwind Scheme [4]. The present work  use a cell centred Finite 

Volume method applied for the case of will five models nozzle, they are namely: 1 convergent 

nozzle model , 1 divergent nozzle model and three other nozzle models belong to class of 

convergent divergent nozzle.   

Governing Equation Flow Past Through Nozzle 

The governing equation of fluid motion pass through a divergent nozzle which considered as 

quasi one dimensional and unsteady inviscid compressible flow can be written  in the vector 

notation and conservative form as:[1] 

 

The vectors of conservative variables , convective fluxes , and the source term    read 

 

In above equation the variable  A denotes the nozzle area. The total enthalpy H is given by the 

formula 

 

and the pressure p results according to: 

 

The Cell Centred Finite Volume Method. 

 

Fig. 1a: Control volume for the 1-D Euler solver
 [2] 

Fig. 1a. show the sub domain in wich the governing equation of fluid motion Eq. 1 can be 

integrated over such sub domain to give the Eq. 1 can be written as: 

 
The sub domain   does not change with respect to time. To each sub domain, the discrete form can 

be approximate as: 

 
Where  and the average values over the cell.[2] 
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If the control volumes are identical with the grid cells and if the flow variables are located at the 

centroids of the grid cells as indicated in Fig. 1b. that approach called as Cell-centred Finite Volume 

Scheme[5]. When evaluate the discretised flow equations, Eq. 4.a,  one  must  supply the convective  

fluxes at the faces of a cell.  How to define the convective fluxes at the face can be done by using  

one of the three following ways: 

1- By the average of fluxes computed from values at the centroids of the grid cells to the left and to 

the right of the cell face, but using the same face vector (generally applied only to the 

convective fluxes) 

2- By using an average of variables associated with the centroids of the grid cells to the left and to 

the right of the cell face. 

3- By computing the fluxes from flow quantities interpolated separately to the left and to the right 

side of the cell face (employed only for the convective fluxes). 

 

 
Fig. 1b: Control volume of a cell-centred scheme in one dimension

[2] 

Thus, taking the cell face nJ+1 Fig. 1b.  as an example, the first approach - average of fluxes – can 
be approximated as: 

 

Where;    

The second possible approach - average of variables - can be formulated as follows: 

 

The third methodology starts with an interpolation of flow quantities (being mostly velocity 

components, pressure, density and total enthalpy) separately to both sides of the cell face. The 

interpolated quantities - termed the left and the right state.[5] 

Result and Discussion  

The developed computer code applied for the case of flow through different 5 nozzle models.  The 

first two nozzle models use the nozzle model according to Anderson [3] . Both nozzles are 

categorized as convergent divergent nozzle. For simplicity in explanition the first Anderson Nozzle 

denoted as Anderson Nozzle – A, which having distribution of cross section area along the nozzle 

A(x) defined as: 

 

 

The Anderson second nozzle called as Anderson Nozzle – B has a cross section area distribution 

A(x) defined as: 
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Here the gas assumed to behave as a perfect gas with heat coeffient ratio  = 1.4  and  the universal 

gas constant is equal to, . At the entry station, the pressure P is set equal 

to 100 kPa and the exit pressure may vary. For three different  setting of the exit pressure,  namely 

at exit pressure  Pb = 70 kPa, 80 kPa  and 90 kPa  gives the result of distribution pressure and Mach 

number along the nozzle for the case of Anderson Nozzle A as depicted in the Fig. 2a. While for the 

case of Anderson’s Nozzle – B as shown in the Fig. 2b.  

        

                Fig. 2a:  Pressure and Mach number distribution over Anderson’s Nozzle- A 

 

Fig. 2b:  Pressure and Mach number distribution over Anderson’s Nozzle- B 

Considering above, those two nozzles generate a normal shock wave inside the nozzle. As the exit 

pressure decrease, the location of normal shock wave move to further down stream.  

The third nozzle model is the nozzle geometry adopted from Hoffmann with the distribution of 

cross section area is given as : 

   

For this test case,  the entry station is set for having static pressure at entry station is equal to 45 

Kpa and the flow mach number M = 1.1.  The pressure at the entry station is similar to the pressure 

of the Anderson Nozzle problem. The result of pressure and temperature distribution along the x-

axis nozzle as shown in the Fig. 3 . 
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Fig. 3:  Pressure and Mach number distribution over Hoffmann Nozzle. 
 

The Nasa report TM 88926 provided the nozzle geometry written in term of distribution of the cross 

section area A(x) along its axis is given as: 

 

Applying the similar flow setting as it had been done to case of Anderson Nozzle gives their result 

as depicted in the Fig.4.  Setting the back pressure similar to the Anderson nozzle for this type of 

nozzle does not produce the presence of the normal shock wave inside the nozzle.  Setting back 

pressure at  Pb = 80 Kpa and 90 Kpa bring the nozzle is not reaching the choked condition. As result 

the flow back to the subsonic condition in the divergent section. While setting back pressure Pb = 70 

Kpa had created the flow completely as supersonic isentropic flow in the divergent part.  

 
Fig. 4: Pressure and Mach number distribution over NASA TM  88926 Nozzle. 

The last nozzle model is the nozzle model provided by Blazek
[2]

.  This Nozzle has a distribution 

cross section area A(x) defined as : 
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In similar as Anderson Nozzle problem,  for such geometry gives the distribution of pressure and 

Mach number as depicted in the Fig. 5.  

     

Fig. 5:  Pressure and Mach number distribution over Blazek’s  Nozzle. 

Conclusions  

The Cell Centred Finite Volume method represent the numerical scheme which is able to solve the 

flow problem pass through nozzle. Different nozzle geometry gives different flow behaviour. 

Particular shape of nozzle may generate the flow inside nozzle goes to subsonic solution if the 

pressure ratio between entry and exit station is not having a sufficient value. Considering the result 

as shown in Fig.2, Fig.3 and Fig.5,  it is clear indicated that the Cell Centred Finite Volume able to 

capture the presence of shock wave inside the nozzle without  smearing or oscillatory solution near 

the shock. Therefore this approach can be considered as an appropriate approach for solving fluid 

flow problem from quasi one dimensional flow problems to two dimensional flow problem such as 

flow pass through airfoil or  other two dimensional flow problems. 
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