
  

 

Abstract— This paper presents an analysis of homeostatic 

controller, which controls the motion of a hybrid-driven 

underwater glider. The homeostatic controller is inspired from 

a biological process known as homeostasis, which maintains a 

stable state in the face of massively dynamics conditions. 

Within a biological context, organism homeostasis is an 

emergent property of the interactions between nervous, 

endocrine and immune system. Artificially these three systems 

are presented as Artificial Neural Network (ANN), Artificial 

Endocrine System (AES) and Artificial Immune System (AIS). 

The ANN is designed as the controller backbone, the AES is 

designed as the weight tuner, and the AIS is designed as the 

optimizer of the control system. The design objective is to 

obtain better control performance of the motion control system 

which includes the disturbance from the water currents. We 

have simulated the algorithm by using MatlabTM, and the 

results demonstrated that the homeostatic controller reduced 

the cost function of the control system and produced better 

control performance than the neuroendocrine controller. 

I. INTRODUCTION 

The classical and modern control systems have been 
implemented to control autonomous underwater vehicle 
(AUV) and underwater glider, and have shown weaknesses 
under dynamic changing environments. Numerous 
underwater glider control systems have been proposed by 
previous researchers. Most existing gliders have used the PID 
and LQR controller to control the motion and attitude [1-6]. 
The sliding mode control (SMC) also has been used to 
control the underwater glider [7-8], but the main constraint in 
SMC is the chattering effect, which can degrade the 
performance of the system, and make the system unstable. 
Although these controller methods have already 
demonstrated acceptable results, the control system is 
considered as the Single-Input-Single Output (SISO) system. 
Thus, they still have limitations in terms of control 
performance for the Multiple-Input-Multiple-Output (MIMO) 
system. Since the hybrid-driven glider model is very complex 
and has MIMO system, it is difficult to control the glider. In 
addition, the high nonlinearity of the glider dynamics and 
underwater disturbances are also the main reasons that make 
the glider difficult to control [9-10].  
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Due to that, the gliders should be truly autonomous which 
operate steadily and adaptively to their environment. 
Therefore, the biologically inspired control systems should be 
considered because they are autonomous and adaptive in 
nature. One possible approach is come from biology process, 
which known as homeostasis, which maintains a stable state 
in the face of massively changing conditions. Conceptually, 
this biological process has inspired and motivated 
applications of homeostasis in the synthesis of autonomous 
systems in mobile robotics as presented in [11-15]. However, 
until now, the effectiveness of the homeostatic controller on 
underwater platform such as the AUV or glider has not been 
investigated. Due to that, we have designed the homeostatic 
controller for the glider motion control. 

The homeostatic control mechanism is a connectionist of 
ANN, AES and AIS. These three systems do not act in 
isolation; instead they are a single system that control the 
motion of the glider. Thus, in order to design the controller, 
we have designed a neural network predictive control for the 
hybrid-driven underwater glider [16]. However, in order to 
overcome the weight tuning problem due to the presence of 
disturbance from the water current, we have added an 
artificial gland cell of AES as a weight tuning factor for the 
network. Then, the AIS is used as an optimizer to the motion 
control system, which based on the clonal selection algorithm 
(CSA).  

The objective of this work is to analyse the performance 
of the homeostatic controller by comparing with the 
neuroendocrine controller. We have analysed the homeostatic 
controller with the LQR, Model Predictive Controller (MPC), 
and Neural Network Predictive Controller (NNPC). 
However, in this paper, the neuroendocrine is selected for the 
comparison because of the necessity to observe the 
significant improvement in terms of controller's performance 
after the tuning and optimisation.  This paper is organized as 
follows. Section II presents the equations of motion of the 
hybrid-driven glider. The implementation of the homeostatic 
controller is explained in Section III. Section IV describes the 
simulation results. Finally, the conclusion is given in Section 
V.  

II. HYBRID-DRIVEN UNDERWATER GLIDER 

Technically, the USM hybrid-driven underwater glider 
integrates the features of a buoyancy-driven underwater 
glider and a typical or propeller-driven AUV. In addition, 
instead of using fixed wings like the existing glider, we have 
modeled and designed the glider with wings and a rudder that 
can be controlled independently. The main reason to design 
the hybrid-driven glider is to overcome the speed and 
maneuverability limitations of the buoyancy-driven glider. 
Although, the hybrid-driven glider will be used more energy 
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than the buoyancy-driven glider, it would reduce the gap 
between energy consumption, speed and maneuverability of 
the glider.  

Due to that, the hybrid-driven underwater glider can be 
propelled by using buoyancy and/or propulsion system. The 
glider has a ballast pump to control the depth, an internal 
sliding mass to control the pitch angle during gliding, wings 
and a rudder to control the roll and yaw angle for turning 
motion. Therefore, by efficiently managing the driving mode 
of the glider, the energy from the power system can be used 
efficiently. For example, if the glider is set for a long 
duration mission that required a straight line gliding mode, 
only the ballast and internal moving mass will be activated, 
and if the glider is set for a hovering mission, the propeller 
will be activated, and the external actuators will be activated. 
Fig. 1 shows the Solidworks

TM
 drawing of the glider.  

 

Figure 1.  Glider structure from back, trimetric, front and right view. 

In order to analyze the glider motion, the nonlinear 
equation of motion for the hybrid-driven underwater glider is 
written as: 

 ̇    ̇  ̇  ̇  ̇  ̇  ̇         and        (1) 

 ̇    ̇  ̇  ̇  ̇  ̇  ̇   ̇                       

                 (2) 

where      is the rotation and transformation matrix of the 
Euler angles,   is the translational and rotational velocity, 
   is the current velocity,    represents the relative velocity, 
  represents the system inertia matrix of the glider,      
represents the Coriolis-centripetal of the glider,         is 
the damping forces and moments,      is the gravitational 
and buoyancy forces and moments, and   represents the 
propeller forces. The notation of   represents the deflection 
angle of the external actuators (wings and rudder). Thus, the 
deflection angles are defined as: 

              
          (3) 

where         and    are the deflection angles of the right 
wing, left wing and rudder, respectively. 

In order to control the pitch angle of the glider through 
the internal sliding mass as well as propels the glider by 
using buoyancy, the parameter of  ̇ in the equations (2) need 
to be rewritten. Thus, the following equations which 
represent the effects of the sliding mass on  ̇ is included in 
the equation of motion. 
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where    represents the second element of the system inertia 
matrix,    and    are the element of the system mass 
matrix,    is the internal sliding mass,     and     are the 

position of sliding mass in the   and  -direction,     and     

represent the force of sliding mass in the   and  -direction, 
   is the ballast pump mass, and     is the viscous moment. 
The       and    represent the net force acting on the 
sliding mass in  -direction, the net force acting on the sliding 
mass in  -direction and the ballast pumping rate, 
respectively. 

In order to control the glider's motion, we have defined 10 
input parameters, which included 3 parameters of the water 
current velocity as disturbance. Thus, the 10 control inputs 
are denoted as: 

  [                                  ]
 
        (10) 

where the propeller force in x-direction is denoted as   . 
Lastly, the         and     are the water current velocity in 

    and   direction, respectively.  

In terms of the glider output, there are 17 outputs that 
represent the glider motion and attitude. Thus, the outputs are 
defined as: 

  [                                          ]
 
 (11) 

where     and   are the position. The Euler angles are 
denoted as     and  . The translational velocities are 
denoted as     and  . The     and   represent the angular 
velocities. The    is the ballast pump mass. 

III. IMPLEMENTATION OF HOMEOSTATIC CONTROLLER 

The homeostatic controller is a combination of ANN, 
AES, and AIS which has the ability to alter the weights of the 
neural networks and optimize the control system. The neural 
network is the backbone of the controller, which predicts the 
control inputs, and outputs as well as achieving the target 
outputs. The endocrine system is the weight tuner of the 
neural network, which depending on the presence of 
disturbance from the water currents and also the level of 
sensitivity of the neural network weights. Meanwhile, the 
immune system based on the clonal selection algorithm 
(CSA) acts as the optimizer for the controller. Fig. 2 shows 
the homeostatic control system block diagram for the glider. 
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Figure 2.  Homeostatic control system of the glider's motion 

A. The Neural Network Predictive Controller (NNPC) 

The objective of designing this controller is to map the 
desired control inputs for the glider plant as well as achieving 
the target outputs of the glider motion from the reference 
model. It also has the ability to handle the Multiple-Input-
Multiple-Output (MIMO) system of the glider plant. In order 
to design the network models, the nonlinear plant of the 
glider must be linearized. The linearization is carried out to 
obtain the state-space representation of the Multiple-Input-
Multiple-Output (MIMO) system of the glider.  

The NNPC has two network models: the forward model, 
also known as the neural network plant model, and the 
inverse model, also known as the neural network controller. 
The MLP architecture for the NN forward model has 3 layers 
network with 10 control inputs (matrix B of the state space) 
as the input nodes, 10 hidden layer nodes, and 17 control 
outputs (matrix A of the state space) as the output nodes. We 
used the gradient descent with momentum and adaptive 
learning rate backpropagation as the training algorithm. The 
sigmoid transfer function in the hidden and output layer is 
used to estimate the output. 

Generally, the activation function of the neuron in the 
NNPC is defined as: 

  ∑                 (12) 

where    is the input node values, and    is the weight. Thus, 
by introducing the AES as the weight tuner of the network, 
this equation has been rewritten in equation (13), which 
shows the new activation function that dependent on the 
hormone concentration and the sensitivity of the neuron to 
the hormone.  

B. The Artificial Endocrine System (AES) 

The AES is used to tune the weight of the NNPC in order 
to compensate with the disturbance. In line with the 
mechanism in the biological endocrine system, the AES have 
two major components: glands and hormones. The artificial 
endocrine gland,  , secretes an artificial hormone when they 
are stimulated by certain factors either external or internal 
stimuli. This artificial hormone can only effect the artificial 
hormones based on certain condition. In this work, the gland 
releases the hormone when the sensitivity of the NNPC's 
weight is lower than zero or the disturbance from the water 
current (velocity of the water current) is greater than zero.  

In a biological endocrine system, not all artificial 
hormones must affect every neuron; it depends on the 
sensitivity of the neuron to the hormone,     . However, in 

this work, we have assumed that every neuron are affected by 
the hormone with a constant value of the    . Referring to 

[17], we include two main functions in the secretion of the 
endocrine gland: the stimulation rate of the gland, and the 
hormone concentration,    . Thus, by using cooperative 

approach, we summed the multiplication of the    with     

and    . Thus, the new activation function of the network 

namely the activation function of neuroendocrine networks is 
defined as: 

    ∑     ∑                         (13) 

The hormone concentration,    , is defined as: 

                            (14) 

where    is the decay rate of the hormone. In this work,   = 

0.4. The value of hormone stimulation rate and decay rate is 
between a range of 0 to 1. The stimulation rate of the gland, 
   , is defined as: 

       
  

        
           (15) 

where    is the hormone stimulation rate and    is the 

matrix A of the state-space from the neural network plant 
model. In this work,   = 0.9. 

C. The Artificial Immune System (AIS) 

In the late 1990s, the AIS has become popular among 
researchers. The theories, models, and applications of the 
AIS have been studied by Dasgupta [18], De Castro and 
Timmis [19] and Zheng et al. [20] have reviewed the AIS. 
The AIS can be utilized in two ways. Firstly, is to act as a 
growth regulator for cells within the artificial systems. In this 
case,  the role of AIS is to remove cells, neurons, glands or 
connections that have a detrimental impact on the functioning 
of the system. Secondly, is to act as an optimizer of 
responding to the disturbances, which could be 
environmental changes that affect the ANN and AES. In this 
work, the AIS is used to optimize the weights of the 
neuroendocrine network.  

 

Figure 3.  The principle of clonal selection [21] 
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In order to optimize the weights, we have designed the 
optimization algorithm based on the clonal selection 
mechanism. Biologically, the natural immune system used 
the clonal selection to define the basic response of the 
immune system to an antigenic stimulus. The idea of this 
theory is to proliferate the cells only if the cells able to 
recognize the antigens (Ag). As an example, when human is 
exposed to an antigen, the B lymphocytes cell in human's 
body respond by producing antibodies (Ab). Each cell 
releases only one antibody specifically to the antigen. Then, 
the antigen attach to the antibody, and with the signal from T-
helper cell, the antigen stimulates the B cell to proliferate and 
mature into plasma cells. Fig. 3 shows the principle of the 
clonal selection in a biological system.  

In this work, the CSA is formed to evolve the weight of 
the neuroendocrine network by means of selection, cloning,  
mutation and editing process. It was based on the CLONALG 
procedures that was proposed by De Castro and Von Zuben 
[22].    

a) Initialization: Randomly initialize a population of 
the antibodies (Ab) based on the number of 
weights/antigens (Ag). 

b) Evaluation: Compute all the affinity values for the 
Ab. 

c) Selection and Cloning: Select the Ab values with a 
high affinity and generate the clones of the Ab 
proportionally to their affinity with the Ag.  

d) Mutation: Mutate the clones inversely proportional 
to their affinity. Then, add these clones to the set of 
Ab  and place a copy of the matured (optimized) Ab 
into the memory set. 

e) Editing: Replace the lowest affinity Ab with a new 
randomly generated Ab. 

f) Repeat: Repeat the process until the optimal weight 
achieved. 

IV. RESULTS AND ANALYSES 

The simulation was programmed by using Matlab
TM

. We 
have simulated the control system with different values of 
desired Euler angles for 1200 seconds for gliding mode and 
hovering mode. However, in this paper, we only 
demonstrated the controller response for combination mode 
with two desired roll, pitch and yaw angles for 100 seconds. 
Thus, the desired roll angle,  , pitch angles  , and yaw angle, 
  from the reference data for the first 50 seconds was set as 
20

o
, -35

o
, and -15

o
, and then -20

o
, 35

o
, and 15

o
, respectively 

for another 50 seconds. The rest of the output parameters will 
be predicted by the controller, which is a response to the 
desired Euler angles.  

The simulation results show the comparison of the glider 
motion between the neuroendocrine control response and 
homeostatic control response. We have simulated the 
controller response for a motion with and without disturbance 
from the water currents. However, in this paper, we only 
presented the response for both controllers for a motion with 
disturbance from the water currents. In this case, the velocity 
of the water current in the x-direction was set as 0.5 m/s.  

Fig. 4 shows the comparison of the glider's position for 
the neuroendocrine response and homeostatic response 
according to the desired Euler angles that have been 
achieved. At the first 50 seconds, the graph demonstrated that 
the position of the glider for the neuroendocrine controller 
was determined as 2.96, 37.09, and 10.82 for      and  , 
respectively.  Then, after the optimization process by the AIS 
in the homeostatic controller, the      and   position was 
determined as 13.65, -9.50, and 17.76, respectively. For the 
last 50 seconds, the glider's position for the neuroendocrine 
controller was determined as -2.96, -37.09, and -10.82 for 
     and  , respectively. On the other hand, the      and   
position for the homeostatic controller was determined as -
10.66, 5.7, and -18.86, respectively. From this observation, 
the value of the glider's position that was produced by the 
neuroendocrine controller is identical with a different 
direction for both periods, but for the homeostatic controller, 
due to the random population initialization of the Ab, the 
value of glider's position is different for both periods.  

 

Figure 4.  Glider position 

 

Figure 5.  Euler angles  
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Fig. 5 shows that both controllers response converged to 
the desired Euler angles at the same settling time for all 
angles. However, the simulation results show that the 
homeostatic controller produced more accurate results than 
the neuroendocrine controller. Table I shows the comparison 
of the results between both controllers.  

TABLE I.  COMPARISON OF THE EULER ANGLES  

Angles Desired Neuroendocrine Homeostatic Settling Time 

Roll 20o 20.8171o 20.0982o 4s 

Pitch -35o -35.9411o -35.1460o 5s 

Yaw -15o -15.2804o -15.1805o 5s 

Roll -20o -20.8171 o -20.5328 o 4s 

Pitch 35o 35.9411 o 35.1932 o 5s 

Yaw 15o 15.2804 o 15.2786 o 5s 

 

 

Figure 6.  Translational velocities  

 

Figure 7.  Angular velocities 

Fig. 6 and 7 show the controller response for the glider 
translational and angular velocities, respectively. The graphs 
in both figures show that the velocity value of surge,  , sway, 
 , heave,  , roll rate,    pitch rate,   and yaw rate,   for both 
controllers are slightly different. However, the homeostatic 
controller produced better control response than the 
neuroendocrine, especially for the surge velocity where the 
response was more stable than the neuroendocrine.  

Fig. 8 shows the comparison of the response for the 
neuroendocrine and homeostatic controller over the position 
and forces of the sliding mass, and the mass of the ballast 
pump mass. The differences of the response for both 
controllers are obvious, where the homeostatic produced 
better control performance than the neuroendocrine because 
of the optimization process by the CSA in the AIS.  

In order to achieve the desired pitch angle, the glider 
controls the  sliding mass. Thus, to achieve -35

o
 and 35

o
 of 

pitch angle, the position of the sliding mass in  -direction for 
the neuroendocrine controller was determined as -44.5 cm 
and 44.5 cm, respectively. On the other hand, the position of 
the sliding mass in  -direction,    , for the homeostatic 

controller was determined as -37.2 cm and 38.7 cm, 
respectively. This observation shows that the required 
distance of the sliding mass to achieve both desired pitch 
angles has been shortened of 16.4% and 13%, respectively. 
This is because of the optimization process by the AIS in the 
homeostatic controller. 

 

Figure 8.  Position and forces of the sliding mass, and mass of the ballast 

pump 

In order to analyse the effectiveness of homeostatic 
control system, we analysed and made a comparison of index 
performance's value (cost function) between the controllers in 
both motion conditions, as shown in Table II. The data shows 
that the homeostatic controller produced better performance 
with lower cost function than the neuroendocrine controller, 
and the optimization percentage was higher for the motion 
with disturbance than the motion without disturbance. 
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TABLE II.  COMPARISON OF THE INDEX PERFORMANCE 

Controller 

Index 

performance for 

motion with 

disturbance 

Index 

performance for 

motion without 

disturbance 

Duration: 0-50s 

Neuroendocrine 8145.66 2918.94 

Homeostatic 7571.89 2848.28 

Optimization Percentage 7.04% 2.42% 

Duration: 50-100s 

Neuroendocrine 8145.66 2918.94 

Homeostatic 7786.46 2854.79 

Optimization Percentage 4.41% 2.19% 

V. CONCLUSION 

The paper presents an analysis and a comparison between  
the homeostatic and neuroendocrine system for the motion 
control of the hybrid-driven underwater glider. The 
homeostatic control system is a connectionist of three 
artificial systems: artificial neural network (ANN), artificial 
endocrine system (AES) and artificial immune system (AIS). 
The backbone of the control system is the neural network. 
The MLP network architecture was used as the architecture 
of the neural network controller, which was designed to 
predict the control inputs as well as achieving the desired 
outputs. Meanwhile, the AES was designed to tune the 
weights of the neural network by secreting the hormone 
concentration from the artificial gland cell when the 
sensitivity of the weight was lower than zero, or the velocity 
of the water current was greater than zero.  In order to select 
the best weight after the tuning process by the AES, the AIS 
is executed to optimize the controller by using the clonal 
selection algorithm (CSA).  

In order to test the performance of the homeostatic 
control system, we have simulated the algorithm and tested it 
for different values of desired outputs. Referring to Table II, 
we found that the average of the index performance (cost 
function) for the homeostatic control system for the condition 
of the glider's motion with disturbance was 7679.18, and the 
average of the cost function for the neuroendocrine control 
system was 8145.66. This means that the cost function was 
reduced by 5.7%. On the other hand, the average of the cost 
function of the control system for the glider's motion without 
disturbance was reduced by 2.31%, where the average cost 
function of the homeostatic control system was 2851.54, and 
the average of the cost function of the neuroendocrine control 
system was 2918.94. Although the optimization percentage is 
considered low, the homeostatic controller algorithm was 
successfully optimized the glider's motion control system and 
produced better control performance.   
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