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Abstract In multivariate quality control, the artificial nen-
ral networks (ANN)-based pattemn recognition schemes gen-
erally performed better for moniforing bivariate process
mean shifts and provided more efficient information for
diagnosing the source variable(s) compared to the traditional
multivariate statistical process control charting. However,
these schemes revealed disadvantages in tenn of teference
bivariate patterns in identifying the joint effect and excess
false alarms in identifying stable process condition. In this
study, feature-based ANN scheme was investigated for rec-
ognizing bivariate corrclated patterns. Feature-based input
representation was uttlized into an ANN training and testing
towards strengthening discrimination capability between bi-
variate normal and bivariste mean shift patterns. Besides
indicating an effective diagnosis capability in dealing with
low correlation bivariate pattemns, the proposed scheme
promotes a smaller network size and better monitoring ca-
pability as compared to the raw data-based ANN scheme.

Keywords Atfificial neural networks - Bivariate comrelated
patterns - Process monitoning and diagnosis - Statistical
features - Paltern recognition
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Abbreviations

ANN Atificial neural network

ARL Average run length

ART Adaptive resonance theory

BPR Bivariate patiern recognition

CCPR Contro! chart pattemn recognition

CUSUM Curnulative sum

EWMA Exponentially weighted moving average

FAR False atarm rate

iid. Identically and independently distributed ‘

LEWMA  Last value of exponentially weighted moving
average

LVQ Leaming vector quantization

MAT (Mean) x (antocorrelation)

MCUSUM Multivariate cumulative sum

MEWMA  Multivariate exponentially weighted moving
average

MLP Multilayer perceptrons

MMSV (Mean) * (mean square value)

MQC Multrvariate quality control

MRWA Maulti-resolution wavelet analysis

MSD {Mean} x (standard deviation)

MSE Mean square error

MSPC Multivariate statistical process control

PCA Principle component analysis

RA Recognition accuracy percentage

RBF Radial basis function

SOM Kohonen self-organizing mapping

SpC Statistical process control

traingdx Gradient decent with momentom and adapfive
learning rate

1 Introduction

It is well known that variation in manufacturing processes
has become a major source of poor quality. Wear and tear,
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vibration, machine breakdown, inconsistent material, and
lack of human operators are typical sources of process
variation.

In monitoring univariate process variation, control charts
are widely used for “listening to the voice of the process”
[1]- The traditional control charting schemes such as
Shewhart [2, 3], ewmulative sum (CUUSTUM) {4], and expo-
pentially weighted moving average (EWMA) [5] control
charts are among the most important statistical process
conirol (SPC) tools, which are aseful in maintaining univar-
iate process stability. The key feature of control charts, the
provision of the method to differentiate between particular
processes, is operating within a statistically stable and an
unstable state.

In the related study, many manufacturing processes
may involve two or more correlated variables, and an
appropriate procedure is required to monitor these vari-
ables simultancously. This issue is sometimes called
multivariate quality control (MQC) and it has opened
the basis for extensive research in the field of multivar-
iate statistical proeess control (MSPC). The eriginal
work in MSPC is 7° or x* conmtrel chart {6], which
was developed based on logical extension of Shewhart
control chart. Initially, it was applied for monitoring
multivariate process of bombsight data during World
‘War II. However, it was found only effective for detect-
ing large deviations in process mean shifts. To improve
performance for detecting small deviations in process
mean shifts, multivariate cumulative sum (MCUSUM)
[7, 8] and multivariate exponentially weighted moving
average (MEWMA) [9, 10] control charts were then
developed based on logical extension of CUSUM and
EWMA control charts, respectively.

The rapid growth in manufacturing technology such as
processing methods, precision machines, automatic data
acquisition system, and online computerized process moni-
toring system have led to increase interest m MSPC. The
main issue of the most MSPC charting schemes is that they
are capable to detect an out-of-control signal (statistically
unstable state) in multivariate processes, but they do not
directly provide diagnosis information to determine the
source variable(s) that is responsible for the out-of-control
sipnal. In practice, this diagnosis information would be
greatly useful for a practitioner to find the root cause
of error and solution for corrective action. Since the 7°
conirol chart [6], major research attentions have been
given for interpreting out-of-control signals in relation
to MSPC charting. Shewhart control charts with
Bonferroni-type control limits [11], PCA [12], multivar-
iate profile charts [13], 7° decomposition [14, 157, and
Minimax control chart [16], among others, have been
developed for that purpose. Further discussions on this
issue can be found in [17-20].
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Unstable processes may produce distinet fime series of
SPC chart patterns. Identification of these patterns coupled
with engineering knowledge of the process would lead to
more specific diagnosis and troubleshooting. Developmeni
in soft computing technology have motivated researchers to
explore the use of expert systems, fuzzy inference systern,
and artificial neural networks (ANN), among others, for
automatically and intelligently recognizing patterns in rela-
tion to SPC/MSPC charting. Broadly, these artificial intelli-
gence technigues especially ANN have been implemented
in various pattern recognition areas such as image process-
ing [21-23], medical diagnosis [24-27], structural control
[28-30], handwritten and printed characters [31, 32], and
hydraulies and pneumatics [33-35], among others. Discus-
sion for this study is focused on ANN, which is also known
as a massively parallel-distributed processor, connection-
ism, machine leaming algorithm, or natural intelligent sys-
tems. It is inspired by the structure of the human brain and
has the ability to lean highly complex and nonlinear map-
ping, recall, and generalize knowledge [36]. It is a common
neurocomputing technique, recogmzed as important and
emerging methodologies in the area of classification. The
advantage with ANN is that it is capable of handling noisy
measurements reqniring no assunption about the statistical
distribution of the monitored data. Tt learns to recognize
patterns directly throngh typical example patterns duting a
training phase. Since early 1990, this modern technique has
opened extensive research in the field of control chart pat-
tern recognition (CCPR). The earliest reported works have
focused on feasibility study {37-40]. Since then, much
progress has been made, whereby the performance of
ANN-based CCPR schemes have been enhanced through
feature-based and wavelet-denoise input representation
techniques, modular and integrated recognizer designs, and
multivariate process monitoring and diagnosis. Further
discussions on issues in the development of ANN-based
CCPR schemes can be found in [41, 42], which are useful
for researchers towards facifitating further improvement in
this area,

In monitoring and diagnosis of multivariate process
mean/variance shifts, researchers have proposed warious
ANN-based pattern recogniiion schemes such as ANN-
MSPC [43-46], novelty detector [47), modular-ANN .
[48], ensembile-ANN [49], and multi-module-structure-
ANN [50]. The ANN-MSPC schemes combined the
MSPC charts {ic, for monitoring any mean/variance
shifts in multivariate processes) with ANN recognizer
{i.e., for diagnosis of the source variable(s) that is
responsible for mean/variance shifts). The other schemes
sitch as novelty detector, modular-ANN, ensemble-ANN,
and multi-module-structure-ANN were designed to per-
form continuous monitoring and diagnosis simultamecus-
ly. In this study, these schemes are refared as biwariate
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pattern recognition (BPR) since their investigations are
mainly focused on two vanables.

Based on the above literatures, the existing ANN-based
BPR schemes revealed disadvantages in terms of reference
bivariate patterns and excess false alarms:

1. Lack of reference bivariate patterns

In pattern recognition of bivariate process mean
shifts, the joint effect in mean shift and cross cor-
relation between two correlated variables shonld be
taken into account. One approach is using several
Shewhart conirol charis. Unique structures of She-
whart control chart patierns may provide useful
meaning zbout univariate process mean shifts but
they are upable to indicate cross comelation between
the twe dependent variables, which ofien lead to
larger false alarm rate {FAR) than assumed. The
other approach is using 7%/x” control chart. 7 sta-
tistics patterns may consider the joint effects but
they are unable to diagnose the source variable(s)
of the process mean shifis. There are limited works
reported on modeling of bivariate corrclated pro-
cesses [47, 48] and patterns [45] that can clearly
identify the joint effect.

2. Excess false alarms

The existing MSPC/BPR schemes mainly
reported average run length, ARL,=200 in monitor-
ing bivariate stable processes. This monitoring lev-
el, however, produce rather an excess false alarm
rate (FAR=0.5 %) compared to the univariate SPC
charts such as Shewhart (ARLy=370, FAR=
0.27 %), CUSUM (ARL;=400, FAR=0.25 %), and
EWMA (ARL;=500, FAR=0.2 %). Kt is less economs-
ical for a practitioner to frequently conduct troubleshoot-
ing due to wrong identification of stable process as
unstable. When considering this economical aspect, thus,
it is important and vseful to develop 2 BPR scheme that
could maintain a minimum FAR.

slow development in this area. To overcome this issue,
this study aims to investigatc a betier pattern recogni-
tion approach for bivariate correlated processes using
feature-based input representation for ANN recognizer.
Effective features could reduce noise in raw data, im-
prove recognizer training, and strengthen discrimination
capability between normal and shift patterns. Detailed
discussion is organized as follows. Section 2 describes
several industrial examples of bivariate process varia-
tion, while Section 3 presents the pattems and data
generation of the bivariate correlated process mean
shifts. Section 4 discusses the feature-based ANN

scheme, which included raw data and statistical features
input representation approaches, features selection, and rec-
ognizer design, training, and testing. Section 5 provides the
performance comparison between the feature-based ANN
against the raw data-based ANN. Section 6 finally outlines
some conclusions.

2 Industrial examples of bivariate process variation

The strong need for MQC can be shown by the applications
of MSPC charting schemes in various manufacturing indus-
tries such as in semiconductor manufacturing [S1], plastic
polymer manufacturing [52], drug manofacturing {53],
and chemical industres {54, 55], among others. In this
study, investigation is focused on manufacturing of
moving/rotating components in an audio—video device,
namely, roller head. This case study was conducted in a
local industry. A set of roller heads function for guiding
and controlling the movement path of film tapes. The
“groove and flange” and the “inner diameters” as shown
in Fig. | are two geomaetrical features of a roller head
that need for MQC.

Figure 2 shows the sequence of manufacturing pro-
cess of a roller head. An aluminum extrosion round bar
is initially machined with rough cut tuming to rough
size. It is followed by finish cut turning to size {o
obtain the geometrical features of groove and flange
and inner diameters. The inner diamsters are extended
to honing process to achieve tight specification accord-
ing to the bearing sizes. Then, the workpiece is coated
using nickel-base alloy electroplating process to obtain
hard surface and ready for bearing assembly.

2.1 Process vanation in machining groove and flange

The groove and flange is machined to size for eliminat-
ing the film tapes from scratches during movement.
Greove length (L) and flange thickness (T) are two
dependent process variables being monitored using

These disadvantages may cause limited scopes and  MSPC scheme Changes in these variables can be

___ -Flarge Internal diameter;
T - o7 Groove
AT
AAAAA AL,
&
=]
I
Grooye & flange view Roller head

Fig. 1 Groove and flange and inner diameters of a rolle; head
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Fig. 2 Sequence of

manufachiring process of a
roller head L . I

Extrusion round bar

)

Turning to rough size Tuming to size

| Bearing

—

Honing inner diameters

illustrated in Fig. 3 and Table 1. The workpiece is
antomatically loaded to a pneumatic chuck. Tn case of
tool blunt, L will gradually decrease to L1, while T will
gradually increase to T1. This change yields negative
correlation between L and 7. In case of loading error, T
will suddenly decrease to T2, while L is remains stable.

2.2 Process variation in machining inner diameters

inner diameters are machined in two sequential process-
s, iLe., turning to size and honing. Inner diamefer 1
(ID1) and ionner diameter 2 (ID2} are two dependent
process variables being monitored using MSPC scheme.
Process variation in turning to size process can be
illustrated in Fig. 4 and Table 2. The workpiece is
autormatically loaded to a pneumatic chuck. In case of
tool blunt, both inner diameters will gradually decrease
and indicate positive correlation. In case of loading
error, both inner diameters will suddenly increase and
also indicate positive correlation.

Fig. 3 Process variation in Turning tool

machining groove and flange e T T
i
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1

.
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e

e ’/
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Stable process

f Springer

—

Nickel electroplating Bearings assembly

Then, process variation in honing process (human-oper-
ated) can be illustrated in Fig. 5 and Table 3. Changes in
material or human operator can cause sudden changes in
both inner diameters. Hard materials generally require a
longer time, while soft materials require shorter time for
honing inner diameters. In a fixed processing time, changes
in hard materials will result in smaller inner diameters, and
vice YErsa.

3 Modeling of bivariate patterns

A large amount of bivariate samples is required fo perform a
thorough study, i.e., for training and testing the recognizers.
Ideally, such samples should be tapped from a real process
environment. Since they are not economically available,
there is a meed for modeling of bivariate patiems and syn-
thetically generating analysis data.

Bivariate process is the simplest case in MQC when
only two variables are being monitored dependently. Let
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Table 1 Process variation in machining groove and flange

Stable process Tool blunt Loading error
X, ; —
L i ey
Normal
Xz —
D f,f{k‘é“;'\)\eﬁ;;;#\l«}{{f;:
Downshift
= 1 s6 5017 . 50
a1 - - - =
5 7 2 . 'g 25 "-'..'. ;j 25
By z iy L] .- E
a % EX o .:f 5_ it} . D% -1 .
. - T 2 L. wl
B g% _ g 3 x
g 540 ] 50 =04 -
UL.; 50 26 ©F 256 50 50 25 0p 25 50 30 23 08 25 &0
X1 { Mormal ) 1 { Duwnirend ) X1 ( Nermal )

Xy =(Ki—15eeer X124} and Xp=(Xz-,..., Xo24) TOpresent
24 observation samples for a bivariate process. Observation
window for both variables start with samples ith=(1,...,24). It
is followed with {ith +1), (ith+2), ..., and so on.

In a stafistically stable state, samples for both varia-
bles are idenfically and independently distributed (iid}
with zero mean (po=0), unity standard deviation (o¢=
1), and zero cross correlation (p=0). Cross correlation
shows a measure of degree of linear relationship be-
tween the twe variables. They wield random patterns
when plotted separately on iwo Shewhart control charts
and yield a circle pattern when plotted on a scatter
diagram. Scatter diagram vields ellipse patterns when
p>0 as shown in Fig. 6.

Disturbance from assignable causes may suddenly or
gradually deteriorate data streams X,; and/or X5, into a
statistically unstable state. The structure of an unstable pat-
tern is initially vague, namely, “partially developed pattern”.
The pattern structure becomes more obvious as it proceeds
into “fully developed pattern”. This can be illustrated in
Fig. 7.

Generally, the occurrence of assignable causes over Xy,
and/or X>; can be identified by Shewhart conirol chart pat-
terns such as sudden shifts, trends, cyclic, systematic, and
mixture. Investigation for this siudy was concemed on sud-
den shift patterns with positive cross correlation (p=>0). This
nvolves seven conditions/categories of bivariate correlated
patterns:

Fig. 4 Process vanation in
machining tuming immer
diameters

Tool  Roller head
///—-H—' “t
/ ™,

Condition 1 Nomnal {0, 0): both Xj; and X;; are stable

Condition 2 Upshift (1, 0): Xy, in upward shift, while X5;
is stable

Condition 3 Upshift (0, 1): X5, in upward shift, while X;;
is stable

Condition 4 Upshift (1, 1): both X, and X;; are in
upward shifts

Congdition 5 Downshift (1, 0): X, in downward shift,
while X5; is stable

Condition 6 Downshift {0, 1% X5; in downward shift,
while X7, is stable

Condition 7 Downshift (1, 1): both X;; and X;; are in
downward shifts

-

i i 1

D
=

o

Tool blunt

Loading erxor
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Table 2 Process variation in machining tuming inner diameters

Stable process Tool blunt Loading error
X, AT,
{ID1) T s T
Downtrend “Upshift
Xz et At ! AR
(ID2) i e ey i ey ! ________________
~ Normal Downtrend I Upshift
g - EX| = 50 N 50 .
Eh E ¥ - E 25 z = Fa
g 5 1o e £ mo E o -
A = S : r )
E R :: :?g 50 J‘Jr = j.:
S A0 25 00 25 A0 S0 25 40 25 50 50 25 00 235 50
w X1 ( Mormsl ) X1 ( Dovntrand ) X1 CUptR)Y
3.1 Data generator for bivariate process mean shifts whereas p is the comelation coefficient between
the two process variables.
Synthetic data were simulated based on the following steps
[47, 48, 561: Yo =y + [nm +m /1 _pZ)] o (4)
Step 1: Generate random normal variates for process var-  Step 4: Compute the means and standard deviations for ¥;
iable 1 {i;) and process variable 2 (n;), which are and Y, from the generated random data series.
i.i.d within [-3, +31. These values represent the statistically stable pro-
m=b-r (1) cess means and standard deviations for process
variable 1 (g1, op;) and process variable 2 (uoz,
Ong), TEsSpectively.
ry= by @) 02), FESPE ¥
where r; and r, are random normal variates and »  Step 3:  Transform random data series into normal or sud-
is the baseline noise level. In this study, b=1/3 was den shift patierns to mimic real observation pro-
used. cess samples (X7, X5). The magnitude of mean
shift (#) is expressed in standard deviation of
Step 2: enerate random data series for process variable 1 stable process (gg1, g2):
(¥1) with mean (1;) and standard deviation (o). Xy = k(oo /o) + T (5)
Y1=,u1+n1crl (3)
X =hlopfom)+ T (6)
Step 3:  Generate random data series ﬂ?r process variable 2 A pair observation sample (X, X;) represents a
(¥2) dependent to process variable i (). pz and bivariate vector measured at time ¢ {X;) that fol-
o2 are the mean and standard deviation for 1>, lows the random nommal bivadate distribution &
(a0, Xop). pup and X = [{o4%12) (o120,%)] are the
Honing area Roller head (fixed) mean vector and the covariance matrix for bivari-
Guide area ate stable process with variances (0%, 2°) and
covariance {o1,=021). :
|
: 7
% Tool romtion e 6 Rescalt‘a patiern data series into a standardize range,
= approximaiely within [-3, +3].
Zy = (Xy — iy )/ o0 (7)
7y = (X2 — pgn) /o2 (8)

Fig. 5 Schematic dingram of honing ool
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Table 3 Process variation in honing inner diameters

Stable process Change to soft material | Change to hard material
X —
AR e L e
1) it R
Normal Downshift
X5 S PRI, e
stadaale sy = N I S
(IDZ) TRERF S e 7 TR S,
Normal Downshift
g 58 50 . @
B 3 Z = 5 =
o E] = = i ) ] |
- 2 o0 oy 2 oo Z oo
A z - = o ¥
5 g=1 77 g 5 A
LL; 50 T 50 = oznl X
] 50 25 DB 25 &4 a1 =n 25 v 25 54
v X1 { Normal } K1 { Upshift ) Xi { Downshift )

A pair standardized ssmple (Z;, Z;) represents a stan-
dardized bivariate vector measured at time ¢ {Z,} that follows
the standardized normal bivariate distribution N (0, B). Zero
and R=[(1 p} (p 1)] are the mean vector and a general
correlation matrix for bivariate stable process with unity
variances {0 = 0” = 1) and covariance equal fo cross
correlation (42 = g23=p).

3.2 Reference patterns for bivariate process mean shifts

As described in an introduction, the joint effect in mean shift
and cross correlation between two dependent variables
should be considered in pattern recognition of bivariaie
process mean shifis. Scatter diagram can be used to indicate
the distribution of samples in the bivardate processes [45].
The structures of bivariate patterns can be differentiated and
recognized effectively in-line with the concurrent changes in
mean shifis in the source variable(s) and cross comslation,
Patiem properties can be expressed numericaily either in the
form of standardized samples (raw data) or statistical fea-
tures. Bivariate stable process (normal (0, 0)) yields a

bivariate pattern with an approximately circufar shape and
Zero center posiiton as shown in Fig. 8.

‘Table 4 snmmarizes some Teference bivariate pat-
terns based on process mean shifts +3 standard devia-
tions. Structures of bivariate patterns are unmigue for
specific changes in mean shift and cress cosrelation.
The degree of mean shifts can be identified when the
center position was shifted away from zero point,
whereas the degree of cross correlation can be identi-
fied from the ellipse shapes. Thus, recognition of these
patterns could lead to a better process monitoring and
diagnosis.

4 Pattern recognition nsing feature-based ANN

Feature-based ANN pattern recognition scheme was inves-
tigated for monitoring and diagnosis of mean shifts in bi-
varjate processes. The scheme comprises two main phases,
i.e., (1) process paiterns and input represeniation and (2)
process monitoring and diagnosis as shown in Fig. 9. In

Correlation = (0.0

Correlation = 0.4

Correlation = 0.8

a4 34 A
LA ] J
21 LY 24 3
1 o "...{ '. .. ) 2“
3% " By
o~ e .¢ -, ..% ., o o
0
> 4] .o N0k . > > o
» Twe_g
e dir 14 414
] op *
» - -
3 - L4 24 21
. al .
4] al .
2 -1 0 1 2 4 4 2 4 o 1 2 3 4 -3 2 4 0 1 2 3

Fig. 6 Changes in cross cormelation
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Source variable(s)
parteras
Fully R
developed ———
Partially ; AR,
developed L’Lﬁﬁf{\
I
Rapdom/ |, 5 A sdowy,
Nogmal | |7 Ay
________ — = Process
Stable Deteriorate Fully unstable ~ changes
process process process

Fig. 7 Process changes in upward shift pattern

phase I, standardized samples (taw data)} of two dependent
variables were plotted on a scaiter diagram 1o yield bivariate
patterns. Statistical features were then extracted from the
standardized samples as input representation for an ANN
recognizer. In phase II, the trained ANN recognizer was used
for monitoring and diagnosis of bivariate process mean shifts.
Maonitoring refers to the identification of process status either
in a statistically stable or unstable state. Diagnosis refers to the
identification of the source variable(s} that responsible for a

statistically unstable state. In process monitoring, the recog-
nizer should detect the bivariate unstable process as quickly as
possible with shorier ARL; (minimum type 11 error). Mean-
while, it should leave the bivariate stable process running as
long as possible with longer ARY, (minimum false alarms/
type I error). In process diagnosis, the recognizer should have
the capability to accurately identify the source variable(s)
patterns with higher recognition accuracy percentage.

4.1 Input representation

Input representation provides a strong influence on the
performance of ANN recognizer. There arc various
approaches that could be used to Tepresent input data. Raw
data-based (standardized samples) is the basic approach
[47]. Besides raw data-based approach, feature-based ap-
proach that involves extracting useful features from raw
data is one of the successful methods for classification in
the area of image processing [57, 58] This approach has
also been applied in univariate CCPR, which aims to reduce
network size, computational efforts, and training time
towards improving the recognition accuracy of ANN recog-
nizers [39-63]. Pham and Wani {59] firstly investigated nine

Fig, 8 Pattern for bivariate 3 a
stable process
2
+ +
1 o !
. E] +
S0 bt
r +
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o] * ‘
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Table 4 Summary of reference bivariate patterns

Cross correlation (p) - Low Cross comelation (p) - High
504 54
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E a4 50
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'5:: 50 s 50 £ Y
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"5 50 504 &N 50
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IJD a;({i;)u;nnsh?ﬂf) = X1 (Downshits) X1 (Downshif) X1 { Dowashift }
shape features. Later, Gauri and Chakraborty [60, 61] pro-  mean, standard deviation, skewness, mean square value,

autocorrelation, and last value of CUSUM. Moie recently,
Guh 63] proposed another set of statistical featnres

posed improved shape features. In the related study, Hassan
et al. [62] proposed six statistical features comprising of
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Fig. 9 Conceptual diagram of
feature-based ANN scheme

{Stage])
Process data stream & Input representation

{Stage II}
Process monitoring & diagnosis

comprising of mean, standard deviation, skewness, kurtosis,
slope, and Pearson correlation cogfficient,

Several researchers have also applied features with raw
data simultaneously such as T° statistics with raw data [48]
and statistical features with raw data [46, 497 for strength-
ening pattern properties in BPR. This approach, however,
has increased the network size, computational effort, and
training time and could be difficult to implement for more
complex classification tagks,

The other approach is using multi-resolufion wavelet
analysis (MRWA) for denoising or filtering raw data
through several decomposition levels without changing the
network size and fraining time [64—67]. This approach has
been used in univariate CCPR [64, 65] and concorrent
patiern recognition {66], and very appealing in other appli-
cation areas such as for detecting discontinuity and/or abrupt
change in signal processing and image processing [67].
The MRWA denoising has played a crucial role for
process conirol or monitoring. Insufficient denoising
will distort waveforms and introduce errors. Inversely,
excessive denoising will over-smooth the sharp features
of underlying signals by recognizing them as noise or
outliers {67].

This study uvtilizes an improved set of statistical features
input representation. This improved feature-based approach
was then compared to the raw data input representation.

4.1.1 Raw data input representation

Raw data input representation contained 24 consecutive
standardized samples for variable I and variable 2. There-
fore, each pattern was represented by 48 inpuf dafa (ie.,
Zi_p1s Z1_ps oaes Z24_p1, Z24 pp ), Where P1 and P2 denote
variable | and variable 2, respectively.

4.1.2 Statistical features input representation
Statistical features input representation, which were
extracted from the raw data comprising of last value of

exponentially weighted moving average (LEWMA,} with
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A=[0.25, 0.20, 0.15, 0.10], mean {y), multiplication of mean
with standard deviation (MSD)}, and multiplication of mean
with mean square value (MMSV). Each bivariate pattemn
was represented by 14 input data (i.e., LEWMAg 35 3,
LEWMAg20 1, LEWMAg 5 1, LEWMAg 14 1, ny, MSDy,
MMSV,, LEWMAy 25 3, LEWMAy 5 2, LEWMA 5 2,
LEWMAﬁ‘lg_g, 17, MSD;, and WSVQ}.

{a) Features extraction for LEWMA _
The EWMA statistics as can be computed using Eq. (9)
incorporates historical data in a form of weighted average
of all past and cumrent observation samples [5, 68]:

EWMA; =4 X; + (1 1) EWMA,_, (9)

X; represents the original samples. In this study, the
standardized samples (Z;) were used instead of X, so that
Eq. {9) becomes:

EWMA; =17+ (1 — 1) EWMA,_, (10}
where (<A=<1 is a constant parameter and i=[1, 2,..., 24]
are the number of samples. The starting value of
EWMA (EWMA,) was set as zero io represent the
process target (o). The last value of EWMA
(LEWMA) with A=[0.25_ 0.20, 0.15, and 0.10]
was selected empirically for strengthening pattern
properties towards improving discrimination capa-
bility between normal and shift patterns.

Caonstant parameter {)) generally influences the per-
formance of EWMA scheme in monitoring process mean
shifts. Several values of A between [0.05 and 0.40] and
width of control Timit (£) between [2.615 and 3.054]
have been recommended in [5] to have smaller false
alarms compared to the Shewhart control chart. ¥relim-
inary experiments revealed that the EWMA with small X
(0.05) were more sensitive in identifymg small shifis
{=0.75 standard deviations) compared to the large shifis
{==1.25 standard deviations). Inversely, the EWM A with
large A (0.40) were mote sensitive in identifying large
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Table 5 Sumunary of candidate

shifts {>2.00 standard deviations) compared to small
shifis {<1.25 standard deviations).

Features extraction for MSD and MMSY

The MSD and MMSV features were used to magnify
the magnitude of mean shift {1, u,) for improving dis-
crimination capability between normal and shift patterns.

MSD; = p; X SD; (11)
MSD; = g1, x 8D, (123
MMSV; = p, x MSV, (13
MMSV; = p1, x MSV, (14)

where (17, tt2), {SDy, SDy), and (MSVy, MSV,) are the
means, standard deviations, and mean sguare values
for process variable 1 and process variable 2, respec-
tively. The computation of mean square value can be
found in [62].

The ANN training will be more efficient when input
data fall within a certain range [69). As such in this study,
the input data were normalized to a compact range
between [1 and 1] as has been implemented in [60-62}:

Zne = [2 % (2 — Zoin) [ (e — Zmin}] — 1 (15)

where, Zr, normalized value from raw data or features,
Z, raw data or features,
Z,ax aximum value of raw data or features,
Z i Minimum value of raw data or features.

()

The maximum and the miniraum valves for normali-
zation were taken from the overall training paiterns.
Normalization is often useful particularly when the val-
ues of input data differ significantly {70].

Features selection
The choice of components of statistical features is very

important. The presence of too many input features can
burden the iraining process and lead to inefficient recog-
nition [62]. Initially, 12 candidate features were consid-
ered based on summary siafisties {ie., univariate and
multivarate statistics) as summarized in Table 5, whereby
some of them have been used by other researchers. Nine
candidate features were then omitted, while six candidate
features were short listed for further experiments:

» T avoid confusion in pattern classification. Stan-
dard deviation, mean square value, autocorrelation,
and muliivariate statistics (i.e., 72, MCUSUM,
MEWMA, Fuclidean distance, and cross correla-
tion) were omitted because these features gave the
same vector {positive value) for both upward and
downward shift patterns and increase confusion in
pattern classification.

+ Ti improve ARL, results and to reduce input data.
Preliminary experiments revealed that besides having
comparable ARL, results in detecting process mean
shifts, the EWMA scheme shows better ARLg result
compared to the two-sided CUSUM scheme in identi-
fying stable process. Each sample in the EWMA
scheme also requires only one data compared to the
two-sided CUSUM scheme that requires two data
{positive and negative CUSUMS). Thus, last EWMA
was selected, while last CUSUM was oritted.

features towards achieving opti- Candidate features Omitted features Short listed features Optimal feamres
mal features set

Tinjvarigte statistics: = Last CIISUM + Last EWMA » Last EWMA

» Last CUSUM + Standard deviation * Mean « Mean

+ Last EWMA + Mean square value * Mean x standard deviation « Mean x standard

+ Standard deviation - Ehtecorelation » Mean * mean square value deviatior

= Mean sguare valye » MCUSIIM « Mean > astocorelation « Mean x rnean

» Autocormrelation » MEWMA « Slope square vale

* Slope

Multivariate statistics:
« MCTISUM

* MEWMA

= Cross conelation

» Buclidean distance

» Buclidean distance
» Cross cerelation

4 Springer
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* I enhance the effect of mean and basic sfatistics.
Mean, standard deviation, mean square value, and
autocorrelation are several basic parameters in sum-
mary statistics. To strengthen patiern properties, the
effects of mean could be enhanced by multiplying
the mean with standard deviation, mean square val-
ue, and autocorrelation.

= To investigate usefil features as used by other
researchers. Mean and slope features have been
applied in wnivarate CCPR [62, 63]. Since these
features produce different vectors for upward and
downward shift patterns, it should be nseful to in-
vestigate their effect when apply into BPR.

Ulsing the short listed features above, 13 candidate ANN
architectures were trained using various combinations of
statistical features as marked by “a’ in Table 6. The desired
training performance was set as the following:

1. Primary performance. To reduce false alarms
(longer ARL,) in identifying bivariate stable
process, the trained ANN recognizer should
achicve an excellent reeopgnition accmracy per-
centage, i.c., above 99 % in classifying normal
patterns.

2. Secondary performance. To improve sensitivity in
detecting mean shifts {smaller ARL,) and accurate
diagnosis of the source variables (higher recognition
accuracy percentage {(RA)), the trained ANN recog-
nizer should achieve a high recognition accuracy
percentage, ie, gbove 95 % in classifying shift
patterns.

Table ¢ Thirtcen candidates ANN architechizes

The selected ANN architecture was 14x22x7 with very
good recognition accuracy percentage for nommal patterns
{99.53 %} and shift patterns (95.72 %). This feature-based
ANN recognizer yields a smaller network size, less compu-
tational efforts, and shorter imaining time compared fo the
raw data-based ANN recognizer. Further comparisen on the
network architectures is discussed in Section 4.2,

4.2 Design of ANN recognizer

Varicus ANN-based models such as multilayer perceptrons
(MLP), learning vector quantization {(LVQ), radial basis finc-
tion {RBF), adaptive resonance theory (ART), and Kohonen
seif-organizing mapping {SOM) have been applied in pattern
recognition, MLP and LVQ are from supervised training,
whereas ART and Kohonen SOM are from unsupervised
training. Selection of the model depends on the problem.
MLP model trained with back-propagation algorithm was
selected for this study since it has been effectively imple-
mented in univariate CCPR [62, 63, 71-76]. This model
basically consisted of an input layer, one or more hidden
layer(s), and an output layer. The number of layers and
neurons in each layer could inflnence ANN petformance.
Thus, it should be properly selected during the design stage.
As a general guideline, the neural network size should be as
small as possible to allow for efficient computation {72].
Figure 10 compares the network architectures between
feature-based ANN and raw data-based ANN as described
in Section 4.1.2 based on three-layer MLP model. The size
of input representation determined the number of imput
neurons. Raw data input representation requires 48 neurons,

Mo. Candidate ANN  Sheort listed features % Recognition accuracy ~ MSEx 107 Epoch  Time (s)
TEWMA Mean MSD MMSV MAT SBlope Nor Shift
1 Ex8x7 a 96.39 96.13 7.56 232 55
2 16=x16=7 a a 96.81 97.13 5.23 213 &7
3 10x16x7 a a 97.37 9683 £.01 176 55
4 10=16x7 2 a 98,39 95.85 10.6 205 64
5 10x16x7 a 98.15 9494 11.6 225 70
6 14x22 %7 2 a a 99.14 94.53 10.8 238 ol
7 14=22x7 a a a a 99.53 95.72 9.36 249 100
% 10%16x7 a a 9551 96.75 651 255 81
9 16x10x7 a a a a 99.46 95.16 16.9 193 A9
10 12x16x7 a a 96.85 97.76 5,846 197 61
11 16%10x7 a a a 98.79 96.35 0.1 263 64
12 18x24 %7 a a a a 99.05 96.64 102 237 =r
13 16x10x7 a a a 97.00 97.31 8.67 312 78
48=26x7 Raw data 98.70 098.48 3.41 293 136
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Fig. 10 Network architectures Input Hidden Output Tnput Hidden Ourtput
of three-layer MLP models. a Layer Layer Layer Layer Layer Layer
Raw data-based ANN; b (48 newrons) (26 newrons} (7 neprons) (14 neurons) (22 pewronsy (7 neurops)

feature-based ANN

() Raw data-based ANN

while statistical features input representation requires only
14 neurons. The output layer contains seven neurons, which
was determined according to the number of pattern cafego-
ries. One hidden layer with 26 neurons and 22 neurons were
determined empirically for raw data-based ANN and
feature-based ANN, respectively. The experiments showed
that nitially, the training results improved in-line with the
increment in the number of neurons. Once the neurons
exceeded the required numbers, further increment of the
neurons did not improve the training results but revealed
poorer results. These excess neurons could burden the net-
work computationally, reduces the network gencralization
capability, and increases the total training time.

4.3 Training and testing of ANN recognizer
Partially developed patterns were applied for training the

ANN recognizers as described in Section 4.1.2. Detail
parameters of the training patterns are suramarized in

Table 7 Parameters for the training patterns

(b) Feature-based ANN

Table 7. Tt should be noted that total training pattern for
bivariate process mean shifts=[100x(iotal combination of
shiff)yx{total combination of cross correlation)], whereas
iotal training pattern for bivariate normal proeess=[1,500x
(total combination of cross correlation)]. On the other hand,
dynamic patterns were used for testing, which is suited for
online process monitoring as addressed in [48, 74, 75].
The above design was implemented in MATLAB 20092,
MLP model was trained using “gradient decent with mo-
mentum and adaptive leamning rate” (traingdx). The other
training parameters setting were leaming rate (0.05), leam-
ing rate increment {1.05), maximum number of epochs
{1,500), and error goal (0.001), whereas the network perfor-
mance was based on mean square error (MSE). Hyperbolic
tangent function was used for hidden layer, while sigmoid
function was used for an oulput layer. The trainng session
was stopped either when the number of training ¢pochs was
met or the required MSE has been reached. Table 8 summa-
rizes the target outputs, whereby the maximum values {0.9)

Pattern Mean shift Starting point of sudden shift  Cross comelation Number of training pattern

category {in std dev} (5P {p)

N (@, 0) X1:0.00 N/A 0.1,03,05,07,09  1,500x5=7.500
A2: 0.00

US(1,% Xi:1.00,125, .., 3060 For shift range + {1.00, 1.50], 100> 9% 5=4 500
X2 0.60,000, ., 0.00 5P = gample Sth

Uus,1) X2:0.00,0.00 0.0 . 100x9%x5=4500

’ ’ T For shift range + [1.75, 2.25], ’

X1: 1.00, 125, ..., 3.00 SP = sample 13

Us (i, 1) Xi:100, 100 125 1.25,...,3.00 160x255=12, 5040
X2:1.00,1.25 .00, 125, .., 3.00 For shifi range & [2.50, 3.003,

8P = sample 17th

bs (1,0 X1:-1.00,-125,,..,-3.00 100x9%5=4300
X2:0.00, 0.00, ..., 0.00

DS(o, 1} X2:0.00,0.00,..., 000 100 9x5=4500
X1:—-1.00,-125, ..., -3.00

DS (1, 1) X1:—1.00,-1.00,-125, ~1.25, ..., —3.00 100%25%5=12,50€0
X2:—1.00, -1.25,-1.00, —1.25, .., —3.00
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Table 8 Target outputs for an ANN

Pattern O; 02 03 04 05 05 0_7
N (0, 0) 09 01 01 01 61 01 0l
TS {1, 0) 0.1 0.9 0.1 0.1 0.1 0.1 0.1
Us{0,1) 01 01 09 01 0l 01 0l
US (1, 1} 0.1 o1 01 0.9 0.1 0.1 0.1
DS(LO 01 61 o1 01 08 01 01
DS{0, 1 0.1 0.1 0.1 0.1 0.1 0.9 0.1
DS(1, 1) 0.1 0.1 0.1 0.1 0.1 0.1 0.9

in each row identify the corresponding neuron expected to
secure the highest output for patiems correctly classified.

The coded “difference™ (D) as in Eg. 16 was used to
differentiate between the cormectly classified and wrongly
classified patterns:

D = (target ontput newron) — 7 % (actual output neuron)  (16)

The constant value (7) was set according to the number of
pattern categories. For example, normal (8, 0) paftern that is
correctly classified was determingd from value [1-7(1)=
—6], while normal (0, 0} patfern that is wrongly classified
as upshift (1, 0) was determined from value [1-7(2)=—13].
Table 9 shows a matrix of coded difference for the comectly
classified and wrongly classified patterns.

5 Results and discussion

The monitoring and diagnosis performances of feature-
based ANN scheme against raw data-based ANN scheme
were evaluated based on ARL and RA. Three thousand
testing patterns for specific magnitudes of mean shift and
cross correlation were used. The ARL results were also
compared to the traditional MSPC charts such as x” [6],
MC1 [8], and MEWMA [9] as reported in the literature,

5.1 Monitoring performance

The ARL were simulated based on the comrectly ¢lassified
patierns. However, the ARL,; resulis eannot be compared

directly and precisely with the traditional MSPC charts due
1o the difference in terns of pattern categories. To overcome
this problem, the ARY; resulis for the specific magniiudes
of mean shift and cross correlation were estimated by aver-
aging the ARL; on six shift pattern categories as summa-
rized in Table 10. Type I error {(false alarm rate) and type Ii
error were then computed based on the ARL results [68].
The resulis support the conclusion that the mean shift with
larger magnitudes can be detected more quickly with shorter
ARI,; (smaller type II error).

In identifying bivariate stable process, the feature-based
ANN scheme gave a longer ARLg (smaller type I error)
compared to the raw data-based ANN scheme and the
traditional MSPC charts. This result is slightly better than
the Shewhart control chart (ARLg=370). On the other hand,
the feature-based ANN gave shorter ARL,; (smaller type 1T
error) for mean shifts >1.5 standard deviations, while the
raw data-based ANN gave shorter ART., for mean shifts
<1.0 standard deviations in detecting bivariate process mean
shifts, These results indicated that the feature-based ANN is
more sensitive for detecting moderate and large mean shifts,
while the raw data-based ANN is more sensitive for small
mean shifts. Detection capability as shown by the feature-
based ANN is comparable to the MC1 [8] and the MEWMA
[9] contrel charts, Overall, it is clear that the feature-based
ANN scheme exhibits a strong capability for enline moni-
toring mean shifts 1n bivartate processes.

5.2 Diagnosis performance

The RA measure how accurate an ANN scheme could
perform classification for the source variable(s) patterns
towards diagnosing who cause the problem. Besides the
overall RA resulis, the average RA for the specific magni-
tudes of mean shift and cross comrelation as summarized in
Table 11 could be nsed to compare diagnosis perforrmances
between the two AMN schemes. The results support the
conclusion that the source variable(s) patterns with larger
magnitudes of mean shifts can be more accurately classified.

Besides a good overall RA (93 %), both ANN schemes
provided excellent average RA results (>95 %) for mean

Table 9 Matrix of coded differ-

ence for correctly classified and ~ Tattern N@,9 Us(,0 US® L US{, 1} DS{,0 D51 DS
wrongly classified patterns
N{0,0) T (-6) ¥ (—13) F (—20) F{27) F{-34) ¥ (41} ¥ (~48)
UsS(l,0 F(-5) T (~12) F (-19) F (—26) F (-33) F (—40) F (47
Us{0, 1y F(4) F{-11} T (-18) F (25} E(-32) F (=39 F (—46)
Us(,1) F3 F (-10) F17) T (24 F(-31) F {-38) F (—45)
D3, F{2) ¥ F(-16) F {-23) T {(-30) F(53N F -4
DS@©, 1) F{D F(-8) F {-15) F(=22) F (—29) T (=36} F (—43)
T correctly classified, F wron, 2 1 - — " - = =
classiﬁed,y{) diﬂ'e;.:’nce va]usgly DS, 1)y F( F 7} F(-14) F (21 F (28) F (-35) T (—42)
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Table 16 Comparison of the ARLs results

Pattern  Mean shift (8D}  Feature-based ANN Raw data-based ANN +* MC1 MEWMA
calegory k=0.50 +=0.10
UCL=10.6  h=4.75 h=8.66
x x p=0.3/0.% p=0.3/0.8 =010 p=0.0 p=0.0
N0 000 000 3976HA Average 240.7/NA Average 200 (0.005) 203 (0.0049) 200 (0.005)
(0.0025/MA) {0.0042/MA) ‘
US(L,0) 075 000 19.1621.69  1640/1745 16571759  14.60/14.83
US(@,1) 000 075 16781796  (0.939/0.943) 14391472  (0.932/0.933)
UsS(, 1) 075 075 1246/11.67 13.16/12.61
DS(1.0) D75 000 19.32/721.04 14.21/14.78
DS(0, 1) HO0 075 1846/2094 15.98/16.46
PSS, 1) 075 075 1229/1141 13.30/12.83
US(LG 100 000 1176/ 1265  10.49/10.84 1084/11.14 100271006  42.00{0.976) 928{0.892) 1020 {0.902)
US(0, 1) 000 100 1080/ 1106  {0.905/0.908) 9.84/9.80 {0.500 / 0.901)
Us{1,1) 100 1.00  8.30/7.99 5.20/9.18
DS(1,0) —1.00 000 12.6513.22 .90/10.06
DS(6, 1) 0600 —-100 11.56/1244 10.76/10.84
DS(1, 1y —100 —100 784/765 9.56/9.32
US(,0) 150 000 6.55/6.61 5.95/5.97 7.20/7.16 6.69/6.68 15.80 (0.937) 5.23 (0.809) 6.i2 (0.837)
Us(0,1) 000 150 6115611 (0.832 / (L.832) 6.49/6.47 (0.851 / 0.850)
US(L, 1} 150 150  4.86/4.79 6.37/6.24
DS{L,0) —450 000 717729 6.57/6.71
DS 1) DOD  —150  6.36/650 6.96/7.04
DS, 1) —-1.50 -150 465453 6.54/6.45
TUS(1,0) 200 000 449447 4.15/4,17 5.54/5.54 517/5.15 6.90 (0.855)  5.69 (0.729) 4.41 (0.773)
US(0.1) 000 200 430432 (0.759 /0.760)  5.03/5.04 {0,307 / 0.806)
US(1,1) 200 200 348347 499/4.91 '
DS(1,0 —200 000 501/503 4,95/4.95
DS(0,1) 000 -~2.00 438441 5.42/5.43
DS(1,1) 200 ~200 3.253.30 5.11/5.02
US(1,0) 250 000 338337 3.23/3.22 4.51/4.56 4.25/4.23 3.50 (0.714) 291 (0.656) 1.51 (0.715)
US{,1) 000 250 335333 (D690 /0.689) 4.12/4.14 (0.765 / 0.764)
US(1.1) 250 250 277273 4.16/4.12
DS(1,0) —250 000 3.87/3.30 4.07/4.04
DS(0, 1y 060 250 341343 439441
DS(1, 1) —250 250 2.61/2.63 4.23/4.13
US(1,0) 300 000 280279 2.67/2.66 3.90/3.90 3.65/3:62 220 (0.545) 240 (1.583) 292 {0.658)
US(0, 13 000 300 274273 (0.625 / D.624) 3.57/3.57 {0.726 / 0.724)
US{1,1) 300 300 231228 3.62/3.54
DS (1,00 300 D00 3.15/3.15 3.371.41
DS, 1) 000 -~3.00 2.83/2.82 391375
. DSy 300 300 217220 3.64/3.53

Ttems in the parentheses are values of type I error (FAR) and type IT error

shifis >1.5 standard deviations. This revealed a strong capa-
bility for classifying the source variable(s) pattems particu-
larly in dealing with moderate and large mean shifts. The
average RA is still high (>90 %) when dealing with. small
shift, that is, 1.00 standard deviations. Overall, the feature-
based ANN scheme is able to identify the spurce variable(s)
patterns as accurate as the raw data-based ANN scheme
when dealing with low cross correlated processes. However,

the raw data-based ANN scheme performed slightly better
diagnosis in dealing with high cross corselated processes.
6 Conclusions

This paper proposes a feature-based input represemtation
applied into ANN for monitoring and diagnosis of mean
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Table 11 Comparison of the RA results

Pattern category Mean shift {o Feature-based ANN Raw data-based ANN
Xl Az p=0.3 p=0.8 Average p=0.3/0.8 p=0.3 p=0.8 Averape p=0.3/0.8

UsS{1,0) 0.75 0.00 87.6 B854 B11/855% 87.0 B7.0 8721915
S {0, 1) 0.00 0.75 852 802 878 874

Us(l1) 0.75 075 89.6 99.8 87.1 99.6

D5 (1,0} —0.75 0.00 82.6 724 894 89.1

DS (0, 1) 0.66 —0.75 83.7 756 37.2 263

DS (L, 1) .75 —0.75 94 99.7 244 993

Us (1, 0} 1.00 0.00 92.6 88.7 91.2/90.0 % 91.1 88.3 91.5/93.9
Us(, 1 0.00 1.00 89.7 37.8 90.9 90.5

Us{L1) 1.00 1.00 94.0 0%.0 2.6 99.9

DS (1,0 —1.80 0.006 854 513 94.4 24.0

DS, 0.00 -1.00 87.1 824 91.1 912

DS, 1) —-1.00 —1.00 08.2 100 88.9 994

UsS(i, 0 1.50 0.00 96,7 96.5 948 /950 % 95.8 957 94.7/97 .0
US (. 1) 0.00 1.50 96.6 95.9 954 954

US(1,1) 1.50 1.50 - 945 100 93.6 999

DS (1, 0) —1.50 000 90.9 88.1 95.9 959

D50, 1) 0.00 —1.50 92.1 89.3 955 950

DS(, 1) —1.50 ~1.50 98.1 100 920 09.8

Us{i,m 2.00 0.00 97.6 97.4 95.8/96.0 % 96.5 96.7 95.0/97.4
uUs{o, 13} 0.00 2.00 97.8 96.8 95.0 95.0

US (1L, 1) 2.00 200 95.4 999 93.8 90.9

DS(1, 0 —2.00 065 925 91.0 962 96.6

DS (0, 1) 0.00 —2.00 923 91.0 95.6 96.4

DS (1, 1) —-2.00 —2.00 990 100 927 998

US {1, 6) 2.50 0£.00- 98.0 977 96.3 /969 % 96.9 973 95.9/97.7
TS (0, 1) (.00 2.50 98.2 977 957 955

Us(, 1) 2.50 2.50 96.8 99.8 945 99.8

DS (1,0) —2.50 0.00 932 932 97.9 97.4

DS (0, 1) 0.00 —2.50 92.1 . 928 97.0 96.1

DS{L 1) —2.50 —2.50 99.2 100 93.1 998

Us(1,0) 3.00 0.00 97.9 97.9 9641972 % 977 97.4 96.0/67.7
Us (0, 1) 0.00 3.00 98.7 8.4 95.8 953

TS, 1) 3.00 3.00 96.5 598 95.1 90.2

DS (1,0 —3.00 0.00 93.3 933 98.3 976

DS (0, 1) 6.00 =3.00 92.4 93.6 96.3 96.1

DS (1,1} -3.00 —3.00 99.4 99.9 925 99.5

shifts in bivariate processes. The univardate SPC/CCPR
techniques are no longer sufficient to monitor dependent/
correlated processes in today’s manufacturing industries
such as in mamufacturing of andio-video device compo-
nents, among other products. While there have been signif-
icant advances in univariate CCPR, very limited works have
been reported in BPR.

Lack of reference multivariate/bivariate patterns and excess
false alarms seems to have hindered advances in this area,
This paper provides some reference pattemns of bivariate pro-
cess mean shifts plotted on scatter diagrams. An improved set

@ Springer

of statistical features input representation was utilized into an
ANN fraining and testing for improving discrimination capa-
bility between bivariate normal and bivariate mean shift pat-
terns. The optimal set of statistical features was detexmined
throngh 2 proper features selection and analysis. This ap-
proach gave a smaller network size and strong memitoring
and diagnosis capabilities. The proposed scheme generally
reveals a better monitoring and a comparable diagnosis per-
formances compared to the raw data-based ANN. Neverthe-
less, the raw data-based ANN could be an alternative scheme
when the recognition accuracy is a main concern.
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For the future work, we plan to conduct a more extensive

mvestigation towards heightening the performance of the
feature-based ANN for identifying smaller mean shifts. In-
vestigation also will be extended for other causable patterns

gl

ch as frend and cyelic.
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