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Abstract: The problem of mixed convection stagnation-point flow of a viscous and incompressible
fluid towards a streiching vertical sheet with prescribed surface heat flux is considered. The governing
partial differential equations are first iransformed into a system of ordinary differential equations,
before being solved numerically by a finite~difference scheme known as Keller-box method. The
features of the flow and heat transfer characteristics for different values of the governing parameters
are analyzed and discussed. Both assisting and opposing flows are considered. The results indicate that
dual solutions exist for the opposing flow, whereas for the assisting flow, the solution is unique,
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INTRODUCTION

The flow in the confines of a stagnation point on a stretching sheet has attracted many investigations
during the past several decades because of its wide applications in industrial and practical applications as
mentioned in papers by Ishak ef ol (2006, 2007). Crane (1970) was the first who has studied the two-
dimensional steady flow of an incompressible viscous fluid cansed by a linearly stretching plate. This problem
has later been extensively studied in Newtonian and non-Newtonian fluids, steady and unsteady flows,
hydrodynamic and hydromagnetic fluids and in many other situations. For exarople, Chiam (1995}, Mahapatra
and Gupta (2001) and Ishak et al (2008a) studied the stretching sheet in the presence of a magnetic field,
considering some other physical features such as power-law velocity and buoyancy effect. The problems of
heat transfer from a stretching surface with wniform or varieble heat flux have been studied by Elbashbeshy
(1998), Liu (2005), Dutta and Roy (1985) and Lin and Chen (1998). The problem of stagnation flow towards
a heated vertical surface was studied by Ramachandran es al. (1988), who cosidered both an arbitrary wall
temperature and arbitrary surface heat flux variations. They found that a reversed flow developed in the
buoyancy opposing flow region, and dual solutions are found to exist for a certain range of the buoyancy
parameter. This problem was then extended by Ishak er o/ (2008b) by considering permeable flat plate, and
teported the existence of dual solutions for both assisting and opposing flows.

The aim of the present paper is to study the mixed convection stagnation-point flow towards a stretching
vertical sheet with prescribed surface heat flux. The case of prescribed surface temperature was studied by
Ishak er al. (2007). To the best of our knowledge, this problem has not been studied before.

Problem Formulation:

Consider a steady, two-dimensional flow of a viscons and incompressible fluid near the stagnation-point
on a vertical, continuously siretching sheet placed in the plane y = 0 of a Cartesian system of coordinates xy
with the x-axis along the sheet, while the y-axis is measured normal to the surface of the sheet and is positive
in the direction from the sheet to the fluid. It is assumed that the surface heat flux, the stretching velocity and
the external velocity impinging the stretching sheet vary in a power-law with the distance from the stagnation-
point, ie. g,(x) = ax”, w,(x) = bx" and u, (x) = cx" , respectively, where @, & and ¢ are constants and m and
n are the exponents. Under these assumptions along with the Boussinesq and boundary-layer approximations,
the equations which model the problem under consideration are
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. The continuity equation can be satisfied by introducing a stream function vy, such that 2 = 3(// / ay
and V=0 /0OX . The momentum and energy equations can be transformed into the corresponding

ordinary differential equations by the following transformation (see Ishak ef of. (2006, 2007)):

1/2 k T—T /2 )
n:(—"w] y =t o=t ) w)[—“*"j | s)
vx (quw) q. VX

where the functions /i) and 8(n) arc given by the ordinary differential equaiions

Fa m—“ff —mf? me? v A0 =0 ©
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where primes denote differentiation with respect to 1, £ =C /b is velocity ratio parameter, Pr=v /¢

is the Prandtl number, G, = g p’qwx4 l(klfz) is the local Grashof number and Ke_ =# x/v is the
local Reynolds number. It can be shown that l(= Gr,/ Reifz) is independent of x if n=(>5m—3)/2.

Thus, in the presence of bucyancy force, similarity is achieved under this limitation. For n=(5m-3)/2,

Eq. (7} becomes

1 m+1 Sm-3

—0"+ G — 'g=0 8
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The transformed boundary conditions are:

f®=0, f(0)=1, #(0)=-1,

F'(®) > £, O(o0) = 0. )

Further, & >0 and L < 0 correspond to assisting (aiding) and opposing flows, respectively. It is worth
mentioning that for & = 0, Egs. (6) and (8) are decoupled and this case corresponds to the forced convection

flow past a siretching sheet.
The physical quantities of interest are the skin friction coefficient and the tocal Nusselt number, which

are defined as

3 xq,

— w

C,=—2— Ny =——2 10
T pu?i2 “ KT,-T.) (a0

where the wall shear stress T, and wall heat flux ¢, are given by

i W)y W)y

with p being the dypamic viscosity. Using the non-dimensional variables (5), we obtain
! /2 1/2
ECJ, Rex = f(0), Nux /Rex =1/6(0) (12

We notice that when both external flow and buoyancy force are absent, the analytical solution of Eq. (6)
for m=1 was reported by Crane (1970) as

S =1-e7" 13)
and the solution for the thermal field is
M| Pr—n,Pr+1,~Pre™
o= M| )
Pr M (Pr—n,Pr,—Pr)

(14

where M (a, b, Z)} denotes the confluent hypergeometric function (sec Abramowitz and Stegun (1965)) with

w0 a Zk
Mabz)=1+3 %2
ébk k!

a, =a(g+1)a+2)--(a+k-1)

b =bb+D(d+2)--(b+k—-1)

Further, from Eqgs. (13) and (14), the skin friction coefficient f”(0) and the surface temperature 8(0)
can be shown to be given by

F®=-1
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_ 1 MPr—nPr+1,-Pr)

: (15)
Pr M(Pr-mn,Pr,—Pr)

6(0)

On the other hand, when A = 0 and £= 0, the solution of equation (6) subject to the boundary condition
(9) is given by

f(m)=n (16)
and integrating Eq. (8) subject to the boundary conditions (9) gives

i
Odn=———- 17
| rodn= o an

RESULTS AND DISCUSSION

The nonlinear ordinary differential equations (6) and (8) subjected to (9) were solved numerically for some
values of velocity ratio parameter £ velocity exponent parameter 7 and Prandt]l number Pr using a finite-
difference scheme known as the Keller-box method described in the book by Cebeci and Bradshaw (1988).
Comparison of the values of &0) with those obtained by Elbashbeshy (1998) and Lin (2005) for several values
of parameters is listed in Table 1. Tt is observed that the results show a very good agreement.

The numerical results for the skin friction coefficient f () and the local Nusselt number 1/8(0) for

various values of velocity ratio parameter £ when Pr and m are unity are presented in Figures 1 and 2,
respectively. It can be seen that at the upper branch of the curves, as the buoyancy parameter increases, both
the wall shear stress and the local heat transfer rate increase, due to the increased velocity caused by the
external flow and buoyancy forces. Apart from that (see Fig. 2), at the lower branch of ihe curves, the
buoyancy parameter decreases the velocity near the wall and causes the local heat transfer rate to decrease with

increasing value of the buoyancy parameter. We alse notice that f"(0)= -1 when both buoyancy force and

external flow are absent which is in agreement with the exact solution (15). Furthermore, dual solutions are
found to exist for the opposing flow (/ < 0), sec Figs. 1 and 2. The solution for a particular value of £ exisis
up to a critical value of 3, say 1. Based on our computations, we found that MBOLI08\f"Symbol™si2, = -
4.730, -9.108 and -5.200 for £= 1, 1.5 and 2, respectively, all for Pr =1 and = =1. It is worth mentioning
that the existence of dual solutions in the mixed convection problems in the case of wall heat flux was also
reported by I[shak er af. (2008c, 2009a,b).

The samples of velocity and temperature profiles for selected values of parameters are depicted in Figures
3 and 4, respectively. These figures show that the far field boundary conditions (9) are satisfied asymptotically,
hence support the validity of the numerical results, besides supporting the existence of the dual solutions shown
in Figs. 1 and 2.

Figure 5 presents the same trend of the skin friction coefficient f ((0) as in Fig, 1 for some values of
f

velocity exponent parsmeter 7 when &£ = 1.5, which indicates that the surface shear stress imcreases as the
buoyancy force increases.

Conclusions;

The problem of mixed convection flow towards a vertical plate with a prescribed surface heat flux
immersed in an incompressible micropofar fluid has been studied theoretically. The governing partial differential
equations were transformed into ordinary differential equations using similarity transformation, before being
solved numerically by a finite-difference scheme known as the Keller-box method. We discussed the effecis
of the material parameter, buoyancy parameter and the Prandt! number on the fluid flow and heat transfer
characteristics. We found that doal solutions exist for both assisting and opposing flows. The solutions for
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Fig. 1: Variation of the skin friction coefficient "(0) with A for some values of £ when Pr= 1 and m = 1.
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Fig. 2: Variation of the local Nusselt number 1/0) with A for some values of £ when Pr =1 and m = |

i

Fig. 3: Velocity profile (/)
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Fig. 6: Variation of the wall temperature g (0} with 4 for some values of m when Pr = 1 and £=1.5.
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Table 1: Values of the surface temperature g(0} for different values of & i, m and Pr.

£ A m Pr Numerical Series solution, Eq. (15) Elbashbeshy (1998) Liu (2005}
sofution
0 0 0.6 1 1.89
0.72 23703
1 1.2367 1236657472 1.2253
1 1 1 1
10 0.2688 0268768515 02688
67 0.3333 0.333303061 0.333303
1 1 1 0.924
2 0.8842
i i I 1 0.7833
0.6679

assisting flow (A>0) could be obtained for all values of the buoyancy parameter A, while for the opposing flow
(A<0), the solutions were obtained only in the range of A > 1,(<0) where A, is the minimum value of

M for which the solution exists. It is also found that micropolar fluids as well as flnids wiih larger Prandtl
number increase the range of A for which the solution exists.
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