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Abstract The similarty solution for the problem of
mixed convection boundary layer flow adjacent to a
stretching vertical sheet in an incompressible electrically
conducting fluid in the presence of a transverse magnetic
field is presented. It is assumed that the sheet is stretched
with a power-law velocity and is subjected to a varjable
surface heat flux, The governing paitial differential equa-
fions are first transformed into a system of nen-linear
ordinary differential equations, before being solved
numerically by the Keller-box method. The numerical
results obtained are then compared with previously repor-
ted cases available in the literature as well as the series
solution for certain values of parameters, to support their
validity. The effects of the governing parameters on the
flow field and heat transfer characteristics are obtained and
discussed.

List of symbols

a, b Constants

B Magnetic field

By  Uniform magnetic field

Cr  Skin friction coefficient

f Dimensionless stream function
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g Acceleration due to gravity
Gr, Local Grashof number
k Thermal conductivity
M Magmetic parameter
Niu, Local Nusselt number
Pr Prandtl number

Gw  Wall heat flux

Re, Local Reynolds number
T Fluid temperature

7,,  Plate temperature

T, Ambient temperature

u, v Velocity components along the x and y directions,
respectively

U,  Stretching velocity

x, y Cartesian coordinates along the surface and normal

to it, respectively

Greek symbols

Thermal diffusivity

Thermal expanston coefficient
Similarity variable
Dimensionless temperature
Buoyancy or mixed convection parameter
Dynamic viscosity

Kinematic viscosity

Fhuid density

Electrical conductivity

Wall shear stress

Stream function

SS9 2R MTI ™R

Subscripts
w  Condition at the wall
oo Ambient condition

Superscript
' Differentiztion wiih respect to 5
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1 Imtroduction

Flow and heat transfer of a viscous and incompressible
fluid induced by a stretching surface has attracted the
interest of many researchers in view of its applications in
many industrial manufacturing processes. Some examples
are in the extrusion of a polymer in a melt-spinning pro-
cess, metals and plastics, the boundary layer along material
handling conveyers, the cooling and/or drying of papers
and textiles, glass blowing, continuous casting and spin-
ning of fibers. The two-dimensional steady flow of an
incompressible viscous fluid cansed by a linearly stretching
plate was first discussed by Crane [1]. Since then, many
authors have studied various aspects of this problem. For
instance, the effect of suction or injection on the flow field
and heat transfer characteristics was studied by Gupta and
Gupta [2], Ali [3] and Ali and Al-Yousef [4]. Ali [3]
considered the case when the sheet is stretched with a
power-law velocity, and then Ali and Al-Yousef [4]
extended this problem to a vertically stretching sheet.
Magyari et al. [5] studied the heat and mass transfer
characteristics of the boundary-layer flows induced by
continuons surfaces with rapidly decreasing velocities.
This problem was then extended by Ali [6] to a vertical
surface, where the effect of buoyancy force was taken into
consideration, Quite recently, Partha et al. [7] studied the
similar problem, by considering exponentially stretching
surface. The temperature field in the flow over a linearly
stretching surface subject to a variable surface temperature
was studied by Grubka and Bobba [8], while Elbashbeshy
[%] considered the heat transfer characteristics on a stret-
ched surface subject to a power-law velocity and variable
surface heat flux, Grubka and Bobba [8] showed that
Crane’s solution to the boundary layer equations also
happens to be an exact solution to the Navier—Stokes
equations.

All of the above-mentioned works, however, did not
consider the situations where hydromagnetic effects
emerge. Hydromagnetic flow and heat transfer problems
are found to be more important in industrial processes.

distribution and having a variable magnetic field of a
special form that resnlts in a similarity solution. Mahapatra
and Gupta {13] were then investigated the steady two-
dimensional stagnation-point flow of an incompressible
viscous electrically conducting fluid over a stretching sur-
face in the presence of an uniform transverse magnetic
field. Anjali Devi and Thiyagarajan [14] studied the effect
of magnetic field on the flow and heat transfer character-
istics of a nonlinearly stretching surface of variable tem-
perature. Ishak et al. [15] extended this problem to a
vertical surface in which the effect of buoyancy force could
not be neglected. Moreover, Liu [16] investigated the
hydromagnetic flow over a linearly stretching sheet by
considering both prescribed surface temperature and pre-
scribed surface heat flux conditions, and reported the
solutions in terms of Kummer’s functions. The steady two-
dimensional magnetohydrodynamic stagnation-point flow
towards a stretching vertical sheet with vanable surface
temperature has been studied by Ishak et al. [17].

In view of the above-mentioned investigations, we
present in this paper the study of mixed convection
hydromagnetic flow and heat transfer over a stretching
vertical sheet with prescribed surface heat flux. To the best
of our knowledge, this problem has not been studied
before.

2 Problem formulation

Consider the steady, two-dimensional mixed convection
flow adjacent to a stretching vertical sheet immersed in an
incompressible electrically conducting fluid in the presence
of a transverse magnetic field B(x). The stretching velocity
and the surface heat flux are assumed to be of the forms
U, (x) = ax™ and q,.(x) = bx", respectively, where @, b, m
and n are constants with > 0 and b, m, n =0. The mag-
netic Reynolds number is assumed to be small, and thus the
induced magnetic field is negligible. Under the foregoing
assumptions and applying the usval boundary layer and
Boussinesq approximations, the govemning equations are

- Many metallurgical processes involve the cooling of con-

tinuous strips or filaments by drawing them through a
quiescent fluid and that in the process of drawing, these
strips are sometimes stretched [[(0]. The properties of the
final product depend to a great extent on the rate of cooling.
The final product of desired characterisiics can be achieved
as the rate of cooling is being controlled when drawing
such sheets in an electrically conducting fluid subject to a
magnetic field. The steady flow of an elastic streiching
sheet in the presence of an uniform magnetic field of an
electrically conducting fluid was investigated by Pavlov
[11]. Further study was made by Chiam [12], who inves-
tigated the streiching shect with a power-law velocity
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where # and v are the velocity components alongthe x and
y axes, respectively. Further, v, p, o, f, ¢, T, Tnand g are
the kinematic viscosity, fluid density, thermal diffusivity,
thermal expansion coefficient, electrical conductivity , fluid
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termperature, ambient temperature and acceleration due to
gravity, respectively. The boundary conditions are

_ —noT_ 4 -
u=U,v=0F=-Lay=0, (4)
t— 0,7 —Tyasy-— oo,

where U, g, and k are the velocity of the stretching
sheet, the surface heat fJux and the thermal conductivity,
respectively. To obtain similarity solutions of Egs. (1)}
(4), we assume that the variable magnetic field B(x) is of
the form B(x) = Byx™ 2. This form of B(x) has also
been considered by Chiam [12], Anjali Devi and
Thiyagarajan [14] and Ishak et al. [13], among others.
The continuity equation ({) is satisfied by introducing
a steam function i such that w = QY/By and v = —&/
Ox. The momentum and energy equations can be
transformed into the coresponding non-linear ordinary
differential equations by the following transformation:

n= (&) Uzy, flp) = ¥

vx (vaw)l/l’
(T — To) { UL\ 12
O(n)=—— "2/ 7¥W ) 5
e )
The transformed nonlinear ordinary differential equations
are:
m—+1

flf!+ > ¥ ”_mf’szf’—k)uB:O, (6)
1 " m+1 ; .
50 A8 —nf0 =0, (7)

subject to the boundary conditions (4) which become

f(O) =0, f’(O) = 1?9’(0) =-1,
) —0, 8(n) —0asy— oo, (8)

where primes denote differentiation with respect to #,
Pr = v/ is the Prandtl number and M = oB3/(pa) is the
magnetic paramater. In Eq. (6), 4 is the mixed convection
parameter defined as A = Gr,/Re3?, where Gr, = gfg,x"f
(kv*) is the local Grashof number and Re, = U/, x/v is the
local Reynolds number. It can be shown that A is inde-
pendent of x when n = (5m—3)/2, and thus similarity is
achieved under this restriction.

The physical quantities of interest are the skin friction
coefficient C;and the local Nusselt numnber Nuw,, which are
defined as

27, Xy
f = @“, Uy == ma (9)

where the surface shear stress 1, and the surface heat flux

gy are given by
or
quw = —k (a—) )
Y/ =

_ {Ou
Tw=4u ay yzo:r

(10)

with p being the dynamic viscosity. Using the similarity
variables (5), we obtain

1 2

ECfRei/“ =f"(0), Nu/Re? =1/8(0). (11)
‘We note that when m = 1 (linearly stretching sheet) and

A =0 (forced convection flow), Eq. (6) has an exact

solution [18]

i A,
_ 1—e" 1+Mr , 12
7o) V1 M( ¢ ) (12)
and the solution for the energy Eq. (7} is given by
1 e Fy— ] 1. — — v 1+My
B(y) =—e " (- Lyl —ye ) {13)

Fly—1,p3,—v) ’

where y = Pr/(1 + M), and F{a, b, z) denotes the confluent
hypergeometnic function [19] with

o aka
Fla,b,z) = l+;b_kﬁ’

a=afa+1)a+2)---(a+k—1),
be=b(b+1)b+2) - (b+k—1).

Further, from Egs. ({2) and (13), the skin friction
coefficient f7(0) and the surface temperature §0) can be
shown to be given by

fr’(0)=_V1+M:

CNVIEMFy—1,y+1,-y)
Pr F{y—1,y,—v)

B(0) (14)

3 Resuits and discussion

The transformed Egs. (6)}-(8) have been solved numern-
cally using a finite-difference scheme known as the
Keller-box method, described in the book by Cebeci and
Bradshaw [20]. This method is unconditionally stable
and has a second-order accuracy. In the piesence of
buoyancy force (1 # 0), similarity solution to the pres-
ent problem may arise if the femperature exponent
parameter n and the velocity exponent parameter m are
related by n= (5m—3)2. For simplicity, we consider
Prandtl number unity throughout the paper, except for
comparisons with previously investigated cases. We
expect that the resuits are qualitatively similar with other
values of Pr of O(I). To assess the accuracy of the
present method, the values of the surface temperature
8(0) are compared with those of previous studies as well
as the series solution for several values of parameters.
The comparison as presented in Table 1 shows a favor-
able agreement.
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:‘rzglizu{slfgiﬁ?;i%n d‘::athfor A m Pr M Elbashbeshy [9] Liu [16] Present results Eq. (14)
ttgfn":i:f;:feigfm 0 06 1 0 18894
P t 2.2780
1 0.72 0 1.2253 1.2367 1.236657472
1 0 1 1 1
10 0 0.2688 0.2688 0.2687685151
6.7 0 0.333303 0.3333 0.3333030012
0.5 .339715 0.3398 0.3397152199
1 0.345377 03454 03453771711
5 0.380930 0.3809 0.3809302053
1 1 0 0.9240
2 1.0665
Figures | and 2, respectively, illustrate the effect of 1 T . . r
some values of magnetic parameter M on the velocity and 0.9 Pr=t. a=1. m=t, ”:‘J_
temperature distributions when the other parameters are 08 ]
fixed to unity. In Fig. 1, it can be seen that an increase in
the transverse magnetic field iends to reduce the boundary- 0.7 )
layer thickness, hence canses the fluid motion to slow 08 .
down, which implies an increase in the velocity gradient at T os 1
the surface. Thus, the skin friction coefficient f¥(0) - 04l 4
increases as the magnetic parameter M increases. Con- 03 1=0,051,15,2 |
versely, as shown in Fig. 2, the effect of magnetic field is
to enhance the fluid temperature in the boundary layer, o2y 1
which in turn increases the surface temperature 6(0). Thus, 0.1} 1
the heat transfer rate at the surface 1/0(0) decreases as M 0 : ! ! ;
. 0 1 2 3 4 5 6 7
increases, ]
Figures 3 and 4, respectively, show the samples of
velocity and temperature profiles for some values of Fig. 1 Velocity profiles £/ () for some values of magnetic parameter
velocity exponent parameter m (and temperature exponent M
parameter n) with fixed values of Pr, 1 and M. It is clear
from these figures that the parameter s resulis in
decreasing manner of both the velocity and temperature 14 . . . . . _
distributions inside the boundary layers. Thus, both the skin ’ ot At et met
friction coefficient f(0) and the local Nusselt number 1/ 1ol |
8(0) increase as m increases. It is evident from Figs. 1-4
that the far fields boundary conditions (8) are satisfied 1 .
asymptotically, which support the validity of the numerical
results obtained. _ o8} .
Figures 5 and 6 elucidate the variations with 1 of the &

skin friction coefficient f”(0) and the Jocal Nusselt number
1/8(0) for some values of m (and n) when Pr=1 and
M = 1. As shown in these figures, the solution does not
exist for the opposing flow (1 < 0). For A = 0 (buoyancy
force is absent}, the value of /(D) is negative for all values
of Pr and M considered. Physically, negalive values of
F7(0) mean the sheet exerts a drag force on the fluid, and
positive values of (0} mean the opposite. The negative
values of /7{0) when A = 0 is not surprising since for this
case, the formation of the boundary layer is solely caused
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Fig. 2 Temperature profiles O(s) for some vaines of magnetic
parameter M
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Pr=1, i=0, M=1 4

Fig. 3 Veloctty profiles f'(77) for some values of % {and )

1.8

1.6 P E

Fig. 4 Temperature profiles 8(r) for some values of m (and r)

by the stretching sheet. Different from f”(0) which
becomes positive in the present of buoyancy force, the
local Nusselt number 1/8(0) is always positive, which
means the heat is transferred from the hot sheet to the cool
fuid, regardless of the existence of the buoyancy force.
Figure 6 also shows that the heat transfer rate at the surface
increases with increasing values of the velocity exponent
parameter m as well as the buoyancy parameter A,

4 Conclusions

In this study, analysis of the hydromagnetic flow adja-
cent to a vertical sheet with prescribed surface heat flux
has been carried out. The governing boundary layer
equations are first transformed into a system of ordinary
differential equations, before being solved mumerically
by the Keller-box method. The comparison of the

4 T T - T T
3 |
2L
1t
g
0f
-1k
-2 - E
m=23,5(n=356,11)
_3 I3 1 L 1 Il 1 1 L il o -
-1 0 1 2 3 4 5 6 7 8 9 10

A

Fig. 5 Variation of the skin friction coefficient #(0) with 1 for some
values of m (and n)

35 : : . —
Pr=1, M=1

3r m=5(n=11) 1

25| j

——————==mmsy.__ |

g ?r .

3 ————wEzas |

T 15} .

T
o5t W

Fig. 6 Variation of the local Nusselt number 1/8(0) with 1 for some
values of m (and 7)

numerical results obtained for certain values of parame-
ters showed a favorable agreement with the existing
results from open literature as well as the series solutions
obtained in terms of Kummer’s functions for forced
convection flow over a linearly stretching sheet. The
effects of the governing parameters on the flow field and
heat transfer characteristics for Prandtl number unity
have been analyzed and discussed. It is found that both
the skin friction coefficient and the surface temperature
increase in the presence of magnetic field. Moreover, the
effect of buoyancy force is to enhance the fiuid motion,
and in consequence increases the skin friction eoefficient
and the heat transfer rate at the surface.
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