

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

PetriCode: A Tool for Template-based Code Generation from CPN Models

Simonsen, Kent Inge

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Simonsen, K. I. (2013). PetriCode: A Tool for Template-based Code Generation from CPN Models. Kgs. Lyngby:
Technical University of Denmark (DTU). (DTU Compute-Technical Report-2013; No. 11).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/17296701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/petricode-a-tool-for-templatebased-code-generation-from-cpn-models(674f1494-6502-4afe-b461-d995b07b6fee).html

PetriCode: A Tool for Template-based Code

Generation from CPN Models

Kent Inge Fagerland Simonsen ∗1,2

1Department of Computing, Mathematics, and Physics, Bergen

University College, Norway
2DTU Compute, Technical University of Denmark, Denmark

June, 2013

DTU Compute-Technical Report-2013-11

∗Email: kifs@hib.no, kisi@imm.dtu.dk

DTU Compute Department of Applied Mathematics and Computer Science

Technical University of Denmark

Building 303B, DK-2800 Lyngby, Denmark

Phone +45 45253031, Fax +45 45882673

compute@compute.dtu.dk

www.compute.dtu.dk

DTU Compute-Technical Reports: ISSN 1601-2321

ii

Abstract

Abstract

Code generation is an important part of model driven method-
ologies. In this paper, we present PetriCode, a software tool
for generating protocol software from a subclass of Coloured
Petri Nets (CPNs) that is the realization of previous work [17,
19, 18]. The CPN subclass is comprised of hierarchical CPN
models describing a protocol system at different levels of ab-
straction. The elements of the models are annotated with code
generation pragmatics enabling PetriCode to use a template
based approach to generate code while keeping the models un-
cluttered.

iii

iv

Contents

1 Introduction 1

2 Example 1

3 Architecture and Design of PetriCode 4

3.1 Overall Architecture . 6

4 Pragmatics Module 7

4.1 Pragmatics Derivation. 10
4.2 Pragmatics Constraints. 11
4.3 Defining Custom Pragmatics. 12

5 ATT Module 12

6 Code Generation Module 14

6.1 Template bindings. 14
6.2 Custom Templates. 15

7 Related Work 16

8 Conclusions and Future Work 17

v

vi

1

Abstract

Code generation is an important part of model driven methodologies.
In this paper, we present PetriCode, a software tool for generating pro-
tocol software from a subclass of Coloured Petri Nets (CPNs) that is the
realization of previous work [17, 19, 18]. The CPN subclass is comprised
of hierarchical CPN models describing a protocol system at different levels
of abstraction. The elements of the models are annotated with code gen-
eration pragmatics enabling PetriCode to use a template based approach
to generate code while keeping the models uncluttered.

1 Introduction

This paper describes the tool PetriCode which is a platform implementing the
approach presented previous works [17]. In contrast to previous works [17, 19,
18], this paper focuses on the techincal software realization of our approach
whereas earlier work has focused on the conceptual and theoretical aspects of
our modelling and code generation methods. The intended use of PetriCode is
to generate software for network protocols based on annotated and descriptive
protocol models [19] in a flexible way and for different target languages and
platforms.

PetriCode takes a template-based approach to code generation from CPN
models [6] annotated with pragmatics. Pragmatics are syntactic annotations on
CPN elements that are used to guide and provide hints to the code generation
procedure. Pragmatics are associated with code templates that are invoked for
code generation. Our code generation approach, which is described in previous
works [?], consists of three main steps. The first step of the code generation is
to parse the CPN model and automativally derive additional pragmatics for the
CPN model. The derived pragmatics are used to provide the code generator with
additional information of what is represented by the various CPN structures.
The second step is to construct an Abstract Template Tree (ATT)which is used
as an intermediary structure for code generation. The ATT provides a flexible
and platform independent data structure that simplifies the final step of the
code generation. The third and final step is the actual code generation where
the ATT, using a series of visitors and templates, is transformed into code.

The rest of this paper is organized as follows. Section 2 shows, by an ex-
ample, how PetriCode can be used to generate code for a simple framing pro-
tocol. Sections 3 to 6 describes how the tool has been implemented. Section 3
describes the overall archetecture of PetriCode. Section 4 describes the prag-
matics module. Section 5 describes the ATT module and Section 6 descrbes
the code generation module. Section 7 contains a discussion of related works.
Concluding remarks and future work are presented in 8. Details on how to
download operate PetriCode and a screen capture showing how the tool can be
used are available at the PetriCode project website[16]. This paper assumes
that the reader is familiar with hierarchical CPNs.

PetriCode is freely available together with documentation [16].

2 2 EXAMPLE

Channel
<<channel

(reliable,order,unidirectional)>>

Channel

Receiver
<<principal>>

Receiver

Sender
<<principal>>

Sender

Receiver
Channel

Endpoint

Sender
Channel

Endpoint
Sender ReceiverChannel

Figure 1: The protocol system level

Close
<<service

(synchronous)>>

SenderClose

Send
<<service

(msg : Message,synchronous)>>

SenderSend

Open
<<service

(repid: EndPointId, synchronous)>>

SenderOpen

Open
<<LCV>>

UNIT

()

UNIT

Receiver
<<state>>

EndpointId

Endpoint

SenderOpen

SenderSend

SenderClose

Idle
<<LCV>>

Sender
<<channel>>

I/OI/O

Figure 2: Example of a principal level module: The Sender module

2 Example

In order to present the workings of PetriCode, we use a simple framing protocol
as a running example. The protocol is described in the technical report [17]. The
model is divided into three hierarchical layers: the protocol system, principal,
and service layers. The protocol system layer, depicted in Fig. 1, shows the
principal agents of the protocol as well as the connections between them. In
the example, those are the Sender, Receiver and the Channel between them.
In Fig. 1 the substitution transitions Sender and Receiver are both annotated
with a 〈〈principal〉〉 pragmatic. This conveys to the code generator that the sub-
modules represented by each of these substitution transitions represent principal
agents of the system. The third substitution transition in the protocol system
module, Channel, is annotated with the pragmatic 〈〈channel〉〉 specifying that
the underlying module defines the channel. In the rest of this paper, we focus
on the Sender agent of the protocol. Figure 2 shows the principal level of
the sender. The Open and Close services opens and closees the channel to the
Receiver while Send sends a message over the channel. In this paper, we go into
details with the Send service. The principal level contains the services provided
by each principal as well as life cycle variables which controls when the various
services can be called and places which hold global data for the principal. The
Send service, shown in Fig. 3, shows the sending part of the protocol. The Send
service divides a message into smaller fragments called frames. Each frame is
sent together with a bit that is set if the current frame is the last frame of the
message, and unset otherwise. In the model, the message, which is a parameter
to the Send service, is broken up into frames by the transition Partition. Then
the fragments are sent one by one in a loop until all the fragments have been
sent.

In order to generate code from the CPN model, PetriCode is invoked with

3

empty

if mss = []
then (1,m)
else (0,m)
(*<< setToken(cond: ' (isEmpty
OutgoingMessage)',
[1_m], [0_m],) >>*)

() mss

()

()

()

partition m

p

()

(1,m)

m

p

msg

(0,m)

()

Completed
<<return()>>

Allsent

Partition
<<partition(msg, OutgoingMessage)>>

Send
<<service(msg)>>

end
<<Id>>

UNIT

Send
Completed

<<Id>>
UNIT

UNIT

Packet

Created
<<Id>>

Packet

Start
<<Id>>

UNIT

Message
<<Id>>

Message

NextMessage
<<pop(OutgoingMessage, m)>>

mss

m::mss

Packet Sent
<<Id(cond: '(eq 0 __TOKEN__[0])')>>

Next

Receiver

I/OI/O

EndpointName

()

Open
<<LCV>>

I/OI/O

Endpoint

Channel

I/OI/O

ep

Outgoing
Messages

Messages

Send
Packet

(host,
port)

SP(p,ep,
host,port)

Figure 3: The Sender Send module

appropriate arguments. An example of such an invocation is shown in Listing 1.
Here the last argument is the protocol model FrameingProtocol.cpn. The first
step of the program is to parse the model and add derived pragmatics. It is
also possible, as part of the command-line arguments, to give further pragmat-
ics and rules for deriving them as will be discussed in Section 4. The second
step is to generate the ATT which is discussed further in Section 5. The third
and final phase is the code generation where the -o option provides the output
directory where the generated code is placed and the -b option takes a bind-

4 3 ARCHITECTURE AND DESIGN OF PETRICODE

ing descriptor file as an argument. The binding descriptor file provides a set
bindings of pragmatics to code generation templates for the specific platform
under consideration. These bindings, known as template bindings are described
in further detail in Section 6. One thing that is not in the listing is a reference
to pragmatics descriptors which describes the available pragmatics. This is be-
cause a core set of pragmatics, which contains most of the pragmatics used in
this particular example, are defined in the tool and available by default.

Listing 1: Command to run PetriCode for the simple framing protocol example.

petriCode -o . -b ./groovy.bindings ./FrameingProtocol.cpn

After running the command shown in Listing 1 two files will be generated in
the output directory. Each of these files will contain a single Groovy class, one
for the Sender principal and one for the Receiver. For Sender class there will be
exactly three methods, one for each of the services the principal provides (see
Fig. 2). The code for the Send service is shown in Listing. 2. The first line
of the code defines the method implements contain the service. Lines two to
three check that preconditions, that are defined at the principal level and are
translated to class fields, are fulfilled and then setting of a precondition field
(denoted as a place annotated with 〈〈LCV〉〉). The next few lines initializes vari-
able for the method. Then, in line ten and eleven, the 〈〈partition〉〉 pragmatic,
which is generated using a custom template, is shown. In lines thirteen and
fourteen, the loop is started by setting a loop variable named “ LOOP VAR ”
to true and entering a while loop. Inside the loop, first, a variable is initialized
in line sixteen and then the code emitted by the template for 〈〈pop〉〉 is shown
in line seventeen. The next lines determine whether the current frame is the
final frame of the message and append the appropriate integer. Finally, in line
twenty-three, the message is transmitted and the loop variable is updated in
line twenty-four. Outside the loop the life-cycle variables are updated and the
service terminates.

3 Architecture and Design of PetriCode

PetriCode is divided into three functional modules corresponding to the three
main steps in our code generation approach. The modules are the Pragmatics,
ATT and Code generation modules. These modules will be discussed in detail
in later sections. When invoked, PetriCode invokes each of the modules in
sequence. Each module is passed all relevant options and parameters as well as
the output of previous modules as needed.

When designing and implementing PetriCode there was a number of key re-
quirements that needed to be addressed and which affected the choice of software
technologies used for the implementation. An important feature of PetriCode
is the ability to read, parse and write CPN models stored in the format of CPN
Tools [7]. A Java library Access/CPN [21] provides this capability for the Java
platform. Therefore, in order to use Access/CPN it is necessary to choose a
platform with good integration with Java libraries. It is also useful to be able
to alter the Access/CPN model slightly by adding a pragmatics field to the
model elements avoiding an overly complicated translation layer. Another im-
portant requirement was to easily be able to create Domain Specific Languages
(DSLs) for defining pragmatics descriptions and template binding. The Groovy

5

Listing 2: Generated code for Send service of Sender principal.

1 def Send(msg){

2 if(!Open) throw new Exception(’unfulfilled precondition: Open’)

3 Open = false

4 /*vars: [__TOKEN__, msg, OutgoingMessage, __LOOP_VAR__]*/

5

6 def __TOKEN__

7 def OutgoingMessage

8 def __LOOP_VAR__

9

10 OutgoingMessage = msg.getChars().toList()

11 .collate(5).collect{ new String(it.toArray(new char[0])) }

12

13 __LOOP_VAR__ = true

14 while(__LOOP_VAR__){

15 /*vars: [m]*/

16 def m

17 m = OutgoingMessage.remove(0)

18 if(OutgoingMessage.size() == 0){

19 __TOKEN__ = [1,m]

20 } else {

21 __TOKEN__ = [0,m]

22 }

23 Receiver.getOutputStream().newObjectOutputStream().writeObject(__TOKEN__)

24 __LOOP_VAR__ = (0 == __TOKEN__[0])

25 }

26 Open = true

27 return

28 }

6 3 ARCHITECTURE AND DESIGN OF PETRICODE

Access/CPN

Groovy

Command Line Interface

P
ra

g
m

a
tic

s

m
o
d
u
le

A
T
T

c
o
n
s
tru

c
tio

n

m
o
d
u
le

G
e
n
e
ra

tio
n

m
o
d
u
le

ATT

Pragmatics

Figure 4: Architectural overview of PetriCode

programming language [4], which runs on the Java Virtual Machine, was chosen
since it has a seamless integration with all Java libraries including Access/CPN.
Groovy also has a simple mechanism, not available to Java, to manipulate classes
at runtime and also has good support for many types of DSLs. Groovy also has
other useful features such as a command-line interface options builder and an
easy to use yet powerful template engine.

3.1 Overall Architecture

Figure 4 provides an architectural overview of PetriCode. PetriCode is con-
trolled by its main class PetriCode in the UI module. PetriCode parses the
command-line arguments and calls the modules shown directly below the UI
model in Fig. 4 as appropriate. PetriCode uses the CliBuilder included in
Groovy to parse command line arguments. All the modules depend on Ac-
cess/CPN for reading and manipulating CPN models. In addition, PetriCode is
implemented using the Groovy language and builds upon the Groovy and Java
platforms. All the modules are also dependent on the data model for pragmatics.
The ATT and Generation modules also share a data model for ATTs.

The overall program flow of PetriCode is shown in Fig. 5. Each column
of the flow chart represents a module of PetriCode. The left column is the
pragmatics module, the middle column is the ATT module and the right col-
umn are operation of the generation module. The process of code generation
begins with reading and parsing a CPN model including parsing explicit prag-
matics. The next step in the code generation process is to derive pragmatics.
This is done since pragmatics do not have to be added manually, but instead
they can be automatically derived from the structure of the model. After all the
derived pragmatics have been added to the CPN, the generation process option-
ally checks the consistency of the pragmatics. This is optional because, in some
circumstances, the check requires all pragmatics to be defined in a pragmatics
description, and this may slow down software development in early stages of a
project. After optionally checking the pragmatics, the code generation process
turns to the ATT module. The first part here is to generate the ATT, which is
used internally by the code generation module to generate code. After generat-
ing the ATT, the ATT can optionally by output in either an XML format or as

3.1 Overall Architecture 7

Read and
Parse CPN

model

Derive
pragmatics

check
pragmat-

ics
con-

straints?

check
pragmatics
constraints

continue?

Create
the ATT

output
ATT?

output
ATT

continue?

Run
templates
for each
node in
ATT

Combine
and write

code

stop

yes

no

no

yes

yes

no

no

yes

Figure 5: Control flow of PetriCode

a picture. Based on the command-line arguments given, the process optionally
terminates after generating and outputting the ATT. If the generation process
is to continue, the code generator, using a series of visitors on the ATT, will
generate code appropriate for each node of the ATT. After generating code for
each node in the ATT, the generated code fragmants are recombined in a bot-
tom up fashion until the code for each principal has been completely generated.
Finally, the code is written to files and the process is ended.

8 4 PRAGMATICS MODULE

Figure 6: Data model for the Pragmatics module

4 Pragmatics Module

The Pragmatics module has three main responsibilities: reading and parsing
CPN models, parsing pragmatics descriptors and adding derived pragmatics to
CPN models. The pragmatics derivation process is driven by a DSL which
is used to parse the pragmatics descriptor files containing information about
the pragmatics used in a model.A class diagram showing the meta-model for
pragmatics is shown in Fig. 6. In the diagram pragmatics are separated in two
dimensions. One dimension is the explicit/derived dimension, where explicit
pragmatics must be explicitly added to the CPN model by the modeller, whereas
derived pragmatics may be derived based on structural patterns. The second
dimension is whether the pragmatic is supplied by the user (a custom pragmatic)
or is part of the built-in core pragmatics of PetriCode. In the class diagram the
different types of pragmatics are represented using an inheritance hierarchy.
This approach has not been chosen in the code because it would increase the
complexity of the implementation. Instead PetriCode uses an object derived
from the pragmatics descriptor to contain, in the form of fields, the information
contained in the inheritance hierarchy.

The pragmatics description language is a simple builder language that de-
scribes the available pragmatics. A core set of pragmatics (see Listings 3 and 4)
is provided by PetriCode while others may be provided by the user using the
pragmatics description language. The language consists of descriptors that each
describe a pragmatic. Each descriptor consists of a name, which is the name

9

of the pragmatic, followed by a pair of parenthesis. Inside the parenthesis,
the parameters of the pragmatics definition are given in the form of key-value
pairs. The possible parameters for a pragmatics descriptor are origin and
derivationRules. The origin parameter indicates whether the pragmatic
is explicitly given by the modeller or should be automatically derived. The first
pragmatic descriptor in Listing 3 describes the 〈〈Principal〉〉 pragmatic. The
origin field of 〈〈Principal〉〉 indicates that this is an explicit pragmatic meaning
that it will not be generated automatically. The derivationRules parameter
gives the patterns that should be used to find the elements of a CPNmodel where
a derived pragmatic should be added. The patterns for derived pragmatics are
described shortly.The last pragmatic descriptor in Listing 4 is the 〈〈endLoop〉〉
pragmatic. The 〈〈endLoop〉〉 pragmatic has derivation rules that states that it
should be added to nodes already annotated with 〈〈Id〉〉 , with at leat two out-
going edges and exactly one backlink, that is a connection to somewhere earlier
in the control flow path (see Section 4.1). In addition both 〈〈Principal〉〉 and
〈〈endLoop〉〉 have some constraints indicated by the constraints field. This
means that the pragmatics should only recide on places where the constraint is
fullfilled. In the case of the 〈〈Principal〉〉 pragmatic this means that it should only
be used to annotate nodes on the protocol system level which are substitution
transitions.

Listing 3: The explicit core pragmatics for PetriCode

principal(origin: ’explicit’, constraints: [levels: ’protocol’,

connectedTypes: ’SubstitutionTransition’])

channel(origin: ’explicit’)

id(origin: ’explicit’, controlFlow: true, constraints:

[levels: ’service’, connectedTypes: ’Place’])

lcv(origin: ’explicit’)

service(origin: ’explicit’, constraints:

[[levels: ’principal’, connectedTypes:

’SubstitutionTransition’],[levels: ’service’,

connectedTypes:’Transition’]])

state(origin: ’explicit’, constraints: [levels:

[’principal’,’service’], connectedTypes:’Place’])

_return(origin: ’explicit’, constraints:

[levels: ’service’,connectedTypes:’Transition’])

Listing 4: The derived core pragmatics for PetriCode

branch(origin: ’derived’, derviationRules:

[’new PNPattern(pragmatics: [\’Id\’], minOutEdges: 2,

backLinks: 0, forwardLinks: 0)’],block:

[type: "branch", ends: "merge"],

constraints: [levels: ’service’, connectedTypes: ’Place’])

merge(origin: ’derived’, derviationRules:

[’new PNPattern(pragmatics: [\’Id\’], minInEdges: 2,

backLinks: 0, forwardLinks: 0)’],

10 4 PRAGMATICS MODULE

constraints: [levels: ’service’, connectedTypes: ’Place’])

startLoop(origin: ’derived’, derviationRules:

[’new PNPattern(pragmatics: [\’Id\’],

minInEdges: 2, forwardLinks: 1)’],

block: [type: "Loop", ends: "endLoop"],

constraints: [levels: ’service’, connectedTypes:’Place’])

endLoop(origin: ’derived’, derviationRules:

[’new PNPattern(pragmatics: [\’Id\’],

minOutEdges: 2, backLinks: 1)’],

constraints: [levels: ’service’, connectedTypes:’Place’])

The following table shows the current set of core pragmatics included in
PetriCode. Each pragmatic in the table has a name, a short description, the
model levels it can be used on and the type of CPN elements it can be used to
annotate.

Pragmatic Description Level Type

principal Denotes a princi-
pal agent.

Protocol system Substitution tran-
sitions

channel Denotes a channel all Substitution tran-
sitions and places

id Denotes a place
in the control-flow
path

service Place

LCV Life cycle variable principal Place
service A service principal and ser-

vice
Substitution tran-
sition or transition

state A data holder Principal and ser-
vice levels

Places

return Ending a service Service level Transitions
branch Starts a condi-

tional
Service level Places

merge Ends a conditional Service level Places
startLoop Starts a loop Service level Places
endLoop Ends a loop Service level Places

4.1 Pragmatics Derivation.

The method for deriving pragmatics is based on traversing each service module
and checking each node, i.e, place or transition, against structural patterns
described by the pragmatic descriptors. The pragmatics are described in a
pragmatics descriptor file as detailes in the following. An important concept
for for pragmatics derivation and indeed the entire code geneation approach is
the control flow path. The control flow path consits of all the nodes annotated
with 〈〈Is〉〉 where the first node would be the node of a service annotated with
〈〈service〉〉 pragmatic and the last is annotated with 〈〈return〉〉 and ignoring loops.
For derived pragmatics, a list of patterns are supplied. Each pattern, will be
matched against each node on the control-flow path. If a pattern matches, the
corresponding pragmatic is added to the node.

A pattern for matching Petri Net nodes (called a PNPattern) specifies a

4.1 Pragmatics Derivation. 11

Condition Description

name matches the name of the node.
pragmatics matches the explicit pragmatics that are present on the

node.
type matches the type of the node (Transition or Place).
minInEdges Matches against a given minimum number of incoming

arcs of the node.
maxInEdges Matches against a given maximum number of incoming

arcs of the node.
minOutEdges Matches against a given minimum number of outgoing

arcs of the node.
maxOutEdges Matches against a given maximum number of outgoing

arcs of the node.
outArcInscription Matches if at least one of the outgoing arcs contains the

given arc-inscription.
adjacentPatterns Matches adjacent nodes to a given pattern. This condi-

tion is considered fulfilled if any of the adjacent nodes
fulfil the pattern.

pastLinks Matches the number of incoming arcs that lead to a node
earlier in the control flow.

futureLinks Matches the number of incoming arcs that comes from
a node later in the control flow.

Table 1: The current set of pragmatics derivation rules.

set of conditions that must be satisfied for a node (place or transition) to be
matched. The conditions currently available are shown in Table 1. The current
set of conditions, shown in Table 1 is a result of what conditions that has been
identified as needed in the cases we have studied until now. It is, however,
simple to add conditions.

The past- and future-link conditions are used to distinguish between the
loop and conditional block structures. The progress concept inherent in these
terms alludes to the order of nodes on the control-flow path. As an exam-
ple, Listing 4 shows the derivation rules for the pragmatics used to describe
loops (〈〈startLoop〉〉 and 〈〈endLoop〉〉) and branches (〈〈branch〉〉 and 〈〈merge〉〉).
The derivation rule for 〈〈startLoop〉〉 and 〈〈merge〉〉 both require a minimum of
two incoming arcs as seen by the minInEdges: 2 parameter. However, they are
distinguishable by using our notion of progress though the control flow path
by having a different value to the forwardLinks parameter. Similarly, both the
〈〈branch〉〉 and 〈〈endLoop〉〉 have a minimum number of outgoing arcs given by
the minOutEdges: 2. The difference between these two derivation rules concerns
the backlinks, that is links from the node going against the direction of the con-
trol flow path, where the 〈〈endLoop〉〉 is required to have one, while 〈〈branch〉〉
may not have any. Using these derivation rules, PetriCode is able to automati-
cally annotate the model in Fig. 3 with 〈〈startLoop〉〉 at the transition Start and
〈〈endLoop〉〉 at the transition Packet Sent. The example does not contain any
examples of the 〈〈branch〉〉 and 〈〈merge〉〉 pragmatics.

12 5 ATT MODULE

levels The levels (Protocol system, principal or service level)
the pragmatic is allowed on.

connectedTypes The types of elements (i.e. Place or Transition) the
pragmatic is allowed on.

Table 2: The current set of possible pragmatics constraints.

4.2 Pragmatics Constraints.

It is possible, when defining pragmatics, to add constraints on which elements
a pragmatic may annotate. This is useful to ensure that pragmatics are used in
the way it was intended when they were defined. The available parameters for
the constraints are given in Table 2.

4.3 Defining Custom Pragmatics.

Custom pragmatics are defined by creating a text file with lines like the ones
shown in Listings 3 and 4. If a custom pragmatic is to be derived automati-
cally, derivation rules must be supplied. In order to enforce correct use of the
pragmatic it is also useful to include the proper pragmatic constraints to the
pragmatic definition.

5 ATT Module

An ATT is an internal temporary data structure of PetriCode. Its purpose is
to simplify and make more flexible the code generation process by organizing
the block structures in an ordered tree. When this tree has been constructed,
code generation is performed by traversing the tree. The tree is built up using
the hierarchical structure of PetriCode models down to the service level. At the
service level, the block structure of the service is reflected in the structure of
the ATT.

The ATT module is responsible for generating ATTs and the main classes
that make up the ATTs are show in Figure 7. After pragmatics are parsed
and derived pragmatics have been added to the CPN model, the next step is
ATT generation. The ATT generation is done by the ATTFactory class which
produces an instance of the class AbstractTemplateTree. The AbstractTem-
plateTree has as its descendants instances of the classes Atomic, Conditional,
Loop, Principal and Service. The Principal and Service classes each have a link
going to the Instance class of the Access/CPN model which represents substi-
tution transitions. The Block class has two outgoing associations with Place

nodes from Access/CPN and the Atomic, in addition, has an association with
transitions.

An ATT is implemented as an ordered tree. Each non-leaf element in the
tree has a list of children. The root element of an ATT is an instance of the
AbstractTemplateTree class. Each child of the root element is expected to be
of the class Principal. The Principal class has as children the services of the
principal. The Service class represents a service, its children are the blocks of
the service according to the block structure introduced in [17].

13

Figure 7: Classes of the ATT

There are three basic Block types in PetriCode: atomic, conditional and
loop, each represented by a corresponding class. The Atomic class does not
have any child elements since it is always a leaf node. Loop and Conditional
however are not leafs and have children elements. The children of Conditional
and Loop can be the same as for Service.

The ATT from the example in Section 2 is shown in Fig. 8. The tree has a

14 6 CODE GENERATION MODULE

Figure 8: ATT of the example

single root representing the entire protocol system. At the next level, the prin-
cipals are represented. The children of the principal nodes are the services, and
their children represents the block structure of the services. Looking specifically
at the Send service of the Sender principal, we see that the service has three
direct descendants. These descendants represents the loop in the service and
one atomic block on each side of the loop. The first of the nodes is the partition
atomic which contains the partition pragmatic which is where the message sent
by the framing protocol is divided into smaller smaller. The second node is the
loop itself and the final node is the atomic after the loop which does not have
any pragmatics and as such does not produce any code.

ATTs may be serialized and de-serialized to and from XML documents.
This is done by using the XMLStream library and follows its conventions and
file format. Necessary parts of the CPN model will also be serialized together
with the ATT. PetriCode can also output a graphical representation of the ATT
such as the one in Fig. 8.

6 Code Generation Module

The generation module is responsible for generating code from ATTs. In order to
generate code from annotated CPNs, the pragmatics must be connected to code
generation templates. This is done using the Binding class which is connected
to Pragmatics(see Fig. 6). The bindings are produced by another DSL wich
parses user provided template bindings and returns an object structure for the
template bindings.

The code generation phase can be divided into two separate sub-phases.
The first sub-phase is the code generation for each element in the ATT. A
visitor visits each element in the ATT in no particular order. Each ATT node
must implement the method generateCode(bindings) which finds and uses the
appropriate templates to generate the corresponding code. The code is put in
the field text in each of the elements. Other visitors makes sure that variables
used are declared at the proper places for applicable platforms.

The second sub-phase in the code generation phase is to stitch together the
generated code for each ATT node. This is done by a depth-first traversal of the
ATT. For each node, when all the sub-nodes have been visited, the %%yield%%
tag in the code generated for the node is replaced by the concatenation of the

6.1 Template bindings. 15

Parameter Description

pragmatic The name of pragmatic that is bound by this binding.
template The path to the template file referred to by this binding.

parameterStrategy The strategy that should be used by the generator to
supply the template with the appropriate parameters.

Table 3: The parameters for template bindings.

text field of all the immediate descendent of the node. When this has been done
for each principal in the protocol, the code generation is complete and the code
is written to the output directory.

6.1 Template bindings.

In order to select the right code template for each pragmatic, the user supplies
PetriCode with so-called template bindings. These bindings are supplied in the
form of a DSL. The DSL allows the user to specify the template and other
necessary information about a template and how it should be applied. In the
template bindings DSL, there are names, which can be anything as long as they
are unique, followed by a pair of parenthesis. Inside the parenthesis a map
is given which is the parameters of the binding. The possible parameters are
described in Table 3.

The available parameter strategies are FROM PRAGMATIC and CONDITIONALS.
The FROM PRAGMATIC strategy simply splits the parameters given in a prag-
matic based on ’,’. The resulting list is then added to the map of parameters
with the key ’params’. The CONDITIONALS is used when a condition needs to
be parsed. This strategy checks if the arguments of the pragmatics starts with
the string “cond:”. If it does, the first part of the arguments string, encapsulated
in parenthesis, contains a boolean expression. The expression is expressed in
a specialized lisp-like language language. The next two parts of the arguments
should contain the outcomes for the cases where the expression evaluates to true
and false.

Listing 5 shows two template bindings. The first binding is a binding for the
〈〈Principal〉〉 pragmatic, which is used on the Sender and Receiver substitution
transitions in Fig. 1. This is a container, which means that the generator should
add the code generated to the principals children in the ATT to it. The other
fields are pragmatic (which names the pragmatic) and template (which contains
the file-name of the template). The second template binding binds 〈〈send〉〉,
which is placed on the Send Packet transition (See Fig. 3). after pragmatics
derivation. This binding has the additional field parameterStratey. This field
determines how the parameters to the template should be constructed.

Listing 5: Two examples of template bindings.

classTemplate(pragmatic: ’Principal’,

template: ’./groovy/mainClass.tmpl’, isContainer: true)

send(pragmatic: ’send’, parameterStrategy: FROM_PRAGMATIC,

template: ’./groovy/sendMessageTCP.tmpl’)

16 7 RELATED WORK

6.2 Custom Templates.

When creating support for different platforms, adding new functionality through
custom templates or overriding existing code generation new templates should
be created and bound through template bindings. Templates are Groovy Tem-
plates and processed by the Groovy SimpleTemplateEngine [3]. This means that
the full Groovy programming language is available for the template creator, as
well as a convenient notation.

7 Related Work

Many tools exist for generating software from models. Most of the tools, how-
ever, support only the generation of static parts of the code and some standard
behaviour [8]. This does less than it could to help create robust software since
the non-trivial parts are still written manually. However, some tools allows
for generating more than structural parts of software. In this section we only
consider tools that do full code generation where no manual coding is necessary.

Process-Partitioned CPNs (PP-CPNs) [9] have been used to automatically
generate code for several purposes including protocol software. PP-CPNs are a
restricted sub-class of CPNs. Code is generated from PP-CPNs by first trans-
lating the PP-CPN into a control flow graph (CFG), then translating the CFG
into an abstract syntax tree for an intermediary language. The CFG is trans-
lated into another intermediary representation which is dependent on the target
platform, and from this representation code is generated. In [9], PP-CPNs are
used to model and obtain an implementation for the DYMO routing protocol
using the Erlang programming language and platform. Both PP-CPNs and our
modelling language are subclasses of CPNs. However, where we rely on prag-
matics to control code generations PP-CPNs, rely on a restricted colour set and
CPN structure to allow the generator to deduce the needed information. Our
approach also models the environment of the services while PP-CPNs are geared
more to just modelling the services. This allows us to represent the protocol at
higher levels of abstraction on the protocol and principal levels as well as on the
service level. It also allows us to define how the services should be called in a
structured way.

There are several tools for modelling and generating protocol software based
on the Specification and Description Language (SDL) [5, 2]. SDL is created for
the purpose of modelling protocols, and is extensively used in the telecommu-
nications industry. The IBM Rational SDL Suite (previously Tau SDL Suite
and SDT) is among the most well known proprietary tools for SDL. The Ratio-
nal SDL Suite supports code generation for SDL models to C and C++ code
and also supports verification through model checking. Another SDL tool is
Jade [15] that supports editing and analysis/verification of SDL models. Code
generation for JADE is said to be in development. SDL Integrated Tool Envi-
ronment (SITE) supports editing fg SDL models and code generation to Java
and C++ code. SITE also supports some analysis of SDL models. SDL is a
graphical language based on Finite State Machines (FSMs). This allows verifica-
tion of protocols using model checking techniques. Compared to our approach,
SDL is not as easily extensible as our approach.

Renew [13] is a tool that allows creation and execution of object-oriented

17

Petri Nets. Renew supports several modelling formalisms. However, the for-
malisms are all based on various forms of Petri Nets. Renew supports Reference
nets can be annotated with Java code and can be executed using a built-in
simulator engine. The simulator can execute the nets incorporating the Java
annotations in a headless mode so that no visualization will occur. This means
that the simulations can be used as stand-alone programs. The simulation ap-
proach is in contrast to our code generation approach where code is generated
and can be inspected and compiled as computer programs created with tradi-
tional programming languages.

GenERTiCA[20] is a tool aimed at embedded systems that generates code
from UML models. In the generation process, the classes of the UML model
are selected one by one, and templates are executed on each of them according
to an XML mapping. It is not detailed in the article[20] on GenERTiCA how
behaviour is modelled. However, from the description of the mapping file it is
clear that there must exist templates for key behavioural actions. Many aspects
of GenERTiCA are similar to our approach, although in a different domain.
A key difference in the approaches is that GenERTiCA is based on an aspect
oriented/object oriented approach. This limits the target platforms slightly,
although the paper clearly states that aspect orientation need not be supported
by the target language.

The Unified Modelling Language, and in particular state charts and sequence
diagrams, has been used to model and generate code for protocols in several
approaches [11, 20, 1, 14, 12]. Several tools exists for UML which support
analysis and code generation in various ways. Compared with the surveyed
UML-based approaches, our pragmatics- and template-based approach allows
us to give the user a great deal of flexibility be letting the user easily define
custom pragmatics and templates. In addition, the CPN models we use may be
more readily amenable to verification due to the large amount of work done on
verifying CPN models for the network protocol domain [10].

8 Conclusions and Future Work

In this report, we have described a tool that can generate code from Coloured
Petri Nets annotated with pragmatics. We have shown how this tools works by
using the example of a simple communication protocol. The goal of our tool is
to be able to generate code that is complete in the sense that no further code
should be required to use the services our code provides. Another important
goal of PetriCode has been to generate code that is readable and analysable for
human programmers.

The input of the tool is an instance of a specific class of CPN models. A
main goal of PetriCode is that the CPN models should be as descriptive in the
sense that they can be used to describe the modelled system accurately on useful
levels of abstraction.

In the future we will use the tool to evaluate our approach using a larger
and more realistic examples and expand the range of available templates to
other languages and platforms. Another item we plan to work on is to make our
approach even more flexible by allowing the users to easily add custom pragmatic
patterns and placement conditions. We will also attempt to integrate the tool
with other popular software development tools.

18 REFERENCES

References

[1] M. Alanen, J. Lilius, I. Porres, and D. Truscan. On Modeling Techniques for
Supporting Model Driven Development of Protocol Processing Applications,
pages 305–328. Springer, 2005.

[2] F. Babich and L. Deotto. Formal methods for specification and analysis
of communication protocols. Communications Surveys Tutorials, IEEE,
4(1):2–20, 2002.

[3] Groovy. Groovy Templates. http://groovy.codehaus.org/Groovy+Templates.

[4] Groovy. Project Web Site. http://groovy.codehaus.org.

[5] ITU-T. Recommendation z.100 (11/99) specification and description lan-
guage (sdl), 1999.

[6] K. Jensen and L.M. Kristensen. Coloured Petri Nets - Modelling and Val-
idation of Concurrent Systems. Springer, 2009.

[7] Kurt Jensen, LarsMichael Kristensen, and Lisa Wells. Coloured petri nets
and cpn tools for modelling and validation of concurrent systems. Interna-
tional Journal on Software Tools for Technology Transfer, 9(3-4):213–254,
2007.

[8] E. Kindler. Model-based software engineering; the challenges of modelling
behaviour. In Proceedings of the Second Workshop on Behavioural Mod-
elling - Foundations and Application (BM-FA 2010). ACM electronic li-
braries, 2010.

[9] L. M. Kristensen and M. Westergaard. Automatic Structure-Based Code
Generation from Coloured Petri Nets: A Proof of Concept. In Proc. of
FMICS’10, volume 6371 of LNCS, pages 215–230. Springer, 2010.

[10] L.M. Kristensen and K.I.F. Simonsen. Applications of Coloured Petri Nets
for Functional Validation of Protocol Designs. In Transactions on Petri
Nets and Other Models of Concurrency VII, LNCS. Springer, 2013.

[11] Christian Kroiss, Nora Koch, and Alexander Knapp. Uwe4jsf: A model-
driven generation approach for web applications. In Proceedings of the 9th
International Conference on Web Engineering, ICWE ’09, pages 493–496,
Berlin, Heidelberg, 2009. Springer-Verlag.

[12] P. Kukkala, V. Helminen, M. Hannikainen, and T.D. Hamalainen. Uml 2.0
implementation of an embedded wlan protocol. In Personal, Indoor and
Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE Interna-
tional Symposium on, volume 2, pages 1158–1162 Vol.2, 2004.

[13] Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jörn Schumacher,
Michael Köhler, Daniel Moldt, Heiko Rölke, and Rüdiger Valk. An ex-
tensible editor and simulation engine for petri nets: Renew. In Jordi Cor-
tadella and Wolfgang Reisig, editors, Applications and Theory of Petri Nets
2004, volume 3099 of Lecture Notes in Computer Science, pages 484–493.
Springer Berlin Heidelberg, 2004.

REFERENCES 19

[14] J. Parssinen, N. von Knorring, J. Heinonen, and M. Turunen. Uml for
protocol engineering-extensions and experiences. In Technology of Object-
Oriented Languages, 2000. TOOLS 33. Proceedings. 33rd International
Conference on, pages 82–93, 2000.

[15] C.L. Pereira, Jr. da Silva, D.C., R.G. Duarte, A.O. Fernandes, L.H.
Canaan, C.J.N. Coelho, and L.L. Ambrosio. Jade: An embedded systems
specification, code generation and optimization tool. In Integrated Cir-
cuits and Systems Design, 2000. Proceedings. 13th Symposium on, pages
263–268, 2000.

[16] PetriCode. Project Web Site. http://kentis.github.io/nppn-cli/.

[17] K. I.F Simonsen, L.M. Kristensen, and E. Kindler. Code Generation for
Protocol Software from CPNmodels Annotated with Pragmatics. Technical
Report IMM-Technical Reports-2013-01, Technical University of Denmark,
DTU Informatics, January 2013. Available via http://bit.ly/WwH2hf.

[18] Kent Inge Fagerland Simonsen. On the use of pragmatics for model-based
development of protocol software. In International Workshop on Petri Nets
and Software Engineering, 2011.

[19] K.I.F. Simonsen and L.M. Kristensen. Towards a CPN-based modelling ap-
proach for reconciling verification and implementation of protocol models.
In Proc. of MOMPES’12, LNCS. Springer, 2012. To appear.

[20] Marco A. Wehrmeister, Edison P. Freitas, Carlos E. Pereira, and Franz
Rammig. Genertica: A tool for code generation and aspects weaving. In
Proceedings of the 2008 11th IEEE Symposium on Object Oriented Real-
Time Distributed Computing, ISORC ’08, pages 234–238, 2008.

[21] Michael Westergaard and LarsMichael Kristensen. The access/cpn frame-
work: A tool for interacting with the cpn tools simulator. In Giuliana
Franceschinis and Karsten Wolf, editors, Applications and Theory of Petri
Nets, volume 5606 of Lecture Notes in Computer Science, pages 313–322.
Springer Berlin Heidelberg, 2009.

