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ABSTRACT

The paper presents a new binary classification method based on the
minimization of the slack variables energy called the Mean Squared
Slack (MSS). We deliver preliminary mathematical results which
support the motivation behind our approach. We show that (a) in
the linearly separable case the minimum MSS is attained at a sepa-
rating vector, while (b) the minimizer in the linearly non-separable
case is bounded but not zero. The method is conceptually simple:
it solves a linear system at each iteration and it converges, typically,
within a few iterations. Its complexity is obviously related to the
size of the system which, in the linear case, is equal to the input
pattern dimension. The method is extended to the non-linear case
using kernels. Simulations demonstrate that the method is compet-
itive with respect to computation time, accuracy, and generalization
performance compared to state of the art SVM methods.

Index Terms— Binary classification, Kernel methods, slack
minimization

1. INTRODUCTION

Machine Learning (ML) has been a very active research area over
the past decades and pattern classification is a core problem in ML.
The increased interest in recent years can be partly justified by the
ever increasing size of the databases that need to be effectively
processed. Support Vector Machines (SVMs) are considered to
be the state-of-the-art methods for the classification task and thus
have found application in practically every machine learning prob-
lem. SVMs achieved the state-of-art performance on the MNIST
benchmark set, whereas they are widely applied in computer vision,
including tasks such as object recognition and detection. They are
most exploited in bio-informatics and natural language processing.
This may partially attributed to the fact that both fields deal with
high-dimensional problems, such as microarray processing tasks,
and text categorization. Additionally, SVMs have been tested for
speech and speaker recognition, emotion classification, object de-
tection, e-learning, database marketing, intrusion detection, geo-
and environmental sciences, finance time series forecasting and high
energy physics. The aforementioned list of applications is just in-
dicative but not exhaustive. Currently, there is a number of readily
available software packages for SVM optimization. Here, we resort
to SVMlight [1] and libsvm[2], for sake of comparison with the
proposed approach.

Boser et al. [3] were the first to use kernels to construct a non-
linear estimation algorithm, which is the hard margin predecessor of
the SVM [4] [5]. The substitution of kernels for dot products aims
to transform a linear geometric algorithm into a nonlinear one. This
way, hyperplane classifiers evolved to SVMs [6].

Let us present a concise introduction to SVMs [7]. Considering

a set of training data

X = {(x(i), t(i)) | x(i) ∈ Rn}Ni=i (1)

where x(i) is a feature vector, t(i) ∈ {−1, 1} is the class label of
x(i), and N is the size ofX . SVMs aim to search a hyperplane in the
Reproducing Kernel Hilbert Space (RKHS) that maximizes the mar-
gin between the two classes of data in X with the smallest training
error [8]. This problem can be formulated as a quadratic optimiza-
tion problem: minP (w, b, ξ) = 1

2
∥w∥22 + C

∑N
i=1 ξ(i) subject to

1− t(i)(wTΦ(x(i)) + b) ≤ ξ(i), ξ(i) > 0, where w is a weight
vector, b is a threshold, C a regularization hyperparameter, and Φ a
function which maps x(i) to an RKHS space. The decision function
of SVMs is f(x) = wTΦ(x) + b. Normally, w and b would be at-
tained by minimizing P ; however, Φ can be a high (or even infinite)
dimensional function. Therefore, we make the assumption that w =∑N

i=1 aiΦ(x(i)) and we resort to the solution of the dual problem,
i.e. minD(a) = 1

2
aTQa− aT 1, subject to 0 ≤ a ≤ C, tTa = 0

where t(i)t(j)ΦT (x(i))Φ(x(j)) = [Q]ij is the Lagrangian mul-
tiplier variable (or dual variable). SVMs utilize the kernel trick
by specifying a kernel function K(x(i),x(j)) defined as the inner-
product ΦT (x(i))Φ(x(j)). Thus, [Q]ij = t(i)t(j)K(x(i),x(j)).
When the given kernel function K is psd (positive semidefinite), the
dual problem is a convex quadratic programming (QP) problem with
linear constraints and can be solved in polynomial time.

Recent methods exploit the idea of constructing kernel algo-
rithms, where the starting point is not a linear algorithm [6], but a
linear criterion. The latter can be turned into a condition involving
an efficient optimization over a large function class using kernels,
thus yielding tests for independence of random variables, or tests for
solving the two-sample problem. A linear criterion may be for exam-
ple that two random variables have zero covariance, or that the means
of two samples are identical. Other alternatives try to improve scala-
bility, exploiting parallel SVM (PSVM) [7], which reduces memory
use through performing a row-based, approximate matrix factoriza-
tion, and which loads only essential data to each machine to perform
parallel computation.

2. MEAN SQUARED SLACK MINIMIZATION

Consider the classification task for the training setX in (1). The task
amounts to finding a proper weight vector w ∈ Rn and bias b that
solve the following set of inequalities:

t(i)(wTx(i) + b) ≥ γ, i = 1, · · · , N (2)

for some positive margin γ > 0.
In general, there may not exist any feasible solution for the set

of inequalities (2). It is then useful to define a slack variable ξ(i),
associated with pattern i,

ξ(i) = max{γ − t(i)[wTx(i)− b], 0} (3)



so that

t(i)[wTx(i) + b] ≥ γ − ξ(i), ξ(i) ≥ 0. (4)

Typically a maximum margin classifier, such as an SVM, seeks
to minimize the norm of the weight vector w under the constraints
described in (4) and putting a penalty on the slack variables. How-
ever, the computational complexity of the resulting quadratic pro-
gramming problem can be quite high, especially for large datasets
(e.g. N >> 10000).

An alternative approach would be to minimize the Mean
Squared Slack (MSS) defined as

JMSS =
1

2
Ē{ξ2 | ξ > 0} (5)

=
1

2
Ē
{
(γ − t[wTx− b])2

∣∣∣γ > t[wTx+ b]
}

(6)

where Ē{X | Y } is the empirical average of the sequence X(i)
under condition Y :

Ē{X | Y } = 1

NY

∑
all i where
Y is true

X(i) (7)

and NY is the number of instances where Y is true. Note that the
average operator in (5) is conditioned on the inequality ξ > 0. In
other words, we care only for those patterns which give t(i)(wTx+
b) < γ. This is reasonable, since, in the classification context, only
the “bad” patterns that fail to satisfy inequality (2) should contribute
to the cost, while all the others should not.

Motivated by our quest for a faster algorithm we explore, here,
methods minimizing the MSS. First, however, we need to establish a
theoretical basis justifying the use of this approach. This is provided
by the following Lemma:

Lemma 1 The following statements are true:
(a) if problem (2) is linearly separable, then the minimum

JMSS = 0 is attained by [wT , b] iff [wT , b] is a separating vector;
(b) if the problem is not linearly separable, then the cost function

JMSS attains its minimum for some [wT , b] with 0 < ∥[wT , b]∥ <
∞.

PROOF.
(a) By definition, JMSS ≥ 0. According to (5) the minimum

value JMSS = 0 is attained iff ξ(i) = 0 for all i. However, accord-
ing to (3), ξ(i) = 0 for all i, iff [wT , b] is a separating vector.

(b) Since JMSS is bounded from below by zero it has an infi-
mum. We need to show this infimum is not attained neither at zero
nor at infinity.

First we shall show that the vector [wT , b] = 0 does not attain
the infimum. Consider any vector [wT

0 , b0] such that

N∑
i=1

t(i)[wT
0 x(i) + b0] > 0. (8)

We can always select such a vector: simply pick any [wT
1 , b1]

for which
∑N

i=1 t(i)[w
T
1 x(i) + b1] ̸= 0, and set [wT

0 , b0] =

−[wT
1 , b1], if

∑N
i=1 t(i)[w

T
1 x(i)+b1] < 0, otherwise let [wT

0 , b0] =

[wT
1 , b1].

Now consider the vector [wT , b] = ε[wT
0 , b0] for some small

ε > 0, such that ε t(i)[wT
0 x(i) + b0] < γ, ∀i. We have

JMSS(εw0, εb0) =
1

2
γ2 − εδ1 + ε2δ2

where δ1 = γ
∑N

i=1 t(i)[w
T
0 x(i) + b0], δ2 = 1

2

∑N
i=1[w

T
0 x(i) +

b0]
2.
Since both δ1 > 0 and δ2 > 0, it follows that, if we impose the

additional constraint ε < δ1
δ2

, then

JMSS(εw0, εb0) <
1

2
γ2 = JMSS(0).

Therefore, [wT , b] = 0 is not a minimizer.
It remains to show that the infimum is not attained at infinity. To

that end we shall fix any arbitrary vector [wT , b] ̸= 0 and we shall
consider the behavior of the cost along the line λ[wT , b] as λ→∞.
We’ll show that the function

JMSS(λ) =
1

2
Ē
{
(γ − λt[wTx+ b])2

∣∣∣γ > λt[wTx+ b]
}

(9)

increases monotonically for sufficiently large λ. We rewrite (5) as
follows

JMSS(λ) = J1(λ) + J2(λ) (10)

J1(λ) =
1

2
Ē
{
(γ − λt[wTx+ b])2

∣∣∣ 0 ≥ λt[wTx+ b]
}

(11)

J2(λ) =
1

2
Ē
{
(γ − λt[wTx+ b])2

∣∣∣ γ ≥ λt[wTx+ b] > 0
}
(12)

We see that

J1(λ) =
1

2
Ē
{
(γ − λt[wTx+ b])2

∣∣∣
0 ≥ t[wTx+ b]

}
=

1

2
γ2 + λc1 + λ2c2 (13)

where

c1 = γĒ
{
−t[wTx+ b]

∣∣∣ 0 ≥ t[wTx+ b]
}

c2 = Ē
{1

2
|wTx+ b|2

∣∣∣ 0 ≥ t[wTx+ b]
}

Since the problem is non-separable, the set {i : 0 ≥ t(i)[wTx(i)+
b]} is non-empty. It follows that c1, c2 > 0, thus by Eq. (13),

J1(λ)→∞ as λ→∞. (14)

On the other hand, J2 is bounded below by zero:

J2(λ) > 0. (15)

Combining (14) and (15) with (10) we conclude that

JMSS(λ)→∞ as λ→∞. (16)

With the above result in mind, we can study the optimization of
JMSS through the Karush-Kuhn-Tucker (KKT) conditions. We then
compute the gradient of JMSS w.r.t. w, and b as

gw = Ē
{
xxTw + bx− γtx

∣∣∣ γ > t[wTx+ b]
}

(17)

gb = Ē
{
xTw + b− γt

∣∣∣ γ > t[wTx+ b]
}

(18)



or

gw = Rxw + bmx − γmtx (19)
gb = mT

xw + b− γmt (20)

where Rx = Ē{xxT | γ > t[wTx + b]}, mtx = Ē{tx | γ >
t[wTx + b]}, mx = Ē{x | γ > t[wTx + b]}, mt = Ē{t | γ >
t[wTx+ b]}. Setting the gradient equal to zero we obtain[

w∗

b∗

]
= γ

[
Rx mx

mT
x 1

]+ [
mtx

mt

]
(21)

Unfortunately, (21) is not a computable solution because the un-
known vector [wT , b] appears on both sides of the equality (note
that Rx, mtx, mx and mt are all functions of w, b).

This analysis however, suggests the following iterative proce-
dure for minimizing the average squared slack:

Algorithm 1 (Linear Minimum MSS)

Step 0: Select an initial random vector w0 and bias b0;
Step 1: Let k = 0;
Step 2: Find the set S = {i : γ > t(i)[wT

k x(i) + bk]};
Let Rx = 1

|S|
∑

i∈S x(i)x(i)T , mtx = 1
|S|

∑
i∈S t(i)x(i),

mx = 1
|S|

∑
i∈S x(i), and mt =

1
|S|

∑
i∈S t(i).

Step 3: Update[
wk+1

bk+1

]
= γ

[
Rx mx

mT
x 1

]+ [
mtx

mt

]
(22)

Step 5: Set k ← k + 1;
Step 6: If terminating condition is met then STOP

else goto Step 2;

Termination can be decided using a combination of the follow-
ing conditions:

(a) the maximum number of iterations is reached;
(b) the number of misclassified patterns is less or equal to a cer-

tain threshold;
(c) the size of the update step is below a certain threshold.

3. THE KERNEL TRICK

In order to facilitate the computation of nonlinear separating surfaces
we can use a nonlinear mapping Φ : Rn → Rm of the input vectors
x into an m-dimensional space, where m > n (sometimes m =
∞). The separating vector w in Rm is a linear combination of the
mapped inputs

w =
∑
j∈G

a(j)Φ(x(j))

where G is some subset of {1, 2, · · · , N}. We shall avoid the ex-
plicit computation of Φ() using the scalar kernel function K(x,y) =
Φ(x)TΦ(y). Now, S is the set of indexes i for which

t(i)y(i) < γ, (23)

where

y(i) =
∑
j∈G

K(x(i),x(j))a(j) + b. (24)

Eq. (21) becomes[ ∑
i∈S Φ(x(i))Φ(x(i))T

∑
i∈S Φ(x(i))∑

i∈S Φ(x(i))T |S|

]
·[ ∑

j∈G Φ(x(j))a(j)
b

]
= γ

[ ∑
i∈S t(i)Φ(x(i))∑

i∈S t(i)

]
. (25)

Call Kij = K(x(i),x(j)) and define the row vectors kT
i =

[Kij ]j∈G for i = 1, · · · , N . Then we have[ ∑
i∈S Φ(x(i))kT

i

∑
i∈S Φ(x(i))∑

i∈S kT
i |S|

] [
a
b

]
=

γ

[ ∑
i∈S t(i)Φ(x(i))∑

i∈S t(i)

]
(26)

which can be simplified into[
ΦS

1T

]
[K 1]

[
a
b

]
= γ

[
ΦS

1T

]
tS (27)

where a = [a(i)]i∈G ∈ R|G|×1, ΦS = [Φ(x(i))]i∈S ∈ Rm×|S|,
K = [Kij ]i∈S,j∈G = [ki]

T
j∈G ∈ R|S|×|G|, 1 = [1, · · · , 1]T ∈

R|S|×1, and tS = [t(i)]i∈S ∈ R|S|×1. It is sufficient1 that

[K 1]

[
a
b

]
= γtS (28)

hence [
a
b

]
= γ [K 1]+ tS . (29)

Since G is the set containing the support vectors, it is sufficient
that G ⊆ S. We may use two options:

(a) G = S or

(b) fix an upper limit to the cardinality |G| and form G ⊂ S by
picking at most |G| elements out of S.

This leads to the kernel learning rule summarized below.

Algorithm 2 (Kernel Minimum MSS)

Step 0: Select initial random values a0, b0;
Step 1: Let k = 0;
Step 2: Find the set S using (24);

Select a subset G of S using either option (a) or (b)
Step 3: Update a and b as

[
ak+1

bk+1

]
= γ [K 1]+ tS (30)

Step 4: Set k ← k + 1;
Step 5: If terminating condition is met then STOP

else goto Step 2;

1although not necessary unless
[

ΦS

1T

]
has full column rank



Table 1. Adult Results slack min
Kernel |G| Ite-

ra-
tions

Time
elapsed
training
(sec)

Accur.
(Train
set),
(Test
set)

Precision
(Train
set),
(Test
set)

Recall
(Train
set),
(Test
set)

linear - 6 1.058 84.2%,
83.7%

74.4%,
75.4%

51.9%,
51.0%

poly 250 5 98.199 85.1%,
84.1%

74.8%,
74.9%

56.7%,
54.3%

Table 2. Adult Results SVMlight
Kernel Time

elapsed
training
(sec)

Accuracy
(Train
set),
(Test
set)

Precision
(Train
set),
(Test
set)

Recall
(Train
set),
(Test
set)

linear 8.3333 83.69%,
83.65%

75.70%,
74.48%

49.34%,
48.27%

poly 69.0340 84.63%,
84.18%

75.53%,
74.54%

53.65%,
51.60%

4. SIMULATIONS AND COMPARISON

In our experiments we used the “Adult” data set [9] available at the
UCI machine learning repository. The data set is a selection of fields
from the 1994 United States census data. It is among the larger
datasets, having more than 32,561 training examples. The task is
to predict if the income of a person is greater than 50K based on sev-
eral census parameters, such as age, education, marital status, and so
forth. Experimental results using the slack minimization algorithm
with a linear kernel as well as with a polynomial kernel having an
offset equal to 1 and a power equal to 2 is depicted in Table 1. For
comparison purposes we resort to readily available software pack-
ages for SVMs, namely SVMlight [1] and libsvm [2]. The results
are shown in Table 2 and Table 3, respectively. All experiments
were performed on a 2.67 MHz processor with 4GB of RAM, with
a Windows-7 32 bit operating system. Finally, the convergence of
the algorithm is demonstrated in Figure 1 with the plots of the mis-
classification error as a function of the iterations (on the left for the
linear kernel, on the right for the polynomial kernel). We see that the
algorithm typically converges in less than 5 iterations.

Table 3. Adult Results LIBSVM
Kernel Time

elapsed
training
(sec)

Accuracy
(Train
set),
(Test
set)

Precision
(Train
set),
(Test
set)

Recall
(Train
set),
(Test
set)

linear 14.7736 84.33%,
83.60%

76.09%,
73.79%

51.03%,
48.91%

poly 69.0340 83.65%,
83.308%

75.63%,
74.207%

47.48%,
46.474%
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Fig. 1. The misclassification error as a function of the iterations
for the slack minimization algorithm. Left: linear kernel; Right:
polynomial kernel.

5. CONCLUSIONS

We have presented a method for solving the binary classification
problem through the minimization of the energy of the slack vari-
ables. The method involves the solution of a linear system per iter-
ation and it converges in a few iterations. We have presented pre-
liminary mathematical results studying the minimizers of MSS and
showing that if the problem can be linearly solved the algorithm will
find a solution. The experiments demonstrate computational advan-
tage over classical methods, in the linear case, while the performance
is comparable. Due to lack of space only one set of experiments has
been shown. In the full paper, we shall present a more thorough
treatment of the algorithm convergence including more simulation
results and comparisons with classical models in various data sets.
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